WorldWideScience

Sample records for putative peptide transporters

  1. Ligand binding analyses of the putative peptide transporter YjdL from E. coli display a significant selectivity towards dipeptides

    DEFF Research Database (Denmark)

    Ernst, Heidi Asschenfeldt; Pham, Antony; Hald, Helle

    2009-01-01

    Proton-dependent oligopeptide transporters (POTs) are secondary active transporters that couple the inwards translocation of di- and tripeptides to inwards proton translocation. Escherichia coli contains four genes encoding the putative POT proteins YhiP, YdgR, YjdL and YbgH. We have over-express...

  2. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  3. Serum peptides as putative modulators of inflammation in psoriasis.

    Science.gov (United States)

    Matsuura, Tetsuhiko; Sato, Masaaki; Nagai, Kouhei; Sato, Toshiyuki; Arito, Mitsumi; Omoteyama, Kazuki; Suematsu, Naoya; Okamoto, Kazuki; Kato, Tomohiro; Soma, Yoshinao; Kurokawa, Manae S

    2017-07-01

    Psoriasis is a refractory inflammatory disease, however, its pathophysiology is still not fully understood. We tried to identify novel serum peptides associated with the pathophysiology of psoriasis. Serum peptides from 24 patients with psoriasis vulgaris (PV), 10 patients with psoriatic arthritis (PsA), 14 patients with atopic dermatitis (AD), and 23 healthy control (HC) subjects were analyzed by mass spectrometry. The effects of some peptides on the secretion of humoral factors from dermal cells were investigated by cytokine arrays and ELISAs. A total of 93 peptides were detected. 24, 20, 23, and 2 peptides showed at least 1.2-fold difference in ion intensity between the psoriasis (PV+PsA) and HC groups, between the PV+PsA and AD groups, between the PV and PsA groups, and between patients with severe-to-moderate PV (n=6) and those with mild PV (n=18), respectively (ppsoriasis, regulating the secretion of inflammatory chemokines and an antimicrobial protein. The modulation of serum peptides may be a potential therapeutic strategy for psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  4. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets

    Directory of Open Access Journals (Sweden)

    Carmela eGiordano

    2014-04-01

    Full Text Available Various ketogenic diet (KD therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs. In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the

  5. ARA-PEPs: a repository of putative sORF-encoded peptides in Arabidopsis thaliana.

    Science.gov (United States)

    Hazarika, Rashmi R; De Coninck, Barbara; Yamamoto, Lidia R; Martin, Laura R; Cammue, Bruno P A; van Noort, Vera

    2017-01-17

    Many eukaryotic RNAs have been considered non-coding as they only contain short open reading frames (sORFs). However, there is increasing evidence for the translation of these sORFs into bioactive peptides with potent signaling, antimicrobial, developmental, antioxidant roles etc. Yet only a few peptides encoded by sORFs are annotated in the model organism Arabidopsis thaliana. To aid the functional annotation of these peptides, we have developed ARA-PEPs (available at http://www.biw.kuleuven.be/CSB/ARA-PEPs ), a repository of putative peptides encoded by sORFs in the A. thaliana genome starting from in-house Tiling arrays, RNA-seq data and other publicly available datasets. ARA-PEPs currently lists 13,748 sORF-encoded peptides with transcriptional evidence. In addition to existing data, we have identified 100 novel transcriptionally active regions (TARs) that might encode 341 novel stress-induced peptides (SIPs). To aid in identification of bioactivity, we add functional annotation and sequence conservation to predicted peptides. To our knowledge, this is the largest repository of plant peptides encoded by sORFs with transcript evidence, publicly available and this resource will help scientists to effortlessly navigate the list of experimentally studied peptides, the experimental and computational evidence supporting the activity of these peptides and gain new perspectives for peptide discovery.

  6. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Luchini, A.; Petricoin, E.F.; Geho, D.H.; Liotta, L.A.; Long, D.P.; Vaisman, I.I.

    2008-01-01

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  7. Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Sanz, Y; Toldra, F; Renault, P; Poolman, B

    2003-01-01

    The genome sequence of Lactococcus lactis IL1403 revealed the presence of a putative peptide-binding protein-dependent ABC-transporter (Dpp). The genes for two peptide-binding proteins (dppA and dppP) precede the membrane components, which include two transmembrane protein genes (dppB and dppC) and

  8. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  9. Di/tri-peptide transporters as drug delivery targets

    DEFF Research Database (Denmark)

    Nielsen, C U; Brodin, Birger

    2003-01-01

    -dependent, and the transporters thus belong to the Proton-dependent Oligopeptide Transporter (POT)-family. The transporters are not drug targets per se, however due to their uniquely broad substrate specificity; they have proved to be relevant drug targets at the level of drug transport. Drug molecules such as oral active beta....../tri-peptide transporters from vesicular storages 3) changes in gene transcription/mRNA stability. The aim of the present review is to discuss physiological, patho-physiological and drug-induced regulation of di/tri-peptide transporter mediated transport....

  10. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim...... of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug......-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  11. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Science.gov (United States)

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  12. Two putative subunits of a peptide pump encoded in the human major histocompatability complex class 2 region

    International Nuclear Information System (INIS)

    Bahram, S.; Arnold, D.; Bresnahan, M.; Strominger, J.L.; Spies, T.

    1991-01-01

    The class 2 region of the human major histocompatibility complex (MHC) may encode several genes controlling the processing of endogenous antigen and the presentation of peptide epitopes by MHC class 1 molecules to cytotoxic T lymphocytes. A previously described peptide supply factor (PSF1) is a member of the multidrug-resistance family of transporters and may pump cytosolic peptides into the membrane-bound compartment where class 1 molecules assemble. A second transporter gene, PSF2, was identified 10 kilobases (kb) from PSF1, near the class 2 DOB gene. The complete sequences of PSF1 and PSF2 were determined from cDNA clones. The translation products are closely related in sequence and predicted secondary structure. Both contain a highly conserved ATP-binding fold and share 25% homology in a hydrophobic domain with a tentative number of eight membrane-spanning segments. Based on the principle dimeric organization of these two domains in other transporters, PSF1 and PSF2 may function as complementary subunits, independently as homodimers, or both. Taken together with previous genetic evidence, the coregulation of PSF1 and PSF2 by γ interferon and the to-some-degree coordinate transcription of these genes suggest a common role in peptide-loading of class 1 molecules, although a distinct function of PSF2 cannot be ruled out

  13. Solid-Phase Synthesis of Modified Peptides as Putative Inhibitors of Histone Modifying Enzymes

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon

    to be compatible with all 20 naturally occurring amino acids, and were furthermore feasible on several commonly used polymeric supports. By using dilute SnCl4 for N -Boc deprotection, and NaOH for the release of material from the solid support, N -modified peptides were cleanly obtained in excellent yields...

  14. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant...... with enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC...... the same amount of biofilm biomass as the wild-type strain. Furthermore, transcription of the downstream lm.G_1770 was not influenced by the upstream Tn917 insertion, and the presence of Tn917 has no effect on biofilm formation. These results suggest that lm.G_1771 was solely responsible for the negative...

  15. Identification and characterization of Cd-induced peptides in Egeria densa (water weed): Putative role in Cd detoxification

    International Nuclear Information System (INIS)

    Malec, Przemyslaw; Maleva, Maria G.; Prasad, M.N.V.; Strzalka, Kazimierz

    2009-01-01

    Egeria densa has ability to grow in heavy metal contaminated and polluted bodies of water. Shoots exposed to Cd at concentrations up to 300 μM for 7 days showed a pronounced decrease in chlorophyll a and in total protein concentration. Thiol-containing compounds and low-molecular-weight polypeptides were detected in Cd-treated plant extracts by gel filtration chromatography. Two Cd-binding fractions, a thiol-enriched fraction and a non-thiol fraction with a lower molecular weight were identified in extracts by gel filtration. The main fraction of thiol-containing polypeptide, purified by gel filtration and anion-exchange chromatography had a molecular weight of ∼10 kDa. This peptide was characterized by a broad absorption band specific to mercaptide bonds and Cd-sensitive fluorescence emission of aromatic amino acid residues. Our results indicate that cadmium exposure of plants resulted in both a formation of thiol-enriched cadmium complexing peptides and a synthesis of low-molecular-weight metal chelators. The putative role of these compounds in Cd detoxification is discussed.

  16. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    International Nuclear Information System (INIS)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-01-01

    E2, along with E rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818 CPIGWTGVIEC 828 , containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818 CPIGWTGVIEC 828 indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion

  17. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  18. MDR1 P-glycoprotein transports endogenous opioid peptides

    NARCIS (Netherlands)

    Oude Elferink, R. P.; Zadina, J.

    2001-01-01

    MDR1 P-glycoprotein is generally regarded as an efflux pump for amphipathic toxic compounds. The question remains, however, whether certain endogenous compounds are also substrates for this transporter. Certain peptides have been shown to interact with MDR1 Pgp as well and we have therefore

  19. Carrier-mediated transport of peptides by the kidney

    International Nuclear Information System (INIS)

    Skopicki, H.A.

    1988-01-01

    Small peptide transport was characterized to determine if: (1) Multiple carriers are present in the luminal membrane of renal proximal tubular cells; (2) Carrier-mediated peptide transport is limited by size; and (3) Gentamicin inhibits carrier-mediated reabsorption of peptides. Uptake of glycyl-[ 3 H]proline (Gly-Pro) into renal brush border membrane vesicles demonstrated a dual affinity carrier system. Whether multiple carriers are present was further investigated by characterizing the uptake of [ 3 H]pyroglutamyl-histidine. To determine if carrier-mediated transport of peptides is limited by size of the molecule, uptake of the hydrolytically resistant tripeptide, [ 3 H]pryroglutamyl-histidyl-tryptophan (pGlu-His-Trp), and tetrapeptide, [ 3 H]pyroglutamyl-histidyl-tryptophyl-serine (pGlu-His-Trp-Ser) were assessed. These data indicate: multiple carriers exist on the luminal membrane of renal proximal tubular cells for the transport of dipeptides, and tripeptide pGlu-His-Trp and the tetrapeptide pGlu-His-Trp-Ser are not taken up by a carrier-mediated mechanism, suggesting that the carrier may be limited by the size of the substrate

  20. Bioavailability and transport of peptides and peptide drugs into the brain.

    Science.gov (United States)

    Egleton, R D; Davis, T P

    1997-01-01

    Rational drug design and the targeting of specific organs has become a reality in modern drug development, with the emergence of molecular biology and receptor chemistry as powerful tools for the pharmacologist. A greater understanding of peptide function as one of the major extracellular message systems has made neuropeptides an important target in neuropharmaceutical drug design. The major obstacle to targeting the brain with therapeutics is the presence of the blood-brain barrier (BBB), which controls the concentration and entry of solutes into the central nervous system. Peptides are generally polar in nature, do not easily cross the blood-brain barrier by diffusion, and except for a small number do not have specific transport systems. Peptides can also undergo metabolic deactivation by peptidases of the blood, brain and the endothelial cells that comprise the BBB. In this review, we discuss a number of the recent strategies which have been used to promote peptide stability and peptide entry into the brain. In addition, we approach the subject of targeting specific transport systems that can be found on the brain endothelial cells, and describe the limitations of the methodologies that are currently used to study brain entry of neuropharmaceuticals.

  1. In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics

    Directory of Open Access Journals (Sweden)

    Mao Peng

    2018-05-01

    Full Text Available Aspergillus niger is one of the most widely used fungi to study the conversion of the lignocellulosic feedstocks into fermentable sugars. Understanding the sugar uptake system of A. niger is essential to improve the efficiency of the process of fungal plant biomass degradation. In this study, we report a comprehensive characterization of the sugar transportome of A. niger by combining phylogenetic and comparative transcriptomic analyses. We identified 86 putative sugar transporter (ST genes based on a conserved protein domain search. All these candidates were then classified into nine subfamilies and their functional motifs and possible sugar-specificity were annotated according to phylogenetic analysis and literature mining. Furthermore, we comparatively analyzed the ST gene expression on a large set of fungal growth conditions including mono-, di- and polysaccharides, and mutants of transcriptional regulators. This revealed that transporter genes from the same phylogenetic clade displayed very diverse expression patterns and were regulated by different transcriptional factors. The genome-wide study of STs of A. niger provides new insights into the mechanisms underlying an extremely flexible metabolism and high nutritional versatility of A. niger and will facilitate further biochemical characterization and industrial applications of these candidate STs.

  2. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes.

    Science.gov (United States)

    Aizawa, Shu; Fujiwara, Yuuki; Contu, Viorica Raluca; Hase, Katsunori; Takahashi, Masayuki; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2016-01-01

    Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.

  3. Genetic and biochemical analysis of peptide transport in Escherichia coli

    International Nuclear Information System (INIS)

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U- 14 C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using λ placMu51-generated lac operon fusions. Synthesis of β-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium

  4. Disruption of the Putative Vascular Leak Peptide Sequence in the Stabilized Ricin Vaccine Candidate RTA1-33/44-198

    Directory of Open Access Journals (Sweden)

    Charles B. Millard

    2013-01-01

    Full Text Available Vitetta and colleagues identified and characterized a putative vascular leak peptide (VLP consensus sequence in recombinant ricin toxin A-chain (RTA that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within the more stable RTA1-33/44-198 vaccine immunogen and determined the impact of these mutations on protein stability, structure and protective immunogenicity using an experimental intranasal ricin challenge model in BALB/c mice to determine if the mutations were compatible. Single amino acid substitutions at the positions corresponding with RTA D75 (to A, or N and V76 (to I, or M had minor effects on the apparent protein melting temperature of RTA1-33/44-198 but all four variants retained greater apparent stability than the parent RTA. Moreover, each VLP(− variant tested provided protection comparable with that of RTA1-33/44-198 against supralethal intranasal ricin challenge as judged by animal survival and several biomarkers. To understand better how VLP substitutions and mutations near the VLP site impact epitope structure, we introduced a previously described thermal stabilizing disulfide bond (R48C/T77C along with the D75N or V76I substitutions in RTA1-33/44-198. The D75N mutation was compatible with the adjacent stabilizing R48C/T77C disulfide bond and the Tm was unaffected, whereas the V76I mutation was less compatible with the adjacent disulfide bond involving C77. A crystal structure of the RTA1-33/44-198 R48C/T77C/D75N variant showed that the structural integrity of the immunogen was largely conserved and that a stable immunogen could be produced from E. coli. We conclude that it is feasible to disrupt the VLP site in RTA1-33/44-198 with little or no impact on apparent protein stability or protective efficacy in mice and such variants can be stabilized further by introduction of a disulfide bond.

  5. Evaluation of leader peptides that affect the secretory ability of a multiple bacteriocin transporter, EnkT.

    Science.gov (United States)

    Sushida, Hirotoshi; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2018-02-13

    EnkT is a novel ATP-binding cassette (ABC) transporter responsible for secretion of four bacteriocins, enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z), produced by Enterococcus faecium NKR-5-3. It is generally recognized that the secretion of a bacteriocin requires a dedicated ABC transporter, although molecular mechanisms of this secretion are yet to be revealed. In order to characterize the unique ability of EnkT to secrete multiple bacteriocins, the role of N-terminal leader peptides of bacteriocin precursors was evaluated using Ent53C precursor as a model. The 18-amino acid leader peptide of Ent53C (Lc) was modified by site-directed mutagenesis to generate various point mutations, truncations, or extensions, and substitutions with other leader peptides. The impact of these Lc mutations on Ent53C secretion was evaluated using a quantitative antimicrobial activity assay. We observed that Ent53C production increased with Ala substitution of the highly conserved C-terminal double glycine residues that are recognized as the cleavage site. In contrast, Ent53C antimicrobial activity decreased, with decrease in the length of the putative α-helix-forming region of Lc. Furthermore, EnkT recognized and transported Ent53C of the transformants possessing heterologous leader peptides of enterocin A, pediocin PA-1, brochocins A and B, and lactococcins Qα and Qβ. These results indicated that EnkT shows significant tolerance towards the sequence and length of leader peptides, to secrete multiple bacteriocins. This further demonstrates the functional diversity of bacteriocin ABC transporters and the importance of leader peptides as their recognition motif. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Competitor analogs for defined T cell antigens: peptides incorporating a putative binding motif and polyproline or polyglycine spacers.

    Science.gov (United States)

    Maryanski, J L; Verdini, A S; Weber, P C; Salemme, F R; Corradin, G

    1990-01-12

    We describe a new approach for modeling antigenic peptides recognized by T cells. Peptide A24 170-182 can compete with other antigenic peptides that are recognized by H-2kd-restricted cytolytic T cells, presumably by binding to the Kd molecule. By comparing substituted A24 peptides as competitors in a functional competition assay, the A24 residues Tyr-171, Thr-178, and Leu-179 were identified as possible contact residues for Kd. A highly active competitor peptide analog was synthesized in which Tyr was separated from the Thr-Leu pair by a pentaproline spacer. The choice of proline allowed the prediction of a probable conformation for the analog when bound to the Kd molecule. The simplest conformation of the A24 peptide that allows the same spacing and orientation of the motif as in the analog would be a nearly extended polypeptide chain incorporating a single 3(10) helical turn or similar structural kink.

  7. AmcA - a putative mitochondrial ornithine transporter supporting fungal siderophore biosynthesis

    Directory of Open Access Journals (Sweden)

    Lukas eSchafferer

    2015-04-01

    Full Text Available Iron is an essential nutrient required for a wide range of cellular processes. The opportunistic fungal pathogen Aspergillus fumigatus employs low-molecular mass iron-specific chelators, termed siderophores, for uptake, storage and intracellular iron distribution, which play a crucial role in the pathogenicity of this fungus. Siderophore biosynthesis depends on coordination with the supply of its precursor ornithine, produced mitochondrially from glutamate or cytosolically via hydrolysis of arginine. In this study, we demonstrate a role of the putative mitochondrial transporter AmcA (AFUA_8G02760 in siderophore biosynthesis of A. fumigatus.Consistent with a role in cellular ornithine handling, AmcA-deficiency resulted in decreased cellular ornithine and arginine contents as well as decreased siderophore production on medium containing glutamine as the sole nitrogen source. In support, arginine and ornithine as nitrogen sources did not impact siderophore biosynthesis due to cytosolic ornithine availability. As revealed by Northern blot analysis, transcript levels of siderophore biosynthetic genes were unresponsive to the cellular ornithine level. In contrast to siderophore production, AmcA deficiency did only mildly decrease the cellular polyamine content, demonstrating cellular prioritization of ornithine use. Nevertheless, AmcA-deficiency increased the susceptibility of A. fumigatus to the polyamine biosynthesis inhibitor eflornithine, most likely due to the decreased ornithine pool. AmcA-deficiency decreased the growth rate particularly on ornithine as the sole nitrogen source during iron starvation and sufficiency, indicating an additional role in the metabolism and fitness of A. fumigatus, possibly in mitochondrial ornithine import. In the Galleria mellonella infection model, AmcA-deficiency did not affect virulence of A. fumigatus, most likely due to the residual siderophore production and arginine availability in this host niche.

  8. Transport of peptidomimetic drugs by the intestinal Di/tri-peptide transporter, PepT1

    DEFF Research Database (Denmark)

    Brodin, Birger; Nielsen, Carsten Uhd; Steffansen, Bente

    2002-01-01

    The apical membrane of small intestinal enterocytes possess an uptake system for di- and tripeptides. The physiological function of the system is to transport small peptides resulting from digestion of dietary protein. Moreover, due to the broad substrate specificity of the system, it is also cap...

  9. A systematic review of amyloid-beta peptides as putative mediators of the association between affective disorders and Alzheimer's disease

    DEFF Research Database (Denmark)

    Abbasowa, Leda; Heegaard, N. H. H.

    2014-01-01

    Background: Affective disorders are associated with an increased occurrence of cognitive deficits and have been linked to cognitive impairment and Alzheimer's disease. The putative molecular mechanisms involved in these associations are however not clear. The aim of this systematic review...... were limited by very low sample numbers. Finally, different assays for amyloid-beta were utilized in the different studies, thus hampering comparisons. Conclusion: To unravel possible risk relations and causalities between affective disorder and Alzheimer's disease and to determine how amyloid...

  10. Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands.

    Science.gov (United States)

    Wilczynski, Andrzej; Wang, Xiang S; Joseph, Christine G; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Sorensen, Nicholas B; Shaw, Amanda M; Millard, William J; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-04-22

    Agouti-related protein (AGRP) is one of only two naturally known antagonists of G-protein-coupled receptors (GPCRs) identified to date. Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these melanocortin receptors. Insight into putative interactions between the antagonist AGRP amino acids with the melanocortin-4 receptor (MC4R) may be important for the design of unique ligands for the treatment of obesity related diseases and is currently lacking in the literature. A three-dimensional homology molecular model of the mouse MC4 receptor complex with the hAGRP(87-132) ligand docked into the receptor has been developed to identify putative antagonist ligand-receptor interactions. Key putative AGRP-MC4R interactions include the Arg111 of hAGRP(87-132) interacting in a negatively charged pocket located in a cavity formed by transmembrane spanning (TM) helices 1, 2, 3, and 7, capped by the acidic first extracellular loop (EL1) and specifically with the conserved melanocortin receptor residues mMC4R Glu92 (TM2), mMC4R Asp114 (TM3), and mMC4R Asp118 (TM3). Additionally, Phe112 and Phe113 of hAGRP(87-132) putatively interact with an aromatic hydrophobic pocket formed by the mMC4 receptor residues Phe176 (TM4), Phe193 (TM5), Phe253 (TM6), and Phe254 (TM6). To validate the AGRP-mMC4R model complex presented herein from a ligand perspective, we generated nine chimeric peptide ligands based on a modified antagonist template of the hAGRP(109-118) (Tyr-c[Asp-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2)). In these chimeric ligands, the antagonist AGRP Arg-Phe-Phe residues were replaced by the melanocortin agonist His/D-Phe-Arg-Trp amino acids. These peptides resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs). The most notable results include the identification of a novel subnanomolar melanocortin peptide

  11. Peptides actively transported across the tympanic membrane: Functional and structural properties.

    Directory of Open Access Journals (Sweden)

    Arwa Kurabi

    Full Text Available Otitis media (OM is the most common infectious disease of children under six, causing more antibiotic prescriptions and surgical procedures than any other pediatric condition. By screening a bacteriophage (phage library genetically engineered to express random peptides on their surfaces, we discovered unique peptides that actively transport phage particles across the intact tympanic membrane (TM and into the middle ear (ME. Herein our goals were to characterize the physiochemical peptide features that may underlie trans-TM phage transport; assess morphological and functional effects of phage peptides on the ME and inner ear (IE; and determine whether peptide-bearing phage transmigrate from the ME into the IE. Incubation of five peptide-bearing phage on the TM for over 4hrs resulted in demonstrably superior transport of one peptide, in level and in exponential increase over time. This suggests a preferred peptide motif for TM active transport. Functional and structural comparisons revealed unique features of this peptide: These include a central lysine residue, isoelectric point of 0.0 at physiological pH and a hydrophobic C-terminus. When the optimal peptide was applied to the TM independent of phage, similar transport was observed, indicating that integration into phage is not required. When 109 particles of the four different trans-TM phage were applied directly into the ME, no morphological effects were detected in the ME or IE when compared to saline or wild-type (WT phage controls. Comparable, reversible hearing loss was observed for saline controls, WT phage and trans-TM peptide phage, suggesting a mild conductive hearing loss due to ME fluid. Perilymph titers after ME incubation established that few copies of trans-TM peptide phage crossed into the IE. The results suggest that, within the parameters tested, trans-TM peptides are safe and could be used as potential agents for noninvasive delivery of drugs, particles and gene therapy

  12. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-09

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Putative Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in Neurospora crassa*

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-01

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. PMID:25398875

  14. Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Mohan B [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Mitchell, Sue A; Gibson, Trevor M [Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Hussain, Rohanah; Siligardi, Giuliano [Circular Dichroism Group, Diamond Light Source, Chiltern, Oxfordshire,OX11 0DE (United Kingdom); Andrews, Simon C [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Watson, Kimberly A, E-mail: k.a.watson@reading.ac.uk [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom)

    2010-07-30

    Research highlights: {yields} Bioinformatic analysis reveals EfeM is a metallopeptidase with conserved HXXE motif. {yields} Mass spectrometry confirms EfeM consists of 251 residues, molecular weight 27,772Da. {yields} SRCD spectroscopy shows an {alpha}-helical secondary structure. {yields} Single crystals of EfeM are orthorhombic and diffract to 1.6A resolution. {yields} Space group is P22{sub 1}2{sub 1} with cell dimensions a = 46.74, b = 95.17 and c = 152.61 A. -- Abstract: The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signal peptide of 34 amino acid residues and a C-terminal 'Peptidase{sub M}75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr{sub 3}370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M{sub W} 27,772 Da). Circular dichroism spectroscopy of EfeM indicated a mainly {alpha}-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6 A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.

  15. Expression of a putative grapevine hexose transporter in tobacco alters morphogenesis and assimilate partitioning.

    Science.gov (United States)

    Leterrier, Marina; Atanassova, Rossitza; Laquitaine, Laurent; Gaillard, Cécile; Coutos-Thévenot, Pierre; Delrot, Serge

    2003-04-01

    Tobacco plants were transformed by leaf disc regeneration with the VvHT1 (Vitis vinifera hexose transporter 1) cDNA under the control of the constitutive CaMV 35S promoter in a sense or antisense orientation. Among the 20 sense plants and 10 antisense plants obtained, two sense plants showed a mutant phenotype when grown in vitro, with stunted growth and an increase in the (leaves+stem)/roots dry weight ratio. The rate of [(3)H]-glucose uptake in leaf discs from these plants was decreased to 25% of the value measured in control plants. The amount of VvHT1 transgene and of host monosaccharide transporter MST transcripts in the leaves were studied by RNA gel blot analysis. The VvHT1 transcripts were usually present, but the amount of MST transcripts was the lowest in the plants that exhibited the most marked phenotype. Although the phenotype was lost when the plants were transferred from in vitro to greenhouse conditions, it was found again in vitro in the progeny obtained by self-pollination or by back-cross. The data show that VvHT1 sense expression resulted in unidirectional post-transcriptional gene inactivation of MST in some of the transformants, with dramatic effects on growth. They provide the first example of plants modified for hexose transport by post-transcriptional gene silencing. Some of the antisense plants also showed reduced expression of MST, and decreased growth. These results indicate that, like the sucrose transporters, hexose transporters play an important role in assimilate transport and in morphogenesis.

  16. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis

    DEFF Research Database (Denmark)

    Sharma, Neha; Aduri, Nanda G; Iqbal, Anna

    2016-01-01

    POT). It has been shown that the gene encoding this transporter is upregulated during infection. NmPOT conformed to the typical chain length preference as observed in prototypical transporters of this family. In contrast to prototypical transporters, it was unable to accommodate a positively charged peptide...

  17. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes.

    Science.gov (United States)

    Herbst, Dominik A; Boll, Björn; Zocher, Georg; Stehle, Thilo; Heide, Lutz

    2013-01-18

    The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes.

  18. Transmembrane transport of peptide type compounds: prospects for oral delivery

    Science.gov (United States)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  19. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  20. Limitations to the use of radioactively labelled substrates for studying peptide transport in microorganisms

    International Nuclear Information System (INIS)

    Payne, J.W.; Nisbet, T.M.

    1980-01-01

    The authors wished to investigate the stoicheiometry of energy coupling to peptide transport in whole cells of several organisms, a study that requires accurate measurements of the rate and amount of peptide translocation. They show that using radioactively-labelled substrates can lead to severe miscalculation of these parameters and produce misleading data on the kinetics of uptake. These conclusions are based on comparative studies using the fluorescamine and dansyl procedures. (Auth.)

  1. Stereospecific transport of Tyr-MIF-1 across the blood-brain barrier by peptide transport system-1

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W.A.; Kastin, A.J.; Michals, E.A.; Barrera, C.M. (Veterans Affairs Medical Center, New Orleans, LA (USA))

    1990-10-01

    Previous studies have suggested that peptide transport system-1 (PTS-1), the saturable system that transports Tyr-MIF-1, the enkephalins, and related peptides out of the central nervous system (CNS), exhibits stereospecificity. In the present studies, we showed that {sup 125}I-L-Tyr-MIF-1, but not {sup 131}I-D-Tyr-MIF-1, was cleared from the CNS more rapidly than could be accounted for by nonspecific mechanisms. Such clearance was inhibited by a 1.0 nmol dose of L-Tyr-MIF-1, but not by D-Tyr-MIF-1. Neither L- nor D-Tyr-MIF-1 altered the much lower clearance of I-D-Tyr-MIF-1 from the brain. Radioactivity recovered from the vascular space after the injection of {sup 125}I-Tyr-MIF-1 into the lateral ventricle of the brain eluted by HPLC primarily as intact peptide, demonstrating that most of the Tyr-MIF-1 was not degraded during transport. By contrast, the nonsaturable unidirectional influx of Tyr-MIF-1 into the CNS did not distinguish between the isomers. These studies confirm and extend the observations that Tyr-MIF-1 is transported out of the CNS by a saturable, stereospecific transport system as an intact peptide while the influx into the CNS is by a nonsaturable mechanism that does not distinguish between the isomers.

  2. Single liposome analysis of peptide translocation by the ABC transporter TAPL.

    Science.gov (United States)

    Zollmann, Tina; Moiset, Gemma; Tumulka, Franz; Tampé, Robert; Poolman, Bert; Abele, Rupert

    2015-02-17

    ATP-binding cassette (ABC) transporters use ATP to drive solute transport across biological membranes. Members of this superfamily have crucial roles in cell physiology, and some of the transporters are linked to severe diseases. However, understanding of the transport mechanism, especially of human ABC exporters, is scarce. We reconstituted the human lysosomal polypeptide ABC transporter TAPL, expressed in Pichia pastoris, into lipid vesicles (liposomes) and performed explicit transport measurements. We analyzed solute transport at the single liposome level by monitoring the coincident fluorescence of solutes and proteoliposomes in the focal volume of a confocal microscope. We determined a turnover number of eight peptides per minute, which is two orders of magnitude higher than previously estimated from macroscopic measurements. Moreover, we show that TAPL translocates peptides against a large concentration gradient. Maximal filling is not limited by an electrochemical gradient but by trans-inhibition. Countertransport and reversibility studies demonstrate that peptide translocation is a strictly unidirectional process. Altogether, these data are included in a refined model of solute transport by ABC exporters.

  3. A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2

    OpenAIRE

    Mampel, Jörg; Maier, Elke; Tralau, Tewes; Ruff, Jürgen; Benz, Roland; Cook, Alasdair M.

    2004-01-01

    Inducible mineralization of TSA (4-toluenesulphonate) by Comamonas testosteroni T-2 is initiated by a secondary transport system, followed by oxygenation and oxidation by TsaMBCD to 4-sulphobenzoate under the regulation of TsaR and TsaQ. Evidence is presented for a novel, presumably two-component transport system (TsaST). It is proposed that TsaT, an outer-membrane porin, formed an anion-selective channel that works in co-operation with the putative secondary transporter, TsaS, located in the...

  4. SPAK Dependent Regulation of Peptide Transporters PEPT1 and PEPT2

    Directory of Open Access Journals (Sweden)

    Jamshed Warsi

    2014-10-01

    Full Text Available Background/Aims: SPAK (STE20-related proline/alanine-rich kinase is a powerful regulator of renal tubular ion transport and blood pressure. Moreover, SPAK contributes to the regulation of cell volume. Little is known, however, about a role of SPAK in the regulation or organic solutes. The present study thus addressed the influence of SPAK on the peptide transporters PEPT1 and PEPT2. Methods: To this end, cRNA encoding PEPT1 or PEPT2 were injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type, SPAK, WNK1 insensitive inactive T233ASPAK, constitutively active T233ESPAK, and catalytically inactive D212ASPAK. Electrogenic peptide (glycine-glycine transport was determined by dual electrode voltage clamp and PEPT2 protein abundance in the cell membrane by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide induced current in Ussing chamber experiments of jejunal segments isolated from gene targeted mice expressing SPAK resistant to WNK-dependent activation (spaktg/tg and respective wild-type mice (spak+/+. Results: In PEPT1 and in PEPT2 expressing oocytes, but not in oocytes injected with water, the dipeptide gly-gly (2 mM generated an inward current, which was significantly decreased following coexpression of SPAK. The effect of SPAK on PEPT1 was mimicked by T233ESPAK, but not by D212ASPAK or T233ASPAK. SPAK decreased maximal peptide induced current of PEPT1. Moreover, SPAK decreased carrier protein abundance in the cell membrane of PEPT2 expressing oocytes. In intestinal segments gly-gly generated a current, which was significantly higher in spaktg/tg than in spak+/+ mice. Conclusion: SPAK is a powerful regulator of peptide transporters PEPT1 and PEPT2.

  5. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    Directory of Open Access Journals (Sweden)

    Gainza-Cortés Felipe

    2012-07-01

    Full Text Available Abstract Background Zinc (Zn deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient

  6. Dendrimer D5 is a vector for peptide transport to brain cells.

    Science.gov (United States)

    Sarantseva, S V; Bolshakova, O I; Timoshenko, S I; Kolobov, A A; Schwarzman, A L

    2011-02-01

    Dendrimers are a new class of nonviral vectors for gene or drug transport. Dendrimer capacity to penetrate through the blood-brain barrier remaines little studied. Biotinylated polylysine dendrimer D5, similarly to human growth hormone biotinylated fragment covalently bound to D5 dendrimer, penetrates through the blood-brain barrier and accumulates in Drosophila brain after injection into the abdomen. Hence, D5 dendrimer can serve as a vector for peptide transport to brain cells.

  7. Osmoregulation and expression of ion transport proteins and putative claudins in the gill of southern flounder (Paralichthys lethostigma)

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Luckenbach, J Adam; Madsen, Steffen S

    2008-01-01

    The southern flounder is a euryhaline teleost that inhabits ocean, estuarine, and riverine environments. We investigated the osmoregulatory strategy of juvenile flounder by examining the time-course of homeostatic responses, hormone levels, and gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotrans...... process is associated with changes in branchial expression of ion transport and putative tight junction claudin proteins known to regulate epithelial permeability in mammalian vertebrates....

  8. Proton movement and coupling in the POT family of peptide transporters.

    Science.gov (United States)

    Parker, Joanne L; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M J; Caffrey, Martin; Voth, Gregory A; Newstead, Simon

    2017-12-12

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. Copyright © 2017 the Author(s). Published by PNAS.

  9. Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima

    International Nuclear Information System (INIS)

    Ethayathulla, Abdul S.; Bessho, Yoshitaka; Shinkai, Akeo; Padmanabhan, Balasundaram; Singh, Tej P.; Kaur, Punit; Yokoyama, Shigeyuki

    2008-01-01

    The putative ABC transporter ATP-binding protein TM0222 from T. maritima was cloned, overproduced, purified and crystallized. A complete MAD diffraction data set has been collected to 2.3 Å resolution. Adenosine triphosphate (ATP) binding cassette transporters (ABC transporters) are ATP hydrolysis-dependent transmembrane transporters. Here, the overproduction, purification and crystallization of the putative ABC transporter ATP-binding protein TM0222 from Thermotoga maritima are reported. The protein was crystallized in the hexagonal space group P6 4 22, with unit-cell parameters a = b = 148.49, c = 106.96 Å, γ = 120.0°. Assuming the presence of two molecules in the asymmetric unit, the calculated V M is 2.84 Å 3 Da −1 , which corresponds to a solvent content of 56.6%. A three-wavelength MAD data set was collected to 2.3 Å resolution from SeMet-substituted TM0222 crystals. Data sets were collected on the BL38B1 beamline at SPring-8, Japan

  10. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.

    Science.gov (United States)

    Guo, Cunlan; Yu, Xi; Refaely-Abramson, Sivan; Sepunaru, Lior; Bendikov, Tatyana; Pecht, Israel; Kronik, Leeor; Vilan, Ayelet; Sheves, Mordechai; Cahen, David

    2016-09-27

    Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.

  11. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan); Akagawa, Mitsugu [Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Tsuji-Naito, Kentaro, E-mail: knaito@dhc.co.jp [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan)

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  12. β-Klotho as a Negative Regulator of the Peptide Transporters PEPT1 and PEPT2

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-12-01

    Full Text Available Background/Aims: β-Klotho, a transmembrane protein expressed in several tissues including the brain and the kidney, is critically important for inhibition of 1,25(OH2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. Soluble klotho is a β-glucuronidase participating in the regulation of several ion channels and carriers. The present study explored the effect of β-Klotho protein on the peptide transporters PEPT1 and PEPT2. Methods: cRNA encoding PEPT1 or PEPT2 was injected into Xenopus laevis oocytes and glycine-glycine (2 mM-induced inward current (IGly taken as measure of glycine-glycine transport. Measurements were made without or with prior 24 h treatment with soluble β-Klotho protein (30 ng/ml in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM. Ussing chamber experiments were employed to determine electrogenic peptide transport across intestinal epithelia of klotho deficient (kl-/- and corresponding wild type (kl+/+ mice. Results: IGly was observed in PEPT1 and in PEPT2 expressing oocytes but not in water injected oocytes. In both, PEPT1 and PEPT2 expressing oocytes IGly was significantly decreased by treatment with soluble β-Klotho protein. As shown for PEPT1, β-klotho protein decreased significantly the maximal transport rate without significantly modifying the affinity of the carrier. The effect of β-Klotho on PEPT1 was reversed by DSAL. Intestinal IGly was significantly larger in kl-/- than in kl+/+ mice. Conclusion: β-Klotho participates in the regulation of the peptide transporters PEPT1 and PEPT2.

  13. Peptide transport through the blood-brain barrier. Final report 1 Jul 87-31 Dec 90

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, W.M.

    1991-01-15

    Most neuropeptides are incapable of entering the brain from blood owing to the presence of unique anatomical structures in the brain capillary wall, which makes up the blood-brain barrier (BBB). Such neuropeptides could be introduced into the bloodstream by intranasal insufflation and, thus, could have powerful medicinal properties (e.g., Beta-endorphin for the treatment of pain, vasopressin analogues for treatment of memory, ACTH analogues for treatment of post-traumatic epilepsy), should these peptides be capable of traversing the BBB. One such strategy for peptide delivery through the BBB is the development of chimeric peptides, which is the basis of the present contract. The production of chimeric peptides involves the covalent coupling of a nontransportable peptide (e.g., Beta-endorphin, vasopressin) to a transportable vector peptide (e.g., insulin, transferrin, cationized albumin, histone). The transportable peptide is capable of penetrating the BBB via receptor-mediated or absorptive-mediated transcytosis. Therefore, the introduction of chimeric peptides allows the nontransportable peptide to traverse the BBB via a physiologic piggy back mechanism.

  14. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer.

    Science.gov (United States)

    Hayashi, N; Ito, M; Horiike, S; Taguchi, H

    2001-05-01

    Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.

  15. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-03-01

    Full Text Available Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide

  16. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    Science.gov (United States)

    Wang, Dong; Jones, Laura M; Urwin, Peter E; Atkinson, Howard J

    2011-03-07

    Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide at synapses that

  17. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis.

    Science.gov (United States)

    Zhiyi, Nie; Guijuan, Kang; Yu, Li; Longjun, Dai; Rizhong, Zeng

    2015-01-01

    The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 'full-size', 21 'half-size' and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.

  18. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    Science.gov (United States)

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  19. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus

    Directory of Open Access Journals (Sweden)

    Nicola eCarraro

    2012-02-01

    Full Text Available Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively, and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also evidence for differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history including both tandem and whole genome duplication as well as probable loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of proteins involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ

  20. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport.

    Science.gov (United States)

    Lee, Jennifer; Koehler, Jacqueline; Yusta, Bernardo; Bahrami, Jasmine; Matthews, Dianne; Rafii, Mahroukh; Pencharz, Paul B; Drucker, Daniel J

    2017-03-01

    Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2 r +/+ and Glp2r - / - mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2 r +/+ and Glp2r - / - mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo . GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo . Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r -/- mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein

  1. How the intestinal peptide transporter PEPT-1 contributes to an obesity phenotype in Caenorhabditits elegans.

    Directory of Open Access Journals (Sweden)

    Britta Spanier

    Full Text Available BACKGROUND: Amino acid absorption in the form of di- and tripeptides is mediated by the intestinal proton-coupled peptide transporter PEPT-1 (formally OPT-2 in Caenorhabditits elegans. Transporter-deficient animals (pept-1(lg601 show impaired growth, slowed postembryonal development and major changes in amino acid status. PRINCIPAL FINDINGS: Here we demonstrate that abolished intestinal peptide transport also leads to major metabolic alterations that culminate in a two fold increase in total body fat content. Feeding of C. elegans with [U-(13C]-labelled E. coli revealed a decreased de novo synthesis of long-chain fatty acids in pept-1(lg601 and reduced levels of polyunsaturated fatty acids. mRNA profiling revealed increased transcript levels of enzymes/transporters needed for peroxisomal beta-oxidation and decreased levels for those required for fatty acid synthesis, elongation and desaturation. As a prime and most fundamental process that may account for the increased fat content in pept-1(lg601 we identified a highly accelerated absorption of free fatty acids from the bacterial food in the intestine. CONCLUSIONS: The influx of free fatty acids into intestinal epithelial cells is strongly dependent on alterations in intracellular pH which is regulated by the interplay of PEPT-1 and the sodium-proton exchanger NHX-2. We here provide evidence for a central mechanism by which the PEPT-1/NHX-2 system strongly influences the in vivo fat content of C. elegans. Loss of PEPT-1 decreases intestinal proton influx leading to a higher uptake of free fatty acids with fat accumulation whereas loss of NHX-2 causes intracellular acidification by the PEPT-1 mediated proton/dipeptide symport with an almost abolished uptake of fatty acids and a lean phenotype.

  2. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    Science.gov (United States)

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  3. Effect of MSH/ACTH peptides on fast axonal transport in intact and regenerating sciatic nerves

    International Nuclear Information System (INIS)

    Crescitelli, L.A.

    1985-01-01

    Fast axonal transport was examined in intact rats treated with ACTH 4-10 or ACTH 4-9 (ORG 2766), hypophysectomized rats, adrenalectomized rats, and in ACTH 4-10 treated rats with crushed regenerating sciatic nerves by injecting 3 H-leucine into the ventral horn region of the spinal cord. The distance traveled by the transported activity along the sciatic nerve and the rate of fast axonal transport were not significantly altered as a result of treatment with ACTH 4-10, ACTH 4-9 (ORG 2766), hypophysectomy, or adrenalectomy. Treatment with ACTH 4-9 (ORG 2766) at concentrations of 1 μg/Kg /day and 10 μg/Kg/day caused significant reductions (62% and 64% respectively) in the crest height of the fast axonal transport curve as compared to 0.9% saline treated control animals. No significant differences were found in comparing the distance, rate, slope, or crest height of ACTH 4-10 treated animals with crushed regenerating (7 or 14d) sciatic nerves to control animals. In the group of animals in days, the amount of radiolabeled activity was significantly increased in the ACTH 4-10 treated animals as compared to control animals. The results indicate that during regeneration the peptide acts to prolong the initially high levels of synthetic activity which occur in regenerating axons

  4. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl.

    Directory of Open Access Journals (Sweden)

    Jinting Li

    2016-12-01

    Full Text Available Achyranthes bidentata is a popular perennial medicine herb used for thousands of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 973.64 base pairs. A total of 31,634 (31.33% unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette (ABC transporters, some of which might be involved in the translocation of secondary metabolites.

  5. A Macrocyclic Peptide that Serves as a Cocrystallization Ligand and Inhibits the Function of a MATE Family Transporter

    Directory of Open Access Journals (Sweden)

    Hiroaki Suga

    2013-08-01

    Full Text Available The random non-standard peptide integrated discovery (RaPID system has proven to be a powerful approach to discover de novo natural product-like macrocyclic peptides that inhibit protein functions. We have recently reported three macrocyclic peptides that bind to Pyrococcus furiosus multidrug and toxic compound extrusion (PfMATE transporter and inhibit the transport function. Moreover, these macrocyclic peptides were successfully employed as cocrystallization ligands of selenomethionine-labeled PfMATE. In this report, we disclose the details of the RaPID selection strategy that led to the identification of these three macrocyclic peptides as well as a fourth macrocyclic peptide, MaD8, which is exclusively discussed in this article. MaD8 was found to bind within the cleft of PfMATE’s extracellular side and blocked the path of organic small molecules being extruded. The results of an ethidium bromide efflux assay confirmed the efflux inhibitory activity of MaD8, whose behavior was similar to that of previously reported MaD5.

  6. Energetic and frictional effects in the transport of ions in a cyclic peptide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yongil; Song, Yeon Ho; Hwang, Hyeon Seok [Dept. of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon (Korea, Republic of); Schatz, George C. [Dept. of Chemistry, Northwestern University, Evanston (United States)

    2017-01-15

    The effects of geometric restraints and frictional parameters on the energetics and dynamics of ion transport through a synthetic ion channel are investigated using molecular dynamics (MD) simulations for several different ions. To do so, potential of mean force profiles and position-dependent diffusion coefficients for Na{sup +}, K{sup +}, Ca{sup 2+}, and Cl{sup −} transport through a simple cyclic peptide nanotube, which is composed of 4× cyclo[−(D-Ala-Glu-D-Ala-Gln){sub 2−}] rings, are calculated via an adaptive biasing force MD simulation method and a Baysian inference/Monte Carlo algorithm. Among the restraints and parameters examined in this work, the radius parameter used in the flat-bottom half-harmonic restraint at the entrance and exit to channel has a great effect on the energetics of ion transport through the variation of entropy in the outside of the channel. The diffusivity profiles for the ions show a strong dependence on the damping coefficient, but the dependence on the coefficient becomes minimal inside the channel, indicating that the most important factor which affects the diffusivity of ions inside the channel is local interactions of ions with the structured channel water molecules through confinement.

  7. Expression of an antimicrobial peptide, digestive enzymes and nutrient transporters in the intestine of E. praecox-infected chickens

    Science.gov (United States)

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters and an antimicrobial peptide following an Eimeria praecox challenge of chickens at d...

  8. Model prodrugs for the intestinal peptide transporter. a synthetic approach for coupling of hydroxy-containing compounds to dieptides

    DEFF Research Database (Denmark)

    Friedrichsen, G; Nielsen, Carsten Uhd; Steffansen, Bente

    2001-01-01

    The human peptide transporter, hPepT1, situated in the small intestine, may be exploited to increase absorption of drugs or model drugs by attaching them to a dipeptide, which is recognised by hPepT1. A synthetic protocol for this kind of model prodrugs was developed, in which model drugs...

  9. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    Science.gov (United States)

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  10. The putative Na+/Cl−-dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis

    Science.gov (United States)

    Luan, Zhuo; Quigley, Caitlin; Li, Hong-Sheng

    2015-01-01

    Most organisms are able to maintain systemic water homeostasis over a wide range of external or dietary osmolarities. The excretory system, composed of the kidneys in mammals and the Malpighian tubules and hindgut in insects, can increase water conservation and absorption to maintain systemic water homeostasis, which enables organisms to tolerate external hypertonicity or desiccation. However, the mechanisms underlying the maintenance of systemic water homeostasis by the excretory system have not been fully characterized. In the present study, we found that the putative Na+/Cl−-dependent neurotransmitter/osmolyte transporter inebriated (ine) is expressed in the basolateral membrane of anterior hindgut epithelial cells. This was confirmed by comparison with a known basolateral localized protein, the α subunit of Na+-K+ ATPase (ATPα). Under external hypertonicity, loss of ine in the hindgut epithelium results in severe dehydration without damage to the hindgut epithelial cells, implicating a physiological failure of water conservation/absorption. We also found that hindgut expression of ine is required for water conservation under desiccating conditions. Importantly, specific expression of ine in the hindgut epithelium can completely restore disrupted systemic water homeostasis in ine mutants under both conditions. Therefore, ine in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis. PMID:25613130

  11. Beta-endorphin chimeric peptides: Transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain

    International Nuclear Information System (INIS)

    Pardridge, W.M.; Triguero, D.; Buciak, J.L.

    1990-01-01

    Water soluble peptides are normally not transported through the blood-brain barrier (BBB). Chimeric peptides may be transportable through the BBB and are formed by the covalent coupling of a nontransportable peptide to a transportable peptide vector, e.g. cationized albumin, using disulfide-based coupling reagents such as N-succinimidyl 3-[2-pyridyldithio(propionate)] (SPDP). The transcytosis of peptide into brain parenchyma, as opposed to vascular sequestration of blood-borne peptide, was quantified using an internal carotid artery perfusion/capillary depletion method. It is shown that [125I]beta-endorphin is not transported through the BBB, but is rapidly cleaved to free [125I] tyrosine via capillary peptidase. Therefore, chimeric peptide was prepared using [125I] [D-Ala2]beta-endorphin (DABE), owing to the resistance of this analogue to peptidase degradation. The [125I] DABE-cationized albumin chimeric peptide is shown to enter brain parenchyma at a rate comparable to that reported previously for unconjugated cationized albumin. When the [125I] DABE-cationized albumin chimeric peptide was incubated with rat brain homogenate at 37 C, the free [125I] DABE was liberated from the cationized albumin conjugate prior to its subsequent degradation into free [125I] tyrosine. Approximately 50% of the chimeric peptide was cleaved within 60 sec of incubation at 37 C. These studies demonstrate that (1) [125I]beta-endorphin is not transported through the BBB in its unconjugated form, (2) a [125I] DABE-cationized albumin chimeric peptide is transported through the BBB into brain parenchyma at a rate comparable to the unconjugated cationized albumin, and (3) brain contains the necessary disulfide reductases for rapid cleavage of the chimeric peptide into free beta-endorphin and this cleavage occurs before degradation of the [125I] DABE into [125I] tyrosine

  12. Beta-endorphin chimeric peptides: Transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain

    Energy Technology Data Exchange (ETDEWEB)

    Pardridge, W.M.; Triguero, D.; Buciak, J.L. (UCLA School of Medicine (USA))

    1990-02-01

    Water soluble peptides are normally not transported through the blood-brain barrier (BBB). Chimeric peptides may be transportable through the BBB and are formed by the covalent coupling of a nontransportable peptide to a transportable peptide vector, e.g. cationized albumin, using disulfide-based coupling reagents such as N-succinimidyl 3-(2-pyridyldithio(propionate)) (SPDP). The transcytosis of peptide into brain parenchyma, as opposed to vascular sequestration of blood-borne peptide, was quantified using an internal carotid artery perfusion/capillary depletion method. It is shown that (125I)beta-endorphin is not transported through the BBB, but is rapidly cleaved to free (125I) tyrosine via capillary peptidase. Therefore, chimeric peptide was prepared using (125I) (D-Ala2)beta-endorphin (DABE), owing to the resistance of this analogue to peptidase degradation. The (125I) DABE-cationized albumin chimeric peptide is shown to enter brain parenchyma at a rate comparable to that reported previously for unconjugated cationized albumin. When the (125I) DABE-cationized albumin chimeric peptide was incubated with rat brain homogenate at 37 C, the free (125I) DABE was liberated from the cationized albumin conjugate prior to its subsequent degradation into free (125I) tyrosine. Approximately 50% of the chimeric peptide was cleaved within 60 sec of incubation at 37 C. These studies demonstrate that (1) (125I)beta-endorphin is not transported through the BBB in its unconjugated form, (2) a (125I) DABE-cationized albumin chimeric peptide is transported through the BBB into brain parenchyma at a rate comparable to the unconjugated cationized albumin, and (3) brain contains the necessary disulfide reductases for rapid cleavage of the chimeric peptide into free beta-endorphin and this cleavage occurs before degradation of the (125I) DABE into (125I) tyrosine.

  13. Oral peptide specific egg antibody to intestinal sodium-dependent phosphate co-transporter-2b is effective at altering phosphate transport in vitro and in vivo.

    Science.gov (United States)

    Bobeck, Elizabeth A; Hellestad, Erica M; Sand, Jordan M; Piccione, Michelle L; Bishop, Jeff W; Helvig, Christian; Petkovich, Martin; Cook, Mark E

    2015-06-01

    Hyperimmunized hens are an effective means of generating large quantities of antigen specific egg antibodies that have use as oral supplements. In this study, we attempted to create a peptide specific antibody that produced outcomes similar to those of the human pharmaceutical, sevelamer HCl, used in the treatment of hyperphosphatemia (a sequela of chronic renal disease). Egg antibodies were generated against 8 different human intestinal sodium-dependent phosphate cotransporter 2b (NaPi2b) peptides, and hNaPi2b peptide egg antibodies were screened for their ability to inhibit phosphate transport in human intestinal Caco-2 cell line. Antibody produced against human peptide sequence TSPSLCWT (anti-h16) was specific for its peptide sequence, and significantly reduced phosphate transport in human Caco-2 cells to 25.3±11.5% of control nonspecific antibody, when compared to nicotinamide, a known inhibitor of phosphate transport (P≤0.05). Antibody was then produced against the mouse-specific peptide h16 counterpart (mouse sequence TSPSYCWT, anti-m16) for further analysis in a murine model. When anti-m16 was fed to mice (1% of diet as dried egg yolk powder), egg yolk immunoglobulin (IgY) was detected using immunohistochemical staining in mouse ileum, and egg anti-m16 IgY colocalized with a commercial goat anti-NaPi2b antibody. The effectiveness of anti-m16 egg antibody in reducing serum phosphate, when compared to sevelamer HCl, was determined in a mouse feeding study. Serum phosphate was reduced 18% (Pegg yolk powder) and 30% (Pegg immunoglobulin. The methods described and the findings reported show that oral egg antibodies are useful and easy to prepare reagents for the study and possible treatment of select diseases. © 2015 Poultry Science Association Inc.

  14. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  15. AmSUT1, a Sucrose Transporter in Collection and Transport Phloem of the Putative Symplastic Phloem Loader Alonsoa meridionalis1

    Science.gov (United States)

    Knop, Christian; Stadler, Ruth; Sauer, Norbert; Lohaus, Gertrud

    2004-01-01

    A sucrose (Suc) transporter cDNA has been cloned from Alonsoa meridionalis, a member of the Scrophulariaceae. This plant species has an open minor vein configuration and translocates mainly raffinose and stachyose in addition to Suc in the phloem (C. Knop, O. Voitsekhovskaja, G. Lohaus [2001] Planta 213: 80–91). These are typical properties of symplastic phloem loaders. For functional characterization, AmSUT1 cDNA was expressed in bakers' yeast (Saccharomyces cerevisiae). Substrate and inhibitor specificities, energy dependence, and Km value of the protein agree well with the properties measured for other Suc transporters of apoplastic phloem loaders. A polyclonal antiserum against the 17 N-terminal amino acids of the A. meridionalis Suc transporter AmSUT1 was used to determine the cellular localization of the AmSUT1 protein. Using fluorescence labeling on sections from A. meridionalis leaves and stems, AmSUT1 was localized exclusively in phloem cells. Further histological characterization identified these cells as companion cells and sieve elements. p-Chloromercuribenzenesulfonic acid affected the sugar exudation of cut leaves in such a way that the exudation rates of Suc and hexoses decreased, whereas those of raffinose and stachyose increased. The data presented indicate that phloem loading of Suc and retrieval of Suc in A. meridionalis are at least partly mediated by the activity of AmSUT1 in addition to symplastic phloem loading. PMID:14730068

  16. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells

    International Nuclear Information System (INIS)

    Wang, Y.-H.; Chen, C.-P.; Chan, M.-H.; Chang, M.; Hou, Y.-W.; Chen, H.-H.; Hsu, H.-R.; Liu, Kevin; Lee, H.-J.

    2006-01-01

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or β-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo

  17. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.

    Science.gov (United States)

    Guo, Yuxing; Gan, Junai; Zhu, Qian; Zeng, Xiaoqun; Sun, Yangying; Wu, Zhen; Pan, Daodong

    2018-02-01

    To exert an antihypertensive effect after oral administration, angiotensin I-converting enzyme (ACE)-inhibitory peptides must remain active after intestinal transport. The purpose of this article is to elucidate the transport permeability and route of ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro (RLSFNP) across the intestinal epithelium using Caco-2 cell monolayers. Intact RLSFNP and RLSFNP breakdown fragments F, FNP, SFNP and RLSF were found in RLSFNP transport solution across Caco-2 cell monolayers using ultra-performance liquid chromatography-tandem mass spectrometry. RLSFNP fragments FNP, SFNP and RLSF also contributed to ACE inhibitory effects. Protease inhibitors (bacitracin and leupeptin) and absorption enhancers (sodium glycocholate hydrate, sodium deoxycholate and Na 2 EDTA) improved the transport flux of RLSFNP. A transport inhibitor experiment showed that intact RLSFNP may be transported via the paracellular route. Intact RLSFNP can be transported across the Caco-2 cell monolayers via the paracellular route. Extensive hydrolysis was the chief reason for the low permeability of RLSFNP. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions.

    Science.gov (United States)

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W; Browne, Tristan; Cox, Kevin; Paul, Andrew T; Ko, Seung-Hyun B; Mortensen, Joel E; Lam, Joseph S; Muruve, Daniel A; Hassett, Daniel J

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite ([Formula: see text], pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to [Formula: see text]. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to [Formula: see text], but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with [Formula: see text] plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM [Formula: see text], and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to [Formula: see text] in biofilms. [Formula: see text] sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, [Formula: see text] as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.

  19. Rotavirus NSP4114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane

    Directory of Open Access Journals (Sweden)

    Vasseur Monique

    2006-11-01

    Full Text Available Abstract The direct effect of the rotavirus NSP4114-135 and Norovirus NV464-483 peptides on 36Cl uptake was studied by using villus cell brush border membrane (BBM isolated from young rabbits. Both peptides inhibited the Cl-/H+ symport activity about equally and partially. The interaction involved one peptide-binding site per carrier unit. Whereas in vitro NSP4114-135 caused nonspecific inhibition of the Cl-/H+ symporter, the situation in vivo is different. Because rotavirus infection in young rabbits accelerated both Cl- influx and Cl- efflux rates across villi BBM without stimulating Cl- transport in crypt BBM, we conclude that the NSP4114-135 peptide, which causes diarrhea in young rodents, did not have any direct, specific effect on either intestinal absorption or secretion of chloride. The lack of direct effect of NSP4 on chloride transport strengthens the hypothesis that NSP4 would trigger signal transduction pathways to enhance net chloride secretion at the onset of rotavirus diarrhea.

  20. Identification of New Anti-inflammatory Peptides from Zein Hydrolysate after Simulated Gastrointestinal Digestion and Transport in Caco-2 Cells.

    Science.gov (United States)

    Liang, Qiufang; Chalamaiah, Meram; Ren, Xiaofeng; Ma, Haile; Wu, Jianping

    2018-02-07

    Chronic inflammation is an underlying contributor to various chronic diseases. The objectives of this study were to investigate the anti-inflammatory activity of zein hydrolysate after simulated gastrointestinal digestion and Caco-2 cell absorption and to identify novel anti-inflammatory peptides after transport across Caco-2 cells. Three zein hydrolysates were prepared and further digested using gastrointestinal proteases; their transports were studied in Caco-2 cells. Anti-inflammatory activity was studied in endothelial EA.hy926 cells. Three zein hydrolysates and their digests significantly decreased the expression of tumor necrosis factor-α (TNF-α) induced pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) by 37.3-66.0%. Eleven novel peptides with 5-9 amino acid residues were sequenced; three peptides showed strong anti-inflammatory activity by inhibiting the VCAM-1 by 54-38.9% and intercellular cell adhesion molecule-1 (ICAM-1) by 36.5-28.6% at 0.2 mM. A new approach to identify novel anti-inflammatory peptides that could survive gastrointestinal digestion and absorption was developed.

  1. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.

    Science.gov (United States)

    Zhang, Mingming; Fan, Jianfen; Xu, Jian; Weng, Peipei; Lin, Huifang

    2016-10-01

    Two water-filled transmembrane cyclic peptide nanotubes (CPNTs) of 8×cyclo-(WL)n=4,5/POPE were chosen to investigate the dependences of the transport properties of the positive NH4 (+) and neutral NH3 on the channel radius. Molecular dynamic simulations revealed that molecular charge, size, ability to form H-bonds and channel radius all significantly influence the behaviors of NH4 (+) and NH3 in a CPNT. Higher electrostatic interactions, more H-bonds, and water-bridges were found in the NH4 (+) system, resulting in NH4 (+) meeting higher energy barriers, while NH3 can enter, exit and permeate the channels effortlessly. This work sheds a first light on the differences between the mechanisms of NH4 (+) and NH3 moving in a CPNT at an atomic level. Graphical Abstract Snapshot of the simulation system of NH4 (+)_octa-CPNT with an NH4 (+) initially positioned at one mouth of the tube, PMF profiles for single NH4 (+) ion and NH3 molecule moving through water-filled transmembrane CPNTs of 8×cyclo-(WL)n=4,5/POPE and sketch graphs of the possible H-bond forms of NH3 and NH4 (+) with the neighboring water.

  2. Relevance of Peptide Uptake Systems to the Physiology and Virulence of Streptococcus agalactiae

    OpenAIRE

    Samen, Ulrike; Gottschalk, Birgit; Eikmanns, Bernhard J.; Reinscheid, Dieter J.

    2004-01-01

    Streptococcus agalactiae is a major cause of invasive infections in human newborns. To satisfy its growth requirements, S. agalactiae takes up 9 of the 20 proteinogenic amino acids from the environment. Defined S. agalactiae mutants in one or several of four putative peptide permease systems were constructed and tested for peptide uptake, growth in various media, and expression of virulence traits. Oligopeptide uptake by S. agalactiae was shown to be mediated by the ABC transporter OppA1-F, w...

  3. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition.

    Science.gov (United States)

    Lostalé-Seijo, Irene; Louzao, Iria; Juanes, Marisa; Montenegro, Javier

    2017-12-01

    The discovery of RNA guided endonucleases has emerged as one of the most important tools for gene edition and biotechnology. The selectivity and simplicity of the CRISPR/Cas9 strategy allows the straightforward targeting and editing of particular loci in the cell genome without the requirement of protein engineering. However, the transfection of plasmids encoding the Cas9 and the guide RNA could lead to undesired permanent recombination and immunogenic responses. Therefore, the direct delivery of transient Cas9 ribonucleoprotein constitutes an advantageous strategy for gene edition and other potential therapeutic applications of the CRISPR/Cas9 system. The covalent fusion of Cas9 with penetrating peptides requires multiple incubation steps with the target cells to achieve efficient levels of gene edition. These and other recent reports suggested that covalent conjugation of the anionic Cas9 ribonucleoprotein to cationic peptides would be associated with a hindered nuclease activity due to undesired electrostatic interactions. We here report a supramolecular strategy for the direct delivery of Cas9 by an amphiphilic penetrating peptide that was prepared by a hydrazone bond formation between a cationic peptide scaffold and a hydrophobic aldehyde tail. The peptide/protein non-covalent nanoparticles performed with similar efficiency and less toxicity than one of the best methods described to date. To the best of our knowledge this report constitutes the first supramolecular strategy for the direct delivery of Cas9 using a penetrating peptide vehicle. The results reported here confirmed that peptide amphiphilic vectors can deliver Cas9 in a single incubation step, with good efficiency and low toxicity. This work will encourage the search and development of conceptually new synthetic systems for transitory endonucleases direct delivery.

  4. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport

    Directory of Open Access Journals (Sweden)

    Nadine Ruderisch

    2017-10-01

    Full Text Available Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ antibodies and secretase inhibitors. However, the blood-brain barrier (BBB limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.

  5. Tachykinin-Related Peptides Share a G Protein-Coupled Receptor with Ion Transport Peptide-Like in the Silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR-A24 as an ion transport peptide-like (ITPL receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs, we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1-5. In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling.

  6. Single liposome analysis of peptide translocation by the ABC transporter TAPL

    NARCIS (Netherlands)

    Zollmann, Tina; Moiset Coll, Gemma; Tumulka, Franz; Tampé, Robert; Poolman, Bert; Abele, Rupert

    2015-01-01

    ATP-binding cassette (ABC) transporters use ATP to drive solute transport across biological membranes. Members of this superfamily have crucial roles in cell physiology, and some of the transporters are linked to severe diseases. However, understanding of the transport mechanism, especially of human

  7. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.

    Science.gov (United States)

    Brahic, Michel; Bousset, Luc; Bieri, Gregor; Melki, Ronald; Gitler, Aaron D

    2016-04-01

    Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.

  8. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tavor, John [Johns Hopkins Univ., Baltimore, MD (United States)

    2016-12-06

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are to construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.

  9. The structural basis for peptide selection by the transport receptor OppA

    NARCIS (Netherlands)

    Berntsson, Ronnie P-A; Doeven, Mark K.; Fusetti, Fabrizia; Duurkens, Ria H.; Sengupta, Durba; Marrink, Siewert-Jan; Thunnissen, Andy-Mark W. H.; Poolman, Bert; Slotboom, Dirk-Jan

    2009-01-01

    Oligopeptide-binding protein A (OppA) from Lactococcus lactis binds peptides of an exceptionally wide range of lengths (4-35 residues), with no apparent sequence preference. Here, we present the crystal structures of OppA in the open-and closed-liganded conformations. The structures directly explain

  10. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  11. Putative sugar transporters of the mustard leaf beetle Phaedon cochleariae: their phylogeny and role for nutrient supply in larval defensive glands.

    Directory of Open Access Journals (Sweden)

    Magdalena Stock

    Full Text Available BACKGROUND: Phytophagous insects have emerged successfully on the planet also because of the development of diverse and often astonishing defensive strategies against their enemies. The larvae of the mustard leaf beetle Phaedon cochleariae, for example, secrete deterrents from specialized defensive glands on their back. The secretion process involves ATP-binding cassette transporters. Therefore, sugar as one of the major energy sources to fuel the ATP synthesis for the cellular metabolism and transport processes, has to be present in the defensive glands. However, the role of sugar transporters for the production of defensive secretions was not addressed until now. RESULTS: To identify sugar transporters in P. cochleariae, a transcript catalogue was created by Illumina sequencing of cDNA libraries. A total of 68,667 transcripts were identified and 68 proteins were annotated as either members of the solute carrier 2 (SLC2 family or trehalose transporters. Phylogenetic analyses revealed an extension of the mammalian GLUT6/8 class in insects as well as one group of transporters exhibiting distinctive conserved motifs only present in the insect order Coleoptera. RNA-seq data of samples derived from the defensive glands revealed six transcripts encoding sugar transporters with more than 3,000 counts. Two of them are exclusively expressed in the glandular tissue. Reduction in secretions production was accomplished by silencing two of four selected transporters. RNA-seq experiments of transporter-silenced larvae showed the down-regulation of the silenced transporter but concurrently the up-regulation of other SLC2 transporters suggesting an adaptive system to maintain sugar homeostasis in the defensive glands. CONCLUSION: We provide the first comprehensive phylogenetic study of the SLC2 family in a phytophagous beetle species. RNAi and RNA-seq experiments underline the importance of SLC2 transporters in defensive glands to achieve a chemical defense

  12. Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides.

    Science.gov (United States)

    Teixidó, Meritxell; Belda, Ignasi; Zurita, Esther; Llorà, Xavier; Fabre, Myriam; Vilaró, Senén; Albericio, Fernando; Giralt, Ernest

    2005-12-01

    The use of high-throughput methods in drug discovery allows the generation and testing of a large number of compounds, but at the price of providing redundant information. Evolutionary combinatorial chemistry combines the selection and synthesis of biologically active compounds with artificial intelligence optimization methods, such as genetic algorithms (GA). Drug candidates for the treatment of central nervous system (CNS) disorders must overcome the blood-brain barrier (BBB). This paper reports a new genetic algorithm that searches for the optimal physicochemical properties for peptide transport across the blood-brain barrier. A first generation of peptides has been generated and synthesized. Due to the high content of N-methyl amino acids present in most of these peptides, their syntheses were especially challenging due to over-incorporations, deletions and DKP formations. Distinct fragmentation patterns during peptide cleavage have been identified. The first generation of peptides has been studied by evaluation techniques such as immobilized artificial membrane chromatography (IAMC), a cell-based assay, log Poctanol/water calculations, etc. Finally, a second generation has been proposed. (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

  13. Drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p

    NARCIS (Netherlands)

    Kolaczkowski, M; vanderRest, M; CybularzKolaczkowska, A; Soumillion, JP; Konings, WN; Goffeau, A

    1996-01-01

    Pdr5p is the yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Its high overproduction in Pdr1p transcription factor mutants allows us to study the molecular mechanism of multidrug transport and substrate specificity. We have developed

  14. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR

    Energy Technology Data Exchange (ETDEWEB)

    Tumulka, Franz [Goethe-University Frankfurt, Institute of Biochemistry, Biocenter (Germany); Roos, Christian; Loehr, Frank [Goethe-University Frankfurt, Institute of Biophysical Chemistry, Biocenter (Germany); Bock, Christoph [Goethe-University Frankfurt, Institute of Biochemistry, Biocenter (Germany); Bernhard, Frank; Doetsch, Volker [Goethe-University Frankfurt, Institute of Biophysical Chemistry, Biocenter (Germany); Abele, Rupert, E-mail: abele@em.uni-frankfurt.de [Goethe-University Frankfurt, Institute of Biochemistry, Biocenter (Germany)

    2013-10-15

    The ATP binding cassette transporter TAPL translocates cytosolic peptides into the lumen of lysosomes driven by the hydrolysis of ATP. Functionally, this transporter can be divided into coreTAPL, comprising the transport function, and an additional N-terminal transmembrane domain called TMD0, which is essential for lysosomal targeting and mediates the interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. To elucidate the structure of this unique domain, we developed protocols for the production of high quantities of cell-free expressed TMD0 by screening different N-terminal expression tags. Independently of the amino acid sequence, high expression was detected for AU-rich sequences in the first seven codons, decreasing the free energy of RNA secondary structure formation at translation initiation. Furthermore, avoiding NGG codons in the region of translation initiation demonstrated a positive effect on expression. For NMR studies, conditions were optimized for high solubilization efficiency, long-term stability, and high quality spectra. A most critical step was the careful exchange of the detergent used for solubilization by the detergent dihexanoylphosphatidylcholine. Several constructs of different size were tested in order to stabilize the fold of TMD0 as well as to reduce the conformation exchange. NMR spectra with sufficient resolution and homogeneity were finally obtained with a TMD0 derivative only modified by a C-terminal His{sub 10}-tag and containing a codon optimized AT-rich sequence.

  15. Can the controversy about the putative role of the human female orgasm in sperm transport be settled with our current physiological knowledge of coitus?

    Science.gov (United States)

    Levin, Roy J

    2011-06-01

    Spermatozoal uptake, facilitated by uterine contractions induced by oxytocin at orgasm during coitus, has been a long term concept. Studies attempting its support, however, have been poorly examined especially in the context of the changes in the female genital tract activated by sexual arousal. To examine experimental support for the concept. Using a variety of search engines, mainly peer reviewed articles and un-reviewed books were examined relating to sperm transport and function in the human female genital tract in the absence and presence of arousal to orgasm. Identifying evidence-based data to support authority-based opinion. All the experimental observations of sperm or model substitute's transport have been undertaken in women who were not sexually aroused. They fail to take into account that arousal creates vaginal tenting lifting the cervico-uterine complex into the false pelvis away from the ejaculated semen. This delays sperm uptake and transport making conclusions from these observations invalid in relation to transport during coitus. Studies injecting oxytocin have not used women in their sexually aroused state and used supraphysiological doses unlikely to be comparable with coitus and orgasm. The proposal that the transport of extra sperm by oxytocin-induced uterine contractions at orgasm is needed to facilitate fertility ignores possible harm from increased sperm numbers creating polyspermy and sperm enzyme release causing ovum degeneration, leading to decreased fertility. The role of sperm motility in their uptake from the vagina into the cervix as opposed to en bloc transfer through uterine archimyometrial-mediated transport in the absence of orgasm is at present unresolvable because of conflicting studies. The bulk of the reported evidence favors the conclusion that the female orgasm, with its concomitant central release of oxytocin, has little or no effective role in the transport of spermatozoa in natural human coitus. © 2010 International

  16. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes

    DEFF Research Database (Denmark)

    Walker, Brian A; Hunt, Lawrence G; Sowa, Anna K

    2011-01-01

    In most mammals, the MHC class I molecules are polymorphic and determine the specificity of peptide presentation, whereas the transporter associated with antigen presentation (TAP) heterodimers are functionally monomorphic. In chickens, there are two classical class I genes but only one is expres...

  17. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11.5-kDa peptide containing the putative 25-hydroxyvitamin D3 binding site

    International Nuclear Information System (INIS)

    Ray, R.; Holick, M.F.; Bouillon, R.; Baelen, H.V.

    1991-01-01

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitro-[3,5- 3 H]phenyl)amino]propyl ether ( 3 H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D 3 for the binding site of the latter in hDBP and (2) 3 H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with 3 H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D 3

  18. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and neuron-like γ-aminobutyric acid transport

    International Nuclear Information System (INIS)

    Levi, G.; Gallo, V.; Ciotti, T.

    1986-01-01

    When postnatal rat cerebellar cells were cultured in a chemically defined, serum-free medium, the only type of astrocyte present was unable to accumulate γ-[ 3 H]aminobutyric acid (GABA), did not express surface antigens recognized by two monoclonal antibodies, A2B5 and LB1, and showed minimal proliferation. In these cultures, nonneuronal A2B5 + , LB1 + stellate cells exhibiting neuron-like [ 3 H]GABA uptake formed cell colonies of increasing size and were GFAP - . After about one week of culturing, the A2B5 + , LB1 + , GABA-uptake positive cell groups became galactocerebroside (GalCer) positive. Immunocytolysis of the A2B5 + cells at 3 and 4 days in vitro prevented the appearance of the A2B5 + , LB1 + , GABA-uptake positive cell colonies, and also of the GalCer + cell groups. If 10% (vol/vol) fetal calf serum was added to 6-day cultures, the A2B5 + , LB1 + , GABA-uptake positive cell groups expressed GFAP and not GalCer. If the serum was added to the cultures 2 days after lysing the A2B5 + cells, only A2B5 - , LB1 - , GABA-uptake negative astrocytes proliferated. It is concluded that the putative fibrous astrocytes previously described in serum-containing cultures derive from bipotential precursors that differentiate into oligodendrocytes (GalCer + ) in serum-free medium or into astrocytes (GFAP + ) in the presence of serum, while the epithelioid A2B5 - , LB1 - , GABA-uptake negative astrocytes originate from a different precursor not yet identified

  19. Effects of frequently used pharmaceutical excipients on the organic cation transporters 1-3 and peptide transporters 1/2 stably expressed in MDCKII cells.

    Science.gov (United States)

    Otter, Marcus; Oswald, Stefan; Siegmund, Werner; Keiser, Markus

    2017-03-01

    There is ample evidence that pharmaceutical excipients, which are supposed to be pharmacologically inactive, have an impact on drug metabolism and efflux transport. So far, little is known whether they also modulate uptake transporter proteins. We have recently shown that commonly used solubilizing agents exert significant effects on the function of organic anion uptake transporting polypeptides. Therefore, we investigated in this study the influence of frequently used pharmaceutical excipients on the transport activity of organic cation transporters OCT1, OCT2 and OCT3 and the peptide transporters PEPT1 and PEPT2. Inhibition of the OCTs and PEPTs by the excipients polyethylene glycol 400 (PEG), hydroxypropyl-β-cyclodextrin (HPCD), Solutol® HS15 (SOL), Cremophor® EL (CrEL), Tween® 20 (Tw20), Tween® 80 (Tw80), Kolliphor® P188 (P188) and Kolliphor® P407 (P407) was evaluated using stably transfected MDCKII cells with radio-labeled reference substrates and established inhibitors as controls. Intracellular accumulation of [3H]-1-methyl-4-phenylpyridinium (MPP + ) for the OCTs and [3H]-glycyl-sarcosine (Gly-Sar) for the PEPTs was measured by liquid scintillation counting after cell lysis. Our studies revealed that PEG, HPCD, SOL, CrEL, Tw20 and Tw80 were potent inhibitors of OCT1-3 (e.g., Tw20 IC 50 values<0.04%). Cellular uptake of Gly-Sar by PEPT1 and PEPT2 was strongly inhibited by both Tw20 and Tw80. SOL was also a strong inhibitor of PEPT1 and PEPT2 (e.g., SOL IC 50 values<0.02%), while CrEL showed significantly inhibition of only PEPT2. The substantial inhibitory effects of certain solubilizing agents on OCTs and PEPTs should be considered if they are to be used in dosage forms for new chemical entities and registered drugs to avoid misinterpretation of pharmacokinetic data and undesired drug interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Aerial plant surfaces are covered by epicuticular waxes that among other purposes serve to control water loss. Maize glossy mutants originally identified by their "glossy" phenotypes exhibit alterations in the accumulation of epicuticular waxes. By combining data from a BSR-Seq experiment and the newly developed Seq-Walking technology, GRMZM2G118243 was identified as a strong candidate for being the glossy13 gene. The finding that multiple EMS-induced alleles contain premature stop codons in GRMZM2G118243, and the one knockout allele of gl13, validates the hypothesis that gene GRMZM2G118243 is gl13. Consistent with this, GRMZM2G118243 is an ortholog of AtABCG32 (Arabidopsis thaliana, HvABCG31 (barley and OsABCG31 (rice, which encode ABCG subfamily transporters involved in the trans-membrane transport of various secondary metabolites. We therefore hypothesize that gl13 is involved in the transport of epicuticular waxes onto the surfaces of seedling leaves.

  1. Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Christensen, Michael Søberg; Bagger, Morten Aavad

    2004-01-01

    It has previously been shown that the prodrug Glu(acyclovir)-Sar has a high affinity for PEPT1 in Caco-2 cells. However, affinity does not necessarily lead to translocation by the transporter which is necessary for achieving an increased oral bioavailability. Therefore i.v. and p.o. doses of Glu......(acyclovir)-Sar, acyclovir and valacyclovir were given to rats and the collected blood samples were analysed via LC-MS-MS. Furthermore, Caco-2 cell monolayers were exposed apically to Glu(acyclovir)-Sar, acyclovir, and valacyclovir and the concentration of drug and prodrugs in the cell extracts were determined and taken...... as a measure for intracellular accumulation. In addition, bi-directional transport studies of Glu(acyclovir)-Sar across Caco-2 cell monolayers and in vitro metabolism studies of Glu(acyclovir)-Sar in various media of rat origin were performed. For these purposes HPLC-UV analysis was applied. Oral...

  2. Synthesis and Characterization of Valyloxy Methoxy Luciferin for the Detection of Valacyclovirase and Peptide Transporter

    Science.gov (United States)

    Amidon, Gordon L.; Lee, Kyung-Dall

    2014-01-01

    An amino acid ester derivative of luciferin (valoluc) was synthesized to mimic the transport and activation of valacyclovir. This molecule was characterized in vitro for specificity and enzymatic constants, and then assayed in two different, physiologically-relevant conditions. It was demonstrated that valoluc activation is sensitive to the same cellular factors as valacyclovir and thus has the potential to elucidate the dynamics of amino acid ester prodrug therapies in a functional, high-throughput manner. PMID:25240255

  3. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  4. Pep3p/Pep5p complex: a putative docking factor at multiple steps of vesicular transport to the vacuole of Saccharomyces cerevisiae.

    OpenAIRE

    Srivastava, A; Woolford, C A; Jones, E W

    2000-01-01

    Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional ...

  5. The effect of Eimeria maxima infection on the expression of amino acid and sugar transporters aminopeptidase, as well as the di- and tri-peptide transporter PepT1, is not solely due to decreased feed intake

    Science.gov (United States)

    Coccidiosis caused by Eimeria in poultry is endemic to poultry operations and results in decreased feed intake, diarrhea, and decreased weight gain. The goal was to determine the effect infection Eimeria maxima on the expression of genes that encode peptide and amino acid transporters (AATs), and al...

  6. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity.

    Directory of Open Access Journals (Sweden)

    Guillaume Dalmasso

    Full Text Available BACKGROUND: PepT1, an intestinal epithelial apical di/tripeptide transporter, is normally expressed in the small intestine and induced in colon during chronic inflammation. This study aimed at investigating PepT1 regulation by butyrate, a short-chain fatty acid produced by commensal bacteria and accumulated inside inflamed colonocyte. RESULTS: We found that butyrate treatment of human intestinal epithelial Caco2-BBE cells increased human PepT1 (hPepT1 promoter activity in a dose- and time-dependent manner, with maximal activity observed in cells treated with 5 mM butyrate for 24 h. Under this condition, hPepT1 promoter activity, mRNA and protein expression levels were increased as assessed by luciferase assay, real-time RT-PCR and Western blot, respectively. hPepT1 transport activity was accordingly increased by approximately 2.5-fold. Butyrate did not alter hPepT1 mRNA half-life indicating that butyrate acts at the transcriptional level. Molecular analyses revealed that Cdx2 is the most important transcription factor for butyrate-induced increase of hPepT1 expression and activity in Caco2-BBE cells. Butyrate-activated Cdx2 binding to hPepT1 promoter was confirmed by gel shift and chromatin immunoprecipitation. Moreover, Caco2-BBE cells overexpressing Cdx2 exhibited greater hPepT1 expression level than wild-type cells. Finally, treatment of mice with 5 mM butyrate added to drinking water for 24 h increased colonic PepT1 mRNA and protein expression levels, as well as enhanced PepT1 transport activity in colonic apical membranes vesicles. CONCLUSIONS: Collectively, our results demonstrate that butyrate increases PepT1 expression and activity in colonic epithelial cells, which provides a new understanding of PepT1 regulation during chronic inflammation.

  7. In vitro evaluation of N-methyl amide tripeptidomimetics as substrates for the human intestinal di-/tri-peptide transporter hPEPT1

    DEFF Research Database (Denmark)

    Andersen, Rikke; Nielsen, Carsten Uhd; Begtrup, Mikael

    2006-01-01

    application of N-methyl amide bioisosteres as peptide bond replacements in tripeptides in order to decrease degradation by peptidases and yet retain affinity for and transport via hPEPT1. Seven structurally diverse N-methyl amide tripeptidomimetics were selected based on a principal component analysis...... of structural properties of 6859 N-methyl amide tripeptidomimetics. In vitro extracellular degradation of the selected tripeptidomimetics as well as affinity for and transepithelial transport via hPEPT1 were investigated in Caco-2 cells. Decreased apparent degradation was observed for all tripeptidomimetics...... to be substrates for hPEPT1 than tripeptidomimetics with charged side chains. The results of the present study indicate that the N-methyl amide peptide bond replacement approach for increasing bioavailability of tripeptidomimetic drug candidates is not generally applicable to all tripeptides. Nevertheless...

  8. The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis.

    Directory of Open Access Journals (Sweden)

    Emelie Perland

    Full Text Available Solute carriers (SLCs are membrane bound transporters responsible for the movement of soluble molecules such as amino acids, ions, nucleotides, neurotransmitters and oligopeptides over cellular membranes. At present, there are 395 SLCs identified in humans, where about 40% are still uncharacterized with unknown expression and/or function(s. Here we have studied two uncharacterized atypical SLCs that belong to the Major Facilitator Superfamily Pfam clan, Major facilitator superfamily domain 5 (MFSD5 and Major facilitator superfamily domain 11 (MFSD11. We provide fundamental information about the histology in mice as well as data supporting their disposition to regulate expression levels to keep the energy homeostasis.In mice subjected to starvation or high-fat diet, the mRNA expression of Mfsd5 was significantly down-regulated (P<0.001 in food regulatory brain areas whereas Mfsd11 was significantly up-regulated in mice subjected to either starvation (P<0.01 or high-fat diet (P<0.001. qRT-PCR analysis on wild type tissues demonstrated that both Mfsd5 and Mfsd11 have a wide central and peripheral mRNA distribution, and immunohistochemistry was utilized to display the abundant protein expression in the mouse embryo and the adult mouse brain. Both proteins are expressed in excitatory and inhibitory neurons, but not in astrocytes.Mfsd5 and Mfsd11 are both affected by altered energy homeostasis, suggesting plausible involvement in the energy regulation. Moreover, the first histological mapping of MFSD5 and MFSD11 shows ubiquitous expression in the periphery and the central nervous system of mice, where the proteins are expressed in excitatory and inhibitory mouse brain neurons.

  9. The in vivo disposition and in vitro transmembrane transport of two model radiometabolites of DOTA-conjugated receptor-specific peptides labelled with (177) Lu.

    Science.gov (United States)

    Volková, Marie; Mandíková, Jana; Bárta, Pavel; Navrátilová, Lucie; Lázníčková, Alice; Trejtnar, František

    2015-01-01

    In vivo metabolism of the radiolabelled receptor-specific peptides has been described; however, information regarding the pharmacokinetic behaviour of the degradation products within the body is very scarce. The present study was designed to obtain new knowledge on the disposition and elimination of low-molecular radiometabolites of receptor-specific peptides in the organism and to reveal the potential involvement of selected membrane transport mechanisms in the cellular uptake of radiometabolites, especially in the kidney. The study compared pharmacokinetics of two radiometabolites: a final metabolite of somatostatin analogues, (177)Lu-DOTA-DPhe, and a tripeptide metabolite of (177)Lu-DOTA-minigastrin 11, (177)Lu-DOTA-DGlu-Ala-Tyr. Their pharmacokinetics was compared with that of respective parent (177)Lu-radiopeptide. Both radiometabolites exhibited relative rapid clearing from most body tissues in rats in vivo along with predominant renal excretion. The long-term renal retention of the smaller radiometabolite (177)Lu-DOTA-DPhe was lower than that of (177)Lu-DOTA-DGlu-Ala-Tyr. An uptake of (177)Lu-DOTA-DPhe by human renal influx transporter organic cation transporter 2 was found in vitro in a cellular model. The study brings the first experimental data on the in vivo pharmacokinetics of radiometabolites of receptor-specific somatostatin and gastrin analogues. The found results may indicate a negative correlation between the degree of decomposition of the parent peptide chain and the renal retention of the metabolite. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Evidence of independent action of neurohypophyseal peptides on osmotic water flow and active sodium transport in the same target organ: studies on RANA esculenta skin and bladder (1961)

    International Nuclear Information System (INIS)

    Bourguet, J.; Maetz, J.

    1961-01-01

    Neurohypophyseal peptides produce on the skin and bladder of certain amphibia simultaneous increases of the passive osmotic permeability to water and active transport of sodium. The present work shows that oxytocin and two of its analogues arginine-8-oxytocin (arginine vasotocin) and lysine-8-oxytocin (lysine vasotocin) may produce the same increase of water permeability, while stimulating in quite different ways the sodium transport. This is the case for both skin and bladder. In other words, there is no correlation between natriferic and hydro-osmotic activities. The results are interpreted as evidence that neurohypophyseal hormones act on not one, as previously assumed, but two targets, inside the same epithelial cell. (author) [fr

  11. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.

    Science.gov (United States)

    Molino, Yves; David, Marion; Varini, Karine; Jabès, Françoise; Gaudin, Nicolas; Fortoul, Aude; Bakloul, Karima; Masse, Maxime; Bernard, Anne; Drobecq, Lucile; Lécorché, Pascaline; Temsamani, Jamal; Jacquot, Guillaume; Khrestchatisky, Michel

    2017-05-01

    The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals ( ldlr -/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. © FASEB.

  12. [Transduction peptides, the useful face of a new signaling mechanism].

    Science.gov (United States)

    Joliot, Alain; Prochiantz, Alain

    2005-03-01

    Transduction peptides that cross the plasma membrane of live cells are commonly used for the in vitro and in vivo targeting of hydrophilic drugs into the cell interior. Although this family of peptides has recently increased and will probably continue to do so, the two mainly used peptides are derived from transcription factors. Indeed, TAT is a 12 amino acid long arginine-rich peptide present in the HIV transcription factor, and penetratin - or its variants - corresponds to 16 amino acids that define the highly conserved third helix of the DNA-binding domain (homeodomain) of homeoprotein transcription factors. In this review, we shall recall the different steps that have led to the discovery of transduction peptides and present the most likely hypotheses concerning the mechanisms involved in their internalization. At the risk of being incomplete or, even, biased, we shall concentrate on penetratins and TAT. The reason is that these peptides have been studied for over ten years leading to the edification of robust knowledge regarding their properties. This attitude will not preclude comparisons with other peptides, if necessary. Our goal is to describe the mode of action of these transduction peptides, their range of activity in term of cell types that accept them and cargoes that they can transport, and, also, some of the limitations that one can encounter in their use. Finally, based on the idea that peptide transduction is the technological face of a physiological property of some transcription factors, we shall discuss the putative physiological function of homeoprotein transduction, and, as a consequence, the possibility to use these factors as therapeutic proteins.

  13. Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor.

    Science.gov (United States)

    Cen, Xu-Feng; Wang, Jing-Zhi; Zhao, Guo-Ping; Wang, Ying; Wang, Jin

    2016-03-18

    In the agl3EFGXYZ operon (SCO7167-SCO7162, abbreviated as agl3 operon) of Streptomyces coelicolor M145, agl3EFG genes encode a putative ABC-type carbohydrate transporter. The transcription of this operon has been proved to be repressed by Agl3R (SCO7168), a neighboring GntR-family regulator, and this repression can be released by growth on poor carbon sources. Here in this study, we prove that the transcription of agl3 operon is also directly repressed by GlnR, a central regulator governing the nitrogen metabolism in S. coelicolor. The electrophoretic mobility shift assay (EMSA) employing the agl3 promoter and mixtures of purified recombinant GlnR and Agl3R indicates that GlnR and Agl3R bind to different DNA sequences within the promoter region of agl3 operon, which is further confirmed by the DNase I footprinting assay. As Agl3R and GlnR have been demonstrated to sense the extracellular carbon and nitrogen supplies, respectively, it is hypothesized that the transcription of agl3 operon is stringently governed by the availabilities of extracellular carbon and nitrogen sources. Consistent with the hypothesis, the agl3 operon is further found to be derepressed only under the condition of poor carbon and rich nitrogen supplies, when both regulators are inactivated. It is believed that activation of the expression of agl3 operon may facilitate the absorption of extracellular carbohydrates to balance the ratio of intracellular carbon to nitrogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... and introns of the likely human orthologue (termed hPHT2). Northern analyses with EST clones indicated that hPHT1 is primarily expressed in skeletal muscle and spleen, whereas hPHT2 is found in spleen, placenta, lung, leukocytes, and heart. These results suggest considerable complexity of the human POT gene...

  15. Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Elodie Gaulin

    Full Text Available Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids.

  16. Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nanoparticle Plasmonic Spectroscopy

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2013-01-01

    Nanomaterials possess unusually high surface area-to-volume ratios, and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameters) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs−2ζ), and more negatively charged NPs (Ag-CALNNE NPs−4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral and negative charges on the surface of the NPs at pH 4–10. We have studied their charge-dependent transport into early-developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs–4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs

  17. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  18. The mRNA expression of amino acid and sugar transporters, aminopeptidase, as well as the di- and tri-peptide transporter PepT1 in the intestines of Eimeria infected broiler chickens.

    Science.gov (United States)

    Miska, K B; Fetterer, R H

    2017-02-01

    Coccidiosis in chickens is caused by infection of gut epithelial cells with protozoan parasites of the genus Eimeria This disease causes losses to the poultry industry since infected birds fail to gain weight as rapidly as non-infected birds and efficiency of feed conversion is compromised. For the present study the effect of Eimeria on expression of components of amino acid and sugar uptake mechanisms was determined. Broiler chicks were infected with Eimeria maxima, which infects the jejunum; Eimeria acervulina, which infects the duodenum; or Eimeria tenella, which infects the ceca. Sections of the jejunum, duodenum, and ceca (depending on species of Eimeria) were taken at several time points between d zero and 14 post infection (PI) for mRNA expression analysis. Genes examined included one digestive enzyme, 7 peptide and amino acid transporters located on the brush border, 8 transporters located at the basolateral surface of the gut epithelium, and 5 sugar transporters. All 3 Eimeria species examined caused decrease in expression of brush border transporters particularly at d 5 to 7 PI, which corresponds to the time when pathology is greatest. The same pattern was seen in expression of sugar transporters. However, the expression of basolateral transporters differed among species. Eimeria tenella infection resulted in decreased expression of all basolateral transporters, while E. maxima infection caused increased expression of 2 genes and slight decrease in expression of the remaining 5 genes. Infection with E. acervulina resulted in increased expression at the height of infection of all but one basolateral transporter. In conclusion, Eimeria infection causes a general decrease in gene expression of sugar transporter and brush border AATs at the height of infection. However the expression of basolateral transporters is increased in E. maxima and E. acervulina infected birds. It is possible that decreased expression of brush border transporters in combination with

  19. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased...... the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS...... was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  20. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  1. Evidence that the rabbit proton-peptide co-transporter PepT1 is a multimer when expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Panitsas, Konstantinos-E; Boyd, C A R; Meredith, David

    2006-04-01

    To test whether the rabbit proton-coupled peptide transporter PepT1 is a multimer, we have employed a combination of transport assays, luminometry and site-directed mutagenesis. A functional epitope-tagged PepT1 construct (PepT1-FLAG) was co-expressed in Xenopus laevis oocytes with a non-functional but normally trafficked mutant form of the same transporter (W294F-PepT1). The amount of PepT1-FLAG cRNA injected into the oocytes was kept constant, while the amount of W294F-PepT1 cRNA was increased over the mole fraction range of 0 to 1. The uptake of [(3)H]-D: -Phe-L: -Gln into the oocytes was measured at pH(out) 5.5, and the surface expression of PepT1-FLAG was quantified by luminometry. As the mole fraction of injected W294F-PepT1 increased, the uptake of D: -Phe-L: -Gln decreased. This occurred despite the surface expression of PepT1-FLAG remaining constant, and so we can conclude that PepT1 must be a multimer. Assuming that PepT1 acts as a homomultimer, the best fit for the modelling suggests that PepT1 could be a tetramer, with a minimum requirement of two functional subunits in each protein complex. Western blotting also showed the presence of higher-order complexes of PepT1-FLAG in oocyte membranes. It should be noted that we cannot formally exclude the possibility that PepT1 interacts with unidentified Xenopus protein(s). The finding that PepT1 is a multimer has important implications for the molecular modelling of this protein.

  2. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  3. Circulating levels of vasoactive peptides in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Strauss, Gitte Irene; Tofteng, Flemming

    2009-01-01

    PURPOSE: The underlying mechanisms for cerebral blood flow (CBF) abnormalities in acute bacterial meningitis (ABM) are largely unknown. Putative mediators include vasoactive peptides, e.g. calcitonin-gene related peptide (CGRP), vasoactive intestinal peptide (VIP), and endothelin-1 (ET-1), all...

  4. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  5. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  6. The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate

    NARCIS (Netherlands)

    Bargeman, Gerrald; Koops, G.H.; Houwing, J.; Breebaart, I.; van der Horst, H.C.; Wessling, Matthias

    2002-01-01

    The ability to produce functional food ingredients from natural sources becomes increasingly attractive to the food industry. Antimicrobial (bioactive) ingredients, like peptides and proteins, can be isolated from hydrolysates with membrane filtration and/or chromatography. Electro-membrane

  7. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  8. Evidence of independent action of neurohypophyseal peptides on osmotic water flow and active sodium transport in the same target organ: studies on RANA esculenta skin and bladder (1961); Arguments en faveur de l'independance des mecanismes d'action de divers peptides neurohypophysaires sur le flux osmotique d'eau et sur le transport actif de sodium au sein d'un meme recepteur: etudes sur la vessie et la peau de RANA esculanta L (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Bourguet, J; Maetz, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Neurohypophyseal peptides produce on the skin and bladder of certain amphibia simultaneous increases of the passive osmotic permeability to water and active transport of sodium. The present work shows that oxytocin and two of its analogues arginine-8-oxytocin (arginine vasotocin) and lysine-8-oxytocin (lysine vasotocin) may produce the same increase of water permeability, while stimulating in quite different ways the sodium transport. This is the case for both skin and bladder. In other words, there is no correlation between natriferic and hydro-osmotic activities. The results are interpreted as evidence that neurohypophyseal hormones act on not one, as previously assumed, but two targets, inside the same epithelial cell. (author) [French] Les peptides neurohypophysaires produisent simultanement une augmentation de la permeabilite osmotique passive a l'eau, et une stimulation du transport actif de sodium sur la peau et sur la vessie de certains amphibiens. Ce travail montre que l'ocytocine et deux de ses analogues, l'arginine 8-ocytocine (arginine vasotocine) et la lysine-8-ocytocine (lysine vasotocine ) entrainent un accroissement identique de la permeabilite a l'eau, mais stimulent de facon differente le transport de sodium. Ceci est vrai aussi bien pour la peau que pour la vessie. Autrement dit, il n'existe pas de correlation entre les activites natriferique et hydrosmotique. Les resultats suggerent que les hormones neurohypophysaires agissent non sur une seule cible comme on l'avait cru, mais sur deux cibles se trouvant dans la meme cellule. (auteur)

  9. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  10. The effect of Eimeria maxima infection on the expression of amino acid and sugar transporters aminopeptidase, as well as the di- and tri-peptide transporter PepT1, is not solely due to decreased feed intake.

    Science.gov (United States)

    Miska, Katarzyna B; Fetterer, Raymond H

    2018-05-01

    Coccidiosis caused by Eimeria in poultry is endemic to poultry operations and results in decreased feed intake, diarrhea, and decreased weight gain. The goal was to determine the effect of Eimeria maxima infection on the expression of genes that encode peptide and amino acid transporters (AATs), and also to determine whether decreased feed intake contributes to the change in gene expression by including a pair-fed group of broilers. Three groups of male Ross broilers: 1) not infected, 2) infected, and 3) not infected pair-fed groups were used. Chicks were infected with 1,000 oocysts of E. maxima at 21 d of age. Feed consumption was obtained daily, and at d 0, 3, 5, 7, 10, and 14 post-infection (PI), 6 birds were euthanized, and a portion of the jejunum was removed for qRT-PCR. Infected birds had significantly decreased feed consumption between d 6 to 9 PI. At d 7 PI infected birds had a 45% reduction in weight gain, and pair-fed birds had a 32% reduction in weight gain. The feed conversion ratio at d 7 PI of infected birds was 2.2 while that of pair-fed birds was 1.7, compared to 1.5 in uninfected birds. Growth parameters were more affected in infected birds than in pair-fed birds. By measuring expression levels of nutrient uptake and processing genes via qRT-PCR, it was determined that genes encoding proteins located at the brush border of the gut epithelium were affected by infection as well as change in feed intake. The expression of AATs B°AT, b°,+AT, EAAT3, and PepT1 in infected birds decreased sharply at the height of infection; however, in birds that were pair fed, an increase in expression of b°,+AT, and PepT1 was observed, and little change was seen in expression of B°AT and EAAT3. In summary, the changes in expression of digestive enzymes and nutrient transporters are distinct between coccidia-infected birds compared to healthy pair-fed birds.

  11. Investigation of the substrate specificity of the proton coupled peptide transporter PepTSo from Shewanella oneidensis

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Aduri, Nanda Gowtham; Hald, Helle

    2015-01-01

    a strikingly high sequence identity, can be used to rationalize its mechanism and substrate preference. However, very little is known about the substrate specificity of PepTSo. To elaborate on this, the natural peptide specificity of PepTSo was investigated. Di and tri-peptides were found to be substrates...... for PepTSo in contrast to mono- and tetrapeptides as was indicated by previous competition studies. Interestingly, a negatively charged side chain was better accommodated on the dipeptide N- than the C-terminus position. Inversely, a positive charged side chain appeared to be tolerated better...

  12. Structural properties of a peptide derived from H+-V-ATPase subunit a

    NARCIS (Netherlands)

    Vermeer, L.S.; Reat, V.; Hemminga, M.A.; Milon, A.

    2009-01-01

    The 3D structure of a peptide derived from the putative transmembrane segment 7 (TM7) of subunit a from H+-V-ATPase from Saccharomyces cerevisiae has been determined by solution state NMR in SDS. A stable helix is formed from L736 up to and including Q745, the lumenal half of the putative TM7. The

  13. Detection of serum antibodies cross-reacting with Mycobacterium avium subspecies paratuberculosis and beta-cell antigen zinc transporter 8 homologous peptides in patients with high-risk proliferative diabetic retinopathy.

    Science.gov (United States)

    Pinna, Antonio; Masala, Speranza; Blasetti, Francesco; Maiore, Irene; Cossu, Davide; Paccagnini, Daniela; Mameli, Giuseppe; Sechi, Leonardo A

    2014-01-01

    MAP3865c, a Mycobacterium avium subspecies paratuberculosis (MAP) cell membrane protein, has a relevant sequence homology with zinc transporter 8 (ZnT8), a beta-cell membrane protein involved in Zn++ transportation. Recently, antibodies recognizing MAP3865c epitopes have been shown to cross-react with ZnT8 in type 1 diabetes patients. The purpose of this study was to detect antibodies against MAP3865c peptides in patients with high-risk proliferative diabetic retinopathy and speculate on whether they may somehow be involved in the pathogenesis of this severe retinal disorder. Blood samples were obtained from 62 type 1 and 80 type 2 diabetes patients with high-risk proliferative diabetic retinopathy and 81 healthy controls. Antibodies against 6 highly immunogenic MAP3865c peptides were detected by indirect ELISA. Type 1 diabetes patients had significantly higher rates of positive antibodies than controls. Conversely, no statistically significant differences were found between type 2 diabetes patients and controls. After categorization of type 1 diabetes patients into two groups, one with positive, the other with negative antibodies, we found that they had similar mean visual acuity (∼ 0.6) and identical rates of vitreous hemorrhage (28.6%). Conversely, Hashimoto's thyroiditis prevalence was 4/13 (30.7%) in the positive antibody group and 1/49 (2%) in the negative antibody group, a statistically significant difference (P = 0.016). This study confirmed that type 1 diabetes patients have significantly higher rates of positive antibodies against MAP/ZnT8 peptides, but failed to find a correlation between the presence of these antibodies and the severity degree of high-risk proliferative diabetic retinopathy. The significantly higher prevalence of Hashimoto's disease among type 1 diabetes patients with positive antibodies might suggest a possible common environmental trigger for these conditions.

  14. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  15. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgä rde, Noomi; Svedhem, Sofia; Nordé n, Bengt

    2014-01-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  16. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  17. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    Science.gov (United States)

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  19. Molecular evolution of a novel family of putative calcium transporters.

    Directory of Open Access Journals (Sweden)

    Didier Demaegd

    Full Text Available The UPF0016 family is a group of uncharacterized membrane proteins, well conserved through evolution and defined by the presence of one or two copies of an E-Φ-G-D-(KR-(ST consensus motif. Our previous results have shown that two members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and might form a new group of cation/Ca2+ exchangers. Most members of the family are made of two homologous clusters of three transmembrane spans, separated by a central loop and assembled with an opposite orientation in the membrane. However, some bacterial members of the family have only one cluster of transmembrane domains. Among these 'single-domain membrane proteins' some cyanobacterial members were found as pairs of adjacent genes within the genome, but each gene was slightly different. We performed a bioinformatic analysis to propose the molecular evolution of the UPF0016 family and the emergence of the antiparallel topology. Our hypotheses were confirmed experimentally using functional complementation in yeast. This suggests an important and conserved function for UPF0016 proteins in a fundamental cellular process. We also show that members of the UPF0016 family share striking similarities, but no primary sequence homology, with members of the cation/Ca2+ exchangers (CaCA superfamily. Such similarities could be an example of convergent evolution, supporting the previous hypothesis that members of the UPF0016 family are cation/Ca2+ exchangers.

  20. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  1. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    International Nuclear Information System (INIS)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-01-01

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized [ 3 H]albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized [ 3 H]albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling [ 3 H]beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The [ 3 H]beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier

  2. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-11-05

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized (/sup 3/H)albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized (/sup 3/H)albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling (/sup 3/H)beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The (/sup 3/H)beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier.

  3. Identification and characterization of putative conserved IAM ...

    African Journals Online (AJOL)

    Available putative AMI sequences from a wide array of monocot and dicot plants were identified and the phylogenetic tree was constructed and analyzed. We identified in this tree, a clade that contained sequences from species across the plant kingdom suggesting that AMI is conserved and may have a primary role in plant ...

  4. Toddlers' Duration of Attention toward Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  5. Escherichia coli Peptide Binding Protein OppA Has a Preference for Positively Charged Peptides

    NARCIS (Netherlands)

    Klepsch, M. M.; Kovermann, M.; Löw, C.; Balbach, J.; Permentier, H. P.; Fusetti, F.; de Gier, J. W.; Gier, Jan-Willem de; Slotboom, D. J.; Berntsson, R. P. -A.

    2011-01-01

    The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity.

  6. A novel affinity purification method to isolate peptide specific antibodies

    DEFF Research Database (Denmark)

    Karlsen, Alan E; Lernmark, A; Kofod, Hans

    1990-01-01

    Site-specific, high affinity polyclonal antisera are effectively and successfully produced by immunizing rabbits with synthetic peptides. The use of these antisera in subsequent immune analysis is often limited because of non-specific binding. We describe a new and simple method to effectively...... affinity-purify anti-peptide antibodies. To test our system, rabbits were immunized with model peptides representing sequences of the putative rabbit growth hormone receptor and several HLA-DQ beta-chain molecules. Polystyrene plastic beads were coated with peptides. Immune serum was incubated...... with the beads and after a wash step the bound antibodies were eluted in 1 M acetic acid. The eluted material was composed predominantly of intact immunoglobulin as evidenced by the presence of heavy and light chain bands in SDS-PAGE. The eluted antibodies were peptide specific in ELISA and bound only to intact...

  7. Liposome Model Systems to Study the Endosomal Escape of Cell-Penetrating Peptides: Transport across Phospholipid Membranes Induced by a Proton Gradient

    Directory of Open Access Journals (Sweden)

    Fatemeh Madani

    2011-01-01

    Full Text Available Detergent-mediated reconstitution of bacteriorhodopsin (BR into large unilamellar vesicles (LUVs was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.

  8. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253 Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro.

    Directory of Open Access Journals (Sweden)

    Anouar Hafiane

    Full Text Available Apolipoprotein (apo mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253 that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These

  9. Ten Putative Contributors to the Obesity Epidemic

    Science.gov (United States)

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  10. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    Science.gov (United States)

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource.

  11. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  12. Putative neuroprotective agents in neuropsychiatric disorders.

    Science.gov (United States)

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The Putative Role of the Non-Gastric H+/K+-ATPase ATP12A (ATP1AL1 as Anti-Apoptotic Ion Transporter: Effect of the H+/K+ ATPase Inhibitor SCH28080 on Butyrate-Stimulated Myelomonocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2014-10-01

    Full Text Available Background/Aims: The ATP12A gene codes for a non-gastric H+/K+ ATPase, which is expressed in a wide variety of tissues. The aim of this study was to test for the molecular and functional expression of the non-gastric H+/K+ ATPase ATP12A/ATP1AL1 in unstimulated and butyrate-stimulated (1 and 10 mM human myelomonocytic HL-60 cells, to unravel its potential role as putative apoptosis-counteracting ion transporter as well as to test for the effect of the H+/K+ ATPase inhibitor SCH28080 in apoptosis. Methods: Real-time reverse-transcription PCR (qRT-PCR was used for amplification and cloning of ATP12A transcripts and to assess transcriptional regulation. BCECF microfluorimetry was used to assess changes of intracellular pH (pHi after acute intracellular acid load (NH4Cl prepulsing. Mean cell volumes (MCV and MCV-recovery after osmotic cell shrinkage (Regulatory Volume Increase, RVI were assessed by Coulter counting. Flow-cytometry was used to measure MCV (Coulter principle, to assess apoptosis (phosphatidylserine exposure to the outer leaflet of the cell membrane, caspase activity, 7AAD staining and differentiation (CD86 expression. Results: We found by RT-PCR, intracellular pH measurements, MCV measurements and flow cytometry that ATP12A is expressed in human myelomonocytic HL-60 cells. Treatment of HL-60 cells with 1 mM butyrate leads to monocyte-directed differentiation whereas higher concentrations (10 mM induce apoptosis as assessed by flow-cytometric determination of CD86 expression, caspase activity, phosphatidylserine exposure on the outer leaflet of the cell membrane and MCV measurements. Transcriptional up-regulation of ATP12A and CD86 is evident in 1 mM butyrate-treated HL-60 cells. The H+/K+ ATPase inhibitor SCH28080 (100 µM diminishes K+-dependent pHi recovery after intracellular acid load and blocks RVI after osmotic cell shrinkage. After seeding, HL-60 cells increase their MCV within the first 24 h in culture, and subsequently

  14. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  15. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  16. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  19. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  1. Salivary PYY: a putative bypass to satiety.

    Directory of Open Access Journals (Sweden)

    Andres Acosta

    Full Text Available Peptide YY(3-36 is a satiation hormone released postprandially into the bloodstream from L-endocrine cells in the gut epithelia. In the current report, we demonstrate PYY(3-36 is also present in murine as well as in human saliva. In mice, salivary PYY(3-36 derives from plasma and is also synthesized in the taste cells in taste buds of the tongue. Moreover, the cognate receptor Y2R is abundantly expressed in the basal layer of the progenitor cells of the tongue epithelia and von Ebner's gland. The acute augmentation of salivary PYY(3-36 induced stronger satiation as demonstrated in feeding behavioral studies. The effect is mediated through the activation of the specific Y2 receptor expressed in the lingual epithelial cells. In a long-term study involving diet-induced obese (DIO mice, a sustained increase in PYY(3-36 was achieved using viral vector-mediated gene delivery targeting salivary glands. The chronic increase in salivary PYY(3-36 resulted in a significant long-term reduction in food intake (FI and body weight (BW. Thus this study provides evidence for new functions of the previously characterized gut peptide PYY(3-36 suggesting a potential simple and efficient alternative therapeutic approach for the treatment of obesity.

  2. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    M and 50 μM, respectively, and 60% at a concentration of 2.5 μM. While peptides 264-291 and 297-315, individually failed to inhibit viral infection, when combined, they showed 67% inhibition of HCMV infection at a concentration of 0.125 μM each. Conclusions Peptides designed to target putative fusogenic domains of gB provide a basis for the development of novel therapeutics that prevent HCMV infection.

  3. Separation of Peptides with Forward Osmosis Biomimetic Membranes

    DEFF Research Database (Denmark)

    Bajraktari, Niada; Madsen, Henrik T; Gruber, Mathias Felix

    2016-01-01

    such as pharmaceuticals. It is crucial in such settings to control the transport over the membrane to avoid losses of valuable compounds, but little is known about the rejection and transport mechanisms of larger biomolecules with often flexible conformations. In this study, transport of two chemically similar peptides...

  4. Analysis of Hydraulic Flood Control Structure at Putat Boro River

    OpenAIRE

    Ruzziyatno, Ruhban

    2015-01-01

    Putat Boro River is one of the main drainage systems of Surakarta city which drains into Bengawan Solo river. The primary problem when flood occur is the higher water level of Bengawan Solo than Boro River and then backwater occur and inundates Putat Boro River. The objective of the study is to obtain operational method of Putat Boro River floodgate to control both inflows and outflows not only during flood but also normal condition. It also aims to know the Putat Boro rivers floodgate op...

  5. Endogenous peptide profile for elucidating biosynthetic processing of the ghrelin precursor.

    Science.gov (United States)

    Tsuchiya, Takashi; Iwakura, Hiroshi; Minamino, Naoto; Kangawa, Kenji; Sasaki, Kazuki

    2017-09-02

    Ghrelin is an orexigenic peptide primarily produced by gastric endocrine cells. The biosynthetic cleavage site of ghrelin has been well documented, but how its downstream region undergoes proteolytic processing remains poorly explored. Here, we provide the first snapshot of endogenous peptides from the ghrelin precursor by profiling the secretopeptidome of cultured mouse ghrelin-producing cells during exocytosis. Mapping of MS/MS sequenced peptides to the precursor highlighted three atypical monobasic processing sites, including the established C-terminus of ghrelin and the N-terminal cleavage site for obestatin, a putative 23-amino-acid C-terminally amidated peptide. However, we found that mouse obestatin does not occur in the form originally reported, but that a different amidation site is used to generate a shorter peptide. These data can be extended to study and characterize the precursor-derived peptides located downstream of ghrelin in different biological contexts. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    Science.gov (United States)

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  7. Toddlers’ Duration of Attention towards Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2010-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk for developing anxious behavior, toddlers’ attention towards a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined how attention towards an angry-looking gorilla mask in a room with alternative opportunities for play in 24-month-old toddlers predicted social inhibition when children entered kindergarten. Analyses examined attention to threat above and beyond and in interaction with both proximity to the mask and fear of novelty observed in other situations. Attention to threat interacted with proximity to the mask to predict social inhibition, such that attention to threat most strongly predicted social inhibition when toddlers stayed furthest from the mask. This relation occurred above and beyond the predictive relation between fear of novelty and social inhibition. Results are discussed within the broader literature of anxiety development and attentional processes in young children. PMID:21373365

  8. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  9. CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus, compared with those of soybean, common bean and Arabidopsis

    DEFF Research Database (Denmark)

    Hastwell, April H; de Bang, Thomas Christian; Gresshoff, Peter M

    2017-01-01

    these complete CLE peptide-encoding gene families with those of fellow legumes, Glycine max and Phaseolus vulgaris, in addition to the model plant Arabidopsis thaliana. This approach provided insight into the evolution of CLE peptide families and enabled us to establish putative M. truncatula and L. japonicus...

  10. Twenty putative palmitoyl-acyl transferase genes with distinct ...

    African Journals Online (AJOL)

    There are 20 genes containing DHHC domain predicted to encode putative palmitoyltransferase in Arabidopsis thaliana genome. However, little is known about their characteristics such as genetic relationship and expression profile. Here, we present an overview of the putative PAT genes in A. thaliana focusing on their ...

  11. Guanylin peptides: cyclic GMP signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Forte L.R.

    1999-01-01

    Full Text Available Guanylate cyclases (GC serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin, two disulfides (guanylin and uroguanylin and three disulfides (E. coli stable toxin, ST. The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.

  12. Putative radioresistant bacterial isolate from sewage water

    International Nuclear Information System (INIS)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Rivor Kristel; San Pablo, Czarina; Santos, Ernestine

    2001-01-01

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the 60 Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10 3 CFU/ml, and 1.30 x 10 3 CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10 3 CFU/ml was observed which is even higher compared to the control (1.02 x 10 3 CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  13. Putative radioresistant bacterial isolate from sewage water

    Energy Technology Data Exchange (ETDEWEB)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Kristel, Rivor; San Pablo, Czarina; Santos, Ernestine

    2001-01-29

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the {sup 60}Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10{sup 3} CFU/ml, and 1.30 x 10{sup 3} CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10{sup 3} CFU/ml was observed which is even higher compared to the control (1.02 x 10{sup 3} CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  14. Peptides in melanoma therapy.

    Science.gov (United States)

    Mocellin, Simone

    2012-01-01

    Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.

  15. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  16. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  17. Jumping Hurdles: Peptides Able To Overcome Biological Barriers.

    Science.gov (United States)

    Sánchez-Navarro, Macarena; Teixidó, Meritxell; Giralt, Ernest

    2017-08-15

    The cell membrane, the gastrointestinal tract, and the blood-brain barrier (BBB) are good examples of biological barriers that define and protect cells and organs. They impose different levels of restriction, but they also share common features. For instance, they all display a high lipophilic character. For this reason, hydrophilic compounds, like peptides, proteins, or nucleic acids have long been considered as unable to bypass them. However, the discovery of cell-penetrating peptides (CPPs) opened a vast field of research. Nowadays, CPPs, homing peptides, and blood-brain barrier peptide shuttles (BBB-shuttles) are good examples of peptides able to target and to cross various biological barriers. CPPs are a group of peptides able to interact with the plasma membrane and enter the cell. They display some common characteristics like positively charged residues, mainly arginines, and amphipathicity. In this field, our group has been focused on the development of proline rich CPPs and in the analysis of the importance of secondary amphipathicity in the internalization process. Proline has a privileged structure being the only amino acid with a secondary amine and a cyclic side chain. These features constrain its structure and hamper the formation of H-bonds. Taking advantage of this privileged structure, three different families of proline-rich peptides have been developed, namely, a proline-rich dendrimer, the sweet arrow peptide (SAP), and a group of foldamers based on γ-peptides. The structure and the mechanism of internalization of all of them has been evaluated and analyzed. BBB-shuttles are peptides able to cross the BBB and to carry with them compounds that cannot reach the brain parenchyma unaided. These peptides take advantage of the natural transport mechanisms present at the BBB, which are divided in active and passive transport mechanisms. On the one hand, we have developed BBB-shuttles that cross the BBB by a passive transport mechanism, like

  18. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  19. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  20. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  1. Five putative nucleoside triphosphate diphosphohydrolase genes are expressed in Trichomonas vaginalis.

    Science.gov (United States)

    Frasson, Amanda Piccoli; Dos Santos, Odelta; Meirelles, Lúcia Collares; Macedo, Alexandre José; Tasca, Tiana

    2016-01-01

    Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Lipid raft-like liposomes used for targeted delivery of a chimeric entry-inhibitor peptide with anti-HIV-1 activity.

    Science.gov (United States)

    Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel

    2017-02-01

    The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The VPAC2 agonist peptide histidine isoleucine (PHI) up-regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1G93A) by inhibiting caspase-3 mediated inactivation of GLT-1a.

    Science.gov (United States)

    Goursaud, Stéphanie; Focant, Marylène C; Berger, Julie V; Nizet, Yannick; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2011-10-01

    Degeneration of corpus callosum appears in patients with amyotrophic lateral sclerosis (ALS) before clinical signs of upper motor neuron death. Considering the ALS-associated impairment of astrocytic glutamate uptake, we have characterized the expression and activity of the glutamate transporter isoforms GLT-1a and GLT-1b in the corpus callosum of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A)). We have also studied the effect of peptide histidine isoleucine (PHI), a vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 2 (VPAC(2)) agonist on glutamate transporters both in vivo and in callosal astrocytes. Before the onset of motor symptoms, the expression of both transporter isoforms was correlated with a constitutive activity of caspase-3. This enzyme participates in the down-regulation of GLT-1 in ALS, and here we demonstrated its involvement in the selective degradation of GLT-1a in the white matter. A single stereotactic injection of PHI into the corpus callosum of symptomatic rats decreased caspase-3 activity and promoted GLT-1a expression and uptake activity. Together, with evidence for a reduced expression of prepro-VIP/PHI mRNA in the corpus callosum of transgenic animals, these data shed light on the modulatory role of the VIP/PHI system on the glutamatergic transmission in ALS.

  4. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  5. The use of chimeric vimentin citrullinated peptides for the diagnosis of rheumatoid arthritis.

    Science.gov (United States)

    Malakoutikhah, Morteza; Gómara, María J; Gómez-Puerta, José A; Sanmartí, Raimon; Haro, Isabel

    2011-11-10

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and, in many cases, destruction of the joints. To prevent progressive and irreversible structural damage, early diagnosis of RA is of paramount importance. The present study addresses the search of new RA citrullinated antigens that could supplement or complement diagnostic/prognostic existing tests. With this aim, the epitope anticitrullinated vimentin antibody response was mapped using synthetic peptides. To improve the sensitivity/specificity balance, a vimentin peptide that was selected, and its cyclic analogue, were combined with fibrin- and filaggrin-related peptides to render chimeric peptides. Our findings highlight the putative application of these chimeric peptides for the design of RA diagnosis systems and imply that more than one serological test is required to classify RA patients based on the presence or absence of ACPAs. Each of the target molecules reported here (fibrin, vimentin, filaggrin) has a specific utility in the identification of a particular subset of RA patients.

  6. [Detection of putative polysaccharide biosynthesis genes in Azospirillum brasilense strains from serogroups I and II].

    Science.gov (United States)

    Petrova, L P; Prilipov, A G; Katsy, E I

    2017-01-01

    It is known that in Azospirillum brasilense strains Sp245 and SR75 included in serogroup I, the repeat units of their O-polysaccharides consist of five residues of D-rhamnose, and in strain SR15, of four; and the heteropolymeric O-polysaccharide of A. brasilense type strain Sp7 from serogroup II contains not less than five types of repeat units. In the present work, a complex of nondegenerate primers to the genes of A. brasilense Sp245 plasmids AZOBR_p6, AZOBR_p3, and AZOBR_p2, which encode putative enzymes for the biosynthesis of core oligosaccharide and O-polysaccharide of lipopolysaccharide, capsular polysaccharides, and exopolysaccharides, was proposed. By using the designed primers, products of the expected sizes were synthesized in polymerase chain reactions on genomic DNA of A. brasilense Sp245, SR75, SR15, and Sp7 in 36, 29, 23, and 12 cases, respectively. As a result of sequencing of a number of amplicons, a high (86–99%) level of identity of the corresponding putative polysaccharide biosynthesis genes in three A. brasilense strains from serogroup I was detected. In a blotting-hybridization reaction with the biotin-labeled DNA of the A. brasilense gene AZOBR_p60122 coding for putative permease of the ABC transporter of polysaccharides, localization of the homologous gene in ~120-MDa plasmids of the bacteria A. brasilense SR15 and SR75 was revealed.

  7. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  8. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  9. Antimicrobial Peptide-PNA Conjugates Selectively Targeting Bacterial Genes

    Science.gov (United States)

    2013-07-22

    antibacterial therapy. Initial publications suggest that conjugates of cell penetrating peptides and PNA’s can overcome the barrier in transporting ...Zhou, Y., Hou, Z., Meng, J., and Luo, X. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin - resistant ... Staphylococcus aureus by antisense peptide nucleic acid. PLoS One. 2012; 7(1):e29886. 2. Good, L., Sandberg, R., Larsson, O., Nielsen, P.E., and Wahlestedt, C

  10. The leader peptide of mutacin 1140 has distinct structural components compared to related class I lantibiotics.

    Science.gov (United States)

    Escano, Jerome; Stauffer, Byron; Brennan, Jacob; Bullock, Monica; Smith, Leif

    2014-12-01

    Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that promotes the core peptide's interaction with the post translational modification (PTM) enzymes. Following PTMs, mutacin 1140 is transported out of the cell and the leader peptide is cleaved to yield the antibacterial peptide. Mutacin 1140 leader peptide is structurally unique compared to other class I lantibiotic leader peptides. Herein, we further our understanding of the structural differences of mutacin 1140 leader peptide with regard to other class I leader peptides. We have determined that the length of the leader peptide is important for the biosynthesis of mutacin 1140. We have also determined that mutacin 1140 leader peptide contains a novel four amino acid motif compared to related lantibiotics. PTM enzyme recognition of the leader peptide appears to be evolutionarily distinct from related class I lantibiotics. Our study on mutacin 1140 leader peptide provides a basis for future studies aimed at understanding its interaction with the PTM enzymes. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  12. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    Science.gov (United States)

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  13. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  14. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.

    Science.gov (United States)

    Elliott, Tim; Williams, Anthony

    2005-10-01

    Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.

  15. Role of SbmA in the Uptake of Peptide Nucleic Acid (PNA)-Peptide Conjugates in E. coli

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Vitali, Ally; Stach, James E M

    2013-01-01

    Antisense PNA oligomers targeting essential genes (acpP or ftsZ) and conjugated to the delivery peptide L((KFF)(3)K) show complete growth inhibition of wild type E. coli strain (MG1655) with submicromolar MIC. In this study we show that resistant mutants generated against such PNA......-peptide conjugates had disruptions in the region of sbmA, a gene encoding an inner membrane peptide transporter. The wild type sensitivity to the PNA conjugates was re-established in the resistance mutants by complementation with sbmA. Furthermore, deletion of sbmA in E. coli AS19, a strain that is sensitive...

  16. Update of green tea interactions with cardiovascular drugs and putative mechanisms

    Directory of Open Access Journals (Sweden)

    José Pablo Werba

    2018-04-01

    Full Text Available Many patients treated with cardiovascular (CV drugs drink green tea (GT, either as a cultural tradition or persuaded of its putative beneficial effects for health. Yet, GT may affect the pharmacokinetics and pharmacodynamics of CV compounds. Novel GT-CV drug interactions were reported for rosuvastatin, sildenafil and tacrolimus. Putative mechanisms involve inhibitory effects of GT catechins at the intestinal level on influx transporters OATP1A2 or OATP2B1 for rosuvastatin, on CYP3A for sildenafil and on both CYP3A and the efflux transporter p-glycoprotein for tacrolimus. These interactions, which add to those previously described with simvastatin, nadolol and warfarin, might lead, in some cases, to reduced drug efficacy or risk of drug toxicity. Oddly, available data on GT interaction with CV compounds with a narrow therapeutic index, such as warfarin and tacrolimus, derive from single case reports. Conversely, GT interactions with simvastatin, rosuvastatin, nadolol and sildenafil were documented through pharmacokinetic studies. In these, the effect of GT or GT derivatives on drug exposure was mild to moderate, but a high inter-individual variability was observed. Further investigations, including studies on the effect of the dose and the time of GT intake are necessary to understand more in depth the clinical relevance of GT-CV drug interactions. Keywords: Cardiovascular drugs, Green tea, Herb–drug interactions

  17. Increased seroreactivity to proinsulin and homologous mycobacterial peptides in latent autoimmune diabetes in adults.

    Directory of Open Access Journals (Sweden)

    Magdalena Niegowska

    Full Text Available Latent Autoimmune Diabetes in Adults (LADA is a slowly progressing form of immune-mediated diabetes that combines phenotypical features of type 2 diabetes (T2D with the presence of islet cell antigens detected in type 1 diabetes (T1D. Heterogeneous clinical picture have led to the classification of patients based on the levels of antibodies against glutamic acid decarboxylase 65 (GADA that correlate with clinical phenotypes closer to T1D or T2D when GADA titers are high or low, respectively. To date, LADA etiology remains elusive despite numerous studies investigating on genetic predisposition and environmental risk factors. To our knowledge, this is the first study aimed at evaluation of a putative role played by Mycobacterium avium subsp. paratuberculosis (MAP as an infective agent in LADA pathogenesis. MAP is known to cause chronic enteritis in ruminants and has been associated with autoimmune disorders in humans. We analyzed seroreactivity of 223 Sardinian LADA subjects and 182 healthy volunteers against MAP-derived peptides and their human homologs of proinsulin and zinc transporter 8 protein. A significantly elevated positivity for MAP/proinsulin was detected among patients, with the highest prevalence in the 32-41-year-old T1D-like LADA subgroup, supporting our hypothesis of a possible MAP contribution in the development of autoimmunity.

  18. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  20. Machine learning-enabled discovery and design of membrane-active peptides.

    Science.gov (United States)

    Lee, Ernest Y; Wong, Gerard C L; Ferguson, Andrew L

    2017-07-08

    Antimicrobial peptides are a class of membrane-active peptides that form a critical component of innate host immunity and possess a diversity of sequence and structure. Machine learning approaches have been profitably employed to efficiently screen sequence space and guide experiment towards promising candidates with high putative activity. In this mini-review, we provide an introduction to antimicrobial peptides and summarize recent advances in machine learning-enabled antimicrobial peptide discovery and design with a focus on a recent work Lee et al. Proc. Natl. Acad. Sci. USA 2016;113(48):13588-13593. This study reports the development of a support vector machine classifier to aid in the design of membrane active peptides. We use this model to discover membrane activity as a multiplexed function in diverse peptide families and provide interpretable understanding of the physicochemical properties and mechanisms governing membrane activity. Experimental validation of the classifier reveals it to have learned membrane activity as a unifying signature of antimicrobial peptides with diverse modes of action. Some of the discriminating rules by which it performs classification are in line with existing "human learned" understanding, but it also unveils new previously unknown determinants and multidimensional couplings governing membrane activity. Integrating machine learning with targeted experimentation can guide both antimicrobial peptide discovery and design and new understanding of the properties and mechanisms underpinning their modes of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  2. Discovery of putative salivary biomarkers for Sjögren's syndrome using high resolution mass spectrometry and bioinformatics.

    Science.gov (United States)

    Zoukhri, Driss; Rawe, Ian; Singh, Mabi; Brown, Ashley; Kublin, Claire L; Dawson, Kevin; Haddon, William F; White, Earl L; Hanley, Kathleen M; Tusé, Daniel; Malyj, Wasyl; Papas, Athena

    2012-03-01

    The purpose of the current study was to determine if saliva contains biomarkers that can be used as diagnostic tools for Sjögren's syndrome (SjS). Twenty seven SjS patients and 27 age-matched healthy controls were recruited for these studies. Unstimulated glandular saliva was collected from the Wharton's duct using a suction device. Two µl of salvia were processed for mass spectrometry analyses on a prOTOF 2000 matrix-assisted laser desorption/ionization orthogonal time of flight (MALDI O-TOF) mass spectrometer. Raw data were analyzed using bioinformatic tools to identify biomarkers. MALDI O-TOF MS analyses of saliva samples were highly reproducible and the mass spectra generated were very rich in peptides and peptide fragments in the 750-7,500 Da range. Data analysis using bioinformatic tools resulted in several classification models being built and several biomarkers identified. One model based on 7 putative biomarkers yielded a sensitivity of 97.5%, specificity of 97.8% and an accuracy of 97.6%. One biomarker was present only in SjS samples and was identified as a proteolytic peptide originating from human basic salivary proline-rich protein 3 precursor. We conclude that salivary biomarkers detected by high-resolution mass spectrometry coupled with powerful bioinformatic tools offer the potential to serve as diagnostic/prognostic tools for SjS.

  3. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  4. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    of these are currently being used in quantitative structure--activity relationship (QSAR) studies for AMP optimization. Additionally, some key commercial computational tools are discussed, and both successful and less successful studies are referenced, illustrating some of the challenges facing AMP scientists. Through...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  5. Putative golden proportions as predictors of facial esthetics in adolescents.

    NARCIS (Netherlands)

    Kiekens, R.M.A.; Kuijpers-Jagtman, A.M.; Hof, M.A. van 't; Hof, B.E. van 't; Maltha, J.C.

    2008-01-01

    INTRODUCTION: In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. METHODS: Seventy-six adult laypeople

  6. Exploring universal partnerships and putative marriages as tools for ...

    African Journals Online (AJOL)

    Following upon the Supreme Court of Appeal's judgment in Butters v Mncora 2012 4 SA 1 (SCA), which broadened the criteria and consequences of universal partnerships in cohabitation relationships, this article investigates the potential of universal partnerships and putative marriages to allocate rights to share in ...

  7. Putative Lineage of Novel African Usutu Virus, Central Europe

    Centers for Disease Control (CDC) Podcasts

    2015-10-15

    Sarah Gregory reads an abridged version of "Putative Lineage of Novel African Usutu Virus, Central Europe.".  Created: 10/15/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/15/2015.

  8. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, including 57 new ones. These genes were classified into five clans and 20 families by sequence similarities and among ...

  9. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  10. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  11. Alkenenitrile Transmissive Olefination: Synthesis of the Putative Lignan "Morinol I"

    Science.gov (United States)

    Fleming, Fraser F.; Liu, Wang; Yao, Lihua; Pitta, Bhaskar; Purzycki, Matthew; Ravikumar, P. C.

    2012-01-01

    Grignard reagents trigger an addition-elimination with α'-hydroxy acrylonitriles to selectively generate Z-alkenenitriles. The modular assembly of Z-alkenenitriles from a Grignard reagent, acrylonitrile, and an aldehyde is ideal for stereoselectively synthesizing alkenes as illustrated in the synthesis of the putative lignan "morinol I." PMID:22545004

  12. Regulation of transepithelial transport of iron by hepcidin

    Directory of Open Access Journals (Sweden)

    NATALIA P MENA

    2006-01-01

    Full Text Available Hepcidin (Hepc is a 25 amino acid cationic peptide with broad antibacterial and antifungal actions. A likely role for Hepc in iron metabolism was suggested by the observation that mice having disruption of the gene encoding the transcription factor USF2 failed to produce Hepc mRNA and developed spontaneous visceral iron overload. Lately, Hepc has been considered the "stores regulator," a putative factor that signals the iron content of the body to intestinal cells. In this work, we characterized the effect of Hepc produced by hepatoma cells on iron absorption by intestinal cells. To that end, human Hepc cDNA was cloned and overexpressed in HepG2 cells and conditioned media from Hepc-overexpressing cells was used to study the effects of Hepc on intestinal Caco-2 cells grown in bicameral inserts. The results indicate that Hepc released by HepG2 inhibited apical iron uptake by Caco-2 cells, probably by inhibiting the expression of the apical transporter DMT1. These results support a model in which Hepc released by the liver negatively regulates the expression of transporter DMT1 in the enterocyte

  13. Antimicrobial Peptides: An Introduction.

    Science.gov (United States)

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  14. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  15. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions

    Directory of Open Access Journals (Sweden)

    Teerasak E-kobon

    2016-01-01

    Full Text Available Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5 showed in vitro cytotoxicity against the breast cancer cell line (MCF-7 and normal epithelium cell line (Vero. According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  16. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    Science.gov (United States)

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  17. Residual DNA-bound proteins are a source of in vitro transcription inhibitor peptides

    International Nuclear Information System (INIS)

    Venanzi, F.M.

    1989-01-01

    Enzymatic breakdown of residual proteins occurs at mild alkaline pH (pH optimum 8.5) as monitored by using radioiodinated, purified genomic DNA from calf thymus. These DNA fibers also possess a differential ability to hydrolyze added exogenous small and linker histones. The results described argue strongly that a putative protease activity, co-purified with DNA, is the source of short chain peptides which inhibit transcription in vitro. Therefore, we propose that RNA repressor peptides must be of higher molecular weight than previously reported

  18. Identification of sixteen peptides reflecting heat and/or storage induced processes by profiling of commercial milk samples.

    Science.gov (United States)

    Ebner, Jennifer; Baum, Florian; Pischetsrieder, Monika

    2016-09-16

    Peptide profiles of different drinking milk samples were examined to study how the peptide fingerprint of milk reflects processing conditions. The combination of a simple and fast method for peptide extraction using stage tips and MALDI-TOF-MS enabled the fast and easy generation and relative quantification of peptide fingerprints for high-temperature short-time (HTST), extended shelf life (ESL) and ultra-high temperature (UHT) milk of the same dairies. The relative quantity of 16 peptides changed as a function of increasing heat load. Additional heating experiments showed that among those, the intensity of peptide β-casein 196-209 (m/z 1460.9Da) was most heavily influenced by heat treatment indicating a putative marker peptide for milk processing conditions. Storage experiments with HTST- and UHT milk revealed that the differences between different types of milk samples were not only caused by the heating process. Relevant was also the proteolytic activity of enzymes during storage, which were differently influenced by the heat treatment. These results indicate that the peptide profile may be suitable to monitor processing as well as storage conditions of milk. In the present study, peptide profiling of different types of milk was carried out by MALDI-TOF-MS after stage-tip extraction and relative quantification using an internal reference peptide. Although MALDI-TOF-MS covers only part of the peptidome, the method is easy and quick and is, therefore, suited for routine analysis to address several aspects of food authenticity. Using this method, 16 native peptides were detected in milk that could be modulated by different industrial processes. Subsequent heating and storage experiments with pasteurized and UHT milk confirmed that these peptides are indeed related to the production or storage conditions of the respective products. Furthermore, the heating experiments revealed one peptide, namely the β-casein-derived sequence β-casein 196-209, which underwent

  19. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Directory of Open Access Journals (Sweden)

    Elena Baldascino

    2017-12-01

    Full Text Available The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase. Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i potential roles of the various molecules

  20. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression

    Science.gov (United States)

    Baldascino, Elena; Di Cristina, Giulia; Tedesco, Perla; Hobbs, Carl; Shaw, Tanya J.; Ponte, Giovanna; Andrews, Paul L. R.

    2017-01-01

    The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin–related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake

  1. Transport Statistics - Transport - UNECE

    Science.gov (United States)

    Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6

  2. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, Mark D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  3. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  4. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  5. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  6. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  7. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  8. Supplementary data: Variation in the PTEN-induced putative kinase ...

    Indian Academy of Sciences (India)

    Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. Yanchun Qu, Liang Sun, Ze Yang and Ruifa Han. J. Genet. 90, 125–128. Table 1. Clinical characteristics of cases and controls. Phenotype. T2DM. Controls. P value. Age (years). 49.5 ± 11.1. 50.4 ± ...

  9. Separation of Peptides with Forward Osmosis Biomimetic Membranes

    Science.gov (United States)

    Bajraktari, Niada; Madsen, Henrik T.; Gruber, Mathias F.; Truelsen, Sigurd; Jensen, Elzbieta L.; Jensen, Henrik; Hélix-Nielsen, Claus

    2016-01-01

    Forward osmosis (FO) membranes have gained interest in several disciplines for the rejection and concentration of various molecules. One application area for FO membranes that is becoming increasingly popular is the use of the membranes to concentrate or dilute high value compound solutions such as pharmaceuticals. It is crucial in such settings to control the transport over the membrane to avoid losses of valuable compounds, but little is known about the rejection and transport mechanisms of larger biomolecules with often flexible conformations. In this study, transport of two chemically similar peptides with molecular weight (Mw) of 375 and 692 Da across a thin film composite Aquaporin Inside™ Membrane (AIM) FO membrane was investigated. Despite the relative large size, both peptides were able to permeate the dense active layer of the AIM membrane and the transport mechanism was determined to be diffusion-based. Interestingly, the membrane permeability increased 3.65 times for the 692 Da peptide (1.39 × 10−12 m2·s−1) compared to the 375 Da peptide (0.38 × 10−12 m2·s−1). This increase thus occurs for an 85% increase in Mw but only for a 34% increase in peptide radius of gyration (Rg) as determined from molecular dynamics (MD) simulations. This suggests that Rg is a strong influencing factor for membrane permeability. Thus, an increased Rg reflects the larger peptide chains ability to sample a larger conformational space when interacting with the nanostructured active layer increasing the likelihood for permeation. PMID:27854275

  10. Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences.

    Science.gov (United States)

    Christie, Andrew E

    2016-05-01

    The aquaculture of crabs from the genus Scylla is of increasing economic importance for many Southeast Asian countries. Expansion of Scylla farming has led to increased efforts to understand the physiology and behavior of these crabs, and as such, there are growing molecular resources for them. Here, publicly accessible Scylla olivacea transcriptomic data were mined for putative peptide-encoding transcripts; the proteins deduced from the identified sequences were then used to predict the structures of mature peptide hormones. Forty-nine pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 187 distinct mature peptides. The identified peptides included isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide and tachykinin-related peptide, all well-known neuropeptide families. Surprisingly, the tissue used to generate the transcriptome mined here is reported to be testis. Whether or not the testis samples had neural contamination is unknown. However, if the peptides are truly produced by this reproductive organ, it could have far reaching consequences for the study of crustacean endocrinology, particularly in the area of reproductive control. Regardless, this peptidome is the largest thus far predicted for any brachyuran (true crab) species, and will serve as a foundation for future studies of peptidergic control in members of the commercially important genus Scylla. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  12. Isolation and Expression analysis of OsPME1, encoding for a putative Pectin Methyl Esterase from Oryza sativa (subsp. indica)

    OpenAIRE

    Kanneganti, Vydehi; Gupta, Aditya Kumar

    2009-01-01

    Pectin Methyl Esterases (PMEs) play an essential role during plant development by affecting the mechanical properties of the plant cell walls. Recent studies indicated that PMEs play important role in pollen tube development. In this study, we isolated a 1.3 kb cDNA clone from rice panicle cDNA library. It contained a 1038 bp of open reading frame (ORF) encoding for a putative pectin methyl esterase of 345 aminoacids with a 20 aminoacid signal peptide and was hence designated as OsPME1 (Oryza...

  13. Mechanistic studies of ocular peptide absorption and its enhancement by various penetration enhancers

    International Nuclear Information System (INIS)

    Rojanasakul, Y.

    1989-01-01

    Two major aspects of corneal peptide absorption, namely the transport mechanisms and the promoting effect of some penetration enhancers, were investigated. Studies on transport mechanisms involve (a) identification of transport pathways of peptides across the cornea, (b) determination of rate-limiting barrier(s) for peptide absorption, and (c) permselective properties of the cornea. To study the transport pathways of peptides, four model peptides differing in molecular size and charge were either fluorescently or radioactively labeled and their movement across the cornea was detected by laser scanning confocal microscopy and autoradiography. Results from these studies indicate that peptides can penetrate the cornea via different pathways, depending on the physicochemical properties and membrane specificity of the peptides. In all cases, the outermost layer of the corneal epithelium presents the rate-limiting barrier for peptide absorption. The results also indicate a charge discrimination effect to transport of negatively charged peptides. In permselectivity studies, it has been shown that the cornea, due to the presence of ionizable charged groups, is amphoteric and exhibits dual selective characteristics to transport of charged molecules. At pH's above the isoelectric point, 3.2, the cornea carries a net negative charge and is selective to positively-charged molecules. Below the isoelectric pH, the reverse is valid. The promoting mechanisms of penetration enhancers were studied microscopically using confocal fluorescence microscopy with the aid of a specific fluorescent membrane probe (3,3'-dioctadecyloxacarbocyanine) and a non-permeating polar tracer. All enhancers, including chelators, non-ionic surfactants, bile salts, and cytoskeleton-active agents, significantly increase membrane permeability depending on concentration and exposure time

  14. The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development.

    Science.gov (United States)

    Jakobs, Mareike; Hoffmann, Kerstin; Liesegang, Heiko; Volland, Sonja; Meinhardt, Friedhelm

    2015-03-01

    In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.

  15. VISLISI trial, a prospective clinical study allowing identification of a new metalloprotease and putative virulence factor from Staphylococcus lugdunensis.

    Science.gov (United States)

    Argemi, X; Prévost, G; Riegel, P; Keller, D; Meyer, N; Baldeyrou, M; Douiri, N; Lefebvre, N; Meghit, K; Ronde Oustau, C; Christmann, D; Cianférani, S; Strub, J M; Hansmann, Y

    2017-05-01

    Staphylococcus lugdunensis is a coagulase-negative staphylococcus that displays an unusually high virulence rate close to that of Staphylococcus aureus. It also shares phenotypic properties with S. aureus and several studies found putative virulence factors. The objective of the study was to describe the clinical manifestations of S. lugdunensis infections and investigate putative virulence factors. We conducted a prospective study from November 2013 to March 2016 at the University Hospital of Strasbourg. Putative virulence factors were investigated by clumping factor detection, screening for proteolytic activity, and sequence analysis using tandem nano-liquid chromatography-mass spectrometry. In total, 347 positive samples for S. lugdunensis were collected, of which 129 (37.2%) were from confirmed cases of S. lugdunensis infection. Eighty-one of these 129 patients were included in the study. Bone and prosthetic joints (PJI) were the most frequent sites of infection (n=28; 34.6%) followed by skin and soft tissues (n=23; 28.4%). We identified and purified a novel protease secreted by 50 samples (61.7%), most frequently associated with samples from deep infections and PJI (pr 0.97 and pr 0.91, respectively). Protease peptide sequencing by nano-liquid chromatography-mass spectrometry revealed a novel protease bearing 62.42% identity with ShpI, a metalloprotease secreted by Staphylococcus hyicus. This study confirms the pathogenicity of S. lugdunensis, particularly in bone and PJI. We also identified a novel metalloprotease called lugdulysin that may contribute to virulence. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Association between autoantibodies to the Arginine variant of the Zinc transporter 8 (ZnT8) and stimulated C-peptide levels in Danish children and adolescents with newly diagnosed type 1 diabetes

    DEFF Research Database (Denmark)

    Andersen, Marie Louise M; Vaziri-Sani, Fariba; Delli, Ahmed

    2012-01-01

    The zinc transporter 8 (ZnT8) was recently identified as a common autoantigen in type 1 diabetes (T1D) and inclusion of ZnT8 autoantibodies (ZnT8Ab) was found to increase the diagnostic specificity of T1D.......The zinc transporter 8 (ZnT8) was recently identified as a common autoantigen in type 1 diabetes (T1D) and inclusion of ZnT8 autoantibodies (ZnT8Ab) was found to increase the diagnostic specificity of T1D....

  18. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  19. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Nielsen, Carsten Uhd; Brodin, Birger

    2013-01-01

    Transepithelial di/tripeptide transport in enterocytes occurs via the apical proton-coupled peptide transporter, hPEPT1 (SLC15A1) and a basolateral peptide transporter, which has only been characterized functionally. In this study we examined the pH dependency, substrate uptake kinetics and subst...

  20. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study

    OpenAIRE

    Lu, Haixia; Zhu, Ce; Li, Fei; Xu, Wei; Tao, Danying; Feng, Xiping

    2016-01-01

    Little is known about herpesvirus and putative periodontopathic bacteria in maternal chronic periodontitis. The present case-control study aimed to explore the potential relationship between putative periodontopathic bacteria and herpesviruses in maternal chronic periodontitis.Saliva samples were collected from 36 pregnant women with chronic periodontitis (cases) and 36 pregnant women with healthy periodontal status (controls). Six putative periodontopathic bacteria (Porphyromonas gingivalis ...

  1. Bioactive peptides released from in vitro digestion of human milk with or without pasteurization.

    Science.gov (United States)

    Wada, Yasuaki; Lönnerdal, Bo

    2015-04-01

    Pasteurized donor human milk (HM) serves as the best alternative for breast-feeding when availability of mother's milk is limited. Pasteurization is also applied to mother's own milk for very low birth weight infants, who are vulnerable to microbial infection. Whether pasteurization affects protein digestibility and therefore modulates the profile of bioactive peptides released from HM proteins by gastrointestinal digestion, has not been examined to date. HM with and without pasteurization (62.5 °C for 30 min) were subjected to in vitro gastrointestinal digestion, followed by peptidomic analysis to compare the formation of bioactive peptides. Some of the bioactive peptides, such as caseinophosphopeptide homologues, a possible opioid peptide (or propeptide), and an antibacterial peptide, were present in undigested HM and showed resistance to in vitro digestion, suggesting that these peptides are likely to exert their bioactivities in the gastrointestinal lumen, or be stably transported to target organs. In vitro digestion of HM released a large variety of bioactive peptides such as angiotensin I-converting enzyme-inhibitory, antioxidative, and immunomodulatory peptides. Bioactive peptides were released largely in the same manner with and without pasteurization. Provision of pasteurized HM may be as beneficial as breast-feeding in terms of milk protein-derived bioactive peptides.

  2. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  3. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors.

    Science.gov (United States)

    Guo, X; Geng, P; Bai, F; Bai, G; Sun, T; Li, X; Shi, L; Zhong, Q

    2012-08-01

    The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  5. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  6. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  7. Localization of receptors for bombesin-like peptides in the rat brain

    International Nuclear Information System (INIS)

    Moody, T.W.; Getz, R.; O'Donohue, T.L.; Rosenstein, J.M.

    1988-01-01

    BN-like peptides and receptors are present in discrete areas of the mammalian brain. By radioimmunoassay, endogenous BN/GRP, neuromedin B, and ranatensin-like peptides are present in the rat brain. High-to-moderate concentrations of BN/GRP are present in the rat hypothalamus and thalamus, whereas moderate-to-high densities of neuromedin B and ranatensin-like peptides are present in the olfactory bulb and hippocampus, as well as in the hypothalamus and thalamus. While the distribution of neuromedin B and ranatensin-like peptides appears similar, it is distinct from that of BN/GRP. When released from CNS neurons, these peptides may interact with receptors for BN-like peptides. BN, GRP, ranatensin, and neuromedin B inhibit specific [ 125 I-Tyr4]BN binding with high affinity. By use of in vitro autoradiographic techniques to detect binding of [ 125 I-Tyr4]BN to receptors for BN-like peptides, high grain densities were found in the olfactory bulb and tubercle, the nucleus accumbens, the suprachiasmatic and paraventricular nucleus of the hypothalamus, the central medial and paraventricular thalamic nuclei, the hippocampus, the dentate gyrus, and the amygdala of the rat brain. Some of these receptors may be biologically active and mediate the biological effects of BN-like peptides. For example, when BN is directly injected into the nucleus accumbens, pronounced grooming results and the effects caused by BN are reversed by spantide and [D-Phe12]BN. Thus, the putative BN receptor antagonists may serve as useful agents to investigate the biological significance of BN-like peptides in the CNS

  8. Orally active-targeted drug delivery systems for proteins and peptides.

    Science.gov (United States)

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  9. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    Science.gov (United States)

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  10. EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum

    Directory of Open Access Journals (Sweden)

    Vandenberg Albert

    2011-06-01

    Full Text Available Abstract Background Colletotrichum truncatum is a haploid, hemibiotrophic, ascomycete fungal pathogen that causes anthracnose disease on many economically important leguminous crops. This pathogen exploits sequential biotrophic- and necrotrophic- infection strategies to colonize the host. Transition from biotrophy to a destructive necrotrophic phase called the biotrophy-necrotrophy switch is critical in symptom development. C. truncatum likely secretes an arsenal of proteins that are implicated in maintaining a compatible interaction with its host. Some of them might be transition specific. Results A directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the biotrophy-necrotrophy switch of C. truncatum and 5000 expressed sequence tags (ESTs with an average read of > 600 bp from the 5-prime end were generated. Nearly 39% of the ESTs were predicted to encode proteins of fungal origin and among these, 162 ESTs were predicted to contain N-terminal signal peptides (SPs in their deduced open reading frames (ORFs. The 162 sequences could be assembled into 122 tentative unigenes comprising 32 contigs and 90 singletons. Sequence analyses of unigenes revealed four potential groups: hydrolases, cell envelope associated proteins (CEAPs, candidate effectors and other proteins. Eleven candidate effector genes were identified based on features common to characterized fungal effectors, i.e. they encode small, soluble (lack of transmembrane domain, cysteine-rich proteins with a putative SP. For a selected subset of CEAPs and candidate effectors, semiquantitative RT-PCR showed that these transcripts were either expressed constitutively in both in vitro and in planta or induced during plant infection. Using potato virus X (PVX based transient expression assays, we showed that one of the candidate effectors, i. e. contig 8 that encodes a cerato-platanin (CP domain containing protein, unlike CP proteins

  11. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    Science.gov (United States)

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes.

  12. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins

    Directory of Open Access Journals (Sweden)

    Aida Verdes

    2016-04-01

    Full Text Available Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1 delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2 identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3 chemical and recombinant synthesis of promising peptide toxins; (4 structural characterization through experimental and computational methods; (5 determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6 optimization of peptide toxin affinity and selectivity to molecular target; and (7 development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.

  13. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis

    NARCIS (Netherlands)

    Wolken, WAM; Lucas, PM; Lonvaud-Funel, A; Lolkema, JS; Wolken, Wout A.M.; Lucas, Patrick M.

    The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L.

  14. Expression pattern of arenicins - the antimicrobial peptides of polychaete Arenicolamarina

    Directory of Open Access Journals (Sweden)

    Arina L. Maltseva

    2014-12-01

    Full Text Available Immune responses of invertebrate animals are mediated through innate mechanisms, among which production of antimicrobial peptides play an important role. Although evolutionary Polychaetes represent an interesting group closely related to a putative common ancestor of other coelomates, their immune mechanisms still remain scarcely investigated. Previously our group has identified arenicins - new antimicrobial peptides of the lugworm Arenicola marina, since then these peptides were thoroughly characterized in terms of their structure and inhibitory potential. In the present study we addressed the question of the physiological functions of arenicins in the lugworm body. Using molecular and immunocytochemical methods we demonstrated that arencins are expressed in the wide range of the lugworm tissues - coelomocytes, body wall, extravasal tissue and the gut. The expression of arenicins is constitutive and does not depend on stimulation of various infectious stimuli. Most intensively arenicins are produced by mature coelomocytes where they function as killing agents inside the phagolysosome. In the gut and the body wall epithelia arenicins are released from producing cells via secretion as they are found both inside the epithelial cells and in the contents of the cuticle. Collectively our study showed that arenicins are found in different body compartments responsible for providing a first line of defence against infections, which implies their important role as key components of both epithelial and systemic branches of host defence.

  15. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  16. Isolation and characterization of the human parathyroid hormone-like peptide gene

    International Nuclear Information System (INIS)

    Mangin, M.; Ikeda, K.; Dreyer, B.E.; Broadus, A.E.

    1989-01-01

    A parathyroid hormone-like peptide (PTH-LP) has recently been identified in human tumors associated with the syndrome of humoral hypercalcemia of malignancy. The peptide appears to be encoded by a single-copy gene that gives rise to multiple mRNAs that are heterogeneous at both their 5' and their 3' ends. Alternative RNA splicing is responsible for the 3' heterogeneity and results in mRNAs encoding three different peptides, each with a unique C terminus. The authors have isolated and characterized the human PTHLP gene. The gene is a complex transcriptional unit spanning more than 12 kilobases of DNA and containing six exons. Two 5' exons encode distinct 5' untranslated regions and are separated by a putative promoter element, indicating that the gene either has two promoters or is alternatively spliced from a single promoter upstream of the first exon. The middle portion of the PTHLP gene, comprising exons 2-4, has an organizational pattern of introns and exons identical to that of the parathyroid hormone gene, consistent with a common ancestral origin of these two genes. Exon 4 of the PTHLP gene encodes the region common to all three peptides and the C terminus of the shortest peptide, and exons 5 and 6 encode the unique C termini of the other two peptides. Northern analysis of mRNAs from four human tumors of different histological types reveals the preferential use of 3' splicing patterns of individual tumors

  17. Putative golden proportions as predictors of facial esthetics in adolescents.

    Science.gov (United States)

    Kiekens, Rosemie M A; Kuijpers-Jagtman, Anne Marie; van 't Hof, Martin A; van 't Hof, Bep E; Maltha, Jaap C

    2008-10-01

    In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. Seventy-six adult laypeople evaluated sets of photographs of 64 adolescents on a visual analog scale (VAS) from 0 to 100. The facial esthetic value of each subject was calculated as a mean VAS score. Three observers recorded the position of 13 facial landmarks included in 19 putative golden proportions, based on the golden proportions as defined by Ricketts. The proportions and each proportion's deviation from the golden target (1.618) were calculated. This deviation was then related to the VAS scores. Only 4 of the 19 proportions had a significant negative correlation with the VAS scores, indicating that beautiful faces showed less deviation from the golden standard than less beautiful faces. Together, these variables explained only 16% of the variance. Few golden proportions have a significant relationship with facial esthetics in adolescents. The explained variance of these variables is too small to be of clinical importance.

  18. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  19. A new putative deltapartitivirus recovered from Dianthus amurensis.

    Science.gov (United States)

    An, Hongliu; Tan, Guanlin; Xiong, Guihong; Li, Meirong; Fang, Shouguo; Islam, Saif Ul; Zhang, Songbai; Li, Fan

    2017-09-01

    Two double stranded RNAs (dsRNA), likely representing the genome of a novel deltapartitivirus, provisionally named carnation cryptic virus 3 (CCV3), were recovered from Dianthus amurensis. The two dsRNAs were 1,573 (dsRNA1) and 1,561 (dsRNA2) bp in size, each containing a single open reading frame (ORF) encoding a 475- and 411-aa protein, respectively. The 475-aa protein contains a conserved RNA dependent RNA polymerase (RdRp) domain which shows significant homology to RdRps of established or putative partitiviruses, particularly those belonging to the genus Deltapartitivirus. However, it shares an amino acid identity of 75% with its closest relative, the RdRp of the deltapartitivirus beet cryptic virus 2 (BCV2), and is <62% identical to the RdRps of other partitiviruses. In a phylogenetic tree constructed with RdRps of selected partitiviruses, CCV3 clustered with BCV2 and formed a well-supported monophyletic clade with known or putative deltapartitiviruses.

  20. The Putative Chemosignal Androstadienone Makes Women More Generous.

    Science.gov (United States)

    Perrotta, Valentina; Graffeo, Michele; Bonini, Nicolao; Gottfried, Jay A

    2016-06-01

    Putative human chemosignals have been shown to influence mood states and emotional processing, but the connection between these effects and higher-order cognitive processing is not well established. This study utilized an economic game (Dictator Game) to test whether androstadienone (AND), an odorous compound derived from testosterone, impacts on altruistic behavior. We predicted that the female participants would act more generously in the AND condition, exhibiting a significant interaction effect between gender and AND on Dictator Game contributions. We also expected that the presence of AND should increase the positive mood of the female participants, compared to a control odor condition and also compared to the mood of the male participants. The results confirm our hypotheses: for women the subliminal perception of AND led to larger monetary donations, compared to a control odor, and also increased positive mood. These effects were absent or significantly weaker in men. Our findings highlight the capacity of human putative chemosignals to influence emotions and higher cognitive processes - in particular the processes used in the context of economic decisions - in a gender-specific way.

  1. Distribution and innervation of putative peripheral arterial chemoreceptors in the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Reyes, Catalina; Fong, Angelina Y; Milsom, William K

    2015-06-15

    Peripheral arterial chemoreceptors have been isolated to the common carotid artery, aorta, and pulmonary artery of turtles. However, the putative neurotransmitters associated with these chemoreceptors have not yet been described. The goal of the present study was to determine the neurochemical content, innervations, and distribution of putative oxygen-sensing cells in the central vasculature of turtles and to derive homologies with peripheral arterial chemoreceptors of other vertebrates. We used tract tracing together with immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH; the rate-limiting enzyme in catecholamine synthesis), and serotonin (5HT) to identify putative oxygen-sensing cells and to determine their anatomical relation to branches of the vagus nerve (Xth cranial nerve). We found potential oxygen-sensing cells in all three chemosensory areas innervated by branches of the Xth cranial nerve. Cells containing either 5HT or VAChT were found in all three sites. The morphology and size of these cells resemble glomus cells found in amphibians, mammals, tortoises, and lizards. Furthermore, we found populations of cholinergic cells located at the base of the aorta and pulmonary artery that are likely involved in efferent regulation of vessel resistance. Catecholamine-containing cells were not found in any of the putative chemosensitive areas. The presence of 5HT- and VAChT-immunoreactive cells in segments of the common carotid artery, aorta, and pulmonary artery appears to reflect a transition between cells containing the major neurotransmitters seen in fish (5HT) and mammals (ACh and adenosine). © 2015 Wiley Periodicals, Inc.

  2. Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na+-channel scorpion toxins.

    Directory of Open Access Journals (Sweden)

    Jimmy A Guerrero-Vargas

    Full Text Available Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na(+-channel scorpion toxins (NaScTxs from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species.cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na(+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory β-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the α-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the β-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both α and β NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups.This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed.

  3. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  4. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  5. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  6. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Qin, L; Overmars, H; Helder, J; Popeijus, H; van der Voort, J R; Groenink, W; van Koert, P; Schots, A; Bakker, J; Smant, G

    2000-08-01

    A new strategy has been designed to identify putative pathogenicity factors from the dorsal or subventral esophageal glands of the potato cyst nematode Globodera rostochiensis. Three independent criteria were used for selection. First, genes of interest should predominantly be expressed in infective second-stage juveniles, and not, or to a far lesser extent, in younger developmental stages. For this, gene expression profiles from five different developmental stages were generated with cDNA-AFLP (amplified fragment length polymorphism). Secondly, the mRNA corresponding to such a putative pathogenicity factor should predominantly be present in the esophageal glands of pre-parasitic juveniles. This was checked by in situ hybridization. As a third criterion, these proteinaceous factors should be preceded by a signal peptide for secretion. Expression profiles of more than 4,000 genes were generated and three up-regulated, dorsal gland-specific proteins preceded by signal peptide for secretion were identified. No dorsal gland genes have been cloned before from plant-parasitic nematodes. The partial sequence of these three factors, A4, A18, and A41, showed no significant homology to any known gene. Their presence in the dorsal glands of infective juveniles suggests that these proteins could be involved in feeding cell initiation, and not in migration in the plant root or in protection against plant defense responses. Finally, the applicability of this new strategy in other plant-microbe interactions is discussed.

  7. Comparative anatomy of the peduncles of Thai Sugar Palms provides insight on putative sugar transport mechanisms

    DEFF Research Database (Denmark)

    Somjaiai, Pananun; Barfod, Anders; Jampeetong, Arunothai

    Inflorescences of sugar palms exude copious amounts of sugar-rich sap, when their peduncles are scarred. In Thailand this phenomenon form the basis of a widespread cottage industry based on species such as Arenga pinnata, Borassus flabellifera, Cocos nucifera and Nypa fruticans. The extracted sugar...... sap is used mainly for jaggery, syrup and different types of beverages. In this study we looked for anatomical correlates of the elevated sap flow in injured peduncles of sugar palms. Despite a limited sample size we observed that sugar producing palms differ from the reference palm Chamaedorea...

  8. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sørensen, Mette Aamand

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides....... The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...

  9. Vascular targeting with peptide libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, R. [La Jolla Cancer Research Center The Burnham Inst., La Jolla CA (United States)

    1999-06-01

    The authors have developed an 'in vivo' selection system in which phage capable of selective homing to different tissues are recovered from a phage display peptide library following intravenous administration. Using this strategy, they have isolate several organ and tumor-homing peptides. They have shown that each of those peptides binds of different receptors that are selectively expressed on the vasculature of the target tissue. The tumor-homing peptides bind to receptors that are up regulated in tumor angiogenic vasculature. Targeted delivery of doxorubicin to angiogenic vasculature using these peptides in animals models decrease toxicity and increased the therapeutic efficacy of the drug. Vascular targeting may facilitate the development of other treatment strategies that rely on inhibition of angio genesis and lead to advances to extend the potential for targeting of drugs, genes and radionuclides in the context of many diseases.

  10. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  11. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  12. γ-Preprotachykinin-(72-92)-peptide amide: An endogenous preprotachykinin I gene-derived peptide that preferentially binds to neurokinin-2 receptors

    International Nuclear Information System (INIS)

    Dam, T.V.; Takeda, Y.; Krause, J.E.; Escher, E.; Quirion, R.

    1990-01-01

    The presence of N-terminally extended forms of neurokinin A has recently been reported in the mammalian brain. Among them, gamma-preprotachykinin-(72-92)-peptide amide [gamma-PPT-(72-92)-NH2], a peptide derived by posttranslational processing of gamma-preprotachykinin, is most prominent. We report here that this peptide most likely acts on neurokinin-2 receptor sites since neurokinin A (a putative neurokinin-2 agonist) and gamma-PPT-(72-92)-NH2 are potent competitors of 125I-labeled gamma-PPT-(72-92)-NH2 binding whereas selective neurokinin-1 and -3 agonists are not. Moreover, the distribution of 125I-labeled gamma-PPT-(72-92)-NH2 and 125I-labeled neurokinin A binding sites are very similar in rat brain. On the other hand, 125I-labeled Bolton-Hunter-substance P (a neurokinin-1 ligand) and 125I-labeled Bolton-Hunter-eledoisin (a neurokinin-3 ligand) binding sites are differentially located in this tissue. Thus, it appears that gamma-PPT-(72-92)-NH2 binds to neurokinin-2 receptors and should be considered as a putative endogenous ligand for this receptor class

  13. Identification of genetic loci required for Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    Directory of Open Access Journals (Sweden)

    Ky Van Hoang

    2012-03-01

    Full Text Available Antimicrobial peptides (AMPs are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TNTM Transposome in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  14. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  15. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  16. Disparate subcellular location of putative sortase substrates in Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Shaw, Helen A; Wren, Brendan W; Fairweather, Neil F

    2017-08-23

    Clostridium difficile is a gastrointestinal pathogen but how the bacterium colonises this niche is still little understood. Sortase enzymes covalently attach specific bacterial proteins to the peptidoglycan cell wall and are often involved in colonisation by pathogens. Here we show C. difficile proteins CD2537 and CD3392 are functional substrates of sortase SrtB. Through manipulation of the C-terminal regions of these proteins we show the SPKTG motif is essential for covalent attachment to the cell wall. Two additional putative substrates, CD0183 which contains an SPSTG motif, and CD2768 which contains an SPQTG motif, are not cleaved or anchored to the cell wall by sortase. Finally, using an in vivo asymmetric cleavage assay, we show that despite containing a conserved SPKTG motif, in the absence of SrtB these proteins are localised to disparate cellular compartments.

  17. Putative benefits of microalgal astaxanthin on exercise and human health

    Directory of Open Access Journals (Sweden)

    Marcelo P. Barros

    2011-04-01

    Full Text Available Astaxanthin (ASTA is a pinkish-orange carotenoid produced by microalgae, but also commonly found in shrimp, lobster and salmon, which accumulate ASTA from the aquatic food chain. Numerous studies have addressed the benefits of ASTA for human health, including the inhibition of LDL oxidation, UV-photoprotection and prophylaxis of bacterial stomach ulcers. ASTA is recognized as a powerful scavenger of reactive oxygen species (ROS, especially those involved in lipid peroxidation. Both aerobic and anaerobic exercise are closely related to overproduction of ROS in muscle tissue. Post-exercise inflammatory processes can even exacerbate the oxidative stress imposed by exercise. Thus, ASTA is suggested here as a putative nutritional alternative/coadjutant for antioxidant therapy to afford additional protection to muscle tissues against oxidative damage induced by exercise, as well as for an (overall integrative redox re-balance and general human health.

  18. Hepatology may have problems with putative surrogate outcome measures

    DEFF Research Database (Denmark)

    Gluud, Christian; Brok, Jesper; Gong, Yan

    2007-01-01

    A surrogate outcome measure is a laboratory measurement, a physical sign, or another intermediate substitute that is able to predict an intervention's effect on a clinically meaningful outcome. A clinical outcome detects how a patient feels, functions, or survives. Surrogate outcome measures occur...... faster or more often, are cheaper, and/or are less invasively achieved than the clinical outcome. In practice, validation is surprisingly often overlooked, especially if a biologic plausible rationale is proposed. Surrogate outcomes must be validated before use. The first step in validation...... predicts the intervention's effect on the clinical outcome. In hepatology a number of putative surrogate outcomes are used both in clinical research and in clinical practice without having been properly validated. Sustained virological response to interferons and ribavirin in patients with chronic...

  19. Basal ganglia calcification as a putative cause for cognitive decline

    Directory of Open Access Journals (Sweden)

    João Ricardo Mendes de Oliveira

    Full Text Available ABSTRACT Basal ganglia calcifications (BGC may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients

  20. Basal ganglia calcification as a putative cause for cognitive decline.

    Science.gov (United States)

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients.

  1. Rational development of a cytotoxic peptide to trigger cell death.

    Science.gov (United States)

    Boohaker, Rebecca J; Zhang, Ge; Lee, Michael W; Nemec, Kathleen N; Santra, Santimukul; Perez, J Manuel; Khaled, Annette R

    2012-07-02

    Defects in the apoptotic machinery can contribute to tumor formation and resistance to treatment, creating a need to identify new agents that kill cancer cells by alternative mechanisms. To this end, we examined the cytotoxic properties of a novel peptide, CT20p, derived from the C-terminal, alpha-9 helix of Bax, an amphipathic domain with putative membrane binding properties. Like many antimicrobial peptides, CT20p contains clusters of hydrophobic and cationic residues that could enable the peptide to associate with lipid membranes. CT20p caused the release of calcein from mitochondrial-like lipid vesicles without disrupting vesicle integrity and, when expressed as a fusion protein in cells, localized to mitochondria. The amphipathic nature of CT20p allowed it to be encapsulated in polymeric nanoparticles (NPs) that have the capacity to harbor targeting molecules, dyes or drugs. The resulting CT20p-NPs proved an effective killer, in vitro, of colon and breast cancer cells, and in vivo, using a murine breast cancer tumor model. By introducing CT20p to Bax deficient cells, we demonstrated that the peptide's lethal activity was independent of endogenous Bax. CT20p also caused an increase in the mitochondrial membrane potential that was followed by plasma membrane rupture and cell death, without the characteristic membrane asymmetry associated with apoptosis. We determined that cell death triggered by the CT20p-NPs was minimally dependent on effector caspases and resistant to Bcl-2 overexpression, suggesting that it acts independently of the intrinsic apoptotic death pathway. Furthermore, use of CT20p with the apoptosis-inducing drug, cisplatin, resulted in additive toxicity. These results reveal the novel features of CT20p that allow nanoparticle-mediated delivery to tumors and the potential application in combination therapies to activate multiple death pathways in cancer cells.

  2. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro

    Directory of Open Access Journals (Sweden)

    Han CY

    2013-04-01

    Full Text Available Cui-yan Han,1,2 Li-ling Yue,2 Ling-yu Tai,1 Li Zhou,2 Xue-yan Li,2 Gui-hua Xing,2 Xing-gang Yang,1 Ming-shuang Sun,1 Wei-san Pan1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Qiqihar Medical University, Qiqihar, People’s Republic of China Abstract: The epidermal growth factor receptor (EGFR serves an important function in the proliferation of tumors in humans and is an effective target for the treatment of cancer. In this paper, we studied the targeting characteristics of small peptides (AEYLR, EYINQ, and PDYQQD that were derived from three major autophosphorylation sites of the EGFR C-terminus domain in vitro. These small peptides were labeled with fluorescein isothiocyanate (FITC and used the peptide LARLLT as a positive control, which bound to putative EGFR selected from a virtual peptide library by computer-aided design, and the independent peptide RALEL as a negative control. Analyses with flow cytometry and an internalization assay using NCI-H1299 and K562 with high EGFR and no EGFR expression, respectively, indicated that FITC-AEYLR had high EGFR targeting activity. Biotin-AEYLR that was specifically bound to human EGFR proteins demonstrated a high affinity for human non-small-cell lung tumors. We found that AEYLR peptide-conjugated, nanostructured lipid carriers enhanced specific cellular uptake in vitro during a process that was apparently mediated by tumor cells with high-expression EGFR. Analysis of the MTT assay indicated that the AEYLR peptide did not significantly stimulate or inhibit the growth activity of the cells. These findings suggest that, when mediated by EGFR, AEYLR may be a potentially safe and efficient delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy. Keywords: EGFR, small peptide, tumor targeting, lung cancer, NLC

  3. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  4. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  5. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...... to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin, proadrenomedullin...... pressure (R=0·32, P0·31, Ppeptide is elevated in cirrhosis. Copeptin, proadrenomedullin and proANP are related to portal pressure and seem associated with systemic haemodynamics. These propeptides may...

  6. Spike Protein Fusion Peptide and Feline Coronavirus Virulence

    Science.gov (United States)

    Chang, Hui-Wen; Egberink, Herman F.; Halpin, Rebecca; Spiro, David J.

    2012-01-01

    Coronaviruses are well known for their potential to change their host or tissue tropism, resulting in unpredictable new diseases and changes in pathogenicity; severe acute respiratory syndrome and feline coronaviruses, respectively, are the most recognized examples. Feline coronaviruses occur as 2 pathotypes: nonvirulent feline enteric coronaviruses (FECVs), which replicate in intestinal epithelium cells, and lethal feline infectious peritonitis viruses (FIPVs), which replicate in macrophages. Evidence indicates that FIPV originates from FECV by mutation, but consistent distinguishing differences have not been established. We sequenced the full genome of 11 viruses of each pathotype and then focused on the single most distinctive site by additionally sequencing hundreds of viruses in that region. As a result, we identified 2 alternative amino acid differences in the putative fusion peptide of the spike protein that together distinguish FIPV from FECV in >95% of cases. By these and perhaps other mutations, the virus apparently acquires its macrophage tropism and spreads systemically. PMID:22709821

  7. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  8. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.

    Science.gov (United States)

    Upadhya, Archana; Sangave, Preeti C

    2016-10-01

    Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa-arginine (R 8 ) and CHK 6 HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep-3, flanked with CH 3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide-plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non-covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide-plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath

    Science.gov (United States)

    Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.

  10. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  11. Cardioprotective peptides from marine sources.

    Science.gov (United States)

    Harnedy, Padraigín A; FitzGerald, Richard J

    2013-05-01

    Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.

  12. Antimicrobial peptides from Capsicum sp.

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... Key words: Antimicrobial peptides, Capsicum sp, Capsicum chinense, chili pepper, agronomical options, ..... of this human activity is resumed by the simple phrase: produce .... It will be interesting to scale the AMPs extraction.

  13. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  14. Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery.

    Directory of Open Access Journals (Sweden)

    Thibault Caradec

    Full Text Available Nonribosomal peptides represent a large variety of natural active compounds produced by microorganisms. Due to their specific biosynthesis pathway through large assembly lines called NonRibosomal Peptide Synthetases (NRPSs, they often display complex structures with cycles and branches. Moreover they often contain non proteogenic or modified monomers, such as the D-monomers produced by epimerization. We investigate here some sequence specificities of the condensation (C and epimerization (E domains of NRPS that can be used to predict the possible isomeric state (D or L of each monomer in a putative peptide. We show that C- and E- domains can be divided into 2 sub-regions called Up-Seq and Down-Seq. The Up-Seq region corresponds to an InterPro domain (IPR001242 and is shared by C- and E-domains. The Down-Seq region is specific to the enzymatic activity of the domain. Amino-acid signatures (represented as sequence logos previously described for complete C-and E-domains have been restricted to the Down-Seq region and amplified thanks to additional sequences. Moreover a new Down-Seq signature has been found for Ct-domains found in fungi and responsible for terminal cyclization of the peptides. The identification of these signatures has been included in a workflow named Florine, aimed to predict nonribosomal peptides from NRPS sequence analyses. In some cases, the prediction of isomery is guided by genus-specific rules. Florine was used on a Pseudomonas genome to allow the determination of the type of pyoverdin produced, the update of syringafactin structure and the identification of novel putative products.

  15. Delivery of bioactive peptides and proteins across oral (buccal) mucosa.

    Science.gov (United States)

    Senel, S; Kremer, M; Nagy, K; Squier, C

    2001-06-01

    The identification of an increasing array of highly potent, endogenous peptide and protein factors termed cytokines, that can be efficiently synthesized using recombinant DNA technology, offers exciting new approaches for drug therapy. However, the physico-chemical and biological properties of these agents impose limitations in formulation and development of optimum drug delivery systems as well as on the routes of delivery. Oral mucosa, including the lining of the cheek (buccal mucosa), floor of mouth and underside of tongue (sublingual mucosa) and gingival mucosa, has received much attention in the last decade because it offers excellent accessibility, is not easily traumatized and avoids degradation of proteins and peptides that occurs as a result of oral administration, gastrointestinal absorption and first-pass hepatic metabolism. Peptide absorption occurs across oral mucosa by passive diffusion and it is unlikely that there is a carrier-mediated transport mechanism. The principal pathway is probably via the intercellular route where the major permeability barrier is represented by organized array of neutral lipids in the superficial layers of the epithelium. The relative role of aqueous as opposed to the lipid pathway in drug transport is still under investigation; penetration is not necessarily enhanced by simply increasing lipophilicity, for other effects, such as charge and molecular size, also play an important role in absorption of peptide and protein drugs. Depending on the pharmacodynamics of the peptides, various oral mucosal delivery systems can be designed. Delivery of peptide/protein drugs by conventional means such as solutions has some limitations. The possibility of excluding a major part of drug from absorption by involuntary swallowing and the continuous dilution due to salivary flow limits a controlled release. However these limitations can be overcome by adhesive dosage forms such as gels, films, tablets, and patches. They can localize the

  16. A Sequence and Structure Based Method to Predict Putative Substrates, Functions and Regulatory Networks of Endo Proteases

    Science.gov (United States)

    Venkatraman, Prasanna; Balakrishnan, Satish; Rao, Shashidhar; Hooda, Yogesh; Pol, Suyog

    2009-01-01

    Background Proteases play a central role in cellular homeostasis and are responsible for the spatio- temporal regulation of function. Many putative proteases have been recently identified through genomic approaches, leading to a surge in global profiling attempts to characterize their function. Through such efforts and others it has become evident that many proteases play non-traditional roles. Accordingly, the number and the variety of the substrate repertoire of proteases are expected to be much larger than previously assumed. In line with such global profiling attempts, we present here a method for the prediction of natural substrates of endo proteases (human proteases used as an example) by employing short peptide sequences as specificity determinants. Methodology/Principal Findings Our method incorporates specificity determinants unique to individual enzymes and physiologically relevant dual filters namely, solvent accessible surface area-a parameter dependent on protein three-dimensional structure and subcellular localization. By incorporating such hitherto unused principles in prediction methods, a novel ligand docking strategy to mimic substrate binding at the active site of the enzyme, and GO functions, we identify and perform subjective validation on putative substrates of matriptase and highlight new functions of the enzyme. Using relative solvent accessibility to rank order we show how new protease regulatory networks and enzyme cascades can be created. Conclusion We believe that our physiologically relevant computational approach would be a very useful complementary method in the current day attempts to profile proteases (endo proteases in particular) and their substrates. In addition, by using functional annotations, we have demonstrated how normal and unknown functions of a protease can be envisaged. We have developed a network which can be integrated to create a proteolytic world. This network can in turn be extended to integrate other regulatory

  17. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  18. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  19. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  20. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  1. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  2. Urodilatin, a natriuretic peptide with clinical implications.

    Science.gov (United States)

    Meyer, M; Richter, R; Forssmann, W G

    1998-02-21

    Natriuretic peptides (NP) constitute hormonal systems of great clinical impact. This report deals with Urodilatin (URO), a renal natriuretic peptide type A. From the gene of NP type A, a message for the preprohormone is transcribed in heart and kidney. The cardiac prohormone CDD/ANP-1-126 is synthesized in the heart atrium and processed during exocytosis forming the circulating hormone CDD/ANP-99-126. URO (CDD/ANP 95-126) is a product from the same gene, but differentially processed in the kidney and detected only in urine. Physiologically, URO acts in a paracrine fashion. After release from distal tubular kidney cells into the tubular lumen, URO binds to luminal receptors (NPR-A) in the collecting duct resulting in a cGMP-dependent signal transduction. cGMP generation is followed by an interaction with the amiloriode-sensitive sodium channel which induces diuresis and natriuresis. In this way, URO physiologically regulates fluid balance and sodium homeostasis. Moreover, URO excretion and natriuresis are in turn dependent on several physiological states, such as directly by sodium homeostasis. Pharmacologically, URO at low dose administered intravenously shows a strong diuretic and natriuretic effect and a low hypotensive effect. Renal, pulmonary, and cardiovascular effects evoked by pharmacological doses indicate that URO is a putative drug for several related diseases. Clinical trials show promising results for various clinical indications. However, the reduction in hemodialysis/hemofiltration in patients suffering from ARF following heart and liver transplantation, derived from preliminary trials recruiting a small number of patients, was not confirmed by a multicenter phase II study. In contrast, data for the prophylactic use of URO in this clinical setting suggest a better outcome for the patients. Furthermore, treatment of asthmatic patients showed a convincingly beneficial effect of URO on pulmonary function. Patients with congestive heart failure may also

  3. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  4. Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2016-08-31

    An overarching goal in molecular biology is to gain an understanding of the mechanistic basis underlying biochemical systems. Success is critical if we are to predict effectively the outcome of drug treatments and the development of abnormal phenotypes. However, data from most experimental studies is typically noisy and sparse. This allows multiple potential mechanisms to account for experimental observations, and often devising experiments to test each is not feasible. Here, we introduce a novel strategy that discriminates among putative models based on their repertoire of qualitatively distinct phenotypes, without relying on knowledge of specific values for rate constants and binding constants. As an illustration, we apply this strategy to two synthetic gene circuits exhibiting anomalous behaviors. Our results show that the conventional models, based on their well-characterized components, cannot account for the experimental observations. We examine a total of 40 alternative hypotheses and show that only 5 have the potential to reproduce the experimental data, and one can do so with biologically relevant parameter values.

  5. The inducible CAM plants in putative lunar lander experiments

    Science.gov (United States)

    Burlak, Olexii; Zaetz, Iryna; Soldatkin, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; de Vera, Jean-Pierre; Vidmachenko, Anatolii; Foing, Bernard H.; Kozyrovska, Natalia

    Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Cras-sulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3-to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009). References 1. Winter K., Garcia M., Holtum J. (2008) J. Exp. Bot. 59(7):1829-1840 2. Bourlak O., Lar O., Rogutskyy I., Mikheev A., Zaets I., Chervatyuk N., de Vera J.-P., Danilchenko A.B. Foing B.H., zyrovska N. (2010) Space Sci. Technol. 3. Kozyrovska N.O., Vidmachenko A.P., Foing B.H. et al. Exploration/call/estec/ESA. 2009.

  6. Formation of putative chloroplast cytochromes in isolated developing pea chloroplasts

    International Nuclear Information System (INIS)

    Thaver, S.S.; Bhava, D.; Castelfranco, P.A.

    1986-01-01

    In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea chloroplasts were incubated with [ 14 C]-5-aminolevulinic acid [ 14 C]-ALA. The major labeled band (M/sub r/ = 43 kDa by LDS-PAGE) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H 2 O 2 stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with [ 14 C]-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome. The effect of exogenous iron, iron chelators, gabaculine (an inhibitor of ALA synthesis) and other incubation conditions upon the in vitro formation of putative chloroplast cytochromes will be discussed

  7. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  9. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  10. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  11. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  12. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Putative Risk Factors in Developmental Dyslexia: A Case-Control Study of Italian Children

    Science.gov (United States)

    Mascheretti, Sara; Marino, Cecilia; Simone, Daniela; Quadrelli, Ermanno; Riva, Valentina; Cellino, Maria Rosaria; Maziade, Michel; Brombin, Chiara; Battaglia, Marco

    2015-01-01

    Although dyslexia runs in families, several putative risk factors that cannot be immediately identified as genetic predict reading disability. Published studies analyzed one or a few risk factors at a time, with relatively inconsistent results. To assess the contribution of several putative risk factors to the development of dyslexia, we conducted…

  14. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin.

    Science.gov (United States)

    Clark, D P; Durell, S; Maloy, W L; Zasloff, M

    1994-04-08

    Antimicrobial peptides comprise a diverse class of molecules used in host defense by plants, insects, and animals. In this study we have isolated a novel antimicrobial peptide from the skin of the bullfrog, Rana catesbeiana. This 20 amino acid peptide, which we have termed Ranalexin, has the amino acid sequence: NH2-Phe-Leu-Gly-Gly-Leu-Ile-Lys-Ile-Val-Pro-Ala-Met-Ile-Cys-Ala-Val-Thr- Lys-Lys - Cys-COOH, and it contains a single intramolecular disulfide bond which forms a heptapeptide ring within the molecule. Structurally, Ranalexin resembles the bacterial antibiotic, polymyxin, which contains a similar heptapeptide ring. We have also cloned the cDNA for Ranalexin from a metamorphic R. catesbeiana tadpole cDNA library. Based on the cDNA sequence, it appears that Ranalexin is initially synthesized as a propeptide with a putative signal sequence and an acidic amino acid-rich region at its amino-terminal end. Interestingly, the putative signal sequence of the Ranalexin cDNA is strikingly similar to the signal sequence of opioid peptide precursors isolated from the skin of the South American frogs Phyllomedusa sauvagei and Phyllomedusa bicolor. Northern blot analysis and in situ hybridization experiments demonstrated that Ranalexin mRNA is first expressed in R. catesbeiana skin at metamorphosis and continues to be expressed into adulthood.

  15. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  16. A Functional Assay for Putative Mouse and Human Definitive Endoderm using Chick Whole-Embryo Cultures

    DEFF Research Database (Denmark)

    Johannesson, Martina; Semb, Tor Henrik; Serup, Palle

    2012-01-01

    . Thus, the purpose of this study is to describe a method whereby the in vivo functionality of DE derived from ESCs can be assessed. Methods: By directed differentiation, putative DE was derived from human and mouse ESCs. This putative DE was subsequently transplanted into the endoderm of chick embryos...... to determine any occurrence of integration. Putative DE was analyzed by gene and protein expression prior to transplantation and 48 h post transplantation. Results: Putative DE, derived from mouse and human ESCs, was successfully integrated within the chick endoderm. Endoderm-specific genes were expressed...... result show that putative DE integrates with the chick endoderm and participate in the development of the chicken gut, indicating the generation of functional DE from ESCs. This functional assay can be used to assess the generation of functional DE derived from both human and mouse ESCs and provides...

  17. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Adenosine: a putative mediator of bronchoconstriction in asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.S.

    1987-01-01

    The protective effect of a muscarinic cholinergic antagonists, ipratropium bromide (IB) from inhaled adenosine- and methacholine-induced bronchoconstriction in asthma was studied. Inhaled IB protected from methacholine- but not adenosine-induced bronchoconstriction. Parasympathetically mediated bronchoconstriction is therefore unlikely to account for adenosine's airway effect in asthma. The capacity of theophylline, a bronchodilator and a competitive antagonist of adenosine at its cell surface receptors, to protect asthmatic subjects from adenosine- and histamine-induced bronchoconstriction was determined. Asthmatic airways are infiltrated with inflammatory cells. Human leucocytes prelabeled with (/sup 3/H)-adenine when activated with the calcium ionophore A23187 released labelled hypoxanthine, inosine and adenosine which was associated with a dose-related release of histamine. The chemotactic peptide f-MLP while inducing histamine release had an inconstant effect on release of label. In four of five experiments f-MLP produced a transient early increase in label release but in the remaining experiment no significant release was observed. Anti-human IgE failed to induce significant label release despite releasing histamine. Activated leucocytes are therefore a potential source of adenosine in asthma.

  19. NMR study of the possible interaction in solution of angiotensin II with a peptide encoded by angiotensin II complementary RNA

    International Nuclear Information System (INIS)

    Eaton, H.L.; Fesik, S.W.; Austin, R.E.; Martin, S.F.

    1989-01-01

    The potential binding of angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) (AII) to a peptide encoded by its complementary RNA (Lys-Gly-Val-Asp-Val-Try-Ala-Val) (IIA) has been studied by monitoring the 1 H NMR spectrum of IIA in aqueous phosphate or Tris·HCl buffer ( 2 H 2 O) as it is titrated with AII. For molar ratios of AII/IIA ranging from 0.2 to 1.8, the NMR spectra are unchanged as compared to the spectra of the isolated peptides. Based on these findings, the K d for the putative biomolecular complex of the two peptides under these conditions is calculated to be >10 -4 M. This result does not support the suggestion of Elton et al. that AII and IIA engage in high-affinity binding (K d ∼ 5 x 10 -8 M) with each other

  20. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery....... To better understand the underlying mechanisms of antibody-antigen interaction here we present a pipeline developed by us to structurally classify immunoglobulin antigen binding sites and to infer key sequence residues and other variables that have a prominent role in each structural class....

  1. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  2. Antimicrobial Peptide Production and Purification.

    Science.gov (United States)

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  3. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  4. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    Fromageot, P.; Pradelles, P.; Morgat, J.L.; Levine, H.

    1976-01-01

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3 H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  5. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi

    2016-01-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data...... repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been...... underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...

  6. Purification and subunit structure of a putative K sup + -channel protein identified by its binding properties for dendrotoxin I

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H.; Lazdunski, M. (Centre National de la Recherche Scientifique, Nice (France))

    1988-07-01

    The binding protein for the K{sup +}-channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K{sub d}, 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO{sub 4}/polyacrylamide gel revealed three bands of M{sub r} 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for {sup 125}I-labeled mast cell degranulating peptide, another putative K{sup +}-channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol.

  7. Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I

    International Nuclear Information System (INIS)

    Rehm, H.; Lazdunski, M.

    1988-01-01

    The binding protein for the K + -channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K d , 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO 4 /polyacrylamide gel revealed three bands of M r 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for 125 I-labeled mast cell degranulating peptide, another putative K + -channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol

  8. Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshiki; Hirao, Takeshi; Sakata, Eri; Kamiya, Yukiko; Kurimoto, Eiji; Yoshida, Yukiko; Suzuki, Tadashi; Tanaka, Keiji; Kato, Koichi

    2007-01-01

    Fbs1 is a cytosolic lectin putatively operating as a chaperone as well as a substrate-recognition subunit of the SCF Fbs1 ubiquitin ligase complex. To provide structural and functional basis of preferential binding of Fbs1 to unfolded glycoproteins, we herein characterize the interaction of Fbs1 with a heptapeptide carrying Man 3 GlcNAc 2 by nuclear magnetic resonance (NMR) spectroscopy and other biochemical methods. Inspection of the NMR data obtained by use of the isotopically labeled glycopeptide indicated that Fbs1 interacts with sugar-peptide junctions, which are shielded in native glycoprotein, in many cases, but become accessible to Fbs1 in unfolded glycoproteins. Furthermore, Fbs1 was shown to inhibit deglycosylation of denatured ribonuclease B by a cytosolic peptide:N-glycanase (PNGase). On the basis of these data, we suggest that Fbs1 captures malfolded glycoproteins, protecting them from the attack of PNGase, during the chaperoning or ubiquitinating operation in the cytosol

  9. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  10. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  11. Novel Formulations for Antimicrobial Peptides

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  12. Medicago truncatula transporter database: a comprehensive database resource for M. truncatula transporters

    Directory of Open Access Journals (Sweden)

    Miao Zhenyan

    2012-02-01

    Full Text Available Abstract Background Medicago truncatula has been chosen as a model species for genomic studies. It is closely related to an important legume, alfalfa. Transporters are a large group of membrane-spanning proteins. They deliver essential nutrients, eject waste products, and assist the cell in sensing environmental conditions by forming a complex system of pumps and channels. Although studies have effectively characterized individual M. truncatula transporters in several databases, until now there has been no available systematic database that includes all transporters in M. truncatula. Description The M. truncatula transporter database (MTDB contains comprehensive information on the transporters in M. truncatula. Based on the TransportTP method, we have presented a novel prediction pipeline. A total of 3,665 putative transporters have been annotated based on International Medicago Genome Annotated Group (IMGAG V3.5 V3 and the M. truncatula Gene Index (MTGI V10.0 releases and assigned to 162 families according to the transporter classification system. These families were further classified into seven types according to their transport mode and energy coupling mechanism. Extensive annotations referring to each protein were generated, including basic protein function, expressed sequence tag (EST mapping, genome locus, three-dimensional template prediction, transmembrane segment, and domain annotation. A chromosome distribution map and text-based Basic Local Alignment Search Tools were also created. In addition, we have provided a way to explore the expression of putative M. truncatula transporter genes under stress treatments. Conclusions In summary, the MTDB enables the exploration and comparative analysis of putative transporters in M. truncatula. A user-friendly web interface and regular updates make MTDB valuable to researchers in related fields. The MTDB is freely available now to all users at http://bioinformatics.cau.edu.cn/MtTransporter/.

  13. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    International Nuclear Information System (INIS)

    Johns, Douglas G.; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-01-01

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [ 125 I]-ANP from NPR-C with pM-to-nM K i values. DNP displaced [ 125 I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K i > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure

  14. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [ 35 S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO 4 /PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  15. Putative cryomagma interaction with aerosols deposit at Titan's surface

    Science.gov (United States)

    Coll, Patrice; Navarro-Gonzalez, Rafael; Raulin, Francois; Coscia, David; Ramirez, Sandra I.; Buch, Arnaud; Szopa, Cyril; Poch, Olivier; Cabane, Michel; Brassé, Coralie

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan’s atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma [1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan aerosol analogues, that have been qualified as representative of Titan’s aerosols [2]. Indeed the first results obtained by the ACP experiment onboard Huygens probe revealed that the main products obtained after thermolysis of Titan’s collected aerosols, were ammonia (NH3) and hydrogen cyanide (HCN). Then performing a direct comparison of the volatiles produced after a thermal treatment done in conditions similar to the ones used by the ACP experiment, we may estimate that the tholins we used are relevant to chemical analogues of Titan’s aerosols, and to note free of oxygen. Taking into account recent studies proposing that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), and assuming the presence of specific gas species [4, 5], in particular CO2 and H2S, trapped in likely internal ocean, we determine a new probable composition of the cryomagma which could potentially interact with deposited Titan’s aerosols. We then carried out different hydrolyses, taking into account this composition, and we established the influence of the hydrolysis temperature on the organic molecules production. References: [1] Mitri et al., 2008. Resurfacing of Titan by ammonia-water cryomagma. Icarus. 196, 216-224. [2] Coll et al. 2013, Can laboratory tholins mimic the chemistry producing Titan's aerosols? A review in light of ACP experimental results, Planetary and Space Science 77, 91-103. [3] Tobie et al. 2012. Titan’s Bulk Composition Constrained by Cassini-Huygens: implication for internal outgassing. The

  16. Neuromedin s as novel putative regulator of luteinizing hormone secretion.

    Science.gov (United States)

    Vigo, E; Roa, J; López, M; Castellano, J M; Fernandez-Fernandez, R; Navarro, V M; Pineda, R; Aguilar, E; Diéguez, C; Pinilla, L; Tena-Sempere, M

    2007-02-01

    Neuromedin S (NMS), a 36 amino acid peptide structurally related to neuromedin U, was recently identified in rat brain as ligand for the G protein-coupled receptor FM4/TGR-1, also termed neuromedin U receptor type-2 (NMU2R). Central expression of NMS appears restricted to the suprachiasmatic nucleus, and NMS has been involved in the regulation of dark-light rhythms and suppression of food intake. Reproduction is known to be tightly regulated by metabolic and photoperiodic cues. Yet the potential contribution of NMS to the control of reproductive axis remains unexplored. We report herein analyses of hypothalamic expression of NMS and NMU2R genes, as well as LH responses to NMS, in different developmental and functional states of the female rat. Expression of NMS and NMU2R genes was detected at the hypothalamus along postnatal development, with significant fluctuations of their relative levels (maximum at prepubertal stage and adulthood). In adult females, hypothalamic expression of NMS (which was confined to suprachiasmatic nucleus) and NMU2R significantly varied during the estrous cycle (maximum at proestrus) and was lowered after ovariectomy and enhanced after progesterone supplementation. Central administration of NMS evoked modest LH secretory responses in pubertal and cyclic females at diestrus, whereas exaggerated LH secretory bursts were elicited by NMS at estrus and after short-term fasting. Conversely, NMS significantly decreased elevated LH concentrations of ovariectomized rats. In summary, we provide herein novel evidence for the ability of NMS to modulate LH secretion in the female rat. Moreover, hypothalamic expression of NMS and NMU2R genes appeared dependent on the functional state of the female reproductive axis. Our data are the first to disclose the potential implication of NMS in the regulation of gonadotropic axis, a function that may contribute to the integration of circadian rhythms, energy balance, and reproduction.

  17. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  18. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  19. Streptavidin-binding peptides and uses thereof

    Science.gov (United States)

    Szostak, Jack W. (Inventor); Wilson, David S. (Inventor); Keefe, Anthony D. (Inventor)

    2006-01-01

    The invention provides peptides with high affinity for streptavidin. These peptides may be expressed as part of fusion proteins to facilitate the detection, quantitation, and purification of proteins of interest.

  20. Biomedical Applications of Self-Assembling Peptides

    NARCIS (Netherlands)

    Radmalekshahi, Mazda; Lempsink, Ludwijn; Amidi, Maryam; Hennink, Wim E.; Mastrobattista, Enrico

    2016-01-01

    Self-assembling peptides have gained increasing attention as versatile molecules to generate diverse supramolecular structures with tunable functionality. Because of the possibility to integrate a wide range of functional domains into self-assembling peptides including cell attachment sequences,

  1. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    in antimicrobial activity. Consequently, the majority of peptides put into clinical trials have failed at some point, underlining the importance of a thorough peptide optimization. An important tool in peptide design and optimization is quantitative structure-activity relationship (QSAR) analysis, correlating...... chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...

  2. Characterization of cyclic peptides containing disulfide bonds

    OpenAIRE

    Johnson, Mindy; Liu, Mingtao; Struble, Elaine; Hettiarachchi, Kanthi

    2015-01-01

    Unlike linear peptides, analysis of cyclic peptides containing disulfide bonds is not straightforward and demands indirect methods to achieve a rigorous proof of structure. Three peptides that belong to this category, p-Cl-Phe-DPDPE, DPDPE, and CTOP, were analyzed and the results are presented in this paper. The great potential of two dimensional NMR and ESI tandem mass spectrometry was harnessed during the course of peptide characterizations. A new RP-HPLC method for the analysis of trifluor...

  3. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  4. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de

  5. Putative role for ABC multidrug exporters in yeast quorum sensing

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Otakar; Kučerová, Helena; Harant, Karel; Palková, Z.; Váchová, Libuše

    2009-01-01

    Roč. 583, č. 7 (2009), s. 1107-1113 ISSN 0014-5793 R&D Projects: GA ČR GA525/05/0297; GA ČR GP204/05/P175; GA MŠk(CZ) LC531 Grant - others:GB(GB) Howard Hughes Medical Institute International Research Award Institutional research plan: CEZ:AV0Z50200510 Keywords : multidrug resistance * pdr transporter * yeast physiology Subject RIV: EE - Microbiology, Virology Impact factor: 3.541, year: 2009

  6. Oxidative Modification of Tryptophan-Containing Peptides

    DEFF Research Database (Denmark)

    Petersen, Jonas; Christensen, Pia Katrine; Nielsen, Mathias T

    2018-01-01

    We herein present a broadly useful method for the chemoselective modification of a wide range of tryptophan-containing peptides. Exposing a tryptophan-containing peptide to 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted in a selective cyclodehydration between the peptide backbone...

  7. Synthetic Procedures for Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants.

    Science.gov (United States)

    Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong

    2015-01-01

    Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.

  9. A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus.

    Science.gov (United States)

    Reeves, Emer P; Reiber, Kathrin; Neville, Claire; Scheibner, Olaf; Kavanagh, Kevin; Doyle, Sean

    2006-07-01

    Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.

  10. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    Science.gov (United States)

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  11. Hyperthermic responses to central injections of some peptide and non-peptide opioids in the guinea-pig

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.

  12. Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer.

    Science.gov (United States)

    Plénat, Thomas; Boichot, Sylvie; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2005-12-01

    Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(alpha) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(alpha) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(alpha). The simultaneous two-states organization of P(alpha), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide.

  13. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes.

    Science.gov (United States)

    Chen, Qu; Wang, Qi; Liu, Ying-Chun; Wu, Tao; Kang, Yu; Moore, Joshua D; Gubbins, Keith E

    2009-07-07

    This work focuses on the dynamic properties and energetics of the protein/peptide drug during its transport through carbon nanotubes (CNTs). A systematic study was performed on the interaction between the peptide and the CNTs. In the molecular dynamics (MD) simulations, the protein/peptide molecule Zadaxin is observed to be encapsulated inside the nanotube after its spontaneous insertion and oscillates around the center of the tube, where the van der Waals interaction energy is observed to be a minimum. Furthermore, it is found by performing steered MD simulations that the pulling force applied to the peptide reaches a maximum value, which demonstrates the ability of the CNTs to trap protein/peptide drugs. Such effects, attributed to van der Waals interactions, can be influenced by varying the lengths and diameters of the CNTs. Longer nanotubes provide a broader area to trap the peptide, while smaller nanotubes are able to encapsulate the peptide with a deeper interaction energy well. This investigation provides insights into nanoscale pharmaceutical drug delivery devices.

  14. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  15. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  16. Putative pacemakers in the eyestalk and brain of the crayfish Procambarus clarkii show circadian oscillations in levels of mRNA for crustacean hyperglycemic hormone.

    Directory of Open Access Journals (Sweden)

    Janikua Nelson-Mora

    Full Text Available Crustacean hyperglycemic hormone (CHH synthesizing cells in the optic lobe, one of the pacemakers of the circadian system, have been shown to be present in crayfish. However, the presence of CHH in the central brain, another putative pacemaker of the multi-oscillatory circadian system, of this decapod and its circadian transcription in the optic lobe and brain have yet to be explored. Therefore, using qualitative and quantitative PCR, we isolated and cloned a CHH mRNA fragment from two putative pacemakers of the multi-oscillatory circadian system of Procambarus clarkii, the optic lobe and the central brain. This CHH transcript synchronized to daily light-dark cycles and oscillated under dark, constant conditions demonstrating statistically significant daily and circadian rhythms in both structures. Furthermore, to investigate the presence of the peptide in the central brain of this decapod, we used immunohistochemical methods. Confocal microscopy revealed the presence of CHH-IR in fibers and cells of the protocerebral and tritocerebal clusters and neuropiles, particularly in some neurons located in clusters 6, 14, 15 and 17. The presence of CHH positive neurons in structures of P. clarkii where clock proteins have been reported suggests a relationship between the circadian clockwork and CHH. This work provides new insights into the circadian regulation of CHH, a pleiotropic hormone that regulates many physiological processes such as glucose metabolism and osmoregulatory responses to stress.

  17. High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity.

    Directory of Open Access Journals (Sweden)

    Arton Berisha

    Full Text Available The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP as proposed by classical immunology concepts. In this study we used Galleria mellonella to validate the danger model in insects. Hemolymph of G. mellonella was digested with thermolysin (as a representative for virulence-associated metalloproteinases produced by humanpathogens followed by chromatographic fractionation. Immune-stimulatory activity was tested by measuring lysozyme activity with the lytic zone assays against Micrococcus luteus cell wall components. Peptides were analyzed by nano-scale liquid chromatography coupled to high-resolution Fourier transform mass spectrometers. Addressing the lack of a genome sequence we complemented the rudimentary NCBI protein database with a recently established transcriptome and de novo sequencing methods for peptide identification. This approach led to identification of 127 peptides, 9 of which were identified in bioactive fractions. Detailed MS/MS experiments in comparison with synthetic analogues confirmed the amino acid sequence of all 9 peptides. To test the potential of these putative danger signals to induce immune responses we injected the synthetic analogues into G. mellonella and monitored the anti-bacterial activity against living Micrococcus luteus. Six out of 9 peptides identified in the bioactive fractions exhibited immune-stimulatory activity when injected. Hence, we provide evidence that small peptides resulting from thermolysin-mediated digestion of hemolymph proteins function as endogenous danger signals which can set the immune system into alarm. Consequently, our study indicates that the danger model also plays a role in insect immunity.

  18. Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery

    Science.gov (United States)

    Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.

    1993-04-01

    Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.

  19. Short communication: Promotion of glucagon-like peptide-2 secretion in dairy calves with a bioactive extract from Olea europaea.

    Science.gov (United States)

    Morrison, S Y; Pastor, J J; Quintela, J C; Holst, J J; Hartmann, B; Drackley, J K; Ipharraguerre, I R

    2017-03-01

    Diarrhea episodes in dairy calves involve profound alterations in the mechanism controlling gut barrier function that ultimately compromise intestinal permeability to macromolecules, including pathogenic bacteria. Intestinal dysfunction models suggest that a key element of intestinal adaptation during the neonatal phase is the nutrient-induced secretion of glucagon-like peptide (GLP)-2 and associated effects on mucosal cell proliferation, barrier function, and inflammatory response. Bioactive molecules found in Olea europaea have been shown to induce the release of regulatory peptides from model enteroendocrine cells. The ability to enhance GLP-2 secretion via the feeding of putative GLP-2 secretagogues is untested in newborn calves. The objectives of this study were to determine whether feeding a bioactive extract from Olea europaea (OBE) mixed in the milk replacer (1) can stimulate GLP-2 secretion beyond the response elicited by enteral nutrients and, thereby, (2) improve intestinal permeability and animal growth as well as (3) reduce the incidence of diarrhea in preweaning dairy calves. Holstein heifer calves (n = 60) were purchased, transported to the research facility, and blocked by body weight and total serum protein and assigned to 1 of 3 treatments. Treatments were control (CON), standard milk replacer (MR) and ad libitum starter; CON plus OBE added into MR at 30 mg/kg of body weight (OBE30); and CON plus OBE added into MR at 60 mg/kg of body weight (OBE60). The concentration of GLP-2 was measured at the end of wk 2. Intestinal permeability was measured at the onset of the study and the end of wk 2 and 6, with lactulose and d-mannitol as markers. Treatments did not affect calf growth and starter intake. Compared with CON, administration of OBE60 increased the nutrient-induced response in GLP-2 by about 1 fold and reduced MR intake during the second week of study. Throughout the study, however, all calves had compromised intestinal permeability and a high

  20. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Science.gov (United States)

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e(-5)). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  1. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    Science.gov (United States)

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobium officinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D . officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D . officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D . officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D . officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D . officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  2. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Directory of Open Access Journals (Sweden)

    Ming-Ming Zhao

    Full Text Available Dendrobiumofficinale (Orchidaceae is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs were clustered to 1074 Unigenes (including 902 singletons and 172 contigs, which were searched against the NCBI non-redundant (NR protein database (E-value cutoff, e(-5. Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO, Clusters of orthologous Groups of proteins (COGs and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS. The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs, which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS, were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  3. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng

    2012-10-02

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  5. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  6. Transcriptomic Analysis of Neuropeptides and Peptide Hormones in the Barnacle Balanus amphitrite: Evidence of Roles in Larval Settlement

    Science.gov (United States)

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S. S.; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  7. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Yan

    Full Text Available The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in

  8. Peptides: Production, bioactivity, functionality, and applications

    DEFF Research Database (Denmark)

    Hajfathalian, Mona; Ghelichi, Sakhi; García Moreno, Pedro Jesús

    2017-01-01

    Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry...... by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties...... of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed....

  9. Molecular cloning and characterization of a putative OGG_N domain ...

    African Journals Online (AJOL)

    Molecular cloning and characterization of a putative OGG_N domain from the camel, Camelus dromedarius. Farid Shokry Ataya, Mohammad Saud Alanazi, Dalia Fouad, Hehsam Mahmoud Saeed, Mohammad Bazzi ...

  10. AP-1/KIF13A Blocking Peptides Impair Melanosome Maturation and Melanin Synthesis

    Directory of Open Access Journals (Sweden)

    Cécile Campagne

    2018-02-01

    Full Text Available Melanocytes are specialized cells that generate unique organelles called melanosomes in which melanin is synthesized and stored. Melanosome biogenesis and melanocyte pigmentation require the transport and delivery of melanin synthesizing enzymes, such as tyrosinase and related proteins (e.g., TYRP1, from endosomes to maturing melanosomes. Among the proteins controlling endosome-melanosome transport, AP-1 together with KIF13A coordinates the endosomal sorting and trafficking of TYRP1 to melanosomes. We identify here β1-adaptin AP-1 subunit-derived peptides of 5 amino acids that block the interaction of KIF13A with AP-1 in cells. Incubating these peptides with human MNT-1 cells or 3D-reconstructed pigmented epidermis decreases pigmentation by impacting the maturation of melanosomes in fully pigmented organelles. This study highlights that peptides targeting the intracellular trafficking of melanocytes are candidate molecules to tune pigmentation in health and disease.

  11. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All...... these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important...... factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role...

  12. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.

    Science.gov (United States)

    Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2008-08-01

    We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.

  13. Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Youngseon; Jung, Younjoon [Seoul National Univ., Seoul (Korea, Republic of); Kim, Hyung J. [Carnegie Mellon Univ., Pittsburgh (United States)

    2012-11-15

    Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium (BMI{sup +}), but different anions, hexafluorophosphate (PF{sub 6}{sup -}) and chloride (Cl{sup -}). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent BMI{sup 0}Cl{sup 0}, a non-ionic counter-part of BMI{sup +}Cl{sup -}. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of BMI{sup +}Cl{sup -} and BMI{sup 0}Cl{sup 0} shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic BMI{sup +}Cl{sup -}, compared with those in more hydrophobic BMI{sup +}PF{sub 6}{sup -}. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

  14. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  15. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  16. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hwa; Ha, Ji-Hyang [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Kim, Yul [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Bae, Kwang-Hee [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Park, Jae-Yong [Department of Physiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Choi, Wan Sung [Department of Anatomy and Neurobiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Yoon, Ho Sup [Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637511 (Singapore); Park, Sung Goo; Park, Byoung Chul [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Yi, Gwan-Su, E-mail: gsyi@kaist.ac.kr [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Chi, Seung-Wook, E-mail: swchi@kribb.re.kr [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.

  18. Radio peptide imaging and therapy

    International Nuclear Information System (INIS)

    Buscombe, Jonh

    1997-01-01

    Full text. The concept of the magic bullet retains its attraction to us. If only we could take a drug or radioisotope and inject this intravenously and then will attach to the target cancer. This may allow imaging if labelled with a radio pharmaceutical or possibly even effective therapy. Initially work was started using antibodies of mouse origin. These have shown some utility in targeting tumors but there are problems in that these are essentially non-human proteins, often derived from mice. This leads to the formation of antibodies against that antibody so that repeat administrations lead to reduced efficacy and possibly may carry a risk anaphylaxis for the patient. Two different methods have evolved to deal with this situation. Either make antibodies more human or use smaller fragments, so that they are less likely to cause allergic reactions. The second method is to try and use a synthetic peptide. This will contain a series of amino acids which recognize a certain cell receptor. For example the somatostatin analogue Octreotide is an 8 amino acid peptide which has the same biological actions as natural somatostatin but an increased plasma half life. To this is added a linker a good example being DTPA and then radioisotope for example In-111. There we can have the complex In-111-DTPA-Octreotide which can be used to image somatostatin receptors in vivo. The main advantage over antibodies is that the cost production is less and many different variation of peptides for a particular receptor can be manufactured and assessed to find which is the optimal agent tumour imaging at a fraction of the cost of antibody production. There are two main approaches. Firstly to take a natural peptide hormone such as insulin or VIP and label by a simple method such as iodination with I-123. A group in Vienna have done it and shown good uptake of I-123 Insulin in primary hepatomas and of I-123 VIP in pancreatic cancers. Many natural peptide hormones however have a short plasma half

  19. Transendothelial Transport and Its Role in Therapeutics

    OpenAIRE

    Upadhyay, Ravi Kant

    2014-01-01

    Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, ...

  20. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Ploug; Lauridsen, Anne-Marie; Kristensen, Poul

    2006-01-01

    . Adrm1 has been described as an interferon-gamma-inducible, heavily glycosylated membrane protein of 110 kDa. However, we found Adrm1 in mouse tissues only as a 42 kDa peptide, corresponding to the mass of the non-glycosylated peptide chain, and it could not be induced in HeLa cells with interferon...

  1. Peptide-targeted polymer cancerostatics

    Czech Academy of Sciences Publication Activity Database

    Böhmová, Eliška; Pola, Robert

    2016-01-01

    Roč. 65, Suppl. 2 (2016), S153-S164 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : HPMA copolymers * tumor targeting * peptides Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65%20Suppl%202/65_S153.pdf

  2. Photosystem Inspired Peptide Hybrid Catalysts

    Science.gov (United States)

    2017-06-07

    materials defined at the molecular level. We propose a novel way to make hybrid catalyst composed of inorganic nanomaterials and peptides. The...Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research Laboratory Air...ORGANIZATION NAME(S) AND ADDRESS(ES) SEOUL NATIONAL UNIVERSITY SNUR&DB FOUNDATION RESEARCH PARK CENTER SEOUL, 151742 KR 8. PERFORMING ORGANIZATION REPORT

  3. Peptide stabilized amphotericin B nanodisks

    Science.gov (United States)

    Tufteland, Megan; Pesavento, Joseph B.; Bermingham, Rachelle L.; Hoeprich, Paul D.; Ryan, Robert O.

    2007-01-01

    Nanometer scale apolipoprotein A-I stabilized phospholipid disk complexes (nanodisks; ND) have been formulated with the polyene antibiotic amphotericin B (AMB). The present studies were designed to evaluate if a peptide can substitute for the function of the apolipoprotein component of ND with respect to particle formation and stability. An 18-residue synthetic amphipathic α-helical peptide, termed 4F (Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2), solubilized vesicles comprised of egg phosphatidylcholine (egg PC), dipentadecanoyl PC or dimyristoylphosphatidylcholine (DMPC) at rates greater than or equal to solubilization rates observed with human apolipoprotein A-I (apoA-I; 243 amino acids). Characterization studies revealed that interaction with DMPC induced a near doubling of 4F tryptophan fluorescence emission quantum yield (excitation 280 nm) and a ~7 nm blue shift in emission wavelength maximum. Inclusion of AMB in the vesicle substrate resulted in formation of 4F AMB-ND. Spectra of AMB containing particles revealed the antibiotic is a highly effective quencher of 4F tryptophan fluorescence emission, giving rise to a Ksv = 7.7 × 104. Negative stain electron microscopy revealed that AMB-ND prepared with 4F possessed a disk shaped morphology similar to ND prepared without AMB or prepared with apoA-I. In yeast and pathogenic fungi growth inhibition assays, 4F AMB-ND was as effective as apoA-I AMB-ND. The data indicate that AMB-ND generated using an amphipathic peptide in lieu of apoA-I form a discrete population of particles that possess potent biological activity. Given their intrinsic versatility, peptides may be preferred for scale up and clinical application of AMB-ND. PMID:17293004

  4. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  5. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2016-12-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  6. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2017-02-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of pMHC formation or TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  7. Biopharmaceuticals: From peptide to drug

    Science.gov (United States)

    Hannappel, Margarete

    2017-08-01

    Biologics are therapeutic proteins or peptides that are produced by means of biological processes within living organisms and cells. They are highly specific molecules and play a crucial role as therapeutics for the treatment of severe and chronic diseases (e.g. cancer, rheumatoid arthritis, diabetes, autoimmune disorders). The development of new biologics and biologics-based drugs gains more and more importance in the fight against various diseases. A short overview on biotherapeutical drug development is given. Cone snails are a large group of poisonous, predatory sea snails with more than 700 species. They use a very powerful venom which rapidly inactivates and paralyzes their prey. Most bioactive venom components are small peptides (conotoxins, conopeptides) which are precisely directed towards a specific target (e.g. ion channel, receptors). Due to their small size, their precision and speed of action, naturally occurring cone snail venom peptides represent an attractive source for the identification and design of novel biological drug entities. The Jagna cone snail project is an encouraging initiative to map the ecological variety of cone snails around the island of Bohol (Philippines) and to conserve the biological information for potential future application.

  8. Coffee, hunger, and peptide YY.

    Science.gov (United States)

    Greenberg, James A; Geliebter, Allan

    2012-06-01

    There is evidence from several empirical studies suggesting that coffee may help people control body weight. Our objective was to assess the effects of caffeine, caffeinated coffee, and decaffeinated coffee, both alone and in combination with 75 g of glucose, on perceived hunger and satiety and related peptides. We conducted a placebo-controlled single-blinded randomized 4-way crossover trial. Eleven healthy male volunteers (mean age, 23.5 ± 5.7 years; mean BMI, 23.6 ± 4.2 kg/m(2)) ingested 1 of 3 test beverages (caffeine in water, caffeinated coffee, or decaffeinated coffee) or placebo (water), and 60 minutes later they ingested the glucose. Eight times during each laboratory visit, hunger and satiety were assessed by visual analog scales, and blood samples were drawn to measure 3 endogenous peptides associated with hunger and satiety: ghrelin, peptide YY (PYY), and leptin. Compared to placebo, decaffeinated coffee yielded significantly lower hunger during the whole 180-minute study period and higher plasma PYY for the first 90 minutes (p hunger or PYY. Caffeinated coffee showed a pattern between that of decaffeinated coffee and caffeine in water. These findings suggest that one or more noncaffeine ingredients in coffee may have the potential to decrease body weight. Glucose ingestion did not change the effects of the beverages. Our randomized human trial showed that decaffeinated coffee can acutely decrease hunger and increase the satiety hormone PYY.

  9. In silico Prediction, in vitro Antibacterial Spectrum, and Physicochemical Properties of a Putative Bacteriocin Produced by Lactobacillus rhamnosus Strain L156.4

    Directory of Open Access Journals (Sweden)

    Letícia de C. Oliveira

    2017-05-01

    Full Text Available A bacteriocinogenic Lactobacillus rhamnosus L156.4 strain isolated from the feces of NIH mice was identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. The entire genome was sequenced using Illumina, annotated in the PGAAP, and RAST servers, and deposited. Conserved genes associated with bacteriocin synthesis were predicted using BAGEL3, leading to the identification of an open reading frame (ORF that shows homology with the L. rhamnosus GG (ATCC 53103 prebacteriocin gene. The encoded protein contains a conserved protein motif associated a structural gene of the Enterocin A superfamily. We found ORFs related to the prebacteriocin, immunity protein, ABC transporter proteins, and regulatory genes with 100% identity to those of L. rhamnosus HN001. In this study, we provide evidence of a putative bacteriocin produced by L. rhamnosus L156.4 that was further confirmed by in vitro assays. The antibacterial activity of the substances produced by this strain was evaluated using the deferred agar-spot and spot-on-the lawn assays, and a wide antimicrobial activity spectrum against human and foodborne pathogens was observed. The physicochemical characterization of the putative bacteriocin indicated that it was sensitive to proteolytic enzymes, heat stable and maintained its antibacterial activity in a pH ranging from 3 to 9. The activity against Lactobacillus fermentum, which was used as an indicator strain, was detected during bacterial logarithmic growth phase, and a positive correlation was confirmed between bacterial growth and production of the putative bacteriocin. After a partial purification from cell-free supernatant by salt precipitation, the putative bacteriocin migrated as a diffuse band of approximately 1.0–3.0 kDa by SDS-PAGE. Additional studies are being conducted to explore its use in the food industry for controlling bacterial growth and for probiotic applications.

  10. In silico Prediction, in vitro Antibacterial Spectrum, and Physicochemical Properties of a Putative Bacteriocin Produced by Lactobacillus rhamnosus Strain L156.4

    Science.gov (United States)

    Oliveira, Letícia de C.; Silveira, Aline M. M.; Monteiro, Andréa de S.; dos Santos, Vera L.; Nicoli, Jacques R.; Azevedo, Vasco A. de C.; Soares, Siomar de C.; Dias-Souza, Marcus V.; Nardi, Regina M. D.

    2017-01-01

    A bacteriocinogenic Lactobacillus rhamnosus L156.4 strain isolated from the feces of NIH mice was identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. The entire genome was sequenced using Illumina, annotated in the PGAAP, and RAST servers, and deposited. Conserved genes associated with bacteriocin synthesis were predicted using BAGEL3, leading to the identification of an open reading frame (ORF) that shows homology with the L. rhamnosus GG (ATCC 53103) prebacteriocin gene. The encoded protein contains a conserved protein motif associated a structural gene of the Enterocin A superfamily. We found ORFs related to the prebacteriocin, immunity protein, ABC transporter proteins, and regulatory genes with 100% identity to those of L. rhamnosus HN001. In this study, we provide evidence of a putative bacteriocin produced by L. rhamnosus L156.4 that was further confirmed by in vitro assays. The antibacterial activity of the substances produced by this strain was evaluated using the deferred agar-spot and spot-on-the lawn assays, and a wide antimicrobial activity spectrum against human and foodborne pathogens was observed. The physicochemical characterization of the putative bacteriocin indicated that it was sensitive to proteolytic enzymes, heat stable and maintained its antibacterial activity in a pH ranging from 3 to 9. The activity against Lactobacillus fermentum, which was used as an indicator strain, was detected during bacterial logarithmic growth phase, and a positive correlation was confirmed between bacterial growth and production of the putative bacteriocin. After a partial purification from cell-free supernatant by salt precipitation, the putative bacteriocin migrated as a diffuse band of approximately 1.0–3.0 kDa by SDS-PAGE. Additional studies are being conducted to explore its use in the food industry for controlling bacterial growth and for probiotic applications. PMID:28579977

  11. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  12. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  13. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  14. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  15. A putative role for amino acid permeases in sink-source communication of barley tissues uncovered by RNA-seq

    Directory of Open Access Journals (Sweden)

    Kohl Stefan

    2012-08-01

    Full Text Available Abstract Background The majority of nitrogen accumulating in cereal grains originates from proteins remobilised from vegetative organs. However, interactions between grain filling and remobilisation are poorly understood. We used transcriptome large-scale pyrosequencing of flag leaves, glumes and developing grains to identify cysteine peptidase and N transporter genes playing a role in remobilisation and accumulation of nitrogen in barley. Results Combination of already known and newly derived sequence information reduced redundancy, increased contig length and identified new members of cysteine peptidase and N transporter gene families. The dataset for N transporter genes was aligned with N transporter amino acid sequences of rice and Arabidopsis derived from Aramemnon database. 57 AAT, 45 NRT1/PTR and 22 OPT unigenes identified by this approach cluster to defined subgroups in the respective phylogenetic trees, among them 25 AAT, 8 NRT1/PTR and 5 OPT full-length sequences. Besides, 59 unigenes encoding cysteine peptidases were identified and subdivided into different families of the papain cysteine peptidase clade. Expression profiling of full-length AAT genes highlighted amino acid permeases as the group showing highest transcriptional activity. HvAAP2 and HvAAP6 are highly expressed in vegetative organs whereas HvAAP3 is grain-specific. Sequence similarities cluster HvAAP2 and the putative transporter HvAAP6 together with Arabidopsis transporters, which are involved in long-distance transfer of amino acids. HvAAP3 is closely related to AtAAP1 and AtAAP8 playing a role in supplying N to developing seeds. An important role in amino acid re-translocation can be considered for HvLHT1 and HvLHT2 which are specifically expressed in glumes and flag leaves, respectively. PCA and K-means clustering of AAT transcript data revealed coordinate developmental stages in flag leaves, glumes and grains. Phloem-specific metabolic compounds are proposed that

  16. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  17. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  18. Expression, purification and DNA-binding activities of two putative ModE proteins of Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae

    Directory of Open Access Journals (Sweden)

    André L.F. Souza

    2008-01-01

    Full Text Available In prokaryotes molybdenum is taken up by a high-affinity ABC-type transporter system encoded by the modABC genes. The endophyte β-Proteobacterium Herbaspirillum seropedicae has two modABC gene clusters and two genes encoding putative Mo-dependent regulator proteins (ModE1 and ModE2. Analysis of the amino acid sequence of the ModE1 protein of H. seropedicae revealed the presence of an N-terminal domain containing a DNA-binding helix-turn-helix motif (HTH and a C-terminal domain with a molybdate-binding motif. The second putative regulator protein, ModE2, contains only the helix-turn-helix motif, similar to that observed in some sequenced genomes. We cloned the modE1 (810 bp and modE2 (372 bp genes and expressed them in Escherichia coli as His-tagged fusion proteins, which we subsequently purified. The over-expressed recombinant His-ModE1 was insoluble and was purified after solubilization with urea and then on-column refolded during affinity chromatography. The His-ModE2 was expressed as a soluble protein and purified by affinity chromatography. These purified proteins were analyzed by DNA band-shift assays using the modA2 promoter region as probe. Our results indicate that His-ModE1 and His-ModE2 are able to bind to the modA2 promoter region, suggesting that both proteins may play a role in the regulation of molybdenum uptake and metabolism in H. seropedicae.

  19. Recent Developments in Peptide-Based Nucleic Acid Delivery

    Directory of Open Access Journals (Sweden)

    Tobias Restle

    2008-07-01

    Full Text Available Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cellpenetrating peptides (CPPs. The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10-30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisenseoligonucleotides, which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls.

  20. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    International Nuclear Information System (INIS)

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui; Xiao, Gengfu

    2011-01-01

    Highlights: → Successfully selected specific PreS1-interacting peptides by using phage displayed library. → Alignment of the positive phage clones revealed a consensus PreS1 binding motif. → A highly enriched peptide named P7 had a strong binding ability for PreS1. → P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX n HX m HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  1. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-09-09

    Highlights: {yields} Successfully selected specific PreS1-interacting peptides by using phage displayed library. {yields} Alignment of the positive phage clones revealed a consensus PreS1 binding motif. {yields} A highly enriched peptide named P7 had a strong binding ability for PreS1. {yields} P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX{sub n}HX{sub m}HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  2. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes

    Directory of Open Access Journals (Sweden)

    Yuki eHirakawa

    2015-11-01

    Full Text Available Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related family peptide hormone, TDIF (tracheary element differentiation inhibitory factor, regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, monilophytes and lycophytes. We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM in Ginkgo biloba, Adiantum aethiopicum and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and monilophytes were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. bioloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the monilophyte Asplenium x lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  3. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    Science.gov (United States)

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms

  4. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  5. Peptide YY receptors in the brain

    International Nuclear Information System (INIS)

    Inui, A.; Oya, M.; Okita, M.

    1988-01-01

    Radiolabelled ligand binding studies demonstrated that specific receptors for peptide YY are present in the porcine as well as the canine brains. Peptide YY was bound to brain tissue membranes via high-affinity (dissociation constant, 1.39 X 10(-10)M) and low-affinity (dissociation constant, 3.72 X 10(-8)M) components. The binding sites showed a high specificity for peptide YY and neuropeptide Y, but not for pancreatic polypeptide or structurally unrelated peptides. The specific activity of peptide YY binding was highest in the hippocampus, followed by the pituitary gland, the hypothalamus, and the amygdala of the porcine brain, this pattern being similarly observed in the canine brain. The results suggest that peptide YY and neuropeptide Y may regulate the function of these regions of the brain through interaction with a common receptor site

  6. The human endolymphatic sac expresses natriuretic peptides

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2017-01-01

    : Several natriuretic peptides were found expressed significantly in the ES, including uroguanylin and brain natriuretic peptide, but also peptides regulating vascular tone, including adrenomedullin 2. In addition, both neurophysin and oxytocin (OXT) were found significantly expressed. All peptides were...... verified by immunohistochemistry. CONCLUSION: The present data support the hypothesis that the human ES may have an endocrine/paracrine capacity through expression of several peptides with potent natriuretic activity. Furthermore, the ES may influence the hypothalamo-pituitary-adrenal axis and may regulate...... vasopressin receptors and aquaporin-2 channels in the inner ear via OXT expression. We hypothesize that the ES is likely to regulate inner ear endolymphatic homeostasis, possibly through secretion of several peptides, but it may also influence systemic and/or intracranial blood pressure through direct...

  7. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  8. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    Science.gov (United States)

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  10. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.

    Science.gov (United States)

    Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio

    2012-11-10

    Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes.

    Science.gov (United States)

    Kronenberg-Versteeg, Deborah; Eichmann, Martin; Russell, Mark A; de Ru, Arnoud; Hehn, Beate; Yusuf, Norkhairin; van Veelen, Peter A; Richardson, Sarah J; Morgan, Noel G; Lemberg, Marius K; Peakman, Mark

    2018-04-01

    The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis. © 2018 by the American Diabetes Association.

  12. Use of galerina marginata genes and proteins for peptide production

    Science.gov (United States)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2018-04-03

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  13. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2017-03-21

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  14. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex.

    Science.gov (United States)

    Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter

    2012-09-07

    Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.

  15. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  16. Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades.

    Science.gov (United States)

    Bidwell, Gene L; Raucher, Drazen

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.

  17. A novel chimeric peptide with antimicrobial activity.

    Science.gov (United States)

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  18. Antimicrobial Peptides, Infections and the Skin Barrier

    DEFF Research Database (Denmark)

    Clausen, Maja Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and trans......The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis...

  19. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall

    2010-01-01

    the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  20. Connecting peptide (c-peptide) and the duration of diabetes mellitus ...

    African Journals Online (AJOL)

    Objective: C-peptide is derived from proinsulin and it is secreted in equimolar concentration with insulin. Plasma C-peptide is more stable than insulin and it provides an indirect measure of insulin secretory reserve and beta cell function. To determine relationship between C-peptide and duration of diabetes mellitus, age, ...

  1. Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops.

    Science.gov (United States)

    Kondhare, Kirtikumar R; Kumar, Amit; Hannapel, David J; Banerjee, Anjan K

    2018-02-07

    Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root

  2. Radiometallating antibodies and autoantigenic peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Lewis, D.; Cole, D.A.; Newmyer, S.L.; Schulte, L.D.; Mixon, P.L.; Schreyer, S.A.; Burns, T.P.; Roberts, J.C.; Figard, S.D.; McCormick, D.J.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1991-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N- benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have one functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies and have developed methods to label smaller biologically active molecules, such as autoantigenic peptides (fragments of the acetylcholine receptor), which are pertinent to myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules, the radiometallation chemistry, and biological characterization of the radiolabeled compounds will be discussed

  3. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens Peter; Hansen, Lasse H; Terzic, Dijana

    2014-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  4. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  5. Synthesis of radioiodinated labeled peptides

    International Nuclear Information System (INIS)

    Matloobi, M.; Rafii, H.; Beigi, D.; Khalaj, A.; Kamali-Dehghan, M.

    2003-01-01

    Optimization of radioiodination of peptides is covered by both a direct method in which a constituent tyrosine residue is labeled and indirect method by using an iodinated derivative (SIB) of N succinimidyl 3-(tri-n-butylstannyl) benzoate (ATE) as the intermediate. Radioiodination of IgG and FMLF were performed by direct method using Chloramine-T as an oxidant but since Formyl-Methyl-Leucyl-Phenylalanine, FMLF, does not lend itself for direct radioiodination we performed labeling of FMLF by indirect method via radioiodined SIB at different pH. (author)

  6. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  7. CLONING, SEQUENCE ANALYSIS, AND CHARACTERIZATION OF PUTATIVE BETA-LACTAMASE OF STENOTROPHOMONAS MALTOPHILIA

    Directory of Open Access Journals (Sweden)

    Chong Seng Shueh

    2012-10-01

    Full Text Available The main objective of current study was to explore the function of chromosomal putative beta-lactamase gene (smlt 0115 in clinical Stenotrophomonas maltophilia. Antibiotic susceptibility test (AST screening for current antimicrobial drugs was done and Minimum Inhibitory Concentration (MIC level towards beta-lactams was determined by E-test. Putative beta-lactamase gene of S. maltophilia was amplified via PCR, with specific primers, then cloned into pET-15 expression plasmid and transformed into Escherichia coli BL21. The gene was sequenced and analyzed. The expressed protein was purified by affinity chromatography and the kinetic assay was performed. S. maltophilia ATCC 13637 was included in this experiment. Besides, a hospital strain which exhibited resistant to a series of beta-lactams including cefepime was identified via AST and MIC, hence it was named as S2 strain and was considered in this study. Sequencing result showed that putative beta-lactamase gene obtained from ATCC 13637 and S2 strains were predicted to have cephalosporinase activity by National Center for Biotechnology Information (NCBI blast program. Differences in the sequences of both ATCC 13637 and S2 strains were found via ClustalW alignment software. Kinetic assay proved a cephalosporinase characteristic produced by E. coli BL21 clone that overexpressed the putative beta-lactamase gene cloned under the control of an external promoter. Yet, expressed protein purified from S2 strain had high catalytic activity against beta-lactam antibiotics which was 14-fold higher than expressed protein purified from ATCC 13637 strain. This study represents the characterization analysis of putative beta-lactamase gene (smlt 0115 of S. maltophilia. The presence of the respective gene in the chromosome of S. maltophilia suggested that putative beta-lactamase gene (smlt 0115 of S. maltophilia plays a role in beta-lactamase resistance.

  8. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  9. peptide

    Indian Academy of Sciences (India)

    Prakash

    effects can be observed under certain conditions but these are not always .... of proteins with amyloid characteristics in muscle (Jayaraman et al. 2008) ... not enhance the growth of dangerous fibrils generated at pH. 7.4. ..... The lower chart shows Aβ(25-35) aggregation kinetics during the first 4 min of monitoring. Results are ...

  10. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    Science.gov (United States)

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  11. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    Science.gov (United States)

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  12. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Elena Gabrielli

    Full Text Available We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc of human IgG(1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.

  13. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay.

    Science.gov (United States)

    Perego, M

    1997-08-05

    The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.

  14. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    Science.gov (United States)

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target.

  15. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, S.H.

    2001-01-01

    had high reproducibility and reflected trends in gene expression as observed by Northern blotting. Using this technique, it was demonstrated that both the high-affinity phosphate transporter MtPt2 and a putative nitrate transporter from Medicago truncatula were down-regulated in roots when colonized...

  16. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability

    DEFF Research Database (Denmark)

    Nilsson, Martin; Chiang, Wen-Chi; Fazli, Mustafa

    2011-01-01

    We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P....... putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable...

  17. Peptide hormones and lung cancer.

    Science.gov (United States)

    Moody, T W

    2006-03-01

    Several peptide hormones have been identified which alter the proliferation of lung cancer. Small cell lung cancer (SCLC), which is a neuroendocrine cancer, produces and secretes gastrin releasing peptide (GRP), neurotensin (NT) and adrenomedullin (AM) as autocrine growth factors. GRP, NT and AM bind to G-protein coupled receptors causing phosphatidylinositol turnover or elevated cAMP in SCLC cells. Addition of GRP, NT or AM to SCLC cells causes altered expression of nuclear oncogenes, such as c-fos, and stimulation of growth. Antagonists have been developed for GRP, NT and AM receptors which function as cytostatic agents and inhibit SCLC growth. Growth factor antagonists, such as the NT1 receptor antagonist SR48692, facilitate the ability of chemotherapeutic drugs to kill lung cancer cells. It remains to be determined if GRP, NT and AM receptors will served as molecular targets, for development of new therapies for the treatment of SCLC patients. Non-small cell lung cancer (NSCLC) cells also have a high density of GRP, NT, AM and epidermal growth factor (EGF) receptors. Several NSCLC patients with EGF receptor mutations respond to gefitinib, a tyrosine kinase inhibitor. Gefitinib relieves NSCLC symptoms, maintaining stable disease in patients who are not eligible for systemic chemotherapy. It is important to develop new therapeutic approaches using translational research techniques for the treatment of lung cancer patients.

  18. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  19. Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum)

    OpenAIRE

    Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping

    2017-01-01

    Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene (SlTDT) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analys...

  20. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non...... peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...... classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential....

  1. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas

    2013-01-01

    -protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains...... of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...... to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1...

  2. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds

    Directory of Open Access Journals (Sweden)

    Adina-Elena Segneanu

    2015-12-01

    Full Text Available There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy and chromatographic techniques (RP-HPLC and GC-MS. The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  3. Helleborus purpurascens-Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds.

    Science.gov (United States)

    Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea

    2015-12-11

    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  4. Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects.

    Science.gov (United States)

    Sturm, Sebastian; Ramesh, Divya; Brockmann, Axel; Neupert, Susanne; Predel, Reinhard

    2016-01-30

    We investigated the peptide inventory of the corpora cardiaca (CC) of the honey bee, Apis mellifera, by direct tissue profiling using MALDI-TOF MS combined with proteomic approaches focusing on cysteine-containing peptides. An agatoxin-like peptide (ALP) was identified as a component of the glandular part of the CC and was associated with the presence of the adipokinetic hormone in mass spectra. Although abundant in the CC, ALP does not belong to the toxins observed in the venom gland of A. mellifera. Homologs of ALP are highly conserved in major groups of arthropods and in line with this we detected ALP in the CC of non-venomous insects such as cockroaches and silverfish. In the American cockroach, Periplaneta americana, ALP was also identified in the CNS and stomatogastric nervous system. This is the first report that establishes the presence of ALPs in the neuroendocrine tissues of insects and further studies are necessary to reveal common functions of these peptides, e.g. as antimicrobial agents, ion channel modulators or classical neuropeptides. Among the messenger molecules of the nervous system, neuropeptides represent the structurally most diverse class and basically participate in the regulation of all physiological processes. The set of neuropeptides, their functions and spatial distribution are particularly well-studied in insects. Until now, however, several potential neuropeptide receptors remained orphan, which indicates the existence of so far unknown ligands. In our study, we used proteomic methods such as cysteine modification, enzymatic digestion and peptide derivatization, combined with direct tissue profiling by MALDI-TOF mass spectrometry, for the discovery of novel putative messenger molecules in the neuroendocrine system. The described presence of agatoxin-like peptides in the nervous system of the honey bee and other insects was overseen so far and is thus a remarkable addition to the very well studied neuropeptidome of insects. It is not

  5. Peptide-tagged proteins in aqueous two-phase systems

    OpenAIRE

    Nilsson, Anna

    2002-01-01

    This thesis deals with proteins containing peptide tags for improved partitioning in aqueous two-phase systems. Qualitatively the peptide-tagged protein partitioning could be predicted from peptide data, i.e. partitioning trends found for peptides were also found for the peptide-tagged proteins. However, full effect of the tag as expected from peptide partitioning was not found in the tagged protein. When alkyl-ethylene oxide surfactant was included in a two-polymer system, almost full effect...

  6. Topical Peptide Treatments with Effective Anti-Aging Results

    OpenAIRE

    Silke Karin Schagen

    2017-01-01

    In the last two decades, many new peptides have been developed, and new knowledge on how peptides improve the skin has been uncovered. The spectrum of peptides in the field of cosmetics is continuously growing. This review summarizes some of the effective data on cosmeceutical peptides that work against intrinsic and extrinsic aging. Some peptides have been proven in their efficacy through clinical skin trials. Well-known and documented peptides like copper tripeptide are still under research...

  7. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.

    2005-01-01

    expressions, whereas hydrophobicity discrimination of Tat- and Sec- signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/....

  8. Double quick, double click reversible peptide "stapling".

    Science.gov (United States)

    Grison, Claire M; Burslem, George M; Miles, Jennifer A; Pilsl, Ludwig K A; Yeo, David J; Imani, Zeynab; Warriner, Stuart L; Webb, Michael E; Wilson, Andrew J

    2017-07-01

    The development of constrained peptides for inhibition of protein-protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine ( h Cys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein-protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne-azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.

  9. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the s...

  10. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  11. Practical use of natriuretic peptide measurement

    DEFF Research Database (Denmark)

    Husby, Simon; Lind, Bent; Goetze, Jens P

    2012-01-01

    To elucidate the knowledge regarding B-type natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) measurement among doctors using this biomarker.......To elucidate the knowledge regarding B-type natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) measurement among doctors using this biomarker....

  12. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  13. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  14. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    Science.gov (United States)

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  15. Peptide ligands for targeting the extracellular domain of EGFR: Comparison between linear and cyclic peptides.

    Science.gov (United States)

    Williams, Tyrslai M; Sable, Rushikesh; Singh, Sitanshu; Vicente, Maria Graca H; Jois, Seetharama D

    2018-02-01

    Colorectal cancer (CRC) is the third most common solid internal malignancy among cancers. Early detection of cancer is key to increasing the survival rate of colorectal cancer patients. Overexpression of the EGFR protein is associated with CRC. We have designed a series of peptides that are highly specific for the extracellular domain of EGFR, based on our earlier studies on linear peptides. The previously reported linear peptide LARLLT, known to bind to EGFR, was modified with the goals of increasing its stability and its specificity toward EGFR. Peptide modifications, including D-amino acid substitution, cyclization, and chain reversal, were investigated. In addition, to facilitate labeling of the peptide with a fluorescent dye, an additional lysine residue was introduced onto the linear (KLARLLT) and cyclic peptides cyclo(KLARLLT) (Cyclo.L1). The lysine residue was also converted into an azide group in both a linear and reversed cyclic peptide sequences cyclo(K(N3)larllt) (Cyclo.L1.1) to allow for subsequent "click" conjugation. The cyclic peptides showed enhanced binding to EGFR by SPR. NMR and molecular modeling studies suggest that the peptides acquire a β-turn structure in solution. In vitro stability studies in human serum show that the cyclic peptide is more stable than the linear peptide. © 2017 John Wiley & Sons A/S.

  16. Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters

    DEFF Research Database (Denmark)

    Lyons, Joseph A.; Parker, Joanne L.; Solcan, Nicolae

    2014-01-01

    An enigma in the field of peptide transport is the structural basis for ligand promiscuity, as exemplified by PepT1, the mammalian plasma membrane peptide transporter. Here, we present crystal structures of di‐ and tripeptide‐bound complexes of a bacterial homologue of PepT1, which reveal at least...... two mechanisms for peptide recognition that operate within a single, centrally located binding site. The dipeptide was orientated laterally in the binding site, whereas the tripeptide revealed an alternative vertical binding mode. The co‐crystal structures combined with functional studies reveal...... that biochemically distinct peptide‐binding sites likely operate within the POT/PTR family of proton‐coupled symporters and suggest that transport promiscuity has arisen in part through the ability of the binding site to accommodate peptides in multiple orientations for transport...

  17. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...

  18. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  19. Tumor-targeting peptides from combinatorial libraries*

    Science.gov (United States)

    Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S.

    2018-01-01

    Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges infighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. PMID:27210583

  20. Development of novel ligands for peptide GPCRs.

    Science.gov (United States)

    Moran, Brian M; McKillop, Aine M; O'Harte, Finbarr Pm

    2016-12-01

    Incretin based glucagon-like peptide-1 receptor (GLP-1R) agonists which target a G-protein coupled receptor (GPCR) are currently used in the treatment of type 2 diabetes. This review focuses on GPCRs from pancreatic β-cells, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon, somatostatin, pancreatic polypeptide (PP), cholecystokinin (CCK), peptide YY (PYY), oxyntomodulin (OXM) and ghrelin receptors. In addition, fatty acids GPCRs are thought to have an increasing role in regulating peptide secretions namely short fatty acids GPCR (GPR41, GPR43), medium chain fatty acid GPCR (GPR84), long chain fatty acid GPCR (GPR40, GPR120) and cannabinoid-like GPCR (GPR55, GPR119). Several pre-clinical and clinical trials are currently ongoing in peptide GPCR based therapies, including dual and triple agonist peptides which activate two or more GPCRs simultaneously. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Circulating elastin peptides, role in vascular pathology.

    Science.gov (United States)

    Robert, L; Labat-Robert, J

    2014-12-01

    The atherosclerotic process starts with the degradation of elastic fibers. Their presence was demonstrated in the circulation as well as several of their biological properties elucidated. We described years ago a procedure to obtain large elastin peptides by organo-alkaline hydrolysis, κ-elastin. This method enabled also the preparation of specific antibodies used to determine elastin peptides, as well as anti-elastin antibodies in body fluids and tissue extracts. Elastin peptides were determined in a large number of human blood samples. Studies were carried out to explore their pharmacological properties. Similar recent studies by other laboratories confirmed our findings and arose new interest in circulating elastin peptides for their biological activities. This recent trend justified the publication of a review of the biological and pathological activities of elastin peptides demonstrated during our previous studies, subject of this article. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.

    2003-01-01

    the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the distribution......Most existing Mass Spectra (MS) analysis programs are automatic and provide limited opportunity for editing during the interpretation. Furthermore, they rely entirely on publicly available databases for interpretation. VEMS (Virtual Expert Mass Spectrometrist) is a program for interactive analysis...... of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...

  3. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  4. Radiolabeled peptides: experimental and clinical applications

    International Nuclear Information System (INIS)

    Thakur, M.L.; Pallela, V.R.

    1998-01-01

    Radiolabeled receptor specific biomolecules hold unlimited potential in nuclear medicine. During the past few years much attention has been drawn to the development radiolabeled peptides for a variety of diagnostic applications, as well as for therapy of malignant tumors. Although only one peptide, In-111-DTPA-(D)-Phe 1 -octreotide, is available commercially for oncologic imaging, many more have been examined in humans with hematological disorders, and the early results appear to be promising. Impetus generated by these results have prompted investigators to label peptides with such radionuclides as Tc-99m, I-123, F-18, Cu-64, and Y-90. This review is intended to highlight the qualities of peptides, summarize the clinical results, and address some important issues associated with radiolabeling of highly potent peptides. While doing so, various methods of radiolabeling have been described, and their strengths and weaknesses have also been discussed. (author)

  5. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  6. Harnessing supramolecular peptide nanotechnology in biomedical applications.

    Science.gov (United States)

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected.

  7. The canine MHC class Ia allele DLA-88*508:01 presents diverse self- and canine distemper virus-origin peptides of varying length that have a conserved binding motif.

    Science.gov (United States)

    Ross, Peter; Nemec, Paige S; Kapatos, Alexander; Miller, Keith R; Holmes, Jennifer C; Suter, Steven E; Buntzman, Adam S; Soderblom, Erik J; Collins, Edward J; Hess, Paul R

    2018-03-01

    Ideally, CD8+ T-cell responses against virally infected or malignant cells are defined at the level of the specific peptide and restricting MHC class I element, a determination not yet made in the dog. To advance the discovery of canine CTL epitopes, we sought to determine whether a putative classical MHC class Ia gene, Dog Leukocyte Antigen (DLA)-88, presents peptides from a viral pathogen, canine distemper virus (CDV). To investigate this possibility, DLA-88*508:01, an allele prevalent in Golden Retrievers, was expressed as a FLAG-tagged construct in canine histiocytic cells to allow affinity purification of peptide-DLA-88 complexes and subsequent elution of bound peptides. Pattern analysis of self peptide sequences, which were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), permitted binding preferences to be inferred. DLA-88*508:01 binds peptides that are 9-to-12 amino acids in length, with a modest preference for 9- and 11-mers. Hydrophobic residues are favored at positions 2 and 3, as are K, R or F residues at the C-terminus. Testing motif-matched and -unmatched synthetic peptides via peptide-MHC surface stabilization assay using a DLA-88*508:01-transfected, TAP-deficient RMA-S line supported these conclusions. With CDV infection, 22 viral peptides ranging from 9-to-12 residues in length were identified in DLA-88*508:01 eluates by LC-MS/MS. Combined motif analysis and surface stabilization assay data suggested that 11 of these 22 peptides, derived from CDV hemagglutinin, large polymerase, matrix, nucleocapsid, and V proteins, were processed and presented, and thus, potential targets of anti-viral CTL in DLA-88*508:01-bearing dogs. The presentation of diverse self and viral peptides indicates that DLA-88 is a classical MHC class Ia gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    OpenAIRE

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes...

  9. Asymmetric total synthesis of a putative sex pheromone component from the parasitoid wasp Trichogramma turkestanica

    NARCIS (Netherlands)

    Geerdink, Danny; Buter, Jeffrey; van Beek, Teris A.; Minnaard, Adriaan J.

    2014-01-01

    Virgin females of the parasitoid wasp Trichogramma turkestanica produce minute amounts of a sex pheromone, the identity of which has not been fully established. The enantioselective synthesis of a putative component of this pheromone, (6S,8S,10S)-4,6,8,10-tetramethyltrideca-2E,4E-dien-1-ol (2), is

  10. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase.

    Science.gov (United States)

    Linford, Alicia S; Jiang, Nona M; Edwards, Thomas E; Sherman, Nicholas E; Van Voorhis, Wesley C; Stewart, Lance J; Myler, Peter J; Staker, Bart L; Petri, William A

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Search strings for the study of putative occupational determinants of disease

    NARCIS (Netherlands)

    Mattioli, S.; Zanardi, F.; Baldasseroni, A.; Schaafsma, F.; Cooke, R.M.T.; Mancini, G.; Fierro, M.; Santangelo, C.; Farioli, A.; Fucksia, S.; Curti, S.; Violante, F.S.; Verbeek, J.

    2010-01-01

    Objective To identify efficient PubMed search strategies to retrieve articles regarding putative occupational determinants of conditions not generally considered to be work related. Methods Based on MeSH definitions and expert knowledge, we selected as candidate search terms the four MeSH terms

  12. Search strings for the study of putative occupational determinants of disease

    NARCIS (Netherlands)

    Mattioli, Stefano; Zanardi, Francesca; Baldasseroni, Alberto; Schaafsma, Frederieke; Cooke, Robin M. T.; Mancini, Gianpiero; Fierro, Mauro; Santangelo, Chiara; Farioli, Andrea; Fucksia, Serenella; Curti, Stefania; Violante, Francesco S.; Verbeek, Jos

    2010-01-01

    To identify efficient PubMed search strategies to retrieve articles regarding putative occupational determinants of conditions not generally considered to be work related. Based on MeSH definitions and expert knowledge, we selected as candidate search terms the four MeSH terms describing

  13. Putative contact ketoconazole shampoo-triggered pemphigus foliaceus in a dog.

    Science.gov (United States)

    Sung, Hyun-Jeong; Yoon, In-Hwa; Kim, Jung-Hyun

    2017-09-01

    A 10-year-old spayed female cocker spaniel dog was referred for an evaluation of acute-onset generalized pustular cutaneous lesions following application of ketoconazole shampoo. Cytologic and histopathologic examinations of the lesions revealed intra-epidermal pustules with predominantly neutrophils and acantholytic cells. This is the first description of putative contact ketoconazole shampoo-triggered pemphigus foliaceus in a dog.

  14. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Toranzos, Gary A; Marota, Isolina; Giuffra, Valentina; Cano, Raul J

    2017-11-07

    Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  15. Cloning and sequence analysis of putative type II fatty acid synthase ...

    Indian Academy of Sciences (India)

    Prakash

    Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. ... acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP .... Helix II plays a dominant role in the interaction ... main distinguishing features of plant ACPs in plastids and ..... synthase component; J. Biol.

  16. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies

    Directory of Open Access Journals (Sweden)

    Tasha M. Santiago-Rodriguez

    2017-11-01

    Full Text Available Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  17. Total synthesis of the putative structure of the novel triquinane natural product isocapnellenone

    OpenAIRE

    Mehta, Goverdhan; Murthy, Sai Krishna A; Umarye, Jayant D

    2002-01-01

    A total synthesis of the ‘putative structure’ 7, attributed to the novel triquinane sesquiterpene isolated recently from two Buddelia species has been accomplished. The spectral data for 7 is a complete mismatch with those reported for the natural product and warrants a revision of the assigned structure.

  18. Cloning and characterization of prunus serotina AGAMOUS, a putative flower homeotic gene

    Science.gov (United States)

    Xiaomei Liu; Joseph Anderson; Paula Pijut

    2010-01-01

    Members of the AGAMOUS subfamily of MADS-box transcription factors play an important role in regulating the development of reproductive organs in flowering plants. To help understand the mechanism of floral development in black cherry (Prunus serotina), PsAG (a putative flower homeotic identity gene) was isolated...

  19. Sequence analysis of putative swrW gene required for surfactant ...

    African Journals Online (AJOL)

    owner

    2012-07-17

    Jul 17, 2012 ... These nucleotide and protein sequence analysis of the putative swrW gene provides vital information on the versatility .... chain reaction (PCR) products were stored at 4°C. Presence of ... identical to the same gene with an E-value of 0.0. .... The Prokaryotes-A Handbook on the Biol. of Bacteria:Ecophysiol.

  20. Distribution of putative virulence genes and antimicrobial drug resistance in Vibrio harveyi

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Mendez, D.; Anto, C.

    zonula occludens toxin (Zot) and a hemolysin-coregulated protein gene (hcp) by polymerase chain reaction (PCR). Of the four putative reversible toxin genes, vhh-1 was detected in 31% of the isolates, vhh-2 in 46%, vhh-3 in 23% and vhh-4 was detected in 27...

  1. Expression of putative expansin genes in phylloxera (Daktulosphaira vitifoliae Fitch) induced root galls of Vitis spp.

    Science.gov (United States)

    Lawo, N C; Griesser, M; Forneck, A

    Grape phylloxera ( Daktulosphaira vitifoliae Fitch) is a serious global pest in viticulture. The insects are sedentary feeders and require a gall to feed and reproduce. The insects induce their feeding site within the meristematic zone of the root tip, where they stay attached, feeding both intra- and intercellularly, and causing damage by reducing plant vigour. Several changes in cell structure and composition, including increased cell division and tissue swelling close to the feeding site, cause an organoid gall called a nodosity to develop. Because alpha expansin genes are involved in cell enlargement and cell wall loosening in many plant tissues it may be anticipated that they are also involved in nodosity formation. To identify expansin genes in Vitis vinifera cv. Pinot noir , we mined for orthologues genes in a comparative analysis. Eleven putative expansin genes were identified and shown to be present in the rootstock Teleki 5C ( V. berlandieri Planch. x V. riparia Michx.) using specific PCR followed by DNA sequencing. Expression analysis of young and mature nodosities and uninfested root tips were conducted via quantitative real time PCR (qRT-PCR). Up-regulation was measured for three putative expansin genes (VvEXPA15, -A17 and partly -A20) or down-regulation for three other putative genes (VvEXPA7, -A12, -A20) in nodosities. The present study clearly shows the involvement of putative expansin genes in the phylloxera-root interaction.

  2. Identification of EhTIF-IA: The putative E. histolytica orthologue of the ...

    Indian Academy of Sciences (India)

    2016-02-04

    Feb 4, 2016 ... We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within ..... a putative EhTIF-IA with e-value (3e−25). Comparison of .... some biogenesis is correlated with altered rates of rDNA transcription ..... ylation by CK2 facilitates rDNA transcription by promoting dissociation of ...

  3. DETERMINATION OF ROCURONIUM AND ITS PUTATIVE METABOLITES IN BODY-FLUIDS AND TISSUE-HOMOGENATES

    NARCIS (Netherlands)

    KLEEF, UW; PROOST, JH; ROGGEVELD, J

    1993-01-01

    A sensitive and selective HPLC method was developed for the quantification of the neuromuscular blocking agent rocuronium and its putative metabolites (the 17-desacetyl derivative and the N-desallyl derivative of rocuronium) in plasma, urine, bile, tissue homogenates and stoma fluid. Samples were

  4. Complete Genome Sequence of a Putative Densovirus of the Asian Citrus Psyllid, Diaphorina citri.

    Science.gov (United States)

    Nigg, Jared C; Nouri, Shahideh; Falk, Bryce W

    2016-07-28

    Here, we report the complete genome sequence of a putative densovirus of the Asian citrus psyllid, Diaphorina citri Diaphorina citri densovirus (DcDNV) was originally identified through metagenomics, and here, we obtained the complete nucleotide sequence using PCR-based approaches. Phylogenetic analysis places DcDNV between viruses of the Ambidensovirus and Iteradensovirus genera. Copyright © 2016 Nigg et al.

  5. Complete Genome Sequence of a Putative Densovirus of the Asian Citrus Psyllid, Diaphorina citri

    OpenAIRE

    Nigg, Jared C.; Nouri, Shahideh; Falk, Bryce W.

    2016-01-01

    Here, we report the complete genome sequence of a putative densovirus of the Asian citrus psyllid, Diaphorina citri. Diaphorina citri densovirus (DcDNV) was originally identified through metagenomics, and here, we obtained the complete nucleotide sequence using PCR-based approaches. Phylogenetic analysis places DcDNV between viruses of the Ambidensovirus and Iteradensovirus genera.

  6. In-depth evaluation of Gly-Sar transport parameters as a function of culture time in the Caco-2 cell model

    DEFF Research Database (Denmark)

    Bravo, Silvina A.; Nielsen, Carsten Uhd; Amstrup, Jan

    2004-01-01

    The aim of the present study was to investigate the influence of culture time on hPEPT1-mediated transport in Caco-2 cell monolayers. Peptide transport activity in Caco-2 cells grown in standard media and in a "rapid" 4-day model was first compared. The rapid 4-day Caco-2 cell model, cultured using...... a cocktail of growth factors and agonists, displayed lower peptide uptake capacity than Caco-2 cells grown for 4 days in conventional media, and was judged to be unsuitable for peptide transport studies. Peptide transport activity as well as monolayer integrity and tissue morphology were evaluated...... in the standard >21 days model as a function of the culture time. Peptide transport activity was studied using [14C]-glycylsarcosine ([ 14C]-Gly-Sar). Monolayer integrity was evaluated by transepithelial electrical resistance (TEER) measurements and [3H]-mannitol permeabilities. Tissue morphology and hPEPT1...

  7. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  8. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  9. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    Science.gov (United States)

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  10. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    Science.gov (United States)

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  11. Molecular cloning, expression analysis, and potential food intake attenuation effect of peptide YY in grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Chen, Yong; Shen, Yubang; Pandit, Narayan Prasad; Fu, Jianjun; Li, Da; Li, Jiale

    2013-06-15

    The peptide YY (PYY) is a 36 amino acid peptide involved in the food intake control in vertebrates. We have cloned and characterized a PYY gene from grass carp Ctenopharyngodon idellus. The full-length cDNA encodes a precursor protein of grass carp PYY (gcPYY) that consists of a putative 28-amino acid signal peptide, a 36-amino acid mature peptide, an amidation-proteolytic site, and a 30-amino acid carboxy-terminal extension. The gcPYY gene is comprised of 4 exons interspaced by 3 introns as seen in PYYs from other species. Amino acid alignment and gene structure comparison indicate that the structure of PYY is well preserved throughout vertebrate phylogeny. The tissue distribution and postprandial changes in gcPYY mRNA expression were evaluated by real-time PCR, which showed that the gcPYY is expressed abundantly in the central nervous system, with significantly increased expression following a single meal. During embryogenesis, the presence of gcPYY mRNA was detected in early developing embryos, and high expression levels were observed when most larvae completed their switch from endogenous nourishment to exogenous feeding. Reduced food intake by juveniles during a single meal after giving perpheral injection of gcPYY1-36 suggests a potentially important role of PYY in the food intake attenuation in grass carp. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  13. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana.

    Science.gov (United States)

    Vie, Ane Kjersti; Najafi, Javad; Winge, Per; Cattan, Ester; Wrzaczek, Michael; Kangasjärvi, Jaakko; Miller, Gad; Brembu, Tore; Bones, Atle M

    2017-06-15

    Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Antimicrobial peptides interact with peptidoglycan

    Science.gov (United States)

    Neelay, Om P.; Peterson, Christian A.; Snavely, Mary E.; Brown, Taylor C.; TecleMariam, Ariam F.; Campbell, Jennifer A.; Blake, Allison M.; Schneider, Sydney C.; Cremeens, Matthew E.

    2017-10-01

    Traditional therapeutics are losing effectiveness as bacterial resistance increases, and antimicrobial peptides (AMPs) can serve as an alternative source for antimicrobial agents. Their mode of action is commonly hypothesized to involve pore formation in the lipid membrane, thereby leading to cell death. However, bacterial cell walls are much more complex than just the lipid membrane. A large portion of the wall is comprised of peptidoglycan, yet we did not find any report of AMP-peptidoglycan interactions. Consequently, this work evaluated AMP-peptidoglycan and AMP-phospholipid (multilamellar vesicles) interactions through tryptophan fluorescence. Given that peptidoglycan is insoluble and vesicles are large particles, we took advantage of the unique properties of Trp-fluorescence to use one technique for two very different systems. Interestingly, melittin and cecropin A interacted with peptidoglycan to a degree similar to vancomycin, a positive control. Whether these AMP-peptidoglycan interactions relate to a killing mode of action requires further study.

  15. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus......Multi-drug resistance to antibiotics represents a global health challenge that results in increased morbidity and mortality rates. The annual death-toll is >700.000 people world-wide, rising to ~10 million by 2050. New antibiotics are lacking, and few are under development as return on investment......, Klebsiella pneumoniae, Acinetobacter, Pseudomonas aeruginosa and Enterobacter). As a consequence of widespread multi-drug resistance, researchers have sought for alternative sources of antimicrobials. Antimicrobial peptides are produced by almost all living organisms as part of their defense or innate immune...

  16. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    Science.gov (United States)

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  17. The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans.

    Science.gov (United States)

    VanDuyn, Natalia; Nass, Richard

    2014-03-01

    Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here, we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans modulates whole animal and DA neuron sensitivity to MeHg. In this study, we demonstrate that genetic knockdown of MRP-7 results in a twofold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. © 2013 International Society for Neurochemistry.

  18. The putative mechanism of Na(+) absorption in euryhaline elasmobranchs exists in the gills of a stenohaline marine elasmobranch, Squalus acanthias.

    Science.gov (United States)

    Choe, Keith P; Edwards, Susan L; Claiborne, James B; Evans, David H

    2007-02-01

    We recently cloned an NHE3 orthologue from the gills of the euryhaline Atlantic stingray (Dasyatis sabina), and generated a stingray NHE3 antibody to unequivocally localize the exchanger to the apical side of epithelial cells that are rich with Na(+)/K(+)-ATPase (A MRC). We also demonstrated an increase in NHE3 expression when stingrays are in fresh water, suggesting that NHE3 is responsible for active Na(+) absorption. However, the vast majority of elasmobranchs are only found in marine environments. In the current study, immunohistochemistry with the stingray NHE3 antibody was used to localize the exchanger in the gills of the stenohaline marine spiny dogfish shark (Squalus acanthias). NHE3 immunoreactivity was confined to the apical side of cells with basolateral Na(+)/K(+)-ATPase and was excluded from cells with high levels of vacuolar H(+)-ATPase. Western blots detected a single protein of 88 kDa in dogfish gills, the same size as NHE3 in stingrays and mammals. These immunological data demonstrate that the putative cell type responsible for active Na(+) absorption in euryhaline elasmobranchs is also present in stenohaline marine elasmobranchs, and suggest that the inability of most elasmobranchs to survive in fresh water is not due to a lack of the gill ion transporters for Na(+) absorption.

  19. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans.

    Science.gov (United States)

    Liu, Junyan; Deng, Yang; Peters, Brian M; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E

    2016-11-07

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans.

  20. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.