WorldWideScience

Sample records for putative anthocyanin transport

  1. An acyltransferase gene that putatively functions in anthocyanin modification was horizontally transferred from Fabaceae into the genus Cuscuta

    Directory of Open Access Journals (Sweden)

    Ting Sun

    2016-06-01

    Full Text Available Horizontal gene transfer (HGT refers to the flow of genetic materials to non-offspring, and occasionally HGT in plants can improve the adaptation of organisms in new niches due to expanded metabolic capability. Anthocyanins are an important group of water-soluble red, purple, or blue secondary metabolites, whose diversity results from modification after the main skeleton biosynthesis. Cuscuta is a stem holoparasitic genus, whose members form direct connection with hosts to withdraw water, nutrients, and macromolecules. Such intimate association is thought to increase the frequency of HGT. By transcriptome screening for foreign genes in Cuscuta australis, we discovered that one gene encoding a putative anthocyanin acyltransferase gene of the BAHD family, which is likely to be involved in anthocyanin modification, was acquired by C. australis from Fabaceae through HGT. The anthocyanin acyltransferase-like (AT-like gene was confirmed to be present in the genome assembly of C. australis and the transcriptomes of Cuscuta pentagona. The higher transcriptional level in old stems is consistent with its putative function in secondary metabolism by stabilizing anthocyanin at neutral pH and thus HGT of this AT-like gene may have improved biotic and abiotic resistance of Cuscuta.

  2. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87 Cell Line

    Directory of Open Access Journals (Sweden)

    Allison A. Atnip

    2017-02-01

    Full Text Available Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87 has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h, concentration (50–1500 µM, and pH (3.0, 5.0, 7.4 on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0.

  3. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport.

    Science.gov (United States)

    Mathews, Helena; Clendennen, Stephanie K; Caldwell, Colby G; Liu, Xing Liang; Connors, Karin; Matheis, Nikolaus; Schuster, Debra K; Menasco, D J; Wagoner, Wendy; Lightner, Jonathan; Wagner, D Ry

    2003-08-01

    We have developed a high-throughput T-DNA insertional mutagenesis program in tomato using activation tagging to identify genes that regulate metabolic pathways. One of the activation-tagged insertion lines (ant1) showed intense purple pigmentation from the very early stage of shoot formation in culture, reflecting activation of the biosynthetic pathway leading to anthocyanin accumulation. The purple coloration resulted from the overexpression of a gene that encodes a MYB transcription factor. Vegetative tissues of ant1 plants displayed intense purple color, and the fruit showed purple spotting on the epidermis and pericarp. The gene-to-trait relationship of ant1 was confirmed by the overexpression of ANT1 in transgenic tomato and in tobacco under the control of a constitutive promoter. Suppression subtractive hybridization and RNA hybridization analysis of the purple tomato plants indicated that the overexpression of ANT1 caused the upregulation of genes that encode proteins in both the early and later steps of anthocyanidin biosynthesis as well as genes involved in the glycosylation and transport of anthocyanins into the vacuole.

  4. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    Science.gov (United States)

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  5. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim...... of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug......-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  6. A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Zhu, Xinna; Long, Fei; Chen, Yonghui

    2008-01-01

    Listeria monocytogenes may persist for long periods in food processing environments. In some instances, this may be due to aggregation or biofilm formation. To investigate the mechanism controlling biofilm formation in the food-borne pathogen L. monocytogenes, we characterized LM-49, a mutant...... with enhanced ability of biofilm-formation generated via transposon Tn917 mutagenesis of L. monocytogenes 4b G. In this mutant, a Tn917 insertion has disrupted the coding region of the gene encoding a putative ATP binding cassette (ABC) transporter permease identical to Lmof2365_1771 (a putative ABC...... the same amount of biofilm biomass as the wild-type strain. Furthermore, transcription of the downstream lm.G_1770 was not influenced by the upstream Tn917 insertion, and the presence of Tn917 has no effect on biofilm formation. These results suggest that lm.G_1771 was solely responsible for the negative...

  7. Differential roles for VviGST1, VviGST3 and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinífera

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Díaz

    2016-08-01

    Full Text Available In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport however whether binding of flavonoids to GST or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs have been associated with the transport of anthocyanins, however their ability to transport other flavonoids such as proanthocyanidins (PAs has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4 and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present different

  8. Differential Roles for VviGST1, VviGST3, and VviGST4 in Proanthocyanidin and Anthocyanin Transport in Vitis vinífera.

    Science.gov (United States)

    Pérez-Díaz, Ricardo; Madrid-Espinoza, José; Salinas-Cornejo, Josselyn; González-Villanueva, Enrique; Ruiz-Lara, Simón

    2016-01-01

    In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not well understood. Glutathione S-transferases from Vitis vinífera (VviGSTs) have been associated with the transport of anthocyanins, however, their ability to transport other flavonoids such as proanthocyanidins (PAs) has not been established. Following bioinformatics approaches, we analyzed the capability of VviGST1, VviGST3, VviGST4, and Arabidopsis TT19 to bind different flavonoids. Analyses of protein-ligand interactions indicate that these GSTs can bind glutathione and monomers of anthocyanin, PAs and flavonols. A total or partial overlap of the binding sites for glutathione and flavonoids was found in VviGST1, and a similar condition was observed in VviGST3 using anthocyanin and flavonols as ligands, whereas VviGST4 and TT19 have both sites for GSH and flavonoids separated. To validate the bioinformatics predictions, functional complementation assays using the Arabidopsis tt19 mutant were performed. Overexpression of VviGST3 in tt19-1 specifically rescued the dark seed coat phenotype associated to correct PA transport, which correlated with higher binding affinity for PA precursors. VviGST4, originally characterized as an anthocyanin-related GST, complemented both the anthocyanin and PA deposition, resembling the function of TT19. By contrast, VviGST1 only partially rescued the normal seed color. Furthermore the expression pattern of these VviGSTs showed that each of these genes could be associated with the accumulation of different flavonoids in specific tissues during grapevine fruit development. These results provide new insights into GST-mediated PA transport in grapevine and suggest that VviGSTs present

  9. In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics

    Directory of Open Access Journals (Sweden)

    Mao Peng

    2018-05-01

    Full Text Available Aspergillus niger is one of the most widely used fungi to study the conversion of the lignocellulosic feedstocks into fermentable sugars. Understanding the sugar uptake system of A. niger is essential to improve the efficiency of the process of fungal plant biomass degradation. In this study, we report a comprehensive characterization of the sugar transportome of A. niger by combining phylogenetic and comparative transcriptomic analyses. We identified 86 putative sugar transporter (ST genes based on a conserved protein domain search. All these candidates were then classified into nine subfamilies and their functional motifs and possible sugar-specificity were annotated according to phylogenetic analysis and literature mining. Furthermore, we comparatively analyzed the ST gene expression on a large set of fungal growth conditions including mono-, di- and polysaccharides, and mutants of transcriptional regulators. This revealed that transporter genes from the same phylogenetic clade displayed very diverse expression patterns and were regulated by different transcriptional factors. The genome-wide study of STs of A. niger provides new insights into the mechanisms underlying an extremely flexible metabolism and high nutritional versatility of A. niger and will facilitate further biochemical characterization and industrial applications of these candidate STs.

  10. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes.

    Science.gov (United States)

    Aizawa, Shu; Fujiwara, Yuuki; Contu, Viorica Raluca; Hase, Katsunori; Takahashi, Masayuki; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2016-01-01

    Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.

  11. AmcA - a putative mitochondrial ornithine transporter supporting fungal siderophore biosynthesis

    Directory of Open Access Journals (Sweden)

    Lukas eSchafferer

    2015-04-01

    Full Text Available Iron is an essential nutrient required for a wide range of cellular processes. The opportunistic fungal pathogen Aspergillus fumigatus employs low-molecular mass iron-specific chelators, termed siderophores, for uptake, storage and intracellular iron distribution, which play a crucial role in the pathogenicity of this fungus. Siderophore biosynthesis depends on coordination with the supply of its precursor ornithine, produced mitochondrially from glutamate or cytosolically via hydrolysis of arginine. In this study, we demonstrate a role of the putative mitochondrial transporter AmcA (AFUA_8G02760 in siderophore biosynthesis of A. fumigatus.Consistent with a role in cellular ornithine handling, AmcA-deficiency resulted in decreased cellular ornithine and arginine contents as well as decreased siderophore production on medium containing glutamine as the sole nitrogen source. In support, arginine and ornithine as nitrogen sources did not impact siderophore biosynthesis due to cytosolic ornithine availability. As revealed by Northern blot analysis, transcript levels of siderophore biosynthetic genes were unresponsive to the cellular ornithine level. In contrast to siderophore production, AmcA deficiency did only mildly decrease the cellular polyamine content, demonstrating cellular prioritization of ornithine use. Nevertheless, AmcA-deficiency increased the susceptibility of A. fumigatus to the polyamine biosynthesis inhibitor eflornithine, most likely due to the decreased ornithine pool. AmcA-deficiency decreased the growth rate particularly on ornithine as the sole nitrogen source during iron starvation and sufficiency, indicating an additional role in the metabolism and fitness of A. fumigatus, possibly in mitochondrial ornithine import. In the Galleria mellonella infection model, AmcA-deficiency did not affect virulence of A. fumigatus, most likely due to the residual siderophore production and arginine availability in this host niche.

  12. Anthocyanins in the bracts of Curcuma species and relationship of the species based on anthocyanin composition.

    Science.gov (United States)

    Koshioka, Masaji; Umegaki, Naoko; Boontiang, Kriangsuk; Pornchuti, Witayaporn; Thammasiri, Kanchit; Yamaguchi, Satoshi; Tatsuzawa, Fumi; Nakayama, Masayoshi; Tateishi, Akira; Kubota, Satoshi

    2015-03-01

    Five anthocyanins, delphinidin 3-O-rutinoside, cyanidin 3-O-rutinoside, petunidin 3-O-rutinoside, malvidin 3-O-glucoside and malvidin 3-O-rutinoside, were identified. Three anthocyanins, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside and pelargonidin 3-O-rutinoside, were putatively identified based on C18 HPLC retention time, absorption spectrum, including λmax, and comparisons with those of corresponding standard anthocyanins, as the compounds responsible for the pink to purple-red pigmentation of the bracts of Curcuma alismatifolia and five related species. Cluster analysis based on four major anthocyanins formed two clusters. One consisted of only one species, C. alismatifolia, and the other consisted of five. Each cluster further formed sub-clusters depending on either species or habitats.

  13. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-09

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Putative Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in Neurospora crassa*

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-01

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. PMID:25398875

  15. Ligand binding analyses of the putative peptide transporter YjdL from E. coli display a significant selectivity towards dipeptides

    DEFF Research Database (Denmark)

    Ernst, Heidi Asschenfeldt; Pham, Antony; Hald, Helle

    2009-01-01

    Proton-dependent oligopeptide transporters (POTs) are secondary active transporters that couple the inwards translocation of di- and tripeptides to inwards proton translocation. Escherichia coli contains four genes encoding the putative POT proteins YhiP, YdgR, YjdL and YbgH. We have over-express...

  16. Expression of a putative grapevine hexose transporter in tobacco alters morphogenesis and assimilate partitioning.

    Science.gov (United States)

    Leterrier, Marina; Atanassova, Rossitza; Laquitaine, Laurent; Gaillard, Cécile; Coutos-Thévenot, Pierre; Delrot, Serge

    2003-04-01

    Tobacco plants were transformed by leaf disc regeneration with the VvHT1 (Vitis vinifera hexose transporter 1) cDNA under the control of the constitutive CaMV 35S promoter in a sense or antisense orientation. Among the 20 sense plants and 10 antisense plants obtained, two sense plants showed a mutant phenotype when grown in vitro, with stunted growth and an increase in the (leaves+stem)/roots dry weight ratio. The rate of [(3)H]-glucose uptake in leaf discs from these plants was decreased to 25% of the value measured in control plants. The amount of VvHT1 transgene and of host monosaccharide transporter MST transcripts in the leaves were studied by RNA gel blot analysis. The VvHT1 transcripts were usually present, but the amount of MST transcripts was the lowest in the plants that exhibited the most marked phenotype. Although the phenotype was lost when the plants were transferred from in vitro to greenhouse conditions, it was found again in vitro in the progeny obtained by self-pollination or by back-cross. The data show that VvHT1 sense expression resulted in unidirectional post-transcriptional gene inactivation of MST in some of the transformants, with dramatic effects on growth. They provide the first example of plants modified for hexose transport by post-transcriptional gene silencing. Some of the antisense plants also showed reduced expression of MST, and decreased growth. These results indicate that, like the sucrose transporters, hexose transporters play an important role in assimilate transport and in morphogenesis.

  17. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  18. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Everlyne M'mbone Muleke

    2017-07-01

    Full Text Available Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes involved in anthocyanin biosynthesis in radish. Spatial-temporal transcript expressions were then profiled in four color variant radish cultivars. From the total transcript sequences obtained through illumina sequencing, 102 assembled unigenes, and 20 candidate genes were identified to be involved in anthocyanin biosynthesis. Fifteen genomic sequences were isolated and sequenced from radish taproot. The length of these sequences was between 900 and 1,579 bp, and the unigene coverage to all of the corresponding cloned sequences was more than 93%. Gene structure analysis revealed that RsF3′H is intronless and anthocyanin biosynthesis genes (ABGs bear asymmetrical exons, except RsSAM. Anthocyanin accumulation showed a gradual increase in the leaf of the red radish and the taproot of colored cultivars during development, with a rapid increase at 30 days after sowing (DAS, and the highest content at maturity. Spatial-temporal transcriptional analysis of 14 genes revealed detectable expressions of 12 ABGs in various tissues at different growth levels. The investigation of anthocyanin accumulation and gene expression in four color variant radish cultivars, at different stages of development, indicated that total anthocyanin correlated with transcript levels of ABGs, particularly RsUFGT, RsF3H, RsANS, RsCHS3 and RsF3′H1. Our results suggest that these candidate genes play key roles in phenotypic and spatial-temporal anthocyanin accumulation in radish through

  19. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes

    Directory of Open Access Journals (Sweden)

    Guo-Liang Yan

    2010-12-01

    Full Text Available Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  20. Biosynthesis of anthocyanins and their regulation in colored grapes.

    Science.gov (United States)

    He, Fei; Mu, Lin; Yan, Guo-Liang; Liang, Na-Na; Pan, Qiu-Hong; Wang, Jun; Reeves, Malcolm J; Duan, Chang-Qing

    2010-12-09

    Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  1. A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2

    OpenAIRE

    Mampel, Jörg; Maier, Elke; Tralau, Tewes; Ruff, Jürgen; Benz, Roland; Cook, Alasdair M.

    2004-01-01

    Inducible mineralization of TSA (4-toluenesulphonate) by Comamonas testosteroni T-2 is initiated by a secondary transport system, followed by oxygenation and oxidation by TsaMBCD to 4-sulphobenzoate under the regulation of TsaR and TsaQ. Evidence is presented for a novel, presumably two-component transport system (TsaST). It is proposed that TsaT, an outer-membrane porin, formed an anion-selective channel that works in co-operation with the putative secondary transporter, TsaS, located in the...

  2. Investigating the Transport Dynamics of Anthocyanins from Unprocessed Fruit and Processed Fruit Juice from Sour Cherry (Prunus cerasus L.) across Intestinal Epithelial Cells

    NARCIS (Netherlands)

    Toydemir, G.; Boyacioglu, D.; Capanoglu, E.; Meer, van der I.M.; Tomassen, M.M.M.; Hall, R.D.; Mes, J.J.; Beekwilder, J.

    2013-01-01

    Anthocyanins can contribute to human health through preventing a variety of diseases. The uptake of these compounds from food and the parameters determining uptake efficiency within the human body are still poorly understood. Here we have employed a Caco-2 cell based system to investigate the

  3. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    Directory of Open Access Journals (Sweden)

    Gainza-Cortés Felipe

    2012-07-01

    Full Text Available Abstract Background Zinc (Zn deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient

  4. Osmoregulation and expression of ion transport proteins and putative claudins in the gill of southern flounder (Paralichthys lethostigma)

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Luckenbach, J Adam; Madsen, Steffen S

    2008-01-01

    The southern flounder is a euryhaline teleost that inhabits ocean, estuarine, and riverine environments. We investigated the osmoregulatory strategy of juvenile flounder by examining the time-course of homeostatic responses, hormone levels, and gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotrans...... process is associated with changes in branchial expression of ion transport and putative tight junction claudin proteins known to regulate epithelial permeability in mammalian vertebrates....

  5. Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima

    International Nuclear Information System (INIS)

    Ethayathulla, Abdul S.; Bessho, Yoshitaka; Shinkai, Akeo; Padmanabhan, Balasundaram; Singh, Tej P.; Kaur, Punit; Yokoyama, Shigeyuki

    2008-01-01

    The putative ABC transporter ATP-binding protein TM0222 from T. maritima was cloned, overproduced, purified and crystallized. A complete MAD diffraction data set has been collected to 2.3 Å resolution. Adenosine triphosphate (ATP) binding cassette transporters (ABC transporters) are ATP hydrolysis-dependent transmembrane transporters. Here, the overproduction, purification and crystallization of the putative ABC transporter ATP-binding protein TM0222 from Thermotoga maritima are reported. The protein was crystallized in the hexagonal space group P6 4 22, with unit-cell parameters a = b = 148.49, c = 106.96 Å, γ = 120.0°. Assuming the presence of two molecules in the asymmetric unit, the calculated V M is 2.84 Å 3 Da −1 , which corresponds to a solvent content of 56.6%. A three-wavelength MAD data set was collected to 2.3 Å resolution from SeMet-substituted TM0222 crystals. Data sets were collected on the BL38B1 beamline at SPring-8, Japan

  6. Anthocyanin analyses of Vaccinium fruit dietary supplements

    Science.gov (United States)

    Vaccinium fruit ingredients within dietary supplements were identified by comparisons with anthocyanin analyses of known Vaccinium profiles (demonstration of anthocyanin fingerprinting). Available Vaccinium supplements were purchased and analyzed; their anthocyanin profiles (based on HPLC separation...

  7. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer.

    Science.gov (United States)

    Hayashi, N; Ito, M; Horiike, S; Taguchi, H

    2001-05-01

    Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.

  8. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis.

    Science.gov (United States)

    Zhiyi, Nie; Guijuan, Kang; Yu, Li; Longjun, Dai; Rizhong, Zeng

    2015-01-01

    The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 'full-size', 21 'half-size' and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.

  9. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries.

    Science.gov (United States)

    Guan, Le; Dai, Zhanwu; Wu, Ben-Hong; Wu, Jing; Merlin, Isabelle; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Edwards, Everard; Li, Shao-Hua; Delrot, Serge

    2016-01-01

    Light exclusion reduces the concentration and modifies the composition of grape anthocyanins, by altering the expression of genes involved in anthocyanin biosynthesis and transport, in a cultivar- and tissue-specific manner. Unlike most grapes, teinturier grapes accumulate anthocyanins both in skin and flesh. However, the concentration and composition of anthocyanins in both tissues differ, providing a valuable system to study tissue-specific regulation of anthocyanin synthesis. Furthermore, little is known about the mechanisms controlling the sensitivity of anthocyanin accumulation to light. Here, light was excluded from Gamay (white-fleshed) and Gamay Fréaux (teinturier mutant) berries throughout berry development. Under light-exposed conditions, the skin of Gamay Fréaux accumulated the highest level of anthocyanins, followed by the skin of Gamay, while the pulp of Gamay Fréaux had much lower anthocyanins than the skins. Network analysis revealed the same order on the number of significant correlations among metabolites and transcripts in the three colored tissues, indicating a higher connectivity that reflects a higher efficiency of the anthocyanin pathway. Compared to light conditions, light exclusion reduced the total amount of anthocyanins, most severely in the skin of Gamay and to a lesser extent in the flesh and skin of Gamay Fréaux. Coordinated decrease in the transcript abundance of structural, regulatory and transporter genes by light exclusion correlated with the reduced anthocyanin concentration in a cultivar- and tissue-specific manner. Moreover, light exclusion increased the ratio of dihydroxylated to trihydroxylated anthocyanins, in parallel with F3'H and F3'5'H transcript amounts. Sugars and ABA only play a limited role in the control of anthocyanin synthesis in the berries, in contrast with what has been described in cell suspensions. This study provides novel insights into the regulation of anthocyanin in wild type and teinturier cultivars.

  10. Regulation of Anthocyanin Biosynthesis in Purple Leaves of Zijuan Tea (Camellia sinensis var. kitamura

    Directory of Open Access Journals (Sweden)

    Lingxia Wang

    2017-04-01

    Full Text Available Plant anthocyanin biosynthesis is well understood, but the regulatory mechanism in purple foliage tea remains unclear. Using isobaric tag for relative and absolute quantification (iTRAQ, 815 differential proteins were identified in the leaves of Zijuan tea, among which 20 were associated with the regulation of anthocyanin metabolism. We found that the abundances of anthocyanin synthesis-related enzymes such as chalcone synthase, chalcone isomerase, dihydroflavonol 4-reductase and anthocyanin synthetase, as well as anthocyanin accumulation-related UDP-glucosyl transferase and ATP-binding cassette (ABC transporters in the purple leaves were all significantly higher than those in the green leaves. The abundances of the transcription factors bHLH and HY5, regulating anthocyanin biosynthesis at transcriptional level were also obviously higher in purple leaves than those in green leaves. In addition, bifunctional 3-dehydroquinate dehydratase and chorismate mutase in purple leaves were distinctly higher in abundance compared to green leaves, which provided sufficient phenylalanine substrate for anthocyanin synthesis. Furthermore, lignin synthesis was found to be reduced due to the lower abundances of cinnamoyl-CoA reductase 1, peroxidase 15 and laccase-6, which resulted in increase of intermediates flow into anthocyanin synthesis pathway. The physiological data were consistent with proteomic results. These four aspects of biosynthetic regulation contribute to anthocyanin accumulation in purple leaves of Zijuan tea.

  11. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    Science.gov (United States)

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  12. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus

    Directory of Open Access Journals (Sweden)

    Nicola eCarraro

    2012-02-01

    Full Text Available Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively, and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also evidence for differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history including both tandem and whole genome duplication as well as probable loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of proteins involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ

  13. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    Science.gov (United States)

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  14. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl.

    Directory of Open Access Journals (Sweden)

    Jinting Li

    2016-12-01

    Full Text Available Achyranthes bidentata is a popular perennial medicine herb used for thousands of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 973.64 base pairs. A total of 31,634 (31.33% unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette (ABC transporters, some of which might be involved in the translocation of secondary metabolites.

  15. The effect of sugars in relation to methyl jasmonate on anthocyanin formation in the roots of Kalanchoe blossfeldiana (Poelln.

    Directory of Open Access Journals (Sweden)

    Justyna Góraj-Koniarska

    2015-07-01

    Full Text Available This study investigated the effects of different sugars (sucrose, fructose, glucose and sugar alcohols (mannitol, sorbitol applied alone and in solution with methyl jasmonate (JA-Me on the anthocyanin content in the roots of Kalanchoe blossfeldiana. None of the sugars used individually in the experiment affected anthocyanin accumulation in the roots of intact plants. The anthocyanin level was similar to that in the control. Sucrose at concentrations of 0.5% and 3.0%, and glucose at a concentration of 3.0% inhibited anthocyanin accumulation induced by JA-Me. Only fructose at a concentration of 3.0% stimulated anthocyanin accumulation induced by JA-Me. The sugar alcohols, mannitol at a concentration of 3.0% and sorbitol at 0.5% and 3.0%, inhibited anthocyanin accumulation in the roots of intact K. blossfeldiana plants induced by JA-Me. In excised roots, both sugars and JA-Me used individually did not affect the formation of anthocyanins. Also, the sugar alcohols (mannitol and sorbitol applied simultaneously with JA-Me had no effect on the accumulation of anthocyanins. However, roots treated with sugars (sucrose, fructose, glucose in solution with JA-Me promoted the induction of anthocyanins in the apical parts of the roots.  The results suggest that anthocyanin elicitation in the roots of K. blossfeldiana by methyl jasmonate may be dependent on the interaction of JA-Me with sugars transported from the stems (leaves to the roots.

  16. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    Science.gov (United States)

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  17. The putative Na+/Cl−-dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis

    Science.gov (United States)

    Luan, Zhuo; Quigley, Caitlin; Li, Hong-Sheng

    2015-01-01

    Most organisms are able to maintain systemic water homeostasis over a wide range of external or dietary osmolarities. The excretory system, composed of the kidneys in mammals and the Malpighian tubules and hindgut in insects, can increase water conservation and absorption to maintain systemic water homeostasis, which enables organisms to tolerate external hypertonicity or desiccation. However, the mechanisms underlying the maintenance of systemic water homeostasis by the excretory system have not been fully characterized. In the present study, we found that the putative Na+/Cl−-dependent neurotransmitter/osmolyte transporter inebriated (ine) is expressed in the basolateral membrane of anterior hindgut epithelial cells. This was confirmed by comparison with a known basolateral localized protein, the α subunit of Na+-K+ ATPase (ATPα). Under external hypertonicity, loss of ine in the hindgut epithelium results in severe dehydration without damage to the hindgut epithelial cells, implicating a physiological failure of water conservation/absorption. We also found that hindgut expression of ine is required for water conservation under desiccating conditions. Importantly, specific expression of ine in the hindgut epithelium can completely restore disrupted systemic water homeostasis in ine mutants under both conditions. Therefore, ine in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis. PMID:25613130

  18. Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Mohan B [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Mitchell, Sue A; Gibson, Trevor M [Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Hussain, Rohanah; Siligardi, Giuliano [Circular Dichroism Group, Diamond Light Source, Chiltern, Oxfordshire,OX11 0DE (United Kingdom); Andrews, Simon C [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Watson, Kimberly A, E-mail: k.a.watson@reading.ac.uk [School of Biological Sciences Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom); Structural Biology Unit at The BioCentre, University of Reading, Harborne Building, Whiteknights Campus, Reading, RG6 6AS (United Kingdom)

    2010-07-30

    Research highlights: {yields} Bioinformatic analysis reveals EfeM is a metallopeptidase with conserved HXXE motif. {yields} Mass spectrometry confirms EfeM consists of 251 residues, molecular weight 27,772Da. {yields} SRCD spectroscopy shows an {alpha}-helical secondary structure. {yields} Single crystals of EfeM are orthorhombic and diffract to 1.6A resolution. {yields} Space group is P22{sub 1}2{sub 1} with cell dimensions a = 46.74, b = 95.17 and c = 152.61 A. -- Abstract: The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signal peptide of 34 amino acid residues and a C-terminal 'Peptidase{sub M}75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr{sub 3}370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M{sub W} 27,772 Da). Circular dichroism spectroscopy of EfeM indicated a mainly {alpha}-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6 A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.

  19. AmSUT1, a Sucrose Transporter in Collection and Transport Phloem of the Putative Symplastic Phloem Loader Alonsoa meridionalis1

    Science.gov (United States)

    Knop, Christian; Stadler, Ruth; Sauer, Norbert; Lohaus, Gertrud

    2004-01-01

    A sucrose (Suc) transporter cDNA has been cloned from Alonsoa meridionalis, a member of the Scrophulariaceae. This plant species has an open minor vein configuration and translocates mainly raffinose and stachyose in addition to Suc in the phloem (C. Knop, O. Voitsekhovskaja, G. Lohaus [2001] Planta 213: 80–91). These are typical properties of symplastic phloem loaders. For functional characterization, AmSUT1 cDNA was expressed in bakers' yeast (Saccharomyces cerevisiae). Substrate and inhibitor specificities, energy dependence, and Km value of the protein agree well with the properties measured for other Suc transporters of apoplastic phloem loaders. A polyclonal antiserum against the 17 N-terminal amino acids of the A. meridionalis Suc transporter AmSUT1 was used to determine the cellular localization of the AmSUT1 protein. Using fluorescence labeling on sections from A. meridionalis leaves and stems, AmSUT1 was localized exclusively in phloem cells. Further histological characterization identified these cells as companion cells and sieve elements. p-Chloromercuribenzenesulfonic acid affected the sugar exudation of cut leaves in such a way that the exudation rates of Suc and hexoses decreased, whereas those of raffinose and stachyose increased. The data presented indicate that phloem loading of Suc and retrieval of Suc in A. meridionalis are at least partly mediated by the activity of AmSUT1 in addition to symplastic phloem loading. PMID:14730068

  20. ANTHOCYANINS ALIPHATIC ALCOHOLS EXTRACTION FEATURES

    Directory of Open Access Journals (Sweden)

    P. N. Savvin

    2015-01-01

    Full Text Available Anthocyanins red pigments that give color a wide range of fruits, berries and flowers. In the food industry it is widely known as a dye a food additive E163. To extract from natural vegetable raw materials traditionally used ethanol or acidified water, but in same technologies it’s unacceptable. In order to expand the use of anthocyanins as colorants and antioxidants were explored extracting pigments alcohols with different structures of the carbon skeleton, and the position and number of hydroxyl groups. For the isolation anthocyanins raw materials were extracted sequentially twice with t = 60 C for 1.5 hours. The evaluation was performed using extracts of classical spectrophotometric methods and modern express chromaticity. Color black currant extracts depends on the length of the carbon skeleton and position of the hydroxyl group, with the alcohols of normal structure have higher alcohols compared to the isomeric structure of the optical density and index of the red color component. This is due to the different ability to form hydrogen bonds when allocating anthocyanins and other intermolecular interactions. During storage blackcurrant extracts are significant structural changes recoverable pigments, which leads to a significant change in color. In this variation, the stronger the higher the length of the carbon skeleton and branched molecules extractant. Extraction polyols (ethyleneglycol, glycerol are less effective than the corresponding monohydric alcohols. However these extracts saved significantly higher because of their reducing ability at interacting with polyphenolic compounds.

  1. Biochemical and functional characterization of AcUFGT3a, a galactosyltransferase involved in anthocyanin biosynthesis in the red-fleshed kiwifruit (Actinidia chinensis).

    Science.gov (United States)

    Liu, Yanfei; Zhou, Bin; Qi, Yingwei; Liu, Cuihua; Liu, Zhande; Ren, Xiaolin

    2018-04-01

    Much of the diversity of anthocyanin pigmentation in plant tissues is due to the action of glycosyltransferases, which attach sugar moieties to the anthocyanin aglycone. This step can increase both their solubility and stability. We investigated the pigmentation of the outer and inner pericarps of developing fruits of the red-fleshed kiwifruit Actinidia chinensis cv. 'Hongyang'. The results show that the red color of the inner pericarp is due to anthocyanin. Based on expression analyses of structural genes, AcUFGT was shown to be the key gene involved in the anthocyanin biosynthetic pathway. Expression of AcUFGT in developing fruit paralleled changes in anthocyanin concentration. Thirteen putative UFGT genes, including different transcripts, were identified in the genome of 'Hongyang'. Among these, only the expression of AcUFGT3a was found to be highly consistent with anthocyanin accumulation. Fruit infiltrated with virus-induced gene silencing showed delayed red colorations, lower anthocyanin contents and lower expressions of AcUFGT3a. At the same time, transient overexpression of AcUFGT3a in both Actinidia arguta and green apple fruit resulted in higher anthocyanin contents and deeper red coloration. In vitro biochemical assays revealed that recombinant AcUFGT3a recognized only anthocyanidins as substrate but not flavonols. Also, UDP-galactose was used preferentially as the sugar donor. These results indicate AcUFGT3a is the key enzyme regulating anthocyanin accumulation in red-fleshed kiwifruit. © 2017 Scandinavian Plant Physiology Society.

  2. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions.

    Science.gov (United States)

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W; Browne, Tristan; Cox, Kevin; Paul, Andrew T; Ko, Seung-Hyun B; Mortensen, Joel E; Lam, Joseph S; Muruve, Daniel A; Hassett, Daniel J

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite ([Formula: see text], pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to [Formula: see text]. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to [Formula: see text], but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with [Formula: see text] plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM [Formula: see text], and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to [Formula: see text] in biofilms. [Formula: see text] sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, [Formula: see text] as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.

  3. Low-temperature conditioning of "seed" cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in 'Coreano' garlic (Allium sativum) during plant development.

    Science.gov (United States)

    Dufoo-Hurtado, Miguel D; Zavala-Gutiérrez, Karla G; Cao, Cong-Mei; Cisneros-Zevallos, Luis; Guevara-González, Ramón G; Torres-Pacheco, Irineo; Vázquez-Barrios, M Estela; Rivera-Pastrana, Dulce M; Mercado-Silva, Edmundo M

    2013-11-06

    Low-temperature conditioning of garlic "seed" cloves accelerated the development of the crop cycle, decreased plant growth, and increased the synthesis of phenolic compounds and anthocyanins in the outer scale leaves of the bulbs at harvest time, leading to 3-fold content increase compared with those conditioned at room temperature. Cold conditioning of "seed" cloves also altered the anthocyanin profile during bulb development and at harvest. Two new anthocyanins are reported for the first time in garlic. The high phenolics and anthocyanin contents in bulbs of plants generated from "seed" cloves conditioned at 5 °C for 5 weeks were preceded by overexpression of some putative genes of the phenolic metabolism [6-fold for phenylalanine ammonia lyase (PAL)] and anthocyanin synthesis [1-fold for UDP-sugar:flavonoid 3-O-glycosyltransferase (UFGT)] compared with those conditioned at room temperature.

  4. Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation.

    Science.gov (United States)

    Li, Wang; Wang, Bing; Wang, Man; Chen, Min; Yin, Jing-Ming; Kaleri, Ghullam Murtaza; Zhang, Rui-Jie; Zuo, Tie-Niu; You, Xiong; Yang, Qing

    2014-04-01

    Anthocyanins are a class of products of plant secondary metabolism and are responsible for tubers color in potato. The biosynthesis of anthocyanins is a complex biological process, in which multiple genes are involved including structural genes and regulatory genes. In this study, StAN11, a WD40-repeat gene, was cloned from potato cultivar Chieftain (Solanum tuberosum L.). StAN11 (HQ599506) contained no intron and its open reading frame (ORF) was 1,029 bp long, encoding a putative protein of 342 amino acids. In order to verify its role in anthocyanin biosynthesis, StAN11 was inserted behind the CaMV-35S promoter of pCMBIA1304 and the recombination vector was introduced into the potato cultivar Désirée plants by Agrobacterium-mediated transformation. The color of transgenic tuber skin was significantly deepened, compared to the wild-type control, which was highly consistent with the accumulation of anthocyanin and expression of StAN11 in transgenic lines tuber skin. Further analysis on the expression of Flavonone-3-hydroxylase (F3H), Dihydroflavonol reductase (DFR), Anthocyanidin synthase (ANS), and Flavonoid 3-O-glucosyl transferase (3GT) in transgenic plants revealed that only DFR was upregulated. This result suggested that StAN11 regulated anthocyanin biosynthesis in potato by controlling DFR expression and accumulation of anthocyanin could be increased through overexpression of StAN11 in the tubers with the genetic background of anthocyanin biosynthesis. © 2013 Institute of Botany, Chinese Academy of Sciences.

  5. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    Science.gov (United States)

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Silvana Cardoso

    Full Text Available Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B, UFGT, MRP, DFR, LDOX, CHI and GST. Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B, MYC(A, UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A. Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B. SNPs within LDOX interacted with MYB11 and MYC(B, while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies.

  7. Photoprotection and the photophysics of acylated anthocyanins.

    Science.gov (United States)

    da Silva, Palmira Ferreira; Paulo, Luísa; Barbafina, Adrianna; Eisei, Fausto; Quina, Frank H; Maçanita, António L

    2012-03-19

    The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (5-25 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanin-coumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyanin-co-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cation-co-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Putative sugar transporters of the mustard leaf beetle Phaedon cochleariae: their phylogeny and role for nutrient supply in larval defensive glands.

    Directory of Open Access Journals (Sweden)

    Magdalena Stock

    Full Text Available BACKGROUND: Phytophagous insects have emerged successfully on the planet also because of the development of diverse and often astonishing defensive strategies against their enemies. The larvae of the mustard leaf beetle Phaedon cochleariae, for example, secrete deterrents from specialized defensive glands on their back. The secretion process involves ATP-binding cassette transporters. Therefore, sugar as one of the major energy sources to fuel the ATP synthesis for the cellular metabolism and transport processes, has to be present in the defensive glands. However, the role of sugar transporters for the production of defensive secretions was not addressed until now. RESULTS: To identify sugar transporters in P. cochleariae, a transcript catalogue was created by Illumina sequencing of cDNA libraries. A total of 68,667 transcripts were identified and 68 proteins were annotated as either members of the solute carrier 2 (SLC2 family or trehalose transporters. Phylogenetic analyses revealed an extension of the mammalian GLUT6/8 class in insects as well as one group of transporters exhibiting distinctive conserved motifs only present in the insect order Coleoptera. RNA-seq data of samples derived from the defensive glands revealed six transcripts encoding sugar transporters with more than 3,000 counts. Two of them are exclusively expressed in the glandular tissue. Reduction in secretions production was accomplished by silencing two of four selected transporters. RNA-seq experiments of transporter-silenced larvae showed the down-regulation of the silenced transporter but concurrently the up-regulation of other SLC2 transporters suggesting an adaptive system to maintain sugar homeostasis in the defensive glands. CONCLUSION: We provide the first comprehensive phylogenetic study of the SLC2 family in a phytophagous beetle species. RNAi and RNA-seq experiments underline the importance of SLC2 transporters in defensive glands to achieve a chemical defense

  9. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives

    Directory of Open Access Journals (Sweden)

    Jian Zha

    2017-12-01

    Full Text Available Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  11. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.).

    Science.gov (United States)

    Zhang, Yanjie; Hu, Zongli; Chu, Guihua; Huang, Cheng; Tian, Shibing; Zhao, Zhiping; Chen, Guoping

    2014-04-02

    Eggplant (Solanum melongena L.) is an edible fruit vegetable cultivated and consumed worldwide. The purple eggplant is more eye-catching and popular for the health-promoting anthocyanins contained in the fruit skin. Two kinds of anthocyanin were separated and identified from purple cultivar (Zi Chang) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms of anthocyanin accumulation in eggplant, the transcripts of anthocyanin biosynthetic and regulatory genes were analyzed in the fruit skin and the flesh of the purple cultivar and the white cultivar (Bai Xue). Compared with the other tissues, SmMYB1 and all anthocyanin biosynthetic genes except PAL were dramatically upregulated in the fruit skin of the purple cultivar. Overexpression of SmMYB1 activated abundant anthocyanin accumulation in the regenerating shoots of eggplant. These results prove that transcriptional activation of SmMYB1 accounts for constitutive upregulation of most anthocyanin biosynthetic genes and the onset of anthocyanin biosynthesis in the purple cultivar.

  12. Can the controversy about the putative role of the human female orgasm in sperm transport be settled with our current physiological knowledge of coitus?

    Science.gov (United States)

    Levin, Roy J

    2011-06-01

    Spermatozoal uptake, facilitated by uterine contractions induced by oxytocin at orgasm during coitus, has been a long term concept. Studies attempting its support, however, have been poorly examined especially in the context of the changes in the female genital tract activated by sexual arousal. To examine experimental support for the concept. Using a variety of search engines, mainly peer reviewed articles and un-reviewed books were examined relating to sperm transport and function in the human female genital tract in the absence and presence of arousal to orgasm. Identifying evidence-based data to support authority-based opinion. All the experimental observations of sperm or model substitute's transport have been undertaken in women who were not sexually aroused. They fail to take into account that arousal creates vaginal tenting lifting the cervico-uterine complex into the false pelvis away from the ejaculated semen. This delays sperm uptake and transport making conclusions from these observations invalid in relation to transport during coitus. Studies injecting oxytocin have not used women in their sexually aroused state and used supraphysiological doses unlikely to be comparable with coitus and orgasm. The proposal that the transport of extra sperm by oxytocin-induced uterine contractions at orgasm is needed to facilitate fertility ignores possible harm from increased sperm numbers creating polyspermy and sperm enzyme release causing ovum degeneration, leading to decreased fertility. The role of sperm motility in their uptake from the vagina into the cervix as opposed to en bloc transfer through uterine archimyometrial-mediated transport in the absence of orgasm is at present unresolvable because of conflicting studies. The bulk of the reported evidence favors the conclusion that the female orgasm, with its concomitant central release of oxytocin, has little or no effective role in the transport of spermatozoa in natural human coitus. © 2010 International

  13. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and neuron-like γ-aminobutyric acid transport

    International Nuclear Information System (INIS)

    Levi, G.; Gallo, V.; Ciotti, T.

    1986-01-01

    When postnatal rat cerebellar cells were cultured in a chemically defined, serum-free medium, the only type of astrocyte present was unable to accumulate γ-[ 3 H]aminobutyric acid (GABA), did not express surface antigens recognized by two monoclonal antibodies, A2B5 and LB1, and showed minimal proliferation. In these cultures, nonneuronal A2B5 + , LB1 + stellate cells exhibiting neuron-like [ 3 H]GABA uptake formed cell colonies of increasing size and were GFAP - . After about one week of culturing, the A2B5 + , LB1 + , GABA-uptake positive cell groups became galactocerebroside (GalCer) positive. Immunocytolysis of the A2B5 + cells at 3 and 4 days in vitro prevented the appearance of the A2B5 + , LB1 + , GABA-uptake positive cell colonies, and also of the GalCer + cell groups. If 10% (vol/vol) fetal calf serum was added to 6-day cultures, the A2B5 + , LB1 + , GABA-uptake positive cell groups expressed GFAP and not GalCer. If the serum was added to the cultures 2 days after lysing the A2B5 + cells, only A2B5 - , LB1 - , GABA-uptake negative astrocytes proliferated. It is concluded that the putative fibrous astrocytes previously described in serum-containing cultures derive from bipotential precursors that differentiate into oligodendrocytes (GalCer + ) in serum-free medium or into astrocytes (GFAP + ) in the presence of serum, while the epithelioid A2B5 - , LB1 - , GABA-uptake negative astrocytes originate from a different precursor not yet identified

  14. Regulation of anthocyanin biosynthesis in peach fruits.

    Science.gov (United States)

    Rahim, Md Abdur; Busatto, Nicola; Trainotti, Livio

    2014-11-01

    MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located. Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.

  15. Effects of Hibiscus Sabdarrifa L. Anthocyanins on Cadmium-Induced ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Comparison of HPLC chromatogram of anthocyanin extract of H. sabdariffa calyces ... Anthocyanins are members of the flavonoid family ... sabdariffa calyces according to the method of Hong .... samples was quantified using a molar extinction.

  16. Light-induced vegetative anthocyanin pigmentation in Petunia

    OpenAIRE

    Albert, Nick W.; Lewis, David H.; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E.; Davies, Kevin M.

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins...

  17. The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Aerial plant surfaces are covered by epicuticular waxes that among other purposes serve to control water loss. Maize glossy mutants originally identified by their "glossy" phenotypes exhibit alterations in the accumulation of epicuticular waxes. By combining data from a BSR-Seq experiment and the newly developed Seq-Walking technology, GRMZM2G118243 was identified as a strong candidate for being the glossy13 gene. The finding that multiple EMS-induced alleles contain premature stop codons in GRMZM2G118243, and the one knockout allele of gl13, validates the hypothesis that gene GRMZM2G118243 is gl13. Consistent with this, GRMZM2G118243 is an ortholog of AtABCG32 (Arabidopsis thaliana, HvABCG31 (barley and OsABCG31 (rice, which encode ABCG subfamily transporters involved in the trans-membrane transport of various secondary metabolites. We therefore hypothesize that gl13 is involved in the transport of epicuticular waxes onto the surfaces of seedling leaves.

  18. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-03-01

    Full Text Available Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  19. Effect of fermentation and sterilization on anthocyanins in blueberry.

    Science.gov (United States)

    Nie, Qixing; Feng, Lei; Hu, Jielun; Wang, Sunan; Chen, Haihong; Huang, Xiaojun; Nie, Shaoping; Xiong, Tao; Xie, Mingyong

    2017-03-01

    Blueberry products have various health benefits due to their high content of dietary anthocyanins. The aim of this study was to investigate the impact of fermentation and sterilization on total anthocyanin content, composition and some quality attributes of blueberry puree. The blueberry puree used here was fermented for 40 h at 37 °C by Lactobacillus after sterilization. The method of ultra-performance liquid chromatography-mass spectrometry was optimized for the rapid analysis of anthocyanins. Quality attributes including pH, color, total soluble solids and viscosity were measured. A total of 21 anthocyanins and five anthocyanidins were quantified by ultra-performance liquid chromatography. Fermented blueberry had reduced total anthocyanin content (29%) and levels of individual anthocyanins compared with fresh blueberry. Total anthocyanin content was decreased 46% by sterilization, and different degradation behavior of individual anthocyanin was appeared between fermented and sterilized-fermented blueberry puree. Fermentation and sterilization decreased the total soluble solids and pH and changed color parameters, while minimally influencing viscosity. The loss of total anthocyanin content by fermentation was related to the unstable structure of blueberry anthocyanins. Anthocyanins are sensitive to temperature (>80 °C), and degradation of anthocyanins by sterilization in blueberry should be considered in the fermentation procedure. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Anthocyanin content of two Hibiscus sabdariffa cultivars grown in ...

    African Journals Online (AJOL)

    Anthocyanin content of Hibiscus sabdariffa calyces was determined to compare two cultivars from Senegal called Koor and Vimto. Results showed a significant difference in terms of total anthocyanin content (TA) and relative abundance (RA) of anthocyanin species. Values of TA for Vimto were 3-fold higher than Koor's.

  1. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review

    Science.gov (United States)

    Liu, Ying; Tikunov, Yury; Schouten, Rob E.; Marcelis, Leo F. M.; Visser, Richard G. F.; Bovy, Arnaud

    2018-03-01

    Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e. pepper, tomato, eggplant and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  2. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  3. Pep3p/Pep5p complex: a putative docking factor at multiple steps of vesicular transport to the vacuole of Saccharomyces cerevisiae.

    OpenAIRE

    Srivastava, A; Woolford, C A; Jones, E W

    2000-01-01

    Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional ...

  4. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2012-02-01

    Full Text Available Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enhance their color has helped to explain their color representation in red wine making and aging. A series of new enological practices were developed to improve the anthocyanin extraction, as well as their color expression and maintenance. This paper summarizes the most recent advances in the studies of the monomeric anthocyanins in red wines, emphasizing their origin, occurrence, color enhancing effects, their degradation and the effect of various enological practices on them.

  5. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression

    OpenAIRE

    Chang-Qing Duan; Malcolm J. Reeves; Qiu-Hong Pan; Lin Mu; Na-Na Liang; Fei He; Jun Wang

    2012-01-01

    Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enha...

  6. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  7. Microwave-assisted extraction of anthocyanin from Chinese bayberry and its effects on anthocyanin stability

    Directory of Open Access Journals (Sweden)

    Wenkai DUAN

    2015-09-01

    Full Text Available AbstractAnthocyanins are present in high concentrations in Chinese bayberry, Myrica rubra Sieb. & Zucc. Herein, a microwave-assisted extraction was used to extract the anthocyanins from Chinese bayberry. The HPLC chromatogram of the extracts showed that the anthocyanin components were slightly hydrolysed during the extraction process. Further experiments confirmed that microwave irradiation slightly hydrolysed cyanidin-3-O-glucoside to cyanidin, but did not significantly influence the antioxidant activity of the extracts. Optimized extraction conditions for total anthocyanin content were a solid-to-liquid ratio, extraction temperature, and extraction time of 1:50, 80 °C, and 15 min, respectively. Under these conditions, the anthocyanin content was 2.95 ± 0.08 mg·g−1, and the antioxidant activity yield was 279.96 ± 0.1 μmol.·g−1 Trolox equivalent on a dry weight basis. These results indicated that microwave-assisted extraction was a highly efficient extraction method with reduced processing time. However, under some extraction conditions it could damage the anthocyanins. These results provide an important guide for the application of microwave extraction.

  8. Probenazole treatment inhibits anthocyanins biosynthesis via ...

    African Journals Online (AJOL)

    It has been found that anthocyanins were accumulated in Arabidopsis under drought or salt stress. In this study, such accumulation was found to be inhibited by external applied probenazole (3-allyloxy-1, 2-benzisothiazole-1,1-dioxide, PBZ), which is the active ingredient in oryzemate used for the protection of rice from ...

  9. Antioxidant capacity of anthocyanins from acerola genotypes

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Arroxelas Galvão De Lima

    2011-03-01

    Full Text Available Anthocyanins from 12 acerola genotypes cultivated at the Active Germplasm Bank at Federal Rural University of Pernambuco were isolated for antioxidant potential evaluation. The antioxidant activity and radical scavenging capacity of the anthocyanin isolates were measured according to the β-carotene bleaching method and 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging assay, respectively. The antioxidant activity varied from 25.58 to 47.04% at 0.2 mg.mL-1, and it was measured using the β-carotene bleaching method. The free radical scavenging capacity increased according to the increase in concentration and reaction time by the DPPH assay. At 16.7 μg.mL-1 concentration and after 5 minutes and 2 hours reaction time, the percentage of scavenged radicals varied from 36.97 to 63.92% and 73.27 to 94.54%, respectively. Therefore, the antioxidant capacity of acerola anthocyanins varied amongst acerola genotypes and methods used. The anthocyanins present in this fruit may supply substantial dietary source of antioxidant which may promote health and produce disease prevention effects.

  10. The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis.

    Directory of Open Access Journals (Sweden)

    Emelie Perland

    Full Text Available Solute carriers (SLCs are membrane bound transporters responsible for the movement of soluble molecules such as amino acids, ions, nucleotides, neurotransmitters and oligopeptides over cellular membranes. At present, there are 395 SLCs identified in humans, where about 40% are still uncharacterized with unknown expression and/or function(s. Here we have studied two uncharacterized atypical SLCs that belong to the Major Facilitator Superfamily Pfam clan, Major facilitator superfamily domain 5 (MFSD5 and Major facilitator superfamily domain 11 (MFSD11. We provide fundamental information about the histology in mice as well as data supporting their disposition to regulate expression levels to keep the energy homeostasis.In mice subjected to starvation or high-fat diet, the mRNA expression of Mfsd5 was significantly down-regulated (P<0.001 in food regulatory brain areas whereas Mfsd11 was significantly up-regulated in mice subjected to either starvation (P<0.01 or high-fat diet (P<0.001. qRT-PCR analysis on wild type tissues demonstrated that both Mfsd5 and Mfsd11 have a wide central and peripheral mRNA distribution, and immunohistochemistry was utilized to display the abundant protein expression in the mouse embryo and the adult mouse brain. Both proteins are expressed in excitatory and inhibitory neurons, but not in astrocytes.Mfsd5 and Mfsd11 are both affected by altered energy homeostasis, suggesting plausible involvement in the energy regulation. Moreover, the first histological mapping of MFSD5 and MFSD11 shows ubiquitous expression in the periphery and the central nervous system of mice, where the proteins are expressed in excitatory and inhibitory mouse brain neurons.

  11. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries

    Czech Academy of Sciences Publication Activity Database

    Ferrero, M.; Pagliarani, C.; Novák, Ondřej; Ferrandino, A.; Cardinale, F.; Visentin, I.; Schubert, A.

    2018-01-01

    Roč. 69, č. 9 (2018), s. 2391-2401 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : vitis-vinifera l. * cabernet-sauvignon * seed-germination * drought stress * nonclimacteric fruit * lotus-japonicus * gene-expression * plant hormones * analog gr24 * biosynthesis * ABA conjugation * ABA hydroxylases * ABA transporters * abscisic acid * anthocyanin * grapevine * gr24 * ripening * strigolactones Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  12. Anthocyanins: naturally occuring fruit pigments with functional properties

    Directory of Open Access Journals (Sweden)

    Mihaela TURTURICĂ

    2015-08-01

    Full Text Available Anthocyanin is a water-soluble pigment existing in plants, and has various health benefits to humans. As far as that goes, the number and location of the hydroxyl groups of the parent nucleus have significant effects on the anthocyanin activities. This review summarizes anthocyanin content in fruits, the importance of anthocyanin in relation to human health, some aspects of anthocyanin biochemistry and their bioavailability, the distribution in some fruits, the biosynthetic pathway, different extraction, separation and purification methods, and also identification methods. Beneficial effects of anthocyanin pigments are reported in the scientific literature and these compounds are nowadays recognized as potentially therapeutic. The lack of antioxidant defense mechanisms in humans is associated with the cardiovascular and coronary artery diseases, cancer and diabetes, besides others.

  13. Quantification and Purification of Mulberry Anthocyanins with Macroporous Resins

    Directory of Open Access Journals (Sweden)

    Xueming Liu

    2004-01-01

    Full Text Available Total anthocyanins in different cultivars of mulberry were measured and a process for the industrial preparation of mulberry anthocyanins as a natural food colorant was studied. In 31 cultivars of mulberry, the total anthocyanins, calculated as cyanidin 3-glucoside, ranged from 147.68 to 2725.46 mg/L juice. Extracting and purifying with macroporous resins was found to be an efficient potential method for the industrial production of mulberry anthocyanins as a food colorant. Of six resins tested, X-5 demonstrated the best adsorbent capability for mulberry anthocyanins (91 mg/mL resin. The adsorption capacity of resins increased with the surface area and the pore radius. Residual mulberry fruit juice after extraction of pigment retained most of its nutrients, except for anthocyanins, and may provide a substrate for further processing.

  14. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis.

    Science.gov (United States)

    Jiang, Xiaolan; Huang, Keyi; Zheng, Guangshun; Hou, Hua; Wang, Peiqiang; Jiang, Han; Zhao, Xuecheng; Li, Mingzhuo; Zhang, Shuxiang; Liu, Yajun; Gao, Liping; Zhao, Lei; Xia, Tao

    2018-05-01

    Tea is one of the most widely consumed nonalcoholic beverages worldwide. Polyphenols are nutritional compounds present in the leaves of tea plants. Although numerous genes are functionally characterized to encode enzymes that catalyze the formation of diverse polyphenolic metabolites, transcriptional regulation of those different pathways such as late steps of the proanthcoyanidin (PA) pathway remains unclear. In this study, using different tea transcriptome databases, we screened at least 140 R2R3-MYB transcription factors (TFs) and grouped them according to the basic function domains of the R2R3 MYB TF superfamily. Among 140 R2R3 TFs, CsMYB5a and CsMYB5e were chosen for analysis because they may be involved in PA biosynthesis regulation. CsMYB5a-overexpressing tobacco plants exhibited downregulated anthocyanin accumulation but a high polymeric PA content in the flowers. Overexpression of CsMYB5e in tobacco plants did not change the anthocyanin content but increased the dimethylaminocinnamaldehyde-stained PA content. RNA-seq and qRT-PCR analyses revealed that genes related to PA and anthocyanin biosynthesis pathways were markedly upregulated in both CsMYB5a- and CsMYB5e-overexpressing flowers. Three UGTs and four GSTs were identified as involved in PA and anthocyanin glycosylation and transportation in transgenic plants. These results provide new insights into the regulation of PA and anthocyanin biosynthesis in Camellia sinensis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Dietary Anthocyanins against Obesity and Inflammation.

    Science.gov (United States)

    Lee, Yoon-Mi; Yoon, Young; Yoon, Haelim; Park, Hyun-Min; Song, Sooji; Yeum, Kyung-Jin

    2017-10-01

    Chronic low-grade inflammation plays a pivotal role in the pathogenesis of obesity, due to its associated chronic diseases such as type II diabetes, cardiovascular diseases, pulmonary diseases and cancer. Thus, targeting inflammation is an attractive strategy to counter the burden of obesity-induced health problems. Recently, food-derived bioactive compounds have been spotlighted as a regulator against various chronic diseases due to their low toxicity, as opposed to drugs that induce severe side effects. Here we describe the beneficial effects of dietary anthocyanins on obesity-induced metabolic disorders and inflammation. Red cabbage microgreen, blueberry, blackcurrant, mulberry, cherry, black elderberry, black soybean, chokeberry and jaboticaba peel contain a variety of anthocyanins including cyanidins, delphinidins, malvidins, pelargonidins, peonidins and petunidins, and have been reported to alter both metabolic markers and inflammatory markers in cells, animals, and humans. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the use of dietary anthocyanins, suggesting an alternative dietary strategy to ameliorate obesity and obesity associated chronic diseases.

  16. Light-induced vegetative anthocyanin pigmentation in Petunia

    Science.gov (United States)

    Albert, Nick W.; Lewis, David H.; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E.; Davies, Kevin M.

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris×(Petunia axillaris×Petunia hybrida cv. ‘Rose of Heaven’)]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (Amax). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors. PMID:19380423

  17. Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor.

    Science.gov (United States)

    Cen, Xu-Feng; Wang, Jing-Zhi; Zhao, Guo-Ping; Wang, Ying; Wang, Jin

    2016-03-18

    In the agl3EFGXYZ operon (SCO7167-SCO7162, abbreviated as agl3 operon) of Streptomyces coelicolor M145, agl3EFG genes encode a putative ABC-type carbohydrate transporter. The transcription of this operon has been proved to be repressed by Agl3R (SCO7168), a neighboring GntR-family regulator, and this repression can be released by growth on poor carbon sources. Here in this study, we prove that the transcription of agl3 operon is also directly repressed by GlnR, a central regulator governing the nitrogen metabolism in S. coelicolor. The electrophoretic mobility shift assay (EMSA) employing the agl3 promoter and mixtures of purified recombinant GlnR and Agl3R indicates that GlnR and Agl3R bind to different DNA sequences within the promoter region of agl3 operon, which is further confirmed by the DNase I footprinting assay. As Agl3R and GlnR have been demonstrated to sense the extracellular carbon and nitrogen supplies, respectively, it is hypothesized that the transcription of agl3 operon is stringently governed by the availabilities of extracellular carbon and nitrogen sources. Consistent with the hypothesis, the agl3 operon is further found to be derepressed only under the condition of poor carbon and rich nitrogen supplies, when both regulators are inactivated. It is believed that activation of the expression of agl3 operon may facilitate the absorption of extracellular carbohydrates to balance the ratio of intracellular carbon to nitrogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    Science.gov (United States)

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  19. Hippeastrum hybridum anthocyanins as indicators of endpoint in acid

    African Journals Online (AJOL)

    Anthocyanins from Hippeastrum hybridum (Amaryllis) were investigated as indicators of endpoint in acid- base titrations. Extraction of the anthocyanins was done using distilled water, methanol and methanol containing 0.5% acetic acid. The extracts were used in determination of endpoint in titrations between strong.

  20. Hippeastrum hybridum anthocyanins as indicators of endpoint in ...

    African Journals Online (AJOL)

    Anthocyanins from Hippeastrum hybridum (Amaryllis) were investigated as indicators of endpoint in acid- base titrations. Extraction of the anthocyanins was done using distilled water, methanol and methanol containing 0.5% acetic acid. The extracts were used in determination of endpoint in titrations between strong ...

  1. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    Science.gov (United States)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  2. Protective role of anthocyanins in plants under low nitrogen stress.

    Science.gov (United States)

    Liang, Jian; He, Junxian

    2018-04-15

    Nitrogen (N) is a major nutrient of plants but often a limiting factor for plant growth and crop yield. To adapt to N deficiency, plants have evolved adaptive responses including accumulation of anthocyanins. However, it is still unclear whether the accumulated anthocyanins are part of the components of plant tolerance under low N stress. Here, we demonstrate that low N-induced anthocyanins contribute substantially to the low N tolerance of Arabidopsis thaliana. pap1-1, a mutant defective in MYB75 (PAP1), a MYB-type transcription factor that positively regulates anthocyanin biosynthesis in Arabidopsis, was found to have significantly decreased survival rate to low N stress compared to its wild-type plants. Similarly, tt3, a mutant with severe deficiency in dihydroflavonol 4-reductase (DFR), a key enzyme in anthocyanin biosynthesis, also showed much lower survival rate under low N stress. These results indicate that anthocyanins are substantial contributors of plant tolerance to low N stress. Furthermore, a metabolomics analysis using LC-MS revealed changes in flavonoid profile in the pap1-1 and tt3 plants, which established a causal relationship between plant adaptation to low N stress and these compounds including anthocyanins. Our results showed an important role of anthocyanins rather than flavonols in conferring plant tolerance to low N stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation

    African Journals Online (AJOL)

    The anthocyanin biosynthesis pathway is a little complex with branches responsible for the synthesis of a variety of metabolites. In fruit tree crops, during the past decade, many structural genes encoding enzymes in the anthocyanin biosynthetic pathway and various regulatory genes encoding transcription factors that ...

  4. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins.

    Science.gov (United States)

    Karakaya, Sibel; Simsek, Sebnem; Eker, Alper Tolga; Pineda-Vadillo, Carlos; Dupont, Didier; Perez, Beatriz; Viadel, Blanca; Sanz-Buenhombre, Marisa; Rodriguez, Alberto Guadarrama; Kertész, Zsófia; Hegyi, Adrienn; Bordoni, Alessandra; El, Sedef Nehir

    2016-08-10

    Anthocyanins, water soluble polyphenols, have been associated with several beneficial health effects. The aim of this study was to determine how the baking process and food matrix affect anthocyanin stability and bioaccessibility in bakery products in order to develop functional foods. Three well known regularly consumed bakery products (buns, breadsticks and biscuits) were enriched with anthocyanin (AC) isolated from grape skin alone or in combination with docosahexaenoic acid (AC + DHA) to reveal knowledge on AC as active ingredients in real food systems rather than pure compounds. Anthocyanin amounts added to the formulations of buns, breadsticks and biscuits were 34 mg per 100 g, 40 mg per 100 g and 37 mg per 100 g, respectively. The effect of processing, storage and the food matrix on AC stability and bioaccessibility was investigated. In addition, the sensory properties of bakery products were evaluated. Breadsticks enriched with AC and AC + DHA received the lowest scores in the pre-screening sensory test. Therefore breadsticks were excluded from further analysis. AC retentions, which were monitored by determination of malvidin 3-O-glucoside, in the bun and biscuit after baking were 95.9% (13.6 mg per 100 g) and 98.6% (15.2 mg per 100 g), respectively. Biscuits and buns enriched only with AC showed significantly higher anthocyanin bioaccessibilities (57.26% and 57.30%, respectively) than the same ones enriched with AC + DHA. AC stability in enriched products stored for 21 days was significantly lower than in products stored for 7 days (p products.

  5. Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins.

    Science.gov (United States)

    Thibado, Seth P; Thornthwaite, Jerry T; Ballard, Thomas K; Goodman, Brandon T

    2018-02-01

    Rapidly accumulating laboratory and clinical research evidence indicates that anthocyanins exhibit anticancer activity and the evaluation of bilberry anthocyanins as chemo-preventive agents is progressing. It has previously been demonstrated that anthocyanins upregulate tumor suppressor genes, induce apoptosis in cancer cells, repair and protect genomic DNA integrity, which is important in reducing age-associated oxidative stress, and improve neuronal and cognitive brain function. Bilberry anthocyanins have pronounced health effects, even though they have a low bioavailability. To increase the bioavailability, Bilberry was encapsulated in 5.5 nm diameter liposomal micelles, called NutraNanoSpheres (NNS), at a concentration of 2.5 mg/50 µl [25% (w/w) anthocyanins]. These Bilberry NNS were used to study the apoptotic/cytotoxic effects on K562 Human Erythroleukemic cancer cells. Flow cytometric fluorescent quantification of the uptake of propidium iodide in a special cell viability formulation into dead K562 cells was used to determine the effects of Bilberry on the viability of K562 cells. The concentrations of Bilberry that demonstrated the greatest levels of percentage inhibition, relative to the control populations, were biphasic, revealing a 60-70% inhibition between 0.018-1.14 mg/ml (n=6) and 60% inhibition at 4 mg/ml. The lowest percentage inhibition (30%) occurred at 2 mg/ml. The lethal dose 50 was determined to be 0.01-0.04 mg/ml of Bilberry per 105 K562 cells at 72 h of cell culture exposure. At 48 h incubation, the highest percentage of inhibition was only 27%, suggesting involvement of a long-term apoptotic event. These levels, which demonstrated direct cytotoxic effects, were 8-40 times lower than levels required for Bilberry that is not encapsulated. The increase in bioavailability with the Bilberry NNS and its water solubility demonstrated the feasibility of using Bilberry NNS in cancer patient clinical trials.

  6. The effect of dietary factors on strawberry anthocyanins oral bioavailability.

    Science.gov (United States)

    Xiao, Di; Sandhu, Amandeep; Huang, Yancui; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt M

    2017-11-15

    Strawberries are a dietary source of anthocyanins, particularly pelargonidin glycosides. Dietary anthocyanins have received increasing attention among researchers and consumers due to their health benefits. The oral bioavailability of anthocyanins is reported to be low and various dietary factors may influence their oral bioavailability further. Milk is suggested to reduce (poly)phenols' oral bioavailability. However, the effect of milk on anthocyanin oral bioavailability remains uncertain. Likewise, mixed nutrient meals may influence the oral bioavailability of anthocyanins. Therefore, the purpose of this study was to assess the effect of milk on the oral bioavailability and other pharmacokinetic (PK) variables of strawberry anthocyanins consumed with and without a meal. Nine healthy participants consumed a strawberry beverage prepared in milk or water with a standard meal on two occasions. On two additional occasions, the beverages were given to a subset (n = 4) of participants to determine the impact of the meal on anthocyanin PK variables, including oral bioavailability. Independent of the meal, beverages prepared in milk significantly reduced the peak plasma concentrations (C max ) of pelargonidin-3-O-glucoside (P-3-G), pelargonidin-glucuronide (PG) and pelargonidin-3-O-rutinoside (P-3-R), as well as the PG and P-3-R area under the curve (AUC) (p bioavailability of pelargonidin anthocyanins under meal conditions; however, the oral relative bioavailability of pelargonidin anthocyanins was reduced by ∼50% by milk under without meal conditions (p < 0.05). Consuming strawberry beverages made with milk and consuming those made with water with and without a meal influenced different aspects of strawberry anthocyanin PKs. The significance of this effect on clinical efficacy requires additional research.

  7. Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues.

    Science.gov (United States)

    Enoki, Shinichi; Hattori, Tomoki; Ishiai, Shiho; Tanaka, Sayumi; Mikami, Masachika; Arita, Kayo; Nagasaka, Shu; Suzuki, Shunji

    2017-12-01

    We investigated the effect of vanillylacetone (VA) on anthocyanin accumulation with aim of improving grape berry coloration. Spraying Vitis vinifera cv. Muscat Bailey A berries with VA at veraison increased sugar/acid ratio, an indicator of maturation and total anthocyanin accumulation. To elucidate the molecular mechanism underlying the effect of VA on anthocyanin accumulation, in vitro VA treatment of a grapevine cell culture was carried out. Endogenous abscisic acid (ABA) content was higher in the VA-treated cell cultures than in control at 3h after treatment. Consistent with this, the relative expression levels of anthocyanin-synthesis-related genes, including DFR, LDOX, MybA1 and UFGT, in VA-treated cell cultures were much higher than those in control, and high total anthocyanin accumulation was noted in the VA-treated cell cultures as well. These results suggest that VA up-regulates the expression of genes leading to anthocyanin accumulation by inducing endogenous ABA. In addition, VA increased total anthocyanin content in a dose-dependent manner. Although VA treatment in combination with exogenous ABA did not exhibit any synergistic effect, treatment with VA alone showed an equivalent effect to that with exogenous ABA alone on total anthocyanin accumulation. These findings point to the possibility of using VA for improving grape berry coloration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. cDNA cloning and expression of anthocyanin biosynthetic genes in ...

    African Journals Online (AJOL)

    GRACE

    2006-05-16

    May 16, 2006 ... that influence anthocyanin pigments have been isolated from Solanaceae. A few genes of anthocyanin ... Long, 1955), and the purple anthocyanin pigments are primarily derived from the related compound ..... anthocyanin production in tuber skins. this result was similar with carrot (daucus carota l) cell ...

  9. Iron deficiency stimulates anthocyanin accumulation in grapevine apical leaves.

    Science.gov (United States)

    Caramanico, Leila; Rustioni, Laura; De Lorenzis, Gabriella

    2017-10-01

    Iron chlorosis is a diffuse disorder affecting Mediterranean vineyards. Beside the commonly described symptom of chlorophyll decrease, an apex reddening was recently observed. Secondary metabolites, such as anthocyanins, are often synthetized to cope with stresses in plants. The present work aimed to evaluate grapevine responses to iron deficiency, in terms of anthocyanin metabolism (reflectance spectrum, total anthocyanin content, HPLC profile and gene expression) in apical leaves of Cabernet sauvignon and Sangiovese grown in hydroponic conditions. Iron supply interruption produced after one month an increasing of anthocyanin content associated to a more stable profile in both cultivars. In Cabernet sauvignon, the higher red pigment accumulation was associated to a lower intensity of chlorotic symptoms, while in Sangiovese, despite the activation of the metabolism, the lower anthocyanin accumulation was associated to a stronger decrease in chlorophyll concentration. Gene expression data showed a significant increase of anthocyanin biosynthesis. The effects on the expression of structural and transcription factor genes of phenylpropanoid pathway were cultivar dependent. F3H, F3'H, F3'5'H and LDOX genes, in Cabernet sauvignon, and AOMT1 and AOMT genes, in Sangiovese, were positively affected by the treatment in response to iron deficiency. All data support the hypothesis of an anthocyanin biosynthesis stimulation rather than a decreased degradation of them due to iron chlorosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Clustering of 18 Local Black Rice Base on Total Anthocyanin

    OpenAIRE

    Kristamtini Kristamtini; Endang Wisnu Wiranti

    2017-01-01

    Black rice has a high anthocyanin content in the pericarp layer, which provides a dark purple color. Anthocyanin serve as an antioxidant that control cholesterol level in the blood, prevent anemia, potentially improve the body's resistance to disease, improve damage to liver cells (hepatitis and chirrosis), prevent impaired kidney function, prevent cancer/tumors, slows down antiaging, and prevent atherosclerosis and cardiovascular disease. Exploration results at AIAT Yogyakarta, Indonesia fro...

  11. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries.

    Science.gov (United States)

    Mueller, Dolores; Jung, Kathrin; Winter, Manuel; Rogoll, Dorothee; Melcher, Ralph; Richling, Elke

    2017-09-15

    We investigated the importance of the large intestine on the bioavailability of anthocyanins from bilberries in humans with/without a colon. Low bioavailability of anthocyanins in plasma and urine was observed in the frame of this study. Anthocyanins reached the circulation mainly as glucuronides. Analysis of ileal effluents (at end of small intestine) demonstrated that 30% of ingested anthocyanins were stable during 8h passage through the upper intestine. Only 20% degradants were formed and mostly intact anthocyanins were absorbed from the small intestine. Higher amounts of degradants than anthocyanins reached the circulation after bilberry extract consumption in both groups of subjects. Comparison of the bioavailability of anthocyanins in healthy subjects versus ileostomists revealed substantially higher amounts of anthocyanins and degradants in the plasma/urine of subjects with an intact gut. The results suggested that the colon is a significant site for absorption of bioactive components such as anthocyanins and their degradation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Extraction, Separation, and Purification of Blueberry Anthocyanin Using Ethyl Alcohol

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2017-11-01

    Full Text Available Blueberry contains many substances that are important to the human body and can prevent cardiovascular diseases, protect the retina, and soften blood vessels. Anthocyanin, which is extracted from blueberry, can activate the retina, strengthen vision, reduce serum cholesterol, triglyceride and high-density lipoprotein, and protect cell nucleus tissues from radical oxidation; hence, blueberry is of importance to scientists from different countries. In this study, anthocyanin was extracted and separated from blueberry using ethyl alcohol to investigate the effects of factors, such as ethyl alcohol volume ratio on anthocyanin extraction and separation technologies. The extracting solution was then purified using the macroreticular resin purification method to investigate the effects of ethyl alcohol concentration and eluent dosage on anthocyanin extraction during purification. The research results demonstrated that 60 % ethyl alcohol volume fraction, 1 : 10 mass ratio of solid to liquid, and 60 °C ultrasonic temperature were the best conditions for anthocyanin extraction. The best purification conditions were 95 % ethyl alcohol, which had been acidized by 0.3 % hydrochloric acid and 70 ml of eluent. This work provides a reference for the application of ethyl alcohol in anthocyanin extraction.

  13. Accumulation of anthocyanins in tomato skin extends shelf life.

    Science.gov (United States)

    Bassolino, Laura; Zhang, Yang; Schoonbeek, Henk-Jan; Kiferle, Claudia; Perata, Pierdomenico; Martin, Cathie

    2013-11-01

    Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Clustering of 18 Local Black Rice Base on Total Anthocyanin

    Directory of Open Access Journals (Sweden)

    Kristamtini Kristamtini

    2017-10-01

    Full Text Available Black rice has a high anthocyanin content in the pericarp layer, which provides a dark purple color. Anthocyanin serve as an antioxidant that control cholesterol level in the blood, prevent anemia, potentially improve the body's resistance to disease, improve damage to liver cells (hepatitis and chirrosis, prevent impaired kidney function, prevent cancer/tumors, slows down antiaging, and prevent atherosclerosis and cardiovascular disease. Exploration results at AIAT Yogyakarta, Indonesia from 2011 to 2014 obtained 18 cultivar of local black rice Indonesia. The names of the rice are related to the color (black, red or purple formed by anthocyanin deposits in the pericarp layer, seed coat or aleuron. The objective of the study was to classify several types of local black rice from explorations based on the total anthocyanin content. The study was conducted by clustering analyzing the total anthocyanin content of 18 local black rice cultivars in Indonesia. Cluster analysis of total anthocyanin content were done using SAS ver. 9.2. Clustering dendogram shows that there were 4 groups of black rice cultivars based on the total anthocyanin content. Group I consists of Melik black rice, Patalan black rice, Yunianto black rice, Muharjo black rice, Ngatijo black rice, short life of Tugiyo black rice, Andel hitam 1, Jlitheng, and Sragen black rice. Group II consists of Pari ireng, Magelang black hairy rice, Banjarnegara-Wonosobo black rice, and Banjarnegara black rice. Group III consists of NTT black rice, Magelang non hairy black rice, Sembada hitam, and longevity Tugiyo black rice. Group IV consist only one type of black rice namely Cempo ireng. The grouping result indicate the existence of duplicate names among the black rice namely Patalan with Yunianto black rice, and short life Tugiyo with Andel hitam 1 black rice.

  15. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants.

    Science.gov (United States)

    Chen, Li; Liu, Yushan; Liu, Hongdi; Kang, Limin; Geng, Jinman; Gai, Yuzhuo; Ding, Yunlong; Sun, Haiyue; Li, Yadong

    2015-01-01

    Multidrug and toxic compound extrusion (MATE) proteins are the most recently identified family of multidrug transporters. In plants, this family is remarkably large compared to the human and bacteria counterpart, highlighting the importance of MATE proteins in this kingdom. Here 33 Unigenes annotated as MATE transporters were found in the blueberry fruit transcriptome, of which eight full-length cDNA sequences were identified and cloned. These proteins are composed of 477-517 residues, with molecular masses ~54 kDa, and theoretical isoelectric points from 5.35 to 8.41. Bioinformatics analysis predicted 10-12 putative transmembrane segments for VcMATEs, and localization to the plasma membrane without an N-terminal signal peptide. All blueberry MATE proteins shared 32.1-84.4% identity, among which VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8, and VcMATE9 were more similar to the MATE-type flavonoid transporters. Phylogenetic analysis showed VcMATE2, VcMATE3, VcMATE5, VcMATE7, VcMATE8 and VcMATE9 clustered with MATE-type flavonoid transporters, indicating that they might be involved in flavonoid transport. VcMATE1 and VcMATE4 may be involved in the transport of secondary metabolites, the detoxification of xenobiotics, or the export of toxic cations. Real-time quantitative PCR demonstrated that the expression profile of the eight VcMATE genes varied spatially and temporally. Analysis of expression and anthocyanin accumulation indicated that there were some correlation between the expression profile and the accumulation of anthocyanins. These results showed VcMATEs might be involved in diverse physiological functions, and anthocyanins across the membranes might be mutually maintained by MATE-type flavonoid transporters and other mechanisms. This study will enrich the MATE-based transport mechanisms of secondary metabolite, and provide a new biotechonology strategy to develop better nutritional blueberry cultivars.

  16. ISOLATION ANTHOCYANIN FROM ROSELLE PETALS (Hibiscus sabdariffa L AND THE EFFECT OF LIGHT ON THE STABILITY

    Directory of Open Access Journals (Sweden)

    Siti Nuryanti

    2012-06-01

    Full Text Available This study was conducted to isolate anthocyanins from roselle petals and testing the stability toward light. Isolation of anthocyanin was accomplished by extracting roselle petals using eluents with different polarity levels. Nonpolar compounds was eliminated using n-hexane, then semipolar compounds extracted with ethyl acetate and isolated anthocyanin by solvent mixtures of methanol-HCl 0.5%. Color test to determine the presence of anthocyanin was performed with NH3 vapor, Pb-acetate 1% and Pb-nitrate 5%. The structure of anthocyanin in the roselle flower was determined using UV-Vis spectrophotometer, FT-IR and 1H-NMR. Anthocyanin stability test of the influence of light carried out in a room without light conditions (dark room and light 25 Watt at 31 °C. The results showed that the roselle petals contain anthocyanin cyanidin-3-glucoside. Light has been found to affect the stability of anthocyanin cyanidin-3-glucoside.

  17. The Stability and Antioxidant Activity of Anthocyanins from Blueberry

    Directory of Open Access Journals (Sweden)

    Rui He

    2010-01-01

    Full Text Available Anthocyanins from highbush blueberry (Vaccinium corymbosum L. have tremendous potential as natural colorants and functional food with pharmaceutical purposes in food applications. To exploit the potential for food applications, the stability and antioxidant activity of anthocyanins present in blueberries have been studied. The results indicate that anthocyanins from blueberry were stable against the low pH (≤5.0, NaCl (0.125–0.500 mol/L, sucrose (0.584–2.336 mol/L and preservative (sodium benzoate, 0.035–0.140 mol/L, but were sensitive to alkaline conditions (≥7.0, high temperature (≥80 °C, light (natural light, oxidizing agent (H2O2, 0.5–2.0 % and reducing agent (Na2SO3, 0.005–0.040 mol/L. At concentrations of 25 and 50 mg/mL, anthocyanins from blueberry could protect ECV-304 cells against oxidative damage induced by H2O2. These results suggest that anthocyanins from blueberry can be regarded as a potential colorant for some acidic (pH≤5.0 food products and could be used as health food to prevent diseases arising from oxidative processes.

  18. Rapid screening for anthocyanins in cane sugars using ESR spectroscopy.

    Science.gov (United States)

    Thamaphat, Kheamrutai; Goodman, Bernard A; Limsuwan, Pichet; Smith, Siwaporn Meejoo

    2015-03-15

    Anthocyanin, which is soluble in water and released into sugar steam during extraction, was investigated in this study. The anthocyanin content in refined sugar, plantation white sugar, soft brown sugar and raw sugar was determined using electron spin resonance (ESR) spectroscopy, which was operated at room temperature, and compared with spectra from standard anthocyanin. The ESR spectra of red and violet anthocyanins was predominantly g ≈ 2.0055, which corresponded to an unpaired electron located in the pyrylium ring. Signals for Fe(III) and Mn(II), which naturally occur in plants, were found in raw sugar, soft brown sugar and standard anthocyanin but were absent from refined sugar and plantation white sugar due to the refining process. In addition, the ESR results were correlated with the apparent colour of the sugar, which was determined using the method of the International Commission for Uniform Methods of Sugar Analysis and inductively coupled plasma optical emission spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Isolation and Characterization of Anthocyanins from Hibiscus sabdariffa Flowers.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria C; Barouh, Nathalie; Baréa, Bruno; Fernandes, Ana; de Freitas, Victor; Salas, Erika

    2016-07-22

    The intense red-colored Hibiscus sabdariffa flowers are an inexpensive source of anthocyanins with potential to be used as natural, innocuous, and health-beneficial colorants. An anthocyanin-rich extract from hibiscus flowers was obtained by ultrasound-assisted extraction. By a single-step process fractionation using a Sep-Pak C18 cartridge, the main hibiscus anthocyanins, delphinidin-3-O-sambubioside (Dp-samb) and cyanidin-3-O-sambubioside (Cy-samb), were separated and then characterized via NMR and HPLC-ESIMS data. Since Dp-samb was the most abundant anthocyanin identified in the extract, its colorant properties were studied by the pH jumps method, which allowed the calculation of the single acid-base equilibrium (pK'a 2.92), the acidity (pKa 3.70), and the hydration constants (pKh 3.02). Moreover, by using size-exclusion chromatography, new cyanidin-derived anthocyanins (with three or more sugar units) were successfully identified and reported for the first time in the hibiscus extract.

  20. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance

    OpenAIRE

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-01-01

    Background Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. Results In tobacco (Nicotiana tabacum ?Xanthi?), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines display...

  1. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period

    OpenAIRE

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    ‘Hongyang’ is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in ‘Hongyang’ kiwifruit during storage period. The results showed that low temperature could effectiv...

  2. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  3. Berries grown in Brazil: anthocyanin profiles and biological properties.

    Science.gov (United States)

    Chaves, Vitor C; Boff, Laurita; Vizzotto, Márcia; Calvete, Eunice; Reginatto, Flávio H; Simões, Cláudia Mo

    2018-02-11

    Phytochemical profiles of two Brazilian native fruits - pitanga (red and purple) and araçá (yellow and red) - as well as strawberry cultivars Albion, Aromas and Camarosa, blackberry cultivar Tupy and blueberry cultivar Bluegen cultivated in Brazil were characterized for total phenolic content and total anthocyanin content by liquid chromatography coupled to a photodiode array and a quadrupole time-of-flight mass spectrometer. Radical scavenging, antiherpes and cytotoxic activities of these berry extracts were also evaluated. Blueberry presented the highest total anthocyanin content (1202 mg cyanidin-O-glucoside equivalents kg -1 fresh fruit), while strawberry cultivar Aromas presented the highest total phenolic content (13 550 mg gallic acid equivalents kg -1 fresh fruit). Liquid chromatographic-mass spectrometric analysis resulted in the identification of 21 anthocyanins. To the best of our knowledge this is the first report of cyanidin-O-glucoside in yellow and red Araçá fruit and the first time eight anthocyanins have been reported in pitanga fruits. DPPH and ABTS assays showed that blueberry cultivar Bluegen, blackberry cultivar Tupy and pitanga (red and purple) showed the most promising antiradical activities, respectively. No relevant cytotoxicity against three cancer cell lines or antiherpes activity was detected under the experimental conditions tested. Total anthocyanin content of all fruits had a strong positive correlation with their free radical scavenging activity, suggesting anthocyanins contribute to the antioxidant potential of these fruits. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Analytical procedures for identifying anthocyanins in natural extracts

    International Nuclear Information System (INIS)

    Marco, Paulo Henrique; Poppi, Ronei Jesus; Scarminio, Ieda Spacino

    2008-01-01

    Anthocyanins are among the most important plant pigments. Due to their potential benefits for human health, there is considerable interest in these natural pigments. Nonetheless, there is great difficulty in finding a technique that could provide the identification of structurally similar compounds and estimate the number and concentration of the species present. A lot of techniques have been tried to find the best methodology to extract information from these systems. In this paper, a review of the most important procedures is given, from the extraction to the identification of anthocyanins in natural extracts. (author)

  5. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn.

    Directory of Open Access Journals (Sweden)

    Yong-Zan Wei

    Full Text Available Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU, bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m(-2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red ('Kuixingqingpitian', 'Xingqiumili', 'Yamulong'and 'Yongxing No. 2', unevenly red ('Feizixiao' and 'Sanyuehong' and fully red ('Meiguili', 'Baila', Baitangying' 'Guiwei', 'Nuomici' and 'Guinuo'. The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated

  6. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    Science.gov (United States)

    Appelhagen, Ingo; Wulff-Vester, Anders Keim; Wendell, Micael; Hvoslef-Eide, Anne-Kathrine; Russell, Julia; Oertel, Anne; Martens, Stefan; Mock, Hans-Peter; Martin, Cathie; Matros, Andrea

    2018-06-08

    Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13 C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Interaction of wine mannoproteins and arabinogalactans with anthocyanins.

    Science.gov (United States)

    Gonçalves, Fernando J; Fernandes, Pedro A R; Wessel, Dulcineia F; Cardoso, Susana M; Rocha, Silvia M; Coimbra, Manuel A

    2018-03-15

    Wine polymeric material (WPM), which includes polysaccharides, proteins, and polyphenolic compounds, interacts with anthocyanins. To determine the contribution of polysaccharides in these interactions, the diffusion performance of anthocyanins along a dialysis membrane was determined in the presence and absence of isolated mannoproteins (MP) and arabinogalactans (AG) from WPM. Furthermore, to estimate the extent of the interaction between WPM and polyphenolic compounds, the activation energy (E a ) required for their diffusion in the presence of WPM was determined. AG, generally more abundant than MP in wine, interact in a greater extent with anthocyanins, showing their relevant contribution for WPM/anthocyanins interactions. The E a for the diffusion of polyphenolic compounds in presence of WPM indicated the occurrence of interactions with relative weak to strong intensities (2.6-50.8kJ/mol). As not all polyphenolic compounds were able to be released from WPM, stronger interactions, possibly by covalent linkages, are involved, providing new insights on WPM/polyphenolic compounds relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Studies on antioxidant capacity of anthocyanin extract from purple ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... The radical scavenging effects by α,α-diphenyl-β-picrylhydrazyl (DPPH) and ... also displayed potent antioxidant effects against the DPPH radical and .... method described by Giannopolites and Ries (1977), with some .... The IC50 values of anthocyanins and L-AA were low, .... effects of ionizing radiation.

  9. Evolution of anthocyanin profile from grape to wine

    Directory of Open Access Journals (Sweden)

    Margherita Squadrito

    2010-09-01

    Significance and impact of the study: Only in varieties in which the anthocyanin profile of grapes is characterized by low percentages of di-oxygenated side-ring forms is it possible to gain information about the varietal origin of a young wine by comparing the profiles of both grape and wine. However, great care is required.

  10. Anthocyanin content of two hibiscus sabdariffa cultivars grown

    African Journals Online (AJOL)

    Sukwattanasinit T., Burana-osot J., Sotanaphun. U. 2007. Spectrophotometric Method for. Quantitative Determination of Total. Anthocyanins and Quality Characteristics of Roselle (Hibiscus sabdariffa). Planta Med. 73 (14) : 1517 - 1522. Torres-Morán M.I., Escoto-Delgadillo M., Ron-Parra. J., Parra-Tovar G., Mena-Munguía ...

  11. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    Directory of Open Access Journals (Sweden)

    John Overall

    2017-02-01

    Full Text Available Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins, black raspberry (acylated mono-glycosylated cyanidins, blackcurrant (mono- and di-glycosylated cyanidins and delphinidins, maqui berry (di-glycosylated delphinidins, Concord grape (acylated mono-glycosylated delphinidins and petunidins, and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health.

  12. Use of anthocyanin extracted from natural plant materials to develop ...

    African Journals Online (AJOL)

    The aim of this work was to study the optimal conditions for anthocyanin extraction from natural plant materials in order to develop a pH test kit. The plant materials used were butterfly pea flower (BPF), roselle red flower (RRF) and dragon fruit peel (DFP). The solvents used in this study were distilled water, 1% HCl/95% ...

  13. Extraction and characterization of anthocyanin colorants from plant sources

    Directory of Open Access Journals (Sweden)

    S. Dyankova

    2016-03-01

    Full Text Available Abstract. Natural pigments (and especially those of anthocyanins are a valuable source of bioactive compounds and may be used in the production of new functional food ingredients. Furthermore, their applications in the treatment and prevention of chronic disorders are becoming more and more widespread. In the last few years consumers have focused their attention on the natural biologically active compounds as functional food ingredients, and therefore, it may be assumed that natural colorants are an alternative source of synthetic additives. The aim of the study was to determine the quantitative content of monomeric anthocyanin pigments in extracts obtained from eight plants. The total content of monomeric anthocyanin pigments was measured by a pH-differential method. The TLC analysis of the pigment extracts from the different plants showed intensive rose, red and violet stripes corresponding to the anthocyanin content. The extracts from chicory and lavender petals were unstable and their color decreased in intensity in 1 month. The analysis of the experimental data shows that the yield of pigment substances depends on a few factors: the type of plant, the preliminary treatment of the plant and the solvent that is used. The largest quantity of extracted substances in the studied plants were isolated from chokeberry (2 195.9 cyd eq mg/l, followed by blackberry (1 466.2 and one variety of the grapes (1 199.3 . In the case of chokeberry, the pigment content included a large number of anthocyanins and the combination of these components was the reason for the deep red/violet color of the extract. Fresh or frozen materials are the most suitable for extraction of anthocyanin pigments. On the whole, fruit pulp yielded a larger quantity of pigments than juice. Anthocyanins are water-soluble compounds and for that reason their isolation requires water and other polar solvents. Better stabilization of color is obtained by a slight acidification of the

  14. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal.

    Science.gov (United States)

    Sun, Tianyu; Xu, Lili; Sun, Hong; Yue, Qianyu; Zhai, Heng; Yao, Yuxin

    2017-01-01

    In this work, four vacuolar H + -PPase ( VHP ) genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2- induced sugar signaling.

  15. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal

    Directory of Open Access Journals (Sweden)

    Tianyu Sun

    2017-10-01

    Full Text Available In this work, four vacuolar H+-PPase (VHP genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2-induced sugar signaling.

  16. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L. leaves

    Directory of Open Access Journals (Sweden)

    Gutha Linga R

    2010-08-01

    Full Text Available Abstract Background Symptoms of grapevine leafroll disease (GLRD in red-fruited wine grape (Vitis vinifera L. cultivars consist of green veins and red and reddish-purple discoloration of inter-veinal areas of leaves. The reddish-purple color of symptomatic leaves may be due to the accumulation of anthocyanins and could reflect an up-regulation of genes involved in their biosynthesis. Results We examined six putative constitutively expressed genes, Ubiquitin, Actin, GAPDH, EF1-a, SAND and NAD5, for their potential as references for normalization of gene expression in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR. Using the geNorm program, a combination of two genes (Actin and NAD5 was identified as the stable set of reference genes for normalization of gene expression data obtained from grapevine leaves. By using gene-specific RT-qPCR in combination with a reliable normalization factor, we compared relative expression of the flavonoid biosynthetic pathway genes between leaves infected with Grapevine leafroll-associated virus 3 (GLRaV-3 and exhibiting GLRD symptoms and virus-free green leaves obtained from a red-fruited wine grape cultivar (cv. Merlot. The expression levels of these different genes ranged from two- to fifty-fold increase in virus-infected leaves. Among them, CHS3, F3'5'H, F3H1, LDOX, LAR1 and MybA1 showed greater than 10-fold increase suggesting that they were expressed at significantly higher levels in virus-infected symptomatic leaves. HPLC profiling of anthocyanins extracted from leaves indicated the presence of cyanidin-3-glucoside and malvidin-3-glucoside only in virus-infected symptomatic leaves. The results also showed 24% higher levels of flavonols in virus-infected symptomatic leaves than in virus-free green leaves, with quercetin followed by myricetin being the predominant compounds. Proanthocyanidins, estimated as total tannins by protein precipitation method, were 36% higher in virus

  17. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  18. Pharmacokinetics of table and Port red wine anthocyanins: a crossover trial in healthy men.

    Science.gov (United States)

    Fernandes, I; Marques, C; Évora, A; Cruz, L; de Freitas, V; Calhau, C; Faria, A; Mateus, N

    2017-05-24

    This study was designed to evaluate the pharmacokinetics of Port and table red wine anthocyanins in healthy men. Volunteers were recruited to drink 250 mL of a table red wine (221 mg of anthocyanins) and 150 mL of young Port red wine (49 mg of anthocyanins). Venous blood was collected from participants at 0, 15, 30, 60 and 120 min after wine ingestion. Urine samples were collected at baseline and at 120 min. Anthocyanins and anthocyanin metabolites in plasma and urine samples were quantified by HPLC-DAD and tentatively identified by LC-MS. Red wine anthocyanins were detected in their intact forms in both plasma and urine samples, but the glucuronylated metabolites of peonidin and malvidin (PnGlucr and MvGlucr) were the two main derivatives detected after both red wine consumptions. For the first time, and supported by the synthesis of Mv3Glucr, the main pathway followed by Mv3glc after absorption was described and involves anthocyanidin conjugation with glucuronic acid after glucose removal. Despite the lower total content of anthocyanins ingested when volunteers drank Port wine, no differences were observed in the plasma C max of MvGlucr and PnGlucr after table and Port red wine consumption. The relative bioavailability of anthocyanins in Port wine was 96.58 ± 5.74%, compared to the anthocyanins present in red wine. In conclusion, both Port and table red wines are good sources of bioavailable anthocyanins.

  19. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits.

    Science.gov (United States)

    Khoo, Hock Eng; Azlan, Azrina; Tang, Sou Teng; Lim, See Meng

    2017-01-01

    Anthocyanins are colored water-soluble pigments belonging to the phenolic group. The pigments are in glycosylated forms. Anthocyanins responsible for the colors, red, purple, and blue, are in fruits and vegetables. Berries, currants, grapes, and some tropical fruits have high anthocyanins content. Red to purplish blue-colored leafy vegetables, grains, roots, and tubers are the edible vegetables that contain a high level of anthocyanins. Among the anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin found in most of the plants. The colored anthocyanin pigments have been traditionally used as a natural food colorant. The color and stability of these pigments are influenced by pH, light, temperature, and structure. In acidic condition, anthocyanins appear as red but turn blue when the pH increases. Chromatography has been largely applied in extraction, separation, and quantification of anthocyanins. Besides the use of anthocyanidins and anthocyanins as natural dyes, these colored pigments are potential pharmaceutical ingredients that give various beneficial health effects. Scientific studies, such as cell culture studies, animal models, and human clinical trials, show that anthocyanidins and anthocyanins possess antioxidative and antimicrobial activities, improve visual and neurological health, and protect against various non-communicable diseases. These studies confer the health effects of anthocyanidins and anthocyanins, which are due to their potent antioxidant properties. Different mechanisms and pathways are involved in the protective effects, including free-radical scavenging pathway, cyclooxygenase pathway, mitogen-activated protein kinase pathway, and inflammatory cytokines signaling. Therefore, this review focuses on the role of anthocyanidins and anthocyanins as natural food colorants and their nutraceutical properties for health. Abbreviations : CVD: Cardiovascular disease VEGF: Vascular endothelial growth factor.

  20. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity

    NARCIS (Netherlands)

    Prinsi, B.; Negri, A.S.; Quattrocchio, F.; Koes, R.E.; Espen, L.

    2016-01-01

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with

  1. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  2. Protective effect of anthocyanins extracted from purple corn against ultraviolet radiation to drosophila

    International Nuclear Information System (INIS)

    Zeng Muheng; Zhang Yajun; Liang Jiayong

    2013-01-01

    The antiradiation effect of anthocyanins from purple corn in Drosophila was investigated. Flies after UV radiation were reproduced in basic culture media and culture media with anthocyanins at concentrations of 0.05 and 0.2 mg · mL"-"1. The protective effect of anthocyanins from purple corn was studied on life-span, reproductive rate of the flies. The results showed that the flies of 0.2 mg · mL"-"1 anthocyanins group were significantly (at P < 0.05) higher than the flies of the control group on average lifespan, time of 50% death and max lifespan after UV radiation. The number of offspring F1 generation of the 0.2 mg · mL"-"1 anthocyanins group was significantly higher than that of the control group. Therefore, anthocyanins from purple corn was able to resist radiation for prolonging lifespan and improving the productivity of the flies. (authors)

  3. A role for anthocyanin in determining wine tannin concentration in Shiraz.

    Science.gov (United States)

    Kilmister, Rachel L; Mazza, Marica; Baker, Nardia K; Faulkner, Peta; Downey, Mark O

    2014-01-01

    Four wines were made to investigate the effect of different anthocyanin and tannin fruit concentrations on wine phenolics and colour. Wines that were made from fruit with high anthocyanin concentration had high tannin concentrations regardless of the concentration of tannin in fruit, while wines made from fruit with low anthocyanin also had low tannin concentration. It was found that fruit anthocyanin concentration correlated with wine tannin concentration, wine colour and polymeric pigment formation. Anthocyanin concentration might be a key component for increasing tannin solubility and extraction into wine and the formation of polymeric pigments. Industry implications include managing tannin and anthocyanin fruit concentration for targeting tannin extraction and polymeric pigment formation in wine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids.

    Science.gov (United States)

    Carrillo, Celia; Buvé, Carolien; Panozzo, Agnese; Grauwet, Tara; Hendrickx, Marc

    2017-07-15

    Although natural structural barriers are factors limiting nutrient bioaccessibility, their specific role in anthocyanin bioaccessibility is still unknown. To better understand how natural barriers govern bioactive compound bioaccessibility, an experimental approach comparing anthocyanins and carotenoids was designed, using a single plant matrix. Initial results revealed increased anthocyanin bioaccessibility in masticated black carrot. To explain this observation, samples with increasing levels of bioencapsulation (free-compound, homogenized-puree, puree) were examined. While carotenoid bioaccessibility was inversely proportional to the level of bioencapsulation, barrier disruption did not increase anthocyanin bioaccessibility. This means that mechanical processing is of particular importance in the case of carotenoid bioaccessibility. While micelle incorporation is the limiting factor for carotenoid bioaccessibility, anthocyanin degradation under alkaline conditions in the gastrointestinal tract dominates. In the absence of structural barriers, anthocyanin bioaccessibility is greater than that of carotenoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    Science.gov (United States)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  6. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  7. Characterisation of Vranec, Cabernet sauvignon and Merlot wines based on their chromatic and anthocyanin profiles

    OpenAIRE

    Dimitrovska Maja; Tomovska Elena; Bocevska Mirjana

    2013-01-01

    Wines of three different grape varieties, Vranec, Cabernet Sauvignon and Merlot were examined for their characterisation in terms of anthocyanin and chromatic profiles, total polyphenols and antioxidant potential. Total, monomeric, polymeric and copigmented anthocyanins were determined by spectrophotometry and the individual anthocyanin compounds were quantified using HPLC-DAD. Chromatic profile was evaluated according to colour density, hue, % red, % blue, % yellow and brilliance (% dA...

  8. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Mol, J.; Jenkins, G.; Schäfer, E.; Weiss, D.

    1996-01-01

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  9. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kui eLin-Wang

    2014-11-01

    Full Text Available The woodland strawberry, Fragaria vesca is a model fruit for a number of rosaceous crops. We have engineered altered concentrations of anthocyanin in F. vesca, to determine the impact on plant growth and fruit quality. Anthocyanin concentrations were significantly increased by over-expression or decreased by knock-down of the R2R3 MYB activator, MYB10. In contrast, a potential bHLH partner for MYB10 (bHLH33 did not affect the anthocyanin pathway when knocked down using RNAi constructs. Metabolic analysis of fruits revealed that, of all the polyphenolics surveyed, only cyanidin and pelargonidin glucoside, and coumaryl hexose were significantly affected by over-expression and knock down of MYB10. Using the F. vesca genome sequence, members of the MYB, bHLH and WD40 families were examined. Global analysis of gene expression and targeted qPCR analysis of biosynthetic genes and regulators confirmed the effects of altering MYB10 expression, as well as the knock-down of bHLH33. Other members of the MYB transcription factor family were affected by the transgenes. Transient expression of strawberry genes in Nicotiana benthamiana revealed that MYB10 can auto-regulate itself, and potential repressors of MYB10. In tobacco, MYB10’s activation of biosynthetic steps is inhibited by the strawberry repressor MYB1.

  10. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits.

    Science.gov (United States)

    Kadomura-Ishikawa, Yasuko; Miyawaki, Katsuyuki; Noji, Sumihare; Takahashi, Akira

    2013-11-01

    Anthocyanins are widespread, essential secondary metabolites in higher plants during color development in certain flowers and fruits. In strawberries, anthocyanins are also key contributors to fruit antioxidant capacity and nutritional value. However, the effects of different light qualities on anthocyanin accumulation in strawberry (Fragaria x ananassa, cv. Sachinoka) fruits remain elusive. In the present study, we showed the most efficient increase in anthocyanin content occurred by blue light irradiation. Light sensing at the molecular level was investigated by isolation of two phototropin (FaPHOT1 and FaPHOT2), two cryptochrome (FaCRY1 and FaCRY2), and two phytochrome (FaPHYA and FaPHYB) homologs. Expression analysis revealed only FaPHOT2 transcripts markedly increased depending on fruit developmental stage, and a corresponding increase in anthocyanin content was detected. FaPHOT2 knockdown resulted in decreased anthocyanin content; however, overexpression increased anthocyanin content. These findings suggested blue light induced anthocyanin accumulation, and FaPHOT2 may play a role in sensing blue light, and mediating anthocyanin biosynthesis in strawberry fruits. This is the first report to find a relationship between visible light sensing, and color development in strawberry fruits.

  11. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period.

    Science.gov (United States)

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    'Hongyang' is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in 'Hongyang' kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2 , and UGFT2 . Moreover, the transcript abundance of MYBA1-1 and MYB5-1 , the genes encoding an important component of MYB-bHLH-WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis.

  12. Anthocyanins from Black Chokeberry (Aroniamelanocarpa Elliot) Delayed Aging-Related Degenerative Changes of Brain.

    Science.gov (United States)

    Wei, Jie; Zhang, Guokun; Zhang, Xiao; Xu, Dexin; Gao, Jun; Fan, Jungang; Zhou, Zhiquan

    2017-07-26

    Aging is the greatest risk factor for most neurodegenerative diseases, which is associated with decreasing cognitive function and significantly affecting life quality in the elderly. Computational analysis suggested that 4 anthocyanins from chokeberry fruit increased Klotho (aging-suppressor) structural stability, so we hypothesized that chokeberry anthocyanins could antiaging. To explore the effects of anthocyanins treatment on brain aging, mice treated with 15 or 30 mg/kg anthocyanins by gavage and injected D-galactose accelerated aging per day. After 8 weeks, cognitive and noncognitive components of behavior were determined. Our studies showed that anthocyanins blocked age-associated cognitive decline and response capacity in senescence accelerated mice. Furthermore, mice treated with anthocyanins-supplemented showed better balance of redox systems (SOD, GSH-PX, and MDA) in all age tests. Three major monoamines were norepinephrine, dopamine, and 5-hydroxytryptamine, and their levels were significantly increased; the levels of inflammatory cytokines (COX2, TGF-β1, and IL-1) transcription and DNA damage were decreased significantly in brains of anthocyanins treated mice compared to aged models. The DNA damage signaling pathway was also regulated with anthocyanins. Our results suggested that anthocyanins was a potential approach for maintaining thinking and memory in aging mice, possibly by regulating the balance of redox system and reducing inflammation accumulation, and the most important factor was inhibiting DNA damage.

  13. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    Science.gov (United States)

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  14. Post-harvest UVC irradiation effect on anthocyanin profile of grape berries

    International Nuclear Information System (INIS)

    Rosas, I. de; Ponce, M.; Gargantini, R.; Martinez, L.

    2010-01-01

    Anthocyanins are a class of phenolic compounds that contribute to the color of red grapes and have shown nutraceutical properties for human health. UVC light irradiation has been proved to increase phenolic compounds such as stilbenes, but its effect on anthocyanins has not been reported. The aim of this work was to identify the best treatment conditions of UVC light irradiation on post-harvest berries of Malbec (M), Cabernet Sauvignon (CS) and Tempranillo (T) for anthocyanin increments. Grape berries were irradiated with 240 W at 20 and 40 cm from the light source, for 30, 60 and 120 seconds. Both, irradiated and control grapes were stored on darkness at 20 C degree until anthocyanin extraction with methanol/ClH. HPLC analysis were performed and nine anthocyanins were quantified. UVC light irradiation modified the anthocyanin profile of the three cultivars. All the glucoside anthocyanins derivates and peonidin-acetyl-glucoside, as well as total anthocyanins were increased when CS berries were exposed to UVC for 120 s at 40 cm. This suggests that UVC stimulated the entire biosynthetic pathway. The anthocyanin content of the control berries was always higher than the treatments with UVC on M and T, making necessary to evaluate less rigorous conditions for these varieties. (authors)

  15. Anthocyanin Composition and Content in Rye Plants with Different Grain Color.

    Science.gov (United States)

    Zykin, Pavel A; Andreeva, Elena A; Lykholay, Anna N; Tsvetkova, Natalia V; Voylokov, Anatoly V

    2018-04-19

    The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6) lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C) and pericarp (gene Vs) also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  16. Anthocyanin Composition and Content in Rye Plants with Different Grain Color

    Directory of Open Access Journals (Sweden)

    Pavel A. Zykin

    2018-04-01

    Full Text Available The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6 lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C and pericarp (gene Vs also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  17. The Storage Stability of Anthocyanins in Mao (Antidesma thwaitesianum Müll. Arg. Juice and Concentrate

    Directory of Open Access Journals (Sweden)

    Prommakool Arunya

    2016-01-01

    Full Text Available Mao or Makmao (Antidesma thwaitesianum Müll. Arg. is a wild plant found in the northeast of Thailand. Mao is one of fruits which are source of anthocyanins. Mao fruits are used for juice and concentrate which are consumed for healthy drinks. Determination of the kinetic parameters is essential to predict the quality changes and stability of anthocyanins in Mao juice and concentrate that occur during storage. The purpose of this research was to study the degradation of anthocyanins in Mao juice and concentrate during storage at 5, 30 and 37°C for 15 days. The storage stability of Mao anthocyanins was studied in 15°Brix juice and 45°Brix concentrate. The degradation kinetic (k, half-life (t1/2, activation energy (Ea and Q10 values for Mao anthocyanins degradation were determined. The results indicated that analysis of kinetic data for the degradation of anthocyanins followed a first-order reaction. An increase storage temperature from 5 to 30 and 37°C increased k value of anthocyanins in Mao juice and concentrate. Increasing storage temperature decreased t1/2 value of anthocyanins in both concentrations. At 5, 30 and 37°C, the t1/2 of anthocyanins decreased from 35 to 13 and 5 days for Mao juice and 32 to 25 and 21 days for Mao concentrate. The Ea value of the anthocyanins degradation in Mao juice and concentrate were 38.03 and 8.42 kJ/mol, respectively. Q10 values of both Mao juice and concentrate at 30-37°C were higher than those were storaged at 5-30°C. Thus higher stability of anthocyanins was achieved by using concentration and storage at lower temperature.

  18. Preparation and Antioxidant Activity of Ethyl-Linked Anthocyanin-Flavanol Pigments from Model Wine Solutions.

    Science.gov (United States)

    Li, Lingxi; Zhang, Minna; Zhang, Shuting; Cui, Yan; Sun, Baoshan

    2018-05-03

    Anthocyanin-flavanol pigments, formed during red wine fermentation and storage by condensation reactions between anthocyanins and flavanols (monomers, oligomers, and polymers), are one of the major groups of polyphenols in aged red wine. However, knowledge of their biological activities is lacking. This is probably due to the structural diversity and complexity of these molecules, which makes the large-scale separation and isolation of the individual compounds very difficult, thus restricting their further study. In this study, anthocyanins (i.e., malvidin-3-glucoside, cyanidin-3-glucoside, and peonidin-3-glucoside) and (⁻)-epicatechin were first isolated at a preparative scale by high-speed counter-current chromatography. The condensation reaction between each of the isolated anthocyanins and (⁻)-epicatechin, mediated by acetaldehyde, was conducted in model wine solutions to obtain ethyl-linked anthocyanin-flavanol pigments. The effects of pH, molar ratio, and temperature on the reaction rate were investigated, and the reaction conditions of pH 1.7, molar ratio 1:6:10 (anthocyanin/(⁻)-epicatechin/acetaldehyde), and reaction temperature of 35 °C were identified as optimal for conversion of anthocyanins to ethyl-linked anthocyanin-flavanol pigments. Six ethyl-linked anthocyanin-flavanol pigments were isolated in larger quantities and collected under optimal reaction conditions, and their chemical structures were identified by HPLC-QTOF-MS and ECD analyses. Furthermore, DPPH, ABTS, and FRAP assays indicate that ethyl-linked anthocyanin-flavanol pigments show stronger antioxidant activities than their precursor anthocyanins.

  19. Preparation and Antioxidant Activity of Ethyl-Linked Anthocyanin-Flavanol Pigments from Model Wine Solutions

    Directory of Open Access Journals (Sweden)

    Lingxi Li

    2018-05-01

    Full Text Available Anthocyanin-flavanol pigments, formed during red wine fermentation and storage by condensation reactions between anthocyanins and flavanols (monomers, oligomers, and polymers, are one of the major groups of polyphenols in aged red wine. However, knowledge of their biological activities is lacking. This is probably due to the structural diversity and complexity of these molecules, which makes the large-scale separation and isolation of the individual compounds very difficult, thus restricting their further study. In this study, anthocyanins (i.e., malvidin-3-glucoside, cyanidin-3-glucoside, and peonidin-3-glucoside and (–-epicatechin were first isolated at a preparative scale by high-speed counter-current chromatography. The condensation reaction between each of the isolated anthocyanins and (–-epicatechin, mediated by acetaldehyde, was conducted in model wine solutions to obtain ethyl-linked anthocyanin-flavanol pigments. The effects of pH, molar ratio, and temperature on the reaction rate were investigated, and the reaction conditions of pH 1.7, molar ratio 1:6:10 (anthocyanin/(–-epicatechin/acetaldehyde, and reaction temperature of 35 °C were identified as optimal for conversion of anthocyanins to ethyl-linked anthocyanin-flavanol pigments. Six ethyl-linked anthocyanin-flavanol pigments were isolated in larger quantities and collected under optimal reaction conditions, and their chemical structures were identified by HPLC-QTOF-MS and ECD analyses. Furthermore, DPPH, ABTS, and FRAP assays indicate that ethyl-linked anthocyanin-flavanol pigments show stronger antioxidant activities than their precursor anthocyanins.

  20. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    Science.gov (United States)

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  1. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Glied, Stephan; Crocoll, Christoph

    2017-01-01

    BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors...

  2. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses

    OpenAIRE

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, Jos? A.; Rothstein, Steven J.

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous su...

  3. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    OpenAIRE

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all th...

  4. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  5. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance.

    Science.gov (United States)

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-03-23

    Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. In tobacco (Nicotiana tabacum 'Xanthi'), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines displayed different anthocyanin colors (e.g., pale red: T 0 -P, red: T 0 -R, and strong red: T 0 -S), resulting from varying levels of biosynthetic gene transcripts. Under salt stress, the T 2 generation had higher total polyphenol content, radical (DPPH, ABTS) scavenging activities, antioxidant-related gene expression, as well as overall greater salt and drought tolerance than wild type (WT). We propose that Del overexpression elevates transcript levels of anthocyanin biosynthetic and antioxidant-related genes, leading to enhanced anthocyanin production and antioxidant activity. The resultant increase of anthocyanin and antioxidant activity improves abiotic stress tolerance.

  6. Is solar radiation a key to good red wine grape anthocyanin?

    Science.gov (United States)

    Despite a century of research, we still lack a concrete, mechanistic understanding of solar radiation and temperature effects on anthocyanin accumulation and composition, crucial for red wine grapes. Our aim was to elucidate the mechanistic response to microclimate of anthocyanin metabolism in Viti...

  7. Microencapsulation of Natural Anthocyanin from Purple Rosella Calyces by Freeze Drying

    Science.gov (United States)

    Nafiunisa, A.; Aryanti, N.; Wardhani, D. H.; Kumoro, A. C.

    2017-11-01

    Anthocyanin extract in powder form will improve its use since the powder is easier to store and more applicable. Microencapsulation method is introduced as an efficient way for protecting pigment such as anthocyanin. This research was aimed to characterise anthocyanin encapsulated products prepared from purple Roselle calyces by freeze drying. The liquid anthocyanin extracts from ultrasound-assisted extraction were freeze-dried with and without the addition of 10% w/w maltodextrins as a carrier and coating agents. The quality attributes of the powders were characterised by their colour intensity, water content, and solubility. Analysis of encapsulated material was performed for the powder added by maltodextrin. The stability of the microencapsulated pigment in solution form was determined for 11 days. Total anthocyanin content was observed through pH differential method. The results of the colour intensity analysis confirm that the product with maltodextrin addition has more intense colour with L* value of 29.69 a* value of 54.29 and b* value of 8.39. The result with the addition of maltodextrin has less moisture content and more soluble in water. It is verified that better results were obtained for powder with maltodextrin addition. Anthocyanin in the powder form with maltodextrin addition exhibits higher stability even after 11 days. In conclusion, the microencapsulation of anthocyanin with maltodextrin as a carrier and coating agent presented a potential method to produce anthocyanin powder from purple Roselle.

  8. Issues with fruit dietary supplements in the US - authentication by anthocyanin

    Science.gov (United States)

    Current fruit-based dietary supplements in the US marketplace have no obligation to meet any fruit-component concentration requirement. For example, berry supplements might be promoted for their high anthocyanin content, but they actually have no standard or minimum anthocyanin threshold for legal s...

  9. Metabolic fate of blueberry anthocyanins after chronic supplementation in healthy older adults

    Science.gov (United States)

    Plant derived anthocyanin rich foods play a protective role against chronic diseases such as diabetes, obesity, cardiovascular, cancer and neurodegenerative diseases. Anthocyanins are absorbed in their intact form and can be metabolized to a wide array of phenolic metabolites/conjugates. Blueberries...

  10. Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro.

    Science.gov (United States)

    Zhu, Yongsheng; Sun, Hanju; He, Shudong; Lou, Qiuyan; Yu, Min; Tang, Mingming; Tu, Lijun

    2018-01-01

    Anthocyanins are naturally active substances. In this study, anthocyanins from black rice were obtained by membrane filtration and column chromatography separation. Five anthocyanin monomers in black rice extract were identified by HPLC-MS/MS, and the major anthocyanin monomer (cyanidin-3-glucoside, C3G) was purified by preparative HPLC (Pre-HPLC). The proliferative effects of the anthocyanins on Bifidobacteria and Lactobacillus were investigated by determining the media pH, bacterial populations and metabolic products. After anaerobic incubation at 37 °C for 48 h, not only the pH of the media containing C3G was lower than that of the extract of black rice anthocyanin (BRAE), but the numbers of both Bifidobacteria and Lactobacillus were also significantly increased. Furthermore, hydroxyphenylpropionic, hydroxyphenylacetic, and hydroxybenzoic acids and other metabolites were detected by GC-MS in vitro. Our results revealed that the anthocyanins and anthocyanin monomers from black rice had prebiotic activity and they were metabolized into several small molecules by Bifidobacteria and Lactobacillus.

  11. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    Directory of Open Access Journals (Sweden)

    Anna Podsędek

    2014-01-01

    Full Text Available Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method and antioxidant capacity (ABTS and FRAP assays strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage.

  12. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    Science.gov (United States)

    Podsędek, Anna; Koziołkiewicz, Maria

    2014-01-01

    Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage. PMID:24575407

  13. Rosaceae products: Anthocyanin quality and comparisons between dietary supplements and foods

    Science.gov (United States)

    Rosaceae (strawberry, cherry, blackberry, red raspberry, and black raspberry) dietary supplements and food products (total n=74) were purchased and analyzed to determine their anthocyanin concentrations and profiles. Eight of the 33 dietary supplements had no detectable anthocyanins (five samples) o...

  14. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia

    NARCIS (Netherlands)

    Shaipulah, N.F.M.; Muhlemann, J.K.; Woodworth, B.D.; Van Moerkercke, A.; Verdonk, J.C.; Ramirez, A.M.; Haring, M.A.; Dudareva, N.; Schuurink, R.C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia flowers have the precursor 4-coumaryl CoA in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in

  15. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia

    NARCIS (Netherlands)

    Shaipulah, N.F.M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Moerkercke, Van Alex; Verdonk, J.C.; Ramirez, A.A.; Haring, Michel A.; Dudareva, Natalia; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower

  16. Radical Scavenging Capacity of Wine Anthocyanins Is Strongly pH-Dependent

    NARCIS (Netherlands)

    Borowski, T.; Tyrakowska, B.; Oszmianski, J.; Rietjens, I.M.C.M.

    2005-01-01

    The radical scavenging capacity of red wine anthocyanins was quantified by the so-called TEAC assay with special emphasis on the influence of pH and conjugation on this activity. The pH appears to be a dominant factor in the radical scavenging capacity of wine anthocyanins, with higher pH values

  17. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Yukihiro Yoshimura

    Full Text Available Black rice (Oryza sativa L. Japonica contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS.

  18. Simultaneous Analysis of Anthocyanin and Non-Anthocyanin Flavonoid in Various Tissues of Different Lotus (Nelumbo) Cultivars by HPLC-DAD-ESI-MSn

    Science.gov (United States)

    Chen, Sha; Xiang, Yue; Deng, Jiao; Liu, Yanling; Li, Shaohua

    2013-01-01

    A validated HPLC-DAD-ESI-MSn method for the analysis of non-anthocyanin flavonoids was applied to nine different tissues of twelve lotus genotypes of Nelumbo nucifera and N. lutea, together with an optimized anthocyanin extraction and separation protocol for lotus petals. A total of five anthocyanins and twenty non-anthocyanin flavonoids was identified and quantified. Flavonoid contents and compositions varied with cultivar and tissue and were used as a basis to divide tissues into three groups characterized by kaempferol and quercetin derivatives. Influences on flower petal coloration were investigated by principal components analyses. High contents of kaempferol glycosides were detected in the petals of N. nucifera while high quercetin glycoside concentrations occurred in N. lutea. Based on these results, biosynthetic pathways leading to specific compounds in lotus tissues are deduced through metabolomic analysis of different genotypes and tissues and correlations among flavonoid compounds. PMID:23646125

  19. Anthocyanin Profile in Berries of Wild and Cultivated Vaccinium spp. along Altitudinal Gradients in the Alps.

    Science.gov (United States)

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-10-07

    Vaccinium spp. berries provide some of the best natural sources of anthocyanins. In the wild bilberry (Vaccinium myrtillus L.), a clear increasing trend in anthocyanin biosynthesis has been reported toward northern latitudes of Europe, but studies related to altitude have given contradictory results. The present study focused on the anthocyanin composition in wild bilberries and highbush blueberry (Vaccinium corymbosum L. cv. Brigitta Blue) growing along altitudinal gradients in the Alps of northern Italy. Our results indicate an increasing accumulation of anthocyanins in bilberries along an altitudinal gradient of about 650 m. The accumulation was due to a significant increase in delphinidin and malvidin glycosides, whereas the accumulation of cyanidin and peonidin glycosides was not affected by altitude. Seasonal differences, especially temperature, had a major influence on the accumulation of anthocyanins in blueberries.

  20. Gamma irradiation affects the total phenol, anthocyanin and antioxidant properties in three different persian pistachio nuts.

    Science.gov (United States)

    Akbari, Mohammad; Farajpour, Mostafa; Aalifar, Mostafa; Sadat Hosseini, Mohammad

    2018-02-01

    The effects of gamma irradiation (GR) on total phenol, anthocyanin and antioxidant activity were investigated in three different Persian pistachio nuts at doses of 0, 1, 2 and 4 kGy. The antioxidant activity, as determined by FRAP and DPPH methods, revealed a significant increase in the 1-2 kGy dose range. Total phenol content (TPC) revealed a similar pattern or increase in this range. However, when radiation was increased to 4 kGy, TPC in all genotypes decreased. A radiation dose of 1 kGy had no significant effect on anthocyanin content of Kale-Ghouchi (K) and Akbari (A) genotypes, while it significantly increased the anthocyanin content in the Ghazvini (G) genotype. In addition, increasing the radiation to 4 kGy significantly increased the anthocyanin content of K and G genotypes. To conclude, irradiation could increase the phenolic content, anthocyanin and antioxidant activity of pistachio nuts.

  1. Absorption and excretion of black currant anthocyanins in human and Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L.. F.; Ravn-Haren, Gitte; Dragsted, L. O.

    2003-01-01

    Anthocyanins are thought to protect against cardiovascular diseases. Watanabe heritable hyperlipidemic (WHHL) rabbits are hypercholesterolemic and used as a model of the development of atherosclerosis. To compare the uptake and excretion of anthocyanins in humans and WHHL rabbits, single-dose black......). The excretion and absorption of anthocyanins from black currant juice were found to be within the same order of magnitude in the two species regarding urinary excretion within the first 4 h (rabbits, 0.035%; humans, 0.072%) and t(ma)x (rabbits, similar to30 min; humans, similar to45 min). A food matrix effect...... was detected in rabbits, resulting in the absorption of a higher proportion of the anthocyanins from black currant juice than from an aqueous citric acid matrix. In humans the absorption and urinary excretion of anthocyanins from black currant juice were found to be proportional with dose and not influenced...

  2. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions.

    Science.gov (United States)

    de Rosas, Inés; Ponce, María Teresa; Malovini, Emiliano; Deis, Leonor; Cavagnaro, Bruno; Cavagnaro, Pablo

    2017-05-01

    Malbec and Bonarda are the two most widely cultivated grape varieties in Argentina, and their derived red wines are recognized worldwide, being their intense color a major quality trait. The temperature during fruit ripening conditions berries color intensity. In the main viticulture region of Malbec and Bonarda a 2-3°C increase in temperature has been predicted for the upcoming years as consequence of the global climate change. In the present study, this predicted temperature raise was simulated under field-crop conditions, and its effect on anthocyanin pigmentation in berries of Malbec and Bonarda was monitored by HPLC analysis throughout the ripening process, in two growing seasons. Additionally, expression levels of regulatory (MYBA1 and MYB4) and structural (UFGT and Vv3AT) anthocyanin genes were monitored in Malbec berry skins. Although cultivar-dependent time-course variation was observed for total anthocyanin content, in general, the berries of both cultivars grown under high temperature (HT) conditions had significantly lower total anthocyanins (∼28-41% reduction), and a higher proportion of acylated anthocyanins, than their respective controls. Expression of MYBA1 and UFGT, but not MYB4, was correlated with anthocyanin pigmentation at half ripening and harvest, whereas overexpression of the acyltransferase gene Vv3AT was associated with higher anthocyanin acylation in HT berries. These results suggest that color development and pigment modifications in Malbec berries under HT are regulated at transcriptional level by MYBA1, UFGT, and Vv3AT genes. These data contribute to the general understanding on the effect of high temperatures on anthocyanin biochemistry and genetic regulation, and may have direct implications in the production of high-quality wines from Malbec and Bonarda. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Studies on the preparative isolation and stability of seven main anthocyanins from Yan 73 grape.

    Science.gov (United States)

    Tang, Ke; Li, Yang; Han, Yehui; Han, Fuliang; Li, Jiming; Nie, Yao; Xu, Yan

    2014-09-01

    [corrected] Seven anthocyanin monomers of Yan 73 grape were separated using preparative HPLC and identified by UPLC-ESI-MS/MS. The stabilities of the seven isolated anthocyanins to light, temperature and pH were also investigated. Seven anthocyanin monomers were successfully isolated with an Xbridge Prep C18 column on a preparative scale. The pigments delphinidin-3-O-glucoside, malvidin-3-O-acetylglucoside and malvidin-3-O-coumarylglucoside were yielded in a one-step separation by preparative HPLC, with purities up to 99.9%, 91.7% and 95.5%, respectively. The pigments cyanidin-3-O-glucoside, petunidin-3-O-glucoside, peonidin-3-O-glucoside, and malvidin-3-O-glucoside were further purified with another elution method and their purities were all improved up to 99.9%. Monomeric anthocyanin degradation fitted a first-order reaction model. The seven isolated anthocyanins were significantly more stable in the dark than under light. High temperature was also unfavourable for the stability of anthocyanins. The anthocyanins were more stable at lower pH than at higher pH. In addition, among these anthocyanins, delphinidin-3-O-glucoside, malvidin-3-O-acetylglucoside and malvidin-3-O-coumarylglucoside were more susceptible to light, heat, and pH than the others. A simple and clean isolation method of seven anthocyanin monomers from Yan 73 grape was established. The stabilities of the seven anthocyanin monomers to light, temperature and pH were different, but the trends in changes were similar. © 2014 Society of Chemical Industry.

  4. Effect of genuine non-anthocyanin phenolics and chlorogenic acid on color and stability of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins.

    Science.gov (United States)

    Gras, Claudia C; Bogner, Hanna; Carle, Reinhold; Schweiggert, Ralf M

    2016-07-01

    This work aimed at studying the color intensity and stability of black carrot anthocyanins as influenced by intermolecular co-pigmentation. For this purpose, purified anthocyanin solutions were supplemented with purified genuine black carrot phenolics, chlorogenic acid, and an aqueous phenolic-rich green coffee bean extract at various anthocyanin:co-pigment ratios (1:0-1:162; pH 3.6). The hyperchromic co-pigmentation effect depended on the concentration of added co-pigments, resulting in an absorbance increase of up to 22% at the absorption maximum. Anthocyanin stability during heating (90°C, 5h) was barely improved unless the concentrations of co-pigments exceeded those of their natural source. When adding co-pigments at ratios above 1:9.4, anthocyanin heat stability was significantly improved. As acylated anthocyanins were most stable, breeders might aim at increasing their content in the future, while breeding for high levels of colorless polyphenols may be unreachable. Nevertheless, we provided proof-of-concept for the successful color enhancement by the addition of a phenolic-rich green coffee bean extract, being useful for food-grade applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    Science.gov (United States)

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  6. Molecular evolution of a novel family of putative calcium transporters.

    Directory of Open Access Journals (Sweden)

    Didier Demaegd

    Full Text Available The UPF0016 family is a group of uncharacterized membrane proteins, well conserved through evolution and defined by the presence of one or two copies of an E-Φ-G-D-(KR-(ST consensus motif. Our previous results have shown that two members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and might form a new group of cation/Ca2+ exchangers. Most members of the family are made of two homologous clusters of three transmembrane spans, separated by a central loop and assembled with an opposite orientation in the membrane. However, some bacterial members of the family have only one cluster of transmembrane domains. Among these 'single-domain membrane proteins' some cyanobacterial members were found as pairs of adjacent genes within the genome, but each gene was slightly different. We performed a bioinformatic analysis to propose the molecular evolution of the UPF0016 family and the emergence of the antiparallel topology. Our hypotheses were confirmed experimentally using functional complementation in yeast. This suggests an important and conserved function for UPF0016 proteins in a fundamental cellular process. We also show that members of the UPF0016 family share striking similarities, but no primary sequence homology, with members of the cation/Ca2+ exchangers (CaCA superfamily. Such similarities could be an example of convergent evolution, supporting the previous hypothesis that members of the UPF0016 family are cation/Ca2+ exchangers.

  7. Analysis of the expression of putative heat-stress related genes in relation to thermotolerance of cork oak.

    Science.gov (United States)

    Correia, Barbara; Rodriguez, José Luis; Valledor, Luis; Almeida, Tânia; Santos, Conceição; Cañal, Maria Jesús; Pinto, Glória

    2014-03-15

    Cork oak (Quercus suber L.) is a research priority in the Mediterranean area and because of cork oaks' distribution these stands are experiencing daily stress. Based on projections of intensifying climate change and considering the key role of exploring the recovery abilities, cork oak seedlings were subjected to a cumulative temperature increase from 25°C to 55°C and subsequent recovery. CO2 assimilation rate, chlorophyll fluorescence, anthocyanins, proline and lipid peroxidation were used to evaluate plant performance, while the relative abundance of seven genes encoding for proteins of cork oak with a putative role in thermal/stress regulation (POX1, POX2, HSP10.4, HSP17a.22, CHS, MTL and RBC) was analyzed by qPCR (quantitative Polymerase Chain Reaction). A temperature change to 35°C showed abundance alterations in the tested genes; at 45°C, the molecular changes were associated with an antioxidant response, possibly modulated by anthocyanins. At 55°C, HSP17a.22, MTL and proline accumulation were evident. After recovery, physiological balance was restored, whereas POX1, HSP10.4 and MTL abundances were suggested to be involved in increased thermotolerance. The data presented here are expected to pinpoint some pathways changes occurring during such stress and further recovery in this particular Mediterranean species. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eichenberger, Michael; Hansson, Anders; Fischer, David; Dürr, Lara; Naesby, Michael

    2018-06-01

    Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.

  9. Estimation of Anthocyanin Content of Berries by NIR Method

    International Nuclear Information System (INIS)

    Zsivanovits, G.; Ludneva, D.; Iliev, A.

    2010-01-01

    Anthocyanin contents of fruits were estimated by VIS spectrophotometer and compared with spectra measured by NIR spectrophotometer (600-1100 nm step 10 nm). The aim was to find a relationship between NIR method and traditional spectrophotometric method. The testing protocol, using NIR, is easier, faster and non-destructive. NIR spectra were prepared in pairs, reflectance and transmittance. A modular spectrocomputer, realized on the basis of a monochromator and peripherals Bentham Instruments Ltd (GB) and a photometric camera created at Canning Research Institute, were used. An important feature of this camera is the possibility offered for a simultaneous measurement of both transmittance and reflectance with geometry patterns T0/180 and R0/45. The collected spectra were analyzed by CAMO Unscrambler 9.1 software, with PCA, PLS, PCR methods. Based on the analyzed spectra quality and quantity sensitive calibrations were prepared. The results showed that the NIR method allows measuring of the total anthocyanin content in fresh berry fruits or processed products without destroying them.

  10. Mineral analysis, anthocyanins and phenolic compounds in wine residues flour

    Directory of Open Access Journals (Sweden)

    Bennemann Gabriela Datsch

    2016-01-01

    Full Text Available This study analyzed the mineral content (N, P, K, S, Ca, Fe, Mg, Mn, Fe and Zn, anthocyanins and phenolic compounds in flours produced from residues of different grape cultivars from the wineries in the Southern region of Brazil. Mineral analysis showed a significant difference for all grape cultivar, with the exception for phosphorus content. Residues from cv. Seibel showed higher levels of N, Cu and Mg. The cultivars Ancelotta, Tanat and Bordô present higher contents of K, Zn, Mn, Fe and Ca. For the concentration of anthocyanins, cultivars Cabernet Sauvignon (114.7 mg / 100g, Tannat (88.5 mg / 100 g and Ancelotta (33.8 mg/100 g had the highest concentrations. The cultivars Pinot Noir (7.0 g AGE / 100 g, Tannat (4.3 g AGE / 100 g, and Ancelotta (3.9 g AGE / 100 g had the highest content of phenolic compounds. Considering these results, it became evident the potential of using the residue of winemaking to produce flour for human consumption, highlighting the grapes ‘Tannat' and ‘Ancellotta'.

  11. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  12. Identification and characterization of putative conserved IAM ...

    African Journals Online (AJOL)

    Available putative AMI sequences from a wide array of monocot and dicot plants were identified and the phylogenetic tree was constructed and analyzed. We identified in this tree, a clade that contained sequences from species across the plant kingdom suggesting that AMI is conserved and may have a primary role in plant ...

  13. Toddlers' Duration of Attention toward Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  14. Differences in the structure of anthocyanins from the two amphibious plants, Lobelia cardinalis and Nesaea crassicaulis.

    Science.gov (United States)

    Vodopivec, Branka Mozetič; Wang, Jing; Møller, Anne L; Krake, Jacob; Lund, Torben; Hansen, Poul Erik; Nielsen, Søren Laurentius

    2013-04-01

    The foliar anthocyanin profiles of two amphibious plants, Nesaea crassicaulis and Lobelia cardinalis were analysed for the first time. N. crassicaulis produced very simple anthocyanins, achieving the highest concentrations when grown submerged. In contrast, L. cardinalis produced leaves with a high content of very complex, acylated anthocyanins, especially when growing emergent. Anthocyanins were separated by high performance liquid chromatography. Nesaea crassicaulis anthocyanins were identified according to their fragment mass spectra and ultra-visible-violet spectral characteristics and 1D and 2D NMR spectra as -3,5-di-O-β-glucosides of delphinidin, cyanidin, petunidin, malvidin and peonidin as well as cyanidine and peonidin-3-O-β-glucoside. In L. cardinalis cyanidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside was the major anthocyanin and contributed more than 98% of total anthocyanin content. The remaining 2% was made up by cyanidin-3-O-[6-O-(4-O-E-caffeoyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside and pelargonidin-3-O-[6-O-(4-O-E-p-coumaroyl-O-α-rhamnopyranosyl)-β-glucopyrano]-5-O-β-glucopyranoside.

  15. Rosaceae products: Anthocyanin quality and comparisons between dietary supplements and foods

    Directory of Open Access Journals (Sweden)

    Jungmin Lee

    2016-10-01

    Full Text Available Rosaceae (strawberry, cherry, blackberry, red raspberry, and black raspberry dietary supplements and food products (total n = 74 were purchased and analyzed to determine their anthocyanin concentrations and profiles. Eight of the 33 dietary supplements had no detectable anthocyanins (five samples or were adulterated with anthocyanins from unlabeled sources (three samples. Five of 41 food products contained no detectable anthocyanins. In mg per serving, the dietary supplements tested contained 0.02–86.27 (average 10.00, and food products contained 0.48–39.66 (average 7.76. Anthocyanin levels between the dietary supplements and food products were not significantly different in mg per serving. Individual anthocyanin profiles can be used to evaluate quality of Rosaceae food products and dietary supplements. These findings show that increasing anthocyanin content and reducing adulteration could improve the quality of Rosaceae products available in the marketplace. Keywords: Rubus, Fragaria, Prunus, Dietary supplement, Nonmineral dietary supplement, Nonvitamin dietary supplement

  16. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars

    Directory of Open Access Journals (Sweden)

    Sha Xie

    2015-12-01

    Full Text Available Yan73, a teinturier (dyer grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73 or white flesh (Muscat Hamburg based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes in both varieties by quantitative RT-PCR. The results revealed that the transcripts of GST, OMT, AM3, CHS3, UFGT, MYBA1, F3′5′H, F3H1 and LDOX were barely detectable in the white flesh of Muscat Hamburg. In particular, GST, OMT, AM3, CHS3 and F3H1 showed approximately 50-fold downregulation in the white flesh of Muscat Hamburg compared to the red flesh of Yan73. A correlation analysis between the accumulation of different types of anthocyanins and gene expression indicated that the cumulative expression of GST, F3′5′H, LDOX and MYBA1 was more closely associated with the acylated anthocyanins and the 3′5′-OH anthocyanins, while OMT and AM3 were more closely associated with the total anthocyanins and methoxylated anthocyanins. Therefore, the transcripts of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 explained most of the variation in the amount and composition of anthocyanins in skin and flesh of Yan73. The data suggest that the specific localization of anthocyanins in the flesh tissue of Yan73 is most likely due to the tissue-specific expression of OMT, AM3, GST, F3′5′H, LDOX and MYBA1 in the flesh.

  17. LC/PDA/ESI-MS Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries

    Directory of Open Access Journals (Sweden)

    Jun-ichiro Nakajima

    2004-01-01

    Full Text Available Anthocyanin extracts of two blueberries, Vaccinium myrtillus (bilberry and Vaccinium ashei (rabbiteye blueberry, and of three other berries, Ribes nigrum (black currant, Aronia melanocarpa (chokeberry, and Sambucus nigra (elderberry, were analyzed by high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization - mass spectrometry (LC/PDA/ESI-MS. Both bilberry and rabbiteye blueberry contained 15 identical anthocyanins with different distribution patterns. Black currant, chokeberry, and elderberry contained 6, 4, and 4 kinds of anthocyanins, respectively. The radical scavenging activities of these berry extracts were analyzed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH. All these extracts showed potent antiradical activities.

  18. ANTHOCYANIN PIGMENTATION IN TRITICUM AESTIVUM L.: GENETIC BASIS AND ROLE UNDER ABIOTIC STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Tereshchenko O.Yu.

    2012-08-01

    Full Text Available Anthocyanins are secondary metabolites of plants. They have a wide range of biological activity such as antioxidant, photoprotection, osmoregulation, heavy metal ions chelation, antimicrobial and antifungal activities, which help plants to survive under different stress conditions. Bread wheat (T. aestivum L. can have purple pigmentation provided by anthocyanin compounds in different organs, such as grain pericarp, coleoptile, culm, leaf blades, leaf sheaths, glumes and anthers. However, the genetic mechanisms underlying formation of these traits as well as contribution of the pigmentation to stress tolerance have not been widely studied in wheat. The aim of the current study was to investigate molecular-genetic mechanisms underlying anthocyanin pigmentation in different wheat organs and to estimate the role of the pigmentation under different abiotic stress conditions in wheat seedlings. In the current study, near-isogenic lines (NILs: cv. ‘Saratovskaya 29’ (‘S29’ and lines i:S29Pp1Pp2PF and i:S29Pp1Pp3P developed on the ‘S29’ background but having grain pericarp coloration (genes Pp and more intense coleoptile (Rc, culm (Pc, leaf blade (Plb, leaf sheath (Pls pigmentation in comparison with ‘S29’, were used. Comparative transcriptional analysis of the five structural genes Chs, Chi, F3h, Dfr, Ans, encoding enzymes participating in the anthocyanin biosynthesis, was performed in different organs of NILs. It was shown that the presence of the Rc, Pc, Plb, Pls and Pp alleles conferring strong anthocyanin pigmentation induced more intense transcription of the structural genes, suggesting the genes Rc, Pc, Plb, Pls and Pp to play a regulatory role in anthocyanin biosynthesis network. To evaluate the role of anthocyanins in stress response at the seedling stage, growth ability of the NILs and anthocyanin content in their coleoptiles were assessed after treatments with NaCl (100 and 200 mM, CdCl2 (25 and 50 μM and 15% PEG 6000

  19. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  20. Overexpression of maize anthocyanin regulatory gene Lc affects rice fertility.

    Science.gov (United States)

    Li, Yuan; Zhang, Tao; Shen, Zhong-Wei; Xu, Yu; Li, Jian-Yue

    2013-01-01

    Seventeen independent transgenic rice plants with the maize anthocyanin regulatory gene Lc under control of the CaMV 35S promoter were obtained and verified by molecular identification. Ten plants showed red spikelets during early development of florets, and the degenerate florets were still red after heading. Additionally, these plants exhibited intense pigmentation on the surface of the anther and the bottom of the ovary. They were unable to properly bloom and were completely sterile. Following pollination with normal pollen, these plants yielded red caryopses but did not mature normally. QRT-PCR analysis indicated that mRNA accumulation of the CHS-like gene encoding a chalcone synthase-related protein was increased significantly in the sterile plant. This is the first report to suggest that upregulation of the CHS gene expression may result in rice sterility and affect the normal development of rice seeds.

  1. In vitro production of anthocyanins - A literature review

    International Nuclear Information System (INIS)

    Gomez Zeledon, Javier; Jimenez, Victor M

    2011-01-01

    The production of secondary metabolites in plant cell cultures may be of interest for obtaining compounds that are difficult to synthesize or isolate from other sources, which is usually associated with high economic value of the substances, but may also be useful to help elucidating the metabolic pathways involved in the synthesis of such compounds. This paper presents a general description of anthocyanins, a group of pigments of great importance to the industry, complemented by referring the scientific papers that have been recently published on their in vitro production. Regarding the latter, a description of the effect of changes in growing conditions, of the addition of precursors, of the use of growth regulators, and of the utilization of elicitors and stressors on the production of these compounds, is done. Finally, this review mentions the use of hairy roots obtained by the use of agrobacterium rhizogenes for the production of these compounds.

  2. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.

    Science.gov (United States)

    Jones, J Andrew; Vernacchio, Victoria R; Collins, Shannon M; Shirke, Abhijit N; Xiu, Yu; Englaender, Jacob A; Cress, Brady F; McCutcheon, Catherine C; Linhardt, Robert J; Gross, Richard A; Koffas, Mattheos A G

    2017-06-06

    Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs

  3. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions.

    Science.gov (United States)

    Yang, Ping; Yuan, Chunlong; Wang, Hua; Han, Fuliang; Liu, Yangjie; Wang, Lin; Liu, Yang

    2018-02-07

    This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3- O -glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3- O -glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p -coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  4. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum).

    Science.gov (United States)

    Strazzer, Pamela; Guzzo, Flavia; Levi, Marisa

    2011-02-15

    A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Interactive effects of gallic/ferulic/caffeic acids and anthocyanins on pigment thermal stabilities.

    Science.gov (United States)

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-06-01

    The data presented in this article are related to the research article entitled "The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability" (Qian et al., 2017) [1]. This paper described preparation and isolation of anthocyanins from purple sweet potatoes (PSP) and the time-course of anthocyanin profiles treated with gallic, ferulic, or caffeic acids at 95 °C. The color appearance of PSPanthocyanins alone, or with gallic, ferulic, or caffeic acids was described after the 15 h of thermal treatment. The high resolution mass spectrographs of PSP anthocyanins were determined using UPLC-ESI-HRMS. The spatial interaction of peonidin 3-O-(2-O-β-D-glucopyranocyl-β-D-glucopyranoide)-5-O-β-D-glucopyranoside and gallic/ferulic/caffeic acids was illustrated by molecular dynamic simulation.

  6. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars.

    Science.gov (United States)

    Hu, Yijie; Deng, Liqing; Chen, Jinwu; Zhou, Siyu; Liu, Shuang; Fu, Yufan; Yang, Chunxian; Liao, Zhihua; Chen, Min

    2016-03-01

    Purple sweet potato (Ipomoea batatas L.) is rich in anthocyanin pigments, which are valuable constituents of the human diet. Techniques to identify and quantify anthocyanins and their antioxidant potential are desirable for cultivar selection and breeding. In this study, we performed a quantitative and qualitative chemical analysis of 30 purple sweet potato (PSP) cultivars, using various assays to measure reducing power radical-scavenging activities, and linoleic acid autoxidation inhibition activity. Grey relational analysis (GRA) was applied to establish relationships between the antioxidant activities and the chemical fingerprints, in order to identify key bioactive compounds. The results indicated that four peonidin-based anthocyanins and three cyanidin-based anthocyanins make significant contributions to antioxidant activity. We conclude that the analytical pipeline described here represents an effective method to evaluate the antioxidant potential of, and the contributing compounds present in, PSP cultivars. This approach may be used to guide future breeding strategies. Copyright © 2015. Published by Elsevier Ltd.

  7. Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks.

    Science.gov (United States)

    Bechoff, Aurélie; Cissé, Mady; Fliedel, Geneviève; Declemy, Anne-Laure; Ayessou, Nicolas; Akissoe, Noel; Touré, Cheikh; Bennett, Ben; Pintado, Manuela; Pallet, Dominique; Tomlins, Keith I

    2014-04-01

    Chemical composition of Hibiscus drinks (Koor and Vimto varieties, commercial and traditional, infusions and syrups) (n=8) was related to sensory evaluation and acceptance. Significant correlations between chemical composition and sensory perception of drinks were found (i.e. anthocyanin content and Hibiscus taste) (pHibiscus drink and anthocyanin content. The study showed that the distinctions between the acceptability groups are very clear with respect to the chemical composition and rating of sensory attributes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce

    OpenAIRE

    Klaudia BRÜCKOVÁ; Oksana SYTAR; Marek ŢIVČÁK; Marian BRESTIC; Aleš LEBEDA

    2016-01-01

    The aim of the study was to investigate the effect of different growth conditions on anthocyanins and flavonols accumulation in leaves of green and red loose leaf lettuce (Lactuca sativa var. crispa). Lettuce plants were grown in three types of conditions, in greenhouse (I. variant), behind clear glass in field (II. variant) and in open field conditions (III. variant). Estimation of anthocyanins and flavonols content was done by non-destructive measurements with optical fluorescence sensor Mu...

  9. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE) ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    OpenAIRE

    ANILÚ MIRANDA-MEDINA; PATRICIA M. HAYWARD-JONES; OCTAVIO CARVAJAL-ZARRABAL; LUZ DEL ALBA LADRÓN DE GUEVARA-VELA; YERIKC DAVID RAMÍREZ-VILLAGÓMEZ; DULCE M. BARRADAS-DERMITZ; GEORGINA LUNA-CARRILLO; MARÍA G. AGUILAR-USCANGA

    2018-01-01

    Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these fla...

  10. Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses.

    Science.gov (United States)

    Wang, Hongxia; Fan, Weijuan; Li, Hong; Yang, Jun; Huang, Jirong; Zhang, Peng

    2013-01-01

    Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.

  11. Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    Full Text Available Dihydroflavonol-4-reductase (DFR is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam. cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.

  12. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  13. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress.

    Science.gov (United States)

    Lotkowska, Magda E; Tohge, Takayuki; Fernie, Alisdair R; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-11-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. Influence of Fermentation Process on the Anthocyanin Composition of Wine and Vinegar Elaborated from Strawberry.

    Science.gov (United States)

    Hornedo-Ortega, Ruth; Álvarez-Fernández, M Antonia; Cerezo, Ana B; Garcia-Garcia, Isidoro; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2017-02-01

    Anthocyanins are the major polyphenolic compounds in strawberry fruit responsible for its color. Due to their sensitivity, they are affected by food processing techniques such as fermentation that alters both their chemical composition and organoleptic properties. This work aims to evaluate the impact of different fermentation processes on individual anthocyanins compounds in strawberry wine and vinegar by UHPLC-MS/MS Q Exactive analysis. Nineteen, 18, and 14 anthocyanin compounds were identified in the strawberry initial substrate, strawberry wine, and strawberry vinegar, respectively. Four and 8 anthocyanin compounds were tentatively identified with high accuracy for the 1st time to be present in the beverages obtained by alcoholic fermentation and acetic fermentation of strawberry, respectively. Both, the total and the individual anthocyanin concentrations were decreased by both fermentation processes, affecting the alcoholic fermentation to a lesser extent (19%) than the acetic fermentation (91%). Indeed, several changes in color parameters have been assessed. The color of the wine and the vinegar made from strawberry changed during the fermentation process, varying from red to orange color, this fact is directly correlated with the decrease of anthocyanins compounds. © 2017 Institute of Food Technologists®.

  15. The Change of Total Anthocyanins in Blueberries and Their Antioxidant Effect After Drying and Freezing

    Directory of Open Access Journals (Sweden)

    Virachnee Lohachoompol

    2004-01-01

    Full Text Available This study examined the effects of freezing, storage, and cabinet drying on the anthocyanin content and antioxidant activity of blueberries (Vaccinium corymbosum L. Fresh samples were stored for two weeks at 5∘C while frozen samples were kept for up to three months at −20∘C. There were two drying treatments, one including osmotic pretreatment followed by cabinet drying and the other involving only cabinet drying. Total anthocyanins found in fresh blueberries were 7.2±0.5 mg/g dry matter, expressed as cyanidin 3-rutinoside equivalents. In comparison with fresh samples, total anthocyanins in untreated and pretreated dried blueberries were significantly reduced to 4.3±0.1 mg/g solid content, 41% loss, and 3.7±0.2 mg/g solid content, 49% loss, respectively. Osmotic treatment followed by a thermal treatment had a greater effect on anthocyanin loss than the thermal treatment alone. In contrast, the frozen samples did not show any significant decrease in anthocyanin level during three months of storage. Measurement of the antioxidant activity of anthocyanin extracts from blueberries showed there was no significant difference between fresh, dried, and frozen blueberries.

  16. The Change of Total Anthocyanins in Blueberries and Their Antioxidant Effect After Drying and Freezing

    Science.gov (United States)

    Srzednicki, George

    2004-01-01

    This study examined the effects of freezing, storage, and cabinet drying on the anthocyanin content and antioxidant activity of blueberries (Vaccinium corymbosum L). Fresh samples were stored for two weeks at 5°C while frozen samples were kept for up to three months at −20°C. There were two drying treatments, one including osmotic pretreatment followed by cabinet drying and the other involving only cabinet drying. Total anthocyanins found in fresh blueberries were 7.2 ± 0.5 mg/g dry matter, expressed as cyanidin 3-rutinoside equivalents. In comparison with fresh samples, total anthocyanins in untreated and pretreated dried blueberries were significantly reduced to 4.3 ± 0.1 mg/g solid content, 41% loss, and 3.7 ± 0.2 mg/g solid content, 49% loss, respectively. Osmotic treatment followed by a thermal treatment had a greater effect on anthocyanin loss than the thermal treatment alone. In contrast, the frozen samples did not show any significant decrease in anthocyanin level during three months of storage. Measurement of the antioxidant activity of anthocyanin extracts from blueberries showed there was no significant difference between fresh, dried, and frozen blueberries. PMID:15577185

  17. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.

    Science.gov (United States)

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-08-01

    The mechanism by which copigments stabilize colour, by protecting anthocyanin chromophores from nucleophilic attack, seems well accepted. This study was to determine effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Molecular dynamics simulations were applied to explore molecular interactions. Phenolic acids intensified the colour by 19%∼27%. Colour fading during heating followed first-order reactions with half-lives of 3.66, 9.64, 3.50, and 3.39h, whereas anthocyanin degradation, determined by the pH differential method (or HPLC-PDA), followed second-order reactions with half-lives of 3.29 (3.40), 3.43 (3.39), 2.29 (0.39), and 2.72 (0.32)h alone or with gallic/ferulic/caffeic acids, respectively, suggesting that anthocyanin degradation was faster than the colour fading. The strongest protection of gallic acids might be attributed to the shortest distance (4.37Å) of its aromatic ring to the anthocyanin (AC) panel. Hyperchromic effects induced by phenolic acids were pronounced and they obscured the accelerated anthocyanin degradation due to self-association interruption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis.

    Science.gov (United States)

    Wang, Zhong-Wei; Jiang, Cong; Wen, Qiang; Wang, Na; Tao, Yuan-Yuan; Xu, Li-An

    2014-03-15

    Camellia chekiangoleosa is an important species of genus Camellia. It provides high-quality edible oil and has great ornamental value. The flowers are big and red which bloom between February and March. Flower pigmentation is closely related to the accumulation of anthocyanin. Although anthocyanin biosynthesis has been studied extensively in herbaceous plants, little molecular information on the anthocyanin biosynthesis pathway of C. chekiangoleosa is yet known. In the present study, a cDNA library was constructed to obtain detailed and general data from the flowers of C. chekiangoleosa. To explore the transcriptome of C. chekiangoleosa and investigate genes involved in anthocyanin biosynthesis, a 454 GS FLX Titanium platform was used to generate an EST dataset. About 46,279 sequences were obtained, and 24,593 (53.1%) were annotated. Using Blast search against the AGRIS, 1740 unigenes were found homologous to 599 Arabidopsis transcription factor genes. Based on the transcriptome dataset, nine anthocyanin biosynthesis pathway genes (PAL, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. The spatio-temporal expression patterns of these genes were also analyzed using quantitative real-time polymerase chain reaction. The study results not only enrich the gene resource but also provide valuable information for further studies concerning anthocyanin biosynthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Characterisation of Vranec, Cabernet sauvignon and Merlot wines based on their chromatic and anthocyanin profiles

    Directory of Open Access Journals (Sweden)

    Dimitrovska Maja

    2013-01-01

    Full Text Available Wines of three different grape varieties, Vranec, Cabernet Sauvignon and Merlot were examined for their characterisation in terms of anthocyanin and chromatic profiles, total polyphenols and antioxidant potential. Total, monomeric, polymeric and copigmented anthocyanins were determined by spectrophotometry and the individual anthocyanin compounds were quantified using HPLC-DAD. Chromatic profile was evaluated according to colour density, hue, % red, % blue, % yellow and brilliance (% dA. The established data were submitted to analysis of variance and principle component analysis in order to evaluate their potential for differentiation of wines according to variety and vintage. Vranec wines have shown distinctive characteristics, with the highest content of anthocyanins and values of colour intensity, % red and % dA, compared to the other two studied varieties. The content of petunidin-3-glucoside, peonindin-3-glucoside and anthocyanin acetates were established as possible markers for differentiation of Vranec wines from Cabernet Sauvignon and Merlot wines. However, none of the assayed parameters could be used for differentiation of Cabernet Sauvignon from Merlot wines. It was observed that wine age limits successful classification of the wines by variety according to anthocyanins. The chromatic parameters allowed distinguishing of young (aged up to 1 year from old Vranec wines.

  20. The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce

    Directory of Open Access Journals (Sweden)

    Klaudia BRÜCKOVÁ

    2016-12-01

    Full Text Available The aim of the study was to investigate the effect of different growth conditions on anthocyanins and flavonols accumulation in leaves of green and red loose leaf lettuce (Lactuca sativa var. crispa. Lettuce plants were grown in three types of conditions, in greenhouse (I. variant, behind clear glass in field (II. variant and in open field conditions (III. variant. Estimation of anthocyanins and flavonols content was done by non-destructive measurements with optical fluorescence sensor Multiplex® 3 (Force-A, France. It was estimated that green lettuce varieties had a greater flavonols content compared to red lettuce varieties in all experimental variants. The highest level of flavonols was detected in leaves of green variety Zoltán (1.218 RU and in red lettuce had the highest amount of flavonols in variety Carmesi (1.095 RU. At the same time red lettuce varieties were characterized by higher anthocyanins content. Parameter anthocyanin index is correlated with visible red coloration of leaves. The highest content of anthocyanins was detected in variety Oakly (0.867 RU. Under the open field conditions was found statistically significant higher (P < 0.05 flavonols and anthocyanins level in both green and red lettuce leaves compared to greenhouse conditions. It may be connected with intensification of flavonoids biosynthesis and accumulation which normally stimulated by sun irradiation, especially UV-B radiation.

  1. CZE separation of strawberry anthocyanins with acidic buffer and comparison with HPLC.

    Science.gov (United States)

    Comandini, Patrizia; Blanda, Giampaolo; Cardinali, Andrea; Cerretani, Lorenzo; Bendini, Alessandra; Caboni, Maria Fiorenza

    2008-10-01

    Anthocyanins, the major colourants of strawberries, are polar pigments that are positively charged at low pH. Herein, we have assessed a new analytical method for the separation of anthocyanins using CZE. Acidic buffer solutions (pH pigments in the cation flavylium form and achieve high molar absorptivity at 510 nm. These spectral properties enabled us to identify strawberry anthocyanins in a preliminary stage by detection in the visible range, although the method was optimised at 280 nm to obtain the best S/N. The effects of buffer composition highlighted the necessity of adding an organic modifier to the running buffer to obtain a suitable separation. The electrophoretic method permitted the separation of the three main anthocyanins of strawberry extracts, namely pelargonidin 3-glucoside (Pg-glu), pelargonidin 3-rutinoside and cyanidin 3-glucoside. The electrophoretic results, expressed as retention time and separation efficiency of the major anthocyanin (Pg-glu), were compared to those achieved in HPLC, the analytical technique traditionally used for the investigation of anthocyanins in vegetable matrix. The content of Pg-glu in strawberries (cv. Camarosa), calculated with HPCE and HPLC methods, resulted respectively in 11.41 mg/L and 11.37 mg/L.

  2. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-01-01

    Full Text Available The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs obtained from two commercially available juices (blueberry and blackcurrant juices on three tumor cell lines; B16F10 (murine melanoma, A2780 (ovarian cancer and HeLa (cervical cancer. Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases.

  3. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2012-12-01

    Full Text Available There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05 enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN in bone marrow polychromatic erythrocytes (PCEs. These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.

  4. Cis–Trans Configuration of Coumaric Acid Acylation Affects the Spectral and Colorimetric Properties of Anthocyanins

    Directory of Open Access Journals (Sweden)

    Gregory T. Sigurdson

    2018-03-01

    Full Text Available The color expression of anthocyanins can be affected by a variety of environmental factors and structural characteristics. Anthocyanin acylation (type and number of acids is known to be key, but the influence of acyl isomers (with unique stereochemistries remains to be explored. The objective of this study was to investigate the effects of cis–trans configuration of the acylating group on the spectral and colorimetric properties of anthocyanins. Petunidin-3-rutinoside-5-glucoside (Pt-3-rut-5-glu and Delphinidin-3-rutinoside-5-glucoside (Dp-3-rut-5-glu and their cis and trans coumaroylated derivatives were isolated from black goji and eggplant, diluted in pH 1–9 buffers, and analyzed spectrophotometrically (380–700 nm and colorimetrically (CIELAB during 72 h of storage (25 °C, dark. The stereochemistry of the acylating group strongly impacted the spectra, color, and stability of the Dp and Pt anthocyanins. Cis acylated pigments exhibited the greatest λmax in all pH, as much as 66 nm greater than their trans counterparts, showing bluer hues. Cis acylation seemed to reduce hydration across pH, increasing color intensity, while trans acylation generally improved color retention over time. Dp-3-cis-p-cou-rut-5-glu exhibited blue hues even in pH 5 (C*ab = 10, hab = 256° where anthocyanins are typically colorless. Cis or trans double bond configurations of the acylating group affected anthocyanin spectral and stability properties.

  5. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel.

    Science.gov (United States)

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledons, leaves and stems. In contrast, introduction of GL3::GL3 strongly enhances anthocyanin accumulation in cotyledons, leaves and stems of tomato. In this study, we investigated the effect of CPC and GL3 on anthocyanin accumulation in the epidermis of tomato fruit. Unlike the results with vegetative tissues, overexpression of CPC and GL3 did not influence anthocyanin biosynthesis in tomato fruit peel.

  6. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (solanum lycopersicum) fruit peel

    OpenAIRE

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledo...

  7. Digital photography provides a fast, reliable, and noninvasive method to estimate anthocyanin pigment concentration in reproductive and vegetative plant tissues.

    Science.gov (United States)

    Del Valle, José C; Gallardo-López, Antonio; Buide, Mª Luisa; Whittall, Justen B; Narbona, Eduardo

    2018-03-01

    Anthocyanin pigments have become a model trait for evolutionary ecology as they often provide adaptive benefits for plants. Anthocyanins have been traditionally quantified biochemically or more recently using spectral reflectance. However, both methods require destructive sampling and can be labor intensive and challenging with small samples. Recent advances in digital photography and image processing make it the method of choice for measuring color in the wild. Here, we use digital images as a quick, noninvasive method to estimate relative anthocyanin concentrations in species exhibiting color variation. Using a consumer-level digital camera and a free image processing toolbox, we extracted RGB values from digital images to generate color indices. We tested petals, stems, pedicels, and calyces of six species, which contain different types of anthocyanin pigments and exhibit different pigmentation patterns. Color indices were assessed by their correlation to biochemically determined anthocyanin concentrations. For comparison, we also calculated color indices from spectral reflectance and tested the correlation with anthocyanin concentration. Indices perform differently depending on the nature of the color variation. For both digital images and spectral reflectance, the most accurate estimates of anthocyanin concentration emerge from anthocyanin content-chroma ratio, anthocyanin content-chroma basic, and strength of green indices. Color indices derived from both digital images and spectral reflectance strongly correlate with biochemically determined anthocyanin concentration; however, the estimates from digital images performed better than spectral reflectance in terms of r 2 and normalized root-mean-square error. This was particularly noticeable in a species with striped petals, but in the case of striped calyces, both methods showed a comparable relationship with anthocyanin concentration. Using digital images brings new opportunities to accurately quantify the

  8. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots.

    Science.gov (United States)

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-03-27

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.

  9. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.).

    Science.gov (United States)

    Flanigan, Patrick M; Niemeyer, Emily D

    2014-12-01

    In this study, we determined the effect of cultivar on total and individual anthocyanin concentrations and phenolic acid levels in eight purple basil varieties and examined the relationship between anthocyanin content, phenolic acid composition, and antioxidant properties. Cultivar had a significant influence on total anthocyanin concentrations as well as individual anthocyanin composition. The four major basil anthocyanins (labelled A-D) were quantified and cultivar had a statistically significant effect on anthocyanins B (p<0.01), C (p<0.01), and D (p<0.01), but not on anthocyanin A (p=0.94). Cultivar did not have a significant effect on total phenolic levels, although it did influence the concentration of some individual phenolic acids, including caftaric (p=0.03) and chicoric (p=0.04) acids. Although total phenolic and anthocyanin levels correlated with measured FRAP antioxidant capacities, for some cultivars the individual phenolic acid and anthocyanin composition was also an important factor affecting the antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Ping Yang

    2018-02-01

    Full Text Available This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins’ structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  11. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Energy Technology Data Exchange (ETDEWEB)

    Tarmizi, Ermiziar, E-mail: uph-ermi@yahoo.com, E-mail: ermitarmizi@gmail.com; Saragih, Raskita, E-mail: raskitasaragih@yahoo.com [Indonesia Institute of Technology (ITI), Raya PuspiptekSerpong, Tangerang Banten 15320 (Indonesia); Lalasari, Latifa Hanum, E-mail: ifa-sari@yahoo.com, E-mail: lati003@lipi.go.id [Research Centre for Metallurgy and Material, Indonesian Institute of Sciences (LIPI), KawasanPuspiptekSerpong, Tangerang Selatan 15314 (Indonesia)

    2015-12-29

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  12. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    International Nuclear Information System (INIS)

    Tarmizi, Ermiziar; Saragih, Raskita; Lalasari, Latifa Hanum

    2015-01-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm

  13. Overexpression of CsANR increased flavan-3-ols and decreased anthocyanins in transgenic tobacco.

    Science.gov (United States)

    Kumar, Vinay; Yadav, Sudesh Kumar

    2013-06-01

    Anthocyanins and flavan-3-ols are distributed widely in plants and synthesized by a common biosynthetic pathway. Anthocyanin reductase (ANR) represents branching-point enzyme of this pathway converting anthocyanidins to flavan-3-ols. Since tea contains highest amount of flavonoids, a cDNA encoding anthocyanin reductase from tea (CsANR) was overexpressed in transgenic tobacco to check the influence on anthocyanin and flavan-3-ols. The transgenic tobacco was confirmed by genomic PCR and expression of transgene was analyzed through semiquantitative PCR. Interestingly flowers of transgenic tobacco were light pink/white in color instead of dark pink in wild tobacco, documenting the decrease in anthocyanins content. Upon measurement, flower anthocyanin content was found to be lesser. While flavan-3-ols (epicatechin and epigallocatechin) contents were increased in leaf tissue of transgenic lines. The expressions of other endogenous flavonoid biosynthetic pathway genes in different floral parts (sepal, petal, stamen, and carpel) of CsANR overexpressing tobacco as well as wild tobacco were analyzed. The transcript levels of PAL and CHI genes were downregulated, while transcript levels of F3H, FLS, CHS, ANR1, and ANR2 genes were upregulated in all floral parts of CsANR transgenic plants compared to wild tobacco. The expressions of DFR and ANS genes were also spatially modulated in different floral parts due to overexpression of CsANR. Thus, CsANR overexpression increased flavan-3-ols and decreased anthocyanin content by modulating the expressions of various flavonoid biosynthetic pathway genes in flower of tobacco. These changes might be responsible for the observed pollen tube in the pollens of CsANR overexpressing transgenic tobacco when they were still in the anther before pollination.

  14. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  15. Protective Effect of Anthocyanins Extract from Blueberry on TNBS-Induced IBD Model of Mice

    Directory of Open Access Journals (Sweden)

    Lin-Hua Wu

    2011-01-01

    Full Text Available This study was carried out to evaluate the protective effect of anthocyanins extract of blueberry on trinitrobenzene sulfonic acid (TNBS-induced inflammatory bowel disease (IBD model of mice. The study employed female C57BL/6 mice (n = 50, and colitis was induced by intracolonic injection of 0.5 mg of TNBS dissolved in 50% ethanol–phosphate buffered solution. The mice were divided into five groups (n = 10: vehicle, TNBS control and anthocyanins groups that received different doses of anthocyanins extract (10, 20 and 40 mg kg-1 daily for 6 days. Both increase in body weight and diarrhea symptoms were monitored each day. After 6 days, the animals were killed, and the following parameters were assessed: colon length, morphological score, histological score and biochemical assay (NO, myeloperoxidase (MPO, interleukin (IL-12, IL-10, tumor necrosis factor (TNF-α and interferon (IFN-γ. The results showed that the anthocyanins extract of blueberry rendered strong protection against TNBS-induced colonic damage at a dosage of 40 mg kg-1. When compared with the control, anthocyanins extract significantly prevented loss of body weight and ameliorated the scores of diarrhea, morphology and histology. Treatment with anthocyanins extract restored IL-10 excretion, as well as caused reduction in the levels of NO, MPO, IL-12, TNF-α and IFN-γ. Our research revealed the protective effect of anthocyanins extract from blueberry on TNBS-induced experimental colitis in mice, as well as examined whether high levels of dietary blueberries would lower the risk or have protective effects on human IBD, which may require further investigation.

  16. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  17. Degradation of Anthocyanin Content in Sour Cherry Juice During Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lilla Szalóki-Dorkó

    2015-01-01

    Full Text Available Sour cherry juices made from two sour cherry cultivars (Érdi bőtermő and Kántorjánosi 3, were investigated to determine their total anthocyanin content and half-life of anthocyanins during heat treatment at different temperatures (70, 80 and 90 °C for 4 h. Before the heat treatment, Érdi bőtermő juice had higher anthocyanin concentration (812 mg/L than Kántorjánosi 3 juice (513 mg/L. The greatest heat sensitivity of anthocyanins was measured at 90 °C, while the treatments at 80 and 70 °C caused lower thermal degradation. The loss of anthocyanins in Érdi bőtermő juice after treatment was 38, 29 and 18 %, respectively, while in Kántorjánosi 3 juice losses of 46, 29 and 19 % were observed, respectively. At 90 °C sour cherry Érdi bőtermő juice had higher half-life (t1/2 of anthocyanins, while the Kántorjánosi 3 juice had higher t1/2 values at 70 °C. Cyanidin-3-glucosyl-rutinoside was present in higher concentrations in both cultivars (Érdi bőtermő: 348 and Kántorjánosi 3: 200 mg/L than cyanidin-3-rutinoside (177 and 121 mg/L before treatment. However, during the experiment, cyanidin-3-rutinoside was proved to be more resistant to heat. Comparing the two varieties, both investigated pigment compounds were more stable in Kántorjánosi 3 than in Érdi bőtermő. Degradation rate of anthocyanins was cultivar-dependent characteristic, which should be taken into account in the food production.

  18. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an

  19. Stability of Anthocyanins from Commercial Black Currant Juice under Simulated Gastrointestinal Digestion

    Directory of Open Access Journals (Sweden)

    Alija Uzunović

    2008-08-01

    Full Text Available Anthocyanins are effective antioxidants but they have also been proposed to have other biological activities independent of their antioxidant capacities that produce health benefits. Examples range from inhibition of cancer cell growth in vitro, induction of insulin production in isolated pancreatic cells, reduction of starch digestion through inhibition of a-glucosidase activity, suppression of inflammatory responses as well as protection against age-related declines in cognitive behavior and neuronal dysfunction in the central nervous system. However, to achieve any biological effect in a specific tissue or organ, anthocyanins must be bioavailable; i.e. effectively absorbed from the gastrointestinal tract (GIT into the circulation and delivered to the appropriate location within the body. In this study, we assess the stability of anthocyanins from commercial Black currant (Ribes nigrum L. juice using an in vitro digestion procedure that mimics the physiochemical and biochemical conditions encountered in the gastrointestinal tract (GIT. The main objective of this work was the evaluation of stability of anthocyanins during in vitro digestion in gastric and intestinal fluid regarding whether appropriate enzyme (pepsin or pancreatin was added or not. Anthocyanins present in commercial black currant juice remain stable during in vitro digestion in gastric fluid regardless whether pepsin was added into the medium or not. Also, they remain stable during in vitro digestion in simulated intestinal fluid without pancreatin. The stability studies of anthocyanins in the intestinal fluid containing pancreatin indicated reduced stability, which also mainly contribute to slight reduction of total anthocyanins content (1,83%- in commercial black currant juice.

  20. Effect of High Intensity Ultrasound and Pasteurization on Anthocyanin Content in Strawberry Juice

    Directory of Open Access Journals (Sweden)

    Igor Dubrović

    2011-01-01

    Full Text Available The purpose of this investigation is to study the influence of high intensity ultrasound and pasteurization on the stability of anthocyanins and their content in strawberry juice. Different ultrasound process parameters for the treatment of juices are compared to the classical thermal treatments. For ultrasound treatments, three parameters were varied according to the statistical experimental design. Central composite design was used to optimize and design experimental parameters: temperature (25, 40 and 55 °C, amplitude (60, 90 and 120 μm and time (3, 6, and 9 min. It was found that the anthocyanin content after pasteurization (85 °C for 2 min was reduced by 5.3 to 5.8 % compared to untreated juices. After treatment with ultrasound (20 °C for 3, 6 or 9 min or thermosonication (40 °C for 3, 6 or 9 min and 60 °C for 3 or 6 min, the degradation of anthocyanins was generally less intensive and was 0.7–4.4 % compared to the untreated juices. Only in the case of ultrasonic treatment at a temperature of 55 °C and treatment time of 9 min the total content of anthocyanins, compared to untreated juice, was reduced by 5.8 to 7.1 %, and their degradation was greater than that of pasteurized juices. From the results it can be concluded that total anthocyanin content was greater in more than 85 % of the selected ultrasound treatments compared to pasteurized juices. Ultrasound treatment can replace pasteurization in terms of preserving total anthocyanin content. The modelling approaches using response surface methodology (RSM developed in this study exploit data in order to identify the optimal processing parameters for lowering degradation of anthocyanins in strawberry juice during ultrasound processing.

  1. Ten Putative Contributors to the Obesity Epidemic

    Science.gov (United States)

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  2. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine.

    Science.gov (United States)

    Belwal, Tarun; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2017-10-12

    Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.

  3. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Kashif Mahmood

    2016-10-01

    Full Text Available Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, high light and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX and positive regulatory (TT8 genes as demonstrated in overexpression line (35S:ANAC032 compared to wild-type under high light stress. The chimeric repressor line (35S:ANAC032-SRDX exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032 produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  4. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses.

    Science.gov (United States)

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, José A; Rothstein, Steven J

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis ( DFR, ANS/LDOX) and positive regulatory ( TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9 . In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  5. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars.

    Science.gov (United States)

    Liu, Xiao-Jing; Chuang, Yao-Nung; Chiou, Chung-Yi; Chin, Dan-Chu; Shen, Fu-Quan; Yeh, Kai-Wun

    2012-08-01

    The anthocyanin-biosynthetic pathway was studied in flowers of Oncidium Gower Ramsey with yellow floral color and mosaic red anthocyanin in lip crests, sepals and petals, and compared with the anthocyanin biosynthesis in flowers of Oncidium Honey Dollp, a natural somatoclone derived from tissue culture of Gower Ramsey, with a yellow perianth without red anthocyanins in floral tissues. HPLC analysis revealed that the red anthocyanin in lip crests of the Gower Ramsey cultivar comprised peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, whereas Honey Dollp was devoid of anthocyanin compounds. Among the five anthocyanin-biosynthetic genes, OgCHS was actively expressed in lip crests of Gower Ramsey flowers, but no transcripts of OgCHS were detected in Honey Dollp floral tissues. Transient expression of OgCHS by bombardment confirmed that recovery of the OgCHS gene expression completed the anthocyanin pathway and produced anthocyanin compounds in lip crests of Honey Dollp flowers. Transcription factor genes regulating anthocyanin biosynthesis showed no distinctive differences in the expression level of OgMYB1, OgbHLH and OgWD40 between the two cultivars. A methylation assay revealed that the promoter of OgCHS was not methylated in Gower Ramsey, while a positive methylation effect was present in the upstream promoter region of OgCHS in Honey Dollp. Overall, our results suggest that the failure of anthocyanin accumulation in Honey Dollp floral tissues may be attributed to inactivation of the OgCHS gene resulting from the epigenetic methylation of 5'-upstream promoter region.

  6. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism.

    Science.gov (United States)

    Noda, Naonobu; Yoshioka, Satoshi; Kishimoto, Sanae; Nakayama, Masayoshi; Douzono, Mitsuru; Tanaka, Yoshikazu; Aida, Ryutaro

    2017-07-01

    Various colored cultivars of ornamental flowers have been bred by hybridization and mutation breeding; however, the generation of blue flowers for major cut flower plants, such as roses, chrysanthemums, and carnations, has not been achieved by conventional breeding or genetic engineering. Most blue-hued flowers contain delphinidin-based anthocyanins; therefore, delphinidin-producing carnation, rose, and chrysanthemum flowers have been generated by overexpression of the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the key enzyme for delphinidin biosynthesis. Even so, the flowers are purple/violet rather than blue. To generate true blue flowers, blue pigments, such as polyacylated anthocyanins and metal complexes, must be introduced by metabolic engineering; however, introducing and controlling multiple transgenes in plants are complicated processes. We succeeded in generating blue chrysanthemum flowers by introduction of butterfly pea UDP (uridine diphosphate)-glucose:anthocyanin 3',5'- O -glucosyltransferase gene, in addition to the expression of the Canterbury bells F3'5'H . Newly synthesized 3',5'-diglucosylated delphinidin-based anthocyanins exhibited a violet color under the weakly acidic pH conditions of flower petal juice and showed a blue color only through intermolecular association, termed "copigmentation," with flavone glucosides in planta. Thus, we achieved the development of blue color by a two-step modification of the anthocyanin structure. This simple method is a promising approach to generate blue flowers in various ornamental plants by metabolic engineering.

  7. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery.

    Science.gov (United States)

    Tan, Guo-Fei; Ma, Jing; Zhang, Xin-Yue; Xu, Zhi-Sheng; Xiong, Ai-Sheng

    2017-10-01

    Apigenin and anthocyanin biosyntheses share common precursors in plants. Flavone synthase (FNS) converts naringenin into apigenin in higher plants. Celery is an important edible and medical vegetable crop that contains apigenin in its tissues. However, the effect of high AgFNS gene expression on the apigenin and anthocyanins contents of purple celery remains to be elucidated. In this study, the AgFNS gene was cloned from purple celery ('Nanxuan liuhe purple celery') and overexpressed in this purple celery to determine its influence on anthocyanins and apigenin contents. Results showed that the AgFNS gene was 1068bp, which encodes 355 amino acid residues. Evolution analysis showed that the AgFNS protein belongs to the FSN I type. In AgFNS transgenic celery, the anthocyanins content in petioles was lower than that wild-type celery plants. Apigenin content increased in the petioles of AgFNS transgenic celery. The transcript levels of the AgPAL, AgC4H, AgCHS, and AgCHI genes were up-regulated, whereas those of the AgF3H, AgF3'H, AgDFR, AgANS, and Ag3GT genes were down-regulated in the petioles of AgFNS transgenic plants compared with wild-type celery plants. This work provides basic knowledge about the function of the AgFNS gene in the anthocyanin and apigenin biosyntheses of celery. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple.

    Science.gov (United States)

    Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong

    2017-03-03

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.

  9. Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death

    Directory of Open Access Journals (Sweden)

    Hou-Long Long

    2018-05-01

    Full Text Available Dietary anthocyanin compounds have multiple biological effects, including antioxidant, anti-inflammatory, and anti-atherosclerotic characteristics. The present study evaluated the anti-tumor capacity of mulberry anthocyanins (MA in thyroid cancer cells. Our data showed that MA suppressed SW1736 and HTh-7 cell proliferation in a time- and dose-dependent manner. Meanwhile, flow cytometry results indicated that MA significantly increased SW1736 and HTh-7 cell apoptosis. We additionally observed that SW1736 and HTh-7 cell autophagy was markedly enhanced after MA treatment. Importantly, anthocyanin-induced cell death was largely abolished by 3-methyladenine (3-MA or chloroquine diphosphate salt (CQ treatment, suggesting that MA-induced SW1736 and HTh-7 cell death was partially dependent on autophagy. In addition, activation of protein kinase B (Akt, mammalian target of rapamycin (mTOR, and ribosomal protein S6 (S6 were significantly suppressed by anthocyanin exposure. In summary, MA may serve as an adjunctive therapy for thyroid cancer patients through induction of apoptosis and autophagy-dependent cell death. Keywords: Mulberry anthocyanins, Thyroid cancer, Apoptosis, Autophagic death

  10. Cooked blueberries: anthocyanin and anthocyanidin degradation and their radical-scavenging activity.

    Science.gov (United States)

    Oliveira, Carla; Amaro, L Filipe; Pinho, Olivia; Ferreira, Isabel M P L V O

    2010-08-25

    This study examined anthocyanin and anthocyanidin composition and radical-scavenging activity of three cultivars of blueberries (Vaccinium corymbosum L., cv. Bluecrop, Bluetravel, and Ozarkblue) before and after cooking. A total of 13 anthocyanins were separated and monitored in methanolic extracts of raw fruits by high-performance liquid chromatography/diode array detector (HPLC/DAD). Principal component analysis using the anthocyanin profile as variables revealed differences according to cultivar origin. Of the six common anthocyanidins, four were identified and quantified in the hydrolysates, namely, malvidin, the most abundant, followed by cyanidin, petunidin, and delphynidin. A systematic evaluation of the degradation of anthocyanins and anthocyanidins of blueberries cooked in stuffed fish was performed. The percentage of anthocyanin degradation in cooked blueberries (by progressive heating from 12 to 99 °C for 60 min) ranged between 16 and 30% for Bluecrop, 30-42% for Bluetravel, and 12-41% for Ozarkblue. However, cooked blueberries maintained or increased radical-scavenging activity when evaluated by the 1,1'-diphenyl-2-picrylhydrazyl (DPPH) method. Overall, results show that cooked blueberries can serve as a good source of bioactive phytochemicals.

  11. Bioavailability and Biokinetics of Anthocyanins From Red Grape Juice and Red Wine

    Directory of Open Access Journals (Sweden)

    Roland Bitsch

    2004-01-01

    Full Text Available In a comparative study, 9 healthy volunteers ingested a single oral dose of 400 mL red grape juice or red wine with dose-adjusted anthocyanin content (283.5 mg or 279.6 mg, resp. in crossover. The content of anthocyanin glucosides was detected in plasma and urinary excretion. Additionally, the plasmatic antioxidant activity was assessed after intake. Based on the plasma content, biokinetic criteria of the single anthocyanins were calculated, such as AUC, cmax, tmax, and the elimination rate t1/2. The urinary excretion of total anthocyanins differed significantly and amounted to 0.18% (red wine and 0.23% (red grape juice of the administered dose. Additionally, the plasmatic antioxidant activity increased to higher levels after juice ingestion compared to wine. The intestinal absorption of the anthocyanins of red grape juice seemed to be improved compared to red wine, suggesting a possible synergistic effect of the glucose content of the juice. The improved absorption resulted in an enhanced plasmatic bioactivity.

  12. Free Radical Scavenging Activity and Anthocyanin Profile of Cabernet Sauvignon Wines from the Balkan Region

    Directory of Open Access Journals (Sweden)

    Blaga Radovanović

    2010-06-01

    Full Text Available The present study is focused on anthocyanin derivatives characterizing the antioxidant activity of Cabernet Sauvignon wines produced from different vineyard regions in the Balkans. These bioactive compounds were quantified with a high performance liquid chromatography (HPLC-diode array detection (DAD method. The antiradical activity was estimated by the ability of the wine to scavenge the stable 2,2`-diphenyl-1-picrylhydrazyl free radical (DPPH·. The results show that the total anthocyanin content varied from 205.88 to 1940.28 mg/L, depending on agroclimatic factors and the enological practices of the corresponding vineyard region. The most prominent antocyanin in all investigated Cabernet Sauvignon wines was malvidin-3-O-monoglucoside, which accounted for 50.57% of total content, followed by its acetyl derivatives, 15.45%, and p-coumaryl derivatives 5.66%. The relationship between the anthocyanin derivatives and free radical scavenging activity is discussed. A high correlation between total anthocyanin content and DPPH· scavenging ability of tested wines was confirmed (r2 = 0.9619. The significant correlations were obtained between antiradical activity and the sum of 3-monoglucoside (r2 = 0.95594, the sum of 3-acetyl-3-glucoside (r2 = 0.9728 and the sum of p-coumaryl-3-glucoside (r2 = 0.8873 of wine samples. It can be concluded that, the anthocyanin composition can be used as biochemical marker for the authenticity of red grape cultivar and their corresponding single-cultivar wine.

  13. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles.

    Science.gov (United States)

    de Moura, Sílvia C S R; Berling, Carolina L; Germer, Sílvia P M; Alvim, Izabela D; Hubinger, Míriam D

    2018-02-15

    Hibiscus extract (HE) has a strong antioxidant activity and high anthocyanin content; it can be used as a natural pigment, also adding potential health benefits. The objective of this work was the microencapsulation of HE anthocyanin by ionic gelation (IG) using two techniques: dripping-extrusion and atomization, both by means of a double emulsion (HE/rapseed oil/pectin) and a cross-linked solution (CaCl 2 ). Particles (77-83% moisture content) were conditioned in acidified solution at 5, 15 and 25°C, absence of light, and evaluated for anthocyanins and color for 50-days. The median diameter (D 50 ) of the particles ranged from 78 to 1100μm and encapsulation efficiency ranged from 67.9 to 93.9%. The encapsulation caused higher temperature stability compared with the free extract. The half-life (t 1/2 ) values of the particles ranged from 7 (25°C) to 180days (5°C) for anthocyanins and from 25 (25°C) to 462days (5°C) for Chroma value. The IG increased the stability of HE anthocyanin. Both the dripping-extrusion and the atomization have shown to be feasible techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A New Solid Phase Extraction for the Determination of Anthocyanins in Grapes

    Directory of Open Access Journals (Sweden)

    Marta Ferreiro-González

    2014-12-01

    Full Text Available A method for the concentration and cleaning of red grape extracts prior to the determination of anthocyanins by UPLC-DAD has been developed. This method is of special interest in the determination of phenolic maturity as it allows the analysis of the anthocyanins present in grapes. Several different SPE cartridges were assessed, including both C-18- and vinylbenzene-based cartridges. C-18-based cartridges presented a very low retention for the glucosylated anthocyanidins while vinylbenzene-based cartridges showed excellent retention for these compounds. The optimized method involves the initial conditioning of the cartridge using 10 mL of methanol and 10 mL of water, followed by loading of up to 100 mL of red grape extract. Ten mL of water was used in the washing step and anthocyanins were subsequently eluted using 1.5 mL of acidified methanol at pH 2. This method simplifies the determination of individual anthocyanins as, on the one hand, it cleans the sample of interference and, on the other hand, it increases the concentration to up to 25:1.5. The developed method has been validated with a range of different grapes and it has also been tested as a means of determining the different anthocyanins in grapes with different levels of maturity.

  16. Microencapsulation by spray-drying of anthocyanin pigments from Corozo ( Bactris guineensis) fruit.

    Science.gov (United States)

    Osorio, Coralia; Acevedo, Baudilio; Hillebrand, Silke; Carriazo, José; Winterhalter, Peter; Morales, Alicia Lucía

    2010-06-09

    The anthocyanins of Bactris guineensis fruit were isolated with the aid of high-speed countercurrent chromatography (HSCCC) and preparative HPLC, and their chemical structures were elucidated by using spectroscopic methods. Among the identified pigments, cyanidin-3-rutinoside and cyanidin-3-glucoside were characterized as major constituents (87.9%). Peonidin-3-rutinoside, peonidin-3-glucoside, cyanidin-3-(6-O-malonyl)glucoside, and cyanidin-3-sambubioside were present in minor amounts. Four anthocyanin ethanolic extracts (AEEs) were obtained by osmotic dehydration and Soxhlet extraction and physicochemically characterized. The composition of anthocyanins was monitored by HPLC-PDA. The extracts with the highest anthocyanin content were subjected to the spray-drying process with maltodextrin. The so-obtained spray-dried powders were analyzed by scanning electron microscopy (SEM) and found to consist of spherical particles fruit. The microencapsulated powders were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), revealing that they are quite stable until 100 degrees C. Storage stability tests of microcapsules showed that the release of anthocyanin pigments follows pseudo-first-order kinetics and that the process rate is increased by temperature and humidity. The most suitable conditions for storage were below 37 degrees C and <76% relative humidity, respectively.

  17. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds?

    Science.gov (United States)

    Dopico-García, M S; Fique, A; Guerra, L; Afonso, J M; Pereira, O; Valentão, P; Andrade, P B; Seabra, R M

    2008-06-15

    Phenolic profile of 10 different varieties of red "Vinho Verde" grapes (Azal Tinto, Borraçal, Brancelho, Doçal, Espadeiro, Padeiro de Basto, Pedral, Rabo de ovelha, Verdelho and Vinhão), from Minho (Portugal) were studied. Nine Flavonols, four phenolic acids, three flavan-3-ols, one stilben and eight anthocyanins were determined. Malvidin-3-O-glucoside was the most abundant anthocyanin while the main non-coloured compound was much more heterogeneous: catechin, epicatechin, myricetin-3-O-glucoside, quercetin-3-O-glucoside or syringetin-3-O-glucoside. Anthocyanin contents ranged from 42 to 97%. Principal component analysis (PCA) was applied to analyse the date and study the relations between the samples and their phenolic profiles. Anthocyanin profile proved to be a good marker to characterize the varieties even considering different origin and harvest. "Vinhão" grapes showed anthocyanins levels until twenty four times higher than the rest of the samples, with 97% of these compounds.

  18. Anthocyanin characteristics of wines in Vitis germplasms cultivated in southern China

    Directory of Open Access Journals (Sweden)

    Guo CHENG

    2017-10-01

    Full Text Available Abstract The anthocyanin profiles and CIELAB color values of nine wines in Vitis germplasms from southern China were compared. The results showed that the anthocyanin composition of wines from one hybrid between V. vinifera and V. labrusca (‘Moldova’, two V. labrusca varieties (‘Conquistador’ and ‘Saint-Croix’, one V. quinquangularis variety (‘Yeniang No.2’, one hybrid between V. quinquangularis and V. vinifera (‘NW196’, one V. davidii variety (‘Xiangniang No.1’ and one V. rotundifolia variety (‘Noble’ were dominated by anthocyanidin 3,5-O-diglucosides. All these were quite different from V. vinifera wines (‘Cabernet Sauvignon’ and ‘Marselan’, which were characterized by the monoglucoside and pyranoanthocyanins. 3',4',5'-substituted anthocyanins were dominant in the wines of all varieties, except ‘Noble’ wine. ‘Yeniang No.2’ (V. quinquangularis had the highest acid, total anthocyanin concentration, and showed a more intense pigmentation with a higher proportion and concentration of coumaroylated anthocyanins. In the colorimetric analysis, ‘Yeniang No.2’ (V. quinquangularis wine showed the most saturated red colors, followed by ‘NW196’ (V. quinquangularis. The detected chromatic characteristics of these wines were basically in accordance with their sensory evaluation.

  19. Production of purple sweet potato (Ipomoea batatas L.) juice having high anthocyanin content and antioxidant activity

    Science.gov (United States)

    Dwiyanti, G.; Siswaningsih, W.; Febrianti, A.

    2018-05-01

    The purpose of the study was to retrieve procedure of production of purple sweet potato (Ipomoea batatas L.) juice with the best total anthocyanin and antioxidant activity. Purple sweet potato was processed into purple sweet potato juice through a process of heating with temperature variations of 700C, 800C, and 900C and various duration of heating, which are 5 mins, 10 mins, and 15 mins. The total anthocyanin was determined by using pH differential method. The antioxidant activity was determined by using DPPH (2,2-Diphenyl-l-picrylhydrazyl) method. Total anthocyanin of purple sweet potato juice declined in the range between 215.08 mg/L - 101.86 mg/L. The antioxidant activity of purple sweet potato juice declined in the range between 90.63% - 67.79%. Antioxidant activity and total anthocyanin purple sweet potato juice decreases with increasing temperature and duration of heating. The best characteristics found in purple sweet potato juice were made with warming temperatures of 800C. The product with the highest antioxidant activity, total anthocyanins, and good durability was prepared at 800C heating temperature for 5 mins.

  20. The effect of shade on chlorophyll and anthocyanin content of upland red rice

    Science.gov (United States)

    Muhidin; Syam'un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-02-01

    Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.

  1. Putative neuroprotective agents in neuropsychiatric disorders.

    Science.gov (United States)

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis

    OpenAIRE

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription level...

  3. The Putative Role of the Non-Gastric H+/K+-ATPase ATP12A (ATP1AL1 as Anti-Apoptotic Ion Transporter: Effect of the H+/K+ ATPase Inhibitor SCH28080 on Butyrate-Stimulated Myelomonocytic HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2014-10-01

    Full Text Available Background/Aims: The ATP12A gene codes for a non-gastric H+/K+ ATPase, which is expressed in a wide variety of tissues. The aim of this study was to test for the molecular and functional expression of the non-gastric H+/K+ ATPase ATP12A/ATP1AL1 in unstimulated and butyrate-stimulated (1 and 10 mM human myelomonocytic HL-60 cells, to unravel its potential role as putative apoptosis-counteracting ion transporter as well as to test for the effect of the H+/K+ ATPase inhibitor SCH28080 in apoptosis. Methods: Real-time reverse-transcription PCR (qRT-PCR was used for amplification and cloning of ATP12A transcripts and to assess transcriptional regulation. BCECF microfluorimetry was used to assess changes of intracellular pH (pHi after acute intracellular acid load (NH4Cl prepulsing. Mean cell volumes (MCV and MCV-recovery after osmotic cell shrinkage (Regulatory Volume Increase, RVI were assessed by Coulter counting. Flow-cytometry was used to measure MCV (Coulter principle, to assess apoptosis (phosphatidylserine exposure to the outer leaflet of the cell membrane, caspase activity, 7AAD staining and differentiation (CD86 expression. Results: We found by RT-PCR, intracellular pH measurements, MCV measurements and flow cytometry that ATP12A is expressed in human myelomonocytic HL-60 cells. Treatment of HL-60 cells with 1 mM butyrate leads to monocyte-directed differentiation whereas higher concentrations (10 mM induce apoptosis as assessed by flow-cytometric determination of CD86 expression, caspase activity, phosphatidylserine exposure on the outer leaflet of the cell membrane and MCV measurements. Transcriptional up-regulation of ATP12A and CD86 is evident in 1 mM butyrate-treated HL-60 cells. The H+/K+ ATPase inhibitor SCH28080 (100 µM diminishes K+-dependent pHi recovery after intracellular acid load and blocks RVI after osmotic cell shrinkage. After seeding, HL-60 cells increase their MCV within the first 24 h in culture, and subsequently

  4. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple.

    Science.gov (United States)

    Sun, Xun; Jia, Xin; Huo, Liuqing; Che, Runmin; Gong, Xiaoqing; Wang, Ping; Ma, Fengwang

    2018-02-01

    Nitrogen (N) availability is an essential factor for plant growth. Recycling and remobilization of N have strong impacts on crop yield and quality under N deficiency. Autophagy is a critical nutrient-recycling process that facilitates remobilization under starvation. We previously showed that an important AuTophaGy (ATG) protein from apple, MdATG18a, has a positive role in drought tolerance. In this study, we explored its biological role in response to low-N. Overexpression of MdATG18a in both Arabidopsis and apple improved tolerance to N-depletion and caused a greater accumulation of anthocyanin. The increased anthocyanin concentration in transgenic apple was possibly due to up-regulating flavonoid biosynthetic and regulatory genes (MdCHI, MdCHS, MdANS, MdPAL, MdUFGT, and MdMYB1) and higher soluble sugars concentration. MdATG18a overexpression enhanced starch degradation with up-regulating amylase gene (MdAM1) and up-regulated sugar metabolism related genes (MdSS1, MdHXKs, MdFK1, and MdNINVs). Furthermore, MdATG18a functioned in nitrate uptake and assimilation by up-regulating nitrate reductase MdNIA2 and 3 high-affinity nitrate transporters MdNRT2.1/2.4/2.5. MdATG18a overexpression also elevated other important MdATG genes expression and autophagosomes formation under N-depletion, which play key contributions to above changes. Together, these results demonstrate that overexpression of MdATG18a enhances tolerance to N-deficiencies and plays positive roles in anthocyanin biosynthesis through greater autophagic activity. © 2017 John Wiley & Sons Ltd.

  5. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.

    Science.gov (United States)

    Zhu, Hui-Fen; Fitzsimmons, Karen; Khandelwal, Abha; Kranz, Robert G

    2009-07-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation. However, none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis. We show here that CPC is a negative regulator of anthocyanin biosynthesis. In the process of using CPC to test GAL4-dependent driver lines, we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression. We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs. Rather, CPC expression level tightly controls anthocyanin accumulation. Microarray analysis on the whole genome showed that, of 37 000 features tested, 85 genes are repressed greater than three-fold by CPC overexpression. Of these 85, seven are late anthocyanin biosynthesis genes. Also, anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants. Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2, which is an activator of anthocyanin biosynthesis genes. This report adds anthocyanin biosynthesis to the set of programs that are under CPC control, indicating that this regulator is not only for developmental programs (e.g. root hairs, trichomes), but can influence anthocyanin pigment synthesis.

  6. Effect of postharvest application of ethylene on phenolic acids and anthocyanins profile in three blueberry cultivars (Vaccinium corymbosum).

    Science.gov (United States)

    Costa, Daniela V T A; de Almeida, Domingos P F; Pintado, Manuela

    2018-03-30

    Blueberry is a fruit that has been extensively studied for its health benefits, mainly due to its high antioxidant activity. There are a high correlation between antioxidant activity and total anthocyanins and phenolic compounds. The postharvest treatment using ethylene may be a factor affecting the anthocyanins content. The objective of this work was to analyze the postharvest treatment using ethylene on the anthocyanins profile during the storage of blueberries and phytochemical composition of 'Bluecrop', 'Goldtraube' and 'Ozarkblue'. Fruits were harvested at commercial maturity; the treatment was carried out with 1000 μL L -1 of ethylene for 24 h followed by storage at 4 °C under normal atmosphere for 56 d. One day after treatment with ethylene, this increased seven (more than 45%) and four (more than 65%) of the nine anthocyanins identified in the cultivars Bluecrop, Goldtraube respectively, and decreased five of the seven anthocyanins identified in 'Ozarkblue'. For 'Bluecrop' however this increase was reduced until the end of storage but in 'Goldtraube' seven anthocyanins had increased. The effect of ethylene on anthocyanin composition appeared to depend on the cultivar. 'Bluecrop' and 'Goldtraube' responded positively with increase on total anthocyanins. This article is protected by copyright. All rights reserved.

  7. Purification of Anthocyanins with o-Dihydroxy Arrangement by Sorption in Cationic Resins Charged with Fe(III

    Directory of Open Access Journals (Sweden)

    Araceli Castañeda-Ovando

    2014-01-01

    Full Text Available In the present work, a new purification method of anthocyanins with o-dihydroxy arrangement is proposed. This method is based on a ligand-exchange mechanism, using a cationic exchange resin loaded with metallic ions in order to increase the affinity of the resin to the anthocyanin(s with o-dihydroxy arrangement. This method was used to purify the main anthocyanin (cyanidin-3-glucoside; Cy-3-glc from the anthocyanic methanolic extract of blue corn. The best sorption result was using Fe(III in its ion form. The purification procedure begins with the formation of a metal-anthocyanin complex (Cy-3-glc-Fe which was optimal at pH 5, followed by a NaOH 0.1 M elution process in order to eliminate anthocyanins without o-dihydroxy arrangement, sugars, and organic acids. Finally, the pure anthocyanin is obtained by adding HCl 0.1 M which breaks the metal-anthocyanin complex.

  8. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  9. Principal Component Regression Analysis of the Relation Between CIELAB Color and Monomeric Anthocyanins in Young Cabernet Sauvignon Wines

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2008-11-01

    Full Text Available Color is one of the key characteristics used to evaluate the sensory quality of red wine, and anthocyanins are the main contributors to color. Monomeric anthocyanins and CIELAB color values were investigated by HPLC-MS and spectrophotometry during fermentation of Cabernet Sauvignon red wine, and principal component regression (PCR, a statistical tool, was used to establish a linkage between the detected anthocyanins and wine coloring. The results showed that 14 monomeric anthocyanins could be identified in wine samples, and all of these anthocyanins were negatively correlated with the L*, b* and H*ab values, but positively correlated with a* and C*ab values. On an equal concentration basis for each detected anthocyanin, cyanidin-3-O-glucoside (Cy3-glu had the most influence on CIELAB color value, while malvidin 3-O-glucoside (Mv3-glu had the least. The color values of various monomeric anthocyanins were influenced by their structures, substituents on the B-ring, acyl groups on the glucoside and the molecular steric structure. This work develops a statistical method for evaluating correlation between wine color and monomeric anthocyanins, and also provides a basis for elucidating the effect of intramolecular copigmentation on wine coloring.

  10. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple

    Science.gov (United States)

    Hu, Da-Gang; Zhang, Quan-Yan; An, Jian-Ping; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants. PMID:27560976

  11. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Graf

    Full Text Available Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthocyanin-rich grape-bilberry juice reduced serum cholesterol and tended to decrease serum triglycerides. No effects were seen for serum non-esterified fatty acids, glucose, and insulin. Anthocyanin-rich grape-bilberry juice intervention reduced serum leptin and resistin, but showed no influence on serum adiponectin and secretion of adipokines from mesenteric adipose tissue. Furthermore, anthocyanin-rich grape-bilberry juice increased the proportion of polyunsaturated fatty acids and decreased the amount of saturated fatty acids in plasma. These results indicate that anthocyanins possess a preventive potential for obesity-associated diseases.

  12. Paper Chromatography and UV-Vis Spectroscopy to Characterize Anthocyanins and Investigate Antioxidant Properties in the Organic Teaching Laboratory

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery; Novak, Michael

    2015-01-01

    A variety of fruits and vegetables, including raspberries, blueberries, Concord grapes, blackberries, strawberries, peaches, eggplant, red cabbage, and red onions, contain flavonoid compounds known as anthocyanins that are responsible for the blue-red color and the astringent taste associated with such foods. In addition, anthocyanins exhibit a…

  13. Influence of different extracts addition on total phenols, anthocyanin content and antioxidant activity of blackberry juice during storage

    Directory of Open Access Journals (Sweden)

    Blanka Bilić

    2011-01-01

    Full Text Available The aim of this study was investigation of influence of different extracts addition on total phenols, anthocyanin content, antioxidant activity and percent of polymeric colour of blackberry juice during storage of 52 days at 4 °C. Anthocyanin content of control sample (blackberry juice without extracts addition was 149.91 mg/L. Samples with addition of extracts (olive leaf, pine bark PE 5:1, pine bark PE 95 %, green tea, red wine PE 30 %, red wine PE 4:1 and bioflavonoids had higher anthocyanin content (from 152.42 to 161.19 mg/L in comparison to control sample. Sample with addition of bioflavonoids had the highest anthocyanin content. Samples with addition of extracts had much higher total phenol content and antioxidant activity than control sample, what was expected since extracts are rich in phenols. During storage decrease of phenols, anthocyanins and antioxidant activity occurred in higher or lesser extent, depending on extract type addition. Anthocyanin content in control sample was 119.85 mg/L. Samples with addition of bioflavonoids, olive leaf, pine bark PE 5:1 and red wine PE 4:1 had lower (from 103.44 to 118.84 mg/L, while other samples had higher (from 131.99 to 135.57 mg/L anthocyanin content than control sample. After storage, decrease of anthocyanins was followed with increase of percent of polymeric colour, with exception of samples with addition of green tea.

  14. Different Anthocyanin Profiles of the Skin and the Pulp of Yan73 (Muscat Hamburg × Alicante Bouschet Grape Berries

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2010-03-01

    Full Text Available Yan73 is a “teinturier” red wine variety cultivated in China and used in winemaking to strengthen red wine color. Here, the anthocyanin profile in both the skin and pulp of this grape variety was analyzed by HPLC-MS. The results showed that 18 anthocyanins were detected in both the skin and the pulp, and pelargonidin-3-O-glucoside, an anthocyanin compound hardly detected in most other Vitis viniferaberries, was found. However, the contents of individual anthocyanins in the skin and the pulp were significantly different. Compared with the skin, the pulp exhibited much lower ratio of 3’,5’-substituted to 3’-substituted anthocyanins and much higher ratio of methoxylation of anthocyanin B-ring to non methoxylation, and with regard to the aromatic acylated and aliphatic acylated anthocyanins, both their contents in the skin are higher than in the pulp. The findings will provide some new insight for the tissue-specific expression and regulation of the genes involving in anthocyanin biosynthesis in grape berries.

  15. Effects of light intensity on the distribution of anthocyanins in Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers.

    Science.gov (United States)

    Cruz, Bruna P; Chedier, Luciana M; Peixoto, Paulo H P; Fabri, Rodrigo L; Pimenta, Daniel S

    2012-03-01

    This paper compares two medicinal species of Kalanchoe, which are often used interchangeably by the population, regarding the distribution of anthocyanins under the influence of four luminosity levels for 6 months. For the morphoanatomical analysis, the 6th stem node of each plant was sectioned. Usual histochemical tests revealed the presence of anthocyanins by cross sections of the stems, petioles and leaf blades. The petioles and leaf blades were submitted to the extraction with acidified methanol, and the anthocyanins were quantified by spectrophotometric readings. At the macroscopic level, it was noticed for both species a higher presence of anthocyanins in stems and petioles of plants under full sunlight. The microscopy of K. brasiliensis stems evidenced the deposition of anthocyanins in the subjacent tissue to the epidermis and cortex, which increased with light intensity. In K. pinnata a subepidermal collenchyma was observed, which interfered in the visualization of anthocyanins. In petioles and leaf blades of K. brasiliensis the deposition of anthocyanins was peripheral, and in K. pinnata it was also throughout the cortex. The quantification of anthocyanins in petioles showed in 70% of light higher averages than in 25%, but in leaf blades there were no significant results. This study contributes to the pharmacognosy of Kalanchoe and it is sustained by the description of flavonoids as biological markers of the genus.

  16. Possible regulatory role of phenylalanine ammonia-lyase in the production of anthocyanins in asparagus (Asparagus officinalis L)

    NARCIS (Netherlands)

    Flores, F.B.; Oosterhaven, J.; Martinez-Madrid, M.C.; Romojaro, F.

    2005-01-01

    The regulatory role of phenylalanine ammonia-lyase (PAL) in the light-induced accumulation of anthocyanins in the epidermis of asparagus spears has been analysed. A correlation between the stimulation of PAL activity and the rise in total anthocyanin content has been observed. Light radiation

  17. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple.

    Directory of Open Access Journals (Sweden)

    Da-Gang Hu

    2016-08-01

    Full Text Available Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.

  18. Transcriptional activation of a MYB gene controls the tissue-specific anthocyanin accumulation in a purple cauliflower mutant

    Science.gov (United States)

    Flavonoids such as anthocyanins possess significant health benefits to humans and play important physiological roles in plants. An interesting Purple gene mutation in cauliflower confers an abnormal pattern of anthocyanin accumulation, giving intense purple color in very young leaves, curds, and see...

  19. The co-pigmentation of anthocyanin isolated from mangosteen pericarp (Garcinia Mangostana L.) as Natural Dye for Dye- Sensitized Solar Cells (DSSC)

    Science.gov (United States)

    Munawaroh, H.; adillah, G. F.; Saputri, L. N. M. Z.; Hanif, Q. A.; Hidayat, R.; Wahyuningsih, S.

    2016-02-01

    Study of color stability of anthocyanin from extract mangosteen pericarp (Garcinia mangostana L.) with co-pigmentation method has been conducted. Malic acid and ascorbic acid used as a co-pigment to stabilize the anthocyanin structure through formation of new binding between anthocyanin. Anthocyanin from mangosteen pericarp were isolated by several steps, including maceration, extraction, and Thin Layer Chromatography (TLC). The anthocyanin separation was conducted by TLC, while the identification of functional groups of those compound, were used FTIR (Fourier Transform Infrared Spectroscopy) for spectra analysis. Ultraviolet- visible absorption spectra have represented differences absorbance and color intensity in various pH. Copigmentation with malic acid and ascorbic acid in many composition and temperature were also well described. Meanwhile, anthocyanin-malic acid and anthocyanin-ascorbic acid have color retention higher than that of pure anthocyanin. Maximum color retention has been achieved at a ratio of 1:3 and 1:5 for ascorbic acid and malic acid, respectively. Therefore, the addition of ascorbic acid and malic acid as a copigment shows the ability to protect color retention of anthocyanin (mangosteen pericarp) from degradation process. The better efficiency of DSSC (η) have been achieved, whereas n of controlled anthocyanin, anthocyanin-ascorbic acid, and anthocyanin-malic acid were 0,1996%, 0,2922%, 0,3029%, respectively.

  20. Observations on the relationship between above- and below-ground anthocyanin production in Galax urceolata (Poir.) Brummitt growing in sun-exposed and shaded locations

    Science.gov (United States)

    Howard S. Neufeld; Derick B Poindexter; Paula F. Murakami; Paul G. Schaberg

    2011-01-01

    Galax urceolata (Diapensiaceae) is a common evergreen herb of southern Appalachian forests. During the fall and winter, leaves of plants in high light produce substantial amounts of anthocyanins. Oddly, rhizomes in these plants also accumulate anthocyanins. The purpose of this observational study was to identify seasonal trends in anthocyanin...

  1. Extraction of anthocyanins from black bean canning wastewater with macroporous resins.

    Science.gov (United States)

    Wang, Xiaoxi; Hansen, Conly; Allen, Karin

    2014-02-01

    This study investigated purification of anthocyanins from black bean canning wastewater by column chromatography with 5 types of macroporous resins (Diaion Hp20, Sepabeads Sp70, Sepabeads Sp207, Sepabeads Sp700, and Sepabeads Sp710). By-product of canned black beans was partially purified by filtration, in anticipation of higher performance during column chromatography. Equilibrium adsorption isotherms were measured and analyzed using Langmuir and Freundlich isotherm models. Both Langmuir (all R² ≥ 0.98) and Freundlich (all R² ≥ 0.97) models can describe the adsorption process of anthocyanins from black bean canning wastewater using the tested resins. The adsorption and desorption behaviors of anthocyanins were studied using a dynamic method on the 5 types of resins, and Sp700 presented the highest adsorption capacity (39 ± 4 mg/g; P canning wastewater. © 2014 Institute of Food Technologists®

  2. Suppression subtractive hybridization as a tool to identify anthocyanin metabolism-related genes in apple skin.

    Science.gov (United States)

    Ban, Yusuke; Moriguchi, Takaya

    2010-01-01

    The pigmentation of anthocyanins is one of the important determinants for consumer preference and marketability in horticultural crops such as fruits and flowers. To elucidate the mechanisms underlying the physiological process leading to the pigmentation of anthocyanins, identification of the genes differentially expressed in response to anthocyanin accumulation is a useful strategy. Currently, microarrays have been widely used to isolate differentially expressed genes. However, the use of microarrays is limited by its high cost of special apparatus and materials. Therefore, availability of microarrays is limited and does not come into common use at present. Suppression subtractive hybridization (SSH) is an alternative tool that has been widely used to identify differentially expressed genes due to its easy handling and relatively low cost. This chapter describes the procedures for SSH, including RNA extraction from polysaccharides and polyphenol-rich samples, poly(A)+ RNA purification, evaluation of subtraction efficiency, and differential screening using reverse northern in apple skin.

  3. [Expansion of the range of anthocyanin food colorants from unconventional vegetal primary products].

    Science.gov (United States)

    Vetrov, M Yu; Akishin, D V; Akimov, M Yu; Vinnitskaya, V F

    2016-01-01

    The purpose of work to study the content of anthocyanins and other biologically active substances in residues of fruits of Sanberri from receivingjuice and mash. It is established that residues contained over 70% solids, more than 60% of dietary fiber, to 55.4 mg/% of ascorbic acid and up to 90.0 mg/% of anthocyanins. Furthermore, they possessed high antioxidant activity (156.8-399.4 mg/% dihydroquercetin equivalent) that allowed to recommend them as raw materials for receiving natural food colorants. The concentrated food dye from Sanberri's residue (50-51% soluble solids) had intensive color varying from dark-violet (at acidity of 1.0%) to claret-red (at acidity of 3.0%), possessed high antioxidant activity (1308.2-2223.5 mg/%) and contained a large amount of anthocyanins (666-976 mg/%).

  4. Lipophilization and MS characterization of the main anthocyanins purified from hibiscus flowers.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Salas, Erika; Barouh, Nathalie; Baréa, Bruno; Figueroa-Espinoza, Maria Cruz

    2017-09-01

    Hibiscus sabdariffa flowers represent an interesting source of anthocyanins, one of the most important plant pigments, which are responsible of the intense red color of the calyces, and have potential as natural colorants for food applications. Nevertheless, anthocyanins are highly hydrosoluble and unstable compounds. On this basis, the aim of this work was to increase the lipophilicity of the hibiscus anthocyanins by lipophilization, in order to obtain amphiphilic colorants, which could be easily incorporated in lipid-rich food matrices. Octanoyl derivatives of delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside were chemically obtained for the first time, and characterized by means of HPLC-ESI-MS data. Copyright © 2017. Published by Elsevier Ltd.

  5. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ANILÚ MIRANDA-MEDINA

    2018-03-01

    Full Text Available Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these flavonoids, an optimization was performed using a Box-Behnken experimental design and response surface methodology (RSM. Three levels of ethanol concentration, temperature and solid-solvent ratio (SSR were investigated. The optimization model showed that with 96 % EtOH, 65 °C, and 1:50 SSR, the highest anthocyanin concentration of 150 mg/100 g was obtained.

  6. Spectrophotometric method for quantitative determination of total anthocyanins and quality characteristics of roselle (Hibiscus sabdariffa).

    Science.gov (United States)

    Sukwattanasinit, Tasamaporn; Burana-Osot, Jankana; Sotanaphun, Uthai

    2007-11-01

    A simple, rapid and cost-saving method for the determination of total anthocyanins in roselle has been developed. The method was based on pH-differential spectrophotometry. The calibration curve of the major anthocyanin in roselle, delphinidin 3-sambubioside (Dp-3-sam), was constructed by using methyl orange and their correlation factor. The reliability of this developed method was comparable to the direct method using standard Dp-3-sam and the HPLC method. Quality characteristics of roselle produced in Thailand were also reported. Its physical quality met the required specifications. The overall chemical quality was herein surveyed for the first time and it was found to be the important parameter corresponded to the commercial grading of roselle. Total contents of anthocyanins and phenolics were proportional to the antiradical capacity.

  7. Refractance Window™ drying of haskap berry--preliminary results on anthocyanin retention and physicochemical properties.

    Science.gov (United States)

    Celli, Giovana Bonat; Khattab, Rabie; Ghanem, Amyl; Brooks, Marianne Su-Ling

    2016-03-01

    The goal of this work was to determine the anthocyanin retention and physicochemical properties of haskap powder prepared by Refractance Window™ (RW) drying. In general, the RW-dried powder particles had a smooth surface with similar thickness, consistent with the preparation method, and had a solubility of 75.63% in water. The RW-dried powder (consisting of 98% haskap berries) retained approximately 93.8% of anthocyanins from the original frozen fruits, as assessed by the pH-differential method. This result is in good agreement with HPLC analysis that indicated 92.9% retention. Three anthocyanins were identified in frozen berries and RW-dried powder: cyanidin 3-glucoside, cyanidin 3-rutinoside, and peonidin 3-glucoside. Surprisingly, cyanidin 3-rutinoside exhibited the lowest retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose (Rosa damascena Mill.) petals.

    Science.gov (United States)

    Shikov, Vasil; Kammerer, Dietmar R; Mihalev, Kiril; Mollov, Plamen; Carle, Reinhold

    2008-09-24

    Thermal degradation and color changes of purified strawberry anthocyanins in model solutions were studied upon heating at 85 degrees C by HPLC-DAD analyses and CIELCh measurements, respectively. The anthocyanin half-life values increased significantly due to the addition of rose (Rosa damascena Mill.) petal extracts enriched in natural copigments. Correspondingly, the color stability increased as the total color difference values were smaller for anthocyanins upon copigment addition, especially after extended heating. Furthermore, the stabilizing effect of rose petal polyphenols was compared with that of well-known copigments such as isolated kaempferol, quercetin, and sinapic acid. The purified rose petal extract was found to be a most effective anthocyanin-stabilizing agent at a molar pigment/copigment ratio of 1:2. The results obtained demonstrate that the addition of rose petal polyphenols slows the thermal degradation of strawberry anthocyanins, thus resulting in improved color retention without affecting the gustatory quality of the product.

  9. Anthocyanins increase low-density lipoprotein and plasma cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L. F.; Rasmussen, S.E.; Mortensen, Alicja

    2005-01-01

    a purified anthocyanin fraction front black currants, a black currant juice, probucol or control diet for 16 weeks. Purified anthocyanins significantly increased plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Intake of black currant juice had no effect on total plasma cholesterol......, but lowered very-low-density lipoprotein (VLDL) cholesterol significantly. There were no significant effects of either purified anthocyanins or black currant juice on aortic cholesterol or development of atherosclerosis after 16 weeks. Probucol had no effect on plasma cholesterol but significantly lowered......, antioxidant enzymes, protein and lipid oxidation were not affected by any of the anthocyanin treatments. Adverse effects of purified anthocyanins were observed on plasma- and LDL-cholesterol. These effects were not observed with black currant juice, suggesting that black currants may contain components...

  10. Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC-DAD-ESI-MSn.

    Science.gov (United States)

    Schütz, Katrin; Persike, Markus; Carle, Reinhold; Schieber, Andreas

    2006-04-01

    The anthocyanin pattern of artichoke heads (Cynara scolymus L.) has been investigated by high-performance liquid chromatography-electrospray ionization mass spectrometry. For this purpose a suitable extraction and liquid chromatographic method was developed. Besides the main anthocyanins-cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3,5-malonyldiglucoside, cyanidin 3-(3''-malonyl)glucoside, and cyanidin 3-(6''-malonyl)glucoside-several minor compounds were identified. Among these, two peonidin derivatives and one delphinidin derivative were characterized on the basis of their fragmentation patterns. To the best of our knowledge this is the first report on anthocyanins in artichoke heads consisting of aglycones other than those of cyanidin. Quantification of individual compounds was performed by external calibration. Cyanidin 3-(6''-malonyl)glucoside was found to be the major anthocyanin in all the samples analyzed. Total anthocyanin content ranged from 8.4 to 1,705.4 mg kg(-1) dry mass.

  11. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    Science.gov (United States)

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  12. Effects of Anthocyanin on Serum Lipids in Dyslipidemia Patients: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Changfeng Liu

    Full Text Available Dyslipidemia was present in most of the patients with coronary heart disease. Epidemiological evidence suggests that anthocyanin has some effects on the serum lipid. However, these results are controversial. This study aimed at collecting current clinical evidence and evaluating the effects of anthocyanin supplementation on total cholesterol (TC, triglyceride (TG, low-density lipoprotein cholesterol (LDL-C, and high-density lipoprotein cholesterol (HDL-C in dialysis patients.The search included PubMed, Web of Science, MEDLINE, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database (up to July 2015 to identify randomized controlled trials (RCTs on the association between anthocyanin and serum lipids. RevMan (version 5.2 was used for Meta-analysis. Meta-regression analysis, sensitivity analysis and Egger's weighted regression tests were performed by using STATA software (version 12.0; StatCorp, College Station, TX, USA.Six studies (seven arms involving 586 subjects were included in this meta-analysis. The results showed that anthocyanin supplementation has significant effects on TC [MD = -24.06, 95% CI(-45.58 to -2.64 mg/dL, I2 = 93%], TG [MD = -26.14, 95%CI(-40.20 to -3.08 mg/dL, I2 = 66%1], LDL-C [MD = -22.10, 95% CI (-34.36 to -9.85 mg/dL, I2 = 61%], and HDL-C(MD = 5.58, 95% CI (1.02 to 10.14 mg/dL;I2 = 90%.Anthocyanin supplementation significantly reduces serum TC, TG, and LDL-C levels in patients with dyslipidemia, and increases HDL-C. Further rigorously designed RCTs with larger sample sizes are needed to confirm the effectiveness of anthocyanin supplementation for dyslipidemia, especially hypo high density lipoprotein cholesterolemia.

  13. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia1

    Science.gov (United States)

    Shaipulah, Nur Fariza M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Van Moerkercke, Alex; Ramirez, Aldana A.; Haring, Michel A.; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia ‘Mitchell’. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. PMID:26620524

  14. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.

    Science.gov (United States)

    Shaipulah, Nur Fariza M; Muhlemann, Joëlle K; Woodworth, Benjamin D; Van Moerkercke, Alex; Verdonk, Julian C; Ramirez, Aldana A; Haring, Michel A; Dudareva, Natalia; Schuurink, Robert C

    2016-02-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Effects of Juice Matrix and Pasteurization on Stability of Black Currant Anthocyanins during Storage.

    Science.gov (United States)

    Dobson, Gary; McDougall, Gordon J; Stewart, Derek; Cubero, Miguel Ángel; Karjalainen, Reijo O

    2017-01-01

    The effects of juice matrix and pasteurization on the stability of total phenols and especially total and individual anthocyanins were examined in black currant (BC) juice and mixtures with apple, persimmon, and peach juices at 4 °C and 20 °C. Total phenol content decreased in all juices at both temperatures but there was a trend to lower levels in unpasteurized over pasteurized juices. Differences in the decline of total anthocyanins between pasteurized and unpasteurized juices varied according to the juice type and the storage temperature. At 4 °C storage, anthocyanins declined in all juices according to pseudo 1st-order kinetics and there were only small differences in the rates between pasteurized and unpasteurized juices. However, at 20 °C, although pasteurized and unpasteurized BC juices and pasteurized mixed juices followed pseudo 1st-order kinetics, there was a different pattern in unpasteurized mixed juices; a rapid initial decline was followed by a slowing down. The effect of the added juice on anthocyanin decline was also different at either temperature. At 4 °C, the anthocyanins decreased faster in mixed juices than BC juice alone, but at 20 °C, at least in pasteurized mixed juices, the decline was similar or even slower than in BC juice; there were only small differences among the 3 mixed juices. At 20 °C, in pasteurized and unpasteurized BC juices, the rate of decrease was essentially the same for all 4 individual anthocyanins but in the mixed juices the 2 glucosides decreased significantly faster than the 2 rutinosides. © 2016 Institute of Food Technologists®.

  16. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor.

    Science.gov (United States)

    Niu, Shan-Shan; Xu, Chang-Jie; Zhang, Wang-Shu; Zhang, Bo; Li, Xian; Lin-Wang, Kui; Ferguson, Ian B; Allan, Andrew C; Chen, Kun-Song

    2010-03-01

    Chinese bayberry (Myrica rubra) is a fruit crop with cultivars producing fruit ranging from white (Shuijing, SJ) to red (Dongkui, DK) and dark red-purple (Biqi, BQ), as a result of different levels of anthocyanin accumulation. Genes encoding the anthocyanin biosynthesis enzymes chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDPglucose: flavonoid 3-O-glucosyltransferase (UFGT), as well as MrMYB1, a R2R3 MYB transcription factor homologous to known activators of anthocyanin biosynthesis, were isolated from ripe fruit of BQ. Differences in mRNA abundance of MrF3H, MrF3'H, MrDFR1, MrANS and MrUFGT were highly correlated with differential accumulation of anthocyanins between cultivars, suggesting coordinated regulation by transcription factors. The transcript level of MrMYB1 was strongly associated with the anthocyanin content in ripe fruit of the three cultivars, as well as different anthocyanin containing tissues of BQ fruit. Fruit bagging strongly inhibited anthocyanin accumulation in fruit as well as the expression of all anthocyanin biosynthetic genes and MrMYB1. Overexpression of MrMYB1 stimulated both anthocyanin accumulation and activated an Arabidopsis-DFR promoter in tobacco (Nicotiana tabacum). MrMYB1d, an allele with a 1 bp deletion at nucleotide 30 of coding sequence, was observed in SJ and DK fruit, suggesting that a nonsense mutation of the MYB1 protein may be responsible for no or low expression of MYB1 in the white and red fruit. These results show that coordinated expression of multiple biosynthetic genes is involved in anthocyanin accumulation in Chinese bayberry fruit, and this is regulated by MrMYB1.

  17. Radical Scavenging and Anti-Inflammatory Activities of Representative Anthocyanin Groupings from Pigment-Rich Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Federica Blando

    2018-01-01

    Full Text Available Anthocyanins, the naturally occurring pigments responsible for most red to blue colours of flowers, fruits and vegetables, have also attracted interest because of their potential health effects. With the aim of contributing to major insights into their structure–activity relationship (SAR, we have evaluated the radical scavenging and biological activities of selected purified anthocyanin samples (PASs from various anthocyanin-rich plant materials: two fruits (mahaleb cherry and blackcurrant and two vegetables (black carrot and “Sun Black” tomato, differing in anthocyanin content (ranging from 4.9 to 38.5 mg/g DW and molecular structure of the predominant anthocyanins. PASs from the abovementioned plant materials have been evaluated for their antioxidant capacity using Trolox Equivalent Antioxidant Capacity (TEAC and Oxygen Radical Absorbance Capacity (ORAC assays. In human endothelial cells, we analysed the anti-inflammatory activity of different PASs by measuring their effects on the expression of endothelial adhesion molecules VCAM-1 and ICAM-1. We demonstrated that all the different PASs showed biological activity. They exhibited antioxidant capacity of different magnitude, higher for samples containing non-acylated anthocyanins (typical for fruits compared to samples containing more complex anthocyanins acylated with cinnamic acid derivatives (typical for vegetables, even though this order was slightly reversed when ORAC assay values were expressed on a molar basis. Concordantly, PASs containing non-acylated anthocyanins reduced the expression of endothelial inflammatory antigens more than samples with aromatic acylated anthocyanins, suggesting the potential beneficial effect of structurally diverse anthocyanins in cardiovascular protection.

  18. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple

    OpenAIRE

    Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong

    2017-01-01

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to th...

  19. The Immunomodulation Effect of Aronia Extract Lacks Association with Its Antioxidant Anthocyanins

    DEFF Research Database (Denmark)

    Mojsoska, Biljana; Xu, Jin

    2013-01-01

    was developed to obtain high-purity anthocyanins in the extract. The antioxidative activity of the extract, the anthocyanin-rich fraction (AF) was determined by 1,1-diphenyl-2-picrylhydrazyl radical and ferric-reducing ability of plasma along with resveratrol as a reference. The immunomodulation properties were......, whereas AF only had a slight effect in reducing IL-10. These results demonstrated that there was no major relationship between the antioxidative effect and immunomodulation capacities of AF and resveratrol. The immunomodulatory activity of the extract is associated with bioactive compounds in Aronia other...

  20. Analysis of Hydraulic Flood Control Structure at Putat Boro River

    OpenAIRE

    Ruzziyatno, Ruhban

    2015-01-01

    Putat Boro River is one of the main drainage systems of Surakarta city which drains into Bengawan Solo river. The primary problem when flood occur is the higher water level of Bengawan Solo than Boro River and then backwater occur and inundates Putat Boro River. The objective of the study is to obtain operational method of Putat Boro River floodgate to control both inflows and outflows not only during flood but also normal condition. It also aims to know the Putat Boro rivers floodgate op...

  1. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Directory of Open Access Journals (Sweden)

    Biao Lai

    Full Text Available The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  2. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Science.gov (United States)

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  3. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    Science.gov (United States)

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  4. Toddlers’ Duration of Attention towards Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2010-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk for developing anxious behavior, toddlers’ attention towards a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined how attention towards an angry-looking gorilla mask in a room with alternative opportunities for play in 24-month-old toddlers predicted social inhibition when children entered kindergarten. Analyses examined attention to threat above and beyond and in interaction with both proximity to the mask and fear of novelty observed in other situations. Attention to threat interacted with proximity to the mask to predict social inhibition, such that attention to threat most strongly predicted social inhibition when toddlers stayed furthest from the mask. This relation occurred above and beyond the predictive relation between fear of novelty and social inhibition. Results are discussed within the broader literature of anxiety development and attentional processes in young children. PMID:21373365

  5. Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency

    DEFF Research Database (Denmark)

    Nielsen, Inge Lise F.; Ravn-Haren, Gitte; Magnussen, Eva Loftin

    2003-01-01

    (HPLC) method. The method was validated, and quantification of anthocyanins in 13 commercially available black currant beverages was demonstrated. To optimize the handling of anthocyanin-containing samples, the pH-dependent stability of the anthocyanins was investigated. Four anthocyanins were incubated......Quantitative determinations of the four black currant anthocyanins, cyanidin 3-O-beta-glucoside, cyanidin 3-O-beta-rutinoside, delphinidin 3-O-beta-glucoside, and delphinidin 3-O-beta-rutinoside, were achieved in black currant juices by a rapid and sensitive high-performance liquid chromatographic...

  6. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-05-09

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.

  7. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity.

    Science.gov (United States)

    Prinsi, Bhakti; Negri, Alfredo S; Quattrocchio, Francesca M; Koes, Ronald E; Espen, Luca

    2016-01-10

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Rapid quantitative analysis of individual anthocyanin content based on high-performance liquid chromatography with diode array detection with the pH differential method.

    Science.gov (United States)

    Wang, Huayin

    2014-09-01

    A new quantitative technique for the simultaneous quantification of the individual anthocyanins based on the pH differential method and high-performance liquid chromatography with diode array detection is proposed in this paper. The six individual anthocyanins (cyanidin 3-glucoside, cyanidin 3-rutinoside, petunidin 3-glucoside, petunidin 3-rutinoside, and malvidin 3-rutinoside) from mulberry (Morus rubra) and Liriope platyphylla were used for demonstration and validation. The elution of anthocyanins was performed using a C18 column with stepwise gradient elution and individual anthocyanins were identified by high-performance liquid chromatography with tandem mass spectrometry. Based on the pH differential method, the high-performance liquid chromatography peak areas of maximum and reference absorption wavelengths of anthocyanin extracts were conducted to quantify individual anthocyanins. The calibration curves for these anthocyanins were linear within the range of 10-5500 mg/L. The correlation coefficients (r(2)) all exceeded 0.9972, and the limits of detection were in the range of 1-4 mg/L at a signal-to-noise ratio ≥5 for these anthocyanins. The proposed quantitative analysis was reproducible with good accuracy of all individual anthocyanins ranging from 96.3 to 104.2% and relative recoveries were in the range 98.4-103.2%. The proposed technique is performed without anthocyanin standards and is a simple, rapid, accurate, and economical method to determine individual anthocyanin contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Twenty putative palmitoyl-acyl transferase genes with distinct ...

    African Journals Online (AJOL)

    There are 20 genes containing DHHC domain predicted to encode putative palmitoyltransferase in Arabidopsis thaliana genome. However, little is known about their characteristics such as genetic relationship and expression profile. Here, we present an overview of the putative PAT genes in A. thaliana focusing on their ...

  10. Putative radioresistant bacterial isolate from sewage water

    International Nuclear Information System (INIS)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Rivor Kristel; San Pablo, Czarina; Santos, Ernestine

    2001-01-01

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the 60 Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10 3 CFU/ml, and 1.30 x 10 3 CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10 3 CFU/ml was observed which is even higher compared to the control (1.02 x 10 3 CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  11. Putative radioresistant bacterial isolate from sewage water

    Energy Technology Data Exchange (ETDEWEB)

    Ang, April; Chua, Patricia; Perez, Kristine; Rey, April; Kristel, Rivor; San Pablo, Czarina; Santos, Ernestine

    2001-01-29

    Sewage water was collected from a stagnant body of water in Balara, Quezon City. approximately 150 ml was aseptically transferred into eight Erlenmeyer flasks. Seven flasks were then subjected to different doses of radiation at the {sup 60}Co irradiation facility, PNRI (Philippine Nuclear Research Institute) which are as follows: 0.01 kGy, 0.1 kGy, 0.5 kGy, 1 kGy, 5 kGy, 10 kGy, and 15 kGy. The remaining flask was used as the control. After irradiation, all the different treatments were subjected to colony count at the culture collection laboratory, NSRI. Results showed that the colonies from sewage water treatments irradiated at 0.01 kGy (treatment A), 0.10 kGy (treatment B), and 0.50 kGy (treatment C) exhibited a decreasing trend with colony counts 4.60 x 10{sup 3} CFU/ml, and 1.30 x 10{sup 3} CFU/ml, and 26 CFU/ml, respectively. Contrastingly, at 1 kGy (treatment D), high colony count of 2.95 x 10{sup 3} CFU/ml was observed which is even higher compared to the control (1.02 x 10{sup 3} CFU/ml). Treatment E that was irradiated at 5 kGy manifested low survival rate (25 CFU/ml) indicating the presence of few putative intermediate radioresistant bacteria. Radiation dose treatments higher than 5 kGy (i.e., 10 kGy and 15 kGy) exhibited no bacterial survival. (Author)

  12. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

    Science.gov (United States)

    Rubin, Grit; Tohge, Takayuki; Matsuda, Fumio; Saito, Kazuki; Scheible, Wolf-Rüdiger

    2009-11-01

    Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

  13. Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma malabathricum Fruit

    Directory of Open Access Journals (Sweden)

    Nordiyanah Anuar

    2013-01-01

    Full Text Available Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R2=0.972 were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R2=0.954 were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit.

  14. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    Science.gov (United States)

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  15. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Pengbao Shi

    2017-02-01

    Full Text Available Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines (Vitis vinifera were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe from ferric ethylenediamine di (o-hydroxyphenylacetic acid (Fe-EDDHA in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-(6-O-coumaryl-glucoside, in moderate Fe treatment (46 μM grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, leucoanthocyanidin dioxygenase (LDOX, and anthocyanin O-methyltransferase (AOMT exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  16. Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma malabathricum Fruit

    Science.gov (United States)

    Anuar, Nordiyanah; Mohd Adnan, Ahmad Faris; Saat, Naziz; Aziz, Norkasmani; Mat Taha, Rosna

    2013-01-01

    Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R 2 = 0.972) were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL) solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R 2 = 0.954) were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL) solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit. PMID:24174918

  17. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.).

    Science.gov (United States)

    Sun, Hanju; Zhang, Pingping; Zhu, Yongsheng; Lou, Qiuyan; He, Shudong

    2018-03-22

    Twelve kinds of anthocyanins from the Chinese purple sweet potato cultivar (Ipomoea batatas (L.) Lam.) were extracted and identified using LC-MS/MS, which had a high content of peonidin-based anthocyanins. Five peonidin-based anthocyanin monomers (P1, P2, P3, P4 and P5) were isolated by preparative liquid chromatography with structural analyses using an Impact II Q-TOF MS/MS. Then, the functional properties of the anthocyanin monomers, such as the antioxidant activities, proliferative effects on probiotics, and their inhibition on harmful bacteria in vitro, were investigated. The peonidin-based components in purple sweet potato anthocyanins (PSPAs) showed good properties regarding scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and superoxide anions, and had good potential in reducing the total power activity and Fe 2+ chelating ability. While the order of the antioxidant abilities was as follows: P4 > P5 > P3 > P2 > P1 > PSPAs. Microbial cultivations showed that P1, P2, P3, P4, P5 and PSPAs could induce the proliferation of Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium infantis and Lactobacillus acidophilus, and they inhibited the growth of Staphylococcus aureus and Salmonella typhimurium, suggesting the anthocyanins might have prebiotic-like activity through the modulation of the intestinal microbiota. Our results indicate that peonidin-based anthocyanins could be further utilized in health foods and pharmaceutical developments.

  18. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture.

    Science.gov (United States)

    Lai, K P K; Dolan, K D; Ng, P K W

    2009-06-01

    Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.

  19. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco.

    Science.gov (United States)

    Aharoni, A; De Vos, C H; Wein, M; Sun, Z; Greco, R; Kroon, A; Mol, J N; O'Connell, A P

    2001-11-01

    Fruit ripening is characterized by dramatic changes in gene expression, enzymatic activities and metabolism. Although the process of ripening has been studied extensively, we still lack valuable information on how the numerous metabolic pathways are regulated and co-ordinated. In this paper we describe the characterization of FaMYB1, a ripening regulated strawberry gene member of the MYB family of transcription factors. Flowers of transgenic tobacco lines overexpressing FaMYB1 showed a severe reduction in pigmentation. A reduction in the level of cyanidin 3-rutinoside (an anthocyanin) and of quercetin-glycosides (flavonols) was observed. Expression of late flavonoid biosynthesis genes and their enzyme activities were adversely affected by FaMYB1 overexpression. Two-hybrid assays in yeast showed that FaMYB1 could interact with other known anthocyanin regulators, but it does not act as a transcriptional activator. Interestingly, the C-terminus of FaMYB1 contains the motif pdLNL(D)/(E)Lxi(G)/S. This motif is contained in a region recently proposed to be involved in the repression of transcription by AtMYB4, an Arabidopsis MYB protein. Our results suggest that FaMYB1 may play a key role in regulating the biosynthesis of anthocyanins and flavonols in strawberry. It may act to repress transcription in order to balance the levels of anthocyanin pigments produced at the latter stages of strawberry fruit maturation, and/or to regulate metabolite levels in various branches of the flavonoid biosynthetic pathway.

  20. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins.

    Science.gov (United States)

    Noda, Naonobu; Aida, Ryutaro; Kishimoto, Sanae; Ishiguro, Kanako; Fukuchi-Mizutani, Masako; Tanaka, Yoshikazu; Ohmiya, Akemi

    2013-10-01

    Chrysanthemums (Chrysanthemum morifolium Ramat.) have no purple-, violet- or blue-flowered cultivars because they lack delphinidin-based anthocyanins. This deficiency is due to the absence of the flavonoid 3',5'-hydroxylase gene (F3'5'H), which encodes the key enzyme for delphinidin biosynthesis. In F3'5'H-transformed chrysanthemums, unpredictable and unstable expression levels have hampered successful production of delphinidin and reduced desired changes in flower color. With the aim of achieving delphinidin production in chrysanthemum petals, we found that anthocyanin biosynthetic gene promoters combined with a translational enhancer increased expression of some F3'5'H genes and accompanying delphinidin-based anthocyanin accumulation in transgenic chrysanthemums. Dramatic accumulation of delphinidin (up to 95%) was achieved by simple overexpression of Campanula F3'5'H controlled by a petal-specific flavanone 3-hydroxylase promoter from chrysanthemum combined with the 5'-untranslated region of the alcohol dehydrogenase gene as a translational enhancer. The flower colors of transgenic lines producing delphinidin-based anthocyanins changed from a red-purple to a purple-violet hue in the Royal Horticultural Society Colour Charts. This result represents a promising step toward molecular breeding of blue chrysanthemums.

  1. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  2. Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts

    Directory of Open Access Journals (Sweden)

    Anghel Brito

    2014-07-01

    Full Text Available The anthocyanin composition and HPLC fingerprints of six small berries endemic of the VIII region of Chile were investigated using high resolution mass analysis for the first time (HR-ToF-ESI-MS. The antioxidant features of the six endemic species were compared, including a variety of blueberries which is one of the most commercially significant berry crops in Chile. The anthocyanin fingerprints obtained for the fruits were compared and correlated with the antioxidant features measured by the bleaching of the DPPH radical, the ferric reducing antioxidant power (FRAP, the superoxide anion scavenging activity assay (SA, and total content of phenolics, flavonoids and anthocyanins measured by spectroscopic methods. Thirty one anthocyanins were identified, and the major ones were quantified by HPLC-DAD, mostly branched 3-O-glycosides of delphinidin, cyanidin, petunidin, peonidin and malvidin. Three phenolic acids (feruloylquinic acid, chlorogenic acid, and neochlorogenic acid and five flavonols (hyperoside, isoquercitrin, quercetin, rutin, myricetin and isorhamnetin were also identified. Calafate fruits showed the highest antioxidant activity (2.33 ± 0.21 μg/mL in the DPPH assay, followed by blueberry (3.32 ± 0.18 μg/mL, and arrayán (5.88 ± 0.21, respectively.

  3. Evolution of Sangiovese Wines with Varied Tannin and Anthocyanin Ratios during Oxidative Aging

    Science.gov (United States)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-03-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of 6 wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity towards saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  4. Spectral-optical characteristics of anthocyanin-containing natural dye staff

    International Nuclear Information System (INIS)

    Astanov, S.; Sharipov, M.Z.; Dalmuradova, N.N.

    2007-01-01

    Spectral-optical characteristics of anthocyanin-containing natural dye staff received from fruit ficus carica are determined. The chromatographic separating of dyeing pigment obtained is performed. The data obtained can be used as passport characteristics of the new food dye staff. (authors)

  5. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties

    Czech Academy of Sciences Publication Activity Database

    Denev, P.; Číž, Milan; Ambrožová, Gabriela; Lojek, Antonín; Yanakieva, I.; Kratchanova, M.

    2010-01-01

    Roč. 123, č. 4 (2010), s. 1055-1061 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) OC08058 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : anthocyanins * solid-phase extraction * berry extracts Subject RIV: BO - Biophysics Impact factor: 3.458, year: 2010

  6. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging.

    Science.gov (United States)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-01-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity toward saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  7. Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR).

    Science.gov (United States)

    Hiemori, Miki; Koh, Eunmi; Mitchell, Alyson E

    2009-03-11

    The composition and thermal stability of anthocyanins in black rice (Oryza sativa L. japonica var. SBR) produced in California were investigated. Six anthocyanin pigments were identified and quantified by high performance liquid chromatography using photo diode-array detection (HPLC-PDA) and electrospray ionization mass spectrometry [LC-(ESI)MS/MS]. The predominant anthocyanins are cyanidin-3-glucoside (572.47 microg/g; 91.13% of total) and peonidin-3-glucoside (29.78 microg/g; 4.74% of total). Minor constituents included three cyanidin-dihexoside isomers and one cyanidin hexoside. Thermal stability of anthocyanins was assessed in rice cooked using a rice cooker, pressure cooker, or on a gas range. All cooking methods caused significant (P rice cooker (74.2%) and gas range (65.4%). Conversely, levels of protocatechuic acid increased 2.7 to 3.4 times in response to all cooking methods. These findings indicate that cooking black rice results in the thermal degradation of cyanidin-3-glucoside and concomitant production of protocatechuic acid.

  8. Disruption of Angiogenesis by Anthocyanin-Rich Extracts of Hibiscus sabdariffa

    Science.gov (United States)

    Joshua, Madu; Okere, Christiana; Sylvester, O’Donnell; Yahaya, Muhammad; Precious, Omale; Dluya, Thagriki; Um, Ji-Yeon; Neksumi, Musa; Boyd, Jessica; Vincent-Tyndall, Jennifer; Choo, Dong-Won; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    Abnormal vessel formations contribute to the progression of specific angiogenic diseases including age-related macular degeneration. Adequate vessel growth and maintenance represent the coordinated process of endothelial cell proliferation, matrix remodeling, and differentiation. However, the molecular mechanism of the proper balance between angiogenic activators and inhibitors remains elusive. In addition, quantitative analysis of vessel formation has been challenging due to complex angiogenic morphology. We hypothesized that conjugated double bond containing-natural products, including anthocyanin extracts from Hibiscus sabdariffa, may control the proper angiogenesis. The current study was designed to determine whether natural molecules from African plant library modulate angiogenesis. Further, we questioned how the proper balance of anti- or pro-angiogenic signaling can be obtained in the vascular microenvironment by treating anthocyanin or fatty acids using chick chorioallantoic membrane angiogenesis model in ovo. The angiogenic morphology was analyzed systematically by measuring twenty one angiogenic indexes using Angiogenic Analyzer software. Chick chorioallantoic model demonstrated that anthocyanin-rich extracts inhibited angiogenesis in time- and concentration-dependent manner. Molecular modeling analysis proposed that hibiscetin as a component in Hibiscus may bind to the active site of vascular endothelial growth factor receptor 2 (VEGFR2) with ΔG= −8.42 kcal/mol of binding energy. Our results provided the evidence that anthocyanin is an angiogenic modulator that can be used to treat uncontrolled neovascular-related diseases, including age-related macular degeneration. PMID:28459020

  9. Effect of Hibiscus sabdariffa and its anthocyanins on some reproductive aspects in rats.

    Science.gov (United States)

    Ali, Badreldin H; Al-Lawati, Intisar; Beegam, Sumyia; Ziada, Amal; Al Salam, Suhail; Nemmar, Abderrahim; Blunden, Gerald

    2012-01-01

    An aqueous extract of Hibiscus sabdariffa L. is a common beverage in many parts of the world. Reports on its effect on reproduction are conflicting, with anecdotal evidence that the plant is an aphrodisiac, while others report that it is estrogenic, and adversely affects spermatogenesis in rats. We have studied the effect of different concentrations of aqueous extracts of H. sabdariffa calyces (10%, 15% and 20%) used as drinking water for 10 consecutive weeks, and its anthocyanins (50, 100, 200 mg/kg for 5 days, orally) on the weight and histology of the testis, and on some biochemical constituents in testicular homogenates, in addition to the plasma concentrations of testosterone, luteinizing hormone and estradiol. The possible presence of an estrogenic effect of the extract and anthocyanins on the uteri of immature female rats was also tested. Neither the H. sabdariffa extract nor the anthocyanins significantly altered either testicular weight and histology, or uterus weight. Plasma concentrations of the three hormones studied, the testicular concentrations of protein, reduced glutathione and total cholesterol, and superoxide dismutase activity were all insignificantly affected by either the extract or the anthocyanins, except for a slight, but statistically significant, decrease in testicular protein concentration caused by the 15% aqueous extract when compared with controls. These results suggest that H. sabdariffa exerts no adverse effect on the male reproductive system. Consumption of H. sabdariffa aqueous extract inhibited the growth of the rats compared with the controls.

  10. Red Chicory (Cichorium intybus L. cultivar as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    Directory of Open Access Journals (Sweden)

    Laura D'evoli

    2013-01-01

    Full Text Available Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  11. Direct photothermal techniques for quantification of anthocyanins in sour cherry cultivars

    NARCIS (Netherlands)

    Doka, O.; Ficzek, G.; Bicanic, D.D.; Spruijt, R.B.; Luterotti, S.; Toth, M.; Buijnsters, J.G.; György Végvári, G.

    2011-01-01

    The analytical performance of the newly proposed laser-based photoacoustic spectroscopy (PAS) and of optothermal window (OW) method for quantification of total anthocyanin concentration (TAC) in five sour cherry varieties is compared to that of the spectrophotometry (SP). High performance liquid

  12. Stability of the anthocyanins extracted from residues of the wine industry

    Directory of Open Access Journals (Sweden)

    Edmar Clemente

    2011-09-01

    Full Text Available Anthocyanins are highly important due to their antioxidant capacity. They are the most important among the phenolic compounds and one of the main natural dyes used in the food industry. In this research, residue of processed grapes was used to investigate the presence of anthocyanins, the possibility of their extraction from the residue, and their stability. The extraction solution consisted of 70 mL of ethanol 70% and 30 mL of HCl 0.1% at pH 2.0. The results found for the processed grapes residue was 26.20 mg.100 g-1. In order to evaluate stability, caffeic acid was added at 0.5:1 w/v; 0.8:1 w/v; and 1:1 w/v concentrations. Anthocyanins extract reached the greatest stability at 0.5:1 w/v concentration, with 82.47% color retention and a half-life period of 15 days. Therefore, the use of this organic acid as a stabilizer for anthocyanins is feasible.

  13. New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles

    Directory of Open Access Journals (Sweden)

    Valentina ePasseri

    2016-02-01

    Full Text Available In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food.In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells.The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  14. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin.

    Science.gov (United States)

    Akhavan Mahdavi, Sahar; Jafari, Seid Mahdi; Assadpoor, Elham; Dehnad, Danial

    2016-04-01

    The barberry (Berberis vulgaris) extract which is a rich source of anthocyanins was used for spray drying encapsulation with three different wall materials, i.e., combination of maltodextrin and gum Arabic (MD+GA), maltodextrin and gelatin (MD+GE), and maltodextrin (MD). Response Surface Methodology (RSM) was applied for optimization of microencapsulation efficiency and physical properties of encapsulated powders considering wall material type as well as different ratios of core to wall materials as independent variables. Physical characteristics of spray-dried powders were investigated by further analyses of moisture content, hygroscopicity, degree of caking, solubility, bulk and absolute density, porosity, flowability and microstructural evaluation of encapsulated powders. Our results indicated that samples produced with MD+GA as wall materials represented the highest process efficiency and best powder quality; the optimum conditions of microencapsulation process for barberry anthocyanins were found to be the wall material content and anthocyanin load of 24.54% and 13.82%, respectively. Under such conditions, the microencapsulation efficiency (ME) of anthocyanins could be as high as 92.83%. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Composition and color stability of anthocyanin-based extract from purple sweet potato

    Directory of Open Access Journals (Sweden)

    Xiu-li He

    2015-09-01

    Full Text Available AbstractPurple sweet potato (PSP can provide products with attractive color besides nutritious benefits in food processing. So, the compositions and color stability of an aqueous anthocyanin-based PSP extract were investigated in order to promote its wide use in food industry. PSP anthocyanins were extracted with water, and nine individual anthocyanins (48.72 ug mL–1 in total, 24.36 mg/100 g fresh PSP in yield were found by HPLC analysis. The PSP extract also contained 17.11 mg mL–1 of protein, 0.44 mg mL–1 of dietary fiber, 2.82 mg mL–1 of reducing sugars, 4.02 ug mL–1 of Se, 54.21 ug mL–1 of Ca and 60.83 ug mL–1 of Mg. Changes in color and stability of the PSP extract, as affected by pH, heat, light and extraction process, were further evaluated. Results indicated that PSP anthocyanins had good stability at pH 2.0-6.0, while the color of PSP extract kept stable during 30 days of storage at 20 °C in dark. Both UV and fluorescent exposure weakened the color stability of PSP extract and UV showed a more drastic effect in comparison. A steaming pretreatment of fresh PSP is beneficial to the color stability.

  16. The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2008-01-01

    Full Text Available The balance between carbon (C and nitrogen (N nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar 1 mutants (osu1-1, osu1-2 in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N, the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90 and an Asn synthetase isoform (ASN1 are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants.

  17. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10.

    Science.gov (United States)

    Feng, Shouqian; Wang, Yanling; Yang, Song; Xu, Yuting; Chen, Xuesen

    2010-06-01

    Skin color is an important factor in pear breeding programs. The degree of red coloration is determined by the content and composition of anthocyanins. In plants, many MYB transcriptional factors are involved in regulating anthocyanin biosynthesis. In this study, a R2R3-MYB transcription factor gene, PyMYB10, was isolated from Asian pear (Pyrus pyrifolia) cv. 'Aoguan'. Sequence analysis suggested that the PyMYB10 gene was an ortholog of MdMYB10 gene, which regulates anthocyanin biosynthesis in red fleshed apple (Malus x domestica) cv. 'Red Field'. PyMYB10 was identified at the genomic level and had three exons, with its upstream sequence containing core sequences of cis-acting regulatory elements involved in light responsiveness. Fruit bagging showed that light could induce expression of PyMYB10 and anthocyanin biosynthesis. Quantitative real-time PCR revealed that PyMYB10 was predominantly expressed in pear skins, buds, and young leaves, and the level of transcription in buds was higher than in skin and young leaves. In ripening fruits, the transcription of PyMYB10 in the skin was positively correlated with genes in the anthocyanin pathway and with anthocyanin biosynthesis. In addition, the transcription of PyMYB10 and genes of anthocyanin biosynthesis were more abundant in red-skinned pear cultivars compared to blushed cultivars. Transgenic Arabidopsis plants overexpressing PyMYB10 exhibited ectopic pigmentation in immature seeds. The study suggested that PyMYB10 plays a role in regulating anthocyanin biosynthesis and the overexpression of PyMYB10 was sufficient to induce anthocyanin accumulation.

  18. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction.

    Science.gov (United States)

    Liu, Yan; Li, Dan; Zhang, Yuhua; Sun, Ruifang; Xia, Min

    2014-04-15

    Adiponectin is an adipose tissue-secreted adipokine with beneficial effects on the cardiovascular system. In this study, we evaluated a potential role for adiponectin in the protective effects of anthocyanin on diabetes-related endothelial dysfunction. We treated db/db mice on a normal diet with anthocyanin cyanidin-3-O-β-glucoside (C3G; 2 g/kg diet) for 8 wk. Endothelium-dependent and -independent relaxations of the aorta were then evaluated. Adiponectin expression and secretion were also measured. C3G treatment restores endothelium-dependent relaxation of the aorta in db/db mice, whereas diabetic mice treated with an anti-adiponectin antibody do not respond. C3G treatment induces adiponectin expression and secretion in cultured 3T3 adipocytes through transcription factor forkhead box O1 (Foxo1). Silencing Foxo1 expression prevented C3G-stimulated induction of adiponectin expression. In contrast, overexpression of Foxo1-ADA promoted adiponectin expression in adipocytes. C3G activates Foxo1 by increasing its deacetylation via silent mating type information regulation 2 homolog 1 (Sirt1). Furthermore, purified anthocyanin supplementation significantly improved flow-mediated dilation (FMD) and increased serum adiponectin concentrations in patients with type 2 diabetes. Changes in adiponectin concentrations positively correlated with FMD in the anthocyanin group. Mechanistically, adiponectin activates cAMP-PKA-eNOS signaling pathways in human aortic endothelial cells, increasing endothelial nitric oxide bioavailability. These results demonstrate that adipocyte-derived adiponectin is required for anthocyanin C3G-mediated improvement of endothelial function in diabetes.

  20. The onion (Allium cepa L. R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis

    Directory of Open Access Journals (Sweden)

    Kathy Schwinn

    2016-12-01

    Full Text Available Bulb colour is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales. The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red, flavonols (pale yellow and chalcones (bright yellow. Flavonoid regulation is poorly characterised in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs that commonly activate anthocyanin (SG6, MYB1 or flavonol (SG7, MYB29 production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5. MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressd and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (A. sativum L. plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  1. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis

    Science.gov (United States)

    Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399

  2. Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum.

    Science.gov (United States)

    Qiu, Jian; Sun, Shuquan; Luo, Shiqiao; Zhang, Jichuan; Xiao, Xianzhou; Zhang, Liqun; Wang, Feng; Liu, Shizhong

    2014-04-01

    This study developed a new purple coloured Taraxacum brevicorniculatum plant through genetic transformation using the Arabidopsis AtPAP1 gene, which overproduced anthocyanins in its vegetative tissues. Rubber-producing Taraxacum plants synthesise high-quality natural rubber (NR) in their roots and so are a promising alternative global source of this raw material. A major factor in its commercialization is the need for multipurpose exploitation of the whole plant. To add value to the aerial tissues, red/purple plants of the rubber-producing Taraxacum brevicorniculatum species were developed through heterologous expression of the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana. The vegetative tissue of the transgenic plants showed an average of a 48-fold increase in total anthocyanin content over control levels, but with the exception of pigmentation, the transgenic plants were phenotypically comparable to controls and displayed similar growth vigor. Southern blot analysis confirmed that the AtPAP1 gene had been integrated into the genome of the high anthocyanin Taraxacum plants. The AtPAP1 expression levels were estimated by quantitative real-time PCR and were highly correlated with the levels of total anthocyanins in five independent transgenic lines. High levels of three cyanidin glycosides found in the purple plants were characterized by high performance liquid chromatography-mass spectrum analysis. The presence of NR was verified by NMR and infrared spectroscopy, and confirmed that NR biosynthesis had not been affected in the transgenic Taraxacum lines. In addition, other major phenylpropanoid products such as chlorogenic acid and quercetin glycosides were also enhanced in the transgenic Taraxacum. The red/purple transgenic Taraxacum lines described in this study would increase the future application of the species as a rubber-producing crop due to its additional health benefits.

  3. The effect of anthocyanin supplementation on body composition, exercise performance and muscle damage indices in athletes

    Directory of Open Access Journals (Sweden)

    Masoome Yarahmadi

    2014-01-01

    Full Text Available Background: Flavonoids consider as a large group of plant metabolites that 6,000 types of them have been identified till now. In some studies, it has been shown that they can increase aerobic performance and maximal oxygen consumption (VO 2 max.The aim of this study was to evaluate the effect of anthocyanin (as one of the most important kind of flavonoids supplementation on body composition, exercise performance and muscle damage indices in athletes. Methods: This double-blinded clinical trial involved 54 female and male athletes at Isfahan University of Medical Sciences with athletic history of at least 3 years. Body composition, exercise performance, creatine kinase, and lactate dehydrogenase were assessed. Individuals were selected by simple sampling method, they divided into two groups using permuted block randomization method. First group received 100 mg anthocyanin pills, and the second group received 100 mg placebo pills, daily for 6 weeks. Participants asked to continue their routine diet and physical activity during the study period, and they were followed through phone calls or text messages. Results: Soft lean mass, total body water and percent body fat were not changed significantly in the anthocyanin group after intervention but VO 2 max increased significantly in the anthocyanin group (48.65 ± 4.73 vs. 52.62 ± 5.04 (P ≤ 0.0001, also a significant difference was observed between two studied groups (52.62 ± 5.04 for intervention group vs. 49.61 ± 5.33 for placebo (P = 0.003. Conclusions: Our findings suggested that the supplementation with anthocyanin in athletes may improve some indices of performance such as VO 2 max.

  4. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.

    Science.gov (United States)

    Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M

    2016-01-01

    Bulb color is an important consumer trait for onion ( Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic ( Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum maju s of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  5. Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods.

    Science.gov (United States)

    Díaz-García, Miriam Cristina; Castellar, María Rosario; Obón, José María; Obón, Concepción; Alcaraz, Francisco; Rivera, Diego

    2015-04-01

    Anthocyanins and other polyphenols from flowers and bracts of Thymus sp. are studied. An anthocyanin-rich food colourant with interesting high antioxidant activity from Thymus moroderi has been obtained, and applied to colour foods. Anthocyanins and other polyphenols from T. moroderi and another five Thymus sp. were extracted in methanol/hydrochloric acid 0.1 mol L(-1) (50/50, v/v) 2 h stirring at 50 °C. They were identified and quantified by HPLC-PDA-MS and UHPLC-PDA-fluorescence, as total individual polyphenols. Total polyphenols were also determined. Flowers had higher anthocyanins and other polyphenols concentrations than bracts; for example, total polyphenols content of T. moroderi were 131.58 and 61.98 g GAE kg(-1) vegetal tissue, respectively. A liquid concentrated colourant was obtained from T. moroderi using water/citric acid as solvent. It was characterised and compared with other two commercial anthocyanin-rich food colourants from red grape skin and red carrot (colour strength of 1.7 and 3.6 AU, respectively). T. moroderi colourant had 1.2 AU colour strength, and high storage stability (>97.1% remaining colour after 110 days at 4 °C). It showed a higher polyphenols content than commercial colourants. Its antioxidant activity was 0.707 mmol Trolox eq. g(-1) plant dry weight, 69.5 times higher than red carrot. The three colourants were applied to colour yogurts, giving pinky tonalities. The colour did not change evidently (ΔE*(ab)  antioxidant activity. This colourant gives a stable colour to a yogurt during 1 month. These results expand the use of natural colourants. © 2014 Society of Chemical Industry.

  6. Inhibitory Effects of Anthocyanins on Secretion of Helicobacter pylori CagA and VacA Toxins

    OpenAIRE

    Sa-Hyun Kim, Min Park, Hyunjun Woo, Nagendran Tharmalingam, Gyusang Lee, Ki-Jong Rhee, Yong Bin Eom, Sang Ik Han, Woo Duck Seo, Jong Bae Kim

    2012-01-01

    Anthocyanins have been studied as potential antimicrobial agents against Helicobacter pylori. We investigated whether the biosynthesis and secretion of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) could be suppressed by anthocyanin treatment in vitro. H. pylori reference strain 60190 (CagA+/VacA+) was used in this study to investigate the inhibitory effects of anthocyanins; cyanidin 3-O-glucoside (C3G), peonidin 3-O-glucoside (Peo3G), pelargonidin 3-O-glucoside (Pe...

  7. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L) cultivars.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Coelho, Marta C; Morais, Rui M; Pintado, Manuela E

    2017-01-01

    Blueberries are widely recognised as one of the richest sources of bioactive compounds, among which are anthocyanins, though the ripeness of berries has been reported as affecting the phytochemical composition of fruits. Therefore, the present work aimed to evaluate the variation of anthocyanins, and other major phenolics, throughout five ripening stages in four blueberry cultivars. The results showed that the antioxidant capacity and anthocyanin content increased during ripening, reaching the highest values when the blueberries are collected from bunches comprised of 75% ripe blueberries. Antagonistically, the amount of phenolic acid decreases, while the quercetin-3-glucoside levels remain stable. Furthermore, Goldtraube blueberries appear to possess, systematically, higher amounts of phenolic compounds than the other cultivars studied. Thus, when seeking the highest yield of anthocyanins, the preferred harvest should occur in bunches that contain ca 75% of ripe blueberries and, considering the cultivars assayed, the Goldtraube cultivar appears to be the richest in phenolic compounds.

  8. Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.).

    Science.gov (United States)

    Kalt, W; Ryan, D A; Duy, J C; Prior, R L; Ehlenfeldt, M K; Vander Kloet, S P

    2001-10-01

    Recent interest in the possible protective effects of dietary antioxidant compounds against human degenerative disease has prompted investigation of foods such as blueberries (Vaccinium sp.), which have a high antioxidant capacity. Fruit obtained from genotypes of highbush blueberries (Vaccinium corymbosum L.) and lowbush blueberries (Vaccinium angustifolium Aiton) were analyzed for their antioxidant capacity, their content of anthocyanins, and total phenolic compounds, to evaluate the intraspecific and interspecific variation in these parameters. The method of extraction influenced the composition of fruit extracts; the highest anthocyanin and total phenolic contents and antioxidant capacity were found in extracts obtained using a solvent of acidified aqueous methanol. Regardless of the method, lowbush blueberries were consistently higher in anthocyanins, total phenolics, and antioxidant capacity, compared with highbush blueberries. There was no relationship between fruit size and anthocyanin content in either species.

  9. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    KAUST Repository

    Van Oosten, Michael James; Sharkhuu, Altanbadralt; Batelli, Giorgia; Bressan, Ray Anthony; Maggio, Albino

    2013-01-01

    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a

  10. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: a comparative study.

    Science.gov (United States)

    Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal

    2014-01-01

    Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity.

  11. AOAC SMPR 2014.007: Authentication of selected Vaccinium species (Anthocyanins) in dietary ingredients and dietary supplements

    Science.gov (United States)

    This AOAC Standard Method Performance Requirements (SMPR) is for authentication of selected Vaccinium species in dietary ingredients and dietary supplements containing a single Vaccinium species using anthocyanin profiles. SMPRs describe the minimum recommended performance characteristics to be used...

  12. Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells.

    Science.gov (United States)

    Huang, Wu-Yang; Wu, Han; Li, Da-Jing; Song, Jiang-Feng; Xiao, Ya-Dong; Liu, Chun-Quan; Zhou, Jian-Zhong; Sui, Zhong-Quan

    2018-02-21

    Blueberry anthocyanins are considered protective of eye health because of their recognized antioxidant properties. In this study, blueberry anthocyanin extract (BAE), malvidin (Mv), malvidin-3-glucoside (Mv-3-glc), and malvidin-3-galactoside (Mv-3-gal) all reduced H 2 O 2 -induced oxidative stress by decreasing the levels of reactive oxygen species and malondialdehyde and increasing the levels of superoxide dismutase, catalase, and glutathione peroxidase in human retinal pigment epithelial cells. BAE and the anthocyanin standards enhanced cell viability from 63.69 ± 3.36 to 86.57 ± 6.92% (BAE), 115.72 ± 23.41% (Mv), 98.15 ± 9.39% (Mv-3-glc), and 127.97 ± 20.09% (Mv-3-gal) and significantly inhibited cell apoptosis (P blueberry anthocyanins could inhibit the induction and progression of age-related macular degeneration (AMD) through antioxidant mechanisms.

  13. LC-MS/MS and UPLC-UV evaluation of anthocyanins and anthocyanidins during rabbiteye blueberry juice processing

    Science.gov (United States)

    Blueberry juice processing includes multiple steps and each affect the chemical composition of the berries, including thermal degradation of anthocyanins. Not from concentrate juice was made by heating and enzyme processing blueberries before pressing followed by ultrafiltration and pasteurization. ...

  14. Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers.

    Science.gov (United States)

    Nakatsuka, Takashi; Yamada, Eri; Saito, Misa; Fujita, Kohei; Nishihara, Masahiro

    2013-12-01

    Single-repeat MYB transcription factors, GtMYB1R1 and GtMYB1R9 , were isolated from gentian. Overexpression of these genes reduced anthocyanin accumulation in tobacco flowers, demonstrating their applicability to modification of flower color. RNA interference (RNAi) has recently been used to successfully modify flower color intensity in several plant species. In most floricultural plants, this technique requires prior isolation of target flavonoid biosynthetic genes from the same or closely related species. To overcome this limitation, we developed a simple and efficient method for reducing floral anthocyanin accumulation based on genetic engineering using novel transcription factor genes isolated from Japanese gentians. We identified two single-repeat MYB genes--GtMYB1R and GtMYB1R9--predominantly expressed in gentian petals. Transgenic tobacco plants expressing these genes were produced, and their flowers were analyzed for flavonoid components and expression of flavonoid biosynthetic genes. Transgenic tobacco plants expressing GtMYB1R1 or GtMYB1R9 exhibited significant reductions in floral anthocyanin accumulation, resulting in white-flowered phenotypes. Expression levels of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) genes were preferentially suppressed in these transgenic tobacco flowers. A yeast two-hybrid assay demonstrated that both GtMYB1R1 and GtMYB1R9 proteins interacted with the GtbHLH1 protein, previously identified as an anthocyanin biosynthesis regulator in gentian flowers. In addition, a transient expression assay indicated that activation of the gentian GtDFR promoter by the GtMYB3-GtbHLH1 complex was partly canceled by addition of GtMYB1R1 or GtMYB1R9. These results suggest that GtMYB1R1 and GtMYB1R9 act as antagonistic transcription factors of anthocyanin biosynthesis in gentian flowers. These genes should consequently be useful for manipulating anthocyanin accumulation via genetic engineering in

  15. Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat. Flower

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2015-06-01

    Full Text Available The flowers of twenty-three cultivars of Dendranthema grandiflorum Ramat. were investigated to determine anthocyanin and carotenoid levels and to confirm the effects of the pigments on the flower colors using high-performance liquid chromatography (HPLC and electrospray ionization-mass spectrometry (ESI-MS. The cultivars contained the anthocyanins cyanidin 3-glucoside (C3g and cyanidin 3-(3ʺ-malonoyl glucoside (C3mg and the following carotenoids: lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, α-carotene, trans-β-carotene, and 9-cis-β-carotene. The cultivar “Magic” showed the greatest accumulation of total and individual anthocyanins, including C3g and C3gm. On the other hand, the highest level of lutein and zeaxanthin was noted in the cultivar “Il Weol”. The cultivar “Anastasia” contained the highest amount of carotenoids such as trans-β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. The highest accumulation of β-cryptoxanthin and α-carotene was noted in the cultivar “Anastasia” and “Il Weol”. Our results suggested that ‘Magic”, “Angel” and “Relance’ had high amounts of anthocyanins and showed a wide range of red and purple colors in their petals, whereas “Il Weol’, “Popcorn Ball’ and “Anastasia” produced higher carotenoid contents and displayed yellow or green petal colors. Interestingly, “Green Pang Pang”, which contained a high level of anthocyanins and a medium level of carotenoids, showed the deep green colored petals. “Kastelli”, had high level of carotenoids as well as a medium level of anthocyanins and showed orange and red colored petals. It was concluded that each pigment is responsible for the petal’s colors and the compositions of the pigments affect their flower colors and that the cultivars could be a good source for pharmaceutical, floriculture, and pigment industries.

  16. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots

    OpenAIRE

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-01-01

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic an...

  17. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    Science.gov (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    OpenAIRE

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  19. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae.

    Science.gov (United States)

    Lin-Wang, Kui; Bolitho, Karen; Grafton, Karryn; Kortstee, Anne; Karunairetnam, Sakuntala; McGhie, Tony K; Espley, Richard V; Hellens, Roger P; Allan, Andrew C

    2010-03-21

    The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  20. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae

    Directory of Open Access Journals (Sweden)

    McGhie Tony K

    2010-03-01

    Full Text Available Abstract Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry. Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  1. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    KAUST Repository

    Van Oosten, Michael James

    2013-08-08

    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3′H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins. © 2013 Springer Science+Business Media Dordrecht.

  2. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals.

    Science.gov (United States)

    Li, Chonghui; Qiu, Jian; Ding, Ling; Huang, Mingzhong; Huang, Surong; Yang, Guangsui; Yin, Junmei

    2017-03-01

    Dendrobium hybrids orchid are popular throughout the world. They have various floral color and pigmentation patterns that are mainly caused by anthocyanins. It is well established that anthocyanin biosynthesis is regulated by the interplay between MYB and bHLH transcription factors (TF) in most plants. In this study, we identified one R2R3-MYB gene, DhMYB2, and one bHLH gene, DhbHLH1, from a Dendrobium hybrid. Their expression profiles were related to anthocyanin pigmentation in Dendrobium petals. Transient over-expression of these two TF genes showed that both DhMYB2 and DhbHLH1 resulted in anthocyanin production in white petals. The interaction between the two TFs was observed in vitro. In different Dendrobium hybrids petals with various pigmentations, DhMYB2 and DhbHLH1 were co-expressed with DhDFR and DhANS, which are regarded as potential regulatory targets of the two TFs. In flowers with distinct purple lips but white or yellow petals/sepals, the expression of DhbHLH1 was only related to anthocyanin accumulation in the lips. Taken together, DhMYB2 interacted with DhbHLH1 to regulate anthocyanin production in Dendrobium hybrid petals. DhbHLH1 was also responsible for the distinct anthocyanin pigmentation in lip tissues. The functional characterization of DhMYB2 and DhbHLH1 will improve understanding of anthocyanin biosynthesis modulation in Dendrobium orchids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Inheritance analysis and mapping of quantitative trait loci (QTL controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L. grains.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Zhang

    Full Text Available Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G and cyanidin-3-glucoside (C3G, were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  4. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    Science.gov (United States)

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops.

  5. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    Science.gov (United States)

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.

    Science.gov (United States)

    Jun, Ji Hyung; Liu, Chenggang; Xiao, Xirong; Dixon, Richard A

    2015-10-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. © 2015 American Society of Plant Biologists. All rights reserved.

  7. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    Science.gov (United States)

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  8. Exogenous 24-Epibrassinolide Interacts with Light to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Cabernet Sauvignon (Vitis vinifera L.).

    Science.gov (United States)

    Zhou, Yali; Yuan, Chunlong; Ruan, Shicheng; Zhang, Zhenwen; Meng, Jiangfei; Xi, Zhumei

    2018-01-09

    Anthocyanins and proanthocyanidins (PAs) are crucial factors that affect the quality of grapes and the making of wine, which were stimulated by various stimuli and environment factors (sugar, hormones, light, and temperature). The aim of the study was to investigate the influence of exogenous 24-Epibrassinolide (EBR) and light on the mechanism of anthocyanins and PAs accumulation in grape berries. Grape clusters were sprayed with EBR (0.4 mg/L) under light and darkness conditions (EBR + L, EBR + D), or sprayed with deionized water under light and darkness conditions as controls (L, D), at the onset of veraison. A large amount of anthocyanins accumulated in the grape skins and was measured under EBR + L and L treatments, whereas EBR + D and D treatments severely suppressed anthocyanin accumulation. This indicated that EBR treatment could produce overlay effects under light, in comparison to that in dark. Real-time quantitative PCR analysis indicated that EBR application up-regulated the expression of genes ( VvCHI1 , VvCHS2 , VvCHS3 , VvDFR , VvLDOX , VvMYBA1 ) under light conditions. Under darkness conditions, only early biosynthetic genes of anthocyanin biosynthesis responded to EBR. Furthermore, we also analyzed the expression levels of the BR-regulated transcription factor VvBZR1 (Brassinazole-resistant 1) and light-regulated transcription factor VvHY5 (Elongated hypocotyl 5). Our results suggested that EBR and light had synergistic effects on the expression of genes in the anthocyanin biosynthesis pathway.

  9. Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.

    Science.gov (United States)

    Cisse, Mady; Vaillant, Fabrice; Acosta, Oscar; Dhuique-Mayer, Claudie; Dornier, Manuel

    2009-07-22

    Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.

  10. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate.

    Science.gov (United States)

    Rababah, Taha M; Banat, Fawzi; Rababah, Anfal; Ereifej, Khalil; Yang, Wade

    2010-09-01

    The purpose of this study was to evaluate the total phenolic extracts and antioxidant activity and anthocyanins of varieties of the investigated plants. These plants include oregano, thyme, terebinth, and pomegranate. The optimum extraction conditions including temperature and solvent of the extraction process itself were investigated. Total phenolic and anthocyanin extracts were examined according to Folin-Ciocalteu assay and Rabino and Mancinelli method, respectively. The effect of different extracting solvents and temperatures on extracts of phenolic compounds and anthocyanins were studied. Plant samples were evaluated for their antioxidant chemical activity by 2, 2-diphenyl-1-picrylhydrazl assay, to determine their potential as a source of natural antioxidant. Results showed that all tested plants exhibited appreciable amounts of phenolic compounds. The methanolic extract (60 °C) of sour pomegranate peel contained the highest phenolic extract (4952.4 mg/100 g of dry weight). Terebinth green seed had the lowest phenolic extract (599.4 mg/100 g of dry weight). Anthocyanins ranged between 3.5 (terebinth red seed) and 0.2 mg/100 g of dry material (thyme). Significant effect of different extracting solvents and temperatures on total phenolics and anthocyanin extracts were found. The methanol and 60 °C of extraction conditions found to be the best for extracting phenolic compounds. The distilled water and 60 °C extraction conditions found to be the best for extracting anthocyanin.

  11. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7)

    International Nuclear Information System (INIS)

    Devi, P.S.; Kumar, M.S.; Das, A.S.M.

    2011-01-01

    Breast cancer is a leading cause of death in women worldwide both in the developed and developing countries. Thus effective treatment of breast cancer with potential antitumour drugs is important. In this paper, human breast cancer cell line MCF-7 has been employed to evaluate the antiproliferative activity of red sorghum bran anthocyanin. The present investigation showed that red sorghum bran anthocyanin induced growth inhibition of MCF-7 cells at significant level. The growth inhibition is dose dependent and irreversible in nature. When MCF-7 cells were treated with red sorghum bran anthocyanins due to activity of anthocyanin morphological changes were observed. The morphological changes were identified through the formation of apoptopic bodies. The fragmentation by these anthocyanins on DNA to oligonuleosomal-sized fragments, is a characteristic of apoptosis, and it was observed as concentration-dependent. Thus, this paper clearly demonstrates that human breast cancer cell MCF-7 is highly responsive by red sorghum bran anthocyanins result from the induction of apoptosis in MCF-7 cells.

  12. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation.

    Science.gov (United States)

    Chen, Lili; Jiang, Bowen; Zhong, Chunge; Guo, Jun; Zhang, Lihao; Mu, Teng; Zhang, Qiuhua; Bi, Xiuli

    2018-03-08

    Freeze-dried black raspberry (BRB) powder is considered as a potential cancer chemopreventive agent. In this study, we fed azoxymethane (AOM)/dextran sodium sulfate (DSS)-treated C57BL/6J mice with a diet containing BRB anthocyanins for 12 weeks, and this led to a reduction in colon carcinogenesis. These animals had consistently lower tumor multiplicity compared with AOM/DSS-treated mice not receiving BRB anthocyanins. In AOM/DSS-treated mice, the number of pathogenic bacteria, including Desulfovibrio sp. and Enterococcus spp., was increased significantly, whereas probiotics such as Eubacterium rectale, Faecalibacterium prausnitzii and Lactobacillus were dramatically decreased, but BRB anthocyanins supplement could reverse this imbalance in gut microbiota. BRB anthocyanins also caused the demethylation of the SFRP2 gene promoter, resulting in increased expression of SFRP2, both at the mRNA and protein levels. Furthermore, the expression levels of DNMT31 and DNMT3B, as well as of p-STAT3 were downregulated by BRB anthocyanins in these animals. Taken together, these results suggested that BRB anthocyanins could modulate the composition of gut commensal microbiota, and changes in inflammation and the methylation status of the SFRP2 gene may play a central role in the chemoprevention of CRC.

  13. [Detection of putative polysaccharide biosynthesis genes in Azospirillum brasilense strains from serogroups I and II].

    Science.gov (United States)

    Petrova, L P; Prilipov, A G; Katsy, E I

    2017-01-01

    It is known that in Azospirillum brasilense strains Sp245 and SR75 included in serogroup I, the repeat units of their O-polysaccharides consist of five residues of D-rhamnose, and in strain SR15, of four; and the heteropolymeric O-polysaccharide of A. brasilense type strain Sp7 from serogroup II contains not less than five types of repeat units. In the present work, a complex of nondegenerate primers to the genes of A. brasilense Sp245 plasmids AZOBR_p6, AZOBR_p3, and AZOBR_p2, which encode putative enzymes for the biosynthesis of core oligosaccharide and O-polysaccharide of lipopolysaccharide, capsular polysaccharides, and exopolysaccharides, was proposed. By using the designed primers, products of the expected sizes were synthesized in polymerase chain reactions on genomic DNA of A. brasilense Sp245, SR75, SR15, and Sp7 in 36, 29, 23, and 12 cases, respectively. As a result of sequencing of a number of amplicons, a high (86–99%) level of identity of the corresponding putative polysaccharide biosynthesis genes in three A. brasilense strains from serogroup I was detected. In a blotting-hybridization reaction with the biotin-labeled DNA of the A. brasilense gene AZOBR_p60122 coding for putative permease of the ABC transporter of polysaccharides, localization of the homologous gene in ~120-MDa plasmids of the bacteria A. brasilense SR15 and SR75 was revealed.

  14. Ultrafine fibers of zein and anthocyanins as natural pH indicator.

    Science.gov (United States)

    Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2018-05-01

    pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings.

    Science.gov (United States)

    Chiabrando, Valentina; Giacalone, Giovanna

    2015-05-01

    The influence of different edible coatings on total phenolic content, total anthocyanin and antioxidant capacity in highbush blueberry (Vaccinium corymbosum L. cv Berkeley and O'Neal) was investigated, mainly for industrial applications. Also titratable acidity, soluble solids content, firmness and weight loss of berries were determined at harvest and at 15-day intervals during 45 storage days at 0 °C, in order to optimize coating composition. Application of chitosan coating delayed the decrease in anthocyanin content, phenolic content and antioxidant capacity. Coating samples showed no significant reduction in the weight loss during storage period. In cv Berkeley, the use of alginate coating showed a positive effect on firmness, titratable acidity and maintained surface lightness of treated berries. In cv O'Neal, no significant differences in total soluble solids content were found, and the chitosan-coated berries showed the minimum firmness losses. In both cultivars, the addition of chitosan to coatings decreases the microbial growth rate.

  16. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols.

    Science.gov (United States)

    Shimokawa, Satoshi; Iwashina, Tsukasa; Murakami, Noriaki

    2015-03-01

    One anthocyanin and four flavonols were detected from the petals of Hibiscus hamabo, H. tiliaceus and H. glaber. They were identified as cyanidin 3-0- sambubioside, gossypetin 3-O-glucuronide-8-O-glucoside, quercetin 7-O-rutinoside, gossypetin 3-O-glucoside and gossypetin 8-O-glucuronide by UV spectra, LC-MS, acid hydrolysis and HPLC. The flavonoid composition was essentially the same among the petals ofH. hamabo, H. tiliaceus and H. glaber, and there was little quantitative variation, except for cyanidin 3-O-sambubioside, the content of which in the petals ofH. tiliaceus and H. glaber was much higher than in that of H. hamabo. Flower colors of H. tiliaceus and H. glaber change from yellow to red, and that of H. hamabo changes from yellow to orange. These changes were caused by contents of anthocyanin and flavonols, which increased after flowering of H. hamabo, H. tiliaceus and H. glaber.

  17. Pressurized Hot Water Extraction of anthocyanins from red onion: A study on extraction and degradation rates

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Erik V.; Liu Jiayin; Sjoeberg, Per J.R.; Danielsson, Rolf [Uppsala University, Department of Physical and Analytical Chemistry, P.O. Box 599, SE-751 24, Uppsala (Sweden); Turner, Charlotta, E-mail: Charlotta.Turner@kemi.uu.se [Uppsala University, Department of Physical and Analytical Chemistry, P.O. Box 599, SE-751 24, Uppsala (Sweden)

    2010-03-17

    Pressurized Hot Water Extraction (PHWE) is a quick, efficient and environmentally friendly technique for extractions. However, when using PHWE to extract thermally unstable analytes, extraction and degradation effects occur at the same time, and thereby compete. At first, the extraction effect dominates, but degradation effects soon take over. In this paper, extraction and degradation rates of anthocyanins from red onion were studied with experiments in a static batch reactor at 110 deg. C. A total extraction curve was calculated with data from the actual extraction and degradation curves, showing that more anthocyanins, 21-36% depending on the species, could be extracted if no degradation occurred, but then longer extraction times would be required than those needed to reach the peak level in the apparent extraction curves. The results give information about the different kinetic processes competing during an extraction procedure.

  18. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking.

    Science.gov (United States)

    Harakotr, Bhornchai; Suriharn, Bhalang; Tangwongchai, Ratchada; Scott, Marvin Paul; Lertrat, Kamol

    2014-12-01

    Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p⩽0.05) decreases in each antioxidant compound and antioxidant activity. Steam cooking preserved more antioxidant compounds than boiling. Boiling caused a significant loss of anthocyanin and phenolic compounds into the cooking water. This cooking water is a valuable co-product because it is a good source of purple pigment. By comparing levels of antioxidant compounds in raw and cooked corn, we determined that degradation results in greater loss than leaching or diffusion into cooking water. Additionally, separation of kernels from the cob prior to cooking caused increased loss of antioxidant compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Anthocyanines as light harvesters in the dye-sensitized TiO2 solar cell

    International Nuclear Information System (INIS)

    Sokolsky, M.; Kaiser, M.; Cirak, J.; Kusko, M.

    2011-01-01

    In this paper anthocyanine extracted from blackberry was used instead of widely used dyes based on Ru and N3 complexes such as N3, N719 or 'black dye', on which one of the highest efficiencies where measured (10.0 % to 11 %). DSSC were successfully fabricated using anthocyanine dye extracted from blackberries. The open circuit voltage of 419.0 mV, short circuit current of 380.40 μA, fill factor of 41.2 % and efficiency of 0.0164 % were evaluated. The cell shows degradation in performance over time of the exponential type with a drop in the open circuit voltage to 406 mV in 15 minutes. (authors)

  20. Liquid chromatography-mass spectrometry identification of anthocyanins of isla oca (Oxalis tuberosa, Mol.) tubers.

    Science.gov (United States)

    Alcalde-Eon, Cristina; Saavedra, Gloria; de Pascual-Teresa, Sonia; Rivas-Gonzalo, Julián C

    2004-10-29

    High-performance liquid chromatography (HPLC)-diode array detection (DAD)-mass spectrometry (MS) techniques have been successfully employed in the identification of the anthocyanins of the coloured tubers of isla oca (Oxalis tuberosa), the second most cultivated tuber in the Andean region. Tubers underwent a pre-treatment step in order to inhibit enzymatic reactions and to obtain a stable powder or "concentrate". This concentrate was dissolved, purified and then analysed. Eight different compounds were found. The major peaks were malvidin glucosides (malvidin 3-O-glucoside and 3,5-O-diglucoside). The rest of the peaks were 3,5-O-diglucosides of petunidin and peonidin, and 3-O-glucosides of delphinidin, petunidin and peonidin. Only malvidin 3-O-acetylglucoside-5-O-glucoside was found as an acylated anthocyanin.

  1. Barumiki antocyjanowe u Iris germanica [Anthocyanin pigments in Iris germanica L.

    Directory of Open Access Journals (Sweden)

    J. Szczepańska

    2015-06-01

    Full Text Available Anthocyanin pigments occurring in the flowers of Iris germanica were investigated in five varieties: Rota, Wedgewood, Empress of India, Deputate Nomblot and Joanna. The relation between the colour of the flower and the amount of the pigment was studied. The pigments were extracted from the dry plant material with 1% hydrochloric acid in methanol. Paper chromatography and colorimetric determinations were used for identification of the pigments and their quantitative determination. The results allow the following conclusions: 1. The varieties investigated were characterized toy the occurrence of delphinidine glycoside; 2. The colour intensity is dependent on the anthocyanin pigments; 3. The colour spectrum of Iris sp. flowersis greatly extended by yellow copigments.

  2. Identification of antimutagenic properties of anthocyanins and other polyphenols from rose (Rosa centifolia) petals and tea.

    Science.gov (United States)

    Kumar, Sanjeev; Gautam, Satyendra; Sharma, Arun

    2013-06-01

    Petals from different rose (Rosa centifolia) cultivars ("passion," "pink noblesse," and "sphinx") were assessed for antimutagenicity using Escherichia coli RNA polymerase B (rpoB)-based Rif (S) →Rif (R) (rifampicin sensitive to resistant) forward mutation assay against ethyl methanesulfonate (EMS)-induced mutagenesis. The aqueous extracts of rose petals from different cultivars exhibited a wide variation in their antimutagenicity. Among these, cv. "passion" was found to display maximum antimutagenicity. Upon further fractionation, the anthocyanin extract of cv. "passion" displayed significantly higher antimutagenicity than its phenolic extract. During thin-layer chromatography (TLC) analysis, the anthocyanin extract got resolved into 3 spots: yellow (Rf : 0.14), blue (Rf : 0.30), and pink (Rf : 0.49). Among these spots, the blue one displayed significantly higher antimutagenicity than the other 2. Upon high-performance liquid chromatography analysis, this blue spot further got resolved into 2 peaks (Rt : 2.7 and 3.8 min). The 2nd peak (Rt : 3.8 min) displaying high antimutagenicity was identified by ESI-IT-MS/MS analysis as peonidin 3-glucoside, whereas less antimutagenic peak 1 (Rt : 2.7) was identified as cyanidin 3, 5-diglucoside. The other TLC bands were also characterized by ESI-IT-MS/MS analysis. The least antimutagenic pink band (Rf : 0.49) was identified as malvidin 3-acetylglucoside-4-vinylcatechol, whereas non-antimutagenic yellow band (Rf : 0.14) was identified as luteolinidin anthocyanin derivative. Interestingly, the anthocyanin extracted from rose tea of cv. "passion" exhibited a similar antimutagenicity as that of the raw rose petal indicating the thermal stability of the contributing bioactive(s). The findings thus indicated the health protective property of differently colored rose cultivars and the nature of their active bioingredients. © 2013 Institute of Food Technologists®

  3. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging

    Directory of Open Access Journals (Sweden)

    Angelita Gambuti

    2018-03-01

    Full Text Available Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles was applied to each wine. Average and initial oxygen consumption rates (OCR were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity toward saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  4. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging

    Science.gov (United States)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-01-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity toward saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine. PMID:29600246

  5. Transcriptome analysis of a petal anthocyanin polymorphism in the arctic mustard, Parrya nudicaulis.

    Directory of Open Access Journals (Sweden)

    Timothy Butler

    Full Text Available Angiosperms are renown for their diversity of flower colors. Often considered adaptations to pollinators, the most common underlying pigments, anthocyanins, are also involved in plants' stress response. Although the anthocyanin biosynthetic pathway is well characterized across many angiosperms and is composed of a few candidate genes, the consequences of blocking this pathway and producing white flowers has not been investigated at the transcriptome scale. We take a transcriptome-wide approach to compare expression differences between purple and white petal buds in the arctic mustard, Parrya nudicaulis, to determine which genes' expression are consistently correlated with flower color. Using mRNA-Seq and de novo transcriptome assembly, we assembled an average of 722 bp per gene (49.81% coding sequence based on the A. thaliana homolog for 12,795 genes from the petal buds of a pair of purple and white samples. Our results correlate strongly with qRT-PCR analysis of nine candidate genes in the anthocyanin biosynthetic pathway where chalcone synthase has the greatest difference in expression between color morphs (P/W = ∼7×. Among the most consistently differentially expressed genes between purple and white samples, we found 3× more genes with higher expression in white petals than in purple petals. These include four unknown genes, two drought-response genes (CDSP32, ERD5, a cold-response gene (GR-RBP2, and a pathogen defense gene (DND1. Gene ontology analysis of the top 2% of genes with greater expression in white relative to purple petals revealed enrichment in genes associated with stress responses including cold, drought and pathogen defense. Unlike the uniform downregulation of chalcone synthase that may be directly involved in the loss of petal anthocyanins, the variable expression of several genes with greater expression in white petals suggest that the physiological and ecological consequences of having white petals may be

  6. Caffeoylquinic Acids Generated In Vitro in a High-Anthocyanin-Accumulating Sweet potato Cell Line

    Directory of Open Access Journals (Sweden)

    Izabela Konczak

    2004-01-01

    Full Text Available Accumulation of phenolic compounds has been monitored in a suspension culture of anthocyanin-accumulating sweet potato cell line grown under the conditions of modified Murashige and Skoog high-anthocyanin production medium (APM over a period of 24 days. Tissue samples extracted with 15% acetic acid were analysed using HPLC at a detection wavelength of 326 nm. Among others, the following derivatives of caffeoylquinic acids were detected: 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and 3,4,5-tricaffeoylquinic acid. Their total amount reached a maximum of 110 mg/gFW between the 4th and the 15th day of culture growth on APM. The major compound of the phenolic mixture was 3,5-dicaffeoylquinic acid with maximum accumulation level of 80 mg/100 gFW. The potential effects of targeted phenolic compounds on the nutraceutical qualities of in vitro produced anthocyanin-rich extracts are discussed.

  7. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum).

    Science.gov (United States)

    Landi, Marco; Guidi, Lucia; Pardossi, Alberto; Tattini, Massimiliano; Gould, Kevin S

    2014-11-01

    Boron (B) toxicity is an important agricultural problem in arid environments. Excess edaphic B compromises photosynthetic efficiency, limits growth and reduces crop yield. However, some purple-leafed cultivars of sweet basil (Ocimum basilicum) exhibit greater tolerance to high B concentrations than do green-leafed cultivars. We hypothesised that foliar anthocyanins protect basil leaf mesophyll from photo-oxidative stress when chloroplast function is compromised by B toxicity. Purple-leafed 'Red Rubin' and green-leafed 'Tigullio' cultivars, grown with high or negligible edaphic B, were given a photoinhibitory light treatment. Possible effects of photoabatement by anthocyanins were simulated by superimposing a purple polycarbonate filter on the green leaves. An ameliorative effect of light filtering on photosynthetic quantum yield and on photo-oxidative load was observed in B-stressed plants. In addition, when green protoplasts from both cultivars were treated with B and illuminated through a screen of anthocyanic protoplasts or a polycarbonate film which approximated cyanidin-3-O-glucoside optical properties, the degree of photoinhibition, hydrogen peroxide production, and malondialdehyde content were reduced. The data provide evidence that anthocyanins exert a photoprotective role in purple-leafed basil mesophyll cells, thereby contributing to improved tolerance to high B concentrations.

  8. Anthocyanins and antioxidant capacities of six Chilean berries by HPLC-HR-ESI-ToF-MS.

    Science.gov (United States)

    Ramirez, Javier E; Zambrano, Ricardo; Sepúlveda, Beatriz; Kennelly, Edward J; Simirgiotis, Mario J

    2015-06-01

    The HPLC profiles of six fruits endemic of the VIII region of Chile were investigated using high resolution mass analysis (HR-ToF-ESI-MS). The anthocyanin fingerprints generated for the fruits were compared and the antioxidant capacities measured by the scavenging of the DPPH radical, the ferric reducing antioxidant power (FRAP), the superoxide anion scavenging activity assay (SA), and correlated with the inhibition of lipid peroxidation in human erythrocytes (LP) and total content of phenolics, flavonoids and anthocyanins measured by spectroscopic methods. Several anthocyanins were identified, including 3-O-glycosides derivatives of delphinidin, cyanidin, petunidin, peonidin and malvidin. Three phenolic acids (feruloyl-quinic acid, chlorogenic acid, and neochlorogenic acid) and five flavonols (hyperoside, isoquercitrin, quercetin, rutin, myricetin and isorhamnetin) were also identified. Calafate fruits showed the highest antioxidant activity. However, the highest LP activity was found for Chilean blueberries (>95%) followed by calafate fruits (91.27%) and luma (83.4%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Partial dealcoholization of red wine by nanofiltration and its effect on anthocyanin and resveratrol levels.

    Science.gov (United States)

    Banvolgyi, Szilvia; Savaş Bahçeci, K; Vatai, Gyula; Bekassy, Sandor; Bekassy-Molnar, Erika

    2016-12-01

    The present work studies the use of nanofiltration for the production of red wine concentrate with low alcohol content. Factorial design was applied to measure the influences of transmembrane pressure (10-20 bar) and temperature (20-40 ℃) on the retention of valuable components such as anthocyanins and resveratrol, and on the nanofiltration membrane performance. The highest retention of anthocyanin and resveratrol was achieved at low temperature (20 ℃), while the high transmembrane pressure (20 bar) was found to increase the permeate flux considerably. The experiments demonstrated that nanofiltration appears as a valid technique for the production of low alcohol content red wine concentrate. Reduction of volume by a factor of 4, leads to 2.5-3 times more anthocyanins and resveratrol in the wine concentrates. The final new wine products - obtained by using various forms of reconstitution of the concentrated wine - had low alcohol content (4-6 % by volume) and their sensory attributes were similar to those of the original wine. © The Author(s) 2016.

  10. GWA Mapping of Anthocyanin Accumulation Reveals Balancing Selection of MYB90 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Johanna A Bac-Molenaar

    Full Text Available Induction of anthocyanin accumulation by osmotic stress was assessed in 360 accessions of Arabidopsis thaliana. A wide range of natural variation, with phenotypes ranging from green to completely red/purple rosettes, was observed. A genome wide association (GWA mapping approach revealed that sequence diversity in a small 15 kb region on chromosome 1 explained 40% of the variation observed. Sequence and expression analyses of alleles of the candidate gene MYB90 identified a causal polymorphism at amino acid (AA position 210 of this transcription factor of the anthocyanin biosynthesis pathway. This amino acid discriminates the two most frequent alleles of MYB90. Both alleles are present in a substantial part of the population, suggesting balancing selection between these two alleles. Analysis of the geographical origin of the studied accessions suggests that the macro climate is not the driving force behind positive or negative selection for anthocyanin accumulation. An important role for local climatic conditions is, therefore, suggested. This study emphasizes that GWA mapping is a powerful approach to identify alleles that are under balancing selection pressure in nature.

  11. Cancer-preventive Properties of an Anthocyanin-enriched Sweet Potato in the APCMIN Mouse Model.

    Science.gov (United States)

    Asadi, Khalid; Ferguson, Lynnette R; Philpott, Martin; Karunasinghe, Nishi

    2017-09-01

    Anthocyanin-rich foods and preparations have been reported to reduce the risk of life-style related diseases, including cancer. The SL222 sweet potato, a purple-fleshed cultivar developed in New Zealand, accumulates high levels of anthocyanins in its storage root. We examined the chemopreventative properties of the SL222 sweet potato in the C57BL/6J-APC MIN/+ (APC MIN ) mouse, a genetic model of colorectal cancer. APC MIN and C57BL/6J wild-type mice (n=160) were divided into four feeding groups consuming diets containing 10% SL222 sweet potato flesh, 10% SL222 sweet potato skin, or 0.12% ARE (Anthocyanin rich-extract prepared from SL222 sweet potato at a concentration equivalent to the flesh-supplemented diet) or a control diet (AIN-76A) for 18 weeks. At 120 days of age, the mice were anaesthetised, and blood samples were collected before the mice were sacrificed. The intestines were used for adenoma enumeration. The SL222 sweet potato-supplemented diets reduced the adenoma number in the APC MIN mice. These data have significant implications for the use of this sweet potato variant in protection against colorectal cancer.

  12. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  13. Effect of the prefermentative addition of five enological tannins on anthocyanins and color in red wines.

    Science.gov (United States)

    Liu, Yan-Xia; Liang, Na-Na; Wang, Jun; Pan, Qiu-Hong; Duan, Chang-Qing

    2013-01-01

    The effects of prefermentation addition of 5 exogenous tannins with different-origin anthocyanins and color characteristics were investigated in "Cabernet Sauvignon wines" at the end of alcoholic fermentation and the end of malolactic fermentation, and after 6 mo and 9 mo of bottle aging, respectively. The results showed that the application of GSKT2 could significantly retard the degradation of most anthocyanins in the process of alcoholic fermentation and the decrease of some pyranoanthocyanins during the subsequent 3 stages, thus causing more yellowness of wine in comparison with the control. Three other condensed tannins, GSKT1, QUET, and GSET, had a positive impact only on several anthocyanin components. Four condensed tannins all contributed to more redness, suggesting that the action mechanism might be to protect wine against oxidation or contribute to form copigmented anthocyanidins, or polymeric pigments. The application of FOLT (hydrolysable tannin) did not produce any influence on wine redness even after 9 mo of bottle aging. This work provides some reasons for the reasonable application of tannin additives. The prefermentative application of condensed tannins overall could protect some pigment components from degradation and enhance wine redness. Tannin additives with different origins have different effectiveness. The tannin additive obtained from grape skins, like GSKT2, could produce significant promotion on both redness and yellowness in wine. The prefermentation addition of hydroxylase tannin like FOLT seems not to have a significant effect on wine color. © 2012 Institute of Food Technologists®

  14. Acidulant and oven type affect total anthocyanin content of blue corn cookies.

    Science.gov (United States)

    Li, Jian; Walker, Chuck E; Faubion, Jon M

    2011-01-15

    Anthocyanins, pink to purple water-soluble flavonoids, are naturally occurring pigments with claimed health benefits. However, they are sensitive to degradation by high pH, light and temperature. Blue corn (maize) contains high levels of anthocyanins. Cookies are popular snacks and might serve as a vehicle to deliver antioxidants. A cookie formula with a high level of blue corn was developed with added acidulents and baked in ovens with different heat transfer coefficients. The best whole-grain blue corn flour/wheat pastry flour ratio (80:20 w/w), guar gum level (10 g kg(-1), flour weight basis) and water level (215 g kg(-1), flour weight basis) were determined based on response surface methodology analysis. The interactions of citric and lactic acids and glucono-δ-lactone with three oven types having different heat transfer coefficients (impingement oven 179 °C/4 min, reel oven 204 °C/10 min and convection oven 182 °C/4 min) influenced the total anthocyanin content (TAC) remaining in blue corn-containing cookies after baking. Cookies baked with citric acid in the convection oven retained the maximum TAC (227 ± 3 mg kg(-1)). By baking rapidly at lower temperatures and adding acidulents, it may be possible to increase residual natural source antioxidants in baked foods. Copyright © 2010 Society of Chemical Industry.

  15. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    Science.gov (United States)

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  16. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries.

    Science.gov (United States)

    Syamaladevi, Roopesh M; Andrews, Preston K; Davies, Neal M; Walters, Thomas; Sablani, Shyam S

    2012-03-15

    Consumer demand for products rich in phytochemicals is increasing as a result of greater awareness of their potential health benefits. However, processed products are stored for long-term and the phytochemicals are susceptible to degradation during storage. The objective of this study was to assess the storage effects on phytochemicals in thermally processed blueberries. Thermally processed canned berries and juice/puree were analysed for phytochemicals during their long-term storage. The phytochemical retention of thermally processed blueberries during storage was not influenced by production system (conventional versus organic). During 13 months of storage, total anthocyanins, total phenolics and total antioxidant activity in canned blueberry solids decreased by up to 86, 69 and 52% respectively. In canned blueberry syrup, total anthocyanins and total antioxidant activity decreased by up to 68 and 15% respectively, while total phenolic content increased by up to 117%. Similar trends in phytochemical content were observed in juice/puree stored for 4 months. The extent of changes in phytochemicals of thermally processed blueberries during storage was significantly influenced by blanching. Long-term storage of thermally processed blueberries had varying degrees of influence on degradation of total anthocyanins, total phenolics and total antioxidant activity. Blanching before thermal processing helped to preserve the phytochemicals during storage of blueberries. Copyright © 2011 Society of Chemical Industry.

  17. Simple Rain-Shelter Cultivation Prolongs Accumulation Period of Anthocyanins in Wine Grape Berries

    Directory of Open Access Journals (Sweden)

    Xiao-Xi Li

    2014-09-01

    Full Text Available Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.

  18. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes.

    Science.gov (United States)

    Xu, Haifeng; Wang, Nan; Liu, Jingxuan; Qu, Changzhi; Wang, Yicheng; Jiang, Shenghui; Lu, Ninglin; Wang, Deyun; Zhang, Zongying; Chen, Xuesen

    2017-05-01

    MdMYB16 forms homodimers and directly inhibits anthocyanin synthesis via its C-terminal EAR repressor. It weakened the inhibitory effect of MdMYB16 on anthocyanin synthesis when overexpressing MdbHLH33 in callus overexpressing MdMYB16. MdMYB16 could interact with MdbHLH33. Anthocyanins are strong antioxidants that play a key role in the prevention of cardiovascular disease, cancer, and diabetes. The germplasm of Malus sieversii f. neidzwetzkyana is important for the study of anthocyanin metabolism. To date, only limited studies have examined the negative regulatory mechanisms underlying anthocyanin synthesis in apple. Here, we analyzed the relationship between anthocyanin levels and MdMYB16 expression in mature Red Crisp 1-5 apple (M. domestica) fruit, generated an evolutionary tree, and identified an EAR suppression sequence and a bHLH binding motif of the MdMYB16 protein using protein sequence analyses. Overexpression of MdMYB16 or MdMYB16 without bHLH binding sequence (LBSMdMYB16) in red-fleshed callus inhibited MdUFGT and MdANS expression and anthocyanin synthesis. However, overexpression of MdMYB16 without the EAR sequence (LESMdMYB16) in red-fleshed callus had no inhibitory effect on anthocyanin. The yeast one-hybrid assay showed that MdMYB16 and LESMdMYB16 interacted the promoters of MdANS and MdUFGT, respectively. Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays showed that MdMYB16 formed homodimers and interacted with MdbHLH33, however, the LBSMdMYB16 could not interact with MdbHLH33. We overexpressed MdbHLH33 in callus overexpressing MdMYB16 and found that it weakened the inhibitory effect of MdMYB16 on anthocyanin synthesis. Together, these results suggested that MdMYB16 and MdbHLH33 may be important part of the regulatory network controlling the anthocyanin biosynthetic pathway.

  19. High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices.

    Science.gov (United States)

    Müller, Dolores; Schantz, Markus; Richling, Elke

    2012-04-01

    In the present study the anthocyanin content of commercially available bilberry juices and fresh fruits were quantified by using 15 authentic anthocyanin standards via high performance liquid chromatography with an ultra-violet detector (HPLC-UV/VIS). Delphinidin-3-O-glucopyranoside, delphinidin-3-O-galactopyranoside, and cyanidin-3-O-arabinopyranoside were the major anthocyanins found in juices, nectar, and fresh bilberries. In contrast, fresh blueberries had higher concentrations of malvidin-3-O-arabinopyranoside and petunidin-3-O-galactopyranoside. Up to 438 mg anthocyanins per 100 g fresh weight (2762 mg/100 g dry weight (DW)) were detected in blueberries from various sources, whereas bilberries contained a maximum of 1017 mg anthocyanins per 100 g fresh weight (7465 mg/100 g DW). Commercially available bilberry and blueberry juices (n= 9) as well as nectars (n= 4) were also analyzed. Anthocyanin concentrations of juices (1610 mg/L to 5963 mg/L) and nectar from bilberries (656 mg/L to 1529 mg/L) were higher than those of blueberry juices (417 mg/L) and nectar (258 mg/L to 386 mg/L). We conclude that using several authentic anthocyanin references to quantify anthocyanin contents indicated them to be up to 53% and 64% higher in fresh bilberries and blueberries, respectively, than previously reported using cyanidin-3-O-glucoside. This study has also demonstrated that commercially available juices produced from bilberries contain much higher anthocyanin concentrations than those from blueberries. We have investigated the contents of a special class of antioxidants, namely anthocyanins in blueberry and billberry fruits and juices commercially available in Germany. To achieve reliable data we have used authentic standards for the first time. We think that our results are important in the field of nutritional intake of this important class of polyphenols and fruit juice companies get a closer insight in the occurrence of these antioxidants in market samples to be used

  20. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Science.gov (United States)

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  1. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Zhengkun Qiu

    Full Text Available Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF gene, which corresponds to the ah (Hoffman's anthocyaninless locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  2. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    Science.gov (United States)

    Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  3. Identification and quantification of anthocyanins in Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin.

    Science.gov (United States)

    Li, Yuan; Ma, Ruijing; Xu, Zhenzhen; Wang, Junhan; Chen, Tong; Chen, Fang; Wang, Zhengfu

    2013-04-01

    The anthocyanins of Kyoho grape juice-making pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin were identified and quantified by high-performance liquid chromatography-tandem mass spectrometry, and the influence of processing on the anthocyanin profiles was investigated. Twenty-three and 16 anthocyanins were found in fresh skin of Kyoho and Cabernet Sauvignon grapes, respectively. Malvidin 3-(trans)-coumaroyl-5-diglucoside and malvidin 3-glucoside were the most abundant anthocyanin in fresh skin of Kyoho and Cabernet Sauvignon grapes, respectively. The cis and trans isomers of malvidin 3-coumaroyl-5-diglucoside are reported in Kyoho grape for the first time. In addition, the anthocyanin content of juice-making pomace of Kyoho grapes and winemaking pomace of Cabernet Sauvignon grapes was significantly lower than the fresh skin samples (p < 0.05). The percentage variation of non-acylated anthocyanins was lower than that of acylated anthocyanins in all pomace samples. Kyoho grape and Cabernet Sauvignon grape showed distinctive anthocyanin profiles. Juice-making pomace is a better source of anthocyanins for use in functional foods than winemaking pomace. © 2012 Society of Chemical Industry.

  4. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    Science.gov (United States)

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  5. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes.

    Science.gov (United States)

    Li, P; Chen, X; Sun, F; Dong, H

    2017-07-01

    Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar 'Granny Smith'.

    Science.gov (United States)

    Jiang, Yonghua; Liu, Cuihua; Yan, Dan; Wen, Xiaohong; Liu, Yanli; Wang, Haojie; Dai, Jieyu; Zhang, Yujie; Liu, Yanfei; Zhou, Bin; Ren, Xiaolin

    2017-02-01

    Coloration in apple (Malus×domestica) flesh is mainly caused by the accumulation of anthocyanin. Anthocyanin is biosynthesized through the flavonoid pathway and regulated by MYB, bHLH, and WD40 transcription factors (TFs). Here, we report that the HD-Zip I TF MdHB1 was also involved in the regulation of anthocyanin accumulation. MdHB1 silencing caused the accumulation of anthocyanin in 'Granny Smith' flesh, whereas its overexpression reduced the flesh content of anthocyanin in 'Ballerina' (red-fleshed apple). Moreover, flowers of transgenic tobacco (Nicotiana tabacum 'NC89') overexpressing MdHB1 showed a remarkable reduction in pigmentation. Transient promoter activation assays and yeast one-hybrid results indicated that MdHB1 indirectly inhibited expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and UDP-glucose:flavonoid 3-O-glycosyltransferase (UFGT). Yeast two-hybrid and bimolecular fluorescence complementation determined that MdHB1 acted as a homodimer and could interact with MYB, bHLH, and WD40 in the cytoplasm, consistent with its cytoplasmic localization by green fluorescent protein fluorescence observations. Together, these results suggest that MdHB1 constrains MdMYB10, MdbHLH3, and MdTTG1 to the cytoplasm, and then represses the transcription of MdDFR and MdUFGT indirectly. When MdHB1 is silenced, these TFs are released to activate the expression of MdDFR and MdUFGT and also anthocyanin biosynthesis, resulting in red flesh in 'Granny Smith'. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica.

    Science.gov (United States)

    Feng, Kai; Xu, Zhi-Sheng; Que, Feng; Liu, Jie-Xia; Wang, Feng; Xiong, Ai-Sheng

    2018-02-01

    This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.

  8. Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid.

    Science.gov (United States)

    Wang, Lei; Albert, Nick W; Zhang, Huaibi; Arathoon, Steve; Boase, Murray R; Ngo, Hanh; Schwinn, Kathy E; Davies, Kevin M; Lewis, David H

    2014-11-01

    This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. β-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3' hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3'H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle

  9. High-performance liquid chromatography for the analytical characterization of anthocyanins in Vaccinium myrtillus L. (bilberry) fruit and food products.

    Science.gov (United States)

    Benvenuti, Stefania; Brighenti, Virginia; Pellati, Federica

    2018-06-01

    Anthocyanins represent the most abundant class of bioactive compounds present in Vaccinium myrtillus L. (bilberry) fruit, conferring it several health-promoting properties. The content of anthocyanins in food products produced from bilberries can be affected by many parameters, making the study of their composition a critical issue. In this ambit, this work was aimed at a comprehensive profiling of anthocyanins in bilberry fruit and derivatives from the Italian Northern Apennines, including jam, juice, and liqueur ("Mirtillino"). Anthocyanins were extracted from the jams by means of a dynamic maceration with acidified methanol, while juice and liqueurs were directly analyzed. The analysis of anthocyanins in the extracts was carried out by means of HPLC-UV/DAD, HPLC-ESI-MS, and MS 2 , under gradient elution. As a comparison, authentic bilberry fruits were analyzed. The total anthocyanin content was in the range 582.4-795.2 mg/100 g (FW) for the fruit, 2.3-234.5 mg/100 g for the jams, 109.2-2252.2 mg/L for the juice, and 27.9-759.3 mg/L for the liqueurs. To deeper investigate the anthocyanin profile of the liqueurs that exhibited a remarkably different composition in comparison with the other products, an authentic bilberry liqueur was prepared in the lab, following a traditional recipe, and monitored weakly by HPLC. The percentage of degradation of 3-O-galactosides and 3-O-arabinosides of bilberry anthocyanidins was found to be higher than that of 3-O-glucosides. The results of this work demonstrated the importance of a suitable and reliable analysis of bilberry fruit and related food products to ensure their genuineness and quality. Graphical abstract Vaccinium myrtillus L. (bilberry) fruit and food products analyzed in this work.

  10. Update of green tea interactions with cardiovascular drugs and putative mechanisms

    Directory of Open Access Journals (Sweden)

    José Pablo Werba

    2018-04-01

    Full Text Available Many patients treated with cardiovascular (CV drugs drink green tea (GT, either as a cultural tradition or persuaded of its putative beneficial effects for health. Yet, GT may affect the pharmacokinetics and pharmacodynamics of CV compounds. Novel GT-CV drug interactions were reported for rosuvastatin, sildenafil and tacrolimus. Putative mechanisms involve inhibitory effects of GT catechins at the intestinal level on influx transporters OATP1A2 or OATP2B1 for rosuvastatin, on CYP3A for sildenafil and on both CYP3A and the efflux transporter p-glycoprotein for tacrolimus. These interactions, which add to those previously described with simvastatin, nadolol and warfarin, might lead, in some cases, to reduced drug efficacy or risk of drug toxicity. Oddly, available data on GT interaction with CV compounds with a narrow therapeutic index, such as warfarin and tacrolimus, derive from single case reports. Conversely, GT interactions with simvastatin, rosuvastatin, nadolol and sildenafil were documented through pharmacokinetic studies. In these, the effect of GT or GT derivatives on drug exposure was mild to moderate, but a high inter-individual variability was observed. Further investigations, including studies on the effect of the dose and the time of GT intake are necessary to understand more in depth the clinical relevance of GT-CV drug interactions. Keywords: Cardiovascular drugs, Green tea, Herb–drug interactions

  11. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus.

    Science.gov (United States)

    Xu, Haifeng; Yang, Guanxian; Zhang, Jing; Wang, Yicheng; Zhang, Tianliang; Wang, Nan; Jiang, Shenghui; Zhang, Zongying; Chen, Xuesen

    2018-04-14

    The cold-induced metabolic pathway and anthocyanin biosynthesis play important roles in plant growth. In this study, we identified a bHLH binding motif in the MdMYB15L protein using protein sequence analyses. Yeast two-hybrid and pull-down assays showed that MdMYB15L could interact with MdbHLH33. Overexpressing MdMYB15L in red-fleshed callus inhibited the expression of MdCBF2 and resulted in reduced cold tolerance but did not affect anthocyanin levels. Chip-PCR and EMSA analysis showed that MdMYB15L could bind the type II cis-acting element found in the MdCBF2 promoter. Overexpressing MdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Knocking out the bHLH binding sequence of MdMYB15L (LBSMdMYB15L) prevented LBSMdMYB15L from interacting with MdbHLH33. Overexpressing LBSMdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Together, these results suggested that an apple repressor MdMYB15L might play a key role in the cold signaling and anthocyanin metabolic pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The bZip transscription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato.

    Science.gov (United States)

    Liu, Chao-Chao; Chi, Cheng; Jin, Li-Juan; Zhu, Jianhua; Yu, Jing-Quan; Zhou, Yan-Hong

    2018-03-22

    The production of anthocyanin is regulated by light and corresponding photoreceptors. In this study, we found that exposure to blue light and overexpression of CRY1a are associated with increased accumulation of anthocyanin in tomato (Solanum lycopersicum L.). These responses are the result of changes in mRNA and the protein levels of SlHY5, a transcription factor. In vitro and in vivo experiments using EMSA and ChIP-qPCR assays revealed that SlHY5 could directly recognize and bind to the G-box and ACE motifs in the promoters of anthocyanin biosynthesis genes, such as CHS1, CHS2 and DFR. Silencing of SlHY5 in OE-CRY1a lines decreased the accumulation of anthocyanin. The findings presented here not only deepened our understanding of how light controls anthocyanin biosynthesis and associated photoprotection in tomato leaves, but also allowed us to explore potential targets for improving pigment production. This article is protected by copyright. All rights reserved.

  13. Polyphenol Content, Physicochemical Properties, Enzymatic Activity, Anthocyanin Profiles, and Antioxidant Capacity of Cerasus humilis (Bge. Sok. Genotypes

    Directory of Open Access Journals (Sweden)

    Suwen Liu

    2018-01-01

    Full Text Available Seven varieties of Chinese dwarf cherries were evaluated and compared with respect to their weight, diameter, titratable acidity, total soluble solids, color, polyphenol contents, ascorbic acid levels, anthocyanin profiles, enzymatic activity, and antioxidant capacity. The fruits are rich in phenolic content (339.07–770.30 mg/100 g fresh weight. Nine anthocyanins were obtained from fruits after chromatographic separation and their structures analyzed using HPLC-ESI-MS/MS. Cyanidin-3-glucoside was the major anthocyanin with 50.36–78.39% concentration. Three anthocyanins were reported for the first time in these cherries. They exhibit low polyphenol oxidase and peroxidase activities, but their superoxide dismutase activity is high (572.75–800.17 U/g FW. The highest amounts of soluble solid content (15.67 Brix %, total titratable acid (1.90%, ascorbic acid (18.47 mg/100 g FW, and total anthocyanin (152.66 mg/100 g FW were observed. Three methods (DPPH-scavenging ability, oxygen radical absorbance capacity assay, and cellular antioxidant activity assay were employed to evaluate the antioxidant capacity of the phenolic extracts of these cherries. Number 5 has the highest values of ORAC and CAA of 205.68 μmol TE/g DM and 99.67 μmol QE/100 g FW, respectively.

  14. The effect of anthocyanins from red wine and blackberry on the integrity of a keratinocyte model using ECIS.

    Science.gov (United States)

    Évora, Ana; de Freitas, Victor; Mateus, Nuno; Fernandes, Iva

    2017-11-15

    There is a growing market demand for the incorporation of plant-derived ingredients into new products for the cosmetic industry. Anthocyanins are polyphenols arising from plant secondary metabolism that have been shown to possess many bioactive properties such as free radical scavenging, antimicrobial, and chemopreventive activities. In this work, the biological activities of red wine and blackberry anthocyanins were assessed by developing a new keratinocyte barrier model using the HaCat cell line and a microelectrode-based biosensor device, referred to as Electric Cell-Substrate Impedance Sensing (ECIS). Cells were seeded at the optimal cellular density of 1.6 × 10 6 cells per mL and the half-time was calculated to be 3.55 ± 0.67 hours. The compounds' cytotoxicity was assessed and anthocyanin pigments showed no cytotoxicity towards keratinocyte cells. Wound healing assays were also performed using ECIS and it was observed that the tested pigments enhanced the healing rate of keratinocyte cells by reducing the healing time more than 50%. Cyanidin-3-glucoside presented the best results recovering 50% of the injured area in 1.48(±0.15) hours, followed by the blackberry anthocyanins (2.01 ± 0.18 hours), malvidin-3-glucoside (2.03 ± 0.09 hours) and red wine anthocyanins (2.36 ± 0.76 hours). All presented significant differences from the control 4.91(±1.11) hours.

  15. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars

    Directory of Open Access Journals (Sweden)

    Xuehua Jin

    2016-09-01

    Full Text Available The cyanidin (Cy, pelargonidin (Pg and delphinidin (Dp pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink and carmine cultivars mainly accumulate Dp, Pg and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3’H1, ScF3’5’H and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3’5’H, ScF3’H and ScDFRs for flower color modification of ornamentals.

  16. LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins during Rabbiteye Blueberry Juice Processing

    Directory of Open Access Journals (Sweden)

    Rebecca E. Stein-Chisholm

    2017-11-01

    Full Text Available Blueberry juice processing includes multiple steps and each one affects the chemical composition of the berries, including thermal degradation of anthocyanins. Not-from-concentrate juice was made by heating and enzyme processing blueberries before pressing, followed by ultrafiltration and pasteurization. Using LC–MS/MS, major and minor anthocyanins were identified and semi-quantified at various steps through the process. Ten anthocyanins were identified, including 5 arabinoside and 5 pyrannoside anthocyanins. Three minor anthocyanins were also identified, which apparently have not been previously reported in rabbiteye blueberries. These were delphinidin-3-(p-coumaroyl-glucoside, cyanidin-3-(p-coumaroyl-glucoside, and petunidin-3-(p-coumaroyl-glucoside. Delphinidin-3-(p-coumaroyl-glucoside significantly increased 50% after pressing. The five known anthocyanidins—cyanidin, delphinidin, malvidin, peonidin, and petunidin—were also quantitated using UPLC–UV. Raw berries and press cake contained the highest anthocyanidin contents and contribute to the value and interest of press cake for use in other food and non-food products. Losses of 75.7% after pressing and 12% after pasteurization were determined for anthocyanidins during not-from-concentrate juice processing.

  17. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  18. Comparative study of anthocyanin and volatile compounds content of four varieties of Mexican roselle (Hibiscus sabdariffa L.) by multivariable analysis.

    Science.gov (United States)

    Camelo-Méndez, G A; Ragazzo-Sánchez, J A; Jiménez-Aparicio, A R; Vanegas-Espinoza, P E; Paredes-López, O; Del Villar-Martínez, A A

    2013-09-01

    Anthocyanins are a group of water-soluble pigments that provide red, purple or blue color to the leaves, flowers, and fruits. In addition, benefits have been attributed to hypertension and cardiovascular diseases. This study compared the content of total anthocyanins and volatile compounds in aqueous and ethanolic extracts of four varieties of Mexican roselle, with different levels of pigmentation. The multivariable analysis of categorical data demonstrated that ethanol was the best solvent for the extraction of both anthocyanins and volatile compounds. The concentration of anthocyanin in pigmented varieties ranged from 17.3 to 32.2 mg of cyanidin 3-glucoside/g dry weight, while volatile compounds analysis showed that geraniol was the main compound in extracts from the four varieties. The principal component analysis (PCA) allowed description of results with 77.38% of variance establishing a clear grouping for each variety in addition to similarities among some of these varieties. These results were validated by the confusion matrix obtained in the classification by the factorial discriminate analysis (FDA); it can be useful for roselle varieties classification. Small differences in anthocyanin and volatile compounds content could be detected, and it may be of interest for the food industry in order to classify a new individual into one of several groups using different variables at once.

  19. Potency of Purple Sweet Potato’s Anthocyanin as Biosensor for Detection of Chemicals in Food Products

    Science.gov (United States)

    Wulandari, A.; Sunarti, TC; Fahma, F.; Noor, E.

    2018-05-01

    Bioactive compounds such as anthocyanin are a natural ingredient that produces color with typical specificity. Anthocyanin from Ayamurasaki purple sweet potato (Ipomoea batatas L.) was extracted in ethanol and used as crude anthocyanin extracts. The color of bioactive anthocyanin can be used as a biosensor to detect chemical of food products because it provides a unique color change. However, the each bioactive has a particular sensitivity and selectivity to a specific chemical, so it is necessary to select and test the selectivity. Six chemicals, which were sodium nitrite, sodium benzoate, sodium cyclamate (food additives), formalin, borax (illegal food preservatives), and residue fertilizer (urea) were tested and observed for its color change. The results showed that the bioactive anthocyanin of purple sweet potato with the concentration of ± 42.65 ppm had better selectivity and sensitivity to sodium nitrite with a detection limit of 100 ppm, where the color change response time ranged from 15-20 minutes. The selectivity and sensitivity of this bioactive can be used as the basic information for the development of biosensor.

  20. Antidiabetic and Synergistic Effects of Anthocyanin Fraction from Berberis integerrima Fruit on Streptozotocin-Induced Diabetic Rats Model

    Directory of Open Access Journals (Sweden)

    Zahra Sabahi

    2016-03-01

    Full Text Available Diabetes mellitus is a complex endocrine disorder. There is a serious attempt to identify antidiabetic compounds from natural sources to use with other drugs for reduction of diabetes complications. Present study is based on the investigation of antihyperglycemic effect of anthocyanin fraction of Berberis integerrima Bunge (AFBI fruits on some physiological parameters (glucose level, glycogen content, and body weight in normal and streptozotocin-induced (STZ-induced diabetic rats and evaluation of synergic effect of this fraction with metformin and glibenclamide. Male Sprague dawley rats were divided into nine groups: healthy control group, diabetic control group, diabetic groups treated with anthocyanin fraction (200, 400 and 1000 mg/kg, respectively; diabetic groups treated with glibenclamide and metformin separately, diabetic groups treated with glibenclamide + anthocyanin fraction (1000 mg/kg, metformin + anthocyanin fraction (1000 mg/kg. Treatment of diabetic rats with AFBI (400, 1000mg/kg significantly decreased blood glucose as compared with control. Moreover, AFBI (400, 1000mg/kg significantly increased liver glycogen and body weight compared to control. Nevertheless, there were no synergistic effects between anthocyanin fraction and metformin or glibenclamide on blood glucose, liver glycogen, and body weight. The results of this study indicate that AFBI possesses hypoglycemic effects and may be considered for evaluation in future diabetes clinical studies.

  1. Blackcurrant Anthocyanins Increase the Levels of Collagen, Elastin, and Hyaluronic Acid in Human Skin Fibroblasts and Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Naoki Nanashima

    2018-04-01

    Full Text Available Blackcurrants (Ribes nigrum L. contain high levels of anthocyanin polyphenols, which have beneficial effects on health, owing to their antioxidant and anticarcinogenic properties. Phytoestrogens are plant-derived substances with estrogenic activity, which could have beneficial effects on the skin. Estradiol secretion decreases during menopause, reducing extracellular matrix (ECM component production by skin fibroblasts. Using a normal human female skin fibroblast cell line (TIG113 and ovariectomized rats, the present study investigated whether an anthocyanin-rich blackcurrant extract (BCE and four blackcurrant anthocyanins have novel phytoestrogenic activities that could benefit the skin in menopausal women. In TIG113 cells, a microarray and the Ingenuity® Pathway Analysis showed that 1.0 μg/mL of BCE upregulated the expression of many estrogen signaling-related genes. A quantitative RT-PCR analysis confirmed that BCE (1.0 or 10.0 μg/mL and four types of anthocyanins (10 μM altered the mRNA expression of ECM proteins and enzymes involved in ECM turnover. Immunofluorescence staining indicated that the anthocyanins stimulated the expression of ECM proteins, such as collagen (types I and III and elastin. Dietary administration of 3% BCE to ovariectomized rats for 3 months increased skin levels of collagen, elastin, and hyaluronic acid. This is the first study to show that blackcurrant phytoestrogens have beneficial effects on skin experimental models.

  2. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    Science.gov (United States)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  3. Putative golden proportions as predictors of facial esthetics in adolescents.

    NARCIS (Netherlands)

    Kiekens, R.M.A.; Kuijpers-Jagtman, A.M.; Hof, M.A. van 't; Hof, B.E. van 't; Maltha, J.C.

    2008-01-01

    INTRODUCTION: In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. METHODS: Seventy-six adult laypeople

  4. Exploring universal partnerships and putative marriages as tools for ...

    African Journals Online (AJOL)

    Following upon the Supreme Court of Appeal's judgment in Butters v Mncora 2012 4 SA 1 (SCA), which broadened the criteria and consequences of universal partnerships in cohabitation relationships, this article investigates the potential of universal partnerships and putative marriages to allocate rights to share in ...

  5. Putative Lineage of Novel African Usutu Virus, Central Europe

    Centers for Disease Control (CDC) Podcasts

    2015-10-15

    Sarah Gregory reads an abridged version of "Putative Lineage of Novel African Usutu Virus, Central Europe.".  Created: 10/15/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/15/2015.

  6. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, including 57 new ones. These genes were classified into five clans and 20 families by sequence similarities and among ...

  7. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  8. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  9. Alkenenitrile Transmissive Olefination: Synthesis of the Putative Lignan "Morinol I"

    Science.gov (United States)

    Fleming, Fraser F.; Liu, Wang; Yao, Lihua; Pitta, Bhaskar; Purzycki, Matthew; Ravikumar, P. C.

    2012-01-01

    Grignard reagents trigger an addition-elimination with α'-hydroxy acrylonitriles to selectively generate Z-alkenenitriles. The modular assembly of Z-alkenenitriles from a Grignard reagent, acrylonitrile, and an aldehyde is ideal for stereoselectively synthesizing alkenes as illustrated in the synthesis of the putative lignan "morinol I." PMID:22545004

  10. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Won Je; Jeong, Chan Young; Kwon, Jaeyoung; Van Kien, Vu; Lee, Dongho; Hong, Suk-Whan; Lee, Hojoung

    2016-11-01

    KEY MESSAGE : pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress. Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.

  11. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature.

    Science.gov (United States)

    Movahed, Nooshin; Pastore, Chiara; Cellini, Antonio; Allegro, Gianluca; Valentini, Gabriele; Zenoni, Sara; Cavallini, Erika; D'Incà, Erica; Tornielli, Giovanni Battista; Filippetti, Ilaria

    2016-05-01

    Anthocyanin levels decline in some red grape berry varieties ripened under high-temperature conditions, but the underlying mechanism is not yet clear. Here we studied the effects of two different temperature regimes, representing actual Sangiovese (Vitis vinifera L.) viticulture regions, on the accumulation of mRNAs and enzymes controlling berry skin anthocyanins. Potted uniform plants of Sangiovese were kept from veraison to harvest, in two plastic greenhouses with different temperature conditions. The low temperature (LT) conditions featured average and maximum daily air temperatures of 20 and 29 °C, respectively, whereas the corresponding high temperature (HT) conditions were 22 and 36 °C, respectively. The anthocyanin concentration at harvest was much lower in HT berries than LT berries although their profile was similar under both conditions. Under HT conditions, the biosynthesis of anthocyanins was suppressed at both the transcriptional and enzymatic levels, but peroxidase activity was higher. This suggests that the low anthocyanin content of HT berries reflects the combined impact of reduced biosynthesis and increased degradation, particularly the direct role of peroxidases in anthocyanin catabolism. Overexpression of VviPrx31 decreased anthocyanin contents in Petunia hybrida petals under heat stress condition. These data suggest that high temperature can stimulate peroxidase activity thus anthocyanin degradation in ripening grape berries.

  12. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.

    Science.gov (United States)

    Gao, Chenhao; Li, Dong; Jin, Changyu; Duan, Shaowei; Qi, Shuanghui; Liu, Kaige; Wang, Hanchen; Ma, Haoli; Hai, Jiangbo; Chen, Mingxun

    2017-04-01

    GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    Science.gov (United States)

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    International Nuclear Information System (INIS)

    Chang, Y.-C.; Huang, H.-P.; Hsu, J.-D.; Yang, S.-F.; Wang, C.-J.

    2005-01-01

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed

  15. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    Directory of Open Access Journals (Sweden)

    Sandra Fresquet-Corrales

    Full Text Available Proanthocyanidins (PAs, or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (- catechin/g FW and 228.5 nmol (- epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass are discussed.

  16. Effect of sprouting on anthocyanin, antioxidant activity, color intensity and color attributes in purple sweet potatoes

    Directory of Open Access Journals (Sweden)

    Yudiono, K.

    2017-11-01

    Full Text Available Sweet potatoes stored in a humid state will generally sprout, leading to them being deemed inedible by customers. During the sprouting process enzyme activities increase and as such it was assumed that there had been changes in the nutrition and secondary metabolism compounds, e.g. anthocyanins. The purpose of this research was to investigate the changes occurred in the characteristics of anthocyanins during the purple sweet potatoes’ sprouting. One-factor Randomized Block Design was used in the research design, i.e. the sprouting time in 6 stages: 1, 2, 3, 4, 5, and 6 weeks. The results showed that the highest antioxidant activity is 51.61±2.11%, the highest color intensity is 0.72±0.72, and the lowest hue angle value or the lowest h is 30.75±0.93o, occurring in the 4th week of sprouting. While the highest total anthocyanin is 222.07±2.65 mg/kg wet weight, and the highest red color value or a* is 12.80±0.49, occurring in the 3rd week of sprouting. The major components that compose purple sweet potatoes are Cyanidin-3-0-glucoside ([M-X]+ = m/z 286.50 to 287.50 and [M]+ = m/z 449 and Peonidin -3,5-0-diglucoside ([M-X]+ = m/z 462.50 to 463.50 and [M]+ = m/z 625.

  17. Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside isolation from freeze-dried açaí (Euterpe oleraceae Mart. by HPLC

    Directory of Open Access Journals (Sweden)

    Ana Cristina Miranda Senna Gouvêa

    2012-03-01

    Full Text Available Availability of analytical standards is a critical aspect in developing methods for quantitative analysis of anthocyanins. The anthocyanins cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were isolated from samples of freeze-dried açaí (Euterpe oleraceae Mart., which is a round and purple well-known palm fruit in Brazil, and then used as standards. The isolation of the anthocyanins was performed by High Performance Liquid Chromatography (HPLC, using an adapted six-channel selection valve. The identification of anthocyanin pigments in açaí was based on mass spectrometric data for molecular ions and MS-MS product ions and on previous published data. After the collection procedure, standards with a high purity grade were obtained and an external standard curve of each anthocyanin was plotted.

  18. The study of temperature and UV light effect in anthocyanin extract from dragon fruit (Hylocereus costaricensis) rind using UV-Visible spectrophotometer

    Science.gov (United States)

    Purbaningtias, Tri Esti; Aprilia, Anisa Cahyani; Fauzi'ah, Lina

    2017-12-01

    This study aimed to determine the total of anthocyanin content in ethanol extract from super red dragon fruit rind. The extraction was affected by temperature and light conditions. The determination of anthocyanin's total content was performed with a variation of pH and analyzed by UV-Visible spectrophotometer. The results showed that the average contained total anthocyanins obtained at room temperature, 40 and 60 °C were 4.6757, 5.6108, 21.9757 mg/L, respectively. In higher temperatures, it was observed the more anthocyanin extracted. The concentration of anthocyanin extract without UV light was 2.5716 mg/L, it was less than UV light assisted extract, i.e. 5.3770 mg / L.

  19. Anthocyanin Profile in Berries of Wild and Cultivated Vaccinium spp. along Altitudinal Gradients in the Alps

    OpenAIRE

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/acs.jafc.5b02833. Vaccinium spp. berries provide some of the best natural sources of anthocyanins. In the wild bilberry (Vaccinium myrtillus L.), a clear increasing trend in anth...

  20. The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers

    Directory of Open Access Journals (Sweden)

    Bánfalvi Zsófia

    2008-06-01

    Full Text Available Abstract Background Potato is a staple food in the diet of the world's population and also being used as animal feed. Compared to other crops, however, potato tubers are relatively poor in the essential amino acid, methionine. Our aim was to increase the methionine content of tubers by co-expressing a gene involved in methionine synthesis with a gene encoding a methionine-rich storage protein in potato plants. Results In higher plants, cystathionine γ-synthase (CgS is the first enzyme specific to methionine biosynthesis. We attempted to increase the methionine content of tubers by expressing the deleted form of the Arabidopsis CgS (CgSΔ90, which is not regulated by methionine, in potato plants. To increase the incorporation of free methionine into a storage protein the CgSΔ90 was co-transformed with the methionine-rich 15-kD β-zein. Results demonstrated a 2- to 6-fold increase in the free methionine content and in the methionine content of the zein-containing protein fraction of the transgenic tubers. In addition, in line with higher methionine content, the amounts of soluble isoleucine and serine were also increased. However, all of the lines with high level of CgSΔ90 expression were phenotypically abnormal showing severe growth retardation, changes in leaf architecture and 40- to 60% reduction in tuber yield. Furthermore, the colour of the transgenic tubers was altered due to the reduced amounts of anthocyanin pigments. The mRNA levels of phenylalanine ammonia-lyase (PAL, the enzyme catalysing the first step of anthocyanin synthesis, were decreased. Conclusion Ectopic expression of CgSΔ90 increases the methionine content of tubers, however, results in phenotypic aberrations in potato. Co-expression of the 15-kD β-zein with CgSΔ90 results in elevation of protein-bound methionine content of tubers, but can not overcome the phenotypical changes caused by CgSΔ90 and can not significantly improve the nutritional value of tubers. The level

  1. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  2. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants. Copyright © Physiologia Plantarum 2012.

  3. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines.

    Science.gov (United States)

    Bobeica, Natalia; Poni, Stefano; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2015-01-01

    Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3% as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1%. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9%) than under carbon sufficiency (48%). Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary metabolites.

  4. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines

    Directory of Open Access Journals (Sweden)

    Natalia eBobeica

    2015-05-01

    Full Text Available Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3 % as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1 %. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9% than under carbon sufficiency (48%. Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary

  5. Copigmentation Of Anthocyanin Extract of Purple Sweet Potatoes (Ipomea Batatas L.) Using Ferulic Acid And Tannic Acid

    Science.gov (United States)

    Susanti, I.; Wijaya, H.; Hasanah, F.; Heryani, S.

    2018-02-01

    Copigmentation is one of the methods to improve the color stability and intensity of anthocyanin extract. This study aimed to do the copigmentation of the anthocyanin extract of purple sweet potato using ferulic acid and tannic acid. The anthocyanin extraction was conducted with distilled water at pH 7 and pH 2 while the copigmentation was conducted by varying the concentration of ferulic acid and tannic acid. The results showed that best anthocyanin extraction method of the purple sweet potato was using distilled water at pH 2. The yield of freeze dried anthocyanin on the extraction with distilled water at pH 2 was 1710 ppm, while the yield when using distilled water at pH 7 was 888 ppm. Ferulic acid and tannic acid can be used for the copigmentation of anthocyanin extract of purple sweet potato by observing the maximum wavelength shift (bathochromic effect, Δλmax) and increase of color intensity (hyperchromic effect, ΔAmax). The bathochromic effect of ferulic acid began to occur at a concentration of 0.01M, while the hypochromic effect on tannic acid occurred at a concentration of 0.005M and remained up to a concentration of 0.02M. The best copigmentation concentration of ferulic acid was 0.015M, while tannic acid was 0.02M. The use of tannic acid 0.02M is recommended compared to ferulic acid 0.015M because with the same bathocromic effect (Δλmaks = 3,9) results hyperchromic effect (ΔA = 0,258) higher by tannic acid.

  6. Rapid methods to determine procyanidins, anthocyanins, theobromine and caffeine in rat tissues by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Serra, Aida; Macià, Alba; Romero, Maria-Paz; Piñol, Carme; Motilva, Maria-José

    2011-06-01

    Rapid, selective and sensitive methods were developed and validated to determine procyanidins, anthocyanins and alkaloids in different biological tissues, such as liver, brain, the aorta vein and adipose tissue. For this purpose, standards of procyanidins (catechin, epicatechin, and dimer B(2)), anthocyanins (cyanidin-3-glucoside and malvidin-3-glucoside) and alkaloids (theobromine, caffeine and theophylline) were used. The methods included the extraction of homogenized tissues by off-line liquid-solid extraction, and then solid-phase extraction to analyze alkaloids, or microelution solid-phase extraction plate for the analysis of procyanidins and anthocyanins. The eluted extracts were then analyzed by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, using a triple quadrupole as the analyzer. The optimum extraction solution was water/methanol/phosphoric acid 4% (94/4.5/1.5, v/v/v). The extraction recoveries were higher than 81% for all the studied compounds in all the tissues, except the anthocyanins, which were between 50 and 65% in the liver and brain. In order to show the applicability of the developed methods, different rat tissues were analyzed to determine the procyanidins, anthocyanins and alkaloids and their generated metabolites. The rats had previously consumed 1g of a grape pomace extract (to analyze procyanidins and anthocyanins) or a cocoa extract (to analyze alkaloids) per kilogram of body weight. Different tissues were extracted 4h after administration of the respective extracts. The analysis of the metabolites revealed a hepatic metabolism of procyanidins. The liver was the tissue which produced a greater accumulation of these metabolites. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Exogenous 24-Epibrassinolide Interacts with Light to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Cabernet Sauvignon (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Yali Zhou

    2018-01-01

    Full Text Available Anthocyanins and proanthocyanidins (PAs are crucial factors that affect the quality of grapes and the making of wine, which were stimulated by various stimuli and environment factors (sugar, hormones, light, and temperature. The aim of the study was to investigate the influence of exogenous 24-Epibrassinolide (EBR and light on the mechanism of anthocyanins and PAs accumulation in grape berries. Grape clusters were sprayed with EBR (0.4 mg/L under light and darkness conditions (EBR + L, EBR + D, or sprayed with deionized water under light and darkness conditions as controls (L, D, at the onset of veraison. A large amount of anthocyanins accumulated in the grape skins and was measured under EBR + L and L treatments, whereas EBR + D and D treatments severely suppressed anthocyanin accumulation. This indicated that EBR treatment could produce overlay effects under light, in comparison to that in dark. Real-time quantitative PCR analysis indicated that EBR application up-regulated the expression of genes (VvCHI1, VvCHS2, VvCHS3, VvDFR, VvLDOX, VvMYBA1 under light conditions. Under darkness conditions, only early biosynthetic genes of anthocyanin biosynthesis responded to EBR. Furthermore, we also analyzed the expression levels of the BR-regulated transcription factor VvBZR1 (Brassinazole-resistant 1 and light-regulated transcription factor VvHY5 (Elongated hypocotyl 5. Our results suggested that EBR and light had synergistic effects on the expression of genes in the anthocyanin biosynthesis pathway.

  8. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  9. Analytical procedures for identifying anthocyanins in natural extracts; Procedimentos analiticos para identificacao de antocianinas presentes em extratos naturais

    Energy Technology Data Exchange (ETDEWEB)

    Marco, Paulo Henrique; Poppi, Ronei Jesus [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Quimica]. E-mail: ronei@iqm.unicamp.br; Scarminio, Ieda Spacino [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Quimica

    2008-07-01

    Anthocyanins are among the most important plant pigments. Due to their potential benefits for human health, there is considerable interest in these natural pigments. Nonetheless, there is great difficulty in finding a technique that could provide the identification of structurally similar compounds and estimate the number and concentration of the species present. A lot of techniques have been tried to find the best methodology to extract information from these systems. In this paper, a review of the most important procedures is given, from the extraction to the identification of anthocyanins in natural extracts. (author)

  10. Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures of Haplopappus gracilis

    International Nuclear Information System (INIS)

    Wellmann, E.; Hrazdina, G.; Grisebach, H.

    1976-01-01

    Only UV light below 345 nm stimulates anthocyanin formation in dark grown cell suspension cultures of Haplopappus gracilis. A linear relationship between UV dose and flavonoid accumulation, as found previously with parsley cell cultures was not observed with the H.gracilis cells. Only continuous irradiation with high doses of UV was effective. Drastic increases in the activities of the enzymes phenylalanine ammonia-lyase, chalcone isomerase and flavanone synthase were observed under continuous UV light. The increase in enzyme activities paralleled anthocyanin formation. (author)

  11. A Radish Basic Helix-Loop-Helix Transcription Factor, RsTT8 Acts a Positive Regulator for Anthocyanin Biosynthesis

    Directory of Open Access Journals (Sweden)

    Sun-Hyung Lim

    2017-11-01

    Full Text Available The MYB-bHLH-WDR (MBW complex activates anthocyanin biosynthesis through the transcriptional regulation. RsMYB1 has been identified as a key player in anthocyanin biosynthesis in red radish (Raphanus sativus L., but its partner bHLH transcription factor (TF remains to be determined. In this study, we isolated a bHLH TF gene from red radish. Phylogenetic analysis indicated that this gene belongs to the TT8 clade of the IIIF subgroup of bHLH TFs, and we thus designated this gene RsTT8. Subcellular localization analysis showed that RsTT8-sGFP was localized to the nuclei of Arabidopsis thaliana protoplasts harboring the RsTT8-sGFP construct. We evaluated anthocyanin biosynthesis and RsTT8 expression levels in three radish varieties (N, C, and D that display different red phenotypes in the leaves, root flesh, and root skins. The root flesh of the C variety and the leaves and skins of the D variety exhibit intense red pigmentation; in these tissues, RsTT8 expression showed totally positive association with the expression of RsMYB1 TF and of five of eight tested anthocyanin biosynthesis genes (i.e., RsCHS, RsCHI, RsF3H, RsDFR, and RsANS. Heterologous co-expression of both RsTT8 and RsMYB1 in tobacco leaves dramatically increased the expression of endogenous anthocyanin biosynthesis genes and anthocyanin accumulation. Furthermore, a yeast two-hybrid assay showed that RsTT8 interacts with RsMYB1 at the MYB-interacting region (MIR, and a transient transactivation assay indicated that RsTT8 activates the RsCHS and RsDFR promoters when co-expressed with RsMYB1. Complementation of the Arabidopsis tt8-1 mutant, which lacks red pigmentation in the leaves and seeds, with RsTT8 restored red pigmentation, and resulted in high anthocyanin and proanthocyanidin contents in the leaves and seeds, respectively. Together, these results show that RsTT8 functions as a regulatory partner with RsMYB1 during anthocyanin biosynthesis.

  12. Transport Statistics - Transport - UNECE

    Science.gov (United States)

    Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6

  13. Transcriptome of Aphanomyces euteiches: new oomycete putative pathogenicity factors and metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Elodie Gaulin

    Full Text Available Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids.

  14. Evaluation of Antioxidant Activities of Some Small Fruits Containing Anthocyanins Using Electrochemical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Adina Căta

    2016-06-01

    Full Text Available The objective of this work was to estimate the antioxidant capacity of some fruits extracts containing anthocyanins (strawberry, raspberry, elderberry, mulberry, blackberry, bilberry, black and red currant using an electrochemical technique and three classical chemical methods based on reaction between antioxidants and a chromogen compound. evaluation of antioxidant activities of extracts was performed by using FRAP (ferric reducing/antioxidant capacity, ABTS (2,2’-azinobis[3-ethylbenzothiazoline-6-sulphonate] and DPPH (2,2-diphenyl-1-picrylhydrazyl assays. Antioxidant activities of the extracts were correlated with their content of monomeric anthocyanins and total phenolics. Good correlations were obtained especially between antioxidant activities and total phenolics content. Cyclic voltammetry was used for the evaluation of overall reducing capacity of the extracts using a glassy carbon electrode. Reducing capacity of selected fruits extracts was assessed based on the half-peak potential (E1/2 of the first oxidation peak. The oxidation potentials characterized by E1/2 value were not correlated with the antioxidant activities evaluated by the classical methods. This work is licensed under a Creative Commons Attribution 4.0 International License.

  15. Anthocyanins as inflammatory modulators and the role of the gut microbiota.

    Science.gov (United States)

    Morais, Carina Almeida; de Rosso, Veridiana Vera; Estadella, Débora; Pisani, Luciana Pellegrini

    2016-07-01

    The health benefits of consuming fruits that are rich in polyphenols, especially anthocyanins, have been the focus of recent in vitro and in vivo investigations. Thus, greater attention is being directed to the reduction of the inflammatory process associated with the intestinal microbiota and the mechanism underlying these effects because the microbiota has been closely associated with the metabolism of these compounds in the gastrointestinal tract. Further interest lies in the ability of these metabolites to modulate the growth of specific intestinal bacteria. Thus, this review examines studies involving the action of the anthocyanins that are present in many fruits and their effect in the modulating the inflammatory process associated with the interaction between the host and the gut microbiota. The findings of both in vitro and in vivo studies suggest a potential antiinflammatory effect of these compounds, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB. This effect is associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A study of glycaemic effects following acute anthocyanin-rich blueberry supplementation in healthy young adults.

    Science.gov (United States)

    Bell, L; Lamport, D J; Butler, L T; Williams, C M

    2017-09-20

    The postprandial response to ingested carbohydrate is recognised as a marker of metabolic health. Postprandial hyperglycaemia is observed in type 2 diabetes mellitus and is a significant risk factor for cardiovascular disease. Cognitive deficits are also associated with type 2 diabetes. Therefore interventions which moderate postprandial glucose profiles are desirable. Here we investigated the impact of anthocyanin-rich wild blueberries on postprandial glucose response. Seventeen healthy young adults consumed a range of doses of freeze-dried wild blueberry powder, in smoothie form, in both sugar-matched and no-added-sugar conditions. Plasma glucose was determined by a capillary sampling method at baseline and at regular intervals up to 2.5 hours postprandially. Blueberries were observed to significantly extend the postprandial glucose response beyond the period observed for a sugar-matched control, characteristic of a beneficial glycaemic response. Furthermore, blueberries were observed to reduce peak postprandial glucose levels, although statistical significance was not achieved. The findings suggest a tempering of the postprandial glucose response in the presence of anthocyanin-rich blueberry, and are discussed with reference to likely glucoregulatory mechanisms of action and their implications for cognitive and type 2 diabetes research.

  17. Application of Differential Colorimetry To Evaluate Anthocyanin-Flavonol-Flavanol Ternary Copigmentation Interactions in Model Solutions.

    Science.gov (United States)

    Gordillo, Belén; Rodríguez-Pulido, Francisco J; González-Miret, M Lourdes; Quijada-Morín, Natalia; Rivas-Gonzalo, Julián C; García-Estévez, Ignacio; Heredia, Francisco J; Escribano-Bailón, M Teresa

    2015-09-09

    The combined effect of anthocyanin-flavanol-flavonol ternary interactions on the colorimetric and chemical stability of malvidin-3-glucoside has been studied. Model solutions with fixed malvidin-3-glucoside/(+)-catechin ratio (MC) and variable quercetin-3-β-d-glucoside concentration (MC+Q) and solutions with fixed malvidin-3-glucoside/quercetin-3-β-d-glucoside ratio (MQ) and variable (+)-catechin concentration (MQ+C) were tested at levels closer to those existing in wines. Color variations during storage were evaluated by differential colorimetry. Changes in the anthocyanin concentration were monitored by HPLC-DAD. CIELAB color-difference formulas were demonstrated to be of practical interest to assess the stronger and more stable interaction of quercetin-3-β-d-glucoside with MC binary mixture than (+)-catechin with MQ mixture. The results imply that MC+Q ternary solutions kept their intensity and bluish tonalities for a longer time in comparison to MQ+C solutions. The stability of malvidin-3-glucoside improves when the concentration of quercetin-3-β-d-glucoside increases in MC+Q mixtures, whereas the addition of (+)-catechin in MQ+C mixtures resulted in an opposite effect.

  18. Characterization and cardioprotective activity of anthocyanins from Nitraria tangutorum Bobr. by-products.

    Science.gov (United States)

    Zhang, Ming; Ma, Jianbin; Bi, Hongtao; Song, Jiayin; Yang, Hongxia; Xia, Zhenghua; Du, Yuzhi; Gao, Tingting; Wei, Lixin

    2017-08-01

    The Nitraria tangutorum Bobr. fruit is an indigenous berry of the shrub belonging to the Zygophyllaceae family which grows at an altitude of over 3000 m in the Tibetan Plateau, and has been used as a native medicinal food for treating weakness of the spleen, stomach syndrome, dyspepsia, neurasthenia, dizziness, etc. for thousands of years. Nowadays, N. tangutorum industrial juice by-products generated from health food production can be a potential low cost source of some unique bioactive ingredients. In a prior study, we established a simultaneous microwave/ultrasonic assisted enzymatic extraction method for extracting antioxidant ingredients from the industrial by-products of N. tangutorum juice. In this study, these ingredients were selectively fractionated by cation-exchange resin chromatography to obtain an anthocyanin fraction namely NJBAE. NJBAE was found to be composed of 16 anthocyanins derived from six anthocyanidins by HPLC-ESI-MS, and has an appreciable cardioprotective effect on doxorubicin-induced injured H9c2 cardiomyocytes. The cardioprotective mechanism research showed that NJBAE could directly scavenge ROS, restrict further generation of ROS, promote the activity of key antioxidase, enhance glutathione redox cycling, then affect the apoptotic signaling changes in a positive way, and finally mediate caspase-dependent cell death pathways. Therefore, NJBAE has great potential to be used for preventing and treating cardiovascular disease in the food, pharmaceutical and other emerging industries.

  19. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses.

    Science.gov (United States)

    Chen, Mingshun; Zhao, Yi; Yu, Shujuan

    2015-04-01

    Response surface methodology was used to optimise experimental conditions for ultrasonic-assisted extraction (UAE) of functional components from sugar beet molasses. The central composite design (CCD) was used for the optimisation of extraction parameters in terms of total phenolic contents, antioxidant activities and anthocyanins. Result suggested the optimal conditions obtained by RSM for UAE from sugar beet molasses were as follows: HCl concentration 1.55-1.72 mol/L, ethanol concentration 57-63% (v/v), extraction temperature 41-48 °C, and extraction time 66-73 min. In the optimal conditions, the experimental total phenolic contents were 17.36 mg GAE/100mL, antioxidant activity was 16.66 mg TE/g, and total anthocyanins were 31.81 mg/100g of the sugar beet molasses extract, which were well matched the predicted values. Teen compounds, i.e. gallic acid, vanillin, hydroxybenzoic acid, syringic acid, cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, catechin, delphinidin-3-O-rutinoside, delphinidin-3-O-glucuronide and ferulic acid were determined by HPLC-DAD-MS/MS in sugar beet molasses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins.

    Science.gov (United States)

    Tan, Chen; B Celli, Giovana; Lee, Michelle; Licker, Jonathan; Abbaspourrad, Alireza

    2018-05-14

    This study fabricated a novel biohybrid microgel containing polysaccharide-based polyelectrolyte complexes (PECs) for anthocyanins. Herein, anthocyanins were encapsulated into PECs composed of chondroitin sulfate and chitosan, followed by incorporation into alginate microgels using emulsification/internal gelation method. We demonstrated that PECs incorporation strongly affected the properties of microgels, dependent on the polysaccharide concentration and pH in which they were fabricated. The dense internal network surrounded by an alginate shell was clearly visualized in cross-sectioned PECs-microgels. Stability studies carried out under varying ionic strength and pH conditions demonstrated the stimuli-responsiveness of the PECs-microgels. Additionally, the presence of PECs conferred microgels with high rigidity during freeze-drying and excellent reconstitution capacity upon rehydration. These observations were attributed to the modulation of electrostatic and hydrogen-bonding cross-linking between PECs and the alginate gel matrix and suggest the PECs inclusive microgels hold promise as delivery vehicles for the controlled release of hydrophilic bioactive compounds.

  1. Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors

    Directory of Open Access Journals (Sweden)

    Hilde Barsett

    2013-03-01

    Full Text Available Extracts, subfractions, isolated anthocyanins and isolated procyanidins B2, B5 and C1 from the berries and bark of Aronia melanocarpa were investigated for their antioxidant and enzyme inhibitory activities. Four different bioassays were used, namely scavenging of the diphenylpicrylhydrazyl (DPPH radical, inhibition of 15-lipoxygenase (15-LO, inhibition of xanthine oxidase (XO and inhibition of α-glucosidase. Among the anthocyanins, cyanidin 3-arabinoside possessed the strongest and cyanidin 3-xyloside the weakest radical scavenging and enzyme inhibitory activity. These effects seem to be influenced by the sugar units linked to the anthocyanidin. Subfractions enriched in procyanidins were found to be potent α-glucosidase inhibitors; they possessed high radical scavenging properties, strong inhibitory activity towards 15-LO and moderate inhibitory activity towards XO. Trimeric procyanidin C1 showed higher activity in the biological assays compared to the dimeric procyanidins B2 and B5. This study suggests that different polyphenolic compounds of A. melanocarpa can have beneficial effects in reducing blood glucose levels due to inhibition of α-glucosidase and may have a potential to alleviate oxidative stress.

  2. Effect of Pseudomonas putida on Growth and Anthocyanin Pigment in Two Poinsettia (Euphorbia pulcherrima Cultivars

    Directory of Open Access Journals (Sweden)

    Ramon Zulueta-Rodriguez

    2014-01-01

    Full Text Available Pseudomonas putida is plant growth promoting rhizobacteria (PGPR that have the capacity to improve growth in plants. The purpose of this study was to determine growth and anthocyanin pigmentation of the bracts in two poinsettia Euphorbia pulcherrima cultivars (Prestige and Sonora Marble using three strains of P. putida, as well as a mixture of the three (MIX. Comparison with the control group indicated for the most part that Prestige grew better than the Sonora Marble cultivars with the PGPR strains. Prestige with the MIX strain grew better compared to control for the number of cyathia (83 versus 70.4, volume of roots (45 versus 35 cm3, number of leaves (78 versus 58, and area of leaf (1,788 versus 1,331 cm2, except for the number of flowers (8.8 versus 11.6. To the naked eye, coloration of plants appeared identical in color compared to the control group. For all plants with P. putida strains, there was less anthocyanin pigment, but biomass was always greater with PGPR strains. Nevertheless, to the naked eye, the coloration of the plants appeared identical in color compared to the control group. This is the first study reporting the positive effects of P. putida rhizobacteria treatments on growth of poinsettia cultivars.

  3. Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins.

    Science.gov (United States)

    Sagdic, Osman; Ekici, Lutfiye; Ozturk, Ismet; Tekinay, Turgay; Polat, Busra; Tastemur, Bilge; Bayram, Okan; Senturk, Berna

    2013-08-01

    This study was conducted to determine the potential use of anthocyanin-based extracts (ABEs) of wasted tulip flowers as food/drug colorants. For this aim, wasted tulip flowers were samples and analyzed for their bioactive properties and cytotoxicity. Total phenolic contents of the extracts of the claret red (126.55 mg of gallic acid equivalent (GAE)/g dry extract) and orange-red (113.76 mg GAE/g dry extract) flowers were the higher than those of the other tulip flowers. Total anthocyanin levels of the violet, orange-red, claret red and pink tulip flower extracts were determined as 265.04, 236.49, 839.08 and 404.45 mg pelargonidin 3-glucoside/kg dry extract, respectively and these levels were higher than those of the other flowers. The extracts were more effective for the inhibition of Listeria monocytogenes, Staphylococcus aureus and Yersinia enterocolitica compared to other tested bacteria. Additionally, the cytotoxic effects of five different tulip flower extracts on human breast adenocarcinoma (MCF-7) cell line were investigated. The results showed that the orange red, pink and violet extracts had no cytotoxic activity against MCF-7 cell lines while yellow and claret red extracts appeared to be toxic for the cells. Overall, the extracts of tulip flowers with different colors possess remarkable bioactive and cytotoxic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  5. Supplementary data: Variation in the PTEN-induced putative kinase ...

    Indian Academy of Sciences (India)

    Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. Yanchun Qu, Liang Sun, Ze Yang and Ruifa Han. J. Genet. 90, 125–128. Table 1. Clinical characteristics of cases and controls. Phenotype. T2DM. Controls. P value. Age (years). 49.5 ± 11.1. 50.4 ± ...

  6. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis.

    Science.gov (United States)

    Wang, Yulong; Wang, Yiqing; Song, Zhaoqing; Zhang, Huiyong

    2016-10-10

    Extensive studies in various plants show that the anthocyanin biosynthetic process is affected by environmental factors and regulated by many transcription factors through sophisticated regulatory networks. However, it remains largely unclear about the roles of microRNA in this process. Here, we demonstrate that miR858a is a positive regulator of anthocyanin biosynthesis in Arabidopsis seedlings. Overexpression of miR858a enhances the accumulation of anthocyanins, whereas the reduced miR858a activity results in low levels of anthocyanins in STTM858 transgenic plants. We found that miR858a inhibits the expression of MYBL2, a key negative regulator of anthocyanin biosynthesis, by translational repression. In addition, ELONGATED HYPOCOTYL 5 (HY5) was shown to directly bind the MYBL2 promoter and represses its expression via specific histone modifications. Interestingly, we found that miR858a exhibits light-responsive expression in an HY5-dependent manner. Together, these results delineate the HY5-MIR858a-MYBL2 loop as a cellular mechanism for modulating anthocyanin biosynthesis, suggesting that integration of transcriptional and posttranscriptional regulation is critical for governing proper anthocyanin accumulation in response to light and other environmental factors. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  7. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells.

    Science.gov (United States)

    Bunea, Andrea; Rugină, Dumitriţa; Sconţa, Zoriţa; Pop, Raluca M; Pintea, Adela; Socaciu, Carmen; Tăbăran, Flaviu; Grootaert, Charlotte; Struijs, Karin; VanCamp, John

    2013-11-01

    Blueberry consumption is associated with health benefits contributing to a reduced risk for cardiovascular disease, diabetes and cancer. The aim of this study was to determine the anthocyanin profile of blueberry extracts and to evaluate their effects on B16-F10 metastatic melanoma murine cells. Seven blueberry cultivars cultivated in Romania were used. The blueberry extracts were purified over an Amberlite XAD-7 resin and a Sephadex LH-20 column, in order to obtain the anthocyanin rich fractions (ARF). The antioxidant activity of the ARF of all cultivars was evaluated by ABTS, CUPRAC and ORAC assays. High performance liquid chromatography followed by electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to identify and quantify individual anthocyanins. The anthocyanin content of tested cultivars ranged from 101.88 to 195.01 mg malvidin-3-glucoside/100g fresh weight. The anthocyanin rich-fraction obtained from cultivar Torro (ARF-T) was shown to have the highest anthocyanin content and antioxidant activity, and inhibited B16-F10 melanoma murine cells proliferation at concentrations higher than 500 μg/ml. In addition, ARF-T stimulated apoptosis and increased total LDH activity in metastatic B16-F10 melanoma murine cells. These results indicate that the anthocyanins from blueberry cultivar could be used as a chemopreventive or adjuvant treatment for metastasis control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Anthocyanins from black rice (Oryza sativa L.) demonstrate antimetastatic properties by reducing MMPs and NF-κB expressions in human oral cancer CAL 27 cells.

    Science.gov (United States)

    Fan, Ming-Jen; Wang, I-Chen; Hsiao, Yung-Ting; Lin, Hui-Yi; Tang, Nou-Ying; Hung, Tzu-Chieh; Quan, Christine; Lien, Jin-Cherng; Chung, Jing-Gung

    2015-01-01

    Aside from the commonly known white rice lines, colored varieties also exist. These varieties have historically been used in Chinese medicine. Anthocyanins, a large group of natural polyphenols existing in a variety of daily fruits and vegetables, have been widely recognized as cancer chemopreventive agents. The primary objective of cancer treatment strategies has traditionally focused on preventing the occurrence of metastasis. In this research the antimetastatic mechanism of anthocyanins on the invasion/migration of human oral CAL 27 cells was performed using a transwell to quantify the migratory potential of CAL 27 cells and the results show that anthocyanins can inhibit the in vitro migration and invasion of CAL 27 cancer cells. In addition, the gelatin zymography assay indicated that anthocyanins inhibited the activity of matrix metalloproteinases-2 (MMP-2). Western blotting assay also demonstrated that anthocyanins inhibited the associated protein expression of migration/invasion of CAL 27 cell. Immunofluorescence staining proved that anthocyanins inhibited nuclear factor kappa B p65 (NF-κB p65) expressions. These results demonstrated that anthocyanins from a species of black rice (selected purple glutinous indica rice cultivated at Asia University) could suppress CAL 27 cell metastasis by reduction of MMP-2, MMP-9, and NF-κB p65 expression through the suppression of PI3K/Akt pathway and inhibition of NF-κB levels.

  9. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1).

    Science.gov (United States)

    Ribnicky, David M; Roopchand, Diana E; Oren, Andrew; Grace, Mary; Poulev, Alexander; Lila, Mary Ann; Havenaar, Robert; Raskin, Ilya

    2014-01-01

    The TNO intestinal model (TIM-1) of the human upper gastrointestinal tract was used to compare intestinal absorption/bioaccessibility of blueberry anthocyanins under different digestive conditions. Blueberry polyphenol-rich extract was delivered to TIM-1 in the absence or presence of a high-fat meal. HPLC analysis of seventeen anthocyanins showed that delphinidin-3-glucoside, delphinidin-3-galactoside, delphinidin-3-arabinoside and petunidin-3-arabinoside were twice as bioaccessible in fed state, whilst delphinidin-3-(6″-acetoyl)-glucoside and malvidin-3-arabinoside were twice as bioaccessible under fasted conditions, suggesting lipid-rich matrices selectively effect anthocyanin bioaccessibility. TIM-1 was fed blueberry juice (BBJ) or blueberry polyphenol-enriched defatted soybean flour (BB-DSF) containing equivalent amounts of free or DSF-sorbed anthocyanins, respectively. Anthocyanin bioaccessibility from BB-DSF (36.0±10.4) was numerically, but not significantly, greater than that from BBJ (26.3±10.3). Ileal efflux samples collected after digestion of BB-DSF contained 2.8-fold more anthocyanins than same from BBJ, suggesting that protein-rich DSF protects anthocyanins during transit through upper digestive tract for subsequent colonic delivery/metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Effect Of Some Plant Growth Regulators And Their Combination With Methyl Jasmonate On Anthocyanin Formation In Roots Of Kalanchoe Blossfeldiana

    Directory of Open Access Journals (Sweden)

    Góraj Justyna

    2014-12-01

    Full Text Available In this study, we investigated the effect of plant growth regulators (PGRs - auxins, gibberellin, cytokinin, abscisic acid, brassinosteroid, ethylene and their interaction with methyl jasmonate (JA-Me applied to roots of the whole plants Kalanchoe blossfeldiana on the accumulation of anthocyanins in roots. The highest stimulation of anthocyanins synthesis was stated with application of JA-Me alone. In response to treatments with the other tested PGRs, the content of anthocyanins in roots of a whole plant was different depending on the concentration of the PGR when being applied alone or together with JA-Me. Auxin, indole-3-acetic acid (IAA at a concentration of 50 mg·L-1, indole-3-butyric acid (IBA at 5 mg·L-1 and abscisic acid (ABA at 10 mg·L-1 induced anthocyanin accumulation with approximately 60-115% compared to the control while 24-epibrassinolid (epiBL, gibberellic acid (GA3 and 6-benzylaminopurine (BAP had no effect on the anthocyanin accumulation. The simultaneous administration of the PGRs with JA-Me usually resulted in the accumulation of anthocyanins in roots in a manner similar to that caused by JA-Me. PGRs applied to isolated roots did not stimulate anthocyanin accumulation, except for the combination of JA-Me with 50 mg·L-1 IAA.

  11. Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-01-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF-α and interleukin (IL-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation.

  12. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic Arabidopsis thaliana lateral branches.

    Science.gov (United States)

    Zhao, Daqiu; Xia, Xing; Wei, Mengran; Sun, Jing; Meng, Jiasong; Tao, Jun

    2017-12-01

    microRNAs (miRNAs) play critical regulatory roles in plant growth and development. In the present study, the function of herbaceous peony ( Paeonia lactiflora Pall.) miR156e-3p in the regulation of color formation has been investigated. Firstly, P. lactiflora miR156e-3p precursor sequence (pre-miR156e-3p) was isolated. Subsequently, the overexpression vector of pre-miR156e-3p was constructed and transformed into Arabidopsis thaliana . Moreover, the medium screening, GUS staining, polymerase chain reaction (PCR) of the GUS region and real-time quantitative PCR (qRT-PCR) of miR156e-3p all confirmed that the purpose gene had been successfully transferred into Arabidopsis plants and expressed, which resulted in apparent purple lateral branches. And this change in color was caused by the improved anthocyanin accumulation. In addition, expression analysis had shown that the level of miR156e-3p transcript was increased, while transcription level of target gene squamosa promoter binding protein-like gene ( SPL1 ), encoding SPL transcription factor that negatively regulated anthocyanin accumulation, was repressed in miR156e-3p-overexpressing transgenic plants, and its downstream gene dihydroflavonol 4-reductase gene ( DFR ) that was directly involved in anthocyanin biosynthesis was strongly expressed, which resulted in anthocyanin accumulation of Arabidopsis lateral branches. These findings would improve the understanding of miRNAs regulation of color formation in P. lactiflora .

  13. Effect of added sugar and ascorbic acid on the anthocyanin content of high pressure processed strawberry juices during storage

    Science.gov (United States)

    Salamon, B.; Farkas, V.; Kenesei, Gy; Dalmadi, I.

    2017-10-01

    Berries have high nutritional value and can be processed in many kinds of ways. Their pigments (anthocyanins, flavonoids, carotenoids) have antioxidant properties, effectively neutralize the health-damaging free radicals. High hydrostatic pressure (HHP) technology is a minimal processing technique which is a promising alternative solution instead of traditional preservation technologies. Low molecular weight materials such as colour pigments are well preserved by application of HHP. However, the effect can be influenced by the composition of the treated food matrix. The available scientific information related to the impact of sugar and ascorbic acid content on the preservation of anthocyanins in the samples is controversial. Thus, the aim of our study was to determine the effect of HHP treatment parameters (pressure, treatment time) on the preservation of the anthocyanin content of strawberry juice supplemented by different amounts of sugar and ascorbic acid. 2n type factorial experimental design was used to evaluate the effect of four factors (refraction index, ascorbic acid, pressure, treatment time) on the residual content of total anthocyanins immediately after HHP treatment and after 21 days storage at room temperature.

  14. Phenolic content, anthocyanins and antiradical capacity of diverse purple bran rice genotypes as compared to other bran colors

    Science.gov (United States)

    Phenolic compounds reportedly may reduce the risk of developing chronic disease and their risk factors. Anthocyanins are flavonoids, a subgroup of phenolic compounds in purple colored whole grain rice that have shown these health benefits in animal studies and human clinical trials. We studied the g...

  15. Determining Total Phenolics, Anthocyanin Content and Ascorbic Acid Content in Some Plum Genotypes Grown in Ardahan Ecological Conditions

    Directory of Open Access Journals (Sweden)

    Z. T. ABACI

    2014-06-01

    Full Text Available In this study, total phenol content, total anthocyanin content, brix, pH, titrable acidity and total ascorbic acid content in the five plum genotypes cultivated in Ardahan City are determined and sustenance of the plums are revealed. Total phenol content was determined with folin-ciocalteu’s method, total anthocyanin content was determined with pH differential method and total ascorbic acid was determined with 2,6-dichlorophenolindophenol method.It is detected that the genotype with the highest brix content (%13.9 and lowest acidity (%0.98 is cancur, the genotype with the lowest brix content (%11 and highest acidity (%2.06 is wild plum, the genotype with the highest content of total anthocyanin, total phenolic substance and ascorbic acid is the wild plum and the genotype with the least content of these is the water plum. As a result of the study, it is revealed that the plum fruit has high levels of phenolic substance, anthocyanin and ascorbic acid content, so it has a high sustenance.

  16. Application of laser-based photoacoustic spectroscopy and colorimetry for quantification of anthocyanin in hard boiled candy

    NARCIS (Netherlands)

    Kovács, Mihály; Dóka, Ottó; Bicanic, Dane; Ajtony, Zsolt

    2017-01-01

    The analytical performance of the newly proposed laser-based photoacoustic spectroscopy (LPAS) and colorimetric method for quantification of anthocyanin (E163) in commercially available hard boiled candies are compared to that of the spectrophotometry (SP). Both LPAS and colorimetry are direct

  17. Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media.

    Science.gov (United States)

    Sinela, André Mundombe; Mertz, Christian; Achir, Nawel; Rawat, Nadirah; Vidot, Kevin; Fulcrand, Hélène; Dornier, Manuel

    2017-11-15

    Effect of oxygen, polyphenols and metals was studied on degradation of delphinidin and cyanidin 3-O-sambubioside of Hibiscus sabdariffa L. Experiments were conducted on aqueous extracts degassed or not, an isolated polyphenolic fraction and extract-like model media, allowing the impact of the different constituents to be decoupled. All solutions were stored for 2months at 37°C. Anthocyanin and their degradation compounds were regularly HPLC-DAD-analyzed. Oxygen concentration did not impact the anthocyanin degradation rate. Degradation rate of delphinidin 3-O-sambubioside increased 6-fold when mixed with iron from 1 to 13mg.kg -1 but decreased with chlorogenic and gallic acids. Degradation rate of cyanidin 3-O-sambubioside was not affected by polyphenols but increased by 3-fold with increasing iron concentration with a concomitant yield decrease of scission product, protocatechuic acid. Two pathways of degradation of anthocyanins were identified: a major metal-catalyzed oxidation followed by condensation and a minor scission which represents about 10% of degraded anthocyanins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2014-08-22

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  19. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS with Quantum Chemical Descriptors

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    2014-08-01

    Full Text Available Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A and electronegativity (χ of flavylium cation, and ionization potential (I of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  20. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Science.gov (United States)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  1. Inhibitory Effects of Anthocyanins on Secretion of Helicobacter pylori CagA and VacA Toxins

    Science.gov (United States)

    Kim, Sa-Hyun; Park, Min; Woo, Hyunjun; Tharmalingam, Nagendran; Lee, Gyusang; Rhee, Ki-Jong; Eom, Yong Bin; Han, Sang Ik; Seo, Woo Duck; Kim, Jong Bae

    2012-01-01

    Anthocyanins have been studied as potential antimicrobial agents against Helicobacter pylori. We investigated whether the biosynthesis and secretion of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) could be suppressed by anthocyanin treatment in vitro. H. pylori reference strain 60190 (CagA+/VacA+) was used in this study to investigate the inhibitory effects of anthocyanins; cyanidin 3-O-glucoside (C3G), peonidin 3-O-glucoside (Peo3G), pelargonidin 3-O-glucoside (Pel3G), and malvidin 3-O-glucoside (M3G) on expression and secretion of H. pylori toxins. Anthocyanins were added to bacterial cultures and Western blotting was used to determine secretion of CagA and VacA. Among them, we found that C3G inhibited secretion of CagA and VacA resulting in intracellular accumulation of CagA and VacA. C3G had no effect on cagA and vacA expression but suppressed secA transcription. As SecA is involved in translocation of bacterial proteins, the down-regulation of secA expression by C3G offers a mechanistic explanation for the inhibition of toxin secretion. To our knowledge, this is the first report suggesting that C3G inhibits secretion of the H. pylori toxins CagA and VacA via suppression of secA transcription. PMID:23155357

  2. Obtaining anthocyanin-rich extracts from frozen açai (Euterpe oleracea Mart. pulp using pressurized liquid extraction

    Directory of Open Access Journals (Sweden)

    Sylvia Carolina ALCÁZAR-ALAY

    Full Text Available Abstract Açai is considered a functional food, and in addition to being a source of energy and fiber, it is a valuable source of bioactive compounds such as anthocyanins, minerals and fatty acids. In the present work, antioxidant-rich extracts from açai pulp were obtained using pressurized liquid extraction (PLE. The effects of the independent variables, including solvent type (pure ethanol and ethanol/water (50:50 v/v, citric acid (0 and 0.3%, w/w, pressure (20 and 80 bar and temperature (30 and 60 °C were evaluated using a full factorial design. The extraction was affected primarily by the solvent type and the citric acid percentage. The results indicate that the maximum overall yield (X0 was 64± 9 (%, d.b. when the process was performed using ethanol (99.5% and citric acid (0.3% w/w. The maximum total anthocyanin content and anthocyanin recovered from the raw material were 7 ± 1 (mg anthocyanin/g extract, d.b. and 11 ± 2 (%, d.b., respectively.

  3. Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.).

    Science.gov (United States)

    Park, Suhyoung; Valan Arasu, Mariadhas; Lee, Min-Ki; Chun, Jin-Hyuk; Seo, Jeong Min; Lee, Sang-Won; Al-Dhabi, Naif Abdullah; Kim, Sun-Ju

    2014-02-15

    We profiled and quantified glucosinolates (GSLs), anthocyanins, free amino acids, and vitamin C metabolites in forty-five lines of green and red cabbages. Analysis of these distinct cabbages revealed the presence of 11 GSLs, 13 anthocyanins, 22 free amino acids, and vitamin C. GSL contents were varied amongst the different lines of cabbage. The total GSL content was mean 10.6 μmol/g DW, and sinigrin was the predominant GSL accounted mean 4.0 μmol/g DW (37.7% of the total) followed by glucoraphanin (1.9) and glucobrassicin (2.4). Amongst the 13 anthocyanins, cyanidin 3-(sinapoyl) diglucoside-5-glucoside levels were the highest. The amounts of total free amino acids in green cabbage lines ranged 365.9 mg/100g fresh weight (FW) to 1089.1mg/100g FW. Vitamin C levels were much higher in red cabbage line (129.9 mg/100g FW). Thus, the amounts of GSLs, anthocyanins, free amino acids, and vitamin C varied widely, and the variations in these compounds between the lines of cabbage were significant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The inheritance of anthocyanin pigmentation in potato (Solanum tuberosum L.) and mapping of tuber skin colour loci using RFLPs.

    NARCIS (Netherlands)

    Eck, van H.J.; Jacobs, J.M.E.; Berg, van den P.M.M.M.; Stiekema, W.J.; Jacobsen, E.

    1994-01-01

    Two existing genetic models for anthocyanin pigmentation are compared: the genetic model as proposed by Lunden (1937, 1960, 1974) for tetraploid potato Solanum tuberosum group Tuberosum and the model by Dodds & Long (1955, 1956) for diploid cultivated Solanum species. By crossing well defined

  5. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology

    Science.gov (United States)

    Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.

    2016-01-01

    Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.

  6. Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR.

    Science.gov (United States)

    Zanatta, Cinthia Fernanda; Cuevas, Elyana; Bobbio, Florinda O; Winterhalter, Peter; Mercadante, Adriana Z

    2005-11-30

    Camu-camu [Myrciaria dubia (HBK) McVaugh] is a small fruit native to the Amazonian rain forest. Its anthocyanin profile has now been investigated for the first time. Fruits from two different regions of the São Paulo state, Brazil, were analyzed. The major anthocyanins were isolated by high-speed countercurrent chromatography. HPLC-PDA, HPLC-MS/MS, and 1H NMR were used to confirm the identity of the main anthocyanins of camu-camu. Cyanidin-3-glucoside was identified as the major pigment in the fruits from both regions, representing 89.5% in the fruits produced in Iguape and 88.0% in those from Mirandópolis, followed by the delphinidin-3-glucoside, ranging between 4.2 and 5.1%, respectively. Higher total anthocyanin contents were detected in the fruits from Iguape (54.0 +/- 25.9 mg/100 g) compared to those from Mirandópolis (30.3 +/- 6.8 mg/100 g), most likely because of the lower temperatures in the Iguape region.

  7. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon.

    Science.gov (United States)

    Liu, Mei-Ying; Chi, Ming; Tang, Yong-Hong; Song, Chang-Zheng; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2015-10-19

    Grapevine training systems determine the suitability for grape varieties in a specific growing region. We evaluated the influence of three training systems, Single Guyot (SG), Spur-pruned Vertical Shoot-Positioned (VSP), and Four-Arm Kniffin (4AK), on the performance of grapes and vines of Vitis vinifera L. cv. Cabernet Sauvignon in the 2012 and 2013 growing seasons in a wet region of central China. 4AK was the most productive system in comparison to SG and VSP. SG and VSP had lower disease infections of leaves and berries, especially in the mid- and final stage of berry ripening. Three training systems had no impact on berry maturity. PLS-DA (Partial Least Squares-Discriminant) analysis showed that the relatively dry vintage could well discriminate three training systems, but the wet vintage was not. A wet vintage of 2013 had more accumulation of 3'5'-substituted and acylated anthocyanins, including malvidin-3-O-(6-O-acetyl)-glucoside, malvidin-3-O-glucoside, and petunidin-3-O-(cis-6-O-coumaryl)-glucoside, etc. With regard to the effect of training systems, 4AK grapes had the lowest concentrations of total anthocyanins and individual anthocyanins, SG and VSP differed according to the different vintages, and showed highest concentration of total individual anthocyanins in 2012 and 2013, respectively. Generally, VSP benefited the most, contributing to significantly highest levels of total individual anthocyanins, and major anthocyanin, including malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl)-glucoside, and the grapes obtained from VSP presented significantly highest proportion of 3'5'-substituted anthocyanins. With regard to the ratios of 3'5'/3'-substituted, methoxylated/non-methoxylated and acylated/non-acylated anthocyanins, the significantly higher levels were also shown in VSP system. In summary, VSP was the best training system for Cabernet Sauvignon to accumulate relatively stable individual anthocyanins in this wet region of China and potentially in

  8. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Directory of Open Access Journals (Sweden)

    Laura Zoratti

    Full Text Available In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L. and the cultivated highbush blueberry (V. corymbosum L..The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness.The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period.Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  9. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Science.gov (United States)

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  10. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity.

    Science.gov (United States)

    Jhan, J-K; Chung, Y-C; Chen, G-H; Chang, C-H; Lu, Y-C; Hsu, C-K

    2016-06-01

    The seed coat of black soya bean (SCBS) contains high amount of anthocyanins and shows antioxidant and anti-mushroom tyrosinase activities. The objectives of this study were to analyse the anthocyanins in SCBS with different solvents and to find the relationship between anthocyanin profile with anti-human and anti-mushroom tyrosinase activities. SCBS was extracted with hot water, 50 and 80% ethanol, 50 and 80% acetone and 50 and 80% acidified acetone. Total phenol and total flavonoid contents in the extracts were determined. Anthocyanins in the extracts were analysed using HPLC and LC/MS/MS. A genetically engineered human tyrosinase was used to evaluate the anti-tyrosinase potential of the extracts from SCBS. 80% acetone extract from SCBS obtained the highest total phenol, total flavonoid and cyanidin-3-O-glucoside (C3G) contents among all the extracts, whereas the hot water extract showed the lowest antioxidant contents. Three anthocyanin compounds were found in all the extracts from SCBS, and the analysis of HPLC and LC/MS/MS indicated that they were C3G, delphinidin-3-O-glucoside (D3G) and peonidin-3-O-glucoside (P3G). The ratios of C3G (2.84 mg g(-1) ), D3G (0.34 mg g(-1) ) and P3G (0.35 mg g(-1) ) in 80% acidified acetone extract were 76.6, 9.1 and 9.3%, respectively. All the extracts from SCBS possessed anti-human tyrosinase activity. Moreover, a good correlation was found between the anti-human tyrosinase activities and C3G contents in the extracts. Antioxidants in SCBS also possess anti-human and anti-mushroom tyrosinase activities. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae

    Directory of Open Access Journals (Sweden)

    Koay Suan See

    2011-06-01

    Full Text Available Melastoma malabathricum, belongs to the Melastomaceae family, is an important medicinal plant widely distributed from Madagascar to Australia, that is used in traditional remedies for the treatment of variousailments. Besides its medicinal properties, it has been identified as a potential source of anthocyanin production.The present study was carried out to investigate the effect of sucrose and methyl jasmonate and feeding time oncell biomass yield and anthocyanin production in cell suspension culture of M. malabathricum. Addition of differentconcentrations of sucrose into the cell culture of M. malabathricum influenced cell biomass and pigment accumulation. The addition of methyl jasmonate was found to have no effect on cell biomass but the presence of higher amount (12.5-50mg/L had caused a reduction in anthocyanin production and accumulation. MS medium supplemented with 30g/L sucrose and 3.5 mg/L of MeJA added on cero day and 3rd day produced high fresh cell mass at the end of nine days of culture but did not support the production of anthocyanins. However, cells cultured in the medium supplemented with 45g/L sucrose without MeJA showed the highest pigment content (0.69±0.22Cv/g-FCM. The cells cultured in MS medium supplemented with 30 g/L sucrose with 3.5mg/L MeJA added on the 3rd and 6th day of culture, showed the lowest pigment content (0.37-0.40Cv/g-FCM. This study indicated that MeJA was not necessary but sucrose was needed for the enhancement of cell growth and anthocyanin production in M. malabathricum cell cultures. Rev. Biol. Trop. 59 (2: 597-606. Epub 2011 June 01.

  12. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-12-15

    Black rice ( Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3-10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  13. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  14. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  15. Antinociceptive and Antibacterial Properties of Anthocyanins and Flavonols from Fruits of Black and Non-Black Mulberries

    Directory of Open Access Journals (Sweden)

    Hu Chen

    2017-12-01

    Full Text Available Anthocyanins and flavones are important pigments responsible for the coloration of fruits. Mulberry fruit is rich in anthocyanins and flavonols, which have multiple uses in traditional Chinese medicine. The antinociceptive and antibacterial activities of total flavonoids (TF from black mulberry (MnTF, TF of Morus nigra and non-black mulberry (MmTF, TF of Morus mongolica; and MazTF, TF of Morus alba ‘Zhenzhubai’ fruits were studied. MnTF was rich in anthocyanins (11.3 mg/g and flavonols (0.7 mg/g identified by ultra-performance liquid chromatography–tunable ultraviolet/mass single-quadrupole detection (UPLC–TUV/QDa. Comparatively, MmTF and MazTF had low flavonol contents and MazTF had no anthocyanins. MnTF showed significantly higher antinociceptive and antibacterial activities toward Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus than MmTF and MazTF. MnTF inhibited the expression of interleukin 6 (IL-6, inducible nitric oxide synthase (iNOS, phospho-p65 (p-p65 and phospho-IκBα (p-IκBα, and increased interleukin 10 (IL-10. Additionally, mice tests showed that cyanidin-3-O-glucoside (C3G, rutin (Ru and isoquercetin (IQ were the main active ingredients in the antinociceptive process. Stronger antinociceptive effect of MnTF was correlated with its high content of anthocyanins and flavonols and its inhibitory effects on proinflammatory cytokines, iNOS and nuclear factor-κB (NF-κB pathway-related proteins.

  16. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  17. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  18. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study

    OpenAIRE

    Lu, Haixia; Zhu, Ce; Li, Fei; Xu, Wei; Tao, Danying; Feng, Xiping

    2016-01-01

    Little is known about herpesvirus and putative periodontopathic bacteria in maternal chronic periodontitis. The present case-control study aimed to explore the potential relationship between putative periodontopathic bacteria and herpesviruses in maternal chronic periodontitis.Saliva samples were collected from 36 pregnant women with chronic periodontitis (cases) and 36 pregnant women with healthy periodontal status (controls). Six putative periodontopathic bacteria (Porphyromonas gingivalis ...

  19. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors.

    Science.gov (United States)

    Guo, X; Geng, P; Bai, F; Bai, G; Sun, T; Li, X; Shi, L; Zhong, Q

    2012-08-01

    The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. Phenolics of Arbutus unedo L. (Ericaceae) fruits: identification of anthocyanins and gallic acid derivatives.

    Science.gov (United States)

    Pawlowska, Agata Maria; De Leo, Marinella; Braca, Alessandra

    2006-12-27

    Arbutus unedo L., the strawberry tree (Ericaceae family), is an evergreen shrub or small tree, typical of the Mediterranean fringe and climate. The aim of the present study was to evaluate the profile of the phenolic constituents of A. unedo fruits. Seven compounds were purified by Sephadex LH-20 column chromatography of the MeOH extract followed by HPLC and were characterized as arbutin, beta-D-glucogalline, gallic acid 4-O-beta-D-glucopyranoside, 3-O-galloylquinic acid, 5-O-galloylquinic acid, 3-O-galloylshikimic acid, and 5-O-galloylshikimic acid, by means of NMR and ESI-MS analyses. Moreover, LC-PDA-MS analysis of the red pigment of A. unedo fruits revealed the presence of three anthocyanins recognized as cyanidin 3-O-beta-D-galactopyranoside, delphinidin 3-O-beta-D-glucopyranoside, and cyanidin 3-O-beta-D-arabinopyranoside. These pigments were also quantified.

  1. Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: A multivariate optimization.

    Science.gov (United States)

    Feuereisen, Michelle M; Gamero Barraza, Mariana; Zimmermann, Benno F; Schieber, Andreas; Schulze-Kaysers, Nadine

    2017-01-01

    Response surface methodology was employed to investigate the effects of pressurized liquid extraction (PLE) parameters on the recovery of phenolic compounds (anthocyanins, biflavonoids) from Brazilian pepper (Schinus terebinthifolius Raddi) fruits. The effects of temperature, static time, and ethanol as well as acid concentration on the polyphenol yield were described well by quadratic models (p75°C), an artifact occurred and was tentatively identified as a diastereomer of I3',II8-binaringenin. Multivariate optimization led to high yields of phenolic compounds from the exocarp/drupes at 100/75°C, 10/10min, 54.5/54.2% ethanol, and 5/0.03% acetic acid. This study demonstrates that PLE is well suited for the extraction of phenolic compounds from S. terebinthifolius and can efficiently be optimized by response surface methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Confidence intervals for modeling anthocyanin retention in grape pomace during nonisothermal heating.

    Science.gov (United States)

    Mishra, D K; Dolan, K D; Yang, L

    2008-01-01

    Degradation of nutraceuticals in low- and intermediate-moisture foods heated at high temperature (>100 degrees C) is difficult to model because of the nonisothermal condition. Isothermal experiments above 100 degrees C are difficult to design because they require high pressure and small sample size in sealed containers. Therefore, a nonisothermal method was developed to estimate the thermal degradation kinetic parameter of nutraceuticals and determine the confidence intervals for the parameters and the predicted Y (concentration). Grape pomace at 42% moisture content (wb) was heated in sealed 202 x 214 steel cans in a steam retort at 126.7 degrees C for > 30 min. Can center temperature was measured by thermocouple and predicted using Comsol software. Thermal conductivity (k) and specific heat (C(p)) were estimated as quadratic functions of temperature using Comsol and nonlinear regression. The k and C(p) functions were then used to predict temperature inside the grape pomace during retorting. Similar heating experiments were run at different time-temperature treatments from 8 to 25 min for kinetic parameter estimation. Anthocyanin concentration in the grape pomace was measured using HPLC. Degradation rate constant (k(110 degrees C)) and activation energy (E(a)) were estimated using nonlinear regression. The thermophysical properties estimates at 100 degrees C were k = 0.501 W/m degrees C, Cp= 3600 J/kg and the kinetic parameters were k(110 degrees C)= 0.0607/min and E(a)= 65.32 kJ/mol. The 95% confidence intervals for the parameters and the confidence bands and prediction bands for anthocyanin retention were plotted. These methods are useful for thermal processing design for nutraceutical products.

  3. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of cabernet sauvignon grapes and wines.

    Science.gov (United States)

    Casassa, Luis Federico; Keller, Markus; Harbertson, James F

    2015-04-29

    Four regulated deficit irrigation (RDI) regimes were applied to Cabernet Sauvignon grapes, which were analyzed for phenolics and also made into wine over three consecutive growing seasons. Relative to an industry standard regime (IS), yield was reduced over the three years by 37% in a full-deficit (FD) regime and by 18% in an early deficit (ED) regime, whereas no yield reduction occurred with a late deficit (LD) regime. Relative to IS, skin anthocyanin concentration (fresh weight basis) was 18% and 24% higher in ED and FD, respectively, whereas no effect was seen in LD. Seed tannin concentration was 3% and 8% higher in ED and FD, respectively, relative to the other two RDI regimes, whereas seed tannin content (amount per berry) was higher in IS than in FD. There were no practically relevant effects on the basic chemistry of the wines. The finished wines showed concentrations of tannins and anthocyanins that generally mirrored observed differences in skin and seed phenolic concentrations, although these were amplified in FD wines. Descriptive sensory analysis of the 2008 wines showed that FD wines were the most saturated in color, with higher purple hue, roughness, dryness and harshness, followed by ED wines, whereas IS and LD wines were less saturated in color and with higher brown and red hues. Overall, FD and ED seemed to yield fruit and wine with greater concentrations of phenolics than IS and LD, with the additional advantage of reducing water usage. However, these apparent benefits need to be balanced out with reductions in crop yields and potential long-term effects associated with pre-véraison water deficits.

  4. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements--analysis with problems.

    Science.gov (United States)

    Krenn, L; Steitz, M; Schlicht, C; Kurth, H; Gaedcke, F

    2007-11-01

    The fundamental nutritional benefit of fruit and vegetables in the prevention of degenerative diseases--especially in the light of the current "anti-aging wave"--has directed the attention of scientists and consumers to a variety of berry fruits and their constituents. Many of these fruits, e.g. blueberries, elderberries or cranberries, have a long tradition in European and North American folk medicine. Based on these experiences and due to the growing interest the number of food supplements on the market containing fruit powders, juice concentrates or extracts of these fruits has increased considerably. Advertising for these products mainly focusses on the phenolic compounds, especially the anthocyanins and proanthocyanidins and their preventive effects. Most of the preparations are combinations, e.g. of extracts of different fruits with vitamins and trace elements, etc. which are labelled in a way which does not allow a comparison of the products. Typically, information on the extraction solvent, the drug: extract ratio and the content of anthocyanins and proanthocyanidins is missing. Besides that, the analysis of these polyphenols causes additional problems. Whereas the quality control of herbal medicinal products is regulated in detail, no uniform requirements for food supplements are existing. A broad spectrum of methods is used for the assay of the constituents, leading to differing, incomparable results. In addition to that, the methods are quite interference-prone and consequently lead to over- or underestimation of the contents. This publication provides an overview of some selected berries (lingonberry,