WorldWideScience

Sample records for putative susceptibility loci

  1. Evaluation of two putative susceptibility loci for oral clefts in the Danish population

    DEFF Research Database (Denmark)

    Mitchell, L E; Murray, J C; O'Brien, S

    2001-01-01

    . The present study evaluated potential associations between CL+/-P and CP and two putative clefting susceptibility loci, MSX1 and TGFB3, using data from a nationwide case-control study conducted in Denmark from 1991 to 1994. The potential effects of interactions between these genes and two common environmental......-environment interactions involving MSX1 or TGFB3 and either first trimester exposure to maternal cigarette smoke or alcohol consumption....

  2. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan

    2017-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors...... (TFs) critical to somatic tumorigenesis. METHODS: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery...... to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P

  3. Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE.

    Science.gov (United States)

    Bertram, Lars; Lange, Christoph; Mullin, Kristina; Parkinson, Michele; Hsiao, Monica; Hogan, Meghan F; Schjeide, Brit M M; Hooli, Basavaraj; Divito, Jason; Ionita, Iuliana; Jiang, Hongyu; Laird, Nan; Moscarillo, Thomas; Ohlsen, Kari L; Elliott, Kathryn; Wang, Xin; Hu-Lince, Diane; Ryder, Marie; Murphy, Amy; Wagner, Steven L; Blacker, Deborah; Becker, K David; Tanzi, Rudolph E

    2008-11-01

    Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.

  4. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes

    DEFF Research Database (Denmark)

    Broeks, Annegien; Schmidt, Marjanka K; Sherman, Mark E

    2011-01-01

    Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtype...... stratification might help in the identification and characterization of novel risk factors for breast cancer subtypes. This may eventually result in further improvements in prevention, early detection and treatment.......Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes...... were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations...

  5. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.

    Science.gov (United States)

    Andlauer, Till F M; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A; Loleit, Verena; Luessi, Felix; Meuth, Sven G; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-06-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.

  6. Characteristics of Japanese inflammatory bowel disease susceptibility loci.

    Science.gov (United States)

    Arimura, Yoshiaki; Isshiki, Hiroyuki; Onodera, Kei; Nagaishi, Kanna; Yamashita, Kentaro; Sonoda, Tomoko; Matsumoto, Takayuki; Takahashi, Atsushi; Takazoe, Masakazu; Yamazaki, Keiko; Kubo, Michiaki; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-08-01

    There are substantial differences in inflammatory bowel disease (IBD) genetics depending on the populations examined. We aimed to identify Japanese population-specific or true culprit susceptibility genes through a meta-analysis of past genetic studies of Japanese IBD. For this study, we reviewed 2,703 articles. The review process consisted of three screening stages: we initially searched for relevant studies and then relevant single nucleotide polymorphisms (SNPs). Finally, we adjusted them for the meta-analysis. To maximize our chances of analysis, we introduced proxy SNPs during the first stage. To minimize publication bias, no significant SNPs and solitary SNPs without pairs were combined to be reconsidered during the third stage. Additionally, two SNPs were newly genotyped. Finally, we conducted a meta-analysis of 37 published studies in 50 SNPs located at 22 loci corresponding to the total number of 4,853 Crohn's disease (CD), 5,612 ulcerative colitis (UC) patients, and 14,239 healthy controls. We confirmed that the NKX2-3 polymorphism is associated with common susceptibility to IBD and that HLA-DRB1*0450 alleles increase susceptibility to CD but reduce risk for UC while HLA-DRB1*1502 alleles increase susceptibility to UC but reduce CD risk. Moreover, we found individual disease risk loci: TNFSF15 and TNFα to CD and HLA-B*5201, and NFKBIL1 to UC. The genetic risk of HLA was substantially high (odds ratios ranged from 1.54 to 2.69) while that of common susceptibility loci to IBD was modest (odds ratio ranged from 1.13 to 1.24). Results indicate that Japanese IBD susceptibility loci identified by the meta-analysis are closely associated with the HLA regions.

  7. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Science.gov (United States)

    Andlauer, Till F. M.; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A.; Loleit, Verena; Luessi, Felix; Meuth, Sven G.; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H.; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K.; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O.; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B.; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M.; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M.; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-01-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis. PMID:27386562

  8. Genetic susceptibility loci, pesticide exposure and prostate cancer risk.

    Directory of Open Access Journals (Sweden)

    Stella Koutros

    Full Text Available Uncovering SNP (single nucleotide polymorphisms-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs and 95% confidence intervals (CIs. Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1 SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44-8.15 (P-interaction= 0.003. Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41 (P-interaction= 0.006. In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.

  9. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  10. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes.

    Science.gov (United States)

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi; Shimizu, Seiko; Higashino, Toshihide; Kawamura, Yusuke; Ogata, Hiraku; Kawaguchi, Makoto; Ohkawa, Yasuyuki; Danjoh, Inaho; Tokumasu, Atsumi; Ooyama, Keiko; Ito, Toshimitsu; Kondo, Takaaki; Wakai, Kenji; Stiburkova, Blanka; Pavelka, Karel; Stamp, Lisa K; Dalbeth, Nicola; Sakurai, Yutaka; Suzuki, Hiroshi; Hosoyamada, Makoto; Fujimori, Shin; Yokoo, Takashi; Hosoya, Tatsuo; Inoue, Ituro; Takahashi, Atsushi; Kubo, Michiaki; Ooyama, Hiroshi; Shimizu, Toru; Ichida, Kimiyoshi; Shinomiya, Nariyoshi; Merriman, Tony R; Matsuo, Hirotaka

    2017-05-01

    A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (pgout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10 -8 ). Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci...

  12. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci,

  13. Linkage analysis: Inadequate for detecting susceptibility loci in complex disorders?

    Energy Technology Data Exchange (ETDEWEB)

    Field, L.L.; Nagatomi, J. [Univ. of Calgary, Alberta (Canada)

    1994-09-01

    Insulin-dependent diabetes mellitus (IDDM) may provide valuable clues about approaches to detecting susceptibility loci in other oligogenic disorders. Numerous studies have demonstrated significant association between IDDM and a VNTR in the 5{prime} flanking region of the insulin (INS) gene. Paradoxically, all attempts to demonstrate linkage of IDDM to this VNTR have failed. Lack of linkage has been attributed to insufficient marker locus information, genetic heterogeneity, or high frequency of the IDDM-predisposing allele in the general population. Tyrosine hydroxylase (TH) is located 2.7 kb from INS on the 5` side of the VNTR and shows linkage disequilibrium with INS region loci. We typed a highly polymorphic microsatellite within TH in 176 multiplex families, and performed parametric (lod score) linkage analysis using various intermediate reduced penetrance models for IDDM (including rare and common disease allele frequencies), as well as non-parametric (affected sib pair) linkage analysis. The scores significantly reject linkage for recombination values of .05 or less, excluding the entire 19 kb region containing TH, the 5{prime} VNTR, the INS gene, and IGF2 on the 3{prime} side of INS. Non-parametric linkage analysis also provided no significant evidence for linkage (mean TH allele sharing 52.5%, P=.12). These results have important implications for efforts to locate genes predisposing to complex disorders, strongly suggesting that regions which are significantly excluded by linkage methods may nevertheless contain predisposing genes readily detectable by association methods. We advocate that investigators routinely perform association analyses in addition to linkage analyses.

  14. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J

    2013-01-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24...

  15. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    Science.gov (United States)

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  16. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

    Science.gov (United States)

    Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979

  17. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    Science.gov (United States)

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  18. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    NARCIS (Netherlands)

    Nakayama, A.; Nakaoka, H.; Yamamoto, K.; Sakiyama, M.; Shaukat, A.; Toyoda, Y.; Okada, Y.; Kamatani, Y.; Nakamura, T.; Takada, T.; Inoue, K.; Yasujima, T.; Yuasa, H.; Shirahama, Y.; Nakashima, H.; Shimizu, S.; Higashino, T.; Kawamura, Y.; Ogata, H.; Kawaguchi, M.; Ohkawa, Y.; Danjoh, I.; Tokumasu, A.; Ooyama, K.; Ito, T.; Kondo, T.; Wakai, K.; Stiburkova, B.; Pavelka, K.; Stamp, L.K.; Dalbeth, N.; Sakurai, Y.; Suzuki, H; Hosoyamada, M.; Fujimori, S.; Yokoo, T.; Hosoya, T.; Inoue, I.; Takahashi, A.; Kubo, M.; Ooyama, H.; Shimizu, T.; Ichida, K.; Shinomiya, N.; Merriman, T.R.; Matsuo, H.; Andres, M; Joosten, L.A.; Janssen, M.C.H.; Jansen, T.L.; Liote, F.; Radstake, T.R.; Riches, P.L.; So, A.; Tauches, A.K.

    2017-01-01

    OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were

  19. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    NARCIS (Netherlands)

    Mckay, James D.; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeboeller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Marcus, Michael W.; Timens, Wim

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genomewide association

  20. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

    Science.gov (United States)

    Eeles, Rosalind A; Olama, Ali Amin Al; Benlloch, Sara; Saunders, Edward J; Leongamornlert, Daniel A; Tymrakiewicz, Malgorzata; Ghoussaini, Maya; Luccarini, Craig; Dennis, Joe; Jugurnauth-Little, Sarah; Dadaev, Tokhir; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Muir, Ken; Giles, Graham G; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J; Gapstur, Susan; Chanock, Stephen J; Berndt, Sonja I; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J; Travis, Ruth; Campa, Daniele; Ingles, Sue A; John, Esther M; Hayes, Richard B; Pharoah, Paul DP; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet; Ostrander, Elaine A; Signorello, Lisa B; Thibodeau, Stephen N; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright; Brenner, Hermann; Park, Jong Y; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda B; Clements, Judith A; Teixeira, Manuel R; Dicks, Ed; Lee, Andrew; Dunning, Alison; Baynes, Caroline; Conroy, Don; Maranian, Melanie J; Ahmed, Shahana; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A; Sawyer, Emma J; Morgan, Angela; Dearnaley, David P; Horwich, Alan; Huddart, Robert A; Khoo, Vincent S; Parker, Christopher C; Van As, Nicholas J; Woodhouse, J; Thompson, Alan; Dudderidge, Tim; Ogden, Chris; Cooper, Colin; Lophatananon, Artitaya; Cox, Angela; Southey, Melissa; Hopper, John L; English, Dallas R; Aly, Markus; Adolfsson, Jan; Xu, Jiangfeng; Zheng, Siqun; Yeager, Meredith; Kaaks, Rudolf; Diver, W Ryan; Gaudet, Mia M; Stern, Mariana; Corral, Roman; Joshi, Amit D; Shahabi, Ahva; Wahlfors, Tiina; Tammela, Teuvo J; Auvinen, Anssi; Virtamo, Jarmo; Klarskov, Peter; Nordestgaard, Børge G; Røder, Andreas; Nielsen, Sune F; Bojesen, Stig E; Siddiq, Afshan; FitzGerald, Liesel; Kolb, Suzanne; Kwon, Erika; Karyadi, Danielle; Blot, William J; Zheng, Wei; Cai, Qiuyin; McDonnell, Shannon K; Rinckleb, Antje; Drake, Bettina; Colditz, Graham; Wokolorczyk, Dominika; Stephenson, Robert A; Teerlink, Craig; Muller, Heiko; Rothenbacher, Dietrich; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Mitev, Vanio; Lose, Felicity; Srinivasan, Srilakshmi; Maia, Sofia; Paulo, Paula; Lange, Ethan; Cooney, Kathleen A; Antoniou, Antonis; Vincent, Daniel; Bacot, François; Tessier; Kote-Jarai, Zsofia; Easton, Douglas F

    2013-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10−8). More than 70 prostate cancer susceptibility loci, explaining ~30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies. PMID:23535732

  1. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2

    DEFF Research Database (Denmark)

    Ahmed, Shahana; Thomas, Gilles; Ghoussaini, Maya

    2009-01-01

    Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage......, and 3,990 cases and 3,916 controls in the second stage. To identify additional loci, we tested over 800 promising associations from this GWAS in a further two stages involving 37,012 cases and 40,069 controls from 33 studies in the CGEMS collaboration and Breast Cancer Association Consortium. We found...

  2. A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci.

    Science.gov (United States)

    Rand, Kristin A; Song, Chi; Dean, Eric; Serie, Daniel J; Curtin, Karen; Sheng, Xin; Hu, Donglei; Huff, Carol Ann; Bernal-Mizrachi, Leon; Tomasson, Michael H; Ailawadhi, Sikander; Singhal, Seema; Pawlish, Karen; Peters, Edward S; Bock, Cathryn H; Stram, Alex; Van Den Berg, David J; Edlund, Christopher K; Conti, David V; Zimmerman, Todd; Hwang, Amie E; Huntsman, Scott; Graff, John; Nooka, Ajay; Kong, Yinfei; Pregja, Silvana L; Berndt, Sonja I; Blot, William J; Carpten, John; Casey, Graham; Chu, Lisa; Diver, W Ryan; Stevens, Victoria L; Lieber, Michael R; Goodman, Phyllis J; Hennis, Anselm J M; Hsing, Ann W; Mehta, Jayesh; Kittles, Rick A; Kolb, Suzanne; Klein, Eric A; Leske, Cristina; Murphy, Adam B; Nemesure, Barbara; Neslund-Dudas, Christine; Strom, Sara S; Vij, Ravi; Rybicki, Benjamin A; Stanford, Janet L; Signorello, Lisa B; Witte, John S; Ambrosone, Christine B; Bhatti, Parveen; John, Esther M; Bernstein, Leslie; Zheng, Wei; Olshan, Andrew F; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah J; Bandera, Elisa V; Birmann, Brenda M; Ingles, Sue A; Press, Michael F; Atanackovic, Djordje; Glenn, Martha J; Cannon-Albright, Lisa A; Jones, Brandt; Tricot, Guido; Martin, Thomas G; Kumar, Shaji K; Wolf, Jeffrey L; Deming Halverson, Sandra L; Rothman, Nathaniel; Brooks-Wilson, Angela R; Rajkumar, S Vincent; Kolonel, Laurence N; Chanock, Stephen J; Slager, Susan L; Severson, Richard K; Janakiraman, Nalini; Terebelo, Howard R; Brown, Elizabeth E; De Roos, Anneclaire J; Mohrbacher, Ann F; Colditz, Graham A; Giles, Graham G; Spinelli, John J; Chiu, Brian C; Munshi, Nikhil C; Anderson, Kenneth C; Levy, Joan; Zonder, Jeffrey A; Orlowski, Robert Z; Lonial, Sagar; Camp, Nicola J; Vachon, Celine M; Ziv, Elad; Stram, Daniel O; Hazelett, Dennis J; Haiman, Christopher A; Cozen, Wendy

    2016-12-01

    Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma. We performed association testing of common variation in eight regions in 1,318 patients with multiple myeloma and 1,480 controls of European ancestry and 1,305 patients with multiple myeloma and 7,078 controls of African ancestry and conducted a meta-analysis to localize the signals, with epigenetic annotation used to predict functionality. We found that variants in 7p15.3, 17p11.2, 22q13.1 were statistically significantly (P ancestry and persons of European ancestry, and the variant in 3p22.1 was associated in European ancestry only. In a combined African ancestry-European ancestry meta-analysis, variation in five regions (2p23.3, 3p22.1, 7p15.3, 17p11.2, 22q13.1) was statistically significantly associated with multiple myeloma risk. In 3p22.1, the correlated variants clustered within the gene body of ULK4 Correlated variants in 7p15.3 clustered around an enhancer at the 3' end of the CDCA7L transcription termination site. A missense variant at 17p11.2 (rs34562254, Pro251Leu, OR, 1.32; P = 2.93 × 10 -7 ) in TNFRSF13B encodes a lymphocyte-specific protein in the TNF receptor family that interacts with the NF-κB pathway. SNPs correlated with the index signal in 22q13.1 cluster around the promoter and enhancer regions of CBX7 CONCLUSIONS: We found that reported multiple myeloma susceptibility regions contain risk variants important across populations, supporting the use of multiple racial/ethnic groups with different underlying genetic architecture to enhance the localization and identification of putatively functional alleles. A subset of reported risk loci for multiple myeloma has consistent effects across populations and is likely to be functional. Cancer Epidemiol Biomarkers Prev; 25(12); 1609-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    Science.gov (United States)

    Pharoah, Paul D. P.; Tsai, Ya-Yu; Ramus, Susan J.; Phelan, Catherine M.; Goode, Ellen L.; Lawrenson, Kate; Price, Melissa; Fridley, Brooke L.; Tyrer, Jonathan P.; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C.; Song, Honglin; Tessier, Daniel C.; Bacot, François; Vincent, Daniel; Cunningham, Julie M.; Dennis, Joe; Dicks, Ed; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M.; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brenton, James D.; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S.; Chang-Claude, Jenny; Chen, Y. Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S.; Coetzee, Gerhard; Cook, Linda S.; Cramer, Daniel W.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K.; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R.; Karlan, Beth Y.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kjaer, Susanne Krüger; Konecny, Gottfried E.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C.; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S.; van Altena, Anne M.; Berg, David Van Den; Vergote, Ignace; Vierkant, Robert A.; Vitonis, Allison F.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T.; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N.A.; Gayther, Simon A.; Schildkraut, Joellen M.; Sellers, Thomas A.

    2013-01-01

    Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer. PMID:23535730

  4. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    OpenAIRE

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi

    2016-01-01

    Objective A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Methods Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zeala...

  5. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    Science.gov (United States)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  6. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    Kuchenbaecker, K.B.; Ramus, S.J.; Tyrer, J.; Lee, A.; Shen, H.C.; Beesley, J.; Lawrenson, K.; McGuffog, L.; Healey, S.; Lee, J.M.; Spindler, T.J.; Lin, Y.G.; Pejovic, T.; Bean, Y.; Li, Q.; Coetzee, S.; Hazelett, D.; Miron, A.; Southey, M.; Terry, M.B.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Neuhausen, S.L.; Ding, Y.C.; Hansen, T.V.; Jonson, L.; Gerdes, A.M.; Ejlertsen, B.; Barrowdale, D.; Dennis, J.; Benitez, J.; Osorio, A.; Garcia, M.J.; Komenaka, I.; Weitzel, J.N.; Ganschow, P.; Peterlongo, P.; Bernard, L.; Viel, A.; Bonanni, B.; Peissel, B.; Manoukian, S.; Radice, P.; Papi, L.; Ottini, L.; Fostira, F.; Konstantopoulou, I.; Garber, J.; Frost, D.; Perkins, J.; Platte, R.; Ellis, S.; Embrace, .; Godwin, A.K.; Schmutzler, R.K.; Meindl, A.; Engel, C.; Sutter, C.; Sinilnikova, O.M.; Damiola, F.; Mazoyer, S.; Stoppa-Lyonnet, D.; Claes, K.; Leeneer, K. De; Kirk, J.; Rodriguez, G.C.; Piedmonte, M.; O'Malley, D.M.; Hoya, M. de la; Caldes, T.; Aittomaki, K.; Nevanlinna, H.; Collee, J.M.; Rookus, M.A.; Oosterwijk, J.C; Tihomirova, L.; Tung, N.; Hamann, U.; Isaccs, C.; Tischkowitz, M.; Imyanitov, E.N.; Caligo, M.A.; Campbell, I.G.; Hogervorst, F.B.; Olah, E.; Diez, O.; Blanco, I.; Brunet, J.; Lazaro, C.; Pujana, M.A.; Jakubowska, A.; Gronwald, J.; Lubinski, J.; Sukiennicki, G.; Massuger, L.F.A.G.; Altena, A.M. van; Aben, K.K.H.; Kiemeney, B.; Mensenkamp, A.R.; Kets, M.; Hoogerbrugge, N.; Ligtenberg, M.J.L.; et al.,

    2015-01-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed

  7. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.J. Ramus (Susan); J.P. Tyrer (Jonathan); A. Lee (Andrew); H.C. Shen (Howard C.); J. Beesley (Jonathan); K. Lawrenson (Kate); L. McGuffog (Lesley); S. Healey (Sue); J.M. Lee (Janet M.); T.J. Spindler (Tassja J.); Y.G. Lin (Yvonne G.); T. Pejovic (Tanja); Y. Bean (Yukie); Q. Li (Qiyuan); S. Coetzee (Simon); D. Hazelett (Dennis); A. Miron (Alexander); M.C. Southey (Melissa); M.B. Terry (Mary Beth); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); T.V.O. Hansen (Thomas); L. Jønson (Lars); A.-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); D. Barrowdale (Daniel); J. Dennis (Joe); J. Benítez (Javier); A. Osorio (Ana); M.J. Garcia (Maria Jose); I. Komenaka (Ian); J.N. Weitzel (Jeffrey); P. Ganschow (Pamela); P. Peterlongo (Paolo); L. Bernard (Loris); A. Viel (Alessandra); B. Bonnani (Bernardo); B. Peissel (Bernard); S. Manoukian (Siranoush); P. Radice (Paolo); L. Papi (Laura); L. Ottini (Laura); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); D. Frost (Debra); J. Perkins (Jo); R. Platte (Radka); S.D. Ellis (Steve); A.K. Godwin (Andrew K.); R.K. Schmutzler (Rita); A. Meindl (Alfons); C. Engel (Christoph); C. Sutter (Christian); O. Sinilnikova (Olga); F. Damiola (Francesca); S. Mazoyer (Sylvie); D. Stoppa-Lyonnet (Dominique); K.B.M. Claes (Kathleen B.M.); K. De Leeneer (Kim); J. Kirk (Judy); G. Rodriguez (Gustavo); M. Piedmonte (Marion); D.M. O'Malley (David M.); M. de La Hoya (Miguel); T. Caldes (Trinidad); K. Aittomäki (Kristiina); H. Nevanlinna (Heli); J.M. Collée (Margriet); M.A. Rookus (Matti); J.C. Oosterwijk (Jan); L. Tihomirova (Laima); N. Tung (Nadine); U. Hamann (Ute); C. Isaccs (Claudine); M. Tischkowitz (Marc); E.N. Imyanitov (Evgeny); M.A. Caligo (Maria); I. Campbell (Ian); F.B.L. Hogervorst (Frans); E. Olah; O. Díez (Orland); I. Blanco (Ignacio); J. Brunet (Joan); C. Lazaro (Conxi); M.A. Pujana (Miguel); A. Jakubowska (Anna); J. Gronwald (Jacek); J. Lubinski (Jan); G. Sukiennicki (Grzegorz); R.B. Barkardottir (Rosa); M. Plante (Marie); J. Simard (Jacques); P. Soucy (Penny); M. Montagna (Marco); S. Tognazzo (Silvia); P.J. Teixeira; V.S. Pankratz (Shane); X. Wang (Xianshu); N.M. Lindor (Noralane); C. Szabo (Csilla); N. Kauff (Noah); J. Vijai (Joseph); C.A. Aghajanian (Carol A.); G. Pfeiler (Georg); A. Berger (Andreas); C.F. Singer (Christian); M.-K. Tea; C. Phelan (Catherine); M.H. Greene (Mark H.); P.L. Mai (Phuong); G. Rennert (Gad); A.-M. Mulligan (Anna-Marie); S. Tchatchou (Sandrine); I.L. Andrulis (Irene); G. Glendon (Gord); A.E. Toland (Amanda); U.B. Jensen (Uffe Birk); T.A. Kruse (Torben); M. Thomassen (Mads); A. Bojesen (Anders); J. Zidan (Jamal); E. Friedman (Eitan); Y. Laitman (Yael); M. Soller (Maria); A. Liljegren (Annelie); B. Arver (Brita Wasteson); Z. Einbeigi (Zakaria); M. Stenmark-Askmalm (Marie); O.I. Olopade (Olufunmilayo I.); R.L. Nussbaum (Robert L.); T.R. Rebbeck (Timothy R.); K.L. Nathanson (Katherine); S.M. Domchek (Susan); K.H. Lu (Karen); B.Y. Karlan (Beth Y.); C. Walsh (Christine); K.J. Lester (Kathryn); R. Hein (Rebecca); A.B. Ekici (Arif); M.W. Beckmann (Matthias); P.A. Fasching (Peter); D. Lambrechts (Diether); E. Van Nieuwenhuysen (Els); I. Vergote (Ignace); S. Lambrechts (Sandrina); E. Dicks (Ed); J.A. Doherty (Jennifer A.); K.G. Wicklund (Kristine G.); M.A. Rossing (Mary Anne); A. Rudolph (Anja); J. Chang-Claude (Jenny); S. Wang-Gohrke (Shan); U. Eilber (Ursula); K.B. Moysich (Kirsten B.); K. Odunsi (Kunle); L. Sucheston (Lara); S. Lele (Shashi); L. Wilkens (Lynne); M.T. Goodman (Marc); P.J. Thompson (Pamela J.); Y.B. Shvetsov (Yurii B.); I.B. Runnebaum (Ingo); M. Dürst (Matthias); P. Hillemanns (Peter); T. Dörk (Thilo); N.N. Antonenkova (Natalia); N.V. Bogdanova (Natalia); A. Leminen (Arto); L.M. Pelttari (Liisa); R. Butzow (Ralf); F. Modugno (Francesmary); J.L. Kelley (Joseph L.); R. Edwards (Robert); R.B. Ness (Roberta); A. Du Bois (Andreas); P.U. Heitz; I. Schwaab (Ira); P. Harter (Philipp); K. Matsuo (Keitaro); N. Hosono (Naoya); S. Orsulic (Sandra); A. Jensen (Allan); M. Kjaer (Michael); E. Høgdall (Estrid); H.N. Hasmad (Hanis Nazihah); M.A. Noor Azmi (Mat Adenan); S.-H. Teo (Soo-Hwang); Y.L. Woo (Yin Ling); B.L. Fridley (Brooke); E.L. Goode (Ellen); J.M. Cunningham (Julie); R.A. Vierkant (Robert); F. Bruinsma (Fiona); G.G. Giles (Graham G.); D. Liang (Dong); M.A.T. Hildebrandt (Michelle A.T.); X. Wu (Xifeng); D.A. Levine (Douglas); M. Bisogna (Maria); A. Berchuck (Andrew); E. Iversen (Erik); J.M. Schildkraut (Joellen); P. Concannon (Patrick); R.P. Weber (Rachel Palmieri); D.W. Cramer (Daniel); K.L. Terry (Kathryn); E.M. Poole (Elizabeth); S. Tworoger (Shelley); E.V. Bandera (Elisa); I. Orlow (Irene); S.H. Olson (Sara); C. Krakstad (Camilla); H.B. Salvesen (Helga); I.L. Tangen (Ingvild L.); L. Bjorge (Line); A.M. van Altena (Anne); K.K.H. Aben (Katja); L.A.L.M. Kiemeney (Bart); L.F. Massuger (Leon); M. Kellar (Melissa); A. Brooks-Wilson (Angela); L.E. Kelemen (Linda); L.S. Cook (Linda S.); N.D. Le (Nhu D.); C. Cybulski (Cezary); H. Yang (Hannah); J. Lissowska (Jolanta); L.A. Brinton (Louise); N. Wentzensen (N.); C.K. Høgdall (Claus); L. Lundvall (Lene); L. Nedergaard (Lotte); H. Baker (Helen); H. Song (Honglin); D. Eccles (Diana); I. McNeish (Ian); J. Paul (James); K. Carty (Karen); N. Siddiqui (Nadeem); R. Glasspool (Rosalind); A.S. Whittemore (Alice S.); J.H. Rothstein (Joseph H.); W.P. McGuire; W. Sieh (Weiva); B.-T. Ji (Bu-Tian); W. Zheng (Wei); X.-O. Shu (Xiao-Ou); Y. Gao; B. Rosen (Barry); H. Risch (Harvey); J. McLaughlin (John); S.A. Narod (Steven A.); A.N.A. Monteiro (Alvaro N.); A. Chen (Ann); H.-Y. Lin (Hui-Yi); J. Permuth-Wey (Jenny); T.F. Sellers; Y.-Y. Tsai (Ya-Yu); Z. Chen (Zhihua); A. Ziogas (Argyrios); H. Anton-Culver (Hoda); A. Gentry-Maharaj (Aleksandra); U. Menon (Usha); P. harrington (Patricia); A.W. Lee (Alice W.); A.H. Wu (Anna H.); C.L. Pearce (Celeste); G. Coetzee (Gerry); M.C. Pike (Malcolm C.); A. Dansonka-Mieszkowska (Agnieszka); A. Timorek (Agnieszka); I.K. Rzepecka (Iwona); J. Kupryjanczyk (Jolanta); M. Freedman (Matthew); H. Noushmehr (Houtan); D.F. Easton (Douglas F.); K. Offit (Kenneth); F.J. Couch (Fergus); S.A. Gayther (Simon); P.P.D.P. Pharoah (Paul P.D.P.); A.C. Antoniou (Antonis C.); G. Chenevix-Trench (Georgia)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we

  8. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity

    NARCIS (Netherlands)

    Tsoi, Lam C.; Spain, Sarah L.; Knight, Jo; Ellinghaus, Eva; Stuart, Philip E.; Capon, Francesca; Ding, Jun; Li, Yanming; Tejasvi, Trilokraj; Gudjonsson, Johann E.; Kang, Hyun M.; Allen, Michael H.; McManus, Ross; Novelli, Giuseppe; Samuelsson, Lena; Schalkwijk, Joost; Stahle, Mona; Burden, A. David; Smith, Catherine H.; Cork, Michael J.; Estivill, Xavier; Bowcock, Anne M.; Krueger, Gerald G.; Weger, Wolfgang; Worthington, Jane; Tazi-Ahnini, Rachid; Nestle, Frank O.; Hayday, Adrian; Hoffmann, Per; Winkelmann, Juliane; Wijmenga, Cisca; Langford, Cordelia; Edkins, Sarah; Andrews, Robert; Blackburn, Hannah; Strange, Amy; Band, Gavin; Pearson, Richard D.; Vukcevic, Damjan; Spencer, Chris C. A.; Deloukas, Panos; Mrowietz, Ulrich; Schreiber, Stefan; Weidinger, Stephan; Koks, Sulev; Kingo, Kuelli; Esko, Tonu; Metspalu, Andres; Ricaño Ponce, Isis; Trynka, Gosia

    2012-01-01

    To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36

  9. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

    NARCIS (Netherlands)

    Phelan, Catherine M.; Kuchenbaecker, Karoline B.; Tyrer, Jonathan P.; Kar, Siddhartha P.; Lawrenson, Kate; Winham, Stacey J.; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie J.; Chornokur, Ganna; Earp, Madalene A.; Lyra, Paulo C.; Lee, Janet M.; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M.; Aben, Katja K. H.; Adams, Marcia; Adlard, Julian; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K.; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N.; Barjhoux, Laure; Barkardottir, Rosa B.; Bean, Yukie; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q.; Birrer, Michael J.; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J.; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R.; Brenton, James D.; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Cannioto, Rikki; Carney, Michael E.; Cescon, Terence; Chan, Salina B.; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K.; Claes, Kathleen B. M.; Conner, Thomas; Cook, Linda S.; Cook, Jackie; Cramer, Daniel W.; Cunningham, Julie M.; D'Aloisio, Aimee A.; Daly, Mary B.; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; Defazio, Anna; Delnatte, Capucine; Doheny, Kimberly F.; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B.; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H.; Engel, Christoph; Evans, D. Gareth; Fasching, Peter A.; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M.; Fogarty, Zachary C.; Fortner, Renée T.; Fostira, Florentia; Foulkes, William D.; Fountzilas, George; Fridley, Brooke L.; Friebel, Tara M.; Friedman, Eitan; Frost, Debra; Ganz, Patricia A.; Garber, Judy; García, María J.; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G.; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K.; Goldgar, David E.; Goranova, Teodora; Gore, Martin; Greene, Mark H.; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V. O.; Harrington, Patricia A.; Harris, Holly R.; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K.; Høgdall, Estrid; Hogervorst, Frans B. L.; Holland, Helene; Hooning, Maartje J.; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J.; Hung, Jillian; Hunter, David J.; Huntsman, David G.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Iversen, Edwin S.; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M.; Johnatty, Sharon; Jones, Michael E.; Kannisto, Päivi; Karlan, Beth Y.; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J.; Khusnutdinova, Elza; Kiemeney, Lambertus A.; Kiiski, Johanna I.; Kim, Sung-Won; Kjaer, Susanne K.; Köbel, Martin; Kopperud, Reidun K.; Kruse, Torben A.; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C.; Lazaro, Conxi; Le, Nhu D.; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B.; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A.; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H.; Lubinński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L.; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F. A. G.; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N.; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R.; Merritt, Melissa A.; Milne, Roger L.; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B.; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L.; Nedergaard, Lotte; Ness, Roberta B.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L.; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I.; Olsson, Håkan; Olswold, Curtis; O'Malley, David M.; Ong, Kai-Ren; Onland-Moret, N. Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L.; Pedersen, Inge Søkilde; Peeters, Petra H. M.; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M.; Permuth, Jennifer B.; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C.; Piskorz, Anna M.; Poblete, Samantha R.; Pocza, Timea; Poole, Elizabeth M.; Poppe, Bruce; Porteous, Mary E.; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C.; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A.; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Salvesen, Helga B.; Sandler, Dale P.; Schoemaker, Minouk J.; Senter, Leigha; Setiawan, V. Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E.; Sieh, Weiva; Singer, Christian F.; Sobol, Hagay; Song, Honglin; Southey, Melissa C.; Spurdle, Amanda B.; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E.; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J.; Szabo, Csilla I.; Szafron, Lukasz; Tan, Yen Y.; Taylor, Jack A.; tea, Muy-Kheng; Teixeira, Manuel R.; teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L.; Tihomirova, Laima; Tinker, Anna V.; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C.; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S.; van Altena, Anne M.; van den Berg, David; van der Hout, Annemarie H.; van der Luijt, Rob B.; van Heetvelde, Mattias; van Nieuwenhuysen, Els; van Rensburg, Elizabeth J.; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Vega, Ana; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A.; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M.; Weinberg, Clarice R.; Weitzel, Jeffrey N.; Wentzensen, Nicolas; Whittemore, Alice S.; Wijnen, Juul T.; Wilkens, Lynne R.; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K.; Narod, Steven A.; Easton, Douglas F.; Amos, Christopher I.; Schildkraut, Joellen M.; Ramus, Susan J.; Ottini, Laura; Goodman, Marc T.; Park, Sue K.; Kelemen, Linda E.; Risch, Harvey A.; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N.; Couch, Fergus J.; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L.; Sellers, Thomas A.; Gayther, Simon A.; Antoniou, Antonis C.; Pharoah, Paul D. P.

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC

  10. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  11. Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region

    NARCIS (Netherlands)

    Skibola, Christine F.; Berndt, Sonja I.; Vijai, Joseph; Conde, Lucia; Wang, Zhaoming; Yeager, Meredith; de Bakker, Paul I. W.; Birmann, Brenda M.; Vajdic, Claire M.; Foo, Jia-Nee; Bracci, Paige M.; Vermeulen, Roel C. H.; Slager, Susan L.; de Sanjose, Silvia; Wang, Sophia S.; Linet, Martha S.; Salles, Gilles; Lan, Qing; Severi, Gianluca; Hjalgrim, Henrik; Lightfoot, Tracy; Melbye, Mads; Gu, Jian; Ghesquieres, Herve; Link, Brian K.; Morton, Lindsay M.; Holly, Elizabeth A.; Smith, Alex; Tinker, Lesley F.; Teras, Lauren R.; Kricker, Anne; Becker, Nikolaus; Purdue, Mark P.; Spinelli, John J.; Zhang, Yawei; Giles, Graham G.; Vineis, Paolo; Monnereau, Alain; Bertrand, Kimberly A.; Albanes, Demetrius; Zeleniuch-Jacquotte, Anne; Gabbas, Attilio; Chung, Charles C.; Burdett, Laurie; Hutchinson, Amy; Lawrence, Charles; Montalvan, Rebecca; Liang, Liming; Huang, Jinyan; Ma, Baoshan; Liu, Jianjun; Adami, Hans-Olov; Glimelius, Bengt; Ye, Yuanqing; Nowakowski, Grzegorz S.; Dogan, Ahmet; Thompson, Carrie A.; Habermann, Thomas M.; Novak, Anne J.; Liebow, Mark; Witzig, Thomas E.; Weiner, George J.; Schenk, Maryjean; Hartge, Patricia; De Roos, Anneclaire J.; Cozen, Wendy; Zhi, Degui; Akers, Nicholas K.; Riby, Jacques; Smith, Martyn T.; Lacher, Mortimer; Villano, Danylo J.; Maria, Ann; Roman, Eve; Kane, Eleanor; Jackson, Rebecca D.; North, Kari E.; Diver, W. Ryan; Turner, Jenny; Armstrong, Bruce K.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; McKay, James; Brooks-Wilson, Angela R.; Zheng, Tongzhang; Holford, Theodore R.; Chamosa, Saioa; Kaaks, Rudolph; Kelly, Rachel S.; Ohlsson, Bodil; Travis, Ruth C.; Weiderpass, Elisabete; Clave, Jacqueline; Giovannucci, Edward; Kraft, Peter; Virtamo, Jarmo; Mazza, Patrizio; Cocco, Pierluigi; Ennas, Maria Grazia; Chiu, Brian C. H.; Fraumeni, Joseph R.; Nieters, Alexandra; Offit, Kenneth; Wu, Xifeng; Cerhan, James R.; Smedby, Karin E.; Chanock, Stephen J.; Rothman, Nathaniel

    2014-01-01

    Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European

  12. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  13. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    Science.gov (United States)

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  14. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of

  15. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Phelan, Catherine M; Kuchenbaecker, Karoline B; Tyrer, Jonathan P

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous E...

  16. Immunochip analysis identification of 6 additional susceptibility loci for Crohn's disease in Koreans.

    Science.gov (United States)

    Yang, Suk-Kyun; Hong, Myunghee; Choi, Hyunchul; Zhao, Wanting; Jung, Yusun; Haritunians, Talin; Ye, Byong Duk; Kim, Kyung-Jo; Park, Sang Hyoung; Lee, Inchul; Kim, Won Ho; Cheon, Jae Hee; Kim, Young-Ho; Jang, Byung Ik; Kim, Hyun-Soo; Choi, Jai Hyun; Koo, Ja Seol; Lee, Ji Hyun; Jung, Sung-Ae; Shin, Hyoung Doo; Kang, Daehee; Youn, Hee-Shang; Taylor, Kent D; Rotter, Jerome I; Liu, Jianjun; McGovern, Dermot P B; Song, Kyuyoung

    2015-01-01

    Crohn's disease (CD) is an intractable inflammatory bowel disease of unknown cause. Recent genome-wide association studies of CD in Korean and Japanese populations suggested marginal sharing of susceptibility loci between Caucasian and Asian populations. As the 7 identified loci altogether explain 5.31% of the risk for CD, the objective of this study was to identify additional CD susceptibility loci in the Korean population. Using the ImmunoChip custom single-nucleotide polymorphism array designed for dense genotyping of 186 loci identified through GWAS, we analyzed 722 individuals with CD and 461 controls for 96,048 SNP markers in the discovery stage, followed by validation in an additional 948 affected individuals and 977 controls. We confirmed 6 previously reported loci in Caucasian: GPR35 at 2q37 (rs3749172; P = 5.30 × 10, odds ratio [OR] = 1.45), ZNF365 at 10q21 (rs224143; P = 2.20 × 10, OR = 1.38), ZMIZ1 at 10q22 (rs1250569; P = 3.05 × 10, OR = 1.30), NKX2-3 at 10q24 (rs4409764; P = 7.93 × 10, OR = 1.32), PTPN2 at 18p11 (rs514000; P = 9.00 × 10, OR = 1.33), and USP25 at 21q11 (rs2823256; P = 2.49 × 10, OR = 1.35), bringing the number of known CD loci (including 3 in the HLA) in Koreans to 15. The 6 additional loci increased the total genetic variance for CD risk from 5.31% to 7.27% in Koreans. Although the different genetic backgrounds of CD between Asian and Western countries has been well established for the major susceptibility genes, our findings of overlapping associations offer new insights into the genetic architecture of CD.

  17. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    DEFF Research Database (Denmark)

    McKay, James D; Hung, Rayjean J; Han, Younghun

    2017-01-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association ...... receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer....

  18. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.

    Science.gov (United States)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno

    2016-08-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

  19. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  20. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J.M. Collée (Margriet); W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (Guillermo); M.R. Alonso (Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS,

  1. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  2. Evaluation of shared genetic susceptibility loci between autoimmune diseases and schizophrenia based on genome-wide association studies

    DEFF Research Database (Denmark)

    Hoeffding, Louise K E; Rosengren, Anders; Thygesen, Johan H

    2017-01-01

    Background: Epidemiological studies have documented higher than expected comorbidity (or, in some cases, inverse comorbidity) between schizophrenia and several autoimmune disorders. It remains unknown whether this comorbidity reflects shared genetic susceptibility loci.  Aims: The present study a...

  3. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Science.gov (United States)

    Phelan, Catherine M; Kuchenbaecker, Karoline B; Tyrer, Jonathan P; Kar, Siddhartha P; Lawrenson, Kate; Winham, Stacey J; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie J; Chornokur, Ganna; Earp, Madalene A; Lyra, Paulo C; Lee, Janet M; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M; Aben, Katja K H; Adams, Marcia; Adlard, Julian; Andrulis, Irene L; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N; Barjhoux, Laure; Barkardottir, Rosa B; Bean, Yukie; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q; Birrer, Michael J; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R; Brenton, James D; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Cannioto, Rikki; Carney, Michael E; Cescon, Terence; Chan, Salina B; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Conner, Thomas; Cook, Linda S; Cook, Jackie; Cramer, Daniel W; Cunningham, Julie M; D'Aloisio, Aimee A; Daly, Mary B; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; DeFazio, Anna; Delnatte, Capucine; Doheny, Kimberly F; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M; Dorfling, Cecilia M; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H; Engel, Christoph; Evans, D Gareth; Fasching, Peter A; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M; Fogarty, Zachary C; Fortner, Renée T; Fostira, Florentia; Foulkes, William D; Fountzilas, George; Fridley, Brooke L; Friebel, Tara M; Friedman, Eitan; Frost, Debra; Ganz, Patricia A; Garber, Judy; García, María J; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K; Goldgar, David E; Goranova, Teodora; Gore, Martin; Greene, Mark H; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V O; Harrington, Patricia A; Harris, Holly R; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A T; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K; Høgdall, Estrid; Hogervorst, Frans B L; Holland, Helene; Hooning, Maartje J; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J; Hung, Jillian; Hunter, David J; Huntsman, David G; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Iversen, Edwin S; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M; Johnatty, Sharon; Jones, Michael E; Kannisto, Päivi; Karlan, Beth Y; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J; Khusnutdinova, Elza; Kiemeney, Lambertus A; Kiiski, Johanna I; Kim, Sung-Won; Kjaer, Susanne K; Köbel, Martin; Kopperud, Reidun K; Kruse, Torben A; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C; Lazaro, Conxi; Le, Nhu D; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H; Lubinński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F A G; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N; McGuire, Valerie; McLaughlin, John R; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R; Merritt, Melissa A; Milne, Roger L; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L; Nedergaard, Lotte; Ness, Roberta B; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I; Olsson, Håkan; Olswold, Curtis; O'Malley, David M; Ong, Kai-Ren; Onland-Moret, N Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L; Pedersen, Inge Søkilde; Peeters, Petra H M; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M; Permuth, Jennifer B; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C; Piskorz, Anna M; Poblete, Samantha R; Pocza, Timea; Poole, Elizabeth M; Poppe, Bruce; Porteous, Mary E; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Salvesen, Helga B; Sandler, Dale P; Schoemaker, Minouk J; Senter, Leigha; Setiawan, V Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E; Sieh, Weiva; Singer, Christian F; Sobol, Hagay; Song, Honglin; Southey, Melissa C; Spurdle, Amanda B; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J; Szabo, Csilla I; Szafron, Lukasz; Tan, Yen Y; Taylor, Jack A; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L; Tihomirova, Laima; Tinker, Anna V; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S; van Altena, Anne M; Van Den Berg, David; van der Hout, Annemarie H; van der Luijt, Rob B; Van Heetvelde, Mattias; Van Nieuwenhuysen, Els; van Rensburg, Elizabeth J; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Vega, Ana; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M; Weinberg, Clarice R; Weitzel, Jeffrey N; Wentzensen, Nicolas; Whittemore, Alice S; Wijnen, Juul T; Wilkens, Lynne R; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K; Narod, Steven A; Easton, Douglas F; Amos, Christopher I; Schildkraut, Joellen M; Ramus, Susan J; Ottini, Laura; Goodman, Marc T; Park, Sue K; Kelemen, Linda E; Risch, Harvey A; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N; Couch, Fergus J; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L; Sellers, Thomas A; Gayther, Simon A; Antoniou, Antonis C; Pharoah, Paul D P

    2017-05-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.

  4. Identification of twelve new susceptibility loci for different histotypes of epithelial ovarian cancer

    Science.gov (United States)

    Phelan, Catherine M.; Kuchenbaecker, Karoline B.; Tyrer, Jonathan P.; Kar, Siddhartha P.; Lawrenson, Kate; Winham, Stacey J.; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie; Chornokur, Ganna; Earp, Madalene A.; Lyra, Paulo C.; Lee, Janet M.; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M.; Aben, Katja K.H.; Adams, Marcia; Adlard, Julian; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K.; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N.; Barjhoux, Laure; Barkardottir, Rosa B.; Bean, Yukie; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q.; Birrer, Michael J.; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J.; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R.; Brenton, James D.; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Cannioto, Rikki; Carney, Michael E.; Cescon, Terence; Chan, Salina B.; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K.; Claes, Kathleen B.M.; Conner, Thomas; Cook, Linda S.; Cook, Jackie; Cramer, Daniel W.; Cunningham, Julie M.; D’Aloisio, Aimee A.; Daly, Mary B.; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; DeFazio, Anna; Delnatte, Capucine; Doheny, Kimberly F.; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B.; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H.; Engel, Christoph; Evans, D. Gareth; Fasching, Peter A.; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M.; Fogarty, Zachary C.; Fortner, Renée T.; Fostira, Florentia; Foulkes, William D.; Fountzilas, George; Fridley, Brooke L.; Friebel, Tara M.; Friedman, Eitan; Frost, Debra; Ganz, Patricia A.; Garber, Judy; García, María J.; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G.; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K.; Goldgar, David E.; Goranova, Teodora; Gore, Martin; Greene, Mark H.; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V.O.; Harrington, Patricia A.; Harris, Holly R; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K.; Høgdall, Estrid; Hogervorst, Frans B.L.; Holland, Helene; Hooning, Maartje J.; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J.; Hung, Jillian; Hunter, David J.; Huntsman, David G.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Iversen, Edwin S.; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M.; Johnatty, Sharon; Jones, Michael E.; Kannisto, Päivi; Karlan, Beth Y.; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J.; Khusnutdinova, Elza; Kiemeney, Lambertus A.; Kiiski, Johanna I.; Kim, Sung-Won; Kjaer, Susanne K.; Köbel, Martin; Kopperud, Reidun K.; Kruse, Torben A.; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C.; Lazaro, Conxi; Le, Nhu D.; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B.; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A.; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H.; Lubiński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L.; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F.A.G.; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N.; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R.; Merritt, Melissa A.; Milne, Roger L.; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B.; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L.; Nedergaard, Lotte; Ness, Roberta B.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L.; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I.; Olsson, Håkan; Olswold, Curtis; O’Malley, David M.; Ong, Kai-ren; Onland-Moret, N. Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L.; Pedersen, Inge Søkilde; Peeters, Petra H.M.; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M.; Permuth, Jennifer B.; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C.; Piskorz, Anna M.; Poblete, Samantha R.; Pocza, Timea; Poole, Elizabeth M.; Poppe, Bruce; Porteous, Mary E.; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C.; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A.; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Salvesen, Helga B.; Sandler, Dale P.; Schoemaker, Minouk J.; Senter, Leigha; Setiawan, V. Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E.; Sieh, Weiva; Singer, Christian F.; Sobol, Hagay; Song, Honglin; Southey, Melissa C.; Spurdle, Amanda B.; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E.; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J.; Szabo, Csilla I.; Szafron, Lukasz; Tan, Yen Y.; Taylor, Jack A.; Tea, Muy-Kheng; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L.; Tihomirova, Laima; Tinker, Anna V.; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C.; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S.; van Altena, Anne M.; Van Den Berg, David; van der Hout, Annemarie H.; van der Luijt, Rob B.; Van Heetvelde, Mattias; Van Nieuwenhuysen, Els; van Rensburg, Elizabeth J.; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Ana, Vega; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A.; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M.; Weinberg, Clarice R.; Weitzel, Jeffrey N.; Wentzensen, Nicolas; Whittemore, Alice S.; Wijnen, Juul T.; Wilkens, Lynne R.; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K.; Narod, Steven A.; Easton, Douglas F.; Amos, Christopher I.; Schildkraut, Joellen M.; Ramus, Susan J.; Ottini, Laura; Goodman, Marc T.; Park, Sue K.; Kelemen, Linda E.; Risch, Harvey A.; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N.; Couch, Fergus J.; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L.; Sellers, Thomas A.; Gayther, Simon A.; Antoniou, Antonis C.; Pharoah, Paul D.P.

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3, 9q31.1) and one for endometrioid EOC (5q12.3). We then meta-analysed the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified an additional three loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a novel susceptibility gene for low grade/borderline serous EOC. PMID:28346442

  5. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; Ramus, Susan J; Tyrer, Jonathan

    2015-01-01

    associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded......Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed...

  6. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers

    NARCIS (Netherlands)

    Plant, Darren; Flynn, Edward; Mbarek, Hamdi; Dieudé, Philippe; Cornelis, François; Arlestig, Lisbeth; Dahlqvist, Solbritt Rantapää; Goulielmos, George; Boumpas, Dimitrios T; Sidiropoulos, Prodromos; Johansen, Julia S; Ørnbjerg, Lykke M; Hetland, Merete Lund; Klareskog, Lars; Filer, Andrew; Buckley, Christopher D; Raza, Karim; Witte, Torsten; Schmidt, Reinhold E; Worthington, Jane

    BACKGROUND: Genetic factors have a substantial role in determining development of rheumatoid arthritis (RA), and are likely to account for 50-60% of disease susceptibility. Genome-wide association studies have identified non-human leucocyte antigen RA susceptibility loci which associate with RA with

  7. Meta-analysis identifies seven susceptibility loci involved in the atopic march.

    Science.gov (United States)

    Marenholz, Ingo; Esparza-Gordillo, Jorge; Rüschendorf, Franz; Bauerfeind, Anja; Strachan, David P; Spycher, Ben D; Baurecht, Hansjörg; Margaritte-Jeannin, Patricia; Sääf, Annika; Kerkhof, Marjan; Ege, Markus; Baltic, Svetlana; Matheson, Melanie C; Li, Jin; Michel, Sven; Ang, Wei Q; McArdle, Wendy; Arnold, Andreas; Homuth, Georg; Demenais, Florence; Bouzigon, Emmanuelle; Söderhäll, Cilla; Pershagen, Göran; de Jongste, Johan C; Postma, Dirkje S; Braun-Fahrländer, Charlotte; Horak, Elisabeth; Ogorodova, Ludmila M; Puzyrev, Valery P; Bragina, Elena Yu; Hudson, Thomas J; Morin, Charles; Duffy, David L; Marks, Guy B; Robertson, Colin F; Montgomery, Grant W; Musk, Bill; Thompson, Philip J; Martin, Nicholas G; James, Alan; Sleiman, Patrick; Toskala, Elina; Rodriguez, Elke; Fölster-Holst, Regina; Franke, Andre; Lieb, Wolfgang; Gieger, Christian; Heinzmann, Andrea; Rietschel, Ernst; Keil, Thomas; Cichon, Sven; Nöthen, Markus M; Pennell, Craig E; Sly, Peter D; Schmidt, Carsten O; Matanovic, Anja; Schneider, Valentin; Heinig, Matthias; Hübner, Norbert; Holt, Patrick G; Lau, Susanne; Kabesch, Michael; Weidinger, Stefan; Hakonarson, Hakon; Ferreira, Manuel A R; Laprise, Catherine; Freidin, Maxim B; Genuneit, Jon; Koppelman, Gerard H; Melén, Erik; Dizier, Marie-Hélène; Henderson, A John; Lee, Young Ae

    2015-11-06

    Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.

  8. Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Science.gov (United States)

    Kuchenbaecker, Karoline B; Ramus, Susan J; Tyrer, Jonathan; Lee, Andrew; Shen, Howard C; Beesley, Jonathan; Lawrenson, Kate; McGuffog, Lesley; Healey, Sue; Lee, Janet M; Spindler, Tassja J; Lin, Yvonne G; Pejovic, Tanja; Bean, Yukie; Li, Qiyuan; Coetzee, Simon; Hazelett, Dennis; Miron, Alexander; Southey, Melissa; Terry, Mary Beth; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; Barrowdale, Daniel; Dennis, Joe; Benitez, Javier; Osorio, Ana; Garcia, Maria Jose; Komenaka, Ian; Weitzel, Jeffrey N; Ganschow, Pamela; Peterlongo, Paolo; Bernard, Loris; Viel, Alessandra; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Radice, Paolo; Papi, Laura; Ottini, Laura; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Frost, Debra; Perkins, Jo; Platte, Radka; Ellis, Steve; Godwin, Andrew K; Schmutzler, Rita Katharina; Meindl, Alfons; Engel, Christoph; Sutter, Christian; Sinilnikova, Olga M; Damiola, Francesca; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Claes, Kathleen; De Leeneer, Kim; Kirk, Judy; Rodriguez, Gustavo C; Piedmonte, Marion; O'Malley, David M; de la Hoya, Miguel; Caldes, Trinidad; Aittomäki, Kristiina; Nevanlinna, Heli; Collée, J Margriet; Rookus, Matti A; Oosterwijk, Jan C; Tihomirova, Laima; Tung, Nadine; Hamann, Ute; Isaccs, Claudine; Tischkowitz, Marc; Imyanitov, Evgeny N; Caligo, Maria A; Campbell, Ian G; Hogervorst, Frans B L; Olah, Edith; Diez, Orland; Blanco, Ignacio; Brunet, Joan; Lazaro, Conxi; Pujana, Miquel Angel; Jakubowska, Anna; Gronwald, Jacek; Lubinski, Jan; Sukiennicki, Grzegorz; Barkardottir, Rosa B; Plante, Marie; Simard, Jacques; Soucy, Penny; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Pankratz, Vernon S; Wang, Xianshu; Lindor, Noralane; Szabo, Csilla I; Kauff, Noah; Vijai, Joseph; Aghajanian, Carol A; Pfeiler, Georg; Berger, Andreas; Singer, Christian F; Tea, Muy-Kheng; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Mulligan, Anna Marie; Tchatchou, Sandrine; Andrulis, Irene L; Glendon, Gord; Toland, Amanda Ewart; Jensen, Uffe Birk; Kruse, Torben A; Thomassen, Mads; Bojesen, Anders; Zidan, Jamal; Friedman, Eitan; Laitman, Yael; Soller, Maria; Liljegren, Annelie; Arver, Brita; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Olopade, Olufunmilayo I; Nussbaum, Robert L; Rebbeck, Timothy R; Nathanson, Katherine L; Domchek, Susan M; Lu, Karen H; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Hein, Alexander; Ekici, Arif B; Beckmann, Matthias W; Fasching, Peter A; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambrechts, Sandrina; Dicks, Ed; Doherty, Jennifer A; Wicklund, Kristine G; Rossing, Mary Anne; Rudolph, Anja; Chang-Claude, Jenny; Wang-Gohrke, Shan; Eilber, Ursula; Moysich, Kirsten B; Odunsi, Kunle; Sucheston, Lara; Lele, Shashi; Wilkens, Lynne R; Goodman, Marc T; Thompson, Pamela J; Shvetsov, Yurii B; Runnebaum, Ingo B; Dürst, Matthias; Hillemanns, Peter; Dörk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Pelttari, Liisa M; Butzow, Ralf; Modugno, Francesmary; Kelley, Joseph L; Edwards, Robert P; Ness, Roberta B; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Matsuo, Keitaro; Hosono, Satoyo; Orsulic, Sandra; Jensen, Allan; Kjaer, Susanne Kruger; Hogdall, Estrid; Hasmad, Hanis Nazihah; Azmi, Mat Adenan Noor; Teo, Soo-Hwang; Woo, Yin-Ling; Fridley, Brooke L; Goode, Ellen L; Cunningham, Julie M; Vierkant, Robert A; Bruinsma, Fiona; Giles, Graham G; Liang, Dong; Hildebrandt, Michelle A T; Wu, Xifeng; Levine, Douglas A; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S; Schildkraut, Joellen M; Concannon, Patrick; Weber, Rachel Palmieri; Cramer, Daniel W; Terry, Kathryn L; Poole, Elizabeth M; Tworoger, Shelley S; Bandera, Elisa V; Orlow, Irene; Olson, Sara H; Krakstad, Camilla; Salvesen, Helga B; Tangen, Ingvild L; Bjorge, Line; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Kellar, Melissa; Brooks-Wilson, Angela; Kelemen, Linda E; Cook, Linda S; Le, Nhu D; Cybulski, Cezary; Yang, Hannah; Lissowska, Jolanta; Brinton, Louise A; Wentzensen, Nicolas; Hogdall, Claus; Lundvall, Lene; Nedergaard, Lotte; Baker, Helen; Song, Honglin; Eccles, Diana; McNeish, Ian; Paul, James; Carty, Karen; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Ji, Bu-Tian; Zheng, Wei; Shu, Xiao-Ou; Gao, Yu-Tang; Rosen, Barry; Risch, Harvey A; McLaughlin, John R; Narod, Steven A; Monteiro, Alvaro N; Chen, Ann; Lin, Hui-Yi; Permuth-Wey, Jenny; Sellers, Thomas A; Tsai, Ya-Yu; Chen, Zhihua; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Harrington, Patricia; Lee, Alice W; Wu, Anna H; Pearce, Celeste L; Coetzee, Gerry; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Timorek, Agnieszka; Rzepecka, Iwona K; Kupryjanczyk, Jolanta; Freedman, Matt; Noushmehr, Houtan; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Gayther, Simon; Pharoah, Paul P; Antoniou, Antonis C; Chenevix-Trench, Georgia

    2015-02-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.

  9. Further Evidence of Subphenotype Association with Systemic Lupus Erythematosus Susceptibility Loci: A European Cases Only Study

    Science.gov (United States)

    Alonso-Perez, Elisa; Suarez-Gestal, Marian; Calaza, Manuel; Ordi-Ros, Josep; Balada, Eva; Bijl, Marc; Papasteriades, Chryssa; Carreira, Patricia; Skopouli, Fotini N.; Witte, Torsten; Endreffy, Emöke; Marchini, Maurizio; Migliaresi, Sergio; Sebastiani, Gian Domenico; Santos, Maria Jose; Suarez, Ana; Blanco, Francisco J.; Barizzone, Nadia; Pullmann, Rudolf; Ruzickova, Sarka; Lauwerys, Bernard R.; Gomez-Reino, Juan J.; Gonzalez, Antonio

    2012-01-01

    Introduction Systemic Lupus Erythematosus (SLE) shows a spectrum of clinical manifestations that complicate its diagnosis, treatment and research. This variability is likely related with environmental exposures and genetic factors among which known SLE susceptibility loci are prime candidates. The first published analyses seem to indicate that this is the case for some of them, but results are still inconclusive and we aimed to further explore this question. Methods European SLE patients, 1444, recruited at 17 centres from 10 countries were analyzed. Genotypes for 26 SLE associated SNPs were compared between patients with and without each of 11 clinical features: ten of the American College of Rheumatology (ACR) classification criteria (except ANAs) and age of disease onset. These analyses were adjusted for centre of recruitment, top ancestry informative markers, gender and time of follow-up. Overlap of samples with previous studies was excluded for assessing replication. Results There were three new associations: the SNPs in XKR6 and in FAM167A-BLK were associated with lupus nephritis (OR = 0.76 and 1.30, Pcorr = 0.007 and 0.03, respectively) and the SNP of MECP2, which is in chromosome X, with earlier age of disease onset in men. The previously reported association of STAT4 with early age of disease onset was replicated. Some other results were suggestive of the presence of additional associations. Together, the association signals provided support to some previous findings and to the characterization of lupus nephritis, autoantibodies and age of disease onset as the clinical features more associated with SLE loci. Conclusion Some of the SLE loci shape the disease phenotype in addition to increase susceptibility to SLE. This influence is more prominent for some clinical features than for others. However, results are only partially consistent between studies and subphenotype specific GWAS are needed to unravel their genetic component. PMID:23049788

  10. Genome-wide association study identifies novel breast cancer susceptibility loci

    Science.gov (United States)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  11. Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Gene-Environment Interactions

    Science.gov (United States)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra; Dunning, Alison M.; Milne, Roger L.; Bojesen, Stig E.; Swerdlow, Anthony; Andrulis, Irene; Brenner, Hermann; Behrens, Sabine; Orr, Nicholas; Jones, Michael; Ashworth, Alan; Li, Jingmei; Cramp, Helen; Connley, Dan; Czene, Kamila; Darabi, Hatef; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Knight, Julia; Glendon, Gord; Mulligan, Anna M.; Dumont, Martine; Severi, Gianluca; Baglietto, Laura; Olson, Janet; Vachon, Celine; Purrington, Kristen; Moisse, Matthieu; Neven, Patrick; Wildiers, Hans; Spurdle, Amanda; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Hamann, Ute; Ko, Yon-Dschun; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Malats, Núria; Arias Perez, JoséI.; Benítez, Javier; Flyger, Henrik; Nordestgaard, Børge G.; Truong, Théresè; Cordina-Duverger, Emilie; Menegaux, Florence; Silva, Isabel dos Santos; Fletcher, Olivia; Johnson, Nichola; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Braaf, Linde; Atsma, Femke; van den Broek, Alexandra J.; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Cox, Angela; Simard, Jacques; Giles, Graham G.; Lambrechts, Diether; Mannermaa, Arto; Brauch, Hiltrud; Guénel, Pascal; Peto, Julian; Fasching, Peter A.; Hopper, John; Flesch-Janys, Dieter; Couch, Fergus; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Schmidt, Marjanka K.; Hall, Per; Easton, Douglas F.; Chang-Claude, Jenny

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10−07), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci. PMID:24248812

  12. Genotyping of the MTL loci and susceptibility to two antifungal agents of Candida glabrata clinical isolates

    Directory of Open Access Journals (Sweden)

    María Teresa Lavaniegos-Sobrino

    2009-08-01

    Full Text Available The opportunistic fungal pathogen Candida glabrata is the second most common isolate from bloodstream infections worldwide and is naturally less susceptible to the antifungal drug fluconazole than other Candida species. C. glabrata is a haploid yeast that contains three mating-type like loci (MTL, although no sexual cycle has been described. Strains containing both types of mating information at the MTL1 locus are found in clinical isolates, but it is thought that strains containing type a information are more common. Here we investigated if a particular combination of mating type information at each MTLlocus is more prevalent in clinical isolates from hospitalized patients in Mexico and if there is a correlation between mating information and resistance to fluconazole and 5-fluorocytosine. We found that while both types of information at MTL1 are equally represented in a collection of 64 clinical isolates, the vast majority of isolates contain a-type information at MTL2 and α-type at MTL3. We also found no correlation of the particular combination of mating type information at the three MTL loci and resistance to fluconazole.

  13. Novel Association Between Immune-Mediated Susceptibility Loci and Persistent Autoantibody Positivity in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Brorsson, Caroline A; Onengut, Suna; Chen, Wei-Min

    2015-01-01

    Islet autoantibodies detected at disease onset in patients with type 1 diabetes are signs of an autoimmune destruction of the insulin-producing β-cells. To further investigate the genetic determinants of autoantibody positivity, we performed dense immune-focused genotyping on the Immunochip array...... and tested for association with seven disease-specific autoantibodies in a large cross-sectional cohort of 6,160 type 1 diabetes-affected siblings. The genetic association with positivity for GAD autoantibodies (GADAs), IA2 antigen (IA-2A), zinc transporter 8, thyroid peroxidase, gastric parietal cells (PCAs...... and constitute candidates for early screening. Major susceptibility loci for islet autoantibodies are separate from type 1 diabetes risk, which may have consequences for intervention strategies to reduce autoimmunity....

  14. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis

    Science.gov (United States)

    Beecham, Ashley H; Patsopoulos, Nikolaos A; Xifara, Dionysia K; Davis, Mary F; Kemppinen, Anu; Cotsapas, Chris; Shahi, Tejas S; Spencer, Chris; Booth, David; Goris, An; Oturai, Annette; Saarela, Janna; Fontaine, Bertrand; Hemmer, Bernhard; Martin, Claes; Zipp, Frauke; D’alfonso, Sandra; Martinelli-Boneschi, Filippo; Taylor, Bruce; Harbo, Hanne F; Kockum, Ingrid; Hillert, Jan; Olsson, Tomas; Ban, Maria; Oksenberg, Jorge R; Hintzen, Rogier; Barcellos, Lisa F; Agliardi, Cristina; Alfredsson, Lars; Alizadeh, Mehdi; Anderson, Carl; Andrews, Robert; Søndergaard, Helle Bach; Baker, Amie; Band, Gavin; Baranzini, Sergio E; Barizzone, Nadia; Barrett, Jeffrey; Bellenguez, Céline; Bergamaschi, Laura; Bernardinelli, Luisa; Berthele, Achim; Biberacher, Viola; Binder, Thomas M C; Blackburn, Hannah; Bomfim, Izaura L; Brambilla, Paola; Broadley, Simon; Brochet, Bruno; Brundin, Lou; Buck, Dorothea; Butzkueven, Helmut; Caillier, Stacy J; Camu, William; Carpentier, Wassila; Cavalla, Paola; Celius, Elisabeth G; Coman, Irène; Comi, Giancarlo; Corrado, Lucia; Cosemans, Leentje; Cournu-Rebeix, Isabelle; Cree, Bruce A C; Cusi, Daniele; Damotte, Vincent; Defer, Gilles; Delgado, Silvia R; Deloukas, Panos; di Sapio, Alessia; Dilthey, Alexander T; Donnelly, Peter; Dubois, Bénédicte; Duddy, Martin; Edkins, Sarah; Elovaara, Irina; Esposito, Federica; Evangelou, Nikos; Fiddes, Barnaby; Field, Judith; Franke, Andre; Freeman, Colin; Frohlich, Irene Y; Galimberti, Daniela; Gieger, Christian; Gourraud, Pierre-Antoine; Graetz, Christiane; Graham, Andrew; Grummel, Verena; Guaschino, Clara; Hadjixenofontos, Athena; Hakonarson, Hakon; Halfpenny, Christopher; Hall, Gillian; Hall, Per; Hamsten, Anders; Harley, James; Harrower, Timothy; Hawkins, Clive; Hellenthal, Garrett; Hillier, Charles; Hobart, Jeremy; Hoshi, Muni; Hunt, Sarah E; Jagodic, Maja; Jelčić, Ilijas; Jochim, Angela; Kendall, Brian; Kermode, Allan; Kilpatrick, Trevor; Koivisto, Keijo; Konidari, Ioanna; Korn, Thomas; Kronsbein, Helena; Langford, Cordelia; Larsson, Malin; Lathrop, Mark; Lebrun-Frenay, Christine; Lechner-Scott, Jeannette; Lee, Michelle H; Leone, Maurizio A; Leppä, Virpi; Liberatore, Giuseppe; Lie, Benedicte A; Lill, Christina M; Lindén, Magdalena; Link, Jenny; Luessi, Felix; Lycke, Jan; Macciardi, Fabio; Männistö, Satu; Manrique, Clara P; Martin, Roland; Martinelli, Vittorio; Mason, Deborah; Mazibrada, Gordon; McCabe, Cristin; Mero, Inger-Lise; Mescheriakova, Julia; Moutsianas, Loukas; Myhr, Kjell-Morten; Nagels, Guy; Nicholas, Richard; Nilsson, Petra; Piehl, Fredrik; Pirinen, Matti; Price, Siân E; Quach, Hong; Reunanen, Mauri; Robberecht, Wim; Robertson, Neil P; Rodegher, Mariaemma; Rog, David; Salvetti, Marco; Schnetz-Boutaud, Nathalie C; Sellebjerg, Finn; Selter, Rebecca C; Schaefer, Catherine; Shaunak, Sandip; Shen, Ling; Shields, Simon; Siffrin, Volker; Slee, Mark; Sorensen, Per Soelberg; Sorosina, Melissa; Sospedra, Mireia; Spurkland, Anne; Strange, Amy; Sundqvist, Emilie; Thijs, Vincent; Thorpe, John; Ticca, Anna; Tienari, Pentti; van Duijn, Cornelia; Visser, Elizabeth M; Vucic, Steve; Westerlind, Helga; Wiley, James S; Wilkins, Alastair; Wilson, James F; Winkelmann, Juliane; Zajicek, John; Zindler, Eva; Haines, Jonathan L; Pericak-Vance, Margaret A; Ivinson, Adrian J; Stewart, Graeme; Hafler, David; Hauser, Stephen L; Compston, Alastair; McVean, Gil; De Jager, Philip; Sawcer, Stephen; McCauley, Jacob L

    2013-01-01

    Using the ImmunoChip custom genotyping array, we analysed 14,498 multiple sclerosis subjects and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (p-value multiple sclerosis subjects and 26,703 healthy controls. In these 80,094 individuals of European ancestry we identified 48 new susceptibility variants (p-value multiple sclerosis risk variants in 103 discrete loci outside of the Major Histocompatibility Complex. With high resolution Bayesian fine-mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalogue of multiple sclerosis risk variants and illustrates the value of fine-mapping in the resolution of GWAS signals. PMID:24076602

  15. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    Science.gov (United States)

    Klein, Alison P; Wolpin, Brian M; Risch, Harvey A; Stolzenberg-Solomon, Rachael Z; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J; Hoskins, Jason W; Jermusyk, Ashley; Zhong, Jun; Chen, Fei; Albanes, Demetrius; Andreotti, Gabriella; Arslan, Alan A; Babic, Ana; Bamlet, William R; Beane-Freeman, Laura; Berndt, Sonja I; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G; Chung, Charles C; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J Michael; Gazouli, Maria; Giles, Graham G; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E; Goodman, Phyllis J; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A; Hoover, Robert; Hung, Rayjean J; Jacobs, Eric J; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H; Kupcinskas, Juozas; Kurtz, Robert J; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T; Lee, I-Min; LeMarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E; Neoptolemos, John P; Oberg, Ann L; Olson, Sara H; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P; Soucek, Pavel; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D; Tobias, Geoffrey S; Van Den Eeden, Stephen K; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Obazee, Ofure; Petersen, Gloria M; Amundadottir, Laufey T

    2018-02-08

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10 -8 ). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10 -14 ), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10 -10 ), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10 -8 ), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10 -8 ). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.

  16. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci

    NARCIS (Netherlands)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-01

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and

  17. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors

    DEFF Research Database (Denmark)

    Nickels, Stefan; Truong, Thérèse; Hein, Rebecca

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cance...

  18. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    DEFF Research Database (Denmark)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer...

  19. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors

    NARCIS (Netherlands)

    Nickels, S.; Truong, T.; Hein, R.; Stevens, K.; Buck, K.; Behrens, S.; Eilber, U.; Schmidt, M.; Haberle, L.; Vrieling, A.; Gaudet, M.; Figueroa, J.; Schoof, N.; Spurdle, A.B.; Rudolph, A.; Fasching, P.A.; Hopper, J.L.; Makalic, E.; Schmidt, D.F.; Southey, M.C.; Beckmann, M.W.; Ekici, A.B.; Fletcher, O.; Gibson, L.; Idos, S. Silva; Peto, J.; Humphreys, M.K.; Wang, J; Cordina-Duverger, E.; Menegaux, F.; Nordestgaard, B.G.; Bojesen, S.E.; Lanng, C.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Clarke, C.A.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Brauch, H.; Bruning, T.; Harth, V.; Genica, N.; Mannermaa, A.; Kataja, V.; Kosma, V.M.; Hartikainen, J.M.; Lambrechts, D.; Smeets, D.; Neven, P.; Paridaens, R.; Flesch-Janys, D.; Obi, N.; Wang-Gohrke, S.; Couch, F.J.; Olson, J.E.; Vachon, C.M.; Giles, G.G.; Severi, G.; Baglietto, L.; Offit, K.; John, E.M.; Miron, A.; Andrulis, I.L.; Knight, J.A.; Glendon, G.; Mulligan, A.M.; Chanock, S.J.; Lissowska, J.; Liu, J.; Cox, A; Cramp, H.; Connley, D.; Balasubramanian, S.; Dunning, A.M.; Shah, M.; Trentham-Dietz, A.; Newcomb, P.; Titus, L.; Egan, K.; Cahoon, E.K.; Rajaraman, P.; Sigurdson, A.J.; Doody, M.M.; Guenel, P.; Pharoah, P.D.; Schmidt, M.K.; Hall, P.; Easton, D.F.; Garcia-Closas, M.; Milne, R.L.; Chang-Claude, J.; et al.,

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer.

  20. Identification of Two Additional Susceptibility Loci for Inflammatory Bowel Disease in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Xiucai Lan

    2017-04-01

    Full Text Available Background/Aims: To investigate the associations between the rs1250569 (zinc finger MIZ-type containing 1, ZMIZ1, rs1042522 (tumour protein p53, TP53, and rs10114470 (tumour necrosis factor-like cytokine 1A, TL1A polymorphisms and the development of inflammatory bowel disease (IBD in a Chinese (Han population. We analysed the expression of genes that predispose patients to Crohn’s disease (CD and ulcerative colitis (UC. Methods: A total of 381 IBD patients and 517 healthy controls were recruited into our study. Polymorphisms at the three loci were genotyped using polymerase chain reaction-ligation detection reactions (PCR-LDR. Genotype-phenotype correlations were analysed. Blood and gut samples were obtained and analysed using quantitative real-time PCR (qRT-PCR, western blot analysis, and immunohistochemistry to investigate the mRNA and protein levels and in situ expression of genes found to predispose patients to IBD. Furthermore, the expression of susceptible genes was further verified using a mouse dextran sulphate sodium (DSS-induced acute colitis model. Results: No significant association was detected between rs1250569 and rs1042522 genotypes and CD or UC susceptibility. However, the frequency of allele A of rs1250569 was much higher in CD patients than that in healthy controls (55.03% vs. 48.48%, respectively; p = 0.044. The mutation rates at rs10114470 were dramatically lower at both the genotype and allele level in patients than those in healthy controls (p = 0.002 at both the genotype and allele level. Additionally, increased ZMIZ1 and TL1A levels were detected in intestinal samples obtained from both IBD patients and DSS-treated mice. Conclusion: rs1250569 (ZMIZ1 and rs10114470 (TL1A are two novel loci that indicate susceptibility to IBD in Han-Chinese patients. Consistent with previous studies, TL1A expression levels were higher in Chinese Han IBD patients and DSS-treated mice. Most importantly, we found that ZMIZ1 expression was

  1. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    Science.gov (United States)

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Individual and cumulative effects of GWAS susceptibility loci in lung cancer: associations after sub-phenotyping for COPD.

    Directory of Open Access Journals (Sweden)

    Robert P Young

    2011-02-01

    Full Text Available Epidemiological studies show that approximately 20-30% of chronic smokers develop chronic obstructive pulmonary disease (COPD while 10-15% develop lung cancer. COPD pre-exists lung cancer in 50-90% of cases and has a heritability of 40-77%, much greater than for lung cancer with heritability of 15-25%. These data suggest that smokers susceptible to COPD may also be susceptible to lung cancer. This study examines the association of several overlapping chromosomal loci, recently implicated by GWA studies in COPD, lung function and lung cancer, in (n = 1400 subjects sub-phenotyped for the presence of COPD and matched for smoking exposure. Using this approach we show; the 15q25 locus confers susceptibility to lung cancer and COPD, the 4q31 and 4q22 loci both confer a reduced risk to both COPD and lung cancer, the 6p21 locus confers susceptibility to lung cancer in smokers with pre-existing COPD, the 5p15 and 1q23 loci both confer susceptibility to lung cancer in those with no pre-existing COPD. We also show the 5q33 locus, previously associated with reduced FEV(1, appears to confer susceptibility to both COPD and lung cancer. The 6p21 locus previously linked to reduced FEV(1 is associated with COPD only. Larger studies will be needed to distinguish whether these COPD-related effects may reflect, in part, associations specific to different lung cancer histology. We demonstrate that when the "risk genotypes" derived from the univariate analysis are incorporated into an algorithm with clinical variables, independently associated with lung cancer in multivariate analysis, modest discrimination is possible on receiver operator curve analysis (AUC = 0.70. We suggest that genetic susceptibility to lung cancer includes genes conferring susceptibility to COPD and that sub-phenotyping with spirometry is critical to identifying genes underlying the development of lung cancer.

  3. New record of Scedosporium dehoogii from Chile: Phylogeny and susceptibility profiles to classic and novel putative antifungal agents.

    Science.gov (United States)

    Alvarez, Eduardo; Sanhueza, Camila

    Scedosporium species are considered emerging agents causing illness in immunocompromised patients. In Chile, only Scedosporium apiospermum, Scedosporium boydii and Lomentospora prolificans haven been reported previously. The study aimed to characterize genetically Scedosporium dehoogii strains from Chilean soil samples, and assessed the antifungal susceptibility profile to classic and novel putative antifungal molecules. In 2014, several samples were obtained during a survey of soil fungi in urban areas from Chile. Morphological and phylogenetic analyses of the internal transcribed spacer region (ITS), tubulin (TUB), and calmodulin (CAL) sequences were performed. In addition, the susceptibility profiles to classic antifungal and new putative antifungal molecules were determined. Four strains of Scedosporium dehoogii were isolated from soil samples. The methodology confirmed the species (reported here as a new record for Chile). Antifungal susceptibility testing demonstrates the low activity of terpenes (α-pinene and geraniol) against this species. Voriconazole (VRC), posaconazole (PSC), and the hydroxyquinolines (clioquinol, and 5,7-dibromo-8-hydroxyquinoline) showed the best antifungal activity. Our results demonstrate that Scedosporium dehoogii is present in soil samples from Chile. This study shows also that hydroxyquinolines have potential as putative antifungal molecules. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitulkumar Nandlal; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of Europea...

  5. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Stephen; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Melanie; Bolla, Manjeet; Wang, Qing; Shah, Mitul; Perkins, Barbara; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to wome...

  6. Joint effects of colorectal cancer susceptibility loci, circulating 25-hydroxyvitamin D and risk of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Linda T Hiraki

    Full Text Available Genome wide association studies (GWAS have identified several SNPs associated with colorectal cancer (CRC susceptibility. Vitamin D is also inversely associated with CRC risk.We examined main and joint effects of previously GWAS identified genetic markers of CRC and plasma 25-hydroxyvitamin D (25(OHD on CRC risk in three prospective cohorts: the Nurses' Health Study (NHS, the Health Professionals Follow-up Study (HPFS, and the Physicians' Health Study (PHS. We included 1895 CRC cases and 2806 controls with genomic DNA. We calculated odds ratios and 95% confidence intervals for CRC associated with additive genetic risk scores (GRSs comprised of all CRC SNPs and subsets of these SNPs based on proximity to regions of increased vitamin D receptor binding to vitamin D response elements (VDREs, based on published ChiP-seq data. Among a subset of subjects with additional prediagnostic 25(OHD we tested multiplicative interactions between plasma 25(OHD and GRS's. We used fixed effects models to meta-analyze the three cohorts.The per allele multivariate OR was 1.12 (95% CI, 1.06-1.19 for GRS-proximalVDRE; and 1.10 (95% CI, 1.06-1.14 for GRS-nonproxVDRE. The lowest quartile of plasma 25(OHD compared with the highest, had a multivariate OR of 0.63 (95% CI, 0.48-0.82 for CRC. We did not observe any significant interactions between any GRSs and plasma 25(OHD.We did not observe evidence for the modification of genetic susceptibility for CRC according to vitamin D status, or evidence that the effect of common CRC risk alleles differed according to their proximity to putative VDR binding sites.

  7. Volumetric mammographic density: heritability and association with breast cancer susceptibility loci.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Thompson, Deborah J; Li, Jingmei; Eriksson, Mikael; Hall, Per; Czene, Kamila

    2014-12-01

    Mammographic density is a strong heritable trait, but data on its genetic component are limited to area-based and qualitative measures. We studied the heritability of volumetric mammographic density ascertained by a fully-automated method and the association with breast cancer susceptibility loci. Heritability of volumetric mammographic density was estimated with a variance component model in a sib-pair sample (N pairs = 955) of a Swedish screening based cohort. Associations with 82 established breast cancer loci were assessed in an independent sample of the same cohort (N = 4025 unrelated women) using linear models, adjusting for age, body mass index, and menopausal status. All tests were two-sided, except for heritability analyses where one-sided tests were used. After multivariable adjustment, heritability estimates (standard error) for percent dense volume, absolute dense volume, and absolute nondense volume were 0.63 (0.06) and 0.43 (0.06) and 0.61 (0.06), respectively (all P associated with rs10995190 (ZNF365; P = 9.0 × 10(-6) and 8.9 × 10(-7), respectively) and rs9485372 (TAB2; P = 1.8 × 10(-5) and 1.8 × 10(-3), respectively). We also observed associations of rs9383938 (ESR1) and rs2046210 (ESR1) with the absolute dense volume (P = 2.6 × 10(-4) and 4.6 × 10(-4), respectively), and rs6001930 (MLK1) and rs17356907 (NTN4) with the absolute nondense volume (P = 6.7 × 10(-6) and 8.4 × 10(-5), respectively). Our results support the high heritability of mammographic density, though estimates are weaker for absolute than percent dense volume. We also demonstrate that the shared genetic component with breast cancer is not restricted to dense tissues only. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor.

    Science.gov (United States)

    Litchfield, Kevin; Levy, Max; Orlando, Giulia; Loveday, Chey; Law, Philip J; Migliorini, Gabriele; Holroyd, Amy; Broderick, Peter; Karlsson, Robert; Haugen, Trine B; Kristiansen, Wenche; Nsengimana, Jérémie; Fenwick, Kerry; Assiotis, Ioannis; Kote-Jarai, ZSofia; Dunning, Alison M; Muir, Kenneth; Peto, Julian; Eeles, Rosalind; Easton, Douglas F; Dudakia, Darshna; Orr, Nick; Pashayan, Nora; Bishop, D Timothy; Reid, Alison; Huddart, Robert A; Shipley, Janet; Grotmol, Tom; Wiklund, Fredrik; Houlston, Richard S; Turnbull, Clare

    2017-07-01

    Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.

  9. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    2011-05-01

    Full Text Available GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls, we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05 with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10(-4 that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17 over the alleles reported in the original GWAS (OR = 1.08. In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry.

  10. Large scale association analysis identifies three susceptibility loci for coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Stephanie Saade

    Full Text Available Genome wide association studies (GWAS and their replications that have associated DNA variants with myocardial infarction (MI and/or coronary artery disease (CAD are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3, and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (OR=0.68, p=0.0035, while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (OR=1.33, p=0.0086. Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology.

  11. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population.

    Science.gov (United States)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia; Budroni, Mario; Dei, Mariano; Lai, Sandra; Mulas, Antonella; Olmeo, Nina; Ionta, Maria Teresa; Atzori, Francesco; Cuccuru, Gianmauro; Pitzalis, Maristella; Zoledziewska, Magdalena; Olla, Nazario; Lovicu, Mario; Pisano, Marina; Abecasis, Gonçalo R; Uda, Manuela; Tanda, Francesco; Michailidou, Kyriaki; Easton, Douglas F; Chanock, Stephen J; Hoover, Robert N; Hunter, David J; Schlessinger, David; Sanna, Serena; Crisponi, Laura; Palmieri, Giuseppe

    2015-05-10

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p <  0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population.

  12. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia

    2015-01-01

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10 −6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10 −5 , we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10 −5 ), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population. The online version of this article (doi:10.1186/s12885-015-1392-9) contains supplementary material, which is available to authorized users

  13. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    K. Gaulton (Kyle); T. Ferreira (Teresa); Y. Lee (Yeji); A. Raimondo (Anne); R. Mägi (Reedik); M.E. Reschen (Michael E.); A. Mahajan (Anubha); A. Locke (Adam); N.W. Rayner (Nigel William); N.R. Robertson (Neil); R.A. Scott (Robert); I. Prokopenko (Inga); L.J. Scott (Laura); T. Green (Todd); T. Sparsø (Thomas); D. Thuillier (Dorothee); L. Yengo (Loic); H. Grallert (Harald); S. Wahl (Simone); M. Frånberg (Mattias); R.J. Strawbridge (Rona); H. Kestler (Hans); H. Chheda (Himanshu); L. Eisele (Lewin); S. Gustafsson (Stefan); V. Steinthorsdottir (Valgerdur); G. Thorleifsson (Gudmar); L. Qi (Lu); L.C. Karssen (Lennart); E.M. van Leeuwen (Elisa); S.M. Willems (Sara); M. Li (Man); H. Chen (Han); C. Fuchsberger (Christian); P. Kwan (Phoenix); C. Ma (Clement); M. Linderman (Michael); Y. Lu (Yingchang); S.K. Thomsen (Soren K.); J.K. Rundle (Jana K.); N.L. Beer (Nicola L.); M. van de Bunt (Martijn); A. Chalisey (Anil); H.M. Kang (Hyun Min); B.F. Voight (Benjamin); G.R. Abecasis (Gonçalo); P. Almgren (Peter); D. Baldassarre (Damiano); B. Balkau (Beverley); R. Benediktsson (Rafn); M. Blüher (Matthias); H. Boeing (Heiner); L.L. Bonnycastle (Lori); E.P. Bottinger (Erwin P.); N.P. Burtt (Noël); J. Carey (Jason); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David J.); A. Crenshaw (Andrew); R.M. van Dam (Rob); A.S.F. Doney (Alex); M. Dorkhan (Mozhgan); T. Edkins (Ted); J.G. Eriksson (Johan G.); T. Esko (Tõnu); E. Eury (Elodie); J. Fadista (João); J. Flannick (Jason); P. Fontanillas (Pierre); C.S. Fox (Caroline); P.W. Franks (Paul W.); K. Gertow (Karl); C. Gieger (Christian); B. Gigante (Bruna); R.F. Gottesman (Rebecca); G.B. Grant (George); N. Grarup (Niels); C.J. Groves (Christopher J.); M. Hassinen (Maija); C.T. Have (Christian T.); C. Herder (Christian); O.L. Holmen (Oddgeir); A.B. Hreidarsson (Astradur); S.E. Humphries (Steve E.); D.J. Hunter (David J.); A.U. Jackson (Anne); A. Jonsson (Anna); M.E. Jørgensen (Marit E.); T. Jørgensen (Torben); W.H.L. Kao (Wen); N.D. Kerrison (Nicola D.); L. Kinnunen (Leena); N. Klopp (Norman); A. Kong (Augustine); P. Kovacs (Peter); P. Kraft (Peter); J. Kravic (Jasmina); C. Langford (Cordelia); K. Leander (Karin); L. Liang (Liming); P. Lichtner (Peter); C.M. Lindgren (Cecilia M.); B. Lindholm (Bengt); A. Linneberg (Allan); C.-T. Liu (Ching-Ti); S. Lobbens (Stéphane); J. Luan (Jian'fan); V. Lyssenko (Valeriya); S. Männistö (Satu); O. McLeod (Olga); J. Meyer (Jobst); E. Mihailov (Evelin); G. Mirza (Ghazala); T.W. Mühleisen (Thomas); M. Müller-Nurasyid (Martina); C. Navarro (Carmen); M.M. Nöthen (Markus); N.N. Oskolkov (Nikolay N.); K.R. Owen (Katharine); D. Palli (Domenico); S. Pechlivanis (Sonali); L. Peltonen (Leena Johanna); J.R.B. Perry (John); C.P. Platou (Carl); M. Roden (Michael); D. Ruderfer (Douglas); D. Rybin (Denis); Y.T. Van Der Schouw (Yvonne T.); B. Sennblad (Bengt); G. Sigurosson (Gunnar); A. Stancáková (Alena); D. Steinbach; P. Storm (Petter); K. Strauch (Konstantin); H.M. Stringham (Heather); Q. Sun; B. Thorand (Barbara); E. Tikkanen (Emmi); A. Tönjes (Anke); J. Trakalo (Joseph); E. Tremoli (Elena); T. Tuomi (Tiinamaija); R. Wennauer (Roman); S. Wiltshire (Steven); A.R. Wood (Andrew); E. Zeggini (Eleftheria); I. Dunham (Ian); E. Birney (Ewan); L. Pasquali (Lorenzo); J. Ferrer (Jorge); R.J.F. Loos (Ruth); J. Dupuis (Josée); J.C. Florez (Jose); E.A. Boerwinkle (Eric); J.S. Pankow (James); C.M. van Duijn (Cornelia); E.J.G. Sijbrands (Eric); J.B. Meigs (James B.); F.B. Hu (Frank B.); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); T.A. Lakka (Timo); R. Rauramaa (Rainer); M. Stumvoll (Michael); N.L. Pedersen (Nancy L.); L. Lind (Lars); S. Keinanen-Kiukaanniemi (Sirkka); E. Korpi-Hyövälti (Eeva); T. Saaristo (Timo); J. Saltevo (Juha); J. Kuusisto (Johanna); M. Laakso (Markku); A. Metspalu (Andres); R. Erbel (Raimund); K.-H. Jöckel (Karl-Heinz); S. Moebus (Susanne); S. Ripatti (Samuli); V. Salomaa (Veikko); E. Ingelsson (Erik); B.O. Boehm (Bernhard); R.N. Bergman (Richard N.); F.S. Collins (Francis S.); K.L. Mohlke (Karen L.); H. Koistinen (Heikki); J. Tuomilehto (Jaakko); K. Hveem (Kristian); I. Njølstad (Inger); P. Deloukas (Panagiotis); P.J. Donnelly (Peter J.); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. de Faire (Ulf); A. Hamsten (Anders); T. Illig (Thomas); A. Peters (Annette); S. Cauchi (Stephane); R. Sladek (Rob); P. Froguel (Philippe); T. Hansen (Torben); O. Pedersen (Oluf); A.D. Morris (Andrew); C.N.A. Palmer (Collin N. A.); S. Kathiresan (Sekar); O. Melander (Olle); P.M. Nilsson (Peter M.); L. Groop (Leif); I.E. Barroso (Inês); C. Langenberg (Claudia); N.J. Wareham (Nicholas J.); C.A. O'Callaghan (Christopher A.); A.L. Gloyn (Anna); D. Altshuler (David); M. Boehnke (Michael); T.M. Teslovich (Tanya M.); M.I. McCarthy (Mark); A.P. Morris (Andrew)

    2015-01-01

    textabstractWe performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each

  14. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; William Rayner, N; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct

  15. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    F.J. Couch (Fergus); K.B. Kuchenbaecker (Karoline); K. Michailidou (Kyriaki); G.A. Mendoza-Fandino (Gustavo A.); S. Nord (Silje); J. Lilyquist (Janna); C. Olswold (Curtis); B. Hallberg (Boubou); S. Agata (Simona); H. Ahsan (Habibul); K. Aittomäki (Kristiina); C.B. Ambrosone (Christine); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); V. Arndt (Volker); B.K. Arun (Banu); B. Arver (Brita Wasteson); M. Barile (Monica); R.B. Barkardottir (Rosa); D. Barrowdale (Daniel); L. Beckmann (Lars); M.W. Beckmann (Matthias); J. Benítez (Javier); S.V. Blank (Stephanie); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); M.K. Bolla (Manjeet); B. Bonnani (Bernardo); H. Brauch (Hiltrud); H. Brenner (Hermann); B. Burwinkel (Barbara); S.S. Buys (Saundra S.); T. Caldes (Trinidad); M.A. Caligo (Maria); F. Canzian (Federico); T.A. Carpenter (Adrian); J. Chang-Claude (Jenny); S.J. Chanock (Stephen J.); W.K. Chung (Wendy K.); K.B.M. Claes (Kathleen B.M.); A. Cox (Angela); S.S. Cross (Simon); J.M. Cunningham (Julie); K. Czene (Kamila); M.B. Daly (Mary B.); F. Damiola (Francesca); H. Darabi (Hatef); M. de La Hoya (Miguel); P. Devilee (Peter); O. Díez (Orland); Y.C. Ding (Yuan); R. Dolcetti (Riccardo); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); I. dos Santos Silva (Isabel); M. Dumont (Martine); A.M. Dunning (Alison); D. Eccles (Diana); H. Ehrencrona (Hans); A.B. Ekici (Arif); H. Eliassen (Heather); S.D. Ellis (Steve); P.A. Fasching (Peter); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); A. Försti (Asta); F. Fostira (Florentia); W.D. Foulkes (William); M.O.W. Friebel (Mark ); E. Friedman (Eitan); D. Frost (Debra); M. Gabrielson (Marike); M. Gammon (Marilie); P.A. Ganz (Patricia A.); S.M. Gapstur (Susan M.); J. Garber (Judy); M.M. Gaudet (Mia); S.A. Gayther (Simon); A-M. Gerdes (Anne-Marie); M. Ghoussaini (Maya); G.G. Giles (Graham); G. Glendon (Gord); A.K. Godwin (Andrew K.); M.S. Goldberg (Mark); D. Goldgar (David); A. González-Neira (Anna); M.H. Greene (Mark H.); J. Gronwald (Jacek); P. Guénel (Pascal); M.J. Gunter (Marc J.); L. Haeberle (Lothar); C.A. Haiman (Christopher A.); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); S. Healey (Sue); T. Heikkinen (Tuomas); B.E. Henderson (Brian); J. Herzog (Josef); F.B.L. Hogervorst (Frans); A. Hollestelle (Antoinette); M.J. Hooning (Maartje); R.N. Hoover (Robert); J.L. Hopper (John); K. Humphreys (Keith); D. Hunter (David); T. Huzarski (Tomasz); E.N. Imyanitov (Evgeny N.); C. Isaacs (Claudine); A. Jakubowska (Anna); M. James (Margaret); R. Janavicius (Ramunas); U.B. Jensen; E.M. John (Esther); M. Jones (Michael); M. Kabisch (Maria); S. Kar (Siddhartha); B.Y. Karlan (Beth Y.); S. Khan (Sofia); K.T. Khaw; M.G. Kibriya (Muhammad); J.A. Knight (Julia); Y.-D. Ko (Yon-Dschun); I. Konstantopoulou (I.); V-M. Kosma (Veli-Matti); V. Kristensen (Vessela); A. Kwong (Ava); Y. Laitman (Yael); D. Lambrechts (Diether); C. Lazaro (Conxi); E. Lee (Eunjung); L. Le Marchand (Loic); K.J. Lester (Kathryn); A. Lindblom (Annika); N.M. Lindor (Noralane); S. Lindstrom (Stephen); J. Liu (Jianjun); J. Long (Jirong); J. Lubinski (Jan); P.L. Mai (Phuong); E. Makalic (Enes); K.E. Malone (Kathleen E.); A. Mannermaa (Arto); S. Manoukian (Siranoush); S. Margolin (Sara); F. Marme (Federick); J.W.M. Martens (John); L. McGuffog (Lesley); A. Meindl (Alfons); A. Miller (Austin); R.L. Milne (Roger); P. Miron (Penelope); M. Montagna (Marco); S. Mazoyer (Sylvie); A.-M. Mulligan (Anna-Marie); T.A. Muranen (Taru); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); B.G. Nordestgaard (Børge); R. Nussbaum (Robert); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); J.E. Olson (Janet); A. Osorio (Ana); S.K. Park (Sue K.); P.H.M. Peeters; B. Peissel (Bernard); P. Peterlongo (Paolo); J. Peto (Julian); C. Phelan (Catherine); R. Pilarski (Robert); B. Poppe (Bruce); K. Pykäs (Katri); P. Radice (Paolo); N. Rahman (Nazneen); J. Rantala (Johanna); C. Rappaport (Christine); G. Rennert (Gad); A.L. Richardson (Andrea); M. Robson (Mark); I. Romieu (Isabelle); A. Rudolph (Anja); E.J.T. Rutgers (Emiel); M.-J. Sanchez (Maria-Jose); R. Santella (Regina); E.J. Sawyer (Elinor); D.F. Schmidt (Daniel); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); F.R. Schumacher (Fredrick); R.J. Scott (Rodney); L. Senter (Leigha); P. Sharma (Priyanka); J. Simard (Jacques); C.F. Singer (Christian); O. Sinilnikova (Olga); P. Soucy (Penny); M.C. Southey (Melissa); D. Steinemann (Doris); M. Stenmark-Askmalm (Marie); D. Stoppa-Lyonnet (Dominique); A.J. Swerdlow (Anthony ); C. Szabo (Csilla); R. Tamimi (Rulla); W. Tapper (William); P.J. Teixeira; S.-H. Teo (Soo-Hwang); M.B. Terry (Mary Beth); M. Thomassen (Mads); D. Thompson (Deborah); L. Tihomirova (Laima); A.E. Toland (Amanda); R.A.E.M. Tollenaar (Rob); I.P. Tomlinson (Ian); T. Truong (Thérèse); H. Tsimiklis (Helen); A. Teulé (A.); R. Tumino (Rosario); N. Tung (Nadine); C. Turnbull (Clare); G. Ursin (Giski); C.H.M. van Deurzen (Carolien); E.J. van Rensburg (Elizabeth); R. Varon-Mateeva (Raymonda); Z. Wang (Zhaoming); S. Wang-Gohrke (Shan); E. Weiderpass (Elisabete); J.N. Weitzel (Jeffrey); A.S. Whittemore (Alice S.); H. Wildiers (Hans); R. Winqvist (Robert); X.R. Yang (Xiaohong R.); D. Yannoukakos (Drakoulis); S. Yao (Song); M.P. Zamora (Pilar); W. Zheng (Wei); P. Hall (Per); P. Kraft (Peter); C. Vachon (Celine); S. Slager (Susan); G. Chenevix-Trench (Georgia); P.D.P. Pharoah (Paul); A.A.N. Monteiro (Alvaro A. N.); M. García-Closas (Montserrat); D.F. Easton (Douglas F.); A.C. Antoniou (Antonis C.)

    2016-01-01

    textabstractCommon variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10-8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative

  16. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9

    NARCIS (Netherlands)

    Janse, Marcel; Lamberts, Laetitia E.; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Muri Boberg, Kirsten; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Björnsson, Einar; Fu, Jingyuan; Jan Westra, Harm; Groen, Harry J. M.; Fehrmann, Rudolf S. N.; Smolonska, Joanna; van den Berg, Leonard H.; Ophoff, Roel A.; Porte, Robert J.; Weismüller, Tobias J.; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Günther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y.; Schreiber, Stefan; Karlsen, Tom H.; Franke, Andre; Weersma, Rinse K.

    2011-01-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently

  17. Three Ulcerative Colitis Susceptibility Loci Are Associated with Primary Sclerosing Cholangitis and Indicate a Role for IL2, REL, and CARD9

    NARCIS (Netherlands)

    Janse, Marcel; Lamberts, Laetitia E.; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Boberg, Kirsten Muri; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Bjornsson, Einar; Fu, Jingyuan; Westra, Harm Jan; Groen, Harry J. M.; Fehrmann, Rudolf S. N.; Smolonska, Joanna; van den Berg, Leonard H.; Ophoff, Roel A.; Porte, Robert J.; Weismueller, Tobias J.; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Guenther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y.; Schreiber, Stefan; Karlsen, Tom H.; Franke, Andre; Weersma, Rinse K.

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently

  18. High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    Science.gov (United States)

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-01-01

    Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596

  19. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers

    DEFF Research Database (Denmark)

    Onengut-Gumuscu, Suna; Chen, Wei-Min; Burren, Oliver

    2015-01-01

    Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array...... and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter......, the Immunochip, was developed, from which we identified four new T1D-associated regions (P comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis...

  20. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    Science.gov (United States)

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  1. Cumulative role of rare and common putative functional genetic variants at NPAS3 in schizophrenia susceptibility.

    Science.gov (United States)

    González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier

    2015-10-01

    Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.

  2. Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the Gliogene Consortium

    DEFF Research Database (Denmark)

    Shete, Sanjay; Lau, Ching C; Houlston, Richard S

    2011-01-01

    .S. families and obtained a maximum NPL score of 1.26 (P = 0.008) and the Z-score of 1.47 (P = 0.035). Accounting for the genetic heterogeneity using the ordered subset analysis approach, the combined analyses of 75 families resulted in a maximum NPL score of 3.81 (P = 0.00001). The genomic regions we have...... implicated in this study may offer novel insights into glioma susceptibility, focusing future work to identify genes that cause familial glioma.......-fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge...

  3. Multiple susceptibility loci for radiation-induced mammary tumorigenesis in F2[Dahl S x R]-intercross rats.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Although two major breast cancer susceptibility genes, BRCA1 and BRCA2, have been identified accounting for 20% of breast cancer genetic risk, identification of other susceptibility genes accounting for 80% risk remains a challenge due to the complex, multi-factorial nature of breast cancer. Complexity derives from multiple genetic determinants, permutations of gene-environment interactions, along with presumptive low-penetrance of breast cancer predisposing genes, and genetic heterogeneity of human populations. As with other complex diseases, dissection of genetic determinants in animal models provides key insight since genetic heterogeneity and environmental factors can be experimentally controlled, thus facilitating the detection of quantitative trait loci (QTL. We therefore, performed the first genome-wide scan for loci contributing to radiation-induced mammary tumorigenesis in female F2-(Dahl S x R-intercross rats. Tumorigenesis was measured as tumor burden index (TBI after induction of rat mammary tumors at forty days of age via ¹²⁷Cs-radiation. We observed a spectrum of tumor latency, size-progression, and pathology from poorly differentiated ductal adenocarcinoma to fibroadenoma, indicating major effects of gene-environment interactions. We identified two mammary tumorigenesis susceptibility quantitative trait loci (Mts-QTLs with significant linkage: Mts-1 on chromosome-9 (LOD-2.98 and Mts-2 on chromosome-1 (LOD-2.61, as well as two Mts-QTLs with suggestive linkage: Mts-3 on chromosome-5 (LOD-1.93 and Mts-4 on chromosome-18 (LOD-1.54. Interestingly, Chr9-Mts-1, Chr5-Mts-3 and Chr18-Mts-4 QTLs are unique to irradiation-induced mammary tumorigenesis, while Chr1-Mts-2 QTL overlaps with a mammary cancer susceptibility QTL (Mcs 3 reported for 7,12-dimethylbenz-[α]antracene (DMBA-induced mammary tumorigenesis in F2[COP x Wistar-Furth]-intercross rats. Altogether, our results suggest at least three distinct susceptibility QTLs for

  4. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    NARCIS (Netherlands)

    Eyre, Steve; Bowes, John; Diogo, Dorothee; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E. M.; Huizinga, Tom W. J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I. W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E.; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S.; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Arlsetig, Lisbeth; Martin, Javier; Rantapaa-Dahlqvist, Solbritt; Plenge, Robert M.; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K.; Worthington, Jane

    2012-01-01

    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data

  5. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    DEFF Research Database (Denmark)

    Garcia-Closas, M.; Hall, P.; Nevanlinna, H.

    2008-01-01

    A three-stage genome-wide association study recently identified single nucleotide polymorphisms ( SNPs) in five loci ( fibroblast growth receptor 2 ( FGFR2), trinucleotide repeat containing 9 ( TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte- specific protein 1 ( LSP1...

  6. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    DEFF Research Database (Denmark)

    Mitchell, Jonathan S; Li, Ni; Weinhold, Niels

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a ...

  7. Susceptibility loci for sporadic brain arteriovenous malformation; a replication study and meta-analysis

    NARCIS (Netherlands)

    Kremer, P.H.; Koeleman, B.P.C.; Rinkel, G.J.; Diekstra, F.P.; Berg, L.H. van den; Veldink, J.H.; Klijn, C.J.M.

    2016-01-01

    BACKGROUND: Case-control studies have reported multiple genetic loci to be associated with sporadic brain arteriovenous malformations (AVMs) but most of these have not been replicated in independent populations. The aim of this study was to find additional evidence for these reported associations

  8. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    NARCIS (Netherlands)

    Garcia-Closas, Montserrat; Hall, Per; Nevanlinna, Heli; Pooley, Karen; Morrison, Jonathan; Richesson, Douglas A.; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Arias, Jose I.; Milne, Roger L.; Ribas, Gloria; González-Neira, Anna; Benítez, Javier; Zamora, Pilar; Brauch, Hiltrud; Justenhoven, Christina; Hamann, Ute; Ko, Yon-Dschun; Bruening, Thomas; Haas, Susanne; Dörk, Thilo; Schürmann, Peter; Hillemanns, Peter; Bogdanova, Natalia; Bremer, Michael; Karstens, Johann Hinrich; Fagerholm, Rainer; Aaltonen, Kirsimari; Aittomäki, Kristiina; von Smitten, Karl; Blomqvist, Carl; Mannermaa, Arto; Uusitupa, Matti; Eskelinen, Matti; Tengström, Maria; Kosma, Veli-Matti; Kataja, Vesa; Chenevix-Trench, Georgia; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Devilee, Peter; van Asperen, Christi J.; Jacobi, Catharina E.; Tollenaar, Rob A. E. M.; Huijts, Petra E. A.; Klijn, Jan G. M.; Chang-Claude, Jenny; Kropp, Silke; Slanger, Tracy; Flesch-Janys, Dieter; Mutschelknauss, Elke; Salazar, Ramona; Wang-Gohrke, Shan; Couch, Fergus; Goode, Ellen L.; Olson, Janet E.; Vachon, Celine; Fredericksen, Zachary S.; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; Hopper, John L.; English, Dallas R.; Southey, Melissa C.; Haiman, Christopher A.; Henderson, Brian E.; Kolonel, Laurence N.; Le Marchand, Loic; Stram, Daniel O.; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Tamimi, Rulla; Kraft, Peter; Sherman, Mark E.; Chanock, Stephen J.; Lissowska, Jolanta; Brinton, Louise A.; Peplonska, Beata; Hooning, Maartje J.; Meijers-Heijboer, Han; Collee, J. Margriet; van den Ouweland, Ans; Uitterlinden, Andre G.; Liu, Jianjun; Lin, Low Yen; Yuqing, Li; Humphreys, Keith; Czene, Kamila; Cox, Angela; Balasubramanian, Sabapathy P.; Cross, Simon S.; Reed, Malcolm W. R.; Blows, Fiona; Driver, Kristy; Dunning, Alison; Tyrer, Jonathan; Ponder, Bruce A. J.; Sangrajrang, Suleeporn; Brennan, Paul; McKay, James; Odefrey, Fabrice; Gabrieau, Valerie; Sigurdson, Alice; Doody, Michele; Struewing, Jeffrey P.; Alexander, Bruce; Easton, Douglas F.; Pharoah, Paul D.

    2008-01-01

    A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1))

  9. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    NARCIS (Netherlands)

    M. García-Closas (Montserrat); P. Hall (Per); H. Nevanlinna (Heli); K.A. Pooley (Karen); J. Morrison (Jonathan); D.A. Richesson (Douglas); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); C.K. Axelsson (Christen); J.I. Arias Pérez (José Ignacio); R.L. Milne (Roger); G. Ribas (Gloria); A. González-Neira (Anna); J. Benítez (Javier); P. Zamora (Pilar); H. Brauch (Hiltrud); C. Justenhoven (Christina); U. Hamann (Ute); Y-D. Ko (Yon-Dschun); T. Bruening (Thomas); S. Haas (Susanne); T. Dörk (Thilo); P. Schürmann (Peter); P. Hillemanns (Peter); N.V. Bogdanova (Natalia); M. Bremer (Michael); J.H. Karstens (Johann); R. Fagerholm (Rainer); K. Aaltonen (Kirsimari); K. Aittomäki (Kristiina); K. von Smitten (Karl); C. Blomqvist (Carl); A. Mannermaa (Arto); M. Uusitupa (Matti); M. Eskelinen (Matti); M. Tengström (Maria); V-M. Kosma (Veli-Matti); V. Kataja (Vesa); G. Chenevix-Trench (Georgia); A.B. Spurdle (Amanda); J. Beesley (Jonathan); X. Chen (Xiaoqing); P. Devilee (Peter); C.J. van Asperen (Christi); C.E. Jacobi (Catharina); R.A.E.M. Tollenaar (Rob); P. Huijts (Petra); J.G.M. Klijn (Jan); J. Chang-Claude (Jenny); S. Kropp (Silke); T. Slanger (Tracy); D. Flesch-Janys (Dieter); E. Mutschelknauss (Elke); R. Salazar (Ramona); S. Wang-Gohrke (Shan); F.J. Couch (Fergus); E.L. Goode (Ellen); J.E. Olson (Janet); C. Vachon (Celine); Z. Fredericksen (Zachary); G.G. Giles (Graham); L. Baglietto (Laura); G. Severi (Gianluca); J.L. Hopper (John); D.R. English (Dallas); M.C. Southey (Melissa); C.A. Haiman (Christopher); B.E. Henderson (Brian); L.N. Kolonel (Laurence); L. Le Marchand (Loic); D.O. Stram (Daniel); D. Hunter (David); S.E. Hankinson (Susan); A. Cox (Angela); R. Tamimi (Rulla); P. Kraft (Peter); M.E. Sherman (Mark); S.J. Chanock (Stephen); J. Lissowska (Jolanta); L.A. Brinton (Louise); B. Peplonska (Beata); M.J. Hooning (Maartje); E.J. Meijers-Heijboer (Hanne); J.M. Collée (Margriet); A.M.W. van den Ouweland (Ans); A.G. Uitterlinden (André); J. Liu (Jianjun); Y.L. Low; L. Yuqing (Li); M.K. Humphreys (Manjeet); K. Czene (Kamila); S. Balasubramanian (Sabapathy); S.S. Cross (Simon); M.W.R. Reed (Malcolm); F. Blows (Fiona); K. Driver (Kristy); A.M. Dunning (Alison); J.P. Tyrer (Jonathan); B.A.J. Ponder (Bruce); S. Sangrajrang (Suleeporn); P. Brennan (Paul); J.D. McKay (James); F. Odefrey (Fabrice); V. Gabrieau (Valerie); A.J. Sigurdson (Alice); M. Doody (Michele); J.P. Struewing (Jeffrey); B.H. Alexander (Bruce); D.F. Easton (Douglas); P.D.P. Pharoah (Paul)

    2008-01-01

    textabstractA three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1

  10. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N.J. Timpson (Nicholas); S.F.A. Grant (Struan); V.W.V. Jaddoe (Vincent); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation

  11. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  12. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci.

    Science.gov (United States)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-22

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the major histocompatibility complex, where we fine-map four independent effects, all implicating human leukocyte antigen-DR as a key aetiologic driver. Outside the major histocompatibility complex, we identify two novel loci that exceed the threshold of statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, transforming growth factor beta/Tregs and JAK kinase signalling, and support the causal role of aberrant immune processes in AA.

  13. Using case-control designs for genome-wide screening for associations between genetic markers and disease susceptibility loci.

    Science.gov (United States)

    Yang, Q; Khoury, M J; Atkinson, M; Sun, F; Cheng, R; Flanders, W D

    1999-01-01

    We used a case-control design to scan the genome for any associations between genetic markers and disease susceptibility loci using the first two replicates of the Mycenaean population from the GAW11 (Problem 2) data. Using a case-control approach, we constructed a series of 2-by-3 tables for each allele of every marker on all six chromosomes. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated for all alleles of every marker. We selected the one allele for which the estimated OR had the minimum p-value to plot in the graph. Among these selected ORs, we calculated 95% CI for those that had a p-value Mycenaean population, the case-control design identified allele number 1 of marker 24 on chromosome 1 to be associated with a disease susceptibility gene, OR = 2.10 (95% CI 1.66-2.62). Our approach failed to show any other significant association between case-control status and genetic markers. Stratified analysis on the environmental risk factor (E1) provided no further evidence of significant association other than allele 1 of marker 24 on chromosome 1. These data indicate the absence of linkage disequilibrium for markers flanking loci A, B, and C. Finally, we examined the effect of gene x environment (G x E) interaction for the identified allele. Our results provided no evidence of G x E interaction, but suggested that the environmental exposure alone was a risk factor for the disease.

  14. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    DEFF Research Database (Denmark)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola

    2015-01-01

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further...

  15. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    NARCIS (Netherlands)

    N. Orr (Nick); F. Dudbridge (Frank); N. Dryden (Nicola); S. Maguire (Sarah); D. Novo (Daniela); E. Perrakis (Eleni); N. Johnson (Nichola); M. Ghoussaini (Maya); J. Hopper (John); M.C. Southey (Melissa); C. Apicella (Carmel); J. Stone (Jennifer); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); F.B.L. Hogervorst (Frans); P.A. Fasching (Peter); L. Haeberle (Lothar); A.B. Ekici (Arif); M.W. Beckmann (Matthias); L.J. Gibson (Lorna); A. Aitken; H. Warren (Helen); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); B. Burwinkel (Barbara); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Chistof); P. Guénel (Pascal); T. Truong (Thérèse); E. Cordina-Duverger (Emilie); M. Sanchez (Marie); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); P. Menéndez (Primitiva); H. Anton-Culver (Hoda); S.L. Neuhausen (Susan); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); U. Hamann (Ute); H. Brauch (Hiltrud); C. Justenhoven (Christina); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); D. Lambrechts (Diether); M. Moisse (Matthieu); O.A.M. Floris; B. Beuselinck (B.); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); P. Radice (Paolo); P. Peterlongo (Paolo); B. Peissel (Bernard); V. Pensotti (Valeria); F.J. Couch (Fergus); J.E. Olson (Janet); S. Slettedahl (Seth); C. Vachon (Celine); G.G. Giles (Graham G.); R.L. Milne (Roger L.); C.A. McLean (Catriona Ann); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); J. Simard (Jacques); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); V. Kristensen (Vessela); G.G. Alnæs (Grethe); S. Nord (Silje); A.-L. Borresen-Dale (Anne-Lise); W. Zheng (Wei); S.L. Deming-Halverson (Sandra); M. Shrubsole (Martha); J. Long (Jirong); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); S. Tchatchou (Sandrine); P. Devilee (Peter); R.A.E.M. Tollenaar (Robertus A. E. M.); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); J. Lissowska (Jolanta); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); D. Klevebring (Daniel); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); C.H.M. van Deurzen (Carolien); M. Kriege (Mieke); P. Hall (Per); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); M. Shah (Mitul); B. Perkins (Barbara); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Ashworth (Alan); A.J. Swerdlow (Anthony ); M. Jones (Michael); M. Schoemaker (Minouk); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Olswold (Curtis); S. Slager (Susan); A.E. Toland (Amanda); D. Yannoukakos (Drakoulis); K.R. Muir (K.); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); K. Matsuo (Keitaro); H. Ito (Hidema); H. Iwata (Hisato); J. Ishiguro (Junko); A.H. Wu (Anna H.); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); S.-H. Teo (Soo-Hwang); C.H. Yip (Cheng Har); P. Kang (Peter); M.K. Ikram (Kamran); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); D. Kang (Daehee); J.-Y. Choi (J.); S.K. Park (Sue); D-Y. Noh (Dong-Young); J.M. Hartman (Joost); X. Miao; W.-Y. Lim (Wei-Yen); S.C. Lee (Soo Chin); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); J-C. Yu (Jyh-Cherng); C-Y. Shen (Chen-Yang); W.J. Blot (William); Q. Cai (Qiuyin); L.B. Signorello (Lisa B.); C. Luccarini (Craig); C. Bayes (Caroline); S. Ahmed (Shahana); M. Maranian (Melanie); S. Healey (Sue); A. González-Neira (Anna); G. Pita (Guillermo); M. Rosario Alonso; N. Álvarez (Nuria); D. Herrero (Daniel); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); D. Hunter (David); S. Lindstrom (Stephen); J. Dennis (Joe); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet); D.F. Easton (Douglas); I. dos Santos Silva (Isabel); O. Fletcher (Olivia); J. Peto (Julian)

    2015-01-01

    textabstractWe recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and

  16. Genome-wide association study identifies novel breast cancer susceptibility loci

    NARCIS (Netherlands)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Le Marchand, Loic; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.

    2007-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate

  17. Comprehensive assessment of rheumatoid arthritis susceptibility loci in a large psoriatic arthritis cohort.

    LENUS (Irish Health Repository)

    Bowes, John

    2012-08-01

    A number of rheumatoid arthritis (RA) susceptibility genes have been identified in recent years. Given the overlap in phenotypic expression of synovial joint inflammation between RA and psoriatic arthritis (PsA), the authors explored whether RA susceptibility genes are also associated with PsA.

  18. Further Evidence of Subphenotype Association with Systemic Lupus Erythematosus Susceptibility Loci: A European Cases Only Study

    Czech Academy of Sciences Publication Activity Database

    Alonso-Perez, E.; Suarez-Gestal, M.; Calaza, M.; Ordi-Ros, J.; Bijl, M.; Papasteriades, Ch.; Carreira, P.; Skopouli, F.N.; Witte, T.; Marchini, M.; Migliaresi, S.; Santos, M.J.; Růžičková, Šárka; Pullmann, R.; Sebastiani, G.D.; Suarez, A.; Blanco, F.J.

    2012-01-01

    Roč. 7, č. 9 (2012), e45356 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50520701 Keywords : GENOME-WIDE ASSOCIATION * GENETIC SUSCEPTIBILITY * DISEASE SUSCEPTIBILITY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  19. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    DEFF Research Database (Denmark)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct...... signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping...... implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele...

  20. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    DEFF Research Database (Denmark)

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire

    2016-01-01

    to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B, and rs13387838 near ADAM23. Per additional risk allele, body mass index...

  1. Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14

    Science.gov (United States)

    Ruark, Elise; Seal, Sheila; McDonald, Heather; Zhang, Feng; Elliot, Anna; Lau, KingWai; Perdeaux, Elizabeth; Rapley, Elizabeth; Eeles, Rosalind; Peto, Julian; Kote-Jarai, Zsofia; Muir, Kenneth; Nsengimana, Jeremie; Shipley, Janet; Bishop, D. Timothy; Stratton, Michael R; Easton, Douglas F; Huddart, Robert A; Rahman, Nazneen; Turnbull, Clare

    2013-01-01

    Testicular germ cell tumor (TGCT) is the most common cancer in young men and is notable for its high familial risks1,2. To date, six loci associated with TGCT have been reported3-7. From GWAS analysis of 307,291 SNPs in 986 cases and 4,946 controls, we selected for follow-up 694 SNPs, which we genotyped in a further 1,064 TGCT cases and 10,082 controls from the UK. We identified SNPs at nine new loci showing association with TGCT (P<5×10−8), at 1q22, 1q24.1, 3p24.3, 4q24, 5q31.1, 8q13.3, 16q12.1, 17q22 and 21q22.3, which together account for an additional 4-6% of the familial risk of TGCT. The loci include genes plausibly related to TGCT development. PRDM14, at 8q13.3, is essential for early germ cell specification8 whilst DAZL, at 3p24.3, is required for regulation of germ cell development9. Furthermore, PITX1, at 5q31.1 regulates TERT expression, and is the third TGCT locus implicated in telomerase regulation10. PMID:23666240

  2. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

    Czech Academy of Sciences Publication Activity Database

    Wolpin, B. M.; Rizzato, C.; Kraft, P.; Kooperberg, Ch.; Petersen, G. M.; Wang, Z.; Arslan, A. A.; Beane-Freeman, L.; Bracci, P. M.; Buring, J.; Canzian, F.; Duell, E. J.; Gallinger, S.; Giles, G.G.; Goodman, G. E.; Goodman, P. J.; Jacobs, E. J.; Kamineni, A.; Klein, A. P.; Kolonel, L. N.; Kulke, M. H.; Li, D.; Malats, N.; Olson, S. H.; Risch, H. A.; Sesso, H. D.; Visvanathan, K.; White, E.; Zheng, W.; Abnet, Ch. C.; Albanes, D.; Andreotti, G.; Austin, M. A.; Barfield, R.; Basso, D.; Berndt, S. I.; Boutron-Ruault, M. Ch.; Brotzman, M.; Büchler, M. W.; Bueno-de-Mesquita, H. B.; Bugert, P.; Burdette, L.; Campa, D.; Caporaso, N. E.; Capurso, G.; Chung, Ch.; Cotterchio, M.; Costello, E.; Elena, J.; Funel, N.; Gaziano, J. M.; Giese, N. A.; Giovannucci, E. L.; Goggins, M.; Gorman, M. J.; Gross, M.; Haiman, Ch. A.; Hassan, M.; Helzlsouer, K. J.; Henderson, B. E.; Holly, E. A.; Hu, N.; Hunter, D. J.; Innocenti, F.; Jenab, M.; Kaaks, R.; Key, T. J.; Khaw, K. T.; Klein, E. A.; Kogevinas, M.; Krogh, V.; Kupcinskas, J.; Kurtz, R. C.; LaCroix, A.; Landi, M. T.; Landi, S.; Le Marchand, L.; Mambrini, A.; Mannisto, S.; Milne, R. L.; Nakamura, Y.; Oberg, A. L.; Owzar, K.; Patel, A. V.; Peeters, P. H. M.; Peters, U.; Pezzilli, R.; Piepoli, A.; Porta, M.; Real, F. X.; Riboli, E.; Rothman, N.; Scarpa, A.; Shu, X. O.; Silverman, D. T.; Souček, P.; Sund, M.; Talar-Wojnarowska, R.; Taylor, P. R.; Theodoropoulos, G. E.; Thornquist, M.; Tjonneland, A.; Tobias, G. S.; Trichopoulos, D.; Vodička, Pavel; Wactawski-Wende, J.; Wentzensen, N.; Wu, Ch.; Yu, H.; Yu, K.; Zeleniuch-Jacquotte, A.; Hoover, R.; Hartge, P.; Fuchs, Ch.; Chanock, S. J.; Stolzenberg-Solomon, R. S.; Amundadottir, L. T.

    2014-01-01

    Roč. 46, č. 9 (2014), s. 994-1000 ISSN 1061-4036 Institutional support: RVO:68378041 Keywords : disease * variants * genetic susceptibility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.352, year: 2014

  3. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  4. Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Kangmei Chen

    Full Text Available BACKGROUND: Genome-wide association studies (GWAS have identified three loci (rs17401966 in KIF1B, rs7574865 in STAT4, rs9275319 in HLA-DQ as being associated with hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC in a Chinese population, two loci (rs2596542 in MICA, rs9275572 located between HLA-DQA and HLA-DQB with hepatitis C virus-related HCC (HCV-related HCC in a Japanese population. In the present study, we sought to determine whether these SNPs are predictive for HBV-related HCC development in other Chinese population as well. METHOD AND FINDINGS: We genotyped 4 SNPs, rs2596542, rs9275572, rs17401966, rs7574865, in 506 HBV-related HCC patients and 772 chronic hepatitis B (CHB patients in Han Chinese by TaqMan methods. Odds ratio(ORand 95% confidence interval (CI were calculated by logistic regression. In our case-control study, significant association between rs9275572 and HCC were observed (P = 0.02, OR = 0.73, 95% CI = 0.56-0.95. In the further haplotype analysis between rs2596542 at 6p21.33 and rs9275572 at 6p21.3, G-A showed a protective effect on HBV-related HCC occurrence (P<0.001, OR = 0.66, 95% CI = 0.52-0.84. CONCLUSION: These findings provided convincing evidence that rs9275572 significantly associated with HBV-related HCC.

  5. Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci in a Chinese population.

    Science.gov (United States)

    Chen, Kangmei; Shi, Weimei; Xin, Zhenhui; Wang, Huifen; Zhu, Xilin; Wu, Xiaopan; Li, Zhuo; Li, Hui; Liu, Ying

    2013-01-01

    Genome-wide association studies (GWAS) have identified three loci (rs17401966 in KIF1B, rs7574865 in STAT4, rs9275319 in HLA-DQ) as being associated with hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) in a Chinese population, two loci (rs2596542 in MICA, rs9275572 located between HLA-DQA and HLA-DQB) with hepatitis C virus-related HCC (HCV-related HCC) in a Japanese population. In the present study, we sought to determine whether these SNPs are predictive for HBV-related HCC development in other Chinese population as well. We genotyped 4 SNPs, rs2596542, rs9275572, rs17401966, rs7574865, in 506 HBV-related HCC patients and 772 chronic hepatitis B (CHB) patients in Han Chinese by TaqMan methods. Odds ratio(OR)and 95% confidence interval (CI) were calculated by logistic regression. In our case-control study, significant association between rs9275572 and HCC were observed (P = 0.02, OR = 0.73, 95% CI = 0.56-0.95). In the further haplotype analysis between rs2596542 at 6p21.33 and rs9275572 at 6p21.3, G-A showed a protective effect on HBV-related HCC occurrence (P<0.001, OR = 0.66, 95% CI = 0.52-0.84). These findings provided convincing evidence that rs9275572 significantly associated with HBV-related HCC.

  6. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease

    Science.gov (United States)

    Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Harold, Denise; Naj, Adam C; Sims, Rebecca; Bellenguez, Céline; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Gerrish, Amy; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Choi, Seung-Hoan; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Ramirez, Alfredo; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Morón, Francisco J; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Green, Robert; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; St George-Hyslop, Peter; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petroula; Collinge, John; Sorbi, Sandro; Sanchez-Garcia, Florentino; Fox, Nick C; Hardy, John; Deniz Naranjo, Maria Candida; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Matthews, Fiona; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O’Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Wang, Li-san; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Jones, Lesley; Haines, Jonathan L; Holmans, Peter A; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broeckhoven, Christine; Moskvina, Valentina; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D; Amouyel, Philippe

    2013-01-01

    Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease. PMID:24162737

  7. IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci

    DEFF Research Database (Denmark)

    Sørensen, Per Soelberg

    2010-01-01

    and the same direction of effect observed in the discovery phase. Three loci exceeded genome-wide significance in the joint analysis: RGS1 (P value=3.55 x 10(-9)), IL12A (P=3.08 x 10(-8)) and MPHOSPH9/CDK2AP1 (P=3.96 x 10(-8)). The RGS1 risk allele is shared with celiac disease (CD), and the IL12A risk allele......A recent meta-analysis identified seven single-nucleotide polymorphisms (SNPs) with suggestive evidence of association with multiple sclerosis (MS). We report an analysis of these polymorphisms in a replication study that includes 8,085 cases and 7,777 controls. A meta-analysis across...... the replication collections and a joint analysis with the discovery data set were performed. The possible functional consequences of the validated susceptibility loci were explored using RNA expression data. For all of the tested SNPs, the effect observed in the replication phase involved the same allele...

  8. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors

    DEFF Research Database (Denmark)

    Rudolph, Anja; Milne, Roger L; Truong, Thérèse

    2015-01-01

    and overall BC risk was stronger for women who had had four or more pregnancies (OR = 0.85, p = 2.0 × 10(-4) ), and absent in women who had had just one (OR = 0.96, p = 0.19, pint = 6.1 × 10(-4) ). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR = 0.93, p = 2.8 × 10......(-5) ), but no association was observed in current smokers (OR = 1.07, p = 0.14, pint = 3.4 × 10(-4) ). In conclusion, recently identified BC susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies....

  9. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer

    NARCIS (Netherlands)

    Klein, Alison P.; Wolpin, Brian M.; Risch, Harvey A.; Stolzenberg-Solomon, Rachael Z.; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J.; Hoskins, Jason W.; Jermusyk, Ashley; Zhong, Jun; Chen, Fei; Albanes, Demetrius; Andreotti, Gabriella; Arslan, Alan A.; Babic, Ana; Bamlet, William R.; Beane-Freeman, Laura; Berndt, Sonja I.; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M.; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G.; Chung, Charles C.; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J.; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J. Michael; Gazouli, Maria; Giles, Graham G.; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E.; Goodman, Phyllis J.; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J.; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A.; Hoover, Robert; Hung, Rayjean J.; Jacobs, Eric J.; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A.; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H.; Kupcinskas, Juozas; Kurtz, Robert J.; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T.; Lee, I.-Min; Lemarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L.; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E.; Neoptolemos, John P.; Oberg, Ann L.; Olson, Sara H.; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V.; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X.; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D.; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P.; Soucek, Pavel; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D.; Tobias, Geoffrey S.; van den Eeden, Stephen K.; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Obazee, Ofure; Petersen, Gloria M.; Amundadottir, Laufey T.

    2018-01-01

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic

  10. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    NARCIS (Netherlands)

    Klein, Alison P; Wolpin, Brian M; Risch, Harvey A; Stolzenberg-Solomon, Rachael Z; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J; Hoskins, Jason W; Jermusyk, Ashley; Zhong, Jun; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D; Tobias, Geoffrey S; Van Den Eeden, Stephen K; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Chen, Fei; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Albanes, Demetrius; Obazee, Ofure; Petersen, Gloria M; Amundadottir, Laufey T; Andreotti, Gabriella; Arslan, Alan A; Babic, Ana; Bamlet, William R; Beane-Freeman, Laura; Berndt, Sonja I; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G; Chung, Charles C; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J Michael; Gazouli, Maria; Giles, Graham G; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E; Goodman, Phyllis J; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A; Hoover, Robert; Hung, Rayjean J; Jacobs, Eric J; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H; Kupcinskas, Juozas; Kurtz, Robert J; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T; Lee, I-Min; LeMarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E; Neoptolemos, John P; Oberg, Ann L; Olson, Sara H; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P; Soucek, Pavel

    2018-01-01

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic

  11. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

    DEFF Research Database (Denmark)

    Eeles, Rosalind A; Olama, Ali Amin Al; Benlloch, Sara

    2013-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the internationa...

  12. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    DEFF Research Database (Denmark)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra

    2014-01-01

    recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714......,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three...... in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10(-07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8...

  13. Bayesian variable selection for post-analytic interrogation of susceptibility loci.

    Science.gov (United States)

    Chen, Siying; Nunez, Sara; Reilly, Muredach P; Foulkes, Andrea S

    2017-06-01

    Understanding the complex interplay among protein coding genes and regulatory elements requires rigorous interrogation with analytic tools designed for discerning the relative contributions of overlapping genomic regions. To this aim, we offer a novel application of Bayesian variable selection (BVS) for classifying genomic class level associations using existing large meta-analysis summary level resources. This approach is applied using the expectation maximization variable selection (EMVS) algorithm to typed and imputed SNPs across 502 protein coding genes (PCGs) and 220 long intergenic non-coding RNAs (lncRNAs) that overlap 45 known loci for coronary artery disease (CAD) using publicly available Global Lipids Gentics Consortium (GLGC) (Teslovich et al., 2010; Willer et al., 2013) meta-analysis summary statistics for low-density lipoprotein cholesterol (LDL-C). The analysis reveals 33 PCGs and three lncRNAs across 11 loci with >50% posterior probabilities for inclusion in an additive model of association. The findings are consistent with previous reports, while providing some new insight into the architecture of LDL-cholesterol to be investigated further. As genomic taxonomies continue to evolve, additional classes such as enhancer elements and splicing regions, can easily be layered into the proposed analysis framework. Moreover, application of this approach to alternative publicly available meta-analysis resources, or more generally as a post-analytic strategy to further interrogate regions that are identified through single point analysis, is straightforward. All coding examples are implemented in R version 3.2.1 and provided as supplemental material. © 2016, The International Biometric Society.

  14. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    Science.gov (United States)

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  15. Investigation of Caucasian rheumatoid arthritis susceptibility loci in African patients with the same disease

    Science.gov (United States)

    2012-01-01

    Introduction The largest genetic risk to develop rheumatoid arthritis (RA) arises from a group of alleles of the HLA DRB1 locus ('shared epitope', SE). Over 30 non-HLA single nucleotide polymorphisms (SNPs) predisposing to disease have been identified in Caucasians, but they have never been investigated in West/Central Africa. We previously reported a lower prevalence of the SE in RA patients in Cameroon compared to European patients and aimed in the present study to investigate the contribution of Caucasian non-HLA RA SNPs to disease susceptibility in Black Africans. Methods RA cases and controls from Cameroon were genotyped for Caucasian RA susceptibility SNPs using Sequenom MassArray technology. Genotype data were also available for 5024 UK cases and 4281 UK controls and for 119 Yoruba individuals in Ibadan, Nigeria (YRI, HapMap). A Caucasian aggregate genetic-risk score (GRS) was calculated as the sum of the weighted risk-allele counts. Results After genotyping quality control procedures were performed, data on 28 Caucasian non-HLA susceptibility SNPs were available in 43 Cameroonian RA cases and 44 controls. The minor allele frequencies (MAF) were tightly correlated between Cameroonian controls and YRI individuals (correlation coefficient 93.8%, p = 1.7E-13), and they were pooled together. There was no correlation between MAF of UK and African controls; 13 markers differed by more than 20%. The MAF for markers at PTPN22, IL2RA, FCGR2A and IL2/IL21 was below 2% in Africans. The GRS showed a strong association with RA in the UK. However, the GRS did not predict RA in Africans (OR = 0.71, 95% CI 0.29 - 1.74, p = 0.456). Random sampling from the UK cohort showed that this difference in association is unlikely to be explained by small sample size or chance, but is statistically significant with p<0.001. Conclusions The MAFs of non-HLA Caucasian RA susceptibility SNPs are different between Caucasians and Africans, and several polymorphisms are barely detectable in

  16. Common breast cancer susceptibility loci are associated with triple negative breast cancer

    Science.gov (United States)

    Stevens, Kristen N.; Vachon, Celine M.; Lee, Adam M.; Slager, Susan; Lesnick, Timothy; Olswold, Curtis; Fasching, Peter A.; Miron, Penelope; Eccles, Diana; Carpenter, Jane E.; Godwin, Andrew K.; Ambrosone, Christine; Winqvist, Robert; Schmidt, Marjanka K.; Cox, Angela; Cross, Simon S.; Sawyer, Elinor; Hartmann, Arndt; Beckmann, Matthias W.; Schulz-Wendtland, Rüdiger; Ekici, Arif B.; Tapper, William J; Gerty, Susan M; Durcan, Lorraine; Graham, Nikki; Hein, Rebecca; Nickels, Stephan; Flesch-Janys, Dieter; Heinz, Judith; Sinn, Hans-Peter; Konstantopoulou, Irene; Fostira, Florentia; Pectasides, Dimitrios; Dimopoulos, Athanasios M.; Fountzilas, George; Clarke, Christine L.; Balleine, Rosemary; Olson, Janet E.; Fredericksen, Zachary; Diasio, Robert B.; Pathak, Harsh; Ross, Eric; Weaver, JoEllen; Rüdiger, Thomas; Försti, Asta; Dünnebier, Thomas; Ademuyiwa, Foluso; Kulkarni, Swati; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Ko, Yon-Dschun; Van Limbergen, Erik; Janssen, Hilde; Peto, Julian; Fletcher, Olivia; Giles, Graham G.; Baglietto, Laura; Verhoef, Senno; Tomlinson, Ian; Kosma, Veli-Matti; Beesley, Jonathan; Greco, Dario; Blomqvist, Carl; Irwanto, Astrid; Liu, Jianjun; Blows, Fiona M.; Dawson, Sarah-Jane; Margolin, Sara; Mannermaa, Arto; Martin, Nicholas G.; Montgomery, Grant W; Lambrechts, Diether; dos Santos Silva, Isabel; Severi, Gianluca; Hamann, Ute; Pharoah, Paul; Easton, Douglas F.; Chang-Claude, Jenny; Yannoukakos, Drakoulis; Nevanlinna, Heli; Wang, Xianshu; Couch, Fergus J.

    2012-01-01

    Triple negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiological factors which promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome wide association studies (GWAS) display heterogeneity of effect among breast cancer subtypes as defined by estrogen receptor (ER) and progesterone receptor (PR) status. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple negative breast cancer and 4,978 healthy controls. We identified six single nucleotide polymorphisms (SNPs) significantly associated with risk of triple negative breast cancer, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.11) and rs8100241 (19p13.11). Together, our results provide convincing evidence of genetic susceptibility for triple negative breast cancer. PMID:21844186

  17. Mapping of murine radiation-induced acute myeloid leukaemia susceptibility loci

    International Nuclear Information System (INIS)

    Darakhshan, F.

    2001-01-01

    Studies on radiation-induced AML have shown characteristic phenotypic variation in susceptibility amongst inbred mouse strains, suggesting the involvement of genetic factors in determining the development of AML post-irradiation exposure. The main objective of the present study therefore was to identify and map markers in linkage disequilibrium with gene variants associated with influencing susceptibility to radiation induced AML in mice. Given Chr 2 abnormalities are characteristic of AML in mice, this feature was exploited in an effort to overcome the long latency for AML development. Analysis of Chr 2 aberrations at 24 and 48 h following irradiation established a positive correlation between Chr 2 radiosensitivity and radiation-AML susceptibility thus validating the choice of substitute assay. The analysis also resulted in the identification of a further trait, additional to Chr 2 radiosensitivity, termed overall chromosome radiosensitivity. Genetic mapping of Chr 2 radiosensitivity using public domain microsatellite database information resulted in the definition of cluster regions on 7 different chromosomes. Further genotyping reduced the candidate regions to 3 specific regions of interest. A test of allelic association could not ascertain a conclusive link between markers at these regions and the Chr 2 radiosensitivity/radiation-AML susceptibility phenotype. However, a region on Chr 4 around D4Mit221 appears to be most strongly associated. Similar studies identified three chromosomal regions of interest (on Chrs 4, 8 and 16) associated with overall chromosome radiosensitivity trait. An independent mapping strategy using F3 RCS confirmed the likely involvement of two of the candidate Chr 2 radiosensitivity regions identified by the inbred analysis including that on Chr 4 and also highlighted phenotypic heterogeneity amongst resistant RC strains, suggesting the influence of multiple alleles in specific phenotypes. RFLP analysis of candidate genes, localised on

  18. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis.

    Science.gov (United States)

    Peters, Ulrike; Jiao, Shuo; Schumacher, Fredrick R; Hutter, Carolyn M; Aragaki, Aaron K; Baron, John A; Berndt, Sonja I; Bézieau, Stéphane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J; Campbell, Peter T; Carlson, Christopher S; Casey, Graham; Chan, Andrew T; Chang-Claude, Jenny; Chanock, Stephen J; Chen, Lin S; Coetzee, Gerhard A; Coetzee, Simon G; Conti, David V; Curtis, Keith R; Duggan, David; Edwards, Todd; Fuchs, Charles S; Gallinger, Steven; Giovannucci, Edward L; Gogarten, Stephanie M; Gruber, Stephen B; Haile, Robert W; Harrison, Tabitha A; Hayes, Richard B; Henderson, Brian E; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Hunter, David J; Jackson, Rebecca D; Jee, Sun Ha; Jenkins, Mark A; Jia, Wei-Hua; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Lacroix, Andrea Z; Laurie, Cathy C; Laurie, Cecelia A; Le Marchand, Loic; Lemire, Mathieu; Levine, David; Lindor, Noralane M; Liu, Yan; Ma, Jing; Makar, Karen W; Matsuo, Keitaro; Newcomb, Polly A; Potter, John D; Prentice, Ross L; Qu, Conghui; Rohan, Thomas; Rosse, Stephanie A; Schoen, Robert E; Seminara, Daniela; Shrubsole, Martha; Shu, Xiao-Ou; Slattery, Martha L; Taverna, Darin; Thibodeau, Stephen N; Ulrich, Cornelia M; White, Emily; Xiang, Yongbing; Zanke, Brent W; Zeng, Yi-Xin; Zhang, Ben; Zheng, Wei; Hsu, Li

    2013-04-01

    Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10(-8): an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10(-8)). We also found evidence for 3 additional loci with P values less than 5.0 × 10(-7): a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10(-8)), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10(-8)), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10(-7)). In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products in cancer pathogenesis warrant further

  19. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    NARCIS (Netherlands)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindström, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomäki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Françoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I.-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Müller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; dos Santos Silva, Isabel; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, Joellen; Schulz-Wendtland, Rüdiger; Wilkens, Lynne R.; van den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of

  20. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross.

    Directory of Open Access Journals (Sweden)

    Lisa E Gralinski

    2015-10-01

    Full Text Available New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.

  1. Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK in disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Chia-Jung Chang

    Full Text Available The BLK and CD40 loci have been associated with Kawasaki disease (KD in two genome-wide association studies (GWAS conducted in a Taiwanese population of Han Chinese ancestry (Taiwanese and in Japanese cohorts. Here we build on these findings with replication studies of the BLK and CD40 loci in populations of Korean and European descent. The BLK region was significantly associated with KD susceptibility in both populations. Within the BLK gene the rs2736340-located linkage disequilibrium (LD comprising the promoter and first intron was strongly associated with KD, with the combined results of Asian studies including Taiwanese, Japanese, and Korean populations (2,539 KD patients and 7,021 controls providing very compelling evidence of association (rs2736340, OR = 1.498, 1.354-1.657; P = 4.74×10(-31. We determined the percentage of B cells present in the peripheral blood mononuclear cell (PBMC population and the expression of BLK in the peripheral blood leukocytes (leukocytes of KD patients during the acute and convalescent stages. The percentage of B cells in the PBMC population and the expression of BLK in leukocytes were induced in patients in the acute stage of KD. In B cell lines derived from KD patients, and in purified B cells from KD patients obtained during the acute stage, those with the risk allele of rs2736340 expressed significantly lower levels of BLK. These results suggest that peripheral B cells play a pathogenic role during the acute stage of KD. Decreased BLK expression in peripheral blood B cells may alter B cell function and predispose individuals to KD. These associative data suggest a role for B cells during acute KD. Understanding the functional implications may facilitate the development of B cell-mediated therapy for KD.

  2. Fine mapping of breast cancer genome-wide association studies loci in women of African ancestry identifies novel susceptibility markers.

    Science.gov (United States)

    Zheng, Yonglan; Ogundiran, Temidayo O; Falusi, Adeyinka G; Nathanson, Katherine L; John, Esther M; Hennis, Anselm J M; Ambs, Stefan; Domchek, Susan M; Rebbeck, Timothy R; Simon, Michael S; Nemesure, Barbara; Wu, Suh-Yuh; Leske, Maria Cristina; Odetunde, Abayomi; Niu, Qun; Zhang, Jing; Afolabi, Chibuzor; Gamazon, Eric R; Cox, Nancy J; Olopade, Christopher O; Olopade, Olufunmilayo I; Huo, Dezheng

    2013-07-01

    Numerous single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified by genome-wide association studies (GWAS). However, these SNPs were primarily discovered and validated in women of European and Asian ancestry. Because linkage disequilibrium is ancestry-dependent and heterogeneous among racial/ethnic populations, we evaluated common genetic variants at 22 GWAS-identified breast cancer susceptibility loci in a pooled sample of 1502 breast cancer cases and 1378 controls of African ancestry. None of the 22 GWAS index SNPs could be validated, challenging the direct generalizability of breast cancer risk variants identified in Caucasians or Asians to other populations. Novel breast cancer risk variants for women of African ancestry were identified in regions including 5p12 (odds ratio [OR] = 1.40, 95% confidence interval [CI] = 1.11-1.76; P = 0.004), 5q11.2 (OR = 1.22, 95% CI = 1.09-1.36; P = 0.00053) and 10p15.1 (OR = 1.22, 95% CI = 1.08-1.38; P = 0.0015). We also found positive association signals in three regions (6q25.1, 10q26.13 and 16q12.1-q12.2) previously confirmed by fine mapping in women of African ancestry. In addition, polygenic model indicated that eight best markers in this study, compared with 22 GWAS-identified SNPs, could better predict breast cancer risk in women of African ancestry (per-allele OR = 1.21, 95% CI = 1.16-1.27; P = 9.7 × 10(-16)). Our results demonstrate that fine mapping is a powerful approach to better characterize the breast cancer risk alleles in diverse populations. Future studies and new GWAS in women of African ancestry hold promise to discover additional variants for breast cancer susceptibility with clinical implications throughout the African diaspora.

  3. Genomewide Linkage Screen for Waldenström Macroglobulinemia Susceptibility Loci in High-Risk Families

    Science.gov (United States)

    McMaster, Mary L.; Goldin, Lynn R.; Bai, Yan; Ter-Minassian, Monica; Boehringer, Stefan; Giambarresi, Therese R.; Vasquez, Linda G.; Tucker, Margaret A.

    2006-01-01

    Waldenström macroglobulinemia (WM), a distinctive subtype of non-Hodgkin lymphoma that features overproduction of immunoglobulin M (IgM), clearly has a familial component; however, no susceptibility genes have yet been identified. We performed a genomewide linkage analysis in 11 high-risk families with WM that were informative for linkage, for a total of 122 individuals with DNA samples, including 34 patients with WM and 10 patients with IgM monoclonal gammopathy of undetermined significance (IgM MGUS). We genotyped 1,058 microsatellite markers (average spacing 3.5 cM), performed both nonparametric and parametric linkage analysis, and computed both two-point and multipoint linkage statistics. The strongest evidence of linkage was found on chromosomes 1q and 4q when patients with WM and with IgM MGUS were both considered affected; nonparametric linkage scores were 2.5 (P=.0089) and 3.1 (P=.004), respectively. Other locations suggestive of linkage were found on chromosomes 3 and 6. Results of two-locus linkage analysis were consistent with independent effects. The findings from this first linkage analysis of families at high risk for WM represent important progress toward identifying gene(s) that modulate susceptibility to WM and toward understanding its complex etiology. PMID:16960805

  4. Identification of genomic loci associated with Rhodococcus equi susceptibility in foals.

    Directory of Open Access Journals (Sweden)

    Cole M McQueen

    Full Text Available Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined. Here, we performed independent single nucleotide polymorphism (SNP- and copy number variant (CNV-based genome-wide association studies to identify genomic loci associated with R. equi pneumonia in foals. Foals at a large Quarter Horse breeding farm were categorized into 3 groups: 1 foals with R. equi pneumonia (clinical group [N = 43]; 2 foals with ultrasonographic evidence of pulmonary lesions that never developed clinical signs of pneumonia (subclinical group [N = 156]; and, 3 foals without clinical signs or ultrasonographic evidence of pneumonia (unaffected group [N = 49]. From each group, 24 foals were randomly selected and used for independent SNP- and CNV-based genome-wide association studies (GWAS. The SNP-based GWAS identified a region on chromosome 26 that had moderate evidence of association with R. equi pneumonia when comparing clinical and subclinical foals. A joint analysis including all study foals revealed a 3- to 4-fold increase in odds of disease for a homozygous SNP within the associated region when comparing the clinical group with either of the other 2 groups of foals or their combination. The region contains the transient receptor potential cation channel, subfamily M, member 2 (TRPM2 gene, which is involved in neutrophil function. No associations were identified in the CNV-based GWAS. Collectively, these data identify a region on chromosome 26 associated with R. equi pneumonia in foals, providing evidence that genetic factors may indeed contribute to this important disease of foals.

  5. Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies.

    Science.gov (United States)

    Di Stefano, Anna Luisa; Enciso-Mora, Victor; Marie, Yannick; Desestret, Virginie; Labussière, Marianne; Boisselier, Blandine; Mokhtari, Karima; Idbaih, Ahmed; Hoang-Xuan, Khe; Delattre, Jean-Yves; Houlston, Richard S; Sanson, Marc

    2013-05-01

    Genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) at 7 loci influencing glioma risk: rs2736100 (TERT), rs11979158 and rs2252586 (EGFR), rs4295627 (CCDC26), rs4977756 (CDKN2A/CDKN2B), rs498872 (PHLDB1), and rs6010620 (RTEL1). We studied the relationship among these 7 glioma-risk SNPs and characteristics of tumors from 1374 patients, including grade, IDH (ie IDH1 or IDH2) mutation, EGFR amplification, CDKN2A-p16-INK4a homozygous deletion, 9p and 10q loss, and 1p-19q codeletion. rs2736100 (TERT) and rs6010620 (RTEL1) risk alleles were associated with high-grade disease, EGFR amplification, CDKN2A-p16-INK4a homozygous deletion, and 9p and 10q deletion; rs4295627 (CCDC26) and rs498872 (PHLDB1) were associated with low-grade disease, IDH mutation, and 1p-19q codeletion. In contrast, rs4977756 (CDKN2A/B), rs11979158 (EGFR), and to a lesser extent, rs2252586 (EGFR) risk alleles were independent of tumor grade and genetic profile. Adjusting for tumor grade showed a significant association between rs2736100 and IDH status (P = .01), 10q loss (P = .02); rs4295627 and 1p-19q codeletion (P = .04), rs498872 and IDH (P = .02), 9p loss (P = .04), and 10q loss (P = .02). Case-control analyses stratified into 4 molecular classes (defined by 1p-19q status, IDH mutation, and EGFR amplification) showed an association of rs4295627 and rs498872 with IDH-mutated gliomas (P RTEL1, CCDC26, and PHLDB1 variants were associated with different genetic profiles that annotate distinct molecular pathways. Our findings provide further insight into the biological basis of glioma etiology.

  6. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics.

    Directory of Open Access Journals (Sweden)

    Montserrat Garcia-Closas

    2008-04-01

    Full Text Available A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs in five loci (fibroblast growth receptor 2 (FGFR2, trinucleotide repeat containing 9 (TNRC9, mitogen-activated protein kinase 3 K1 (MAP3K1, 8q24, and lymphocyte-specific protein 1 (LSP1 associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI = 1.31 (1.27-1.36 than ER-negative (1.08 (1.03-1.14 disease (P for heterogeneity = 10(-13. This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5, 10(-8, 0.013, respectively. The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4, respectively. The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312 showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21. rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97. The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding

  7. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    Science.gov (United States)

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor

  8. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    Science.gov (United States)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  9. New susceptibility loci associated with kidney disease in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Niina Sandholm

    2012-09-01

    Full Text Available Diabetic kidney disease, or diabetic nephropathy (DN, is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D. Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 × 10(-8 and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 × 10(-9. Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1 pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7, a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.

  10. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia

    Science.gov (United States)

    Ellinghaus, E; Stanulla, M; Richter, G; Ellinghaus, D; te Kronnie, G; Cario, G; Cazzaniga, G; Horstmann, M; Panzer Grümayer, R; Cavé, H; Trka, J; Cinek, O; Teigler-Schlegel, A; ElSharawy, A; Häsler, R; Nebel, A; Meissner, B; Bartram, T; Lescai, F; Franceschi, C; Giordan, M; Nürnberg, P; Heinzow, B; Zimmermann, M; Schreiber, S; Schrappe, M; Franke, A

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) — the most common chromosomal translocation observed in childhood ALL — which leads to an ETV6–RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, PCMH=8.94 × 10−9, OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10−11, OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10−9, OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10−7, OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6–RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis. PMID:22076464

  11. [Linkage analysis of susceptibility loci in 2 target chromosomes in pedigrees with paranoid schizophrenia and undifferentiated schizophrenia].

    Science.gov (United States)

    Zeng, Li-ping; Hu, Zheng-mao; Mu, Li-li; Mei, Gui-sen; Lu, Xiu-ling; Zheng, Yong-jun; Li, Pei-jian; Zhang, Ying-xue; Pan, Qian; Long, Zhi-gao; Dai, He-ping; Zhang, Zhuo-hua; Xia, Jia-hui; Zhao, Jing-ping; Xia, Kun

    2011-06-01

    To investigate the relationship of susceptibility loci in chromosomes 1q21-25 and 6p21-25 and schizophrenia subtypes in Chinese population. A genomic scan and parametric and non-parametric analyses were performed on 242 individuals from 36 schizophrenia pedigrees, including 19 paranoid schizophrenia and 17 undifferentiated schizophrenia pedigrees, from Henan province of China using 5 microsatellite markers in the chromosome region 1q21-25 and 8 microsatellite markers in the chromosome region 6p21-25, which were the candidates of previous studies. All affected subjects were diagnosed and typed according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR; American Psychiatric Association, 2000). All subjects signed informed consent. In chromosome 1, parametric analysis under the dominant inheritance mode of all 36 pedigrees showed that the maximum multi-point heterogeneity Log of odds score method (HLOD) score was 1.33 (α = 0.38). The non-parametric analysis and the single point and multi-point nonparametric linkage (NPL) scores suggested linkage at D1S484, D1S2878, and D1S196. In the 19 paranoid schizophrenias pedigrees, linkage was not observed for any of the 5 markers. In the 17 undifferentiated schizophrenia pedigrees, the multi-point NPL score was 1.60 (P= 0.0367) at D1S484. The single point NPL score was 1.95(P= 0.0145) and the multi-point NPL score was 2.39 (P= 0.0041) at D1S2878. Additionally, the multi-point NPL score was 1.74 (P= 0.0255) at D1S196. These same three loci showed suggestive linkage during the integrative analysis of all 36 pedigrees. In chromosome 6, parametric linkage analysis under the dominant and recessive inheritance and the non-parametric linkage analysis of all 36 pedigrees and the 17 undifferentiated schizophrenia pedigrees, linkage was not observed for any of the 8 markers. In the 19 paranoid schizophrenias pedigrees, parametric analysis showed that under recessive

  12. Murine Lupus Susceptibility Locus Sle2 Activates DNA-Reactive B Cells through Two Sub-Loci with Distinct Phenotypes

    Science.gov (United States)

    Zeumer, Leilani; Sang, Allison; Niu, Haitao; Morel, Laurence

    2010-01-01

    The NZM2410-derived Sle2 lupus susceptibility locus induces an abnormal B cell differentiation which most prominently leads to the expansion of autoreactive B1a cells. We have mapped the expansion of B1a cells to three Sle2 sub-loci, Sle2a, Sle2b, and Sle2c. Sle2 also enhances the breach of B cell tolerance to nuclear antigens in the 56R anti-DNA immunoglobulin transgenic (Tg) model. This study used the Sle2 sub-congenic strains to map the activation of 56R Tg B cells. Sle2c strongly sustained the breach of tolerance and the activation of anti-DNA B cells. The production of Tg-encoded anti-DNA antibodies was more modest in Sle2a expressing mice, but Sle2a was responsible for the recruitment for Tg B cells to the marginal zone, a phenotype that has been found for 56R Tg B cells in mice expressing the whole Sle2 interval. In addition, Sle2a promoted the production of endogenously encoded anti-DNA antibodies. Overall, this study showed that at least two Sle2 genes are involved in the activation of anti-DNA B cells, and excluded more than two-thirds of the Sle2 interval from contributing to this phenotype. This constitutes an important step toward the identification of novel genes that play a critical role in B cell tolerance. PMID:21270826

  13. Genome-wide Meta-analyses of Breast, Ovarian and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by At Least Two Cancer Types

    Science.gov (United States)

    Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether

    2016-01-01

    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P cancer meta-analysis. PMID:27432226

  14. Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility

    NARCIS (Netherlands)

    Chang, Chia-Jung; Kuo, Ho-Chang; Chang, Jeng-Sheng; Lee, Jong-Keuk; Tsai, Fuu-Jen; Khor, Chiea Chuen; Chang, Li-Ching; Chen, Shih-Ping; Ko, Tai-Ming; Liu, Yi-Min; Chen, Ying-Ju; Hong, Young Mi; Jang, Gi Young; Hibberd, Martin L.; Kuijpers, Taco; Burgner, David; Levin, Michael; Burns, Jane C.; Davila, Sonia; Chen, Yuan-Tsong; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Lee, Yi-Ching; Liang, Chi-Di; Hwang, Kao-Pin; Chang, Luan-Yin; Huang, Li-Min; Chen, Ming-Ren; Chi, Hsin; Huang, Fu-Yuan; Chiu, Nan-Chang; Lee, Meng-Luen; Huang, Yhu-Chering; Hwang, Betau; Lee, Pi-Chang; Yoo, Jeong-Jin; Park, In-Sook; Hong, Soo-Jong; Kim, Kwi-Joo; Kim, Jae-Jung; Sohn, Saejung; Young Jang, Gi; Ha, Kee-Soo; Nam, Hyo-Kyoung; Byeon, Jung-Hye; Yun, Sin Weon; Han, Myung Ki; Kuipers, Irene M.; Ottenkamp, Jaap J.; Biezeveld, Maarten

    2013-01-01

    The BLK and CD40 loci have been associated with Kawasaki disease (KD) in two genome-wide association studies (GWAS) conducted in a Taiwanese population of Han Chinese ancestry (Taiwanese) and in Japanese cohorts. Here we build on these findings with replication studies of the BLK and CD40 loci in

  15. Susceptibility Genes in Thyroid Autoimmunity

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ban

    2005-01-01

    Full Text Available The autoimmune thyroid diseases (AITD are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g. dietary iodine is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions that are linked with AITD, and in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD and Hashimoto's thyroiditis (HT and some are common to both the diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g. HLA, CTLA-4 and thyroid specific genes (e.g. TSHR, Tg. Most likely, these loci interact and their interactions may influence disease phenotype and severity.

  16. Identification of novel susceptibility Loci for kawasaki disease in a Han chinese population by a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Fuu-Jen Tsai

    Full Text Available Kawasaki disease (KD is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit gene: rs1873668 (p = 9.52×10⁻⁵, rs4243399 (p = 9.93×10⁻⁵, and rs16849083 (p = 9.93×10⁻⁵. We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1 gene (rs149481, p(best = 4.61×10⁻⁵. Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667 clustered in an area containing immunoglobulin heavy chain variable regions genes, with p(best-values between 2.08×10⁻⁵ and 8.93×10⁻⁶, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD.

  17. Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci of STAT4 and HLA-DQ in a Korean population.

    Science.gov (United States)

    Kim, Lyoung Hyo; Cheong, Hyun Sub; Namgoong, Suhg; Kim, Ji On; Kim, Jeong-Hyun; Park, Byung Lae; Cho, Sung Won; Park, Neung Hwa; Cheong, Jae Youn; Koh, InSong; Shin, Hyoung Doo; Kim, Yoon-Jun

    2015-07-01

    A recent genome-wide association study (GWAS) for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) identified two loci (rs7574865 in STAT4 and rs9275319 in HLA-DQ) in a Chinese population. We attempted to replicate the associations between the two SNP loci and the risk of HCC in a Korean population. The rs7574865 in STAT4 and rs9275319 in HLA-DQ were genotyped in a total of 3838 Korean subjects composed of 287 HBV-related hepatocellular carcinoma patients, 671 chronic hepatitis B virus (CHB) patients, and 2880 population controls using TaqMan genotyping assay. Gene expression was measured by microarray. A logistic regression analysis revealed that rs7574865 in STAT4 and rs9275319 in HLA-DQ were associated with the risk of CHB (OR = 1.25, P = 0.0002 and OR = 1.57, P= 1.44 × 10(-10), respectively). However, these loci were no association with the risk of HBV-related HCC among CHB patients. In the gene expression analyses, although no significant differences in mRNA expression of nearby genes according to genotypes were detected, a significantly decreased mRNA expression in HCC subjects was observed in STAT4, HLA-DQA1, and HLA-DQB1. Although the genetic effects of two HCC susceptibility loci were not replicated, the two loci were found to exert susceptibility effects on the risk of CHB in a Korean population. In addition, the decreased mRNA expression of STAT4, HLA-DQA1, and HLA-DQB1 in HCC tissue might provide a clue to understanding their role in the progression to HCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration

    Science.gov (United States)

    Chen, Wei; Stambolian, Dwight; Edwards, Albert O.; Branham, Kari E.; Othman, Mohammad; Jakobsdottir, Johanna; Tosakulwong, Nirubol; Pericak-Vance, Margaret A.; Campochiaro, Peter A.; Klein, Michael L.; Tan, Perciliz L.; Conley, Yvette P.; Kanda, Atsuhiro; Kopplin, Laura; Li, Yanming; Augustaitis, Katherine J.; Karoukis, Athanasios J.; Scott, William K.; Agarwal, Anita; Kovach, Jaclyn L.; Schwartz, Stephen G.; Postel, Eric A.; Brooks, Matthew; Baratz, Keith H.; Brown, William L.; Brucker, Alexander J.; Orlin, Anton; Brown, Gary; Ho, Allen; Regillo, Carl; Donoso, Larry; Tian, Lifeng; Kaderli, Brian; Hadley, Dexter; Hagstrom, Stephanie A.; Peachey, Neal S.; Klein, Ronald; Klein, Barbara E. K.; Gotoh, Norimoto; Yamashiro, Kenji; Ferris, Frederick; Fagerness, Jesen A.; Reynolds, Robyn; Farrer, Lindsay A.; Kim, Ivana K.; Miller, Joan W.; Cortón, Marta; Carracedo, Angel; Sanchez-Salorio, Manuel; Pugh, Elizabeth W.; Doheny, Kimberly F.; Brion, Maria; DeAngelis, Margaret M.; Weeks, Daniel E.; Zack, Donald J.; Chew, Emily Y.; Heckenlively, John R.; Yoshimura, Nagahisa; Iyengar, Sudha K.; Francis, Peter J.; Katsanis, Nicholas; Seddon, Johanna M.; Haines, Jonathan L.; Gorin, Michael B.; Abecasis, Gonçalo R.; Swaroop, Anand; Johnson, Robert N.; Ai, Everett; McDonald, H. Richard; Stolarczuk, Margaret; Pavan, Peter Reed; Billiris, Karina K.; Iyer, Mohan; Menosky, Matthew M.; Pautler, Scott E.; Millard, Sharon M.; Hubbard, Baker; Aaberg, Thomas; DuBois, Lindy; Lyon, Alice; Anderson-Nelson, Susan; Jampol, Lee M.; Weinberg, David V.; Muñana, Annie; Rozenbajgier, Zuzanna; Orth, David; Cohen, Jack; MacCumber, Matthew; MacCumber, Matthew; Figliulo, Celeste; Porcz, Liz; Folk, James; Boldt, H. Culver; Russell, Stephen R.; Ivins, Rachel; Hinz, Connie J.; Barr, Charles C.; Bloom, Steve; Jaegers, Ken; Kritchman, Brian; Whittington, Greg; Heier, Jeffrey; Frederick, Albert R.; Morley, Michael G.; Topping, Trexler; Davis, Heather L.; Bressler, Susan B.; Bressler, Neil M.; Doll, Warren; Trese, Michael; Capone, Antonio; Garretson, Bruce R.; Hassan, Tarek S.; Ruby, Alan J.; Osentoski, Tammy; McCannel, Colin A.; Ruszczyk, Margaret J.; Grand, Gilbert; Blinder, Kevin; Holekamp, Nancy M.; Joseph, Daniel P.; Shah, Gaurav; Nobel, Ginny S.; Antoszyk, Andrew N.; Browning, David J.; Stallings, Alison H; Singerman, Lawrence J.; Miller, David; Novak, Michael; Pendergast, Scott; Zegarra, Hernando; Schura, Stephanie A.; Smith-Brewer, Sheila; Davidorf, Frederick H.; Chambers, Robert; Chorich, Louis; Salerno, Jill; Dreyer, Richard F.; Ma, Colin; Kopfer, Marcia R.; Klein, Michael L.; Wilson, David J.; Nolte, Susan K.; Grunwald, Juan E.; Brucker, Alexander J.; Dunaief, Josh; Fine, Stuart L.; Maguire, Albert M.; Stoltz, Robert A.; McRay, Monique N.; Fish, Gary Edd; Anand, Rajiv; Spencer, Rand; Arnwine, Jean; Chandra, Suresh R.; Altaweel, Michael; Blodi, Barbara; Gottlieb, Justin; Ip, Michael; Nork, T. Michael; Perry-Raymond, Jennie; Fine, Stuart L.; Maguire, Maureen G.; Brightwell-Arnold, Mary; Harkins, Sandra; Peskin, Ellen; Ying, Gui-Shuang; Kurinij, Natalie

    2010-01-01

    We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies. PMID:20385819

  19. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies.

    Science.gov (United States)

    Leu, Costin; de Kovel, Carolien G F; Zara, Federico; Striano, Pasquale; Pezzella, Marianna; Robbiano, Angela; Bianchi, Amedeo; Bisulli, Francesca; Coppola, Antonietta; Giallonardo, Anna Teresa; Beccaria, Francesca; Trenité, Dorothée Kasteleijn-Nolst; Lindhout, Dick; Gaus, Verena; Schmitz, Bettina; Janz, Dieter; Weber, Yvonne G; Becker, Felicitas; Lerche, Holger; Kleefuss-Lie, Ailing A; Hallman, Kerstin; Kunz, Wolfram S; Elger, Christian E; Muhle, Hiltrud; Stephani, Ulrich; Møller, Rikke S; Hjalgrim, Helle; Mullen, Saul; Scheffer, Ingrid E; Berkovic, Samuel F; Everett, Kate V; Gardiner, Mark R; Marini, Carla; Guerrini, Renzo; Lehesjoki, Anna-Elina; Siren, Auli; Nabbout, Rima; Baulac, Stephanie; Leguern, Eric; Serratosa, Jose M; Rosenow, Felix; Feucht, Martha; Unterberger, Iris; Covanis, Athanasios; Suls, Arvid; Weckhuysen, Sarah; Kaneva, Radka; Caglayan, Hande; Turkdogan, Dilsad; Baykan, Betul; Bebek, Nerses; Ozbek, Ugur; Hempelmann, Anne; Schulz, Herbert; Rüschendorf, Franz; Trucks, Holger; Nürnberg, Peter; Avanzini, Giuliano; Koeleman, Bobby P C; Sander, Thomas

    2012-02-01

    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31

  20. The combination of two Sle2 lupus-susceptibility loci and Cdkn2c deficiency leads to T cell-mediated pathology in B6.Faslpr mice

    Science.gov (United States)

    Xu, Zhiwei; Croker, Byron P.; Morel, Laurence

    2013-01-01

    The NZM2410 Sle2c1 lupus susceptibility locus is responsible for the expansion of the B1a cell compartment and for the induction of T-cell induced renal and skin pathology on a CD95 deficient (Faslpr)-background. We have previously shown that deficiency in cyclin-dependent kinase inhibitor p18INK4c (p18) was responsible for the B1a cell expansion but was not sufficient to account for the pathology in B6.lpr mice. This study was designed to map the additional Sle2c1 loci responsible for autoimmune pathology when co-expressed with CD95 deficiency. The production, fine-mapping and phenotypic characterization of five recombinant intervals indicated that three interacting sub-loci were responsive for inducting autoimmune pathogenesis in B6.lpr mice. One of these sub-loci corresponds most likely to p18-deficiency. Another major locus mapping to a 2 Mb region at the telomeric end of Sle2c1 is necessary to both renal and skin pathology. Finally, a third locus centromeric to p18 enhances the severity of lupus nephritis. These results provide new insights into the genetic interactions leading to SLE disease presentation, and represent a major step towards the identification of novel susceptibility genes involved in T-cell mediated organ damage. PMID:23698709

  1. A genome-wide association study in chronic obstructive pulmonary disease (COPD: identification of two major susceptibility loci.

    Directory of Open Access Journals (Sweden)

    Sreekumar G Pillai

    2009-03-01

    Full Text Available There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD. The only known genetic risk factor is severe deficiency of alpha(1-antitrypsin, which is present in 1-2% of individuals with COPD. We conducted a genome-wide association study (GWAS in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls and evaluated the top 100 single nucleotide polymorphisms (SNPs in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT and 472 controls from the Normative Aging Study (NAS and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the alpha-nicotinic acetylcholine receptor (CHRNA 3/5 locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48 x 10(-10, (rs8034191 and 5.74 x 10(-10 (rs1051730. Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article

  2. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors.

    Directory of Open Access Journals (Sweden)

    Stefan Nickels

    Full Text Available Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6 and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4. Overall, the per-allele odds ratio (95% confidence interval for LSP1-rs3817198 was 1.08 (1.01-1.16 in nulliparous women and ranged from 1.03 (0.96-1.10 in parous women with one birth to 1.26 (1.16-1.37 in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85-0.98 in those with an alcohol intake of <20 g/day and 1.45 (1.14-1.85 in those who drank ≥ 20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3 × 10(-5, with a per-allele OR of 1.14 (1.11-1.17 in parous women and 0.98 (0.92-1.05 in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors.

  3. Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Havelková, Helena; Badalová, Jana; Demant, P.

    2005-01-01

    Roč. 114, č. 3 (2005), s. 394-399 ISSN 0020-7136 R&D Projects: GA ČR(CZ) GA310/03/1381 Grant - others:European Commission(XE) CIPA-CT940040; Howard Hughes Medical Institute(US) 55000323 Institutional research plan: CEZ:AV0Z5052915 Keywords : lymphocyte activation * interleukin * lung cancer susceptibility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.700, year: 2005

  4. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    DEFF Research Database (Denmark)

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi

    2017-01-01

    To evaluate the shared genetic etiology of type 2 diabetes (T2D) and coronary heart disease (CHD), we conducted a genome-wide, multi-ancestry study of genetic variation for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for ...

  5. Replication study for the association of 9 East Asian GWAS-derived loci with susceptibility to type 2 diabetes in a Japanese population.

    Directory of Open Access Journals (Sweden)

    Kensuke Sakai

    Full Text Available AIMS: East Asian genome-wide association studies (GWAS for type 2 diabetes identified 8 loci with genome-wide significance, and 2 loci with a borderline association. However, the associations of these loci except MAEA locus with type 2 diabetes have not been evaluated in independent East Asian cohorts. We performed a replication study to investigate the association of these susceptibility loci with type 2 diabetes in an independent Japanese population. METHODS: We genotyped 7,379 Japanese participants (5,315 type 2 diabetes and 2,064 controls for each of the 9 single nucleotide polymorphisms (SNPs, rs7041847 in GLIS3, rs6017317 in FITM2-R3HDML-HNF4A, rs6467136 near GCCI-PAX4, rs831571 near PSMD6, rs9470794 in ZFAND3, rs3786897 in PEPD, rs1535500 in KCNK16, rs16955379 in CMIP, and rs17797882 near WWOX. Because the sample size in this study was not sufficient to replicate single SNP associations, we constructed a genetic risk score (GRS by summing a number of risk alleles of the 9 SNPs, and examined the association of the GRS with type 2 diabetes using logistic regression analysis. RESULTS: With the exception of rs1535500 in KCNK16, all SNPs had the same direction of effect (odds ratio [OR]>1.0 as in the original reports. The GRS constructed from the 9 SNPs was significantly associated with type 2 diabetes in the Japanese population (p = 4.0 × 10(-4, OR = 1.05, 95% confidence interval: 1.02-1.09. In quantitative trait analyses, rs16955379 in CMIP was nominally associated with a decreased homeostasis model assessment of β-cell function and with increased fasting plasma glucose, but neither the individual SNPs nor the GRS showed a significant association with the glycemic traits. CONCLUSIONS: These results indicate that 9 loci that were identified in the East Asian GWAS meta-analysis have a significant effect on the susceptibility to type 2 diabetes in the Japanese population.

  6. Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle.

    Science.gov (United States)

    Nkrumah, J D; Sherman, E L; Li, C; Marques, E; Crews, D H; Bartusiak, R; Murdoch, B; Wang, Z; Basarab, J A; Moore, S S

    2007-12-01

    Feed intake and feed efficiency of beef cattle are economically relevant traits. The study was conducted to identify QTL for feed intake and feed efficiency of beef cattle by using genotype information from 100 microsatellite markers and 355 SNP genotyped across 400 progeny of 20 Angus, Charolais, or Alberta Hybrid bulls. Traits analyzed include feedlot ADG, daily DMI, feed-to-gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F)], and residual feed intake (RFI). A mixed model with sire as random and QTL effects as fixed was used to generate an F-statistic profile across and within families for each trait along each chromosome, followed by empirical permutation tests to determine significance thresholds for QTL detection. Putative QTL for ADG (chromosome-wise P < 0.05) were detected across families on chromosomes 5 (130 cM), 6 (42 cM), 7 (84 cM), 11 (20 cM), 14 (74 cM), 16 (22 cM), 17 (9 cM), 18 (46 cM), 19 (53 cM), and 28 (23 cM). For DMI, putative QTL that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (93 cM), 3 (123 cM), 15 (31 cM), 17 (81 cM), 18 (49 cM), 20 (56 cM), and 26 (69 cM) in the across-family analyses. Putative across-family QTL influencing F:G that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 3 (62 cM), 5 (129 cM), 7 (27 cM), 11 (16 cM), 16 (30 cM), 17 (81 cM), 22 (72 cM), 24 (55 cM), and 28 (24 cM). Putative QTL influencing RFI that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (90 cM), 5 (129 cM), 7 (22 cM), 8 (80 cM), 12 (89 cM), 16 (41 cM), 17 (19 cM), and 26 (48 cM) in the across-family analyses. In addition, a total of 4, 6, 1, and 8 chromosomes showed suggestive evidence (chromosome-wise, P < 0.10) for putative ADG, DMI, F:G, and RFI QTL, respectively. Most of the QTL detected across families were also detected within families, although the locations across families were not necessarily the locations within families, which is

  7. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...

  8. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    DEFF Research Database (Denmark)

    Baillie, J. Kenneth; Bretherick, Andrew; Haley, Christopher S.

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcrip...

  9. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Dadaev, Tokhir; Hazelett, Dennis J

    2015-01-01

    associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated...... identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have...

  10. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    Science.gov (United States)

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi; Lee, Jung-Jin; Butterworth, Adam S; Howson, Joanna MM; Assimes, Themistocles L; Chowdhury, Rajiv; Orho-Melander, Marju; Damrauer, Scott; Small, Aeron; Asma, Senay; Imamura, Minako; Yamauch, Toshimasa; Chambers, John C; Chen, Peng; Sapkota, Bishwa R; Shah, Nabi; Jabeen, Sehrish; Surendran, Praveen; Lu, Yingchang; Zhang, Weihua; Imran, Atif; Abbas, Shahid; Majeed, Faisal; Trindade, Kevin; Qamar, Nadeem; Mallick, Nadeem Hayyat; Yaqoob, Zia; Saghir, Tahir; Rizvi, Syed Nadeem Hasan; Memon, Anis; Rasheed, Syed Zahed; Memon, Fazal-ur-Rehman; Mehmood, Khalid; Ahmed, Naveeduddin; Qureshi, Irshad Hussain; Tanveer-us-Salam; Iqbal, Wasim; Malik, Uzma; Mehra, Narinder; Kuo, Jane Z; Sheu, Wayne H-H; Guo, Xiuqing; Hsiung, Chao A; Juang, Jyh-Ming J; Taylor, Kent D; Hung, Yi-Jen; Lee, Wen-Jane; Quertermous, Thomas; Lee, I-Te; Hsu, Chih-Cheng; Bottinger, Erwin P.; Ralhan, Sarju; Teo, Yik Ying; Wang, Tzung-Dau; Alam, Dewan S; Di Angelantonio, Emanuele; Epstein, Steve; Nielsen, Sune F; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Young, Robin; Benn, Marianne; Frikke-Schmidt, Ruth; Kamstrup, Pia R; Biobank, Michigan; Jukema, J Wouter; Sattar, Naveed; Smit, Roelof; Chung, Ren-Hua; Liang, Kae-Woei; Anand, Sonia; Sanghera, Dharambir K; Ripatti, Samuli; Loos, Ruth J.F.; Kooner, Jaspal S; Tai, E Shyong; Rotter, Jerome I; Chen, Yii-Der Ida; Frossard, Philippe; Maeda, Shiro; Kadowaki, Takashi; Reilly, Muredach; Pare, Guillaume; Melander, Olle; Salomaa, Veikko; Rader, Daniel J; Danesh, John; Voight, Benjamin F; Saleheen, Danish

    2018-01-01

    To evaluate the shared genetic etiology of type-2 diabetes (T2D) and coronary heart disease (CHD), we conducted a multi-ethnic study of genetic variation genome-wide for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for T2D and one for CHD, including a novel T2D association at a missense variant in HLA-DRB5 (OR=1.29). We show that genetically mediated increase in T2D risk also confers higher CHD risk. Joint analysis of T2D loci demonstrated that 24% are associated with CHD, highlighting eight variants - two of which are coding - where T2D and CHD associations appear to co-localize, and a novel joint T2D/CHD association which also replicated for T2D. Variants associated with both outcomes implicate several novel pathways including cellular proliferation and cardiovascular development. PMID:28869590

  11. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24

    DEFF Research Database (Denmark)

    Goode, Ellen L; Chenevix-Trench, Georgia; Song, Honglin

    2010-01-01

    Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with foll...

  12. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    NARCIS (Netherlands)

    Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.C.; Chatterjee, N.; Hu, W.; Wong, M.P.; Zheng, W.; Caporaso, N.; Park, J.Y.; Chen, C.J.; Kim, Y.H.; Kim, Y.T.; Landi, M.T.; Shen, H.; Lawrence, C.; Burdett, L.; Yeager, M.; Yuenger, J.; Jacobs, K.B.; Chang, I.S.; Mitsudomi, T.; Kim, H.N.; Chang, G.C.; Bassig, B.A.; Tucker, M.; Wei, F.; Yin, Y.; Wu, C.; An, S.J.; Qian, B.; Lee, V.H.; Lu, D.; Liu, J.; Jeon, H.S.; Hsiao, C.F.; Sung, J.S.; Kim, J.H.; Gao, Y.T.; Tsai, Y.H.; Jung, Y.J.; Guo, H.; Hu, Z.; Hutchinson, A.; Wang, W.C.; Klein, R.; Chung, C.C.; Oh, I.J.; Chen, K.Y.; Berndt, S.I.; He, X.; Wu, W.; Chang, J.; Zhang, X.C.; Huang, M.S.; Zheng, H.; Wang, J.; Zhao, X.|info:eu-repo/dai/nl/413577805; Li, Y.; Choi, J.E.; Su, W.C.; Park, K.H.; Sung, S.W.; Shu, X.O.; Chen, Y.M.; Liu, L.; Kang, C.H.; Hu, L.; Chen, C.H.; Pao, W.; Kim, Y.C.; Yang, T.Y.; Xu, J.; Guan, P.; Tan, W.; Su, J.; Wang, C.L.; Li, H.; Sihoe, A.D.; Zhao, Z.|info:eu-repo/dai/nl/304120995; Chen, Y.; Choi, Y.Y.; Hung, J.Y.; Kim, J.S.; Yoon, H.I.; Cai, Q.; Lin, C.C.; Park, I.K.; Xu, P.; Dong, J.; Kim, C.; He, Q; Perng, R.P.; Kohno, T.; Kweon, S.S.; Chen, C.Y.; Vermeulen, R.|info:eu-repo/dai/nl/216532620; Wu, J.; Lim, W.Y.; Chen, K.C.; Chow, W.H.; Ji, B.T.; Chan, J.K.; Chu, M.; Li, Y.J.; Yokota, J.; Li, J.; Chen, H.; Xiang, Y.B.; Yu, C.J.; Kunitoh, H.; Wu, G.; Jin, L.; Lo, Y.L.; Shiraishi, K.; Chen, Y.H.; Lin, H.C.; Wu, T.; WU, Y.; Yang, P.C.; Zhou, B.; Shin, M.H.; Fraumeni, J.F.; Lin, D.; Chanock, S.J.; Rothman, N.

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland

  13. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Cheng

    2009-05-01

    Full Text Available The prevalence of obesity (body mass index (BMI > or =30 kg/m(2 is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20% and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (rho = -0.042, P = 1.6x10(-7. In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = -3.94; and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = -4.62. Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46. Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.

  14. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    Science.gov (United States)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindström, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomäki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Françoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Müller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; dos Santos Silva, Isabel; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, JoEllen; Schulz-Wendtland, Rüdiger; Wilkens, Lynne R.; Van Den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative disease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls). We performed in silico replication of 86 SNPs at P ≤ 1 × 10-5 in an additional 11 209 breast cancer cases (946 with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two-stage OR = 1.16; P = 1.1 × 10−8) but showed a weaker association with overall breast cancer (OR = 1.08, P = 1.3 × 10–6) based on 17 869 cases and 43 745 controls and no association with ER-positive disease (OR = 1.01, P = 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer (OR = 1.12; P = 1.1 × 10−9), and with both ER-positive (OR = 1.09; P = 1.5 × 10−5) and ER-negative (OR = 1.16, P = 2.5 × 10−7) disease. We also confirmed three known loci associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and 12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer risk loci. PMID:22976474

  15. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    DEFF Research Database (Denmark)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns...... the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes...... in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely...

  16. Genetic susceptibility loci, environmental exposures, and Parkinson's disease: a case-control study of gene-environment interactions.

    Science.gov (United States)

    Chung, Sun Ju; Armasu, Sebastian M; Anderson, Kari J; Biernacka, Joanna M; Lesnick, Timothy G; Rider, David N; Cunningham, Julie M; Ahlskog, J Eric; Frigerio, Roberta; Maraganore, Demetrius M

    2013-06-01

    Prior studies causally linked mutations in SNCA, MAPT, and LRRK2 genes with familial Parkinsonism. Genome-wide association studies have demonstrated association of single nucleotide polymorphisms (SNPs) in those three genes with sporadic Parkinson's disease (PD) susceptibility worldwide. Here we investigated the interactions between SNPs in those three susceptibility genes and environmental exposures (pesticides application, tobacco smoking, coffee drinking, and alcohol drinking) also associated with PD susceptibility. Pairwise interactions between environmental exposures and 18 variants (16 SNPs and two variable number tandem repeats, or "VNTRs") in SNCA, MAPT and LRRK2, were investigated using data from 1098 PD cases from the upper Midwest, USA and 1098 matched controls. Environmental exposures were assessed using a validated telephone interview script. Five pairwise interactions had uncorrected P-values coffee drinking × MAPT H1/H2 haplotype or MAPT rs16940806, and alcohol drinking × MAPT rs2435211. None of these interactions remained significant after Bonferroni correction. Secondary analyses in strata defined by type of control (sibling or unrelated), sex, or age at onset of the case also did not identify significant interactions after Bonferroni correction. This study documented limited pairwise interactions between established genetic and environmental risk factors for PD; however, the associations were not significant after correction for multiple testing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    Directory of Open Access Journals (Sweden)

    Xue Ke Zhao

    Full Text Available Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs. Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population.A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival.Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02, rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04, rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04 and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04. All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage

  18. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    Science.gov (United States)

    Zhao, Xue Ke; Mao, Yi Min; Meng, Hui; Song, Xin; Hu, Shou Jia; Lv, Shuang; Cheng, Rang; Zhang, Tang Juan; Han, Xue Na; Ren, Jing Li; Qi, Yi Jun; Wang, Li Dong

    2017-01-01

    Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type

  19. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci.

    Science.gov (United States)

    Aung, Tin; Ozaki, Mineo; Lee, Mei Chin; Schlötzer-Schrehardt, Ursula; Thorleifsson, Gudmar; Mizoguchi, Takanori; Igo, Robert P; Haripriya, Aravind; Williams, Susan E; Astakhov, Yury S; Orr, Andrew C; Burdon, Kathryn P; Nakano, Satoko; Mori, Kazuhiko; Abu-Amero, Khaled; Hauser, Michael; Li, Zheng; Prakadeeswari, Gopalakrishnan; Bailey, Jessica N Cooke; Cherecheanu, Alina Popa; Kang, Jae H; Nelson, Sarah; Hayashi, Ken; Manabe, Shin-Ichi; Kazama, Shigeyasu; Zarnowski, Tomasz; Inoue, Kenji; Irkec, Murat; Coca-Prados, Miguel; Sugiyama, Kazuhisa; Järvelä, Irma; Schlottmann, Patricio; Lerner, S Fabian; Lamari, Hasnaa; Nilgün, Yildirim; Bikbov, Mukharram; Park, Ki Ho; Cha, Soon Cheol; Yamashiro, Kenji; Zenteno, Juan C; Jonas, Jost B; Kumar, Rajesh S; Perera, Shamira A; Chan, Anita S Y; Kobakhidze, Nino; George, Ronnie; Vijaya, Lingam; Do, Tan; Edward, Deepak P; de Juan Marcos, Lourdes; Pakravan, Mohammad; Moghimi, Sasan; Ideta, Ryuichi; Bach-Holm, Daniella; Kappelgaard, Per; Wirostko, Barbara; Thomas, Samuel; Gaston, Daniel; Bedard, Karen; Greer, Wenda L; Yang, Zhenglin; Chen, Xueyi; Huang, Lulin; Sang, Jinghong; Jia, Hongyan; Jia, Liyun; Qiao, Chunyan; Zhang, Hui; Liu, Xuyang; Zhao, Bowen; Wang, Ya-Xing; Xu, Liang; Leruez, Stéphanie; Reynier, Pascal; Chichua, George; Tabagari, Sergo; Uebe, Steffen; Zenkel, Matthias; Berner, Daniel; Mossböck, Georg; Weisschuh, Nicole; Hoja, Ursula; Welge-Luessen, Ulrich-Christoph; Mardin, Christian; Founti, Panayiota; Chatzikyriakidou, Anthi; Pappas, Theofanis; Anastasopoulos, Eleftherios; Lambropoulos, Alexandros; Ghosh, Arkasubhra; Shetty, Rohit; Porporato, Natalia; Saravanan, Vijayan; Venkatesh, Rengaraj; Shivkumar, Chandrashekaran; Kalpana, Narendran; Sarangapani, Sripriya; Kanavi, Mozhgan R; Beni, Afsaneh Naderi; Yazdani, Shahin; Lashay, Alireza; Naderifar, Homa; Khatibi, Nassim; Fea, Antonio; Lavia, Carlo; Dallorto, Laura; Rolle, Teresa; Frezzotti, Paolo; Paoli, Daniela; Salvi, Erika; Manunta, Paolo; Mori, Yosai; Miyata, Kazunori; Higashide, Tomomi; Chihara, Etsuo; Ishiko, Satoshi; Yoshida, Akitoshi; Yanagi, Masahide; Kiuchi, Yoshiaki; Ohashi, Tsutomu; Sakurai, Toshiya; Sugimoto, Takako; Chuman, Hideki; Aihara, Makoto; Inatani, Masaru; Miyake, Masahiro; Gotoh, Norimoto; Matsuda, Fumihiko; Yoshimura, Nagahisa; Ikeda, Yoko; Ueno, Morio; Sotozono, Chie; Jeoung, Jin Wook; Sagong, Min; Park, Kyu Hyung; Ahn, Jeeyun; Cruz-Aguilar, Marisa; Ezzouhairi, Sidi M; Rafei, Abderrahman; Chong, Yaan Fun; Ng, Xiao Yu; Goh, Shuang Ru; Chen, Yueming; Yong, Victor H K; Khan, Muhammad Imran; Olawoye, Olusola O; Ashaye, Adeyinka O; Ugbede, Idakwo; Onakoya, Adeola; Kizor-Akaraiwe, Nkiru; Teekhasaenee, Chaiwat; Suwan, Yanin; Supakontanasan, Wasu; Okeke, Suhanya; Uche, Nkechi J; Asimadu, Ifeoma; Ayub, Humaira; Akhtar, Farah; Kosior-Jarecka, Ewa; Lukasik, Urszula; Lischinsky, Ignacio; Castro, Vania; Grossmann, Rodolfo Perez; Sunaric Megevand, Gordana; Roy, Sylvain; Dervan, Edward; Silke, Eoin; Rao, Aparna; Sahay, Priti; Fornero, Pablo; Cuello, Osvaldo; Sivori, Delia; Zompa, Tamara; Mills, Richard A; Souzeau, Emmanuelle; Mitchell, Paul; Wang, Jie Jin; Hewitt, Alex W; Coote, Michael; Crowston, Jonathan G; Astakhov, Sergei Y; Akopov, Eugeny L; Emelyanov, Anton; Vysochinskaya, Vera; Kazakbaeva, Gyulli; Fayzrakhmanov, Rinat; Al-Obeidan, Saleh A; Owaidhah, Ohoud; Aljasim, Leyla Ali; Chowbay, Balram; Foo, Jia Nee; Soh, Raphael Q; Sim, Kar Seng; Xie, Zhicheng; Cheong, Augustine W O; Mok, Shi Qi; Soo, Hui Meng; Chen, Xiao Yin; Peh, Su Qin; Heng, Khai Koon; Husain, Rahat; Ho, Su-Ling; Hillmer, Axel M; Cheng, Ching-Yu; Escudero-Domínguez, Francisco A; González-Sarmiento, Rogelio; Martinon-Torres, Frederico; Salas, Antonio; Pathanapitoon, Kessara; Hansapinyo, Linda; Wanichwecharugruang, Boonsong; Kitnarong, Naris; Sakuntabhai, Anavaj; Nguyn, Hip X; Nguyn, Giang T T; Nguyn, Trình V; Zenz, Werner; Binder, Alexander; Klobassa, Daniela S; Hibberd, Martin L; Davila, Sonia; Herms, Stefan; Nöthen, Markus M; Moebus, Susanne; Rautenbach, Robyn M; Ziskind, Ari; Carmichael, Trevor R; Ramsay, Michele; Álvarez, Lydia; García, Montserrat; González-Iglesias, Héctor; Rodríguez-Calvo, Pedro P; Fernández-Vega Cueto, Luis; Oguz, Çilingir; Tamcelik, Nevbahar; Atalay, Eray; Batu, Bilge; Aktas, Dilek; Kasım, Burcu; Wilson, M Roy; Coleman, Anne L; Liu, Yutao; Challa, Pratap; Herndon, Leon; Kuchtey, Rachel W; Kuchtey, John; Curtin, Karen; Chaya, Craig J; Crandall, Alan; Zangwill, Linda M; Wong, Tien Yin; Nakano, Masakazu; Kinoshita, Shigeru; den Hollander, Anneke I; Vesti, Eija; Fingert, John H; Lee, Richard K; Sit, Arthur J; Shingleton, Bradford J; Wang, Ningli; Cusi, Daniele; Qamar, Raheel; Kraft, Peter; Pericak-Vance, Margaret A; Raychaudhuri, Soumya; Heegaard, Steffen; Kivelä, Tero; Reis, André; Kruse, Friedrich E; Weinreb, Robert N; Pasquale, Louis R; Haines, Jonathan L; Thorsteinsdottir, Unnur; Jonasson, Fridbert; Allingham, R Rand; Milea, Dan; Ritch, Robert; Kubota, Toshiaki; Tashiro, Kei; Vithana, Eranga N; Micheal, Shazia; Topouzis, Fotis; Craig, Jamie E; Dubina, Michael; Sundaresan, Periasamy; Stefansson, Kari; Wiggs, Janey L; Pasutto, Francesca; Khor, Chiea Chuen

    2017-07-01

    Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 × 10 -14 ) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10 -8 ). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.

  20. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Ian P M Tomlinson

    2011-06-01

    Full Text Available Genome-wide association studies (GWAS have identified 14 tagging single nucleotide polymorphisms (tagSNPs that are associated with the risk of colorectal cancer (CRC, and several of these tagSNPs are near bone morphogenetic protein (BMP pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3, BMP4 (14q22.2, and BMP2 (20p12.3 using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10 and BMP2 (rs4813802, P = 4.65×10(-11. Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8 and rs11632715 (P = 2.30×10(-10. As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.

  1. Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti.

    Science.gov (United States)

    Zhong, Daibin; Menge, David M; Temu, Emmanuel A; Chen, Hong; Yan, Guiyun

    2006-07-01

    The yellow fever mosquito Aedes aegypti has been the subject of extensive genetic research due to its medical importance and the ease with which it can be manipulated in the laboratory. A molecular genetic linkage map was constructed using 148 amplified fragment length polymorphism (AFLP) and six single-strand conformation polymorphism (SSCP) markers. Eighteen AFLP primer combinations were used to genotype two reciprocal F2 segregating populations. Each primer combination generated an average of 8.2 AFLP markers eligible for linkage mapping. The length of the integrated map was 180.9 cM, giving an average marker resolution of 1.2 cM. Composite interval mapping revealed a total of six QTL significantly affecting Plasmodium susceptibility in the two reciprocal crosses of Ae. aegypti. Two common QTL on linkage group 2 were identified in both crosses that had similar effects on the phenotype, and four QTL were unique to each cross. In one cross, the four main QTL accounted for 64% of the total phenotypic variance, and digenic epistasis explained 11.8% of the variance. In the second cross, the four main QTL explained 66% of the variance, and digenic epistasis accounted for 16% of the variance. The actions of these QTL were either dominance or underdominance. Our results indicated that at least three new QTL were mapped on chromosomes 1 and 3. The polygenic nature of susceptibility to P. gallinaceum and epistasis are important factors for significant variation within or among mosquito strains. The new map provides additional information useful for further genetic investigation, such as identification of new genes and positional cloning.

  2. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  3. A genome-wide association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3)

    DEFF Research Database (Denmark)

    Enciso-Mora, Victor; Broderick, Peter; Ma, Yussanne

    2010-01-01

    To identify susceptibility loci for classical Hodgkin's lymphoma (cHL), we conducted a genome-wide association study of 589 individuals with cHL (cases) and 5,199 controls with validation in four independent samples totaling 2,057 cases and 3,416 controls. We identified three new susceptibility...... etiology by revealing a strong human leukocyte antigen (HLA) association (rs6903608, OR = 1.70, combined P = 2.84 × 10 -50). These data provide new insight into the pathogenesis of cHL....

  4. Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor.

    Science.gov (United States)

    Kristiansen, Wenche; Karlsson, Robert; Rounge, Trine B; Whitington, Thomas; Andreassen, Bettina K; Magnusson, Patrik K; Fosså, Sophie D; Adami, Hans-Olov; Turnbull, Clare; Haugen, Trine B; Grotmol, Tom; Wiklund, Fredrik

    2015-07-15

    Genome-wide association (GWA) studies have reported 19 distinct susceptibility loci for testicular germ cell tumor (TGCT). A GWA study for TGCT was performed by genotyping 610 240 single-nucleotide polymorphisms (SNPs) in 1326 cases and 6687 controls from Sweden and Norway. No novel genome-wide significant associations were observed in this discovery stage. We put forward 27 SNPs from 15 novel regions and 12 SNPs previously reported, for replication in 710 case-parent triads and 289 cases and 290 controls. Predefined biological pathways and processes, in addition to a custom-built sex-determination gene set, were subject to enrichment analyses using Meta-Analysis Gene Set Enrichment of Variant Associations (M) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (I). In the combined meta-analysis, we observed genome-wide significant association for rs7501939 on chromosome 17q12 (OR = 0.78, 95% CI = 0.72-0.84, P = 1.1 × 10(-9)) and rs2195987 on chromosome 19p12 (OR = 0.76, 95% CI: 0.69-0.84, P = 3.2 × 10(-8)). The marker rs7501939 on chromosome 17q12 is located in an intron of the HNF1B gene, encoding a member of the homeodomain-containing superfamily of transcription factors. The sex-determination gene set (false discovery rate, FDRM cancer and apoptosis, was associated with TGCT (FDR utero are implicated in the development of TGCT. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali

    2016-01-01

    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112...... (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell......-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P cancer meta-analysis. SIGNIFICANCE...

  6. Confirmation of dyslexia susceptibility loci on chromosomes 1p and 2p, but not 6p in a Dutch sib-pair collection.

    NARCIS (Netherlands)

    Kovel, C.G.F. de; Franke, B.; Hol, F.A.; Lebrec, J.J.; Maassen, B.A.M.; Brunner, H.G.; Padberg, G.W.A.M.; Platko, J.; Pauls, D.

    2008-01-01

    In this study, we attempted to confirm genetic linkage to developmental dyslexia and reading-related quantitative traits of loci that have been shown to be associated with dyslexia in previous studies. In our sample of 108 Dutch nuclear families, the categorical trait showed strongest linkage to

  7. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3

    NARCIS (Netherlands)

    Purdue, Mark P.; Johansson, Mattias; Zelenika, Diana; Toro, Jorge R.; Scelo, Ghislaine; Moore, Lee E.; Prokhortchouk, Egor; Wu, Xifeng; Kiemeney, Lambertus A.; Gaborieau, Valerie; Jacobs, Kevin B.; Chow, Wong-Ho; Zaridze, David; Matveev, Vsevolod; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S.; Davis, Faith G.; Schwartz, Kendra L.; Banks, Rosamonde E.; Selby, Peter J.; Harnden, Patricia; Berg, Christine D.; Hsing, Ann W.; Grubb, Robert L.; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J.; Quiros, Jose Ramon; Sanchez, Maria-Jose; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E.; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Borje; Overvad, Kim; Tjonneland, Anne; Romieu, Isabelle; Riboli, Elio; Mukeria, Anush; Shangina, Oxana; Stevens, Victoria L.; Thun, Michael J.; Diver, W. Ryan; Gapstur, Susan M.; Pharoah, Paul D.; Easton, Douglas F.; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Njolstad, Inger; Tell, Grethe S.; Stoltenberg, Camilla; Kumar, Rajiv; Koppova, Kvetoslava; Cussenot, Olivier; Benhamou, Simone; Oosterwijk, Egbert; Vermeulen, Sita H.; Aben, Katja K. H.; van der Marel, Saskia L.; Ye, Yuanqing; Wood, Christopher G.; Pu, Xia; Mazur, Alexander M.; Boulygina, Eugenia S.; Chekanov, Nikolai N.; Foglio, Mario; Lechner, Doris; Gut, Ivo; Heath, Simon; Blanche, Helene; Hutchinson, Amy; Thomas, Gilles; Wang, Zhaoming; Yeager, Meredith; Fraumeni, Joseph F.; Skryabin, Konstantin G.; McKay, James D.; Rothman, Nathaniel; Chanock, Stephen J.; Lathrop, Mark; Brennan, Paul

    We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 affected individuals (cases) and 8,505 controls of European background from 11 studies and followed up 6 SNPs in 3 replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and

  8. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations

    NARCIS (Netherlands)

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H. Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao Ou; Kim, Young-Chul; Bassig, Bryan A.; Chang, Jiang; Ho, James Chung Man; Ji, Bu Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C.; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B.; Hutchinson, Amy; Berndt, Sonja I.; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F.; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J.; Lan, Qing

    2017-01-01

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking

  9. Multicenter dizygotic twin cohort study confirms two linkage susceptibility loci for body mass index at 3q29 and 7q36 and identifies three further potential novel loci

    DEFF Research Database (Denmark)

    Kettunen, J; Perola, M; Martin, N G

    2009-01-01

    OBJECTIVE: To identify common loci and potential genetic variants affecting body mass index (BMI, kg m(-2)) in study populations originating from Europe. DESIGN: We combined genome-wide linkage scans of six cohorts from Australia, Denmark, Finland, the Netherlands, Sweden and the United Kingdom...... with an approximately 10-cM microsatellite marker map. Variance components linkage analysis was carried out with age, sex and country of origin as covariates. SUBJECTS: The GenomEUtwin consortium consists of twin cohorts from eight countries (Australia, Denmark, the Netherlands, Finland, Italy, Norway, Sweden...... and the United Kingdom) with a total data collection of more than 500,000 monozygotic and dizygotic (DZ) twin pairs. Variance due to early-life events and the environment is reduced within twin pairs, which makes DZ pairs highly valuable for linkage studies of complex traits. This study totaled 4401 European-originated...

  10. The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci.

    Directory of Open Access Journals (Sweden)

    Louise V Wain

    2009-12-01

    Full Text Available The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty.In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability.Interpretation of CNV association findings must take into account the effects of filtering and combining

  11. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Zeggini, Eleftheria; Scott, Laura J; Saxena, Richa

    2008-01-01

    analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample......Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published...

  12. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice

    Directory of Open Access Journals (Sweden)

    Jessica L. Fleming

    2013-04-01

    Full Text Available Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.

  13. Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci.

    Science.gov (United States)

    Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N

    2017-10-17

    Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.

  14. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Kote-Jarai, Zsofia; Schumacher, Fredrick R

    2013-01-01

    Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS inc...

  15. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations.

    Science.gov (United States)

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao-Ou; Kim, Young-Chul; Bassig, Bryan A; Chang, Jiang; Ho, James Chung Man; Ji, Bu-Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu-Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B; Hutchinson, Amy; Berndt, Sonja I; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J; Lan, Qing

    2017-01-15

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking controls from Asia confirmed associations with eight known single nucleotide polymorphisms (SNPs). Two new signals were observed at genome-wide significance (P Asian women and highlight the importance of how the germline could inform risk for specific tumour mutation patterns, which could have important translational implications. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  16. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer

    DEFF Research Database (Denmark)

    Zuber, Verena; Bettella, Francesco; Witoelar, Aree

    2017-01-01

    progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate cancer (PC), androgen receptor (AR) binding......Background: Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor...... the differential enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and can be used with similar effect in breast cancer (BC...

  17. Loci controlling lymphocyte production of interferon gamma after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Havelková, Helena; Badalová, Jana; Vojtíšková, Jarmila; Quan, L.; Krulová, Magdalena; Sohrabi, Yahya; Stassen, A. P. M.; Demant, P.

    2010-01-01

    Roč. 59, č. 2 (2010), s. 203-213 ISSN 0340-7004 R&D Projects: GA MŠk(CZ) LC06009; GA AV ČR IAA500520606; GA ČR GD310/08/H077 Institutional research plan: CEZ:AV0Z50520514 Keywords : Tumor susceptibility * Genetic control of interferon gamma production * Lymphocyte infiltration of tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.293, year: 2010

  18. The mouse small eye mutant, Del(2)Sey3H, which deletes the putative tumor suppressor region of the radiation-induced acute myeloid leukemia is susceptible to radiation

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Yoshida, Kazuko; Tanaka, Kimio; Peters, Jo; Cattanach, Bruce M.

    2003-01-01

    Radiation-induced murine acute myeloid leukemia (AML) is characterized by the chromosome 2 deletions. Standing on the hypothesis that an AML suppressor gene would locate on the chromosome 2, a deletion-wide screen was performed on radiation-induced AMLs by the fluorescence in situ hybridization (FISH) method. The hemizugous deletion of the D2Mit15, a marker DNA at the 49.0cM region from the centromere, associated with the AMLs in 97 out of the 105 cases (92.4%). As the deletion region was close to the region of human WAGR syndrome (MIM194072), the mouse small eye mutants could be the animal model for radiation-induced AMLs. The mutant, Del(2)Sey3H (Sey3H) was found to delete around the 49.0cM region by the allelic loss mapping. The Sey3H showed high susceptibility to radiation to develop tumors including the myeloid leukemia with shorter latency. These finding support the existence of a putative tumor suppressor gene responsible for the radiation-leukemogenesis near the D2Mit15 region. (author)

  19. Replication and Relevance of Multiple Susceptibility Loci Discovered from Genome Wide Association Studies for Type 2 Diabetes in an Indian Population.

    Directory of Open Access Journals (Sweden)

    Nagaraja M Phani

    Full Text Available Several genetic variants for type 2 diabetes (T2D have been identified through genome wide association studies (GWAS from Caucasian population; however replication studies were not consistent across various ethnicities. Objective of the current study is to examine the possible correlation of 9 most significant GWAS single nucleotide polymorphisms (SNPs for T2D susceptibility as well as the interactive effect of these variants on the risk of T2D in an Indian population.Case-control cohorts of 1156 individuals were genotyped for 9 SNPs from an Indian population. Association analyses were performed using logistic regression after adjusting for covariates. Multifactor dimensionality reduction (MDR analysis was adopted to determine gene-gene interactions and discriminatory power of combined SNP effect was assessed by grouping individuals based on the number of risk alleles and by calculating area under the receiver-operator characteristic curve (AUC.We confirm the association of TCF7L2 (rs7903146 and SLC30A8 (rs13266634 with T2D. MDR analysis showed statistically significant interactions among four SNPs of SLC30A8 (rs13266634, IGF2BP2 (rs4402960, HHEX (rs1111875 and CDKN2A (rs10811661 genes. Cumulative analysis showed an increase in odds ratio against the baseline group of individuals carrying 5 to 6 risk alleles and discriminatory power of genetic test based on 9 variants showed higher AUC value when analyzed along with body mass index (BMI.These results provide a strong evidence for independent association between T2D and SNPs for in TCF7L2 and SLC30A8. MDR analysis demonstrates that independently non-significant variants may interact with one another resulting in increased disease susceptibility in the population tested.

  20. Genome-Wide Association Study to Identify Susceptibility Loci That Modify Radiation-Related Risk for Breast Cancer After Childhood Cancer.

    Science.gov (United States)

    Morton, Lindsay M; Sampson, Joshua N; Armstrong, Gregory T; Chen, Ting-Huei; Hudson, Melissa M; Karlins, Eric; Dagnall, Casey L; Li, Shengchao Alfred; Wilson, Carmen L; Srivastava, Deo Kumar; Liu, Wei; Kang, Guolian; Oeffinger, Kevin C; Henderson, Tara O; Moskowitz, Chaya S; Gibson, Todd M; Merino, Diana M; Wong, Jeannette R; Hammond, Sue; Neglia, Joseph P; Turcotte, Lucie M; Miller, Jeremy; Bowen, Laura; Wheeler, William A; Leisenring, Wendy M; Whitton, John A; Burdette, Laurie; Chung, Charles; Hicks, Belynda D; Jones, Kristine; Machiela, Mitchell J; Vogt, Aurelie; Wang, Zhaoming; Yeager, Meredith; Neale, Geoffrey; Lear, Matthew; Strong, Louise C; Yasui, Yutaka; Stovall, Marilyn; Weathers, Rita E; Smith, Susan A; Howell, Rebecca; Davies, Stella M; Radloff, Gretchen A; Onel, Kenan; Berrington de González, Amy; Inskip, Peter D; Rajaraman, Preetha; Fraumeni, Joseph F; Bhatia, Smita; Chanock, Stephen J; Tucker, Margaret A; Robison, Leslie L

    2017-11-01

    Childhood cancer survivors treated with chest-directed radiotherapy have substantially elevated risk for developing breast cancer. Although genetic susceptibility to breast cancer in the general population is well studied, large-scale evaluation of breast cancer susceptibility after chest-directed radiotherapy for childhood cancer is lacking. We conducted a genome-wide association study of breast cancer in female survivors of childhood cancer, pooling two cohorts with detailed treatment data and systematic, long-term follow-up: the Childhood Cancer Survivor Study and St. Jude Lifetime Cohort. The study population comprised 207 survivors who developed breast cancer and 2774 who had not developed any subsequent neoplasm as of last follow-up. Genotyping and subsequent imputation yielded 16 958 466 high-quality variants for analysis. We tested associations in the overall population and in subgroups stratified by receipt of lower than 10 and 10 or higher gray breast radiation exposure. We report P values and pooled per-allele risk estimates from Cox proportional hazards regression models. All statistical tests were two-sided. Among survivors who received 10 or higher gray breast radiation exposure, a locus on 1q41 was associated with subsequent breast cancer risk (rs4342822, nearest gene PROX1 , risk allele frequency in control subjects [RAF controls ] = 0.46, hazard ratio = 1.92, 95% confidence interval = 1.49 to 2.44, P = 7.09 × 10 -9 ). Two rare variants also showed potentially promising associations (breast radiation ≥10 gray: rs74949440, 11q23, TAGLN , RAF controls = 0.02, P = 5.84 × 10 -8 ; breast cancer risk after childhood cancer. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  1. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Hsu

    2010-06-01

    Full Text Available Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD at the lumbar spine (LS and femoral neck (FN, as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW. A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8, 2q11.2 (TBC1D8, and 18q11.2 (OSBPL1A, and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13; SOX6, p = 6.4x10(-10 associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant

  2. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus)

    Science.gov (United States)

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from ‘Arka Manik’ × ‘TS34’ and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits. PMID:26700647

  3. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus).

    Science.gov (United States)

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.

  4. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    DEFF Research Database (Denmark)

    Speliotes, Elizabeth K; Willer, Cristen J; Berndt, Sonja I

    2010-01-01

    in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P SH2B1 and BDNF) map near key hypothalamic regulators...

  5. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

    Science.gov (United States)

    Lindström, Sara; Thompson, Deborah J.; Paterson, Andrew D.; Li, Jingmei; Gierach, Gretchen L.; Scott, Christopher; Stone, Jennifer; Douglas, Julie A.; dos-Santos-Silva, Isabel; Fernandez-Navarro, Pablo; Verghase, Jajini; Smith, Paula; Brown, Judith; Luben, Robert; Wareham, Nicholas J.; Loos, Ruth J.F.; Heit, John A.; Pankratz, V. Shane; Norman, Aaron; Goode, Ellen L.; Cunningham, Julie M.; deAndrade, Mariza; Vierkant, Robert A.; Czene, Kamila; Fasching, Peter A.; Baglietto, Laura; Southey, Melissa C.; Giles, Graham G.; Shah, Kaanan P.; Chan, Heang-Ping; Helvie, Mark A.; Beck, Andrew H.; Knoblauch, Nicholas W.; Hazra, Aditi; Hunter, David J.; Kraft, Peter; Pollan, Marina; Figueroa, Jonine D.; Couch, Fergus J.; Hopper, John L.; Hall, Per; Easton, Douglas F.; Boyd, Norman F.; Vachon, Celine M.; Tamimi, Rulla M.

    2015-01-01

    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci. PMID:25342443

  6. Genetic loci involved in antibody response to Mycobacterium avium ssp. paratuberculosis in cattle.

    Directory of Open Access Journals (Sweden)

    Giulietta Minozzi

    Full Text Available BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP causes chronic enteritis in a wide range of animal species. In cattle, MAP causes a chronic disease called Johne's disease, or paratuberculosis, that is not treatable and the efficacy of vaccine control is controversial. The clinical phase of the disease is characterised by diarrhoea, weight loss, drop in milk production and eventually death. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to 0.10. There have been several studies over the last few years that have identified genetic loci putatively associated with MAP susceptibility, however, with the availability of genome-wide high density SNP maker panels it is now possible to carry out association studies that have higher precision. METHODOLOGY/PRINCIPAL FINDINGS: The objective of the current study was to localize genes having an impact on Johne's disease susceptibility using the latest bovine genome information and a high density SNP panel (Illumina BovineSNP50 BeadChip to perform a case/control, genome-wide association analysis. Samples from MAP case and negative controls were selected from field samples collected in 2007 and 2008 in the province of Lombardy, Italy. Cases were defined as animals serologically positive for MAP by ELISA. In total 966 samples were genotyped: 483 MAP ELISA positive and 483 ELISA negative. Samples were selected randomly among those collected from 119 farms which had at least one positive animal. CONCLUSION/SIGNIFICANCE: THE ANALYSIS OF THE GENOTYPE DATA IDENTIFIED SEVERAL CHROMOSOMAL REGIONS ASSOCIATED WITH DISEASE STATUS: a region on chromosome 12 with high significance (P<5x10(-6, while regions on chromosome 9, 11, and 12 had moderate significance (P<5x10(-5. These results provide evidence for genetic loci involved in the humoral response to MAP. Knowledge of genetic variations related to susceptibility will facilitate the incorporation of this information

  7. Genetic susceptibility of periodontitis

    NARCIS (Netherlands)

    Laine, M.L.; Crielaard, W.; Loos, B.G.

    2012-01-01

    In this systematic review, we explore and summarize the peer-reviewed literature on putative genetic risk factors for susceptibility to aggressive and chronic periodontitis. A comprehensive literature search on the PubMed database was performed using the keywords ‘periodontitis’ or ‘periodontal

  8. Genius loci / Madis Kõiv

    Index Scriptorium Estoniae

    Kõiv, Madis, 1929-2014

    2005-01-01

    Ettekanne 37. Kreutzwaldi päevadel Tartu Kirjandusmuuseumis 18.-19. dets. 1993, pealkirjaga "Kus on see Valga, kus on see Tartu...: Genius loci B. Kangro ja V. Uibopuu romaanides". Varem ilmunud: Akadeemia, 1994, nr. 4

  9. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    DEFF Research Database (Denmark)

    Steffens, M.; Leu, C.; Ruppert, A. K.

    2012-01-01

    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3 and account for 2030 of all epilepsies. Despite their high heritability of 80, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a ...

  10. Characterization of Mauritius parakeet (Psittacula eques) microsatellite loci and their cross-utility in other parrots (Psittacidae, Aves).

    Science.gov (United States)

    Raisin, Claire; Dawson, Deborah A; Greenwood, Andrew G; Jones, Carl G; Groombridge, Jim J

    2009-07-01

    We characterized 21 polymorphic microsatellite loci in the endangered Mauritius parakeet (Psittacula eques). Loci were isolated from a Mauritius parakeet genomic library that had been enriched separately for eight different repeat motifs. Loci were characterized in up to 43 putatively unrelated Mauritius parakeets from a single population inhabiting the Black River Gorges National Park, Mauritius. Each locus displayed between three and nine alleles, with the observed heterozygosity ranging between 0.39 and 0.96. All loci were tested in 10 other parrot species. Despite testing few individuals, between seven and 21 loci were polymorphic in each of seven species tested. © 2009 Blackwell Publishing Ltd.

  11. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1

    Science.gov (United States)

    Cai, Qiuyin; Zhang, Ben; Sung, Hyuna; Low, Siew-Kee; Kweon, Sun-Seog; Lu, Wei; Shi, Jiajun; Long, Jirong; Wen, Wanqing; Choi, Ji-Yeob; Noh, Dong-Young; Shen, Chen-Yang; Matsuo, Keitaro; Teo, Soo-Hwang; Kim, Mi Kyung; Khoo, Ui Soon; Iwasaki, Motoki; Hartman, Mikael; Takahashi, Atsushi; Ashikawa, Kyota; Matsuda, Koichi; Shin, Min-Ho; Park, Min Ho; Zheng, Ying; Xiang, Yong-Bing; Ji, Bu-Tian; Park, Sue K.; Wu, Pei-Ei; Hsiung, Chia-Ni; Ito, Hidemi; Kasuga, Yoshio; Kang, Peter; Mariapun, Shivaani; Ahn, Sei Hyun; Kang, Han Sung; Chan, Kelvin Y. K.; Man, Ellen P. S.; Iwata, Hiroji; Tsugane, Shoichiro; Miao, Hui; Liao, Jiemin; Nakamura, Yusuke; Kubo, Michiaki; Delahanty, Ryan J.; Zhang, Yanfeng; Li, Bingshan; Li, Chun; Gao, Yu-Tang; Shu, Xiao-Ou; Kang, Daehee; Zheng, Wei

    2014-01-01

    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified three novel genetic loci associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene, P = 8.82 × 10−9), rs10474352 at 5q14.3 (near the ARRDC3 gene, P = 1.67 × 10−9), and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene, P = 4.25 × 10−8). These associations were replicated in European-ancestry populations including 16,003 cases and 41,335 controls (P = 0.030, 0.004, and 0.010, respectively). Data from the ENCODE project suggest that variants rs4951011 and rs10474352 may be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer. PMID:25038754

  12. Identification of genetic loci required for Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    Directory of Open Access Journals (Sweden)

    Ky Van Hoang

    2012-03-01

    Full Text Available Antimicrobial peptides (AMPs are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TNTM Transposome in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  13. High Frequency of Interactions between Lung Cancer Susceptibility Genes in the Mouse : Mapping of Sluc5 to Sluc14

    NARCIS (Netherlands)

    Fijneman, Remond J.A.; Jansen, Ritsert C.; Valk, Martin A. van der; Demant, Peter

    1998-01-01

    Although several genes that cause monogenic familial cancer syndromes have been identified, susceptibility to sporadic cancer remains unresolved. Animal experiments have demonstrated multigenic control of tumor susceptibility. Recently, we described four mouse lung cancer susceptibility (Sluc) loci,

  14. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes

    DEFF Research Database (Denmark)

    de Jong, Simone; van Eijk, Kristel R; Zeegers, Dave W L H

    2012-01-01

    of the Psychiatric GWAS consortium (PGC) yielded five novel loci for schizophrenia. In this study, we aim to highlight additional schizophrenia susceptibility loci from the PGC study by combining the top association findings from the discovery stage (9394 schizophrenia cases and 12 462 controls) with expression QTLs...

  15. Large-scale association analysis identifies new risk loci for coronary artery disease

    NARCIS (Netherlands)

    Deloukas, Panos; Kanoni, Stavroula; Willenborg, Christina; Farrall, Martin; Assimes, Themistocles L.; Thompson, John R.; Ingelsson, Erik; Saleheen, Danish; Erdmann, Jeanette; Goldstein, Benjamin A.; Stirrups, Kathleen; König, Inke R.; Cazier, Jean-Baptiste; Johansson, Asa; Hall, Alistair S.; Lee, Jong-Young; Willer, Cristen J.; Chambers, John C.; Esko, Tõnu; Folkersen, Lasse; Goel, Anuj; Grundberg, Elin; Havulinna, Aki S.; Ho, Weang K.; Hopewell, Jemma C.; Eriksson, Niclas; Kleber, Marcus E.; Kristiansson, Kati; Lundmark, Per; Lyytikäinen, Leo-Pekka; Rafelt, Suzanne; Shungin, Dmitry; Strawbridge, Rona J.; Thorleifsson, Gudmar; Tikkanen, Emmi; van Zuydam, Natalie; Voight, Benjamin F.; Waite, Lindsay L.; Zhang, Weihua; Ziegler, Andreas; Absher, Devin; Altshuler, David; Balmforth, Anthony J.; Barroso, Inês; Braund, Peter S.; Burgdorf, Christof; Claudi-Boehm, Simone; Cox, David; Dimitriou, Maria; Do, Ron; Doney, Alex S. F.; El Mokhtari, NourEddine; Eriksson, Per; Fischer, Krista; Fontanillas, Pierre; Franco-Cereceda, Anders; Gigante, Bruna; Groop, Leif; Gustafsson, Stefan; Hager, Jörg; Hallmans, Göran; Han, Bok-Ghee; Hunt, Sarah E.; Kang, Hyun M.; Illig, Thomas; Kessler, Thorsten; Knowles, Joshua W.; Kolovou, Genovefa; Kuusisto, Johanna; Langenberg, Claudia; Langford, Cordelia; Leander, Karin; Lokki, Marja-Liisa; Lundmark, Anders; McCarthy, Mark I.; Meisinger, Christa; Melander, Olle; Mihailov, Evelin; Maouche, Seraya; Morris, Andrew D.; Müller-Nurasyid, Martina; Nikus, Kjell; Peden, John F.; Rayner, N. William; Rasheed, Asif; Rosinger, Silke; Rubin, Diana; Rumpf, Moritz P.; Schäfer, Arne; Sivananthan, Mohan; Song, Ci; Stewart, Alexandre F. R.; Tan, Sian-Tsung; Thorgeirsson, Gudmundur; van der Schoot, C. Ellen; Wagner, Peter J.; Wells, George A.; Wild, Philipp S.; Yang, Tsun-Po; Amouyel, Philippe; Arveiler, Dominique; Basart, Hanneke; Boehnke, Michael; Boerwinkle, Eric; Brambilla, Paolo; Cambien, Francois; Cupples, Adrienne L.; de Faire, Ulf; Dehghan, Abbas; Diemert, Patrick; Epstein, Stephen E.; Evans, Alun; Ferrario, Marco M.; Ferrières, Jean; Gauguier, Dominique; Go, Alan S.; Goodall, Alison H.; Gudnason, Villi; Hazen, Stanley L.; Holm, Hilma; Iribarren, Carlos; Jang, Yangsoo; Kähönen, Mika; Kee, Frank; Kim, Hyo-Soo; Klopp, Norman; Koenig, Wolfgang; Kratzer, Wolfgang; Kuulasmaa, Kari; Laakso, Markku; Laaksonen, Reijo; Lee, Ji-Young; Lind, Lars; Ouwehand, Willem H.; Parish, Sarah; Park, Jeong E.; Pedersen, Nancy L.; Peters, Annette; Quertermous, Thomas; Rader, Daniel J.; Salomaa, Veikko; Schadt, Eric; Shah, Svati H.; Sinisalo, Juha; Stark, Klaus; Stefansson, Kari; Trégouët, David-Alexandre; Virtamo, Jarmo; Wallentin, Lars; Wareham, Nicholas; Zimmermann, Martina E.; Nieminen, Markku S.; Hengstenberg, Christian; Sandhu, Manjinder S.; Pastinen, Tomi; Syvänen, Ann-Christine; Hovingh, G. Kees; Dedoussis, George; Franks, Paul W.; Lehtimäki, Terho; Metspalu, Andres; Zalloua, Pierre A.; Siegbahn, Agneta; Schreiber, Stefan; Ripatti, Samuli; Blankenberg, Stefan S.; Perola, Markus; Clarke, Robert; Boehm, Bernhard O.; O'Donnell, Christopher; Reilly, Muredach P.; März, Winfried; Collins, Rory; Kathiresan, Sekar; Hamsten, Anders; Kooner, Jaspal S.; Thorsteinsdottir, Unnur; Danesh, John; Palmer, Colin N. A.; Roberts, Robert; Watkins, Hugh; Schunkert, Heribert; Samani, Nilesh J.

    2013-01-01

    Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2)

  16. Chromosomal Abnormalities and Putative Susceptibility Genes in Autism Spectrum Disorders

    DEFF Research Database (Denmark)

    Nielsen, Mette Gilling

    Autism spectrum disorders (ASDs) is a heterogeneous group of neurodevelopmental disorders with a significant genetic component as shown by family and twin studies. However, only a few genes have repeatedly been shown to be involved in the development of ASDs. The aim of this study has been...

  17. BPS Jumping Loci are Automorphic

    Science.gov (United States)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  18. Confirmation of novel type 1 diabetes risk loci in families

    DEFF Research Database (Denmark)

    Cooper, J D; Howson, J M M; Smyth, D

    2012-01-01

    Over 50 regions of the genome have been associated with type 1 diabetes risk, mainly using large case/control collections. In a recent genome-wide association (GWA) study, 18 novel susceptibility loci were identified and replicated, including replication evidence from 2,319 families. Here, we......, the Type 1 Diabetes Genetics Consortium (T1DGC), aimed to exclude the possibility that any of the 18 loci were false-positives due to population stratification by significantly increasing the statistical power of our family study....

  19. Characterization of Mauritius parakeet (Psittacula eques)\\ud microsatellite loci and their cross-utility in other parrots\\ud (Psittacidae, Aves).

    OpenAIRE

    Raisin, Claire; Dawson, Deborah A.; Greenwood, Andrew G.; Jones, Carl G.; Groombridge, Jim J.

    2009-01-01

    We characterized 21 polymorphic microsatellite loci in the endangered Mauritius parakeet (Psittacula eques). Loci were isolated from a Mauritius parakeet genomic library that had been enriched separately for eight different repeat motifs. Loci were characterized in up to 43 putatively unrelated Mauritius parakeets from a single population inhabiting the Black River Gorges National Park, Mauritius. Each locus displayed between three and nine alleles, with the observed heterozygosity ranging be...

  20. USP38, FREM3, SDC1, DDC, and LOC727982 Gene Polymorphisms and Differential Susceptibility to Severe Malaria in Tanzania.

    Science.gov (United States)

    Manjurano, Alphaxard; Sepúlveda, Nuno; Nadjm, Behzad; Mtove, George; Wangai, Hannah; Maxwell, Caroline; Olomi, Raimos; Reyburn, Hugh; Drakeley, Christopher J; Riley, Eleanor M; Clark, Taane G

    2015-10-01

    Populations exposed to Plasmodium falciparum infection develop genetic mechanisms of protection against severe malarial disease. Despite decades of genetic epidemiological research, the sickle cell trait (HbAS) sickle cell polymorphism, ABO blood group, and other hemoglobinopathies remain the few major determinants in severe malaria to be replicated across different African populations and study designs. Within a case-control study in a region of high transmission in Tanzania (n = 983), we investigated the role of 40 new loci identified in recent genome-wide studies. In 32 loci passing quality control procedures, we found polymorphisms in USP38, FREM3, SDC1, DDC, and LOC727982 genes to be putatively associated with differential susceptibility to severe malaria. Established candidates explained 7.4% of variation in severe malaria risk (HbAS polymorphism, 6.3%; α-thalassemia, 0.3%; ABO group, 0.3%; and glucose-6-phosphate dehydrogenase deficiency, 0.5%) and the new polymorphisms, another 4.3%. The regions encompassing the loci identified are promising targets for the design of future treatment and control interventions. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  1. Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis

    NARCIS (Netherlands)

    Mayes, Maureen D.; Bossini-Castillo, Lara; Gorlova, Olga; Martin, Jose Ezequiel; Zhou, Xiaodong; Chen, Wei V.; Assassi, Shervin; Ying, Jun; Tan, Filemon K.; Arnett, Frank C.; Reveille, John D.; Guerra, Sandra; Terue, Maria; Carmona, Francisco David; Gregersen, Peter K.; Lee, Annette T.; Lopez-Isac, Elena; Ochoa, Eguzkine; Carreira, Patricia; Simeon, Carmen Pilar; Castellvi, Ivan; Angel Gonzalez-Gay, Miguel; Zhernakova, Alexandra; Padyukov, Leonid; Aarcon-Riquelme, Marta; Wijmenga, Cisca; Beretta, Lorenzo; Riemekasten, Gabriela; Witte, Torsten; Hunzelmann, Nicolas; Kreuter, Alexander; Distler, Jorg H. W.; Voskuy, Alexandre E.; Schuerwegh, Annemie J.; Hesselstrand, Roger; Nordin, Annika; Airo, Paolo; Lunardi, Claudio; Shiels, Paul; van Laar, Jacob M.; Herrick, Ariane; Worthington, Jane; Denton, Christopher; Wigley, Fredrick M.; Hummers, Laura K.; Varga, John; Hinchcliff, Monique E.; Baron, Murray; Hudson, Marie; Pope, Janet E.

    2014-01-01

    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic

  2. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease

    NARCIS (Netherlands)

    van der Harst, Pim; Verweij, Niek

    2018-01-01

    Rationale: Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic

  3. Association analysis identifies 65 new breast cancer risk loci

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast...... cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P risk single-nucleotide polymorphisms in these loci fall......-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores...

  4. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci.

    Science.gov (United States)

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Yoo, Dae Hyun; Kang, Young Mo; Kim, Seong-Kyu; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Choe, Jung-Yoon; Shin, Hyoung Doo; Lee, Jong-Young; Han, Bok-Ghee; Nath, Swapan K; Eyre, Steve; Bowes, John; Pappas, Dimitrios A; Kremer, Joel M; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlestig, Lisbeth; Okada, Yukinori; Diogo, Dorothée; Liao, Katherine P; Karlson, Elizabeth W; Raychaudhuri, Soumya; Rantapää-Dahlqvist, Solbritt; Martin, Javier; Klareskog, Lars; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Greenberg, Jeffrey D; Plenge, Robert M; Bae, Sang-Cheol

    2015-03-01

    A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Nine microsatellite loci developed from the octocoral, Paragorgia arborea

    Science.gov (United States)

    Coykendall, D. Katharine; Morrison, Cheryl L.

    2015-01-01

    Paragorgia arborea, or bubblegum coral, occurs in continental slope habitats worldwide, which are increasingly threatened by human activities such as energy development and fisheries practices. From 101 putative loci screened, nine microsatellite markers were developed from samples taken from Baltimore canyon in the western North Atlantic Ocean. The number of alleles ranged from two to thirteen per locus and each displayed equilibrium. These nuclear resources will help further research on population connectivity in threatened coral species where mitochondrial markers are known to lack fine-scale genetic diversity.

  6. Library Spirit and Genius Loci

    DEFF Research Database (Denmark)

    Dahlkild, Nan

    2009-01-01

    The architecture and design of Nyborg Public Library in the light of the concepts "Library Spirit" and "Genius Loci", related to contemporary social and cultural movements, the development of the early welfare state and the "Scandinavian Style".......The architecture and design of Nyborg Public Library in the light of the concepts "Library Spirit" and "Genius Loci", related to contemporary social and cultural movements, the development of the early welfare state and the "Scandinavian Style"....

  7. Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Xiang-Ping Liu

    2017-05-01

    Full Text Available Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS. The plants were genotyped using genotyping-by-sequencing (GBS. A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW, plant height (PH, leaf chlorophyll content (LCC, and stomatal conductance (SC. For each trait, a stress susceptibility index (SSI was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (Medicago truncatula. Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.

  8. Novel microsatellite loci for studies of Thamnophis Gartersnake genetic identity and hybridization

    Science.gov (United States)

    Sloss, Brian L.; Schuurman, Gregor W.; Paloski, Rori A.; Boyle, Owen D.; Kapfer, Joshua M.

    2012-01-01

    Butler’s Gartersnakes (BGS; Thamnophis butleri) are confined to open and semi-open canopy wetlands and adjacent uplands, habitats under threat of development in Wisconsin. To address issues of species identity and putative hybridization with congeneric snakes, a suite of 18 microsatellite loci capable of cross-species amplification of Plains Gartersnakes (T. radix) and Common Gartersnakes (T. sirtalis) was developed. All loci were polymorphic in BGS with mean number of alleles per locus of 16.11 (range = 3–41) and mean observed heterozygosity of 0.659 (range = 0.311–0.978). Loci amplified efficiently in the congeneric species with high levels of intra- and inter-specific variation. These loci will aid ongoing efforts to effectively identify and manage BGS in Wisconsin.

  9. List of isozyme loci - RGP gmap98 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us RGP gmap98 List of isozyme loci Data detail Data name List of isozyme loci DOI 10.18908/lsdb...he present high-density linkage map, and that were putatively identified as isozyme genes. Data file File name: rgp_gmap98_iso...gmap98/LATEST/rgp_gmap98_isozyme_loci.zip File size: 611 B Simple search URL http://togodb.biosciencedbc.jp/...0001 were considered as functionally identical clones. And we have selected the ones that hit the isozyme ge...his Database Database Description Download License Update History of This Database Site Policy | Contact Us List of isozyme loci - RGP gmap98 | LSDB Archive ...

  10. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia

    OpenAIRE

    Berndt, S.I.; Skibola, C.F.; Joseph, V.; Camp, N.J.; Nieters, A.; Wang, Z.; Cozen, W.; Monnereau, A.; Wang, S.S.; Kelly, R.S.; Lan, Q.; Teras, L.R.; Chatterjee, N.; Chung, C.C.; Yeager, M.

    2013-01-01

    Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P = 1.22 × 10...

  11. In-silico analysis of inflammatory bowel disease (IBD GWAS loci to novel connections.

    Directory of Open Access Journals (Sweden)

    Md Mesbah-Uddin

    Full Text Available Genome-wide association studies (GWASs for many complex diseases, including inflammatory bowel disease (IBD, produced hundreds of disease-associated loci-the majority of which are noncoding. The number of GWAS loci is increasing very rapidly, but the process of translating single nucleotide polymorphisms (SNPs from these loci to genomic medicine is lagging. In this study, we investigated 4,734 variants from 152 IBD associated GWAS loci (IBD associated 152 lead noncoding SNPs identified from pooled GWAS results + 4,582 variants in strong linkage-disequilibrium (LD (r2 ≥0.8 for EUR population of 1K Genomes Project using four publicly available bioinformatics tools, e.g. dbPSHP, CADD, GWAVA, and RegulomeDB, to annotate and prioritize putative regulatory variants. Of the 152 lead noncoding SNPs, around 11% are under strong negative selection (GERP++ RS ≥2; and ~30% are under balancing selection (Tajima's D score >2 in CEU population (1K Genomes Project--though these regions are positively selected (GERP++ RS <0 in mammalian evolution. The analysis of 4,734 variants using three integrative annotation tools produced 929 putative functional SNPs, of which 18 SNPs (from 15 GWAS loci are in concordance with all three classifiers. These prioritized noncoding SNPs may contribute to IBD pathogenesis by dysregulating the expression of nearby genes. This study showed the usefulness of integrative annotation for prioritizing fewer functional variants from a large number of GWAS markers.

  12. Susceptibility Testing

    Science.gov (United States)

    ... Marker Bicarbonate (Total CO2) Bilirubin Blood Culture Blood Gases Blood Ketones Blood Smear Blood Typing Blood Urea ... hours depending on the method used. There are commercial tests available that offer rapid susceptibility testing and ...

  13. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  14. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry.

    Science.gov (United States)

    Sun, Celi; Molineros, Julio E; Looger, Loren L; Zhou, Xu-Jie; Kim, Kwangwoo; Okada, Yukinori; Ma, Jianyang; Qi, Yuan-Yuan; Kim-Howard, Xana; Motghare, Prasenjeet; Bhattarai, Krishna; Adler, Adam; Bang, So-Young; Lee, Hye-Soon; Kim, Tae-Hwan; Kang, Young Mo; Suh, Chang-Hee; Chung, Won Tae; Park, Yong-Beom; Choe, Jung-Yoon; Shim, Seung Cheol; Kochi, Yuta; Suzuki, Akari; Kubo, Michiaki; Sumida, Takayuki; Yamamoto, Kazuhiko; Lee, Shin-Seok; Kim, Young Jin; Han, Bok-Ghee; Dozmorov, Mikhail; Kaufman, Kenneth M; Wren, Jonathan D; Harley, John B; Shen, Nan; Chua, Kek Heng; Zhang, Hong; Bae, Sang-Cheol; Nath, Swapan K

    2016-03-01

    Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10(-117), odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.

  15. Seven newly identified loci for autoimmune thyroid disease.

    Science.gov (United States)

    Cooper, Jason D; Simmonds, Matthew J; Walker, Neil M; Burren, Oliver; Brand, Oliver J; Guo, Hui; Wallace, Chris; Stevens, Helen; Coleman, Gillian; Franklyn, Jayne A; Todd, John A; Gough, Stephen C L

    2012-12-01

    Autoimmune thyroid disease (AITD), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), is one of the most common of the immune-mediated diseases. To further investigate the genetic determinants of AITD, we conducted an association study using a custom-made single-nucleotide polymorphism (SNP) array, the ImmunoChip. The SNP array contains all known and genotype-able SNPs across 186 distinct susceptibility loci associated with one or more immune-mediated diseases. After stringent quality control, we analysed 103 875 common SNPs (minor allele frequency >0.05) in 2285 GD and 462 HT patients and 9364 controls. We found evidence for seven new AITD risk loci (P test derived significance threshold), five at locations previously associated and two at locations awaiting confirmation, with other immune-mediated diseases.

  16. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    NARCIS (Netherlands)

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes; Baurecht, Hansjoerg; Hotze, Melanie; Strachan, David P.; Curtin, John A.; Bonnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P.; den Dekker, Herman T.; Ferreira, Manuel A.; Altmaier, Elisabeth; Sleiman, Patrick M. A.; Xiao, Feng Li; Gonzalez, Juan R.; Marenholz, Ingo; Kalb, Birgit; Pino-Yanes, Maria; Xu, Chengjian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M.; Venturini, Cristina; Pennell, Craig E.; Barton, Sheila J.; Levin, Albert M.; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Moller, Eskil; Lockett, Gabrielle A.; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A.; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y.; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L.; Henderson, A. John; Kemp, John P.; Zheng, Jie; Smith, George Davey; Rueschendorf, Franz; Postma, Dirkje S.; Weiss, Scott T.; Koppelman, Gerard H.

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases

  17. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    DEFF Research Database (Denmark)

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases...

  18. High Resolution of Quantitative Traits Into Multiple Loci via Interval Mapping

    OpenAIRE

    Jansen, Ritsert C.; Stam, Piet

    1994-01-01

    A very general method is described for multiple linear regression of a quantitative phenotype on genotype [putative quantitative trait loci (QTLs) and markers] in segregating generations obtained from line crosses. The method exploits two features, (a) the use of additional parental and F1 data, which fixes the joint QTL effects and the environmental error, and (b) the use of markers as cofactors, which reduces the genetic background noise. As a result, a significant increase of QTL detection...

  19. Genetic susceptibility to Grave's disease.

    Science.gov (United States)

    Li, Hong; Chen, Qiuying

    2013-06-01

    The variety of clinical presentations of eye changes in patients with Graves' disease (GD) suggests that complex interactions between genetic, environmental, endogenous and local factors influence the severity of Graves' ophthalmopathy (GO). It is thought that the development of GO might be influenced by genetic factors and environmental factors, such as cigarette smoking. At present, however, the role of genetic factors in the development of GO is not known. On the basis of studies with candidate genes and other genetic approaches, several susceptibility loci in GO have been proposed, including immunological genes, human leukocyte antigen (HLA), cytotoxic T-lymphocyte antigen-4 (CTLA-4), regulatory T-cell genes and thyroid-specific genes. This review gives a brief overview of the current range of major susceptibility genes found for GD.

  20. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    NARCIS (Netherlands)

    Speliotes, Elizabeth K.; Willer, Cristen J.; Berndt, Sonja I.; Monda, Keri L.; Thorleifsson, Gudmar; Jackson, Anne U.; Allen, Hana Lango; Lindgren, Cecilia M.; Luan, Jian'an; Maegi, Reedik; Randall, Joshua C.; Vedantam, Sailaja; Winkler, Thomas W.; Qi, Lu; Workalemahu, Tsegaselassie; Heid, Iris M.; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Weedon, Michael N.; Wheeler, Eleanor; Wood, Andrew R.; Ferreira, Teresa; Weyant, Robert J.; Segre, Ayellet V.; Estrada, Karol; Liang, Liming; Nemesh, James; Park, Ju-Hyun; Gustafsson, Stefan; Kilpelaenen, Tuomas O.; Yang, Jian; Bouatia-Naji, Nabila; Esko, Tonu; Feitosa, Mary F.; Kutalik, Zoltan; Mangino, Massimo; Raychaudhuri, Soumya; Scherag, Andre; Smith, Albert Vernon; Welch, Ryan; Zhao, Jing Hua; Aben, Katja K.; Absher, Devin M.; Amin, Najaf; Dixon, Anna L.; Fisher, Eva; Glazer, Nicole L.; Goddard, Michael E.; Heard-Costa, Nancy L.; van Meurs, Joyce B. J.

    2010-01-01

    Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of

  1. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  2. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10...

  3. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L.; Schmidt, Marjanka K.; Chang-Claude, Jenny; Bojesen, Stig E.; Bolla, Manjeet K.; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos Santos Silva, Isabel; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B.; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L.; Southey, Melissa C.; Makalic, Enes; Schmidt, Daniel F.; Uitterlinden, Andre G.; Hofman, Albert; Hunter, David J.; Chanock, Stephen J.; Vincent, Daniel; Bacot, François; Tessier, Daniel C.; Canisius, Sander; Wessels, Lodewyk F. A.; Haiman, Christopher A.; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N.; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; van 't Veer, Laura J.; van der Schoot, C. Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M. Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M. Rosario; Cox, Angela; Brock, Ian W.; Cross, Simon S.; Reed, Malcolm W. R.; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J.; Hollestelle, Antoinette; van den Ouweland, Ans M. W.; Jager, Agnes; Bui, Quang M.; Stone, Jennifer; Dite, Gillian S.; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Kristensen, Vessela N.; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E.; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H.; Tseng, Chiu-Chen; van den Berg, David; Stram, Daniel O.; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K.; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J.; Signorello, Lisa B.; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Dunning, Alison M.; Benitez, Javier; Easton, Douglas F.

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including

  4. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    DEFF Research Database (Denmark)

    Howson, Joanna M. M.; Zhao, Wei; Barnes, Daniel R

    2017-01-01

    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy ...

  5. Development of Microsatellite Loci for the Riparian Tree Species Melaleuca argentea (Myrtaceae Using 454 Sequencing

    Directory of Open Access Journals (Sweden)

    Paul G. Nevill

    2013-05-01

    Full Text Available Premise of the study: Microsatellite primers were developed for Melaleuca argentea (Myrtaceae to evaluate genetic diversity and population genetic structure of this broadly distributed northern Australian riparian tree species. Methods and Results: 454 GS-FLX shotgun sequencing was used to obtain 5860 sequences containing putative microsatellite motifs. Two multiplex PCRs were optimized to genotype 11 polymorphic microsatellite loci. These loci were screened for variation in individuals from two populations in the Pilbara region, northwestern Western Australia. Overall, observed heterozygosities ranged from 0.27 to 0.86 (mean: 0.52 and the number of alleles per locus ranged from two to 13 (average: 4.3. Conclusions: These microsatellite loci will be useful in future studies of the evolutionary history and population and spatial genetic structure in M. argentea, and inform the development of seed sourcing strategies for the species.

  6. Association analysis identifies 65 new breast cancer risk loci

    OpenAIRE

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer ri...

  7. Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS

    NARCIS (Netherlands)

    Diekstra, Frank P.; Saris, Christiaan G. J.; van Rheenen, Wouter; Franke, Lude; Jansen, Ritsert C.; van Es, Michael A.; van Vught, Paul W. J.; Blauw, Hylke M.; Groen, Ewout J. N.; Horvath, Steve; Estrada, Karol; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, Andre G.; Robberecht, Wim; Andersen, Peter M.; Melki, Judith; Meininger, Vincent; Hardiman, Orla; Landers, John E.; Brown, Robert H.; Shatunov, Aleksey; Shaw, Christopher E.; Leigh, P. Nigel; Al-Chalabi, Ammar; Ophoff, Roel A.; van den Berg, Leonard H.; Veldink, Jan H.; Brown Jr., Robert H.; Brug, Marcel P. van der

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility loci. However, many more causal loci remain

  8. Identification of a breast cancer susceptibility locus at 4q31.22 using a genome-wide association study paradigm.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available More than 40 single nucleotide polymorphisms (SNPs for breast cancer susceptibility were identified by genome-wide association studies (GWASs. However, additional SNPs likely contribute to breast cancer susceptibility and overall genetic risk, prompting this investigation for additional variants. Six putative breast cancer susceptibility SNPs identified in a two-stage GWAS that we reported earlier were replicated in a follow-up stage 3 study using an independent set of breast cancer cases and controls from Canada, with an overall cumulative sample size of 7,219 subjects across all three stages. The study design also encompassed the 11 variants from GWASs previously reported by various consortia between the years 2007-2009 to (i enable comparisons of effect sizes, and (ii identify putative prognostic variants across studies. All SNP associations reported with breast cancer were also adjusted for body mass index (BMI. We report a strong association with 4q31.22-rs1429142 (combined per allele odds ratio and 95% confidence interval = 1.28 [1.17-1.41] and P combined = 1.5×10(-7, when adjusted for BMI. Ten of the 11 breast cancer susceptibility loci reported by consortia also showed associations in our predominantly Caucasian study population, and the associations were independent of BMI; four FGFR2 SNPs and TNRC9-rs3803662 were among the most notable associations. Since the original report by Garcia-Closas et al. 2008, this is the second study to confirm the association of 8q24.21-rs13281615 with breast cancer outcomes.

  9. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47

    DEFF Research Database (Denmark)

    Anderson, Carl A; Boucher, Gabrielle; Lees, Charlie W

    2011-01-01

    Genome-wide association studies and candidate gene studies in ulcerative colitis have identified 18 susceptibility loci. We conducted a meta-analysis of six ulcerative colitis genome-wide association study datasets, comprising 6,687 cases and 19,718 controls, and followed up the top association...... signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P associated loci to 47. After annotating associated regions using GRAIL, expression quantitative trait loci data and correlations with non-synonymous SNPs, we...... identified many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease risk loci is now 99, including a minimum of 28 shared association...

  10. Association analysis identifies 65 new breast cancer risk loci

    Science.gov (United States)

    Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K.; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D.; Chen, Xiao Qing; Fachal, Laura; McCue, Karen; McCart Reed, Amy E.; Ghoussaini, Maya; Carroll, Jason; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N.; Arndt, Volker; Aronson, Kristan J.; Arun, Banu; Auer, Paul L.; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W.; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W.; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y.; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D.; Castelao, Jose E.; Chan, Tsun L.; Cheng, Ting-Yuan David; Chia, Kee Seng; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L.; Collée, Margriet; Conroy, Don M.; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Devilee, Peter; Doheny, Kimberly F.; Dörk, Thilo; dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M.; Ekici, Arif B.; Eliassen, A. Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M.; García-Sáenz, José A.; Gaudet, Mia M.; Georgoulias, Vassilios; Giles, Graham G.; Glendon, Gord; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Grenaker Alnæs, Grethe I.; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N.; Hartikainen, Jaana M.; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M.; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J.; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I.; Kim, Sung-Won; Knight, Julia A.; Kosma, Veli-Matti; Kristensen, Vessela N.; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Marchand, Loic Le; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Lee, Chuen Neng; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P.; Ma, Edmond S.K.; MacInnis, Robert J.; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E.; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Mohd Taib, Nur Aishah; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F.; Noh, Dong-Young; Nordestgaard, Børge G.; Norman, Aaron; Olopade, Olufunmilayo I.; Olson, Janet E.; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V. Shane; Park, Sue K.; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I.A.; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofieva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S.; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J. Th.; Saloustros, Emmanouil; Sandler, Dale P.; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmutzler, Rita K.; Schneeweiss, Andreas; Schoemaker, Minouk J.; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J.; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E.; Shrubsole, Martha J.; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C.; Spinelli, John J.; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O.; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A.; Tengström, Maria; Teo, Soo H.; Terry, Mary Beth; Tessier, Daniel C.; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J.; Van Den Berg, David; van den Ouweland, Ans M.W.; van der Kolk, Lizet; van der Luijt, Rob B.; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R.; Wendt, Camilla; Whittemore, Alice S.; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H.; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R.; Yip, Cheng Har; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R.; Antoniou, Antonis C.; Droit, Arnaud; Andrulis, Irene L.; Amos, Christopher I.; Couch, Fergus J.; Pharoah, Paul D.P.; Chang-Claude, Jenny; Hall, Per; Hunter, David J.; Milne, Roger L.; García-Closas, Montserrat; Schmidt, Marjanka K.; Chanock, Stephen J.; Dunning, Alison M.; Edwards, Stacey L.; Bader, Gary D.; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F.

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes such as BRCA1 and many common, mainly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. We report results from a genome-wide association study (GWAS) of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci associated with overall breast cancer at pcancer due to all SNPs in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the utility of genetic risk scores for individualized screening and prevention. PMID:29059683

  11. Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host.

    Directory of Open Access Journals (Sweden)

    John P Jerome

    2011-01-01

    Full Text Available The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10(-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64 Mb genome to 200-500 X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.

  12. Association analysis identifies 65 new breast cancer risk loci.

    Science.gov (United States)

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D; Qing Chen, Xiao; Fachal, Laura; McCue, Karen; McCart Reed, Amy E; Ghoussaini, Maya; Carroll, Jason S; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N; Arndt, Volker; Aronson, Kristan J; Arun, Banu; Auer, Paul L; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D; Castelao, Jose E; Chan, Tsun L; David Cheng, Ting-Yuan; Seng Chia, Kee; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L; Collée, Margriet; Conroy, Don M; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Devilee, Peter; Doheny, Kimberly F; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M; Ekici, Arif B; Eliassen, A Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M; García-Sáenz, José A; Gaudet, Mia M; Georgoulias, Vassilios; Giles, Graham G; Glendon, Gord; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Grenaker Alnæs, Grethe I; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N; Hartikainen, Jaana M; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I; Kim, Sung-Won; Knight, Julia A; Kosma, Veli-Matti; Kristensen, Vessela N; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Le Marchand, Loic; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Neng Lee, Chuen; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P; Ma, Edmond S K; MacInnis, Robert J; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Taib, Nur Aishah Mohd; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F; Noh, Dong-Young; Nordestgaard, Børge G; Norman, Aaron; Olopade, Olufunmilayo I; Olson, Janet E; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V Shane; Park, Sue K; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I A; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofyeva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J T; Saloustros, Emmanouil; Sandler, Dale P; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Daniel F; Schmutzler, Rita K; Schneeweiss, Andreas; Schoemaker, Minouk J; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E; Shrubsole, Martha J; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C; Spinelli, John J; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A; Tengström, Maria; Teo, Soo H; Beth Terry, Mary; Tessier, Daniel C; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A E M; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-Chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J; Van Den Berg, David; van den Ouweland, Ans M W; van der Kolk, Lizet; van der Luijt, Rob B; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R; Wendt, Camilla; Whittemore, Alice S; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R; Har Yip, Cheng; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R; Antoniou, Antonis C; Droit, Arnaud; Andrulis, Irene L; Amos, Christopher I; Couch, Fergus J; Pharoah, Paul D P; Chang-Claude, Jenny; Hall, Per; Hunter, David J; Milne, Roger L; García-Closas, Montserrat; Schmidt, Marjanka K; Chanock, Stephen J; Dunning, Alison M; Edwards, Stacey L; Bader, Gary D; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F

    2017-11-02

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10 -8 . The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.

  13. Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population.

    Science.gov (United States)

    Balint-Kurti, P J; Krakowsky, M D; Jines, M P; Robertson, L A; Molnár, T L; Goodman, M M; Holl, J B

    2006-10-01

    ABSTRACT A recombinant inbred line population derived from a cross between the maize lines NC300 (resistant) and B104 (susceptible) was evaluated for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O and for days to anthesis in four environments (Clayton, NC, and Tifton, GA, in both 2004 and 2005). Entry mean and average genetic correlations between disease ratings in different environments were high (0.78 to 0.89 and 0.9, respectively) and the overall entry mean heritability for SLB resistance was 0.89. When weighted mean disease ratings were fitted to a model using multiple interval mapping, seven potential quantitative trait loci (QTL) were identified, the two strongest being on chromosomes 3 (bin 3.04) and 9 (bin 9.03-9.04). These QTL explained a combined 80% of the phenotypic variation for SLB resistance. Some time-point-specific SLB resistance QTL were also identified. There was no significant correlation between disease resistance and days to anthesis. Six putative QTL for time to anthesis were identified, none of which coincided with any SLB resistance QTL.

  14. Commentary on "identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array." COGS-Cancer Research UK GWAS-ELLIPSE (part of GAME-ON) Initiative; Australian Prostate Cancer Bioresource; UK Genetic Prostate Cancer Study Collaborators/British Association

    DEFF Research Database (Denmark)

    Olumi, Aria F; Nordestgaard, Børge G.

    2014-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the internationa...

  15. Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Goodwin, S.B.; Lee, van der T.A.J.; Cavaletto, J.R.; Lintel Hekkert, te B.; Crane, C.F.; Kema, G.H.J.

    2007-01-01

    A database of 30,137 EST sequences from Mycosphaerella graminicola, the septoria tritici blotch fungus of wheat, was scanned with a custom software pipeline for di- and trinucleotide units repeated tandemly six or more times. The bioinformatics analysis identified 109 putative SSR loci, and for 99

  16. Novel susceptibility locus at 22q11 for diabetic nephropathy in type 1 diabetes

    DEFF Research Database (Denmark)

    Wessman, Maija; Forsblom, Carol; Kaunisto, Mari A

    2011-01-01

    Diabetic nephropathy (DN) affects about 30% of patients with type 1 diabetes (T1D) and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci...

  17. New insights into susceptibility to glioma.

    Science.gov (United States)

    Liu, Yanhong; Shete, Sanjay; Hosking, Fay J; Robertson, Lindsay B; Bondy, Melissa L; Houlston, Richard S

    2010-03-01

    The study of inherited susceptibility to cancer has been one of the most informative areas of research in the past decade. Most of the cancer genetics studies have been focused on the common tumors such as breast and colorectal cancers. As the allelic architecture of these tumors is unraveled, research attention is turning to other rare cancers such as glioma, which are also likely to have a major genetic component as the basis of their development. In this brief review we discuss emerging data on glioma whole genome-association searches to identify risk loci. Two glioma genome-wide association studies have so far been reported. Our group identified 5 risk loci for glioma susceptibility (TERT rs2736100, CCDC26 rs4295627, CDKN2A/CDKN2B rs4977756, RTEL1 rs6010620, and PHLDB1 rs498872). Wrensch and colleagues provided further evidence to 2 risk loci (CDKN2B rs1412829 and RTEL1 rs6010620) for GBM and anaplastic astrocytoma. Although these data provide the strongest evidence to date for the role of common low-risk variants in the etiology of glioma, the single-nucleotide polymorphisms identified alone are unlikely to be candidates for causality. Identifying the causal variant at each specific locus and its biological impact now poses a significant challenge, contingent on a combination of fine mapping and functional analyses. Finally, we hope that a greater understanding of the biological basis of the disease will lead to the development of novel therapeutic interventions.

  18. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    Science.gov (United States)

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  19. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2011-11-01

    Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.

  20. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    Science.gov (United States)

    Berndt, Sonja I.; Camp, Nicola J.; Skibola, Christine F.; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S.; Smedby, Karin E.; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S.; Lan, Qing; Teras, Lauren R.; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R.; Hartge, Patricia; Purdue, Mark P.; Birmann, Brenda M.; Vajdic, Claire M.; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G.; Shanafelt, Tait D.; Novak, Anne J.; Kay, Neil E.; Liebow, Mark; Cunningham, Julie M.; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T.; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A.; Diver, W Ryan; Link, Brian K.; Weiner, George J.; Conde, Lucia; Bracci, Paige M.; Riby, Jacques; Arnett, Donna K.; Zhi, Degui; Leach, Justin M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G.; Achenbach, Sara J.; Vachon, Celine M.; Goldin, Lynn R.; Strom, Sara S.; Leis, Jose F.; Weinberg, J. Brice; Caporaso, Neil E.; Norman, Aaron D.; De Roos, Anneclaire J.; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María- Dolores; Vermeulen, Roel C. H.; Travis, Ruth C.; Southey, Melissa C.; Milne, Roger L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R.; Villano, Danylo J.; Maria, Ann; Spinelli, John J.; Gascoyne, Randy D.; Connors, Joseph M.; Bertrand, Kimberly A.; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M.; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E.; Snowden, John A.; Wright, Josh; Fraumeni, Joseph F.; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R.; Chanock, Stephen J.; Rothman, Nathaniel; Slager, Susan L.

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10−11), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10−8) and 3q28 (rs9815073, LPP, P=3.62 × 10−8), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10−11) in the combined analysis. We find suggestive evidence (P<5 × 10−7) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10−8) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10−7). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility. PMID:26956414

  1. Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci

    DEFF Research Database (Denmark)

    Glubb, Dylan M; Johnatty, Sharon E; Quinn, Michael C J

    2017-01-01

    We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D...... and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity...... and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates...

  2. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor

    DEFF Research Database (Denmark)

    Wang, Zhaoming; McGlynn, Katherine A.; Rajpert-De Meyts, Ewa

    2017-01-01

    The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the fi...

  3. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    NARCIS (Netherlands)

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M.; Ben, Songtao; Brownson, Kelly M.; Holland, Paulene J.; Birlea, Stanca A.; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M.; Wolkerstorfer, Albert; Wietze van der Veen, J. P.; Bennett, Dorothy C.; Taïeb, Alain; Ezzedine, Khaled; Kemp, E. Helen; Gawkrodger, David J.; Weetman, Anthony P.; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R.; McCormack, Wayne T.; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B.; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A.; Spritz, Richard A.

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in

  4. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa

    2016-01-01

    Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and ...

  5. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    NARCIS (Netherlands)

    E.K. Speliotes (Elizabeth); C.J. Willer (Cristen); S.I. Berndt (Sonja); K.L. Monda (Keri); G. Thorleifsson (Gudmar); A.U. Jackson (Anne); H.L. Allen; C.M. Lindgren (Cecilia); J. Luan; R. Mägi (Reedik); J.C. Randall (Joshua); S. Vedantam (Sailaja); T.W. Winkler (Thomas); L. Qi (Lu); T. Workalemahu (Tsegaselassie); I.M. Heid (Iris); V. Steinthorsdottir (Valgerdur); H.M. Stringham (Heather); E. Wheeler (Eleanor); A.R. Wood (Andrew); T. Ferreira (Teresa); R.J. Weyant (Robert); A.V. Segrè (Ayellet); K. Eestrada (Karol); L. Liang (Liming); J. Nemesh (James); J.H. Park; S. Gustafsson (Stefan); T.O. Kilpeläinen (Tuomas); J. Yang (Joanna); N. Bouatia-Naji (Nabila); T. Eesko (Tõnu); M.F. Feitosa (Mary Furlan); Z. Kutalik (Zoltán); M. Mangino (Massimo); S. Raychaudhuri (Soumya); A. Scherag (Andre); A.V. Smith (Albert Vernon); R.P. Welch (Ryan); J.H. Zhao (Jing Hua); K.K.H. Aben (Katja); D. Absher (Devin); N. Amin (Najaf); A.L. Dixon (Anna); E. Fisher (Eeva); N.L. Glazer (Nicole); M.E. Goddard (Michael); N.L. Heard-Costa (Nancy); V. Hoesel (Volker); J.J. Hottenga (Jouke Jan); A. Johansson (Åsa); T. Johnson (Toby); S. Ketkar (Shamika); C. Lamina (Claudia); S. Li (Shengxu); M.F. Moffatt (Miriam); R.H. Myers (Richard); N. Narisu (Narisu); J.R.B. Perry (John); M.J. Peters (Marjolein); M. Preuss (Michael); S. Ripatti (Samuli); F. Rivadeneira Ramirez (Fernando); C. Sandholt (Camilla); L.J. Scott (Laura); N.J. Timpson (Nicholas); J.P. Tyrer (Jonathan); S. van Wingerden (Sophie); C.C. White (Charles); F. Wiklund (Fredrik); C. Barlassina (Christina); D.I. Chasman (Daniel); M.N. Cooper (Matthew); J.O. Jansson; R.W. Lawrence (Robert); N. Pellikka (Niina); I. Prokopenko (Inga); J. Shi (Jianxin); E. Thiering (Eelisabeth); H. Alavere (Helene); M.T.S. Alibrandi (Maria); P. Almgren (Peter); A.M. Arnold (Alice); T. Aspelund (Thor); L.D. Atwood (Larry); B. Balkau (Beverley); A.J. Balmforth (Anthony); A.J. Bennett (Amanda); Y. Ben-Shlomo; R.N. Bergman (Richard); S.M. Bergmann (Sven); H. Biebermann (Heike); A.I.F. Blakemore (Alexandra); T. Boes (Tanja); L.L. Bonnycastle (Lori); S.R. Bornstein (Stefan); M.J. Brown (Morris); T.A. Buchanan (Thomas); F. Busonero; H. Campbell (Harry); F.P. Cappuccio (Francesco); C. Cavalcanti-Proença (Christine); Y.D.I. Chen (Yii-Der Ida); C.-M. Chen (Chih-Mei); P.S. Chines (Peter); R. Clarke; L. Coin (Lachlan); J. Connell (John); I.N.M. Day (Ian); M. den Heijer (Martin); J. Duan (Jubao); S. Eebrahim (Shah); P. Eelliott (Paul); R. Eelosua (Roberto); G. Eeiriksdottir (Gudny); M.R. Eerdos (Micheal); J.G. Eeriksson (Johan); M.F. Facheris (Maurizio); S.B. Felix (Stephan); P. Fischer-Posovszky (Pamela); A.R. Folsom (Aaron); N. Friedrich (Nele); N.B. Freimer (Nelson); M. Fu (Mao); S. Gaget (Stefan); P.V. Gejman (Pablo); E.J.C. de Geus (Eco); C. Gieger (Christian); A.P. Gjesing (Anette); A. Goel (Anuj); P. Goyette (Philippe); H. Grallert (Harald); J. Gräßler (Jürgen); D. Greenawalt (Danielle); C.J. Groves (Christopher); V. Gudnason (Vilmundur); C. Guiducci (Candace); A.L. Hartikainen; N. Hassanali (Neelam); A.S. Hall (Alistair); A.S. Havulinna (Aki); C. Hayward (Caroline); A.C. Heath (Andrew); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hinney (Anke); A. Hofman (Albert); G. Homuth (Georg); J. Hui (Jennie); W. Igl (Wilmar); C. Iribarren (Carlos); B. Isomaa (Bo); K.B. Jacobs (Kevin); I. Jarick (Ivonne); E. Jewell (Eelizabeth); U. John (Ulrich); T. Jørgensen (Torben); P. Jousilahti (Pekka); A. Jula (Antti); M. Kaakinen (Marika); E. Kajantie (Eero); R.C. Kaplan (Robert); S. Kathiresan (Sekar); J. Kettunen (Johannes); L. Kinnunen (Leena); J.W. Knowles (Joshua); I. Kolcic (Ivana); I.R. König (Inke); S. Koskinen (Seppo); P. Kovacs (Peter); J. Kusisto (Johanna); P. Kraft (Peter); K. Kvaløy (Kirsti); J. Laitinen (Jaana); O. Lantieri (Olivier); C. Lanzani (Chiara); L.J. Launer (Lenore); C. Lecoeur (Cécile); T. Lehtimäki (Terho); G. Lettre (Guillaume); J. Liu (Jianjun); M.L. Lokki; M. Lorentzon (Mattias); R.N. Luben (Robert); B. Ludwig (Barbara); P. Manunta (Paolo); D. Marek (Diana); M. Marre (Michel); N.G. Martin (Nicholas); W.L. McArdle (Wendy); M.I. McCarthy (Mark); B. McKnight (Barbara); T. Meitinger (Thomas); O. Melander (Olle); D. Meyre (David); K. Midthjell (Kristian); G.W. Montgomery (Grant); M.A. Morken (Mario); A.D. Morris (Andrew); R. Mulic (Rosanda); J.S. Ngwa; M. Nelis (Mari); M.J. Neville (Matthew); D.R. Nyholt (Dale); C.J. O'Ddonnell (Christopher); S. O'Rahilly (Stephen); K. Ong (Ken); B.A. Oostra (Ben); G. Paré (Guillaume); A.N. Parker (Alex); M. Perola (Markus); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); C.P. Platou (Carl); O. Polasek (Ozren); A. Pouta (Anneli); S. Rafelt (Suzanne); O. Raitakari (Olli); N.W. Rayner (Nigel William); M. Ridderstråle (Martin); W. Rief (Winfried); A. Ruokonen (Aimo); N.R. Robertson (Neil); P. Rzehak (Peter); V. Salomaa (Veikko); A.R. Sanders (Alan); M.S. Sandhu (Manjinder); S. Sanna (Serena); J. Saramies (Jouko); M.J. Savolainen (Markku); S. Schipf (Sabine); S. Schreiber (Stefan); H. Schunkert (Heribert); K. Silander (Kaisa); J. Sinisalo (Juha); D.S. Siscovick (David); J.H. Smit (Jan); N. Soranzo (Nicole); U. Sovio (Ulla); J. Stephens (Jonathan); I. Surakka (Ida); A.J. Swift (Amy); M.L. Tammesoo; J.-C. Tardif (Jean-Claude); M. Teder-Laving (Maris); T.M. Teslovich (Tanya); J.R. Thompson (John); B. Thomson (Brian); A. Tönjes (Anke); T. Tuomi (Tiinamaija); J.B.J. van Meurs (Joyce); G.J. van OMen; V. Vatin (Vincent); J. Viikari (Jorma); S. Visvikis-Siest (Sophie); V. Vitart (Veronique); C.I. Vogel (Carla); B.F. Voight (Benjamin); L. Waite (Lindsay); H. Wallaschofski (Henri); G.B. Walters (Bragi); E. Widen (Elisabeth); S. Wiegand (Susanna); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); D.R. Witte (Deniel); J.C.M. Witteman (Jacqueline); J. Xu (Jianfeng); Q. Zhang (Qunyuan); L. Zgaga (Lina); A. Ziegler (Andreas); P. Zitting (Paavo); J.P. Beilby (John); I.S. FarOqi (Ssadaf); J. Hebebrand (Johannes); H.V. Huikuri (Heikki); A. James (Alan); M. Kähönen (Mika); D.F. Levinson (Douglas); F. MacCiardi (Fabio); M.S. Nieminen (Markku); C. Ohlsson (Claes); C. Palmer (Cameron); P.M. Ridker (Paul); M. Stumvoll (Michael); J.S. Beckmann (Jacques); H. Boeing (Heiner); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); S.J. Chanock (Stephen); F.S. Collins (Francis); L.A. Cupples (Adrienne); J. Eerdmann (Jeanette); P. Frogue (Philippe); H. Grönberg (Henrik); U. Gyllensten (Ulf); T. Hansen (Torben); T.B. Harris (Tamara); A.T. Hattersley (Andrew); R.B. Hayes (Richard); J. Heinrich (Joachim); F.B. Hu (Frank); K. Hveem (Kristian); T. Illig (Thomas); M.R. Järvelin; J. Kaprio (Jaakko); F. Karpe (Fredrik); K-T. Khaw (Kay-Tee); L.A.L.M. Kiemeney (Bart); H. Krude; M. Laakso (Markku); D.A. Lawlor (Debbie); A. Metspalu (Andres); P. Munroe (Patricia); W.H. Ouwehand (Willem); O. Pedersen (Oluf); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); T. Quertermous (Thomas); T. Reinehr (Thomas); A. Rissanen (Aila); I. Rudan (Igor); N.J. Samani (Nilesh); P.E.H. Schwarz (Peter); A.R. Shuldiner (Alan); T.D. Spector (Timothy); J. Tuomilehto (Jaakko); M. Uda (Manuela); A.G. Uitterlinden (André); T.T. Valle (Timo); M. Wabitsch (Martin); G. Waeber (Gérard); N.J. Wareham (Nick); H. Watkins (Hugh); J.F. Wilson (James); A.F. Wright (Alan); M.C. Zillikens (Carola); N. ChatterjE (Nilanjan); S.A. McCarroll (Steve); S. Purcell (Shaun); E.E. Schadt (Eric); P.M. Visscher (Peter); T.L. Assimes (Themistocles); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C.S. Fox (Caroline); L. Groop (Leif); T. Haritunians (Talin); D.J. Hunter (David); K.L. Mohlke (Karen); J.R. O'ConneL (Jeffrey); L. Peltonen (Leena Johanna); D. SchleSinger (David); D.P. Strachan (David); R.M. Watanabe (Richard); C.M. van Duijn (Cornelia); H.E. Wichmann (Heinz Erich); T.M. Frayling (Timothy); U. Thorsteinsdottir (Unnur); G.R. Abecasis (Gonçalo); M. Boehnke (Michael); K. StefanSon (Kari); K.E. North (Kari); M.I. McArthy (Mark); J.N. Hirschhorn (Joel); E. IngelSon (Erik); R.J.F. Loos (Ruth); M.N. Weedon (Michael)

    2010-01-01

    textabstractObesity is globaLy prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined aSociations betwEn body maS index and ĝ̂1/42.8 miLion SNPs in up to 123,865 individuals with targeted foLow up of

  6. Fifteen new risk loci for coronary artery disease highlight arterial wall-specific mechanisms

    OpenAIRE

    Howson, Joanna M.M.; Zhao, Wei; Barnes, Daniel R.; Ho, Weang-Kee; Young, Robin; Paul, Dirk S.; Waite, Lindsay L.; Freitag, Daniel F.; Fauman, Eric B.; Salfati, Elias L.; Sun, Benjamin B.; Eicher, John D.; Johnson, Andrew D.; Sheu, Wayne H.H.; Nielsen, Sune F.

    2017-01-01

    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier G...

  7. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    OpenAIRE

    Howson, Joanna McCammond; Zhao, W; Barnes, Daniel Robert; Ho, W-K; Young, R; Paul, Dirk Stefan; Waite, LL; Freitag, DF; Fauman, EB; Salfati, EL; Sun, Benjamin; Eicher, JD; Johnson, AD; Sheu, WHH; Nielsen, SF

    2017-01-01

    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier G...

  8. Linking Y‐chromosomal short tandem repeat loci to human male impulsive aggression

    OpenAIRE

    Yang, Chun; Ba, Huajie; Cao, Yin; Dong, Guoying; Zhang, Shuyou; Gao, Zhiqin; Zhao, Hanqing; Zhou, Xianju

    2017-01-01

    Abstract Introduction Men are more susceptible to impulsive behavior than women. Epidemiological studies revealed that the impulsive aggressive behavior is affected by genetic factors, and the male‐specific Y chromosome plays an important role in this behavior. In this study, we investigated the association between the impulsive aggressive behavior and Y‐chromosomal short tandem repeats (Y‐STRs) loci. Methods The collected biologic samples from 271 offenders with impulsive aggressive behavior...

  9. Identification and characterization of putative conserved IAM ...

    African Journals Online (AJOL)

    Available putative AMI sequences from a wide array of monocot and dicot plants were identified and the phylogenetic tree was constructed and analyzed. We identified in this tree, a clade that contained sequences from species across the plant kingdom suggesting that AMI is conserved and may have a primary role in plant ...

  10. Toddlers' Duration of Attention toward Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  11. Quantitative Trait Loci in Inbred Lines

    NARCIS (Netherlands)

    Jansen, R.C.

    2001-01-01

    Quantitative traits result from the influence of multiple genes (quantitative trait loci) and environmental factors. Detecting and mapping the individual genes underlying such 'complex' traits is a difficult task. Fortunately, populations obtained from crosses between inbred lines are relatively

  12. Biology and applications of human minisatellite loci.

    Science.gov (United States)

    Armour, J A; Jeffreys, A J

    1992-12-01

    Highly repetitive minisatellites' include the most variable human loci described to date. They have proved invaluable in a wide variety of genetic analyses, and despite some controversies surrounding their practical implementation, have been extensively adopted in civil and forensic casework. Molecular analysis of internal allelic structure has provided detailed insights into the repeat-unit turnover mechanisms operating in germline mutations, which are ultimately responsible for the extreme variability seen at these loci.

  13. The mating type-like loci of Candida glabrata.

    Science.gov (United States)

    Yáñez-Carrillo, Patricia; Robledo-Márquez, Karina A; Ramírez-Zavaleta, Candy Y; De Las Peñas, Alejandro; Castaño, Irene

    2014-01-01

    Candida glabrata, a haploid and opportunistic fungal pathogen that has not known sexual cycle, has conserved the majority of the genes required for mating and cell type identity. The C. glabrata genome contains three mating-type-like loci called MTL1, MTL2 and MTL3. The three loci encode putative transcription factors, a1, α1 and α2 that regulate cell type identity and sexual reproduction in other fungi like the closely related Saccharomyces cerevisiae. MTL1 can contain either a or α information. MTL2, which contains a information and MTL3 with α information, are relatively close to two telomeres. MTL1 and MTL2 are transcriptionally active, while MTL3 is subject to an incomplete silencing nucleated at the telomere that depends on the silencing proteins Sir2, Sir3, Sir4, yKu70/80, Rif1, Rap1 and Sum1. C. glabrata does not seem to maintain cell type identity, as cell type-specific genes are expressed regardless of the type (or even absence) of mating information. These data highlight important differences in the control of mating and cell type identity between the non-pathogenic yeast S. cerevisiae and C. glabrata, which might explain the absence of a sexual cycle in C. glabrata. The fact that C. glabrata has conserved the vast majority of the genes involved in mating might suggest that some of these genes perhaps have been rewired to control other processes important for the survival inside the host as a commensal or as a human pathogen. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Three new loci for determining x chromosome inactivation patterns

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Tümer, Zeynep; Ravn, Kirstine

    2011-01-01

    . The reliability of the loci was validated by showing a high correlation between the results obtained by employing the new loci and the AR locus using DNA from 15 females who were informative for all four loci. Altogether, we show that these loci can be applied easily in molecular diagnostic laboratories, either...

  15. Modeling susceptibility to periodontitis

    NARCIS (Netherlands)

    Laine, M.L.; Moustakis, V.; Koumakis, L.; Potamias, G.; Loos, B.G.

    2013-01-01

    Chronic inflammatory diseases like periodontitis have a complex pathogenesis and a multifactorial etiology, involving complex interactions between multiple genetic loci and infectious agents. We aimed to investigate the influence of genetic polymorphisms and bacteria on chronic periodontitis risk.

  16. Identification and characterization of microsatellite loci in two socially complex old world tropical babblers (Family Timaliidae).

    Science.gov (United States)

    Kaiser, Sara A; Danner, J E; Bergner, Laura; Fleischer, Robert C

    2015-11-24

    Although the highest diversity of birds occurs in tropical regions, little is known about the genetic mating systems of most tropical species. We describe microsatellite markers isolated in the chestnut-crested yuhina (Staphida everetti), endemic to the island of Borneo, and the grey-throated babbler (Stachyris nigriceps), widely distributed across Southeast Asia. Both species belong to the avian family Timaliidae and are highly social, putatively cooperatively breeding birds in which helpers attend the nests of members of their social group. We obtained DNA from individuals in social groups breeding in Kinabalu Park, Malaysian Borneo. We used a shotgun sequencing approach and 454-technology to identify 36 microsatellite loci in the yuhina and 40 in the babbler. We tested 13 primer pairs in yuhinas and 20 in babblers and characterized eight polymorphic loci in 20 unrelated female yuhinas and 21 unrelated female babblers. Polymorphism at the yuhina loci ranged from 3 to 9 alleles, observed heterozygosities from 0.58 to 1.00, and expected heterozygosities from 0.64 to 0.81. Polymorphism at the babbler loci ranged from 3 to 12 alleles, observed heterozygosities from 0.14 to 0.90 and expected heterozygosities from 0.14 to 0.87. One locus in the yuhina deviated significantly from Hardy-Weinberg equilibrium. We detected nonrandom allele associations between two pairs of microsatellite loci in each species. Microsatellite markers will be used to describe the genetic mating system of these socially complex species and to measure genetic parentage and relatedness within social groups.

  17. CLONING, SEQUENCE ANALYSIS, AND CHARACTERIZATION OF PUTATIVE BETA-LACTAMASE OF STENOTROPHOMONAS MALTOPHILIA

    Directory of Open Access Journals (Sweden)

    Chong Seng Shueh

    2012-10-01

    Full Text Available The main objective of current study was to explore the function of chromosomal putative beta-lactamase gene (smlt 0115 in clinical Stenotrophomonas maltophilia. Antibiotic susceptibility test (AST screening for current antimicrobial drugs was done and Minimum Inhibitory Concentration (MIC level towards beta-lactams was determined by E-test. Putative beta-lactamase gene of S. maltophilia was amplified via PCR, with specific primers, then cloned into pET-15 expression plasmid and transformed into Escherichia coli BL21. The gene was sequenced and analyzed. The expressed protein was purified by affinity chromatography and the kinetic assay was performed. S. maltophilia ATCC 13637 was included in this experiment. Besides, a hospital strain which exhibited resistant to a series of beta-lactams including cefepime was identified via AST and MIC, hence it was named as S2 strain and was considered in this study. Sequencing result showed that putative beta-lactamase gene obtained from ATCC 13637 and S2 strains were predicted to have cephalosporinase activity by National Center for Biotechnology Information (NCBI blast program. Differences in the sequences of both ATCC 13637 and S2 strains were found via ClustalW alignment software. Kinetic assay proved a cephalosporinase characteristic produced by E. coli BL21 clone that overexpressed the putative beta-lactamase gene cloned under the control of an external promoter. Yet, expressed protein purified from S2 strain had high catalytic activity against beta-lactam antibiotics which was 14-fold higher than expressed protein purified from ATCC 13637 strain. This study represents the characterization analysis of putative beta-lactamase gene (smlt 0115 of S. maltophilia. The presence of the respective gene in the chromosome of S. maltophilia suggested that putative beta-lactamase gene (smlt 0115 of S. maltophilia plays a role in beta-lactamase resistance.

  18. Genetic evidence of multiple loci in dystocia - difficult labour

    Directory of Open Access Journals (Sweden)

    Westgren Magnus

    2010-06-01

    Full Text Available Abstract Background Dystocia, difficult labour, is a common but also complex problem during childbirth. It can be attributed to either weak contractions of the uterus, a large infant, reduced capacity of the pelvis or combinations of these. Previous studies have indicated that there is a genetic component in the susceptibility of experiencing dystocia. The purpose of this study was to identify susceptibility genes in dystocia. Methods A total of 104 women in 47 families were included where at least two sisters had undergone caesarean section at a gestational length of 286 days or more at their first delivery. Study of medical records and a telephone interview was performed to identify subjects with dystocia. Whole-genome scanning using Affymetrix genotyping-arrays and non-parametric linkage (NPL analysis was made in 39 women exhibiting the phenotype of dystocia from 19 families. In 68 women re-sequencing was performed of candidate genes showing suggestive linkage: oxytocin (OXT on chromosome 20 and oxytocin-receptor (OXTR on chromosome 3. Results We found a trend towards linkage with suggestive NPL-score (3.15 on chromosome 12p12. Suggestive linkage peaks were observed on chromosomes 3, 4, 6, 10, 20. Re-sequencing of OXT and OXTR did not reveal any causal variants. Conclusions Dystocia is likely to have a genetic component with variations in multiple genes affecting the patient outcome. We found 6 loci that could be re-evaluated in larger patient cohorts.

  19. Genetic evidence of multiple loci in dystocia - difficult labour

    Science.gov (United States)

    2010-01-01

    Background Dystocia, difficult labour, is a common but also complex problem during childbirth. It can be attributed to either weak contractions of the uterus, a large infant, reduced capacity of the pelvis or combinations of these. Previous studies have indicated that there is a genetic component in the susceptibility of experiencing dystocia. The purpose of this study was to identify susceptibility genes in dystocia. Methods A total of 104 women in 47 families were included where at least two sisters had undergone caesarean section at a gestational length of 286 days or more at their first delivery. Study of medical records and a telephone interview was performed to identify subjects with dystocia. Whole-genome scanning using Affymetrix genotyping-arrays and non-parametric linkage (NPL) analysis was made in 39 women exhibiting the phenotype of dystocia from 19 families. In 68 women re-sequencing was performed of candidate genes showing suggestive linkage: oxytocin (OXT) on chromosome 20 and oxytocin-receptor (OXTR) on chromosome 3. Results We found a trend towards linkage with suggestive NPL-score (3.15) on chromosome 12p12. Suggestive linkage peaks were observed on chromosomes 3, 4, 6, 10, 20. Re-sequencing of OXT and OXTR did not reveal any causal variants. Conclusions Dystocia is likely to have a genetic component with variations in multiple genes affecting the patient outcome. We found 6 loci that could be re-evaluated in larger patient cohorts. PMID:20587075

  20. Quantitative Trait Loci for Mercury Tolerance in Rice Seedlings

    Directory of Open Access Journals (Sweden)

    Chong-qing WANG

    2013-05-01

    Full Text Available Mercury (Hg is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth. However, little is known about the molecular genetic basis for root growth under excess Hg2+ stress. To map quantitative trait loci (QTLs in rice for Hg2+ tolerance, a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCl2 solution. Relative root length (RRL, percentage of the seminal root length in +HgCl2 to –HgCl2, was used for assessing Hg2+ tolerance. In a dose-response experiment, Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 μmol/L. Three putative QTLs for RRL were detected on chromosomes 1, 2 and 5, and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance. The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.

  1. SMAD7 loci contribute to risk of hepatocellular carcinoma and clinicopathologic development among Chinese Han population.

    Science.gov (United States)

    Ji, Jiansong; Xu, Min; Zhao, Zhongwei; Tu, Jianfei; Gao, Jun; Lu, Chenying; Song, Jingjing; Chen, Weiqian; Chen, Minjiang; Fan, Xiaoxi; Cheng, Xingyao; Lan, Xilin; Li, Jie

    2016-04-19

    Genome-wide association studies (GWAS) have identified three loci at 18q21 (rs4939827, rs7240004, and rs7229639), which maps to SMAD7 loci, were associated with risk of diseases of the digestive system. However, their associations with hepatocellular carcinoma (HCC) risk remain unknown. A case-control study was conducted to assess genetic associations with HCC risk and clinicopathologic development among Chinese Han population. Three SNPs were genotyped among 1,000 HCC cases and 1,000 controls using Sequenom Mass-ARRAY technology. We observed statistically significant associations for the three SMAD7 loci and HCC risk. Each copy of minor allele was associated with a 1.24-1.36 fold increased risk of HCC. We also found that significant differences were observed between rs4939827 and clinical TNM stage and vascular invasion, as well as rs7240004 and vascular invasion. We also established a genetic risk score (GRS) by summing the risk alleles. The GRS was significantly associated with increased risk of HCC and vascular invasion. Our data revealed the SMAD7 loci is associated with HCC susceptibility and its clinicopathologic development.

  2. Genes and quality trait loci (QTLs) associated with firmness in Malus x domestica

    KAUST Repository

    Marondedze, Claudius

    2013-03-31

    Fruit firmness, a quality quantitative trait, has long been established as a key textural property and one of the essential parameters for estimating ripening and shelf life of apples. Loss of firmness, also referred to as fruit softening, is undesirable in apples and represents a serious problem for growers in many countries. This results in the reduction of apple shelf life and in turn influences its commercialization. Low firmness impacts negatively on the sensory values of juiciness, crunchiness and crispness. Fruit firmness is affected by the inheritance of alleles at multiple loci and their possible interactions with the environment. Identification of these loci is key for the determination of genetic candidate markers that can be implemented in marker assisted selection and breeding for trees and/or cultivars that can yield firmer fruits with economic value. In turn, this technique can help reduce the time needed to evaluate plants and new cultivars could become available faster. This review provides an overview of quantitative trait loci (QTL), including additional putative QTLs that we have identified, and genes associated with firmness and their importance to biotechnology, the breeding industry and eventually the consumers.

  3. Evolutionary analysis of Pinus densata Masters, a putative Tertiary hybrid : 1. Allozyme variation.

    Science.gov (United States)

    Wang, X R; Szmidt, A E; Lewandowski, A; Wang, Z R

    1990-11-01

    Allozyme differentiation at 13 loci was studied in populations of Pinus tabulaeformis, P. densata, and P. yunnanensis from China. It was previously suggested that P. densata represents a Tertiary hybrid between P. tabulaeformis and P. yunnanensis. The observed levels of allozyme variation within and among the investigated species were comparable to those of other conifers. P. tabulaeformis differed markedly from P. yunnanensis with respect to allozyme frequencies, while P. densata was intermediate between the two putative parents. There was evidence of homozygote excess in embryos from all investigated species, as compared to Hardy-Weinberg expectations. The observed allozyme composition of P. densata conformed to earlier morphological and molecular evidence indicating hybrid origin of this taxon. It was proposed that fusion of gene pools from P. tabulaeformis and P. yunnanensis has led to adaptive evolution of a new species, P. densata.

  4. GWAS identifies four novel eosinophilic esophagitis loci

    NARCIS (Netherlands)

    Sleiman, Patrick M. A.; Wang, Mei-Lun; Cianferoni, Antonella; Aceves, Seema; Gonsalves, Nirmala; Nadeau, Kari; Bredenoord, Albert J.; Furuta, Glenn T.; Spergel, Jonathan M.; Hakonarson, Hakon

    2014-01-01

    Eosinophilic esophagitis (EoE) is an allergic disorder characterized by infiltration of the oesophagus with eosinophils. We had previously reported association of the TSLP/WDR36 locus with EoE. Here we report genome-wide significant associations at four additional loci; c11orf30 and STAT6, which

  5. Ten Putative Contributors to the Obesity Epidemic

    Science.gov (United States)

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  6. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    DEFF Research Database (Denmark)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara

    2013-01-01

    differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls......), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER...

  7. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    Science.gov (United States)

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson LS; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances MK; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando

    2012-01-01

    Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility. PMID:22504420

  8. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa

    2016-01-01

    Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery...... and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P2, rs7107784 near MIR4686 and rs67839313 near INAFM2....... Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P

  9. Novel association strategy with copy number variation for identifying new risk Loci of human diseases.

    Directory of Open Access Journals (Sweden)

    Xianfeng Chen

    2010-08-01

    Full Text Available Copy number variations (CNV are important causal genetic variations for human disease; however, the lack of a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.Here, we developed a novel integrated strategy to test CNV-association in genome-wide case-control studies. We converted the single-nucleotide polymorphism (SNP signal to copy number states using a well-trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36 new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery disease, 1 with Crohn's disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2 diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further supports that CNVs have impact on bipolar disorder.Our results demonstrated the effectiveness and robustness of our CNV-association analysis and provided an alternative avenue for discovering new associated loci of human diseases.

  10. Identification of two novel mammographic density loci at 6Q25.1.

    Science.gov (United States)

    Brand, Judith S; Li, Jingmei; Humphreys, Keith; Karlsson, Robert; Eriksson, Mikael; Ivansson, Emma; Hall, Per; Czene, Kamila

    2015-06-03

    Mammographic density (MD) is a strong heritable and intermediate phenotype for breast cancer, but much of its genetic variation remains unexplained. We performed a large-scale genetic association study including 8,419 women of European ancestry to identify MD loci. Participants of three Swedish studies were genotyped on a custom Illumina iSelect genotyping array and percent and absolute mammographic density were ascertained using semiautomated and fully automated methods from film and digital mammograms. Linear regression analysis was used to test for SNP-MD associations, adjusting for age, body mass index, menopausal status and six principal components. Meta-analyses were performed by combining P values taking sample size, study-specific inflation factor and direction of effect into account. Genome-wide significant associations were observed for two previously identified loci: ZNF365 (rs10995194, P = 2.3 × 10(-8) for percent MD and P = 8.7 × 10(-9) for absolute MD) and AREG (rs10034692, P = 6.7 × 10(-9) for absolute MD). In addition, we found evidence of association for two variants at 6q25.1, both of which are known breast cancer susceptibility loci: rs9485370 in the TAB2 gene (P = 4.8 × 10(-9) for percent MD and P = 2.5 × 10(-8) for absolute MD) and rs60705924 in the CCDC170/ESR1 region (P = 2.2 × 10(-8) for absolute MD). Both regions have been implicated in estrogen receptor signaling with TAB2 being a potential regulator of tamoxifen response. We identified two novel MD loci at 6q25.1. These findings underscore the importance of 6q25.1 as a susceptibility region and provide more insight into the mechanisms through which MD influences breast cancer risk.

  11. Genetic Causes of Putative Autosomal Recessive Intellectual Disability Cases in Hamedan Province

    Directory of Open Access Journals (Sweden)

    Milad Bastami

    2012-04-01

    Full Text Available Objective: The aim of this study was to investigate the genetic causes of autosomal recessive intellectual disabilities (AR-ID in Hamadan province of Iran. Materials & Methods: In this descriptive-analytical cross-sectional study, 25 families with more than one affected with putative autosomal recessive intellectual disability were chosen with collaboration of Welfare Organization of Hamadan province. Families were included a total of 60 patients (39 male and 21 female whose intellectual disability had been confirmed by Raven IQ test. Each family was asked for clinical examination and getting consent form. Blood sample was collected from each family. One proband from each family was tested for CGG repeat expansion in FMR1 gene, chromosomal abnormalities and inborn errors of metabolism. We also performed homozygosity mapping based on STR markers for seven known MCPH loci in families with primary microcephaly and AR-ID. Results: Five families had full mutation of Fragile X syndrome. No chromosomal abnormalities were identified. Metabolic screening revealed one family with Medium Chain Acyl CoA Dehydrogenase deficiency. None of three families with primary microcephaly and AR-ID showed linkage to any of known seven MCPH loci. Conclusion: The main causes of ID in Hamadan province were Fragile X syndrome and Autosomal Recessive Primary Microcephaly with the frequencies of 20% and 12%, respectively.

  12. Large-scale genotyping identifies 41 new loci associated with breast cancer risk.

    Science.gov (United States)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Dos Santos Silva, Isabel; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Veer, Laura J Van't; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-04-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P breast cancer susceptibility.

  13. Genetic variation of twenty autosomal STR loci and evaluate the ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... the second objective of the study was to evaluate the importance of these loci for forensic genetic purposes. ... of discrimination values for all tested loci was from 75 to 96%; therefore, those loci can be safely used to establish a ..... lists the frequency distribution of individual alleles within a given genetic ...

  14. Putative neuroprotective agents in neuropsychiatric disorders.

    Science.gov (United States)

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Investigation of paternity establishing without the putative father using hypervariable DNA probes.

    Science.gov (United States)

    Yokoi, T; Odaira, T; Nata, M; Sagisaka, K

    1990-09-01

    Seven kinds of DNA probes which recognize hypervariable loci were applied for paternity test. The putative father was decreased and unavailable for the test. The two legitimate children and their mother (the deceased's wife) and the four illegitimate children and their mother (the deceased's kept mistress) were available for analysis. Paternity index of four illegitimate child was investigated. Allelic frequencies and their confidence intervals among unrelated Japanese individuals were previously reported from our laboratory, and co-dominant segregation of the polymorphism was confirmed in family studies. Cumulative paternity indices of four illegitimate children from 16 kinds of standard blood group markers were 165, 42, 0.09, and 36, respectively. On the other hand, cumulative paternity indices from 7 kinds of DNA probes are 2,363, 4,685, 57,678, and 54,994, respectively, which are 14, 113, 640, 864, and 1,509 times higher than that from standard blood group markers. The DNA analyses gave nearly conclusive evidence that the putative father was the biological father of the children. Especially, the paternity relation of the third illegitimate child could not be established without the DNA analyses. Accordingly, DNA polymorphism is considered to be informative enough for paternity test.

  16. Gene-wide analysis detects two new susceptibility genes for Alzheimer's Disease

    OpenAIRE

    Escott-Price, Valentina; Bellenguez, Céline; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Jones, Lesley; Holmans, Peter Alan; Gerrish, Amy; Vedernikov, Alexey; Richards, Alexander; DeStefano, Anita L.; Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A.; Naj, Adam C.; Sims, Rebecca

    2014-01-01

    PUBLISHED BACKGROUND: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over...

  17. Radiation-induced mutation at minisatellite loci

    International Nuclear Information System (INIS)

    Dubrova, Y.E.; Nesterov, V.N.; Krouchinsky, N.G.

    1997-01-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of γ-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure 137 Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed

  18. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.

    Science.gov (United States)

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; Wietze van der Veen, J P; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R; Santorico, Stephanie A; Spritz, Richard A

    2016-11-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment.

  19. Twenty-eight divergent polysaccharide loci specifying within and amongst strain capsule diversity in three strains of Bacteroides fragilis

    DEFF Research Database (Denmark)

    Patrick, S.; Blakely, G.W.; Houston, S.

    2010-01-01

    including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface polysaccharide-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of polysaccharide...... biosynthesis locus diversity. Of the 10 divergent polysaccharide associated loci apparent in each strain, none are similar between NCTC9343 and 638R. YCH46 shares one locus with NCTC9343, confirmed by MAb labelling, and a second different locus with 638R, making a total of 28 divergent polysaccharide...... restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst strain diversity in polysaccharide biosynthesis loci is unprecedented....

  20. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  1. The loci controlling plasticity in flax

    Directory of Open Access Journals (Sweden)

    Bickel CL

    2012-02-01

    Full Text Available Cory L Bickel, Marshall Lukacs, Christopher A CullisCase Western Reserve University, Cleveland OH, USAAbstract: Flax undergoes heritable genomic changes in response to nutrient stress, including changes in total DNA content, rDNA copy number variation, and the appearance of Linum Insertion Sequence 1 (LIS-1. The nature of the genomic changes suggests a very different mechanism, which is not yet understood, from that of other DNA changes in response to stress, such as the activation of transposable elements. To identify the genes that control genomic changes in response to stress in flax, reciprocal crosses were made between a responsive flax line, Stormont cirrus, and an unresponsive line, Bethune. The ability of the F2 generation (from selfed F1 plants to respond to nutrient stress was assayed using the insertion of LIS-1 as the criteria for responsiveness. Twenty-nine out of 89 F2s responded at 5 weeks, suggesting that 3-4 dominant loci were all necessary for early LIS-1 insertion. Seventy out of 76 responded at 10 weeks, indicating two dominant loci independently capable of initiating LIS-1 insertion under prolonged nutrient stress. F1 plants and their progeny with either P1 or Bethune as the maternal parent were capable of responding with LIS-1 insertion, indicating that LIS-1 insertion is under nuclear genetic control and does not involve maternal factors. Thus, a small number of loci within the genome of Stormont cirrus appear to control the ability to respond to nutrient stress with LIS-1 insertion. A genetic map of the flax genome is currently under construction, and will be used to identify these loci within the genome.Keywords: nutrient stress, genomic plasticity, flax, Linum usitatissimum, LIS-1 

  2. Colonization and diversification of aquatic insects on three Macaronesian archipelagos using 59 nuclear loci derived from a draft genome.

    Science.gov (United States)

    Rutschmann, Sereina; Detering, Harald; Simon, Sabrina; Funk, David H; Gattolliat, Jean-Luc; Hughes, Samantha J; Raposeiro, Pedro M; DeSalle, Rob; Sartori, Michel; Monaghan, Michael T

    2017-02-01

    The study of processes driving diversification requires a fully sampled and well resolved phylogeny, although a lack of phylogenetic markers remains a limitation for many non-model groups. Multilocus approaches to the study of recent diversification provide a powerful means to study the evolutionary process, but their application remains restricted because multiple unlinked loci with suitable variation for phylogenetic or coalescent analysis are not available for most non-model taxa. Here we identify novel, putative single-copy nuclear DNA (nDNA) phylogenetic markers to study the colonization and diversification of an aquatic insect species complex, Cloeon dipterum L. 1761 (Ephemeroptera: Baetidae), in Macaronesia. Whole-genome sequencing data from one member of the species complex were used to identify 59 nDNA loci (32,213 base pairs), followed by Sanger sequencing of 29 individuals sampled from 13 islands of three Macaronesian archipelagos. Multispecies coalescent analyses established six putative species. Three island species formed a monophyletic clade, with one species occurring on the Azores, Europe and North America. Ancestral state reconstruction indicated at least two colonization events from the mainland (to the Canaries, respectively Azores) and one within the archipelago (between Madeira and the Canaries). Random subsets of the 59 loci showed a positive linear relationship between number of loci and node support. In contrast, node support in the multispecies coalescent tree was negatively correlated with mean number of phylogenetically informative sites per locus, suggesting a complex relationship between tree resolution and marker variability. Our approach highlights the value of combining genomics, coalescent-based phylogeography, species delimitation, and phylogenetic reconstruction to resolve recent diversification events in an archipelago species complex. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Commentary on "identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array." Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth-Little S, Dadaev T, Neal DE, Hamdy FC, Donovan JL, Muir K, Giles GG, Severi G, Wiklund F, Gronberg H, Haiman CA, Schumacher F, Henderson BE, Le Marchand L, Lindstrom S, Kraft P, Hunter DJ, Gapstur S, Chanock SJ, Berndt SI, Albanes D, Andriole G, Schleutker J, Weischer M, Canzian F, Riboli E, Key TJ, Travis RC, Campa D, Ingles SA, John EM, Hayes RB, Pharoah PD, Pashayan N, Khaw KT, Stanford JL, Ostrander EA, Signorello LB, Thibodeau SN, Schaid D, Maier C, Vogel W, Kibel AS, Cybulski C, Lubinski J, Cannon-Albright L, Brenner H, Park JY, Kaneva R, Batra J, Spurdle AB, Clements JA, Teixeira MR, Dicks E, Lee A, Dunning AM, Baynes C, Conroy D, Maranian MJ, Ahmed S, Govindasami K, Guy M, Wilkinson RA, Sawyer EJ, Morgan A, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As NJ, Woodhouse CJ, Thompson A, Dudderidge T, Ogden C, Cooper CS, Lophatananon A, Cox A, Southey MC, Hopper JL, English DR, Aly M, Adolfsson J, Xu J, Zheng SL, Yeager M, Kaaks R, Diver WR, Gaudet MM, Stern MC, Corral R, Joshi AD, Shahabi A, Wahlfors T, Tammela TL, Auvinen A, Virtamo J, Klarskov P, Nordestgaard BG, Røder MA, Nielsen SF, Bojesen SE, Siddiq A, Fitzgerald LM, Kolb S, Kwon EM, Karyadi DM, Blot WJ, Zheng W, Cai Q, McDonnell SK, Rinckleb AE, Drake B, Colditz G, Wokolorczyk D, Stephenson RA, Teerlink C, Muller H, Rothenbacher D, Sellers TA, Lin HY, Slavov C, Mitev V, Lose F, Srinivasan S, Maia S, Paulo P, Lange E, Cooney KA, Antoniou AC, Vincent D, Bacot F, Tessier DC; COGS-Cancer Research UK GWAS-ELLIPSE (part of GAME-ON) Initiative; Australian Prostate Cancer Bioresource; UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons' Section of Oncology; UK ProtecT (Prostate testing for cancer and Treatment

    Science.gov (United States)

    Olumi, Aria F

    2014-02-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P<5×10(-8)). More than 70 prostate cancer susceptibility loci, explaining ~30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Analysis of Hydraulic Flood Control Structure at Putat Boro River

    OpenAIRE

    Ruzziyatno, Ruhban

    2015-01-01

    Putat Boro River is one of the main drainage systems of Surakarta city which drains into Bengawan Solo river. The primary problem when flood occur is the higher water level of Bengawan Solo than Boro River and then backwater occur and inundates Putat Boro River. The objective of the study is to obtain operational method of Putat Boro River floodgate to control both inflows and outflows not only during flood but also normal condition. It also aims to know the Putat Boro rivers floodgate op...

  5. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    2009-05-01

    Full Text Available Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired.To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance.Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  6. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity

    DEFF Research Database (Denmark)

    Dimas, Antigone S; Lagou, Vasiliki; Barker, Adam

    2013-01-01

    Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin pr...

  7. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    DEFF Research Database (Denmark)

    Sud, Amit; Thomsen, Hauke; Law, Philip J.

    2017-01-01

    Several susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and 16,749 co...

  8. Genome-wide association study for ovarian cancer susceptibility using pooled DNA.

    NARCIS (Netherlands)

    Lu, Y.; Chen, X.; Beesley, J.; Johnatty, S.E.; Defazio, A.; Lambrechts, S.; Lambrechts, D.; Despierre, E.; Vergotes, I.; Chang-Claude, J.; Hein, R.; Nickels, S.; Wang-Gohrke, S.; Dork, T.; Durst, M.; Antonenkova, N.; Bogdanova, N.; Goodman, M.T.; Lurie, G.; Wilkens, L.R.; Carney, M.E.; Butzow, R.; Nevanlinna, H.; Heikkinen, T.; Leminen, A.; Kiemeney, L.A.L.M.; Massuger, L.F.A.G.; Altena, A.M. van; Aben, K.K.H.; Kjaer, S.K.; Hogdall, E.; Jensen, A.; Brooks-Wilson, A.; Le, N.; Cook, L.; Earp, M.; Kelemen, L.; Easton, D.; Pharoah, P.; Song, H.; Tyrer, J.; Ramus, S.; Menon, U.; Gentry-Maharaj, A.; Gayther, S.A.; Bandera, E.V.; Olson, S.H.; Orlow, I.; Rodriguez-Rodriguez, L.; MacGregor, S.; Chenevix-Trench, G.

    2012-01-01

    Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used in

  9. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS

    NARCIS (Netherlands)

    F.P. Diekstra (Frank); C.G.J. Saris (Christiaan); W. van Rheenen (Wouter); L. Franke (Lude); R.C. Jansen (Ritsert); M.A. van Es (Michael); K. Estrada Gil (Karol); P.W.J. van Vught (Paul); H.M. Blauw (Hylke); E.J.N. Groen (Ewout); S. Horvath (Steve); K. Estrada Gil (Karol); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); A.G. Uitterlinden (André); W. Robberecht (Wim); P.M. Andersen (Peter); J. Melki (Judith); V. Meininger (Vincent); O. Hardiman (Orla); J.E. Landers (John); R.H. Brown (Robert); A. Shatunov (Aleksey); C.E. Shaw (Christopher); P.N. Leigh (Nigel); A. Al-Chalabi (Ammar); R.A. Ophoff (Roel); L.H. van den Berg (Leonard); J.H. Veldink (Jan)

    2012-01-01

    textabstractAmyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility loci. However, many more causal

  10. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    NARCIS (Netherlands)

    Sud, A. (Amit); Thomsen, H. (Hauke); Law, P.J. (Philip J.); A. Försti (Asta); Filho, M.I.D.S. (Miguel Inacio Da Silva); Holroyd, A. (Amy); P. Broderick (Peter); Orlando, G. (Giulia); Lenive, O. (Oleg); Wright, L. (Lauren); R. Cooke (Rosie); D.F. Easton (Douglas); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); J. Peto (Julian); F. Canzian (Federico); Eeles, R. (Rosalind); Z. Kote-Jarai; K.R. Muir (K.); Pashayan, N. (Nora); B.E. Henderson (Brian); C.A. Haiman (Christopher); S. Benlloch (Sara); F.R. Schumacher (Fredrick R); Olama, A.A.A. (Ali Amin Al); S.I. Berndt (Sonja); G. Conti (Giario); F. Wiklund (Fredrik); S.J. Chanock (Stephen); Stevens, V.L. (Victoria L.); C.M. Tangen (Catherine M.); Batra, J. (Jyotsna); Clements, J. (Judith); H. Grönberg (Henrik); Schleutker, J. (Johanna); D. Albanes (Demetrius); Weinstein, S. (Stephanie); K. Wolk (Kerstin); West, C. (Catharine); Mucci, L. (Lorelei); Cancel-Tassin, G. (Géraldine); Koutros, S. (Stella); Sorensen, K.D. (Karina Dalsgaard); L. Maehle; D. Neal (David); S.P.L. Travis (Simon); Hamilton, R.J. (Robert J.); S.A. Ingles (Sue); B.S. Rosenstein (Barry S.); Lu, Y.-J. (Yong-Jie); Giles, G.G. (Graham G.); A. Kibel (Adam); Vega, A. (Ana); M. Kogevinas (Manolis); Penney, K.L. (Kathryn L.); Park, J.Y. (Jong Y.); Stanford, J.L. (Janet L.); C. Cybulski (Cezary); B.G. Nordestgaard (Børge); Brenner, H. (Hermann); Maier, C. (Christiane); Kim, J. (Jeri); E.M. John (Esther); P.J. Teixeira; Neuhausen, S.L. (Susan L.); De Ruyck, K. (Kim); Razack, A. (Azad); Newcomb, L.F. (Lisa F.); Lessel, D. (Davor); Kaneva, R. (Radka); N. Usmani (Nawaid); F. Claessens; Townsend, P.A. (Paul A.); Dominguez, M.G. (Manuela Gago); Roobol, M.J. (Monique J.); F. Menegaux (Florence); P. Hoffmann (Per); M.M. Nöthen (Markus); K.-H. JöCkel (Karl-Heinz); Strandmann, E.P.V. (Elke Pogge Von); Lightfoot, T. (Tracy); Kane, E. (Eleanor); Roman, E. (Eve); Lake, A. (Annette); Montgomery, D. (Dorothy); Jarrett, R.F. (Ruth F.); A.J. Swerdlow (Anthony ); A. Engert (Andreas); N. Orr (Nick); K. Hemminki (Kari); Houlston, R.S. (Richard S.)

    2017-01-01

    textabstractSeveral susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and

  11. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    Science.gov (United States)

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  12. Toddlers’ Duration of Attention towards Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2010-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk for developing anxious behavior, toddlers’ attention towards a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined how attention towards an angry-looking gorilla mask in a room with alternative opportunities for play in 24-month-old toddlers predicted social inhibition when children entered kindergarten. Analyses examined attention to threat above and beyond and in interaction with both proximity to the mask and fear of novelty observed in other situations. Attention to threat interacted with proximity to the mask to predict social inhibition, such that attention to threat most strongly predicted social inhibition when toddlers stayed furthest from the mask. This relation occurred above and beyond the predictive relation between fear of novelty and social inhibition. Results are discussed within the broader literature of anxiety development and attentional processes in young children. PMID:21373365

  13. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21

    NARCIS (Netherlands)

    Zhang, Mingfeng; Wang, Zhaoming; Obazee, Ofure; Jia, Jinping; Childs, Erica J; Hoskins, Jason; Figlioli, Gisella; Mocci, Evelina; Collins, Irene; Chung, Charles C; Hautman, Christopher; Arslan, Alan A; Beane-Freeman, Laura; Bracci, Paige M; Buring, Julie; Duell, Eric J; Gallinger, Steven; Giles, Graham G; Goodman, Gary E; Goodman, Phyllis J; Kamineni, Aruna; Kolonel, Laurence N; Kulke, Matthew H; Malats, Núria; Olson, Sara H; Sesso, Howard D; Visvanathan, Kala; White, Emily; Zheng, Wei; Abnet, Christian C; Albanes, Demetrius; Andreotti, Gabriella; Brais, Lauren; Bueno-de-Mesquita, H Bas; Basso, Daniela; Berndt, Sonja I; Boutron-Ruault, Marie-Christine; Bijlsma, Maarten F; Brenner, Hermann; Burdette, Laurie; Campa, Daniele; Caporaso, Neil E; Capurso, Gabriele; Cavestro, Giulia Martina; Cotterchio, Michelle; Costello, Eithne; Elena, Joanne; Boggi, Ugo; Gaziano, J Michael; Gazouli, Maria; Giovannucci, Edward L; Goggins, Michael; Gross, Myron; Haiman, Christopher A; Hassan, Manal; Helzlsouer, Kathy J; Hu, Nan; Hunter, David J; Iskierka-Jazdzewska, Elzbieta; Jenab, Mazda; Kaaks, Rudolf; Key, Timothy J; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Krogh, Vittorio; Kupcinskas, Juozas; Kurtz, Robert C; Landi, Maria T; Landi, Stefano; Le Marchand, Loic; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Neale, Rachel E; Oberg, Ann L; Panico, Salvatore; Patel, Alpa V; Peeters, Petra H M; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Purdue, Mark; Quiros, J Ramón; Riboli, Elio; Rothman, Nathaniel; Scarpa, Aldo; Scelo, Ghislaine; Shu, Xiao-Ou; Silverman, Debra T; Soucek, Pavel; Strobel, Oliver; Sund, Malin; Małecka-Panas, Ewa; Taylor, Philip R; Tavano, Francesca; Travis, Ruth C; Thornquist, Mark; Tjønneland, Anne; Tobias, Geoffrey S; Trichopoulos, Dimitrios; Vashist, Yogesh; Vodicka, Pavel; Wactawski-Wende, Jean; Wentzensen, Nicolas; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Kooperberg, Charles; Risch, Harvey A; Jacobs, Eric J; Li, Donghui; Fuchs, Charles; Hoover, Robert; Hartge, Patricia; Chanock, Stephen J; Petersen, Gloria M; Stolzenberg-Solomon, Rachael S; Wolpin, Brian M; Kraft, Peter; Klein, Alison P; Canzian, Federico; Amundadottir, Laufey T

    2016-01-01

    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis

  14. Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function.

    Directory of Open Access Journals (Sweden)

    Harald Staiger

    Full Text Available BACKGROUND: Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or beta-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761 were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or beta-cell dysfunction were not assessed. METHODOLOGY/PRINCIPAL FINDINGS: By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs, we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or beta-cell dysfunction, respectively. CONCLUSIONS/SIGNIFICANCE: The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for beta-cell dysfunction and, thus, might confer increased susceptibility of beta-cells towards adverse environmental factors.

  15. A revised nomenclature for transcribed human endogenous retroviral loci

    Science.gov (United States)

    2011-01-01

    Background Endogenous retroviruses (ERVs) and ERV-like sequences comprise 8% of the human genome. A hitherto unknown proportion of ERV loci are transcribed and thus contribute to the human transcriptome. A small proportion of these loci encode functional proteins. As the role of ERVs in normal and diseased biological processes is not yet established, transcribed ERV loci are of particular interest. As more transcribed ERV loci are likely to be identified in the near future, the development of a systematic nomenclature is important to ensure that all information on each locus can be easily retrieved. Results Here we present a revised nomenclature of transcribed human endogenous retroviral loci that sorts loci into groups based on Repbase classifications. Each symbol is of the format ERV + group symbol + unique number. Group symbols are based on a mixture of Repbase designations and well-supported symbols used in the literature. The presented guidelines will allow newly identified loci to be easily incorporated into the scheme. Conclusions The naming system will be employed by the HUGO Gene Nomenclature Committee for naming transcribed human ERV loci. We hope that the system will contribute to clarifying a certain aspect of a sometimes confusing nomenclature for human endogenous retroviruses. The presented system may also be employed for naming transcribed loci of human non-ERV repeat loci. PMID:21542922

  16. Genetic changes associated with testicular cancer susceptibility.

    Science.gov (United States)

    Pyle, Louise C; Nathanson, Katherine L

    2016-10-01

    Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Differential Susceptibility to Effects of the Home Environment on Motor Developmental Outcomes of Preschool Children: Low Birthweight Status as a Susceptibility Factor

    Science.gov (United States)

    Wu, Jennifer Chun-Li; Chiang, Tung-liang

    2016-01-01

    Low birthweight (LBW) children tend to have higher risks of developmental problems. According to differential susceptibility hypothesis, these putatively vulnerable children may also disproportionately benefit from positive environmental exposure. This study aimed to examine whether LBW status moderates home environmental influences on…

  18. Twenty putative palmitoyl-acyl transferase genes with distinct ...

    African Journals Online (AJOL)

    There are 20 genes containing DHHC domain predicted to encode putative palmitoyltransferase in Arabidopsis thaliana genome. However, little is known about their characteristics such as genetic relationship and expression profile. Here, we present an overview of the putative PAT genes in A. thaliana focusing on their ...

  19. Putative radioresistant bacterial isolate from sewage water

    International Nuclear Information System (INIS)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Rivor Kristel; San Pablo, Czarina; Santos, Ernestine

    2001-01-01

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the 60 Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10 3 CFU/ml, and 1.30 x 10 3 CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10 3 CFU/ml was observed which is even higher compared to the control (1.02 x 10 3 CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  20. Putative radioresistant bacterial isolate from sewage water

    Energy Technology Data Exchange (ETDEWEB)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Kristel, Rivor; San Pablo, Czarina; Santos, Ernestine

    2001-01-29

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the {sup 60}Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10{sup 3} CFU/ml, and 1.30 x 10{sup 3} CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10{sup 3} CFU/ml was observed which is even higher compared to the control (1.02 x 10{sup 3} CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  1. Meta-analysis identifies seven susceptibility loci involved in the atopic March

    NARCIS (Netherlands)

    I. Marenholz (Ingo); J. Esparza-Gordillo (Jorge); F. Rüschendorf (Franz); A. Bauerfeind (Anja); D.P. Strachan (David P.); B.D. Spycher (Ben D.); H. Baurecht (Hansjörg); P. Margaritte-Jeannin (Patricia); A. Sääf (Annika); M. Kerkhof (Marjan); M. Ege (Markus); S. Baltic (Svetlana); J. Matheson; J. Li (Jin); S. Michel (Sven); W.Q. Ang (Wei Q.); W.L. McArdle (Wendy); A. Arnold (Andreas); G. Homuth (Georg); F. Demenais (Florence); E. Bouzigon (Emmanuelle); C. Söderhäll (Cilla); G. Pershagen (Göran); J.C. de Jongste (Johan); D.S. Postma (Dirkje); C. Braun-Fahrländer (Charlotte); E. Horak (Elisabeth); L.M. Ogorodova (Ludmila M.); V.P. Puzyrev (Valery P.); E.Y. Bragina (Elena Yu); T.J. Hudson (Thomas); C. Morin (Charles); D.L. Duffy (David); G.B. Marks (Guy B.); C. Robertson; G.W. Montgomery (Grant); A.W. Musk (Arthur); P.J. Thompson (Philip); N.G. Martin (Nicholas); A.L. James (Alan); P.M.A. Sleiman (Patrick); E. Toskala (Elina); P.M. Rodríguez; R. Fölster-Holst (R.); A. Franke (Andre); W. Lieb (Wolfgang); C. Gieger (Christian); A. Heinzmann (Andrea); E. Rietschel (Ernst); M. Keil (Mark); S. Cichon (Sven); M.M. Nöthen (Markus M.); C.E. Pennell (Craig); P.D. Sly; C.O. Schmidt (Carsten Oliver); A. Matanovic (Anja); V. Schneider (Valentin); M. Heinig (Matthias); N. Hübner (Norbert); P.G. Holt (Patrick); S. Lau (Susanne); M. Kabesch (Michael); S. Weidinger (Stefan); H. Hakonarson (Hakon); M.A. Ferreira (Manuel); C. Laprise (Catherine); M.B. Freidin (M.); J. Genuneit (Jon); G.H. Koppelman (Gerard); E. Melén (Erik); M.-H. Dizier; A.J. Henderson (A. John); Y.-A. Lee (Young-Ae)

    2015-01-01

    textabstractEczema often precedes the development of asthma in a disease course called the a 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12

  2. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk

    NARCIS (Netherlands)

    Pirastu, Nicola; Joshi, Peter K.; de Vries, Paul S.; Cornelis, Marilyn C.; McKeigue, Paul M.; Keum, NaNa; Franceschini, Nora; Colombo, Marco; Giovannucci, Edward L.; Spiliopoulou, Athina; Franke, Lude; North, Kari E.; Kraft, Peter; Morrison, Alanna C.; Esko, Tonu; Wilson, James F.

    2017-01-01

    Male pattern baldness (MPB) or androgenetic alopecia is one of the most common conditions affecting men, reaching a prevalence of similar to 50% by the age of 50; however, the known genes explain little of the heritability. Here, we present the results of a genome-wide association study including

  3. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease

    NARCIS (Netherlands)

    Schunkert, Heribert; König, Inke R.; Kathiresan, Sekar; Reilly, Muredach P.; Assimes, Themistocles L.; Holm, Hilma; Preuss, Michael; Stewart, Alexandre F. R.; Barbalic, Maja; Gieger, Christian; Absher, Devin; Aherrahrou, Zouhair; Allayee, Hooman; Altshuler, David; Anand, Sonia S.; Andersen, Karl; Anderson, Jeffrey L.; Ardissino, Diego; Ball, Stephen G.; Balmforth, Anthony J.; Barnes, Timothy A.; Becker, Diane M.; Becker, Lewis C.; Berger, Klaus; Bis, Joshua C.; Boekholdt, S. Matthijs; Boerwinkle, Eric; Braund, Peter S.; Brown, Morris J.; Burnett, Mary Susan; Buysschaert, Ian; Carlquist, John F.; Chen, Li; Cichon, Sven; Codd, Veryan; Davies, Robert W.; Dedoussis, George; Dehghan, Abbas; Demissie, Serkalem; Devaney, Joseph M.; Diemert, Patrick; Do, Ron; Doering, Angela; Eifert, Sandra; Mokhtari, Nour Eddine El; Ellis, Stephen G.; Elosua, Roberto; Engert, James C.; Epstein, Stephen E.; de Faire, Ulf; Fischer, Marcus; Folsom, Aaron R.; Freyer, Jennifer; Gigante, Bruna; Girelli, Domenico; Gretarsdottir, Solveig; Gudnason, Vilmundur; Gulcher, Jeffrey R.; Halperin, Eran; Hammond, Naomi; Hazen, Stanley L.; Hofman, Albert; Horne, Benjamin D.; Illig, Thomas; Iribarren, Carlos; Jones, Gregory T.; Jukema, J. Wouter; Kaiser, Michael A.; Kaplan, Lee M.; Kastelein, John J. P.; Khaw, Kay-Tee; Knowles, Joshua W.; Kolovou, Genovefa; Kong, Augustine; Laaksonen, Reijo; Lambrechts, Diether; Leander, Karin; Lettre, Guillaume; Li, Mingyao; Lieb, Wolfgang; Loley, Christina; Lotery, Andrew J.; Mannucci, Pier M.; Maouche, Seraya; Martinelli, Nicola; McKeown, Pascal P.; Meisinger, Christa; Meitinger, Thomas; Melander, Olle; Merlini, Pier Angelica; Mooser, Vincent; Morgan, Thomas; Mühleisen, Thomas W.; Muhlestein, Joseph B.; Münzel, Thomas; Musunuru, Kiran; Nahrstaedt, Janja; Nelson, Christopher P.; Nöthen, Markus M.; Olivieri, Oliviero; Patel, Riyaz S.; Patterson, Chris C.; Peters, Annette; Peyvandi, Flora; Qu, Liming; Quyyumi, Arshed A.; Rader, Daniel J.; Rallidis, Loukianos S.; Rice, Catherine; Rosendaal, Frits R.; Rubin, Diana; Salomaa, Veikko; Sampietro, M. Lourdes; Sandhu, Manj S.; Schadt, Eric; Schäfer, Arne; Schillert, Arne; Schreiber, Stefan; Schrezenmeir, Jürgen; Schwartz, Stephen M.; Siscovick, David S.; Sivananthan, Mohan; Sivapalaratnam, Suthesh; Smith, Albert; Smith, Tamara B.; Snoep, Jaapjan D.; Soranzo, Nicole; Spertus, John A.; Stark, Klaus; Stirrups, Kathy; Stoll, Monika; Tang, W. H. Wilson; Tennstedt, Stephanie; Thorgeirsson, Gudmundur; Thorleifsson, Gudmar; Tomaszewski, Maciej; Uitterlinden, Andre G.; van Rij, Andre M.; Voight, Benjamin F.; Wareham, Nick J.; Wells, George A.; Wichmann, H.-Erich; Wild, Philipp S.; Willenborg, Christina; Witteman, Jaqueline C. M.; Wright, Benjamin J.; Ye, Shu; Zeller, Tanja; Ziegler, Andreas; Cambien, Francois; Goodall, Alison H.; Cupples, L. Adrienne; Quertermous, Thomas; März, Winfried; Hengstenberg, Christian; Blankenberg, Stefan; Ouwehand, Willem H.; Hall, Alistair S.; Deloukas, Panos; Thompson, John R.; Stefansson, Kari; Roberts, Robert; Thorsteinsdottir, Unnur; O'Donnell, Christopher J.; McPherson, Ruth; Erdmann, Jeanette; Samani, Nilesh J.

    2011-01-01

    We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13

  4. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease

    NARCIS (Netherlands)

    H. Schunkert (Heribert); I.R. König (Inke); S. Kathiresan (Sekar); M.P. Reilly (Muredach); T.L. Assimes (Themistocles); H. Holm (Hilma); M. Preuss (Michael); A.F.R. Stewart (Alexandre); M. Barbalic (maja); C. Gieger (Christian); D. Absher (Devin); Z. Aherrahrou (Zouhair); H. Allayee (Hooman); D. Altshuler (David); S.S. Anand (Sonia); K.K. Andersen (Karl); J.L. Anderson (Jeffrey); D. Ardissino (Diego); S.G. Ball (Stephen); A.J. Balmforth (Anthony); T.A. Barnes (Timothy); D.M. Becker (Diane); K. Berger (Klaus); J.C. Bis (Joshua); S.M. Boekholdt (Matthijs); E.A. Boerwinkle (Eric); P.S. Braund (Peter); M.J. Brown (Morris); M.S. Burnett; I. Buysschaert (Ian); J.F. Carlquist (John); L. Chen (Li); S. Cichon (Sven); V. Codd (Veryan); R.W. Davies (Robert); G.V. Dedoussis (George); A. Dehghan (Abbas); S. Demissie (Serkalem); J. Devaney (Joseph); P. Diemert (Patrick); R. Do (Ron); A. Doering (Angela); S. Eifert (Sandra); N.E.E. Mokhtari; S.G. Ellis (Stephen); R. Elosua (Roberto); J.C. Engert (James); S.E. Epstein (Stephen); U. de Faire (Ulf); M. Fischer (Marcus); A.R. Folsom (Aaron); J. Freyer (Jennifer); B. Gigante (Bruna); D. Girelli (Domenico); S. Gretarsdottir (Solveig); V. Gudnason (Vilmundur); J.R. Gulcher (Jeffrey); E. Halperin (Eran); N. Hammond (Naomi); S.L. Hazen (Stanley); A. Hofman (Albert); B.D. Horne (Benjamin); T. Illig (Thomas); C. Iribarren (Carlos); G.T. Jones (Gregory); J.W. Jukema (Jan Wouter); M.A. Kaiser (Michael); R.C. Kaplan (Robert); K-T. Khaw (Kay-Tee); J.W. Knowles (Joshua); G. Kolovou (Genovefa); A. Kong (Augustine); R. Laaksonen (Reijo); D. Lambrechts (Diether); K. Leander (Karin); G. Lettre (Guillaume); X. Li (Xiaohui); W. Lieb (Wolfgang); C. Loley (Christina); A.J. Lotery (Andrew); P.M. Mannucci (Pier); S. Maouche (Seraya); N. Martinelli (Nicola); P.P. McKeown (Pascal); C. Meisinger (Christa); T. Meitinger (Thomas); O. Melander (Olle); P.A. Merlini; V. Mooser (Vincent); T. Morgan (Thomas); T.W. Mühleisen (Thomas); J.B. Muhlestein (Joseph); T. Münzel (Thomas); K. Musunuru (Kiran); J. Nahrstaedt (Janja); C.P. Nelson (Christopher P.); M.M. Nöthen (Markus); O. Olivieri (Oliviero); R.S. Patel (Riyaz); C.C. Patterson (Chris); A. Peters (Annette); F. Peyvandi (Flora); L. Qu (Liming); A.A. Quyyumi (Arshed); D.J. Rader (Daniel); L.S. Rallidis (Loukianos); C. Rice (Catherine); F.R. Rosendaal (Frits); D. Rubin (Diana); V. Salomaa (Veikko); M.L. Sampietro (Maria Lourdes); M.S. Sandhu (Manj); E.E. Schadt (Eric); A. Scḧsignfer (Arne); A. Schillert (Arne); S. Schreiber (Stefan); J. Schrezenmeir (Jürgen); S.M. Schwartz (Stephen); D.S. Siscovick (David); M. Sivananthan (Mohan); S. Sivapalaratnam (Suthesh); A.V. Smith (Albert Vernon); J.D. Snoep (Jaapjan); N. Soranzo (Nicole); J.A. Spertus (John); K. Stark (Klaus); K. Stirrups (Kathy); M. Stoll (Monika); W.H.W. Tang (Wilson); S. Tennstedt (Stephanie); G. Thorgeirsson (Gudmundur); G. Thorleifsson (Gudmar); M. Tomaszewski (Maciej); A.G. Uitterlinden (André); A.M. van Rij (Andre); B.F. Voight (Benjamin); N.J. Wareham (Nick); G.A. Wells (George); H.E. Wichmann (Heinz Erich); P.S. Wild (Philipp); C. Willenborg (Christina); J.C.M. Witteman (Jacqueline); B.J. Wright (Benjamin); S. Ye (Shu); T. Zeller (Tanja); A. Ziegler (Andreas); F. Cambien (François); A.H. Goodall (Alison); L.A. Cupples (Adrienne); T. Quertermous (Thomas); W. Mäsignrz (Winfried); C. Hengstenberg (Christian); S. Blankenberg (Stefan); W.H. Ouwehand (Willem); A.S. Hall (Alistair); J.J.P. Kastelein (John); P. Deloukas (Panagiotis); J.R. Thompson (John); K. Stefansson (Kari); R. Roberts (Robert); U. Thorsteinsdottir (Unnur); C.J. O'Donnell (Christopher); R. McPherson (Ruth); J. Erdmann (Jeanette); N.J. Samani (Nilesh)

    2011-01-01

    textabstractWe performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis

  5. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S

    2016-01-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular chan...

  6. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) an...

  7. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    DEFF Research Database (Denmark)

    Voight, Benjamin F; Scott, Laura J; Steinthorsdottir, Valgerdur

    2010-01-01

    By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals...

  8. A search for susceptibility loci for anorexia nervosa: methods and sample description.

    Science.gov (United States)

    Kaye, W H; Lilenfeld, L R; Berrettini, W H; Strober, M; Devlin, B; Klump, K L; Goldman, D; Bulik, C M; Halmi, K A; Fichter, M M; Kaplan, A; Woodside, D B; Treasure, J; Plotnicov, K H; Pollice, C; Rao, R; McConaha, C W

    2000-05-01

    Eating disorders have not traditionally been viewed as heritable illnesses; however, recent family and twin studies lend credence to the potential role of genetic transmission. The Price Foundation funded an international, multisite study to identify genetic factors contributing to the pathogenesis of anorexia nervosa (AN) by recruiting affective relative pairs. This article is an overview of study methods and the clinical characteristics of the sample. All probands met modified DSM-IV criteria for AN; all affected first, second, and third degree relatives met DSM-IV criteria for AN, bulimia nervosa (BN), or eating disorder not otherwise specified (NOS). Probands and affected relatives were assessed diagnostically with the Structured Interview for Anorexia and Bulimia. DNA was collected from probands, affected relatives and a subset of their biological parents. Assessments were obtained from 196 probands and 237 affected relatives, over 98% of whom are of Caucasian ancestry. Overall, there were 229 relative pairs who were informative for linkage analysis. Of the proband-relative pairs, 63% were AN-AN, 20% were AN-BN, and 16% were AN-NOS. For family-based association analyses, DNA has been collected from both biological parents of 159 eating-disordered subjects. Few significant differences in demographic characteristics were found between proband and relative groups. The present study represents the first large-scale molecular genetic investigation of AN. Our successful recruitment of over 500 subjects, consisting of affected probands, affected relatives, and their biological parents, will provide the basis to investigate genetic transmission of eating disorders via a genome scan and assessment of candidate genes.

  9. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    NARCIS (Netherlands)

    B.F. Voight (Benjamin); L.J. Scott (Laura); V. Steinthorsdottir (Valgerdur); A.D. Morris (Andrew); C. Dina (Christian); R.P. Welch (Ryan); E. Zeggini (Eleftheria); C. Huth (Cornelia); Y.S. Aulchenko (Yurii); G. Thorleifsson (Gudmar); L.J. McCulloch (Laura); T. Ferreira (Teresa); H. Grallert (Harald); N. Amin (Najaf); G. Wu (Guanming); C.J. Willer (Cristen); S. Raychaudhuri (Soumya); S.A. McCarroll (Steven); C. Langenberg (Claudia); O.M. Hofmann (Oliver); J. Dupuis (Josée); L. Qi (Lu); A.V. Segrè (Ayellet); M. van Hoek (Mandy); P. Navarro (Pau); K.G. Ardlie (Kristin); B. Balkau (Beverley); R. Benediktsson (Rafn); A.J. Bennett (Amanda); R. Blagieva (Roza); E.A. Boerwinkle (Eric); L.L. Bonnycastle (Lori); K.B. Boström (Kristina Bengtsson); B. Bravenboer (Bert); S. Bumpstead (Suzannah); N.P. Burtt (Noël); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David); G. Crawford (Gabe); A.S.F. Doney (Alex); K.S. Elliott (Katherine); M.R. Erdos (Michael); C.S. Fox (Caroline); C.S. Franklin (Christopher); M. Ganser (Martha); C. Gieger (Christian); N. Grarup (Niels); T. Green (Todd); S. Griffin (Simon); C.J. Groves (Christopher); C. Guiducci (Candace); S. Hadjadj (Samy); N. Hassanali (Neelam); C. Herder (Christian); B. Isomaa (Bo); A.U. Jackson (Anne); P.R.V. Johnson (Paul); T. Jørgensen (Torben); W.H.L. Kao (Wen); N. Klopp (Norman); A. Kong (Augustine); P. Kraft (Peter); J. Kuusisto (Johanna); T. Lauritzen (Torsten); M. Li (Man); A. Lieverse (Aloysius); C.M. Lindgren (Cecilia); V. Lyssenko (Valeriya); M. Marre (Michel); T. Meitinger (Thomas); K. Midthjell (Kristian); M.A. Morken (Mario); N. Narisu (Narisu); P. Nilsson (Peter); K.R. Owen (Katharine); F. Payne (Felicity); J.R.B. Perry (John); A.K. Petersen; C. Platou (Carl); C. Proença (Christine); I. Prokopenko (Inga); W. Rathmann (Wolfgang); N.W. Rayner (Nigel William); N.R. Robertson (Neil); G. Rocheleau (Ghislain); M. Roden (Michael); M.J. Sampson (Michael); R. Saxena (Richa); B.M. Shields (Beverley); P. Shrader (Peter); G. Sigurdsson (Gunnar); T. Sparsø (Thomas); K. Strassburger (Klaus); H.M. Stringham (Heather); Q. Sun (Qi); A.J. Swift (Amy); B. Thorand (Barbara); J. Tichet (Jean); T. Tuomi (Tiinamaija); R.M. van Dam (Rob); T.W. van Haeften (Timon); T.W. van Herpt (Thijs); J.V. van Vliet-Ostaptchouk (Jana); G.B. Walters (Bragi); M.N. Weedon (Michael); C. Wijmenga (Cisca); J.C.M. Witteman (Jacqueline); R.N. Bergman (Richard); S. Cauchi (Stephane); F.S. Collins (Francis); A.L. Gloyn (Anna); U. Gyllensten (Ulf); T. Hansen (Torben); W.A. Hide (Winston); G.A. Hitman (Graham); A. Hofman (Albert); D. Hunter (David); K. Hveem (Kristian); M. Laakso (Markku); K.L. Mohlke (Karen); C.N.A. Palmer (Colin); P.P. Pramstaller (Peter Paul); I. Rudan (Igor); E.J.G. Sijbrands (Eric); L.D. Stein (Lincoln); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Walker (Mark); N.J. Wareham (Nick); G.R. Abecasis (Gonçalo); B.O. Boehm (Bernhard); H. Campbell (Harry); M.J. Daly (Mark); A.T. Hattersley (Andrew); F.B. Hu (Frank); J.B. Meigs (James); J.S. Pankow (James); O. Pedersen (Oluf); H.E. Wichmann (Erich); I.E. Barroso (Inês); J.C. Florez (Jose); T.M. Frayling (Timothy); L. Groop (Leif); R. Sladek (Rob); U. Thorsteinsdottir (Unnur); J.F. Wilson (James); T. Illig (Thomas); P. Froguel (Philippe); P. Tikka-Kleemola (Päivi); J-A. Zwart (John-Anker); D. Altshuler (David); M. Boehnke (Michael); M.I. McCarthy (Mark); R.M. Watanabe (Richard)

    2010-01-01

    textabstractBy combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals

  10. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects

    Czech Academy of Sciences Publication Activity Database

    Havelková, Helena; Badalová, Jana; Svobodová, M.; Vojtíšková, Jarmila; Kurey, Irina; Vladimirov, Vladimir; Demant, P.; Lipoldová, Marie

    2006-01-01

    Roč. 7, č. 3 (2006), s. 220-233 ISSN 1466-4879 R&D Projects: GA ČR(CZ) GA310/03/1381; GA ČR(CZ) GD310/03/H147 Grant - others:HHMI(US) 55000323 Institutional research plan: CEZ:AV0Z50520514 Keywords : leishmania sis * host response * gene effect Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.533, year: 2006

  11. Meta-analysis identifies six new susceptibility loci for atrial fibrillation

    NARCIS (Netherlands)

    Ellinor, Patrick T; Lunetta, Kathryn L; Albert, Christine M; Glazer, Nicole L; Ritchie, Marylyn D; Smith, Albert V; Arking, Dan E; Müller-Nurasyid, Martina; Krijthe, Bouwe P; Lubitz, Steven A; Bis, Joshua C; Chung, Mina K; Dörr, Marcus; Ozaki, Kouichi; Roberts, Jason D; Smith, J Gustav; Pfeufer, Arne; Sinner, Moritz F; Lohman, Kurt; Ding, Jingzhong; Smith, Nicholas L; Smith, Jonathan D; Rienstra, Michiel; Rice, Kenneth M; Van Wagoner, David R; Magnani, Jared W; Wakili, Reza; Clauss, Sebastian; Rotter, Jerome I; Steinbeck, Gerhard; Launer, Lenore J; Davies, Robert W; Borkovich, Matthew; Harris, Tamara B; Lin, Honghuang; Völker, Uwe; Völzke, Henry; Milan, David J; Hofman, Albert; Boerwinkle, Eric; Chen, Lin Y; Soliman, Elsayed Z; Voight, Benjamin F; Li, Guo; Chakravarti, Aravinda; Kubo, Michiaki; Tedrow, Usha B; Rose, Lynda M; Ridker, Paul M; Conen, David; Tsunoda, Tatsuhiko; Furukawa, Tetsushi; Sotoodehnia, Nona; Xu, Siyan; Kamatani, Naoyuki; Levy, Daniel; Nakamura, Yusuke; Parvez, Babar; Mahida, Saagar; Furie, Karen L; Rosand, Jonathan; Muhammad, Raafia; Psaty, Bruce M; Meitinger, Thomas; Perz, Siegfried; Wichmann, H-Erich; Witteman, Jacqueline C M; Kao, W H Linda; Kathiresan, Sekar; Roden, Dan M; Uitterlinden, Andre G; Rivadeneira, Fernando; McKnight, Barbara; Sjögren, Marketa; Newman, Anne B; Liu, Yongmei; Gollob, Michael H; Melander, Olle; Tanaka, Toshihiro; Stricker, Bruno H Ch; Felix, Stephan B; Alonso, Alvaro; Darbar, Dawood; Barnard, John; Chasman, Daniel I; Heckbert, Susan R; Benjamin, Emelia J; Gudnason, Vilmundur; Kääb, Stefan

    Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation

  12. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, Verneri; Winsvold, Bendik S.; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E.; Todt, Unda; McArdle, Wendy L.; Quaye, Lydia; Koiranen, Markku; Ikram, M. Arfan; Lehtimaki, Terho; Stam, Anine H.; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M.; Palta, Priit; Hamalainen, Eija; Schuerks, Markus; Rose, Lynda M.; Buring, Julie E.; Ridker, Paul M.; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A.; Evans, David M.; Ring, Susan M.; Farkkila, Markus; Artto, Ville; Kaunisto, Mari A.; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R.; Pelzer, Nadine; Weller, Claudia M.; Zielman, Ronald; Heath, Andrew C.; Madden, Pamela A. F.; Montgomery, Grant W.; Martin, Nicholas G.; Borck, Guntram; Goebel, Hartmut; Heinze, Axel

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  13. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    NARCIS (Netherlands)

    A.M. Gormley; H. Stefansson (Hreinn); B.S. Winsvold (Bendik); P. Palta (Priit); T. Esko (Tõnu); T.H. Pers (Tune); K.-H. Farh (Kai-How); Cuenca-Leon, E. (Ester); Muona, M. (Mikko); Furlotte, N.A. (Nicholas A.); K.H. Kurth (Karl); A. Ingason (Andres); G. Mcmahon (George); L. Ligthart (Lannie); G.M. Terwindt (Gisela); U. Todt (Unda); B. Müller-Myhsok (Bertram); Ran, C. (Caroline); Gordon, S.G. (Scott G.); A.H. Stam (Anine); S. Steinberg (Stacy); H. Göbel (Hartmut); M. Koiranen (Markku); L. Quaye (Lydia); Adams, H.H.H. (Hieab H.H.); T. Lehtimäki (Terho); A.-P. Sarin; Wedenoja, J. (Juho); D.A. Hinds (David A.); Buring, J.E. (Julie E.); M. Schürks (Markus); P.M. Ridker (Paul); Hrafnsdottir, M.G. (Maria Gudlaug); H. Stefansson (Hreinn); S.M. Ring (Susan); J.J. Hottenga (Jouke Jan); B.W.J.H. Penninx (Brenda); M. Färkkilä (Markus); V. Artto (Ville); E. Hämäläinen (Eija); S. Lucae (Susanne); R. Malik (Rainer); A.C. Heath (Andrew C.); P.A. Madden (Pamela); N.G. Martin (Nicholas); G.W. Montgomery (Grant); Kurki, M.I. (Mitja I.); M. Kals (Mart); R. Mägi (Reedik); Pärn, K. (Kalle); E. Hamalainen (Eija); Huang, H. (Hailiang); Byrnes, A.E. (Andrea E.); L. Franke (Lude); J. Huang (Jian); E. Stergiakouli (Evangelia); P.H. Lee (Phil); Sandor, C. (Cynthia); Webber, C. (Caleb); Cader, Z. (Zameel); B. Müller-Myhsok (B.); S. Schreiber (Stefan); T. Meitinger (Thomas); K. Hagen (Knut); V. Salomaa (Veikko); K. Heikkilä (Kauko); E. Loehrer (Elizabeth); A.G. Uitterlinden (André); Hofman, A. (Albert); C.M. van Duijn (Cornelia); L. Cherkas (Lynn); Pedersen, L.M. (Linda M.); Stubhaug, A. (Audun); Nielsen, C.S. (Christopher S.); Männikkö, M. (Minna); E. Mihailov (Evelin); L. Milani (Lili); S. Steinberg (Stacy); Esserlind, A.-L. (Ann-Louise); Christensen, A.F. (Anne Francke); Hansen, T.F. (Thomas Folkmann); T.M. Werge (Thomas); J. Kaprio (Jaakko); A. Aromaa (Arpo); O. Raitakari (Olli); M.A. Ikram (Arfan); M.K. Ikram (Kamran); M.-R. Jarvelin (Marjo-Riitta); A. Metspalu (Andres); C. Kubisch (Christian); D.P. Strachan (David); M.D. Ferrari (Michel); Belin, A.C. (Andrea C.); C. Kubisch (Christian); M. Wessman (Maija); A.M.J.M. Maagdenberg (Arn); J-A. Zwart (John-Anker); D.I. Boomsma (Dorret); Smith, G.D. (George Davey); Stefansson, K. (Kari); N. Eriksson (Nicholas); M.J. Daly (Mark); B.M. Neale (Benjamin); J. Olesen (Jes); D.I. Chasman (Daniel); D.R. Nyholt (Dale); A. Palotie (Aarno)

    2016-01-01

    textabstractMigraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary

  14. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    NARCIS (Netherlands)

    Gormley, P.; Anttila, V.; Winsvold, B.S.; Palta, P.; Esko, T.; Pers, T.H.; Farh, K.H.; Cuenca-Leon, E.; Muona, M.; Furlotte, N.A.; Kurth, T.; Ingason, A.; McMahon, G.; Ligthart, R.S.L.; Terwindt, G.M.; Kallela, M.; Freilinger, T.; Ran, C.; Gordon, S.G.; Stam, A.H.; Steinberg, S.; Borck, G.; Koiranen, M.; Quaye, L.; Adams, H.H.H.; Lehtimäki, T.; Sarin, A.P.; Wedenoja, J.; Hinds, D.A.; Buring, J.E.; Schürks, M.; Ridker, P.M.; Gudlaug Hrafnsdottir, M.; Stefansson, H.; Ring, S.M.; Hottenga, J.J.; Penninx, B.W.J.H.; Färkkilä, M.; Artto, V.; Kaunisto, M.A.; Vepsäläinen, S.; Malik, R.; Heath, A.C.; Madden, P.A.F.; Martin, N.G.; Montgomery, G.W.; Kurki, M.I.; Kals, M.; Mägi, R.; Pärn, K.; Hämaläinen, E.; Huang, H.; Byrnes, A.E.; Franke, L.; Huang, J.; Stergiakouli, E.; Lee, P.H.; Sandor, C.; Webber, C.; Cader, Z.; Müller-Myhsok, B.; Schreiber, S; Meitinger, T.; Eriksson, J.G.; Salomaa, V.; Heikkilä, K.; Loehrer, A.G.; Uitterlinden, A.G.; Hofman, A.; van Duijn, C.M.; Cherkas, L.; Pedersen, L.; Stubhaug, A.; Nielsen, C.S.; Männikkö, M.; Mihailov, E.; Milani, L.; Göbel, H.; Esserlind, A.L.; Francke Christensen, A.; Folkmann Hansen, T.; Werge, T.; Kaprio, J.; Aromaa, A.; Raitakari, O.; Ikram, M.A.; Spector, T.D.; Järvelin, M.R.; Metspalu, A.; Kubisch, C.; Strachan, D.P.; Ferrari, M.D.; Belin, A.C.; Dichgans, M.; Wessman, M.; van den Maagdenberg, A.M.J.M.; Zwart, J.A.; Boomsma, D.I.; Davey Smith, G.; Stefansson, K.; Eriksson, N.; Daly, M.J.; Neale, B.M.; Olesen, J.; Chasman, D.I.; Nyholt, DR; Palotie, A.; Posthuma, D.

    2016-01-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular

  15. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, V.; Winsvold, B.S.; Gormley, P.; Kurth, T.; Bettella, F.; McMahon, G.; Kallela, M.; Malik, R.; de Vries, B.; Terwindt, G.; Medland, S.E.; Todt, U.; McArdle, W.L.; Quaye, L.; Koiranen, M.; Ikram, M.A.; Lehtimäki, T.; Stam, A.H.; Ligthart, R.S.L.; Wedenoja, J.; Dunham, I.; Neale, B. M.; Palta, P.; Hamalainen, E.; Schürks, M.; Rose, L.M.; Buring, J.E.; Ridker, P.M.; Steinberg, S.; Stefansson, H.; Jakobsson, F.; Lawlor, D.A.; Evans, D.M.; Ring, S.M.; Färkkilä, M.; Artto, V.; Kaunisto, M.A.; Freilinger, T.; Schoenen, J.; Frants, R.R.; Pelzer, N.; Weller, C.M.; Zielman, R.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Martin, N.G.; Borck, G.; Göbel, H.; Heinze, A.; Heinze-Kuhn, K.; Williams, F.M.; Hartikainen, A.-L.; Pouta, A.; van den Ende, J..; Uitterlinden, A.G.; Hofman, A.; Amin, N.; Hottenga, J.J.; Vink, J.M.; Heikkilä, K.; Alexander, M.; Muller-Myhsok, B.; Schreiber, S; Meitinger, T.; Wichmann, H. E.; Aromaa, A.; Eriksson, J.G.; Traynor, B.J.; Trabzuni, D.; Rossin, E.; Lage, K.; Jacobs, S.B.; Gibbs, J.R.; Birney, E.; Kaprio, J.; Penninx, B.W.J.H.; Boomsma, D.I.; van Duijn, C.M.; Raitakari, O.; Jarvelin, M.-R.; Zwart, J.A.; Cherkas, L.; Strachan, D.P.; Kubisch, C.; Ferrari, M.D.; van den Maagdenberg, A.M.J.M.; Dichgans, M.; Wessman, M.; Smith, G.D.; Stefansson, K.; Daly, M.J.; Nyholt, DR; Chasman, D.I.; Palotie, A.

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  16. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    NARCIS (Netherlands)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S.; Palta, Priit; Esko, Tonu; Pers, Tune H.; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A.; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M.; Kallela, Mikko; Freilinger, Tobias M.; Ran, Caroline; Gordon, Scott G.; Stam, Anine H.; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H. H.; Lehtimaki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A.; Buring, Julie E.; Schurks, Markus; Ridker, Paul M.; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M.; Hottenga, Jouke-Jan; Penninx, Brenda W. J. H.; Farkkila, Markus; Artto, Ville; Kaunisto, Mari; Vepsalainen, Salli; Malik, Rainer; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Montgomery, Grant W.; Kurki, Mitja I.; Kals, Mart; Magi, Reedik; Franke, Lude

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular

  17. New susceptibility loci associated with kidney disease in type 1 diabetes

    DEFF Research Database (Denmark)

    Sandholm, Niina; Salem, Rany M; McKnight, Amy Jayne

    2012-01-01

    Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion...... mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2...... SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN....

  18. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

    OpenAIRE

    Voight, Benjamin; Scott, Laura; Steinthorsdottir, Valgerdur; Morris, Andrew; Dina, Christian; Welch, Ryan; Zeggini, Eleftheria; Huth, Cornelia; Aulchenko, Yurii; Thorleifsson, Gudmar; McCulloch, Laura; Ferreira, Teresa; Grallert, Harald; Amin, Najaf; Wu, Guanming

    2010-01-01

    textabstractBy combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P 5 × 10 8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of ov...

  19. Clustering by neurocognition for fine-mapping of the schizophrenia susceptibility loci on chromosome 6p

    Science.gov (United States)

    Lin, Sheng-Hsiang; Liu, Chih-Min; Liu, Yu-Li; Fann, Cathy Shen-Jang; Hsiao, Po-Chang; Wu, Jer-Yuarn; Hung, Shuen-Iu; Chen, Chun-Houh; Wu, Han-Ming; Jou, Yuh-Shan; Liu, Shi K.; Hwang, Tzung J.; Hsieh, Ming H.; Chang, Chien-Ching; Yang, Wei-Chih; Lin, Jin-Jia; Chou, Frank Huang-Chih; Faraone, Stephen V.; Tsuang, Ming T.; Hwu, Hai-Gwo; Chen, Wei J.

    2009-01-01

    Chromosome 6p is one of the most commonly implicated regions in the genome-wide linkage scans of schizophrenia, whereas further association studies for markers in this region were inconsistent likely due to heterogeneity. This study aimed to identify more homogeneous subgroups of families for fine mapping on regions around markers D6S296 and D6S309 (both in 6p24.3) as well as D6S274 (in 6p22.3) by means of similarity in neurocognitive functioning. A total of 160 families of patients with schizophrenia comprising at least two affected siblings who had data for 8 neurocognitive test variables of the Continuous Performance Test (CPT) and the Wisconsin Card Sorting Test (WCST) were subjected to cluster analysis with data visualization using the test scores of both affected siblings. Family clusters derived were then used separately in family-based association tests for 64 single nucleotide polymorphisms covering the region of 6p24.3 and 6p22.3. Three clusters were derived from the family-based clustering, with deficit cluster 1 representing deficit on the CPT, deficit cluster 2 representing deficit on both the CPT and the WCST, and a third cluster of non-deficit. After adjustment using false discovery rate for multiple testing, SNP rs13873 and haplotype rs1225934-rs13873 on BMP6-TXNDC5 genes were significantly associated with schizophrenia for the deficit cluster 1 but not for the deficit cluster 2 or non-deficit cluster. Our results provide further evidence that the BMP6-TXNDC5 locus on 6p24.3 may play a role in the selective impairments on sustained attention of schizophrenia. PMID:19694819

  20. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis.

    LENUS (Irish Health Repository)

    Bowes, John

    2011-09-01

    To investigate a shared genetic aetiology for skin involvement in psoriasis and psoriatic arthritis (PsA) by genotyping single-nucleotide polymorphisms (SNPs), reported to be associated in genome-wide association studies of psoriasis, in patients with PsA.

  1. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis

    DEFF Research Database (Denmark)

    Beecham, Ashley H; Patsopoulos, Nikolaos A; Xifara, Dionysia K

    2013-01-01

    Using the ImmunoChip custom genotyping array, we analyzed 14,498 subjects with multiple sclerosis and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (P...

  2. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have iden...

  3. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.

    Science.gov (United States)

    J Felderhoff, Terry; M McIntyre, Lauren; Saballos, Ana; Vermerris, Wilfred

    2016-07-07

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar 'Bk7', a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing 'Bk7' with the susceptible inbred 'Early Hegari-Sart'. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from 'Bk7'. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between 'Bk7' and sweet sorghum 'Mer81-4' narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases. Copyright © 2016 Felderhoff et al.

  4. Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis.

    Science.gov (United States)

    Knight, Jo; Spain, Sarah L; Capon, Francesca; Hayday, Adrian; Nestle, Frank O; Clop, Alex; Barker, Jonathan N; Weale, Michael E; Trembath, Richard C

    2012-12-01

    Psoriasis is a common, chronic, inflammatory skin disorder. A number of genetic loci have been shown to confer risk for psoriasis. Collectively, these offer an integrated model for the inherited basis for susceptibility to psoriasis that combines altered skin barrier function together with the dysregulation of innate immune pathogen sensing and adap-tive immunity. The major histocompatibility complex (MHC) harbours the psoriasis susceptibility region which exhibits the largest effect size, driven in part by variation contained on the HLA-Cw*0602 allele. However, the resolution of the number and genomic location of potential independent risk loci are hampered by extensive linkage disequilibrium across the region. We leveraged the power of large psoriasis case and control data sets and the statistical approach of conditional analysis to identify potential further association signals distributed across the MHC. In addition to the major loci at HLA-C (P = 2.20 × 10(-236)), we observed and replicated four additional independent signals for disease association, three of which are novel. We detected evidence for association at SNPs rs2507971 (P = 6.73 × 10(-14)), rs9260313 (P = 7.93 × 10(-09)), rs66609536 (P = 3.54 × 10(-07)) and rs380924 (P = 6.24 × 10(-06)), located within the class I region of the MHC, with each observation replicated in an independent sample (P ≤ 0.01). The previously identified locus is close to MICA, the other three lie near MICB, HLA-A and HCG9 (a non-coding RNA gene). The identification of disease associations with both MICA and MICB is particularly intriguing, since each encodes an MHC class I-related protein with potent immunological function.

  5. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  6. Quantitative trait loci and metabolic pathways

    Science.gov (United States)

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  7. Microsatellite loci isolated from the scleractinian coral, Acropora nobilis.

    Science.gov (United States)

    Isomura, Naoko; Hidaka, Michio

    2008-05-01

    We report the isolation and characterization of eight microsatellite loci from the scleractinian coral, Acropora nobilis. The microsatellite loci were obtained using compound SSR primers or an enrichment protocol. All the loci were polymorphic with four to eight alleles per locus and observed heterozygosities ranging from 0.22 to 0.76. Some of the primers developed for the two congeners, Acropora palmata and Acropora millepora were applicable to A. nobilis. These loci are useful for studying the connectivity among A. nobilis populations in Okinawa, southern Japan. © 2007 The Authors.

  8. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits.

    Science.gov (United States)

    Justice, Anne E; Winkler, Thomas W; Feitosa, Mary F; Graff, Misa; Fisher, Virginia A; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S; Ahluwalia, Tarunveer S; Chu, Audrey Y; Heard-Costa, Nancy L; Lim, Elise; Perez, Jeremiah; Eicher, John D; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E; Jackson, Anne U; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P S; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A; Stančáková, Alena; Strawbridge, Rona J; Stringham, Heather M; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vedantam, Sailaja L; Verweij, Niek; Vink, Jacqueline M; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E; Zubair, Niha; Abecasis, Gonçalo R; Adair, Linda S; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J L; Bartz, Traci M; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M; Buyske, Steve; Campbell, Harry; Chambers, John C; Collins, Francis S; Curran, Joanne E; de Borst, Gert J; de Craen, Anton J M; de Geus, Eco J C; Dedoussis, George; Delgado, Graciela E; den Ruijter, Hester M; Eiriksdottir, Gudny; Eriksson, Anna L; Esko, Tõnu; Faul, Jessica D; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas D; Heath, Andrew C; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A; Jørgensen, Marit E; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Leander, Karin; Lee, Nanette R; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A F; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G; McKenzie, Colin A; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W; Musk, Aw Bill; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Oldehinkel, Albertine J; Olden, Matthias; Ong, Ken K; Padmanabhan, Sandosh; Peyser, Patricia A; Pisinger, Charlotta; Porteous, David J; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rasmussen-Torvik, Laura J; Rawal, Rajesh; Rice, Treva; Ridker, Paul M; Rose, Lynda M; Bien, Stephanie A; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A; Sennblad, Bengt; Siemelink, Marten A; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A; Stott, David J; Swertz, Morris A; Swift, Amy J; Taylor, Kent D; Tayo, Bamidele O; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R G J; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A; Boomsma, Dorret I; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I; Chen, Yii-DerIda; Chines, Peter S; Cooper, Richard S; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans-Jörgen; Gudnason, Vilmundur; Haiman, Christopher A; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D; Wouter Jukema, J; Kardia, Sharon L R; Kivimaki, Mika; Kooner, Jaspal S; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I; Metspalu, Andres; Morris, Andrew P; Ohlsson, Claes; Palmer, Lyle J; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Smith, Blair H; Sørensen, Thorkild I A; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J; Weir, David R; Whitfield, John B; Wilson, James F; Tyrrell, Jessica; Frayling, Timothy M; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S; Hirschhorn, Joel N; Hunter, David J; Spector, Tim D; Strachan, David P; van Duijn, Cornelia M; Heid, Iris M; Mohlke, Karen L; Marchini, Jonathan; Loos, Ruth J F; Kilpeläinen, Tuomas O; Liu, Ching-Ti; Borecki, Ingrid B; North, Kari E; Cupples, L Adrienne

    2017-04-26

    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.

  9. lociNGS: a lightweight alternative for assessing suitability of next-generation loci for evolutionary analysis.

    Directory of Open Access Journals (Sweden)

    Sarah M Hird

    Full Text Available Genomic enrichment methods and next-generation sequencing produce uneven coverage for the portions of the genome (the loci they target; this information is essential for ascertaining the suitability of each locus for further analysis. lociNGS is a user-friendly accessory program that takes multi-FASTA formatted loci, next-generation sequence alignments and demographic data as input and collates, displays and outputs information about the data. Summary information includes the parameters coverage per locus, coverage per individual and number of polymorphic sites, among others. The program can output the raw sequences used to call loci from next-generation sequencing data. lociNGS also reformats subsets of loci in three commonly used formats for multi-locus phylogeographic and population genetics analyses - NEXUS, IMa2 and Migrate. lociNGS is available at https://github.com/SHird/lociNGS and is dependent on installation of MongoDB (freely available at http://www.mongodb.org/downloads. lociNGS is written in Python and is supported on MacOSX and Unix; it is distributed under a GNU General Public License.

  10. Novel loci associated with increased risk of sudden cardiac death in the context of coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Adriana Huertas-Vazquez

    Full Text Available Recent genome-wide association studies (GWAS have identified novel loci associated with sudden cardiac death (SCD. Despite this progress, identified DNA variants account for a relatively small portion of overall SCD risk, suggesting that additional loci contributing to SCD susceptibility await discovery. The objective of this study was to identify novel DNA variation associated with SCD in the context of coronary artery disease (CAD.Using the MetaboChip custom array we conducted a case-control association analysis of 119,117 SNPs in 948 SCD cases (with underlying CAD from the Oregon Sudden Unexpected Death Study (Oregon-SUDS and 3,050 controls with CAD from the Wellcome Trust Case-Control Consortium (WTCCC. Two newly identified loci were significantly associated with increased risk of SCD after correction for multiple comparisons at: rs6730157 in the RAB3GAP1 gene on chromosome 2 (P = 4.93×10(-12, OR = 1.60 and rs2077316 in the ZNF365 gene on chromosome 10 (P = 3.64×10(-8, OR = 2.41.Our findings suggest that RAB3GAP1 and ZNF365 are relevant candidate genes for SCD and will contribute to the mechanistic understanding of SCD susceptibility.

  11. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Science.gov (United States)

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A; Spritz, Richard A

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from destruction of melanocytes1, with epidemiologic association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1, GWAS2), we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We carried out a third GWAS (GWAS3) in EUR subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new loci and 7 suggestive loci, most encoding immune and apoptotic regulators, some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some corresponding to eQTL at these loci. Together, the identified genes provide a framework for vitiligo genetic architecture and pathobiology, highlight relationships to other autoimmune diseases and melanoma, and offer potential targets for treatment. PMID:27723757

  12. Nonparametric functional mapping of quantitative trait loci.

    Science.gov (United States)

    Yang, Jie; Wu, Rongling; Casella, George

    2009-03-01

    Functional mapping is a useful tool for mapping quantitative trait loci (QTL) that control dynamic traits. It incorporates mathematical aspects of biological processes into the mixture model-based likelihood setting for QTL mapping, thus increasing the power of QTL detection and the precision of parameter estimation. However, in many situations there is no obvious functional form and, in such cases, this strategy will not be optimal. Here we propose to use nonparametric function estimation, typically implemented with B-splines, to estimate the underlying functional form of phenotypic trajectories, and then construct a nonparametric test to find evidence of existing QTL. Using the representation of a nonparametric regression as a mixed model, the final test statistic is a likelihood ratio test. We consider two types of genetic maps: dense maps and general maps, and the power of nonparametric functional mapping is investigated through simulation studies and demonstrated by examples.

  13. Report on the development of putative functional SSR and SNP markers in passion fruits.

    Science.gov (United States)

    da Costa, Zirlane Portugal; Munhoz, Carla de Freitas; Vieira, Maria Lucia Carneiro

    2017-09-06

    Passionflowers Passiflora edulis and Passiflora alata are diploid, outcrossing and understudied fruit bearing species. In Brazil, passion fruit cultivation began relatively recently and has earned the country an outstanding position as the world's top producer of passion fruit. The fruit's main economic value lies in the production of juice, an essential exotic ingredient in juice blends. Currently, crop improvement strategies, including those for underexploited tropical species, tend to incorporate molecular genetic approaches. In this study, we examined a set of P. edulis transcripts expressed in response to infection by Xanthomonas axonopodis, (the passion fruit's main bacterial pathogen that attacks the vines), aiming at the development of putative functional markers, i.e. SSRs (simple sequence repeats) and SNPs (single nucleotide polymorphisms). A total of 210 microsatellites were found in 998 sequences, and trinucleotide repeats were found to be the most frequent (31.4%). Of the sequences selected for designing primers, 80.9% could be used to develop SSR markers, and 60.6% SNP markers for P. alata. SNPs were all biallelic and found within 15 gene fragments of P. alata. Overall, gene fragments generated 10,003 bp. SNP frequency was estimated as one SNP every 294 bp. Polymorphism rates revealed by SSR and SNP loci were 29.4 and 53.6%, respectively. Passiflora edulis transcripts were useful for the development of putative functional markers for P. alata, suggesting a certain level of sequence conservation between these cultivated species. The markers developed herein could be used for genetic mapping purposes and also in diversity studies.

  14. Discovery and refinement of loci associated with lipid levels

    NARCIS (Netherlands)

    Willer, Cristen J.; Schmidt, Ellen M.; Sengupta, Sebanti; Peloso, Gina M.; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L.; Mora, Samia; Beckmann, Jacques S.; Bragg-Gresham, Jennifer L.; Chang, Hsing-Yi; Demirkan, Ayşe; den Hertog, Heleen M.; Do, Ron; Donnelly, Louise A.; Ehret, Georg B.; Esko, Tõnu; Feitosa, Mary F.; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M.; Freitag, Daniel F.; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U.; Johansson, Asa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E.; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K. E.; Mangino, Massimo; Mihailov, Evelin; Montasser, May E.; Müller-Nurasyid, Martina; Nolte, Ilja M.; O'Connell, Jeffrey R.; Palmer, Cameron D.; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K.; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J.; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M.; Thorleifsson, Gudmar; van den Herik, Evita G.; Voight, Benjamin F.; Volcik, Kelly A.; Waite, Lindsay L.; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F.; Bolton, Jennifer L.; Bonnycastle, Lori L.; Brambilla, Paolo; Burnett, Mary S.; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S. F.; Döring, Angela; Elliott, Paul; Epstein, Stephen E.; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O.; Grallert, Harald; Gravito, Martha L.; Groves, Christopher J.; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A.; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R.; Kaleebu, Pontiano; Kastelein, John J. P.; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J. F.; Mach, François; McArdle, Wendy L.; Meisinger, Christa; Mitchell, Braxton D.; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V. M.; Nsubuga, Rebecca N.; Olafsson, Isleifur; Ong, Ken K.; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J.; Reilly, Muredach P.; Ridker, Paul M.; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stancáková, Alena; Stirrups, Kathleen; Swift, Amy J.; Tiret, Laurence; Uitterlinden, Andre G.; van Pelt, L. Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H.; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F.; Young, Elizabeth H.; Zhao, Jing Hua; Adair, Linda S.; Arveiler, Dominique; Assimes, Themistocles L.; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O.; Boomsma, Dorret I.; Borecki, Ingrid B.; Bornstein, Stefan R.; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C.; Chen, Yii-Der Ida; Collins, Francis S.; Cooper, Richard S.; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B.; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B.; Gieger, Christian; Groop, Leif C.; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hingorani, Aroon; Hirschhorn, Joel N.; Hofman, Albert; Hovingh, G. Kees; Hsiung, Chao Agnes; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S.; Koudstaal, Peter J.; Krauss, Ronald M.; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O.; Laakso, Markku; Lakka, Timo A.; Lind, Lars; Lindgren, Cecilia M.; Martin, Nicholas G.; März, Winfried; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D.; Munroe, Patricia B.; Njølstad, Inger; Pedersen, Nancy L.; Power, Chris; Pramstaller, Peter P.; Price, Jackie F.; Psaty, Bruce M.; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K.; Saramies, Jouko; Schwarz, Peter E. H.; Sheu, Wayne H.-H.; Shuldiner, Alan R.; Siegbahn, Agneta; Spector, Tim D.; Stefansson, Kari; Strachan, David P.; Tayo, Bamidele O.; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M.; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J.; Whitfield, John B.; Wolffenbuttel, Bruce H. R.; Ordovas, Jose M.; Boerwinkle, Eric; Palmer, Colin N. A.; Thorsteinsdottir, Unnur; Chasman, Daniel I.; Rotter, Jerome I.; Franks, Paul W.; Ripatti, Samuli; Cupples, L. Adrienne; Sandhu, Manjinder S.; Rich, Stephen S.; Boehnke, Michael; Deloukas, Panos; Kathiresan, Sekar; Mohlke, Karen L.; Ingelsson, Erik; Abecasis, Gonçalo R.

    2013-01-01

    Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577

  15. Unraveling possible association between quantitative trait loci (QTL ...

    African Journals Online (AJOL)

    Unraveling possible association between quantitative trait loci (QTL) for partial resistance and nonhost resistance in food barley ( Hordeum vulgaris L.) ... Abstract. Many quantitative trait loci (QTLs) in different barley populations were discovered for resistance to Puccinia hordei and heterologous rust species. Partial ...

  16. Discovery and refinement of loci associated with lipid levels

    DEFF Research Database (Denmark)

    Willer, C. J.; Schmidt, E. M.; Sengupta, S.

    2013-01-01

    Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individ...... of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.......Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188......,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry...

  17. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility.

    Science.gov (United States)

    Carmona, F David; Mackie, Sarah L; Martín, Jose-Ezequiel; Taylor, John C; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castañeda, Santos; Cid, Maria C; Hernández-Rodríguez, José; Prieto-González, Sergio; Solans, Roser; Ramentol-Sintas, Marc; González-Escribano, M Francisca; Ortiz-Fernández, Lourdes; Morado, Inmaculada C; Narváez, Javier; Miranda-Filloy, José A; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H; Moosig, Frank; Schönau, Verena; Franke, Andre; Palm, Øyvind; Molberg, Øyvind; Diamantopoulos, Andreas P; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J; Hoffman, Gary S; Khalidi, Nader A; Koening, Curry L; Langford, Carol A; McAlear, Carol A; Moreland, Larry; Monach, Paul A; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G; Warrington, Kenneth J; Ytterberg, Steven R; Gregersen, Peter K; Pease, Colin T; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P C; de Bakker, Paul I W; Barrett, Jennifer H; Salvarani, Carlo; Merkel, Peter A; González-Gay, Miguel A; Morgan, Ann W; Martín, Javier

    2015-04-02

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10(-40), OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1(∗)04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10(-43)) and HLA-DQα1 47 (p = 4.02 × 10(-46)), 56, and 76 (both p = 1.84 × 10(-45)) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10(-6), OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10(-6), OR = 1.20), and REL (rs115674477, p = 1.10 × 10(-5), OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians

    DEFF Research Database (Denmark)

    Cho, Yoon Shin; Chen, Chien-Hsiun; Hu, Cheng

    2012-01-01

    We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis...... (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3...

  19. Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.).

    Science.gov (United States)

    Yang, Xiping; Islam, Md S; Sood, Sushma; Maya, Stephanie; Hanson, Erik A; Comstock, Jack; Wang, Jianping

    2018-01-01

    Sugarcane ( Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F 1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance ( R ) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control.

  20. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  1. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  2. An evolutionary reduction principle for mutation rates at multiple Loci.

    Science.gov (United States)

    Altenberg, Lee

    2011-06-01

    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.

  3. GAB2 as an Alzheimer Disease Susceptibility Gene

    Science.gov (United States)

    Schjeide, Brit-Maren M.; Hooli, Basavaraj; Parkinson, Michele; Hogan, Meghan F.; DiVito, Jason; Mullin, Kristina; Blacker, Deborah; Tanzi, Rudolph E.; Bertram, Lars

    2009-01-01

    Background Genomewide association (GWA) studies have recently implicated 4 novel Alzheimer disease (AD) susceptibility loci (GAB2, GOLM1, and 2 uncharacterized loci to date on chromosomes 9p and 15q). To our knowledge, these findings have not been independently replicated. Objective To assess these GWA findings in 4 large data sets of families affected by AD. Design Follow-up of genetic association findings in previous studies. Setting Academic research. Participants More than 4000 DNA samples from almost 1300 families affected with AD. Main Outcome Measures Genetic association analysis testing of 4 GWA signals (rs7101429 [GAB2], rs7019241 [GOLM1], rs10519262 [chromosome 15q], and rs9886784 [chromosome 9p]) using family-based methods. Results In the combined analyses, only rs7101429 in GAB2 yielded significant evidence of association with the same allele as in the original GWA study (P = .002). The results are in agreement with recent meta-analyses of this and other GAB2 polymorphisms suggesting approximately a 30% decrease in risk for AD among carriers of the minor alleles. None of the other 3 tested loci showed consistent evidence for association with AD across the investigated data sets. Conclusions GAB2 contains genetic variants that may lead to a modest change in the risk for AD. Despite these promising results, more data from independent samples are needed to better evaluate the potential contribution of GAB2 to AD risk in the general population. PMID:19204163

  4. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    Science.gov (United States)

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  5. Genetic loci for retinal arteriolar microcirculation.

    Directory of Open Access Journals (Sweden)

    Xueling Sim

    Full Text Available Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12 in combined meta-analysis of discovery and replication cohorts. In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

  6. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations

    OpenAIRE

    Liang, Jingjing; Le, Thu H.; Edwards, Digna R. Velez; Tayo, Bamidele O.; Gaulton, Kyle J.; Smith, Jennifer A.; Lu, Yingchang; Jensen, Richard A.; Chen, Guanjie; Yanek, Lisa R.; Schwander, Karen; Tajuddin, Salman M.; Sofer, Tamar; Kim, Wonji; Kayima, James

    2017-01-01

    © 2017 Public Library of Science. All Rights Reserved. Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genom...

  7. Localization of quantitative trait loci associated with radiation induced pulmonary fibrosis in the mouse

    International Nuclear Information System (INIS)

    Oas, L.G.; Haston, C.K.; Travis, E.L.

    1997-01-01

    Purpose/Objective: Pulmonary fibrosis is often a limiting factor in the planning of radiotherapy for thoracic neoplasms. Differences in the propensity to develop radiation induced pulmonary fibrosis have been noted between C3Hf/Kam (resistant) and C57BL/6J (susceptible) mouse strains. Bleomycin and radiation induced pulmonary fibrosis have been shown to be heritable traits in mice with significant linkage to the major histocompatibility complex on chromosome 17. The heritability of radiation induced damage was estimated to be 38%±11% with 1-2 genetic factors influencing expression. Only 6.6% of the phenotypic variance could be attributed to chromosome 17. A search of the genome was undertaken to identify loci which may be responsible for the remaining phenotypic variance. Materials and Methods: C3Hf/Kam and C57BL/6J mice were crosbred to yield F1 and F2 (F1 intercross) generations. Two hundred sixty eight males and females of the F2 generation were treated with orthovoltage radiation, 14 or 16 Gy, to the whole thorax. The mice were sacrificed after development of respiratory distress or at 33 weeks. Histologic sections were assessed with quantified image analysis to determine the percentage of fibrosis in both lungs. Genotyping was done on the pooled DNA of the mice who developed respiratory distress with 44 32 P labeled microsatellite markers having an average spacing of 24.5 cM. Correlation of the quantitative trait loci (QTLs) with the highest quartile of fibrosis revealed 10 out of 44 regions showing possible linkage. Individual DNA from 54 mice with the least fibrosis and 40 with the most fibrosis were probed using these markers. PCR and gel electrophoresis were performed and the results analysed. Results: Of the 10 markers analysed, one locus on chromosome 1 meets the criterion of suggestion of linkage. Conclusion: These findings point to regions on the mouse genome for which further investigation of fibrosis associated loci may be warranted

  8. Nonequivalence of classical MHC class I loci in ability to direct effective antiviral immunity.

    Directory of Open Access Journals (Sweden)

    Kevin D Pavelko

    2012-02-01

    Full Text Available Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2K(b gene are highly susceptible to persisting Theiler's virus infection within the CNS and subsequent demyelination, mice expressing the D(b transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of K(b but encoding the peptide binding domain of D(b, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric K(bα1α2D(b gene (low and D(b (high in the CNS of infected mice mirror expression levels of their endogenous H-2(q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.

  9. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  10. Common variants at five new loci associated with early-onset inflammatory bowel disease.

    Science.gov (United States)

    Imielinski, Marcin; Baldassano, Robert N; Griffiths, Anne; Russell, Richard K; Annese, Vito; Dubinsky, Marla; Kugathasan, Subra; Bradfield, Jonathan P; Walters, Thomas D; Sleiman, Patrick; Kim, Cecilia E; Muise, Aleixo; Wang, Kai; Glessner, Joseph T; Saeed, Shehzad; Zhang, Haitao; Frackelton, Edward C; Hou, Cuiping; Flory, James H; Otieno, George; Chiavacci, Rosetta M; Grundmeier, Robert; Castro, Massimo; Latiano, Anna; Dallapiccola, Bruno; Stempak, Joanne; Abrams, Debra J; Taylor, Kent; McGovern, Dermot; Silber, Gary; Wrobel, Iwona; Quiros, Antonio; Barrett, Jeffrey C; Hansoul, Sarah; Nicolae, Dan L; Cho, Judy H; Duerr, Richard H; Rioux, John D; Brant, Steven R; Silverberg, Mark S; Taylor, Kent D; Barmuda, M Michael; Bitton, Alain; Dassopoulos, Themistocles; Datta, Lisa Wu; Green, Todd; Griffiths, Anne M; Kistner, Emily O; Murtha, Michael T; Regueiro, Miguel D; Rotter, Jerome I; Schumm, L Philip; Steinhart, A Hillary; Targan, Stephen R; Xavier, Ramnik J; Libioulle, Cécile; Sandor, Cynthia; Lathrop, Mark; Belaiche, Jacques; Dewit, Olivier; Gut, Ivo; Heath, Simon; Laukens, Debby; Mni, Myriam; Rutgeerts, Paul; Van Gossum, André; Zelenika, Diana; Franchimont, Denis; Hugot, J P; de Vos, Martine; Vermeire, Severine; Louis, Edouard; Cardon, Lon R; Anderson, Carl A; Drummond, Hazel; Nimmo, Elaine; Ahmad, Tariq; Prescott, Natalie J; Onnie, Clive M; Fisher, Sheila A; Marchini, Jonathan; Ghori, Jilur; Bumpstead, Suzannah; Gwillam, Rhian; Tremelling, Mark; Delukas, Panos; Mansfield, John; Jewell, Derek; Satsangi, Jack; Mathew, Christopher G; Parkes, Miles; Georges, Michel; Daly, Mark J; Heyman, Melvin B; Ferry, George D; Kirschner, Barbara; Lee, Jessica; Essers, Jonah; Grand, Richard; Stephens, Michael; Levine, Arie; Piccoli, David; Van Limbergen, John; Cucchiara, Salvatore; Monos, Dimitri S; Guthery, Stephen L; Denson, Lee; Wilson, David C; Grant, Straun F A; Daly, Mark; Silverberg, Mark S; Satsangi, Jack; Hakonarson, Hakon

    2009-12-01

    The inflammatory bowel diseases (IBD) Crohn's disease and ulcerative colitis are common causes of morbidity in children and young adults in the western world. Here we report the results of a genome-wide association study in early-onset IBD involving 3,426 affected individuals and 11,963 genetically matched controls recruited through international collaborations in Europe and North America, thereby extending the results from a previous study of 1,011 individuals with early-onset IBD. We have identified five new regions associated with early-onset IBD susceptibility, including 16p11 near the cytokine gene IL27 (rs8049439, P = 2.41 x 10(-9)), 22q12 (rs2412973, P = 1.55 x 10(-9)), 10q22 (rs1250550, P = 5.63 x 10(-9)), 2q37 (rs4676410, P = 3.64 x 10(-8)) and 19q13.11 (rs10500264, P = 4.26 x 10(-10)). Our scan also detected associations at 23 of 32 loci previously implicated in adult-onset Crohn's disease and at 8 of 17 loci implicated in adult-onset ulcerative colitis, highlighting the close pathogenetic relationship between early- and adult-onset IBD.

  11. Genome-wide association studies identify four ER negative-specific breast cancer risk loci.

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van't; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Dos Santos Silva, Isabel; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Berg, David Van Den; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-Gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-04-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.

  12. Cross-genus amplification and characterisation of microsatellite loci ...

    African Journals Online (AJOL)

    Jennifer Lamb

    School of Biological and Conservation Sciences, New Biology Building, University of KwaZulu-Natal, University ... These six loci were informative in studies of population genetic structure of C. pumilus ..... The Human Genome Project and the.

  13. Quantile-Based Permutation Thresholds for Quantitative Trait Loci Hotspots

    NARCIS (Netherlands)

    Neto, Elias Chaibub; Keller, Mark P.; Broman, Andrew F.; Attie, Alan D.; Jansen, Ritsert C.; Broman, Karl W.; Yandell, Brian S.; Borevitz, J.

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key

  14. Mapping of quantitative trait loci controlling Orobanche foetida Poir ...

    African Journals Online (AJOL)

    Mapping of quantitative trait loci controlling Orobanche foetida Poir. resistance in faba bean (Vicia faba L.) R Díaz-Ruiz, A Torres, MV Gutierrez, D Rubiales, JI Cubero, M Kharrat, Z Satovic, B Román ...

  15. Quantitative trait loci mapping for stomatal traits in interspecific ...

    Indian Academy of Sciences (India)

    M. Sumathi

    2018-02-23

    Feb 23, 2018 ... Journal of Genetics, Vol. ... QTL analysis was carried out to identify the chromosomal regions affecting ... Keywords. linkage map; quantitative trait loci; stomata; stress ..... of India for providing financial support for the project.

  16. Ancient conservation of trinucleotide microsatellite loci in polistine wasps

    DEFF Research Database (Denmark)

    Ezenwa, V O; Peters, J M; Zhu, Y

    1998-01-01

    Microsatellites have proven to be very useful genetic markers for studies of kinship, parentage, and gene mapping. If microsatellites are conserved among species, then those developed for one species can be used on related species, which would save the time and effort of developing new loci. We...... evaluated conservation of 27 trinucleotide loci that were derived from 2 species of Polistes wasps in cross-species applications on 27 species chosen from the major lineages of the Vespidae, which diverged as much as 144 million years ago. We further investigated cross-species polymorphism levels for 18...... of the loci. There was a clear relationship between cladistic distance and both conservation of the priming sites and heterozygosity. However the loci derived from P. bellicosus were much more widely conserved and polymorphic than were those derived from P. annularis. The disparity in cross-species utility...

  17. Cross-genus amplification and characterisation of microsatellite loci ...

    African Journals Online (AJOL)

    Cross-genus amplification and characterisation of microsatellite loci in the little free tailed bat, Chaerephon pumilus s. l. (Molossidae) from South Eastern Africa. Theshnie Naidoo, Angus Macdonald, Jennifer M Lamb ...

  18. BXSB/long-lived is a recombinant inbred strain containing powerful disease suppressor loci.

    Science.gov (United States)

    Haywood, Michelle E K; Gabriel, Luisa; Rose, S Jane; Rogers, Nicola J; Izui, Shozo; Morley, Bernard J

    2007-08-15

    The BXSB strain of recombinant inbred mice develops a spontaneous pathology that closely resembles the human disease systemic lupus erythematosus. Six non-MHC loci, Yaa, Bxs1-4, and Bxs6, have been linked to the development of aspects of the disease while a further locus, Bxs5, may be a BXSB-derived disease suppressor. Disease development is delayed in a substrain of BXSB, BXSB/MpJScr-long-lived (BXSB/ll). We compared the genetic derivation of BXSB/ll mice to the original strain, BXSB/MpJ, using microsatellite markers and single nucleotide polymorphisms across the genome. These differences were clustered and included two regions known to be important in the disease-susceptibility of these mice, Bxs5 and 6, as well as regions on chromosomes 5, 6, 9, 11, 12, and 13. We compared BXSB/ll to >20 strains including the BXSB parental SB/Le and C57BL/6 strains. This revealed that BXSB/ll is a separate recombinant inbred line derived from SB/Le and C57BL/6, but distinctly different from BXSB, that most likely arose due to residual heterozygosity in the BXSB stock. Despite the continued presence of the powerful disease-susceptibility locus Bxs3, BXSB/ll mice do not develop disease. We propose that the disappearance of the disease phenotype in the BXSB/ll mice is due to the inheritance of one or more suppressor loci in the differentially inherited intervals between the BXSB/ll and BXSB strains.

  19. Type 2 Diabetes Risk Allele Loci in the Qatari Population.

    Directory of Open Access Journals (Sweden)

    Sarah L O'Beirne

    Full Text Available The prevalence of type 2 diabetes (T2D is increasing in the Middle East. However, the genetic risk factors for T2D in the Middle Eastern populations are not known, as the majority of studies of genetic risk for T2D are in Europeans and Asians.All subjects were ≥3 generation Qataris. Cases with T2D (n = 1,124 and controls (n = 590 were randomly recruited and assigned to the 3 known Qatari genetic subpopulations [Bedouin (Q1, Persian/South Asian (Q2 and African (Q3]. Subjects underwent genotyping for 37 single nucleotide polymorphisms (SNPs in 29 genes known to be associated with T2D in Europeans and/or Asian populations, and an additional 27 tag SNPs related to these susceptibility loci. Pre-study power analysis suggested that with the known incidence of T2D in adult Qataris (22%, the study population size would be sufficient to detect significant differences if the SNPs were risk factors among Qataris, assuming that the odds ratio (OR for T2D SNPs in Qatari's is greater than or equal to the SNP with highest known OR in other populations.Haplotype analysis demonstrated that Qatari haplotypes in the region of known T2D risk alleles in Q1 and Q2 genetic subpopulations were similar to European haplotypes. After Benjamini-Hochberg adjustment for multiple testing, only two SNPs (rs7903146 and rs4506565, both associated with transcription factor 7-like 2 (TCF7L2, achieved statistical significance in the whole study population. When T2D subjects and control subjects were assigned to the known 3 Qatari subpopulations, and analyzed individually and with the Q1 and Q2 genetic subpopulations combined, one of these SNPs (rs4506565 was also significant in the admixed group. No other SNPs associated with T2D in all Qataris or individual genetic subpopulations.With the caveats of the power analysis, the European/Asian T2D SNPs do not contribute significantly to the high prevalence of T2D in the Qatari population, suggesting that the genetic risks for T2D are

  20. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

    DEFF Research Database (Denmark)

    Teumer, Alexander; Qi, Qibin; Nethander, Maria

    2016-01-01

    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer......-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several...

  1. Genius loci jako estetický problém

    OpenAIRE

    Křížová, Lucie

    2016-01-01

    (in English): Diploma thesis Genius loci as an aesthetic problem is addressed by defining the concept of genius loci and exploring its aesthetic implications and parallels. After clarification of the ontological nature of this phenomenon its commonalities will be monitored with selected concepts of environmental philosophy and aesthetics, especially the aesthetic dimension of the environmental experience. Publications of Christian Norberg-Schulz and David E. Cooper are used as a starting mate...

  2. Proactive control of proactive interference using the method of loci

    OpenAIRE

    Bass, Willa S.; Oswald, Karl M.

    2014-01-01

    Proactive interferencebuilds up with exposure to multiple lists of similar items with a resulting reduction in recall. This study examined the effectiveness of using a proactive strategy of the method of loci to reduce proactive interference in a list recall paradigm of categorically similar words. While all participants reported using some form of strategy to recall list words, this study demonstrated that young adults were able to proactively use the method of loci after 25 min of instructi...

  3. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Sleiman, Patrick; Nielsen, Kasper

    2014-01-01

    Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6......1RL1, were previously reported as asthma susceptibility loci, but the effect sizes for these loci in our cohort were considerably larger than in the previous genome-wide association studies of asthma. We also obtained strong evidence for a new susceptibility gene, CDHR3 (encoding cadherin......-related family member 3), which is highly expressed in airway epithelium. These results demonstrate the strength of applying specific phenotyping in the search for asthma susceptibility genes....

  4. Strategies for Enriching Variant Coverage in Candidate Disease Loci on a Multiethnic Genotyping Array.

    Directory of Open Access Journals (Sweden)

    Stephanie A Bien

    Full Text Available Investigating genetic architecture of complex traits in ancestrally diverse populations is imperative to understand the etiology of disease. However, the current paucity of genetic research in people of African and Latin American ancestry, Hispanic and indigenous peoples in the United States is likely to exacerbate existing health disparities for many common diseases. The Population Architecture using Genomics and Epidemiology, Phase II (PAGE II, Study was initiated in 2013 by the National Human Genome Research Institute to expand our understanding of complex trait loci in ethnically diverse and well characterized study populations. To meet this goal, the Multi-Ethnic Genotyping Array (MEGA was designed to substantially improve fine-mapping and functional discovery by increasing variant coverage across multiple ethnicities at known loci for metabolic, cardiovascular, renal, inflammatory, anthropometric, and a variety of lifestyle traits. Studying the frequency distribution of clinically relevant mutations, putative risk alleles, and known functional variants across multiple populations will provide important insight into the genetic architecture of complex diseases and facilitate the discovery of novel, sometimes population-specific, disease associations. DNA samples from 51,650 self-identified African ancestry (17,328, Hispanic/Latino (22,379, Asian/Pacific Islander (8,640, and American Indian (653 and an additional 2,650 participants of either South Asian or European ancestry, and other reference panels have been genotyped on MEGA by PAGE II. MEGA was designed as a new resource for studying ancestrally diverse populations. Here, we describe the methodology for selecting trait-specific content for use in multi-ethnic populations and how enriching MEGA for this content may contribute to deeper biological understanding of the genetic etiology of complex disease.

  5. Signatures of selection in loci governing major colour patterns in Heliconius butterflies and related species

    Directory of Open Access Journals (Sweden)

    Joron Mathieu

    2010-11-01

    Full Text Available Abstract Background Protein-coding change is one possible genetic mechanism underlying the evolution of adaptive wing colour pattern variation in Heliconius butterflies. Here we determine whether 38 putative genes within two major Heliconius patterning loci, HmYb and HmB, show evidence of positive selection. Ratios of nonsynonymous to synonymous nucleotide changes (ω were used to test for selection, as a means of identifying candidate genes within each locus that control wing pattern. Results Preliminary analyses using 454 transcriptome and Bacterial Artificial Chromosome (BAC sequences from three Heliconius species highlighted a cluster of genes within each region showing relatively higher rates of sequence evolution. Other genes within the region appear to be highly constrained, and no ω estimates exceeded one. Three genes from each locus with the highest average pairwise ω values were amplified from additional Heliconius species and races. Two selected genes, fizzy-like (HmYb and DALR (HmB, were too divergent for amplification across species and were excluded from further analysis. Amongst the remaining genes, HM00021 and Kinesin possessed the highest background ω values within the HmYb and HmB loci, respectively. After accounting for recombination, these two genes both showed evidence of having codons with a signature of selection, although statistical support for this signal was not strong in any case. Conclusions Tests of selection reveal a cluster of candidate genes in each locus, suggesting that weak directional selection may be occurring within a small region of each locus, but coding changes alone are unlikely to explain the full range of wing pattern diversity. These analyses pinpoint many of the same genes believed to be involved in the control of colour patterning in Heliconius that have been identified through other studies implementing different research methods.

  6. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Science.gov (United States)

    Escott-Price, Valentina; Bellenguez, Céline; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Jones, Lesley; Holmans, Peter; Gerrish, Amy; Vedernikov, Alexey; Richards, Alexander; DeStefano, Anita L; Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Naj, Adam C; Sims, Rebecca; Jun, Gyungah; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Denning, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Vronskaya, Maria; Johnson, Andrew D; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Hernández, Isabel; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick C; Hardy, John; Naranjo, Maria Candida Deniz; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Scarpini, Elio; Bonuccelli, Ubaldo; Mancuso, Michelangelo; Siciliano, Gabriele; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Frank-García, Ana; Panza, Francesco; Solfrizzi, Vincenzo; Caffarra, Paolo; Nacmias, Benedetta; Perry, William; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O'Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Haines, Jonathan L; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Van Broeckhoven, Christine; Farrer, Lindsay A; van Duijn, Cornelia M; Ramirez, Alfredo; Seshadri, Sudha; Schellenberg, Gerard D; Amouyel, Philippe; Williams, Julie

    2014-01-01

    Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6) and 14 (IGHV1-67 p = 7.9×10-8) which indexed novel susceptibility loci. The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  7. Evolution, revolution and heresy in the genetics of infectious disease susceptibility

    Science.gov (United States)

    Hill, Adrian V. S.

    2012-01-01

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051

  8. Evolution, revolution and heresy in the genetics of infectious disease susceptibility.

    Science.gov (United States)

    Hill, Adrian V S

    2012-03-19

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case-control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference.

  9. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Valentina Escott-Price

    Full Text Available Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6 and 14 (IGHV1-67 p = 7.9×10-8 which indexed novel susceptibility loci.The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  10. Putative golden proportions as predictors of facial esthetics in adolescents.

    NARCIS (Netherlands)

    Kiekens, R.M.A.; Kuijpers-Jagtman, A.M.; Hof, M.A. van 't; Hof, B.E. van 't; Maltha, J.C.

    2008-01-01

    INTRODUCTION: In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. METHODS: Seventy-six adult laypeople

  11. Exploring universal partnerships and putative marriages as tools for ...

    African Journals Online (AJOL)

    Following upon the Supreme Court of Appeal's judgment in Butters v Mncora 2012 4 SA 1 (SCA), which broadened the criteria and consequences of universal partnerships in cohabitation relationships, this article investigates the potential of universal partnerships and putative marriages to allocate rights to share in ...

  12. Putative Lineage of Novel African Usutu Virus, Central Europe

    Centers for Disease Control (CDC) Podcasts

    2015-10-15

    Sarah Gregory reads an abridged version of "Putative Lineage of Novel African Usutu Virus, Central Europe.".  Created: 10/15/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/15/2015.

  13. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, including 57 new ones. These genes were classified into five clans and 20 families by sequence similarities and among ...

  14. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  15. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  16. Alkenenitrile Transmissive Olefination: Synthesis of the Putative Lignan "Morinol I"

    Science.gov (United States)

    Fleming, Fraser F.; Liu, Wang; Yao, Lihua; Pitta, Bhaskar; Purzycki, Matthew; Ravikumar, P. C.

    2012-01-01

    Grignard reagents trigger an addition-elimination with α'-hydroxy acrylonitriles to selectively generate Z-alkenenitriles. The modular assembly of Z-alkenenitriles from a Grignard reagent, acrylonitrile, and an aldehyde is ideal for stereoselectively synthesizing alkenes as illustrated in the synthesis of the putative lignan "morinol I." PMID:22545004

  17. Characterization of EST-based SSR loci in the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae)

    Science.gov (United States)

    B.M.T. Brunet; D. Doucet; B.R. Sturtevant; F.A.H. Sperling

    2013-01-01

    After identifying 114 microsatellite loci from Choristoneura fumiferana expressed sequence tags, 87 loci were assayed in a panel of 11 wild-caught individuals, giving 29 polymorphic loci. Further analysis of 20 of these loci on 31 individuals collected from a single population in northern Minnesota identified 14 in Hardy-Weinberg equilibrium.

  18. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium.

    Science.gov (United States)

    Ng, Maggie C Y; Graff, Mariaelisa; Lu, Yingchang; Justice, Anne E; Mudgal, Poorva; Liu, Ching-Ti; Young, Kristin; Yanek, Lisa R; Feitosa, Mary F; Wojczynski, Mary K; Rand, Kristin; Brody, Jennifer A; Cade, Brian E; Dimitrov, Latchezar; Duan, Qing; Guo, Xiuqing; Lange, Leslie A; Nalls, Michael A; Okut, Hayrettin; Tajuddin, Salman M; Tayo, Bamidele O; Vedantam, Sailaja; Bradfield, Jonathan P; Chen, Guanjie; Chen, Wei-Min; Chesi, Alessandra; Irvin, Marguerite R; Padhukasahasram, Badri; Smith, Jennifer A; Zheng, Wei; Allison, Matthew A; Ambrosone, Christine B; Bandera, Elisa V; Bartz, Traci M; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Bottinger, Erwin P; Carpten, John; Chanock, Stephen J; Chen, Yii-Der Ida; Conti, David V; Cooper, Richard S; Fornage, Myriam; Freedman, Barry I; Garcia, Melissa; Goodman, Phyllis J; Hsu, Yu-Han H; Hu, Jennifer; Huff, Chad D; Ingles, Sue A; John, Esther M; Kittles, Rick; Klein, Eric; Li, Jin; McKnight, Barbara; Nayak, Uma; Nemesure, Barbara; Ogunniyi, Adesola; Olshan, Andrew; Press, Michael F; Rohde, Rebecca; Rybicki, Benjamin A; Salako, Babatunde; Sanderson, Maureen; Shao, Yaming; Siscovick, David S; Stanford, Janet L; Stevens, Victoria L; Stram, Alex; Strom, Sara S; Vaidya, Dhananjay; Witte, John S; Yao, Jie; Zhu, Xiaofeng; Ziegler, Regina G; Zonderman, Alan B; Adeyemo, Adebowale; Ambs, Stefan; Cushman, Mary; Faul, Jessica D; Hakonarson, Hakon; Levin, Albert M; Nathanson, Katherine L; Ware, Erin B; Weir, David R; Zhao, Wei; Zhi, Degui; Arnett, Donna K; Grant, Struan F A; Kardia, Sharon L R; Oloapde, Olufunmilayo I; Rao, D C; Rotimi, Charles N; Sale, Michele M; Williams, L Keoki; Zemel, Babette S; Becker, Diane M; Borecki, Ingrid B; Evans, Michele K; Harris, Tamara B; Hirschhorn, Joel N; Li, Yun; Patel, Sanjay R; Psaty, Bruce M; Rotter, Jerome I; Wilson, James G; Bowden, Donald W; Cupples, L Adrienne; Haiman, Christopher A; Loos, Ruth J F; North, Kari E

    2017-04-01

    Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations.

  19. [Identification and drug susceptibility testing of Mycobacterium thermoresistibile and Mycobacterium elephantis isolated from a cow with mastitis].

    Science.gov (United States)

    Li, W B; Ji, L Y; Xu, D L; Liu, H C; Zhao, X Q; Wu, Y M; Wan, K L

    2018-05-10

    Objective: To understand the etiological characteristics and drug susceptibility of Mycobacterium thermoresistibile and Mycobacterium elephantis isolated from a cow with mastitis and provide evidence for the prevention and control of infectious mastitis in cows. Methods: The milk sample was collected from a cow with mastitis, which was pretreated with 4 % NaOH and inoculated with L-J medium for Mycobacterium isolation. The positive cultures were initially identified by acid-fast staining and multi-loci PCR, then Mycobacterium species was identified by the multiple loci sequence analysis (MLSA) with 16S rRNA , hsp65 , ITS and SodA genes. The drug sensitivity of the isolates to 27 antibiotics was tested by alamar blue assay. Results: Two anti-acid stain positive strains were isolated from the milk of a cow with mastitis, which were identified as non- tuberculosis mycobacterium by multi-loci PCR, and multi-loci nucleic acid sequence analysis indicated that one strain was Mycobacterium thermoresistibile and another one was Mycobacterium elephantis . The results of the drug susceptibility test showed that the two strains were resistant to most antibiotics, including rifampicin and isoniazid, but they were sensitive to amikacin, moxifloxacin, levofloxacin, ethambutol, streptomycin, tobramycin, ciprofloxacin and linezolid. Conclusions: Mycobacterium thermoresistibile and Mycobacterium elephantis were isolated in a cow with mastitis and the drug susceptibility spectrum of the pathogens were unique. The results of the study can be used as reference for the prevention and control the infection in cows.

  20. Multiple loci associated with renal function in African Americans.

    Directory of Open Access Journals (Sweden)

    Daniel Shriner

    Full Text Available The incidence of chronic kidney disease varies by ethnic group in the USA, with African Americans displaying a two-fold higher rate than European Americans. One of the two defining variables underlying staging of chronic kidney disease is the glomerular filtration rate. Meta-analysis in individuals of European ancestry has identified 23 genetic loci associated with the estimated glomerular filtration rate (eGFR. We conducted a follow-up study of these 23 genetic loci using a population-based sample of 1,018 unrelated admixed African Americans. We included in our follow-up study two variants in APOL1 associated with end-stage kidney disease discovered by admixture mapping in admixed African Americans. To address confounding due to admixture, we estimated local ancestry at each marker and global ancestry. We performed regression analysis stratified by local ancestry and combined the resulting regression estimates across ancestry strata using an inverse variance-weighted fixed effects model. We found that 11 of the 24 loci were significantly associated with eGFR in our sample. The effect size estimates were not significantly different between the subgroups of individuals with two copies of African ancestry vs. two copies of European ancestry for any of the 11 loci. In contrast, allele frequencies were significantly different at 10 of the 11 loci. Collectively, the 11 loci, including four secondary signals revealed by conditional analyses, explained 14.2% of the phenotypic variance in eGFR, in contrast to the 1.4% explained by the 24 loci in individuals of European ancestry. Our findings provide insight into the genetic basis of variation in renal function among admixed African Americans.

  1. Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31

    DEFF Research Database (Denmark)

    Permuth-Wey, Jennifer; Lawrenson, Kate; Shen, Howard C

    2013-01-01

    Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. Most identified common susceptibility variants lie in non-protein-coding sequences. We hypothesized that variants in the 3' untranslated region at putative microRNA (miRNA)-binding sites represent fu...

  2. Abundance and antibiotic susceptibility of Vibrio spp. isolated from microplastics

    Science.gov (United States)

    Laverty, A. L.; Darr, K.; Dobbs, F. C.

    2016-02-01

    In recent years, there has been a growing concern for `microplastics' (particles pieces, paired seawater samples, and from them cultured 44 putative Vibrio spp. isolates, 18 of which were PCR-confirmed as V. parahaemolyticus and 3 as V. vulnificus. There were no PCR-confirmed V. cholerae isolates. We used the Kirby-Bauer disk diffusion susceptibility test to examine the isolates' response to six antibiotics: chloramphenicol (30μg), gentamicin (10μg), ampicillin (10μg), streptomycin (10μg), tetracycline (30μg), and rifampin (5μg). Vibrio isolates were susceptible to three or more of the six antibiotics tested and all were susceptible to tetracycline and chloramphenicol. There were no apparent differences between the antibiotic susceptibilities of vibrios isolated from microplastics compared to those from the water column. In every instance tested, vibrios on microplastics were enriched by at least two orders of magnitude compared to those from paired seawater samples. This study demonstrates that microplastic particles serve as a habitat for Vibrio species, in particular V. vulnificus and V. parahaemolyticus, confirming the conjecture of Zettler et al. (2013) that plastics may serve as a vector for these and other potentially pathogenic bacteria.

  3. The Case for High Resolution Extended 6-Loci HLA Typing for Identifying Related Donors in the Indian Subcontinent.

    Science.gov (United States)

    Agarwal, Rajat Kumar; Kumari, Ankita; Sedai, Amit; Parmar, Lalith; Dhanya, Rakesh; Faulkner, Lawrence

    2017-09-01

    %) consanguinity was unknown. We identified 18 donors (6%; 13 siblings and 5 parents) who would have been considered a 12/12 match by LR HLA typing alone but were found not to match on extended HR typing. In this group, 11 donors (61%) were from consanguineous families, 3 donors (17%) had no reported consanguinity, and in 4 donors (22%) consanguinity was unknown. Outcome analysis showed that the actuarial proportion of patients with GVHD was 4% in the FT group compared with 16% in the ST group, with log-rank P = .1952. The ST group included 2 patients with grade III-IV acute GVHD and 1 patient each with moderate and severe chronic GVHD, whereas the FT group only 1 patient with grade III acute GVHD. We conclude that even in the context of related donors, the use of LR and/or 3-loci (A, B, and DRB1) HR HLA typing might result in a sizable risk of missing a clinically relevant mismatch, which may have an adverse impact on transplantation outcomes. In the Indian subcontinent, this observation is not limited to putatively compatible parents or consanguineous families; we recommend full 6-loci HR HLA typing even for matched related BMTs. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    OpenAIRE

    Andrulis, IL; Mulligan, AM; Schmutzler, RK; Barrowdale, D; McGuffog, L; Robson, M; Schmidt, MK; Spurdle, AB; Neuhausen, SL; Kuchenbaecker, KB

    2014-01-01

    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRC...

  5. A novel HURRAH protocol reveals high numbers of monomorphic MHC class II loci and two asymmetric multi-locus haplotypes in the Père David's deer.

    Directory of Open Access Journals (Sweden)

    Qiu-Hong Wan

    Full Text Available The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated "HURRAH" based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1 All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2 these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1 and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2. The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens.

  6. Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower.

    Science.gov (United States)

    Pérez-Vich, B; Akhtouch, B; Knapp, S J; Leon, A J; Velasco, L; Fernández-Martínez, J M; Berry, S T

    2004-06-01

    Broomrape (Orobanche cumana Wallr.) is a root parasite of sunflower that is regarded as one of the most important constraints of sunflower production in the Mediterranean region. Breeding for resistance is the most effective method of control. P-96 is a sunflower line which shows dominant resistance to broomrape race E and recessive resistance to the very new race F. The objective of this study was to map and characterize quantitative trait loci (QTL) for resistance to race E and to race F of broomrape in P-96. A population from a cross between P-96 and the susceptible line P-21 was phenotyped for broomrape resistance in four experiments, two for race E and two for race F, by measuring different resistance parameters (resistance or susceptibility, number of broomrape per plant, and proportion of resistant plants per F(3) family). This population was also genotyped with microsatellite and RFLP markers. A linkage map comprising 103 marker loci distributed on 17 linkage groups was developed, and composite interval mapping analyses were performed. In total, five QTL ( or1.1, or3.1, or7.1 or13.1 and or13.2) for resistance to race E and six QTL ( or1.1, or4.1, or5.1, or13.1, or13.2 and or16.1) for resistance to race F of broomrape were detected on 7 of the 17 linkage groups. Phenotypic variance for race E resistance was mainly explained by the major QTL or3.1 associated to the resistance or susceptibility character ( R(2)=59%), while race F resistance was explained by QTL with a small to moderate effect ( R(2) from 15.0% to 38.7%), mainly associated with the number of broomrape per plant. Or3.1 was race E-specific, while or1.1, or13.1 and or13.2 of were non-race specific. Or13.1, and or13.2 were stable across the four experiments. Or3.1, and or7.1 were stable over the two race E experiments and or1.1 and or5.1 over the two race F experiments. The results from this study suggest that resistance to broomrape in sunflower is controlled by a combination of qualitative, race

  7. Local quantum thermal susceptibility

    Science.gov (United States)

    de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-09-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.

  8. Topological Susceptibility from Slabs

    CERN Document Server

    Bietenholz, Wolfgang; Gerber, Urs

    2015-01-01

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.

  9. Topological susceptibility from slabs

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)

    2015-12-14

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.

  10. Local quantum thermal susceptibility

    Science.gov (United States)

    De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-01-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458

  11. Susceptibility to anchoring effects

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-02-01

    Full Text Available Previous research on anchoring has shown this heuristic to be a very robust psychological phenomenon ubiquitous across many domains of human judgment and decision-making. Despite the prevalence of anchoring effects, researchers have only recently begun to investigate the underlying factors responsible for how and in what ways a person is susceptible to them. This paper examines how one such factor, the Big-Five personality trait of openness-to-experience, influences the effect of previously presented anchors on participants' judgments. Our findings indicate that participants high in openness-to-experience were significantly more influenced by anchoring cues relative to participants low in this trait. These findings were consistent across two different types of anchoring tasks providing convergent evidence for our hypothesis.

  12. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  13. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  14. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    Science.gov (United States)

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  15. A genome scan for quantitative trait loci affecting the Salmonella carrier-state in the chicken

    Directory of Open Access Journals (Sweden)

    Bumstead Nat

    2005-09-01

    Full Text Available Abstract Selection for increased resistance to Salmonella colonisation and excretion could reduce the risk of foodborne Salmonella infection. In order to identify potential loci affecting resistance, differences in resistance were identified between the N and 61 inbred lines and two QTL research performed. In an F2 cross, the animals were inoculated at one week of age with Salmonella enteritidis and cloacal swabs were carried out 4 and 5 wk post inoculation (thereafter called CSW4F2 and CSW4F2 and caecal contamination (CAECF2 was assessed 1 week later. The animals from the (N × 61 × N backcross were inoculated at six weeks of age with Salmonella typhimurium and cloacal swabs were studied from wk 1 to 4 (thereafter called CSW1BC to CSW4BC. A total of 33 F2 and 46 backcross progeny were selectively genotyped for 103 and 135 microsatellite markers respectively. The analysis used least-squares-based and non-parametric interval mapping. Two genome-wise significant QTL were observed on Chromosome 1 for CSW2BC and on Chromosome 2 for CSW4F2, and four suggestive QTL for CSW5F2 on Chromosome 2, for CSW5F2 and CSW2BC on chromosome 5 and for CAECF2 on chromosome 16. These results suggest new regions of interest and the putative role of SAL1.

  16. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice

    Directory of Open Access Journals (Sweden)

    Yuka Kitomi

    2018-02-01

    Full Text Available The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs for maximal root length, QUICK ROOTING 1 (QRO1 on chromosome 2 and QRO2 on chromosome 6, in cultivated rice (Oryza sativa L.. We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC4F2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC4F3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice.

  17. Supplementary data: Variation in the PTEN-induced putative kinase ...

    Indian Academy of Sciences (India)

    Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. Yanchun Qu, Liang Sun, Ze Yang and Ruifa Han. J. Genet. 90, 125–128. Table 1. Clinical characteristics of cases and controls. Phenotype. T2DM. Controls. P value. Age (years). 49.5 ± 11.1. 50.4 ± ...

  18. Live visualization of genomic loci with BiFC-TALE.

    Science.gov (United States)

    Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao

    2017-01-11

    Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP.

  19. New Microsatellite Loci for Prosopis alba and P. chilensis (Fabaceae

    Directory of Open Access Journals (Sweden)

    Cecilia F. Bessega

    2013-05-01

    Full Text Available Premise of the study: As only six useful microsatellite loci that exhibit broad cross-amplification are so far available for Prosopis species, it is necessary to develop a larger number of codominant markers for population genetic studies. Simple sequence repeat (SSR markers obtained for Prosopis species from a 454 pyrosequencing run were optimized and characterized for studies in P. alba and P. chilensis. Methods and Results: Twelve markers that were successfully amplified showed polymorphism in P. alba and P. chilensis. The number of alleles per locus ranged between two and seven and heterozygosity estimates ranged from 0.2 to 0.8. Most of these loci cross-amplify in P. ruscifolia, P. flexuosa, P. kuntzei, P. glandulosa, and P. pallida. Conclusions: These loci will enable genetic diversity studies of P. alba and P. chilensis and contribute to fine-scale population structure, indirect estimation of relatedness among individuals, and marker-assisted selection.

  20. New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae).

    Science.gov (United States)

    Bessega, Cecilia F; Pometti, Carolina L; Miller, Joe T; Watts, Richard; Saidman, Beatriz O; Vilardi, Juan C

    2013-05-01

    As only six useful microsatellite loci that exhibit broad cross-amplification are so far available for Prosopis species, it is necessary to develop a larger number of codominant markers for population genetic studies. Simple sequence repeat (SSR) markers obtained for Prosopis species from a 454 pyrosequencing run were optimized and characterized for studies in P. alba and P. chilensis. • Twelve markers that were successfully amplified showed polymorphism in P. alba and P. chilensis. The number of alleles per locus ranged between two and seven and heterozygosity estimates ranged from 0.2 to 0.8. Most of these loci cross-amplify in P. ruscifolia, P. flexuosa, P. kuntzei, P. glandulosa, and P. pallida. • These loci will enable genetic diversity studies of P. alba and P. chilensis and contribute to fine-scale population structure, indirect estimation of relatedness among individuals, and marker-assisted selection.

  1. Proactive control of proactive interference using the method of loci.

    Science.gov (United States)

    Bass, Willa S; Oswald, Karl M

    2014-01-01

    Proactive interferencebuilds up with exposure to multiple lists of similar items with a resulting reduction in recall. This study examined the effectiveness of using a proactive strategy of the method of loci to reduce proactive interference in a list recall paradigm of categorically similar words. While all participants reported using some form of strategy to recall list words, this study demonstrated that young adults were able to proactively use the method of loci after 25 min of instruction to reduce proactive interference as compared with other personal spontaneous strategies. The implications of this study are that top-down proactive strategies such as the method of loci can significantly reduce proactive interference, and that the use of image and sequence or location are especially useful in this regard.

  2. Isolation of human simple repeat loci by hybridization selection.

    Science.gov (United States)

    Armour, J A; Neumann, R; Gobert, S; Jeffreys, A J

    1994-04-01

    We have isolated short tandem repeat arrays from the human genome, using a rapid method involving filter hybridization to enrich for tri- or tetranucleotide tandem repeats. About 30% of clones from the enriched library cross-hybridize with probes containing trimeric or tetrameric tandem arrays, facilitating the rapid isolation of large numbers of clones. In an initial analysis of 54 clones, 46 different tandem arrays were identified. Analysis of these tandem repeat loci by PCR showed that 24 were polymorphic in length; substantially higher levels of polymorphism were displayed by the tetrameric repeat loci isolated than by the trimeric repeats. Primary mapping of these loci by linkage analysis showed that they derive from 17 chromosomes, including the X chromosome. We anticipate the use of this strategy for the efficient isolation of tandem repeats from other sources of genomic DNA, including DNA from flow-sorted chromosomes, and from other species.

  3. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    Science.gov (United States)

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function.

    Science.gov (United States)

    Nicholson, Matthew J; Koulman, Albert; Monahan, Brendon J; Pritchard, Beth L; Payne, Gary A; Scott, Barry

    2009-12-01

    Aflatrem is a potent tremorgenic toxin produced by the soil fungus Aspergillus flavus, and a member of a structurally diverse group of fungal secondary metabolites known as indole-diterpenes. Gene clusters for indole-diterpene biosynthesis have recently been described in several species of filamentous fungi. A search of Aspergillus complete genome sequence data identified putative aflatrem gene clusters in the genomes of A. flavus and Aspergillus oryzae. In both species the genes for aflatrem biosynthesis cluster at two discrete loci; the first, ATM1, is telomere proximal on chromosome 5 and contains a cluster of three genes, atmG, atmC, and atmM, and the second, ATM2, is telomere distal on chromosome 7 and contains five genes, atmD, atmQ, atmB, atmA, and atmP. Reverse transcriptase PCR in A. flavus demonstrated that aflatrem biosynthesis transcript levels increased with the onset of aflatrem production. Transfer of atmP and atmQ into Penicillium paxilli paxP and paxQ deletion mutants, known to accumulate paxilline intermediates paspaline and 13-desoxypaxilline, respectively, showed that AtmP is a functional homolog of PaxP and that AtmQ utilizes 13-desoxypaxilline as a substrate to synthesize aflatrem pathway-specific intermediates, paspalicine and paspalinine. We propose a scheme for aflatrem biosynthesis in A. flavus based on these reconstitution experiments in P. paxilli and identification of putative intermediates in wild-type cultures of A. flavus.

  5. Strategie di spazializzazione dei contenuti nel GeniusLoci Digitale

    Directory of Open Access Journals (Sweden)

    Davide Gasperi

    2013-07-01

    Full Text Available GeniusLoci Digitale is a software architecture of virtual tour that integrates various multimedia technologies (3D computer graphics, panoramas, dynamic maps, movies, pictures to represent the identity of places. The designer is interested in reproducing virtually complex aspects that define a context, which means the effect of meaning that distinguishes one place. GeniusLoci Digitale is in fact an architecture that evolves in search of a reproductive and communicative function which is recognizable to extend its development to the Open Source community.

  6. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors

    DEFF Research Database (Denmark)

    Melin, Beatrice S; Barnholtz-Sloan, Jill S; Wrensch, Margaret R

    2017-01-01

    Genome-wide association studies (GWAS) have transformed our understanding of glioma susceptibility, but individual studies have had limited power to identify risk loci. We performed a meta-analysis of existing GWAS and two new GWAS, which totaled 12,496 cases and 18,190 controls. We identified fi...

  7. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distri