WorldWideScience

Sample records for puspati

  1. Role of Puspati

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, N B

    1981-01-01

    The seminar is the third in a series of four seminars on the applications of nuclear techniques in industry and were organized by Pusat Penyelidikan Aatom Tun Ismail (PUSPATI) with the objective to introduce nuclear science and technology to Malaysia. PUSPATI was formed in 1972 aimed at five major areas of research programs to meet long-term objectives: 1) nuclear instrumentation and semiconductor technology, 2) uranium and thorium studies, 3) radiation chemistry and radiation biology, 4) reactor systems and energy studies, and 5) siting and safety studies of nuclear installations. The paper discusses the efforts in each of the above categories and draws attention to the services which PUSPATI plans to provide. The role of PUSPATI in industry and plans for future are also discussed.

  2. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  3. Role of PUSPATI

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, Noramly bin [PUSPATI, Selangor (Malaysia)

    1981-01-01

    PUSPATI was formed in 1972 with the main objectives to undertake research and development in nuclear science and technology, to produce some short-lived radioisotopes for use in medicine, agriculture and industry, to promote and coordinate the utilization of nuclear technology in research among the various research institutes and universities, to coordinate the utilization of nuclear technology in research institutes and universities, to perform personnel monitoring and environmental surveillance and to conduct training courses. These long-term objectives have been formulated through careful consideration and after consultations with experts from the International Atomic Energy Agency, discussions with researchers at local institutions and surveys on consumer requirements for radioactive materials and radiopharmaceuticals. In order to meet these long-term objectives, five major areas of research programmes have been identified. These research programmes are in the fields of Nuclear Instrumentations, Semiconductor Technology, Uranium and Thorium Studies, Radiation Chemistry and Radiation Biology, Reactor Systems and Energy Studies, and Siting and Safety Studies of Nuclear Installations.

  4. PUSPATI Triga Reactor pulsing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Auu, Gui Ah; Abu, Puad Haji; Yunus, Yaziz [PUSPATI, Selangor (Malaysia)

    1984-06-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw.

  5. PUSPATI Triga Reactor pulsing parameters

    International Nuclear Information System (INIS)

    Gui Ah Auu; Puad Haji Abu; Yaziz Yunus

    1984-01-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw. (author)

  6. Radioisotope production at PUSPATI - five year programme

    International Nuclear Information System (INIS)

    Yusof Azuddin Ali; Abdul Rahman Mohamad Ali.

    1983-01-01

    Most of the basic laboratory facilities for radioisotopes production at PUSPATI will be commissioned by September 1983. Work on setting up of production and dispensing facilities is in progress as the nuclides being worked on are those that are commonly used in medical applications, such as Tc-99m, I-131, P-32 and other nuclides such as Na-24 and K-42. Kits for compounds labelled with Tc-99m such as Stannous Pyrophosphate, Sulfur Colloid and Stannous Glucoheptonate are being prepared. The irradiation facilities available now for radioisotope production at the PUSPATI TRIGA Reactor include a central thimble (flux density 1 x 10 13 n.cm -2 S -1 ) and a rotary specimen rack (flux density 0.2 x 10 13 n.cm -1 S -1 ). Irradiation schedules and target handling techniqes are discussed. Plans for radioisotope production at PUSPATI over the period of 1983-1987, based on present demand for radioisotope, are also explained. (author)

  7. Present and possible utilization of PUSPATI reactor

    International Nuclear Information System (INIS)

    Gui Ah Auu.

    1983-01-01

    The utilization of PUSPATI TRIGA Mark II Reactor (PTR) has increased reasonably well since its commissioning last year. PTR was used mainly for training of operators, neutron flux measurements and neutron activation analysis. However, the present utilization data indicates that further increase in PTR utilization to include teaching and the usage of the beam ports is desirable. Some possible areas of PTR applications in the future in relevance to our needs are also described in this paper. (author)

  8. Static measurements at PUSPATI TRIGA Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syed Nahar Bin Syed Hussin Shabuddin; Sharifuldin Bin Salleh, Mohd Amin; Harasawa, Susumu

    1985-06-01

    Static measurements at the PUSPATI TRIGA Reactor (RTP) were made to study the variation of its fuel temperature with reactor power. Some constants that relate power to fuel temperature behaviour were also determined. These constants are reflective of the coolling characteristics in the reactor core. Comparison was also made between the negative temperature coefficient of reactivity obtained from these measurements to those published in the Safety Analysis Report, SAR. The differences between these values are attributable to a delayed effect found in static measurements but not included in the SAR calculation which consider the prompt effect only.

  9. Safety Management at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Zarina Masood; Ahmad Nabil Abdul Rahim

    2011-01-01

    Adequate safety measures and precautions, which follow relevant safety standards and procedures, should be in place so that personnel safety is assured. Nevertheless, the public, visitor, contractor or anyone who wishes to enter or be in the reactor building should be well informed with the safety measures applied. Furthermore, these same elements of safety are also applied to other irradiation facilities within the premises of Nuclear Malaysia. This paper will describes and explains current safety management system being enforced especially in the TRIGA PUSPATI Reactor (RTP) namely radiation monitoring system, safety equipment, safe work instruction, and interconnected internal and external health, safety and security related departments. (author)

  10. Stack Monitoring System At PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Zamrul Faizad Omar; Mohd Sabri Minhat; Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Izhar Abu Hussin

    2014-01-01

    This paper describes the current Stack Monitoring System at PUSPATI TRIGA Reactor (RTP) building. A stack monitoring system is a continuous air monitor placed at the reactor top for monitoring the presence of radioactive gaseous in the effluent air from the RTP building. The system consists of four detectors that provide the reading for background, particulate, Iodine and Noble gas. There is a plan to replace the current system due to frequent fault of the system, thus thorough understanding of the current system is required. Overview of the whole system will be explained in this paper. Some current results would be displayed and moving forward brief plan would be mentioned. (author)

  11. Neutron flux measurements in PUSPATI Triga Reactor

    International Nuclear Information System (INIS)

    Gui Ah Auu; Mohamad Amin Sharifuldin Salleh; Mohamad Ali Sufi.

    1983-01-01

    Neutron flux measurement in the PUSPATI TRIGA Reactor (PTR) was initiated after its commissioning on 28 June 1982. Initial measured thermal neutron flux at the bottom of the rotary specimen rack (rotating) and in-core pneumatic terminus were 3.81E+11 n/cm 2 sec and 1.10E+12n/cm 2 sec respectively at 100KW. Work to complete the neutron flux data are still going on. The cadmium ratio, thermal and epithermal neutron flux are measured in the reactor core, rotary specimen rack, in-core pneumatic terminus and thermal column. Bare and Cadmium covered gold foils and wires are used for the above measurement. The activities of the irradiated gold foils and wires are determined using Ge(Li) and hyperpure germinium detectors. (author)

  12. Radiological monitoring related to the operation of PUSPATI's Triga Reactor

    International Nuclear Information System (INIS)

    Fatimah Mohamad Amin; Mohamad Yusof Mohamad Ali; Lau How Mooi; Idris Besar.

    1983-01-01

    Reactor operation is one of the main activities carried out at the Tun Ismail Atomic Research Centre (PUSPATI) which requires radiological monitoring. This paper describes the programme for radiological monitoring which is related to the operation of the 1 MW Triga MK II research reactor which was commissioned in July, 1982. This programme includes monitoring of the radiation and contamination levels of the reactor and its associated facilities and environmental monitoring of PUSPATI's site and its environs. The data presented in this paper covers the period between 1982 to 1983 which includes both the pre-operational and operational phases of the monitoring programme. (author)

  13. Fuel transfer cask concept design for reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Ahmad Nabil Ab Rahim; Phongsakorn Prak; Tonny Lanyau; Mohd Fazli Zakaria

    2010-01-01

    Reactor Triga PUSPATI (RTP) has been operated since 1982 till now. For such long period, the organization feels the need to upgrade the power from 1 MW to 3 MW which involved changing new fuels. Spent fuels will be stored in a Spent Fuel Pool. The process of transferring spent fuels into Spent Fuels Pool required a fuel transfer cask. This paper discussed the design concept for the fuel transfer cast which is essential equipment for reactor upgrading mission. (author)

  14. Study of Physical Protection System at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ina, I.; Zarina Masood

    2016-01-01

    Physical protection program at PUSPATI TRIGA Reactor (RTP) which is located at Nuklear Malaysia, Bangi Complex has been strengthened and upgraded from time to time to accommodate current situation needs. However, there is always room for improvement. Hence, study have been made to look deeper into physical protection components such as delay systems, external sensors, PPS intruder alarm sensors, use of video system, personnel security or insider threats, access control operation system operation rules and security culture that may need to take into consideration. (author)

  15. Integrated management system implementation strategy for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Phongsakorn Prak Tom; Shaharum Ramli; Mohamad Azman Che Mat Isa; Shahirah Abdul Rahman; Mohd Zaid Mohamed; Mat Zin Mat Husin; Nurfazila Husain; Mohamad Puad Abu

    2012-01-01

    Integrated Management System (IMS) designed to fulfil the requirements integrates safety, health, environmental, security, quality and economic elements. PUSPATI TRIGA Reactor (RTP) is currently implementing the Quality Assurance Program (QAP) and looking toward implementation of IMS. This paper discussed the implementation strategy of IMS for RTP. There are nine steps of IMS implementation strategy. In implementation of IMS, Gantt chart is useful project management tool in managing the project frame work. IMS is intended as a tool to enable the continuous development of safety culture and achieve higher safety levels. (author)

  16. Development of the ageing management database of PUSPATI TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Nurhayati, E-mail: nurhayati@nm.gov.my; Tom, Phongsakorn Prak; Husain, Nurfazila; Farid, Mohd Fairus Abd; Ramli, Shaharum [Reactor Technology Centre, Malaysian Nuclear Agency, MOSTI, Bangi, 43000 Kajang, Selangor (Malaysia); Maskin, Mazleha [Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Adnan, Amirul Syazwan; Abidin, Nurul Husna Zainal [Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia (Malaysia)

    2016-01-22

    Since its first criticality in 1982, PUSPATI TRIGA Reactor (RTP) has been operated for more than 30 years. As RTP become older, ageing problems have been seen to be the prominent issues. In addressing the ageing issues, an Ageing Management (AgeM) database for managing related ageing matters was systematically developed. This paper presents the development of AgeM database taking into account all RTP major Systems, Structures and Components (SSCs) and ageing mechanism of these SSCs through the system surveillance program.

  17. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  18. Reactor TRIGA PUSPATI (RTP) spent fuel pool conceptual design

    International Nuclear Information System (INIS)

    Mohd Fazli Zakaria; Tonny Lanyau; Ahmad Nabil Ab Rahim

    2010-01-01

    Reactor TRIGA PUSPATI (RTP) is the one and only research reactor in Malaysia that has been safely operated and maintained since 1982. In order to enhance technical capabilities and competencies especially in nuclear reactor engineering a feasibility study on RTP power upgrading was proposed to serve future needs for advance nuclear science and technology in the country with the capability of designing and develop reactor system. The need of a Spent Fuel Pool begins with the discharge of spent fuel elements from RTP for temporary storage that includes all activities related to the storage of fuel until it is either sent for reprocessed or sent for final disposal. To support RTP power upgrading there will be major RTP systems replacement such as reactor components and a new temporary storage pool for fuel elements. The spent fuel pool is needed for temporarily store the irradiated fuel elements to accommodate a new reactor core structure. Spent fuel management has always been one of the most important stages in the nuclear fuel cycle and considered among the most common problems to all countries with nuclear reactors. The output of this paper will provide sufficient information to show the Spent Fuel Pool can be design and build with the adequate and reasonable safety assurance to support newly upgraded TRIGA PUSPATI TRIGA Research Reactor. (author)

  19. Operation and maintenance of 1MW PUSPATI TRIGA reactor

    International Nuclear Information System (INIS)

    Adnan Bokhari; Mohammad Suhaimi Kassim

    2006-01-01

    The Malaysian Research Reactor, Reactor TRIGA PUSPATI (RTP) has been successfully operated for 22 years for various experiments. Since its commissioning in June 1982 until December 2004, the 1MW pool-type reactor has accumulated more than 21143 hours of operation, corresponding to cumulative thermal energy release of about 14083 MW-hours. The reactor is currently in operation and normally operates on demand, which is normally up to 6 hours a day. Presently the reactor core is made up of standard TRIAGA fuel element consists of 8.5 wt%, 12 wt% and 20 wt% types; 20%-enriched and stainless steel clad. Several measures such as routine preventive maintenance and improving the reactor support systems have been taken toward achieving this long successful operation. Besides normal routine utilization like other TRIGA reactors, new strategies are implemented for effective increase in utilization. (author)

  20. Modeling the PUSPATI TRIGA Reactor using MCNP code

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  1. Development of the Fuel Element Database of PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Naim Syauqi Hamzah; Nurfazila Husain; Yahya Ismail; Mat Zin Mat Husin; Mohd Fairus Abd Farid

    2015-01-01

    Since June 28th, 1982, the PUSPATI TRIGA Reactor (RTP) operates safely with an accumulated energy release of about 17,200 MWhr, which corresponds to about 882 g of uranium burn-up. The reactor core has been reconfigured 15th times. Presently, there are 111 TRIGA fuel elements in the core, which 66 of the fuel elements are from the initial criticality while the rest of the fuel elements have been added to compensate the uranium consumption. As 59 % of the fuel elements are older than 30 years old, it is necessary to put the history of every fuel element in a database for easy access of the fuel element movement, inspection results history and integrity status. This paper intends to describe how the fuel element database is developed and related formulae used in determining the RTP fuel element elongation. (author)

  2. Organization and administrative procedures for the control of the PUSPATI research reactor

    International Nuclear Information System (INIS)

    Nahrul Khair Rashid.

    1983-01-01

    The organizational set-up of PUSPATI, the administration and operation of reactor are discussed in detail. The nuclear related activities in Malaysia are governed by Radioactive Substances Act, 1968. An internal PUSPATI Safety Committee was formed to operate in a much similar manner to a typical nuclear regulatory body but in a smaller state enough to cater the present needs. Most of the rules and regulations were adopted from several guides, technical report, series of IAEA and the practice of other similar facilities. For inspection, the reports contain data on the operation, usage, maintenance and modifications, made on the reactor are submitted monthly. From these reports, a quarterly report will be produced and submitted to the PUSPATI Safety Committee. (A.J.)

  3. Integrating 3D CAD data for manufacturing and fabrication the core model of reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Abu Bakar Harun

    2005-01-01

    This paper describe the intrigue integration of digital 3 Dimensional Computer Aided Design (3D CAD) data manipulation for the Core Model fabrication of REAKTOR TRIGA PUSPATI and ready for mass manufacturing. 3 Dimensional CAD data from Computer Aided Design program will be used as an interpreter in the fabrication of this project. The Core Model of REAKTOR TRIGA PUSPATI will be fabricated with the aid of 3D CAD drawings and digital files. The components will be segregated and divided into 2 categories namely Conventional d Rapid Fabrication. (Author)

  4. Assessment of Power Quality Problems for TRIGA PUSPATI Reactor (RTP)

    International Nuclear Information System (INIS)

    Mohd Fazli Zakaria; Ramachandaramurthy, V.K.

    2016-01-01

    The electrical power systems are exposed to different types of power quality disturbances. Investigation and monitoring of power quality is necessary to maintain accurate operation of sensitive equipment especially for nuclear installations. This paper will discuss the power quality problems observed at the electrical sources of PUSPATI TRIGA Reactor (RTP). Assessment of power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards) then, if problems exist, recommendation of mitigation techniques must be considered. Field power quality data is collected by power quality recorder and analyzed with reference to power quality standards. Normally the electrical power is supplied to the RTP via two sources in order to keep a good reliability where each of them is designed to carry the full load. The assessment of power quality during reactor operation was performed for both electrical sources. There were several disturbances such as voltage harmonics and flicker that exceeded the thresholds. (author)

  5. Current development in data acquision and processing system for reactor noise analysis in PUSPATI

    International Nuclear Information System (INIS)

    Mohamad Amin Sharifuldin Salleh.

    1986-11-01

    A data acquisition and processing system for reactor noise analysis is described. It consists of four-channel isolation amplifier, a seven-channel DC amplifier, a four-channel analog to digital converter, analog filters, a microcomputer system and a plotter. This system is being applied to investigate the reactor dynamics of the PUSPATI TRIGA MK II reactor. (author)

  6. A review of the design, construction and development of the PUSPATI project

    International Nuclear Information System (INIS)

    Ahmad Tajuddin Ali.

    1983-01-01

    The setting up of the Tun Ismail Atomic Research Centre (PUSPATI) was decided upon in September 1972 and soon after, plans were underway for the purchase of a research reactor and the construction of a research centre to house it. The centre was originally planned to be located at Sungai Buloh about 20 km to the north-west of Kuala Lumpur. However, in September 1978, a decision was made to locate the centre at Bangi, about 32 km to south of Kuala Lumpur. Earth work was started in January 1979 with clearing of the forest at the proposed site. Building construction started in February 1980. By September 1981, the reactor building was practically completed and enable reactor construction to begin. This was finished on July 15, 1982 when the reactor was officially handed over to PUSPATI. Work on the rest of the complex fell behind schedule and was only completed in July 1983 when PUSPATI moved in to occupy the research laboratories. The implementation of the PUSPATI project has been completed not without its share of problems. Its completion also marks the beginning of a new era for the development of nuclear science and technology in this country. This paper reviews the design, construction and development of the entire project. (author)

  7. Development of Reactor TRIGA PUSPATI Simulator for Education and Training

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Zarina Masood; Muhammad Rawi Mohamed Zin

    2016-01-01

    The real-time simulator for Reactor TRIGA PUSPATI (RTP) which is under development. The main purpose of this simulator is operator training and a dynamic test bed (DTB) to test and validate the control logics in reactor regulating system (RRS) of RTP. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, operator station, a network switch, control rod drive mechanism and a large display panel. The RTP hardwired panel is replicated similar to real console. The software includes a mathematical model includes reactor kinetics and thermal-hydraulics that implements plant dynamics in real-time using LabVIEW, an instructor station module work as host computer that manages user instructions, and a human machine interface module as a graphical user interface which is used in the real RTP plant. The developed TRIGA reactor simulators are installed in the Malaysian Nuclear Agency nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet which is consist of Programmable Logic Controller (PLC) S7-1500, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB such as neutron detector signal and control rod positions, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. Normal and abnormal case test have been emulated for this project. In conclusion, the functions and the control performance of the developed RTP dynamic test bed simulator have been tested showing reasonable and acceptable results. (author)

  8. Conceptual design of fuel transfer cask for Reactor TRIGA PUSPATI (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, Shalina Sheik [Prototype and Plant Development Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia); Hamzah, Mohd Arif Arif B. [Prototype and Plant Development Center, Technical Support Division Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor (Malaysia)

    2014-02-12

    Spent fuel transfer cask is used to transfer a spent fuel from the reactor tank to the spent fuel storage or for spent fuel inspection. Typically, the cask made from steel cylinders that are either welded or bolted closed. The cylinder is enclosed with additional steel, concrete, or other material to provide radiation shielding and containment of the spent fuel. This paper will discuss the Conceptual Design of fuel transfer cask for Reactor TRIGA Puspati (RTP)

  9. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Zakaria, Norasalwa; Mustafa, Muhammad Khairul Ariff; Anuar, Abul Adli; Idris, Hairul Nizam; Ba'an, Rohyiza

    2014-01-01

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future

  10. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Muhammad Khairul Ariff Mustafa; Abul Adli Anuar; Hairul Nizam Idris; Rohyiza Baan

    2013-01-01

    Full-text: Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future. (author)

  11. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Norasalwa, E-mail: norasalwa@nuclearmalaysia.gov.my; Mustafa, Muhammad Khairul Ariff, E-mail: norasalwa@nuclearmalaysia.gov.my; Anuar, Abul Adli, E-mail: norasalwa@nuclearmalaysia.gov.my; Idris, Hairul Nizam, E-mail: norasalwa@nuclearmalaysia.gov.my; Ba' an, Rohyiza, E-mail: norasalwa@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  12. The development of quality assurance program in Reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mohd Rizal Mamat; Mohamad Zaid Mohamad; Mohd Ridzuan Abdul Mutalib

    2007-01-01

    One of the trivial issues in the operation of Nuclear Reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing has always bring about general public fear on anything related to nuclear. IAEA has always emphasized on the assurance of nuclear safety for all nuclear installations and activities. According to the IAEA safety guides, all research reactors are required to implement quality assurance programs to ensure the conduct of operations are in accordance with the safety standards required. This paper discusses the activities carried out toward the establishment of Quality Assurance Program for Reaktor TRIGA PUSPATI (RTP). (Author)

  13. Evaluation Of Fire Safety And Protection At PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ahmad Nabil Ab Rahim; Alfred Sanggau Ligam; Nurhayati Ramli; Mohd Fazli Zakaria; Naim Syauqi Hamzah; Phongsakorn Prak; Mohammad Suhaimi Kassim; Zarina Masood

    2014-01-01

    Fire hazard is one of many risks that can affect the safety operation of PUSPATI TRIGA Reactor. Reactor building in Malaysian Nuclear Agency was built in 1980s and the fire system has been introduced since then. The evaluation of the fire safety system at this time is important to ensure the efficiency of fire prevention, fighting and mitigation task that probably occurs. This evaluation involves with the fire fighting system and equipment, integrity of the system from the perspective of management and equipment, fire fighting procedure and fire fighting response team. (author)

  14. An Overview of Ageing Management Programme for PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Syahirah Abdul Rahman; Mohamad Azman Che Mat Isa; Mohd Zaid Mohamed

    2011-01-01

    The PUSPATI TRIGA reactor (RTP) at Malaysian Nuclear Agency which has been operating for 29 years now faces increasingly serious aging problems. Many components are obsolete whereas genuine parts are no longer in the market. Currently, the aging problem is addressed through periodic maintenance on all systems, structures and components (SSC). As a holistic measure, the Aging Management Program (AMP) was formulated to solve the problems from the grassroots. This paper describes the first stage of the AMP which identifies the strengths and capabilities. This includes identifying the types of aging, responsible parties and relationship between aging problems and safety of RTP. (author)

  15. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  16. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  17. Lessons Learned in Preparation and Review of Safety Analysis Report of PUSPATI TRIGA Reactor in Malaysia

    International Nuclear Information System (INIS)

    Maskin, Mazleha; Choi, Kwang Sik

    2010-01-01

    PUSPATI TRIGA Reactor (RTP) is the one and only research reactor in Malaysia. Since the day it was supplied by General Atomic (GA) in 1983, periodic safety reviews were carried out but not published in the form of a complete SAR. In fact, the original SAR (SAR 1983) document was provided by GA as soon as GA was selected as the supplier of RTP. The focus of this report is on the lessons learned from the preparation of SAR. The lessons learned were to address the preparation and regulatory review of the second SAR (SAR 2006). Realizing that safety is important as RTP is aging, the experiences and lessons learned from SAR development and updating processes are of great value for all parties involved. The purpose of this report is to consolidate and organize the lessons learned and suggest the best practice for the next SAR development both in preparation and regulatory review

  18. Lessons Learned in Preparation and Review of Safety Analysis Report of PUSPATI TRIGA Reactor in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Maskin, Mazleha [Korea Advanced Institute for Science and Technology, Daejeon (Korea, Republic of); Choi, Kwang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-05-15

    PUSPATI TRIGA Reactor (RTP) is the one and only research reactor in Malaysia. Since the day it was supplied by General Atomic (GA) in 1983, periodic safety reviews were carried out but not published in the form of a complete SAR. In fact, the original SAR (SAR 1983) document was provided by GA as soon as GA was selected as the supplier of RTP. The focus of this report is on the lessons learned from the preparation of SAR. The lessons learned were to address the preparation and regulatory review of the second SAR (SAR 2006). Realizing that safety is important as RTP is aging, the experiences and lessons learned from SAR development and updating processes are of great value for all parties involved. The purpose of this report is to consolidate and organize the lessons learned and suggest the best practice for the next SAR development both in preparation and regulatory review

  19. Study on external dose around the Reactor TRIGA PUSPATI (RTP) Facility: A proposal

    International Nuclear Information System (INIS)

    Hairul Nizam Idris

    2012-01-01

    In order to meet the requirement of the recent regulation (AELB-BSRP 2010), it is absolutely necessary to re-execute the in-situ and accumulated external dose assessment at the surrounding area of the Reactor TRIGA PUSPATI (RTP) facility. A number of strategic locations will be identified for the points of the dose mapping. Selection of these measurement points will be base on certain factor such as physical shielding thickness, occupancy of the workers, and others. Then, several survey meters and dosimeter will be chosen base on measuring method, reactor radiation spectra energy, type of radiation and etc. The result obtained will be compared with action values or limits given by AELB- BSRP 2010 and also can be used as baseline data or report for future reference. (author)

  20. Personnel, Area And Environmental Surveillance Practices At The PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Ligam, A.S.; Zarina Masood; Mohammad Suhaimi Kassim; Ismail Sulaiman; Mohd Fazli Zakaria; Ahmad Nabil Abdul Rahim

    2013-01-01

    Personnel, area and environmental surveillance at research reactors are important to ensure that the worker, public and environment do not receive radiation doses exceeding the prescribed national limits. A surveillance programme has been in place ever since the PUSPATI TRIGA Reactor (RTP) first started its operation in 1982. The results of the surveillance have to be reported to the national regulatory body as well as the International Atomic Energy Agency. This paper will discuss the findings and improvements of the surveillance programme over the past few years. It can be concluded that workers, public and the environment does not receive doses in excess of the prescribed limits due to the operation of the RTP.(author)

  1. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    International Nuclear Information System (INIS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR

  2. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    Science.gov (United States)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  3. Development of System Model for Level 1 Probabilistic Safety Assessment of TRIGA PUSPATI Reactor

    International Nuclear Information System (INIS)

    Tom, P.P; Mazleha Maskin; Ahmad Hassan Sallehudin Mohd Sarif; Faizal Mohamed; Mohd Fazli Zakaria; Shaharum Ramli; Muhamad Puad Abu

    2014-01-01

    Nuclear safety is a very big issue in the world. As a consequence of the accident at Fukushima, Japan, most of the reactors in the world have been reviewed their safety of the reactors including also research reactors. To develop Level 1 Probabilistic Safety Assessment (PSA) of TRIGA PUSPATI Reactor (RTP), three organizations are involved; Nuclear Malaysia, AELB and UKM. PSA methodology is a logical, deductive technique which specifies an undesired top event and uses fault trees and event trees to model the various parallel and sequential combinations of failures that might lead to an undesired event. Fault Trees (FT) methodology is use in developing of system models. At the lowest level, the Basic Events (BE) of the fault trees (components failure and human errors) are assigned probability distributions. In this study, Risk Spectrum software used to construct the fault trees and analyze the system models. The results of system models analysis such as core damage frequency (CDF), minimum cut set (MCS) and common cause failure (CCF) uses to support decision making for upgrading or modification of the RTP?s safety system. (author)

  4. Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code

    International Nuclear Information System (INIS)

    Rafhayudi Jamro; Redzuwan Yahaya; Abdul Aziz Mohamed; Eid Abdel-Munem; Megat Harun Al-Rashid; Julia Abdul Karim; Ikki Kurniawan; Hafizal Yazid; Azraf Azman; Shukri Mohd

    2008-01-01

    A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (k e ff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of k e ff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of k e ff from MCNP5 were obtained when the control fuel rods were fully inserted, the k e ff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of k e ff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)

  5. Conceptual design of reactor TRIGA PUSPATI (RTP) spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Tonny Lanyau; Mazleha Maskin; Mohd Fazli Zakaria; Mohmammad Suhaimi Kassim; Ahmad Nabil Abdul Rahim; Phongsakorn Prak Tom; Mohd Fairus Abdul Farid; Mohd Huzair Hussain

    2012-01-01

    After undergo about 30 years of safe operation, Reactor TRIGA PUSPATI (RTP) was planned to be upgraded to ensure continuous operation at optimum safety condition. In the meantime, upgrading is essential to get higher flux to diversify the reactor utilization. Spent fuel pool is needed for temporary storage of the irradiated fuel before sending it back to original country for reprocessing, reuse after the upgrading accomplished or final disposal. The irradiated fuel elements need to be secure physically with continuous cooling to ensure the safety of the fuels itself. The decay heat probably still exist even though the fuel elements not in the reactor core. Therefore, appropriate cooling is required to remove the heat produced by decay of the fission product in the irradiated fuel element. The design of spent fuel pool cooling system (SFPCS) was come to mind in order to provide the sufficient cooling to the irradiated fuel elements and also as a shielding. The spent fuel pool cooling system generally equipped with pumps, heat exchanger, water storage tank, valve and piping. The design of the system is based on criteria of the primary cooling system. This paper provides the conceptual design of the spent fuel cooling system. (author)

  6. Conceptual design of reactor TRIGA PUSPATI (RTP) spent fuel storage rack

    International Nuclear Information System (INIS)

    Tonny Lanyau; Mohd Fazli Zakaria; Zaredah Hashim; Ahmad Nabil Ab Rahim; Mohammad Suhaimi Kassim

    2010-01-01

    PUSPATI TRIGA Reactor (RTP) is a pool type research reactor with 1MW thermal power. It has been safely operated since 28 June 1982. During 28 years of safe operation, there are several systems and components of the RTP that have been maintained, repaired, upgraded and replaced in order to maintain its function and safety conditions. RTP has been proposed to be upgraded so that optimum operation of RTP could be achieved as well as fulfill the future needs. Thus, competencies and technical capabilities were needed to design and develop the reactor system. In the meantime, there is system or component need to be maintained such as fuel elements. Since early operation, most of the fuel elements still can be used and none of the fuel elements was replaced or sent for reprocessing and final disposal. Towards the power upgrading, preparation of spent fuel storage is needed for temporary storing of the fuels discharged from the reactor core. The spent fuel storage rack will be located in the spent fuel pool to accommodate the spent fuels before it is send to reprocessing or final disposal. This paper proposes the conceptual design of the spent fuel storage rack. The output of this paper focused on the physical and engineering design of the spent fuel storage. (author)

  7. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Zaredah, E-mail: zaredah@nm.gov.my; Lanyau, Tonny Anak, E-mail: tonny@nm.gov.my; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi [Reactor Technology Centre, Technical Support Division, Malaysia Nuclear Agency, Ministry of Science, Technology and Innovation, Bangi, 43000, Kajang, Selangor Darul Ehsan (Malaysia); Azhar, Noraishah Syahirah [Universiti Teknologi Malaysia, 80350, Johor Bahru, Johor Darul Takzim (Malaysia)

    2016-01-22

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  8. Refurbishment of the Primary Cooling System of the Puspati Triga Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, S.; Zakaria, M. F.; Masood, Z. [Malaysian Nuclear Agency, Kajang (Malaysia)

    2014-08-15

    The refurbishment of the 27 year old primary cooling system of the 1 MW PUSPATI TRIGA reactor was completed in April 2010 over an eight month outage. The project was implemented with the dual objective of meeting current user needs as well as a future reactor core power upgrade. Hence the cooling system was partly modernized to cater for a 3 MW{sub th} reactor by installing higher capacity heat exchangers and pumps while maintaining the piping and valve sizes. The old 1 MW tube and shell heat exchanger, which had lost 25% of its heat exchange capacity, was replaced with two 1.5 MW plate type heat exchangers. Several manually operated valves were replaced with motorized units to allow remote operation from the control room. The installed cooling system was flushed with distilled water and then subjected to hydrostatic pressure tests. In the cold run test, the system was operated for an hour for every pump and heat exchanger combination while all operating parameters were checked. In the hot run test, the same was done at four levels of increasing reactor power, and dose measurements were also recorded. The paper gives the design, installation, testing and commissioning details of the project. (author)

  9. Shielding design of highly activated sample storage at reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Naim Syauqi Hamzah; Julia Abdul Karim; Mohamad Hairie Rabir; Muhd Husamuddin Abdul Khalil; Mohd Amin Sharifuldin Salleh

    2010-01-01

    Radiation protection has always been one of the most important things considered in Reaktor Triga PUSPATI (RTP) management. Currently, demands on sample activation were increased from variety of applicant in different research field area. Radiological hazard may occur if the samples evaluation done were misjudge or miscalculated. At present, there is no appropriate storage for highly activated samples. For that purpose, special irradiated samples storage box should be provided in order to segregate highly activated samples that produce high dose level and typical activated samples that produce lower dose level (1 - 2 mR/ hr). In this study, thickness required by common shielding material such as lead and concrete to reduce highly activated radiotracer sample (potassium bromide) with initial exposure dose of 5 R/ hr to background level (0.05 mR/ hr) were determined. Analyses were done using several methods including conventional shielding equation, half value layer calculation and Micro shield computer code. Design of new irradiated samples storage box for RTP that capable to contain high level gamma radioactivity were then proposed. (author)

  10. Study on Reactor Performance of Online Power Monitoring in PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on reactor performance of online power monitoring based on various parameter of reactor such as log power, linear power, period, Fuel and coolant temperature and reactivity parameter with using neutronic and other instrumentation system of reactor. Methodology of online power estimation and monitoring is to evaluate and analysis of reactor power which is important of reactor safety and control. Neutronic instrumentation system will use to estimate power measurement, differential of log and linear power and period during reactor operation .This study also focus on noise fluctuation from fission chamber during reactor operation .This work will present result of online power monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that optimization of online power monitoring will improved the reactor control and safety parameter of reactor during operation. (author)

  11. Comparison of Instrumentation and Control Parameters Based on Simulation and Experimental Data for Reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Anith Khairunnisa Ghazali; Mohd Sabri Minhat

    2015-01-01

    Reactor TRIGA PUSPATI (RTP) undergoes safe operation for more than 30 years and the only research reactor in Malaysia. The main safety feature of Instrumentation and Control (I and C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. There are no best models for RTP simulation was designed for study and research. Therefore, the comparison for I&C parameters are very essential, to design the best RTP model using MATLAB/ Simulink as close as the RTP. The simulation of TRIGA reactor type already develop using desktop reactor simulator such as Personal Computer Transient Analyzer (PCTRAN). The experimental data from RTP and simulation of PCTRAN shows some similarities and differences due to certain limitation. Currently, the structured RTP simulation was designed using MATLAB and Simulink tool that consist of ideal fission chamber, controller, control rod position, height to worth and RTP model. The study on this paper focus on comparison between real data from RTP and simulation result from PCTRAN on I&C parameters such as water level, fuel temperature, bulk temperature, power rated and rod position. The error analysis due to some similarities and differences of I&C parameters shall be obtained and analysed. The result will be used as reference for proposed new structured of RTP model. (author)

  12. Study on Operator Actions during the Occurrences of Undesirable Events in PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Tom, P.P.; Nurul Husna Zainal Abidin; Lanyau, T.A.; Zaredah Hashim

    2016-01-01

    Due to the recent Fukushima accident, the potential risks at one and only nuclear research reactor in the country, which is the PUSPATI TRIGA Reactor (RTP), has increasingly gain concerns and an attempt on the development of Level 1 Probabilistic Safety Assessment (PSA) for this reactor has been commenced. The preliminary scope of the PSA is to analyse the risk of core degradation during normal daily operation due to the random component failure and human error. SPAR-H and THERP method is used for quantifying human error probability (HEP). However, the scopes of this study only cover the qualitative parts that use interview/questionnaire method. The objectives of the questionnaire are to identify the main action for RTP operators when any undesired incident occurs during full power operation that might be caused by random component failures. From the questionnaires that have been conducted, the respondents consisted of 4 licensed operators and 9 trainee operators. All licensed operators have experience of operating reactor for more than 15 years while the trainee operator have been operate the reactor with experience of less than 10 years. Generally, in the event of an abnormal condition involving the reactor, an operator whether a licensed operator or the trainee does not have to ask permission in advance from the top individuals to carry out scram. This is to prevent the situation becoming increasingly severe if the reactor is still operating. With complete training and knowledge derived from the management, an operator can act efficiently in any emergency case. (author)

  13. Assessment and mitigation of power quality problems for PUSPATI TRIGA Reactor (RTP)

    Science.gov (United States)

    Zakaria, Mohd Fazli; Ramachandaramurthy, Vigna K.

    2017-01-01

    An electrical power systems are exposed to different types of power quality disturbances. Investigation and monitoring of power quality are necessary to maintain accurate operation of sensitive equipment especially for nuclear installations. This paper will discuss the power quality problems observed at the electrical sources of PUSPATI TRIGA Reactor (RTP). Assessment of power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards) then, if problems exist, recommendation of mitigation techniques must be considered. Field power quality data is collected by power quality recorder and analyzed with reference to power quality standards. Normally the electrical power is supplied to the RTP via two sources in order to keep a good reliability where each of them is designed to carry the full load. The assessment of power quality during reactor operation was performed for both electrical sources. There were several disturbances such as voltage harmonics and flicker that exceeded the thresholds. To reduce these disturbances, mitigation techniques have been proposed, such as to install passive harmonic filters to reduce harmonic distortion, dynamic voltage restorer (DVR) to reduce voltage disturbances and isolate all sensitive and critical loads.

  14. Lessons Learnt in the Development of Level 1 PUSPATI TRIGA Reactor Probability Safety Assessment: A Collaboration Project under the Norwegian Extra Budgetary Fund

    International Nuclear Information System (INIS)

    Mazleha Maskin; Tom, P.P.; Ahmad Hassan Sallehudin Mohd Sarif; Faizal Mohamed; Mohd Fazli Zakaria; Muhamad Puad Abu

    2014-01-01

    This article reports about the lessons learnt from the development of level 1 probabilistic safety assessment (PSA) project that was implemented under the IAEA mentoring program for TRIGA MARK II PUSPATI research reactor (RTP). As a project that involved more than 3 organizations, a strategic planning of the management and implementation of individual assignment is truly a hectic task. This report compiles all related activities from the forming of the Malaysian PSA team up to the final report submitted to the IAEA. (author)

  15. An investigation into the feasibility of thorium fuels utilization in seed-blanket configurations for TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    Thorium is one of the elements that needs to be explored for nuclear fuel research and development. One of the popular core configurations of thorium fuel is seed-blanket configuration or also known as Radkowsky Thorium Fuel concept. The seed will act as a supplier of neutrons, which will be placed inside of the core. The blanket, on the other hand, is the consumer of neutrons that is located at outermost of the core. In this work, a neutronic analysis of seed-blanket configuration for the TRIGA PUSPATI Reactor (RTP) is carried out using Monte Carlo method. The reactor, which has been operated since 1982 use uranium zirconium hydride (U-ZrH1.6) as the fuel and have multiple uranium weight which are 8.5, 12 and 20 wt.%. The pool type reactor is one and only research reactor that located in Malaysia. The design of core included the Uranium Zirconium Hydride located at the centre of the core that will act as the seed to supply neutron. The thorium oxide that will act as blanket situated outside of seed region will receive neutron to transmute 232Th to 233U. The neutron multiplication factor or criticality of each configuration is estimated. Results show that the highest initial criticality achieved is 1.30153.

  16. The determination of the national background radioactivity of gross alpha and gross beta in water samples at the PUSPATI site and its neutrons

    International Nuclear Information System (INIS)

    Rahman, M.T.A.

    1983-01-01

    The determination of the natural background radioactivity in water samples has been made at the PUSPATI site and its environs. The study was performed in January 1981 until June 1981. Samples of river, rain and tap water are periodically collected and analyzed in order to determine gross alpha and gross beta activity. In general, the total radioactivity of water is considerably low. The mean concentration of gross alpha in river water and tap water samples are 1.2 +- 0.1 and 0.2 +- 0.1 pCi/ respectively. The level of gross alpha in rain water is however, below the background rate of the detector. The mean concentration of gross beta in river water, tap water and rain water samples are 4.2 +- 0.6, 1.6 +- 0.3, and 1.9 +- 0.3 pCi/ respectively. (author)

  17. Utilization of thorium and U-ZrH1.6 fuels in various heterogeneous cores for TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    The use of thorium as nuclear fuel has been an appealing prospect for many years and will be great significance to nuclear power generation. There is an increasing need for more research on thorium as Malaysian government is currently active in the national Thorium Flagship Project, which was launched in 2014. The thorium project, which is still in phase 1, focuses on the research and development of the thorium extraction from mineral processing ore. Thus, the aim of the study is to investigate other alternative TRIGA PUSPATI Reactor (RTP) core designs that can fully utilize thorium. Currently, the RTP reactor has an average neutron flux of 2.797 x 1012 cm-2/s-1 and an effective multiplication factor, k eff, of 1.001. The RTP core has a circular array core configuration with six circular rings. Each ring consists of 6, 12, 18, 24, 30 or 36 U-ZrH1.6 fuel rods. There are three main type of uranium weight, namely 8.5, 12 and 20 wt.%. For this research, uranium zirconium hydride (U-ZrH1.6) fuel rods in the RTP core were replaced by thorium (ThO2) fuel rods. Seven core configurations with different thorium fuel rods placements were modelled in a 2D structure and simulated using Monte Carlo n-particle (MCNPX) code. Results show that the highest initial criticality obtained is around 1.35101. Additionally there is a significant discrepancy between results from previous study and the work because of the large estimated leakage probability of approximately 21.7% and 2D model simplification.

  18. PUSPATI Triga Reactor - First year in operation

    International Nuclear Information System (INIS)

    Nahrul Khair Rashid.

    1983-01-01

    First year operation of RTP reactor was mostly devoted to making in house training, setting up and testing the facilities in preparation for more routine operations. Generally the operations are categorized into 4 main purposes; experiment of research, teaching and training, demonstration, and testing and maintenance. These four purposes are elaborated in detail. Additions and modifications were performed in order to improve the safety of reactor operation. (A.J.)

  19. Database of Samples Irradiated at Reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Muhd Husamuddin Abdul Khalil; Mohd Amin Sharifuldin Salleh; Julia Abdul Karim

    2011-01-01

    Evaluation has been made to data of irradiated samples for the type of sample requested for activation at RTP. Sample types are grouped with percentage of total throughputs to rule out the weight percent of every respective group. The database consists of radionuclide inventory of short and long half-life and high activity radionuclides such as Br and Au have been identified and that database has been constructed using a user-friendly Microsoft Access. Through this, trend of gamma exposure will easily be evaluated at experimental facilities and could ensure radiological effect towards safety and health is limited per Radiation Protection (Basic Safety Standard) Regulation 1988. This database places an important parameter to improve management system in acquiring information of the samples irradiated at RTP and will enhance the safety assurance and reliability of the experimental design basis. (author)

  20. Report on the calculations of the height of the stack for PUSPATI laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This report outlines the method used in the calculation of the required stack height in order to ensure adequate dispersion and dilution of radioactive materials emitted through the stack under routine as well as accident conditions. The calculations were based on the most predominant radioactive material 1-131, possibly to be discharged from the establishment. Some general assumptions were considered and these include maximum activity of 1-131, production efficiency, filter decontamination factor, MPCa value, topography, meteorological conditions, building wake effect, downwash and plume rise. The calculations have indicated that a stack of 40 meters in height is adequate.

  1. Cryostat system for investigation on new neutron moderator materials at reactor TRIGA PUSPATI

    Energy Technology Data Exchange (ETDEWEB)

    Dris, Zakaria bin, E-mail: zakariadris@gmail.com [College of Graduate Studies, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Mohamed, Abdul Aziz bin; Hamid, Nasri A. [Centre for Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Azman, Azraf; Ahmad, Megat Harun Al Rashid Megat; Jamro, Rafhayudi; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    A simple continuous flow (SCF) cryostat was designed to investigate the neutron moderation of alumina in high temperature co-ceramic (HTCC) and polymeric materials such as Teflon under TRIGA neutron environment using a reflected neutron beam from a monochromator. Cooling of the cryostat will be carried out using liquid nitrogen. The cryostat will be built with an aluminum holder for moderator within stainless steel cylinder pipe. A copper thermocouple will be used as the temperature sensor to monitor the moderator temperature inside the cryostat holder. Initial measurements of neutron spectrum after neutron passing through the moderating materials have been carried out using a neutron spectrometer.

  2. Shielding Calculations for PUSPATI TRIGA Reactor (RTP) Fuel Transfer Cask with Micro shield

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Ariff Shah Ismail

    2011-01-01

    The shielding calculations for RTP fuel transfer cask was performed by using computer code Micro shield 7.02. Micro shield is a computer code designed to provide a model to be used for shielding calculations. The results of the calculations can be obtained fast but the code is not suitable for complex geometries with a shielding composed of more than one material. Nevertheless, the program is sufficient for As Low As Reasonable Achievable (ALARA) optimization calculations. In this calculation, a geometry based on the conceptual design of RTP fuel transfer cask was modeled. Shielding material used in the calculations were lead (Pb) and stainless steel 304 (SS304). The results obtained from these calculations are discussed in this paper. (author)

  3. The digital reactor protection system for the instrumentation and control of reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Mohd Idris Taib; Zareen Khan Abdul Jalil Khan

    2010-01-01

    Reactor Protection System (RPS) is important for Reactor Instrumentation and Control System. The RPS comprises all redundant electrical devices and circuitry involved in the generation of those initiating signals associated to the trip protective function. The instrumentation system for the RPS provides automatic protection signals against unsafe and improper reactor operation. The physical separation is provided for all of the redundant instrumentation systems to preserve redundancy. The safety protection systems using circuits composed of analog instruments and relays with relay contacts is difficult to realize from various reasons. Therefore, an application of digital technology can be said a logical conclusion also in the light of its functional superiority. (author)

  4. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    Science.gov (United States)

    Karim, Julia Abdul

    2008-05-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained.

  5. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    International Nuclear Information System (INIS)

    Karim, Julia Abdul

    2008-01-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained

  6. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  7. Selection of important initiating events for Level 1 probabilistic safety assessment study at Puspati TRIGA Reactor

    International Nuclear Information System (INIS)

    Maskin, M.; Charlie, F.; Hassan, A.; Prak Tom, P.; Ramli, Z.; Mohamed, F.

    2016-01-01

    Highlights: • Identifying possible important initiating events (IEs) for Level 1 probabilistic safety assessment performed on research nuclear reactor. • Methods in screening and grouping IEs are addressed. • Focusing only on internal IEs due to random failures of components. - Abstract: This paper attempts to present the results in identifying possible important initiating events (IEs) as comprehensive as possible to be applied in the development of Level-1 probabilistic safety assessment (PSA) study. This involves the approaches in listing and the methods in screening and grouping IEs, by focusing only on the internal IEs due to random failures of components and human errors with full power operational conditions and reactor core as the radioactivity source. Five approaches were applied in listing the IEs and each step of the methodology was described and commented. The criteria in screening and grouping the IEs were also presented. The results provided the information on how the Malaysian PSA team applied the approaches in selecting the most probable IEs as complete as possible in order to ensure the set of IEs was identified systematically and as representative as possible, hence providing confidence to the completeness of the PSA study. This study is perhaps one of the first to address classic comprehensive steps in identifying important IEs to be used in a Level-1 PSA study.

  8. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Maskin, Mazleha; Tom, Phongsakorn Prak; Lanyau, Tonny Anak; Saad, Mohamad Fauzi; Ismail, Ahmad Razali; Abu, Mohamad Puad Haji; Brayon, Fedrick Charlie Matthew; Mohamed, Faizal

    2014-01-01

    As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia

  9. Evolution of Neutron Imaging at TRIGA PUSPATI Reactor: A Promising Digital Real-Time Imaging

    International Nuclear Information System (INIS)

    Khairiah Yazid; Muhammad Rawi Mohamed Zin; Rafhayudi Jamro; Azraf Azman

    2016-01-01

    Neutron radiography is a powerful tool for non-destructive testing of materials and finds numerous applications in industry and in material research as well. The basic principle is similar to that of X-ray radiography. A beam of neutrons falls on the sample and after passing through the sample, leaves the sample image on a photographic plate or on a detector. The neutrons interact with the nuclei of the atoms that compose the sample and the absorption and scattering properties of the contained elements make it possible to produce images of components containing light elements, like hydrogen beneath a matrix of metallic elements, (lead or bismuth), which cannot be easily done with conventional X ray radiography. Exploiting this property, neutron radiography has been used in applications requiring the identification of (light) materials inside solid samples. This article gives an overview of utilization of the CCD camera system in neutron imaging system for real time radiography/ tomography investigations. (author)

  10. Evaluation of dose exposure from irradiated samples at TRIGA PUSPATI reactor (RTP)

    International Nuclear Information System (INIS)

    Muhd Husamuddin Abdul Khalil; Julia Abdul Karim; Naim Syauqi Hamzah; Mohamad Hairie Rabir; Mohd Amin Sharifuldin Salleh

    2010-01-01

    An evaluation has been made to data of irradiated samples for the type of sample requested for activation at RTP. Sample types are grouped with percentage of total throughputs to rule out the weight percent of every respective group. The database consists of radionuclide inventory of short, intermediate and long half-life and high activity radionuclides such as Br and Au have been identified. Evaluation of gamma exposure using Micro shield has also been made to pattern the trend of gamma exposure at experimental facilities and to ensure radiological effect towards safety and health is limited per Radiation Protection (Basic Safety Standard) Regulation 1988. This analysis places an important parameter to improve the design accuracy of shielding design in assuring safety, reliability and economy. (author)

  11. Principle of human system interface (HSI) design for new reactor console of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Mohd Sabri Minhat; Izhar Abu Hussin

    2013-01-01

    Full-text: This paper will describe the principle of human system interface design for new reactor console in control room at TRIGA reactor facility. In order to support these human system interface challenges in digital reactor console. Software-based instrumentation and control (I and C) system for new reactor console could lead to new human machine integration. The proposed of Human System Interface (HSI) which included the large display panels which shows reactor status, compact and computer-based workstations for monitoring, control and protection function. The proposed Human System Interface (HIS) has been evaluated using various human factor engineering. It can be concluded that the Human System Interface (HIS) is designed as to address the safety related computer controlled system. (author)

  12. Robotic Irradiated Sample Handling Concept Design in Reactor TRIGA PUSPATI using Simulation Software

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2015-01-01

    This paper introduces the concept design of an Robotic Irradiated Sample Handling Machine using graphical software application, designed as a general, flexible and open platform to work on robotics. Webots has proven to be a useful tool in many fields of robotics, such as manipulator programming, mobile robots control (wheeled, sub-aquatic and walking robots), distance computation, sensor simulation, collision detection, motion planning and so on. Webots is used as the common interface for all the applications. Some practical cases and application for this concept design are illustrated on the paper to present the possibilities of this simulation software. (author)

  13. Provision of nuclear information in Malaysia with particular reference to PUSPATI

    International Nuclear Information System (INIS)

    Samat, M.I.

    1982-09-01

    It is the purpose of this dissertation to look into the availability of scientific and technical information sources in Malaysia; to explain the situation of data communication and telecommunications in Malaysia; to discuss the availability, utilization, hardware and software of computers in Malaysia; to show the operation and services provided by INIS to its members; to propose several methods of undertaking literature searches either by manual, online, batch processing or telex; to discuss what are the methods available to acquire the original documents; and to compare the estimate cost of each method in order to conclude upon the most economical method of obtaining nuclear information. (author)

  14. A digitized wide range channel for new instrumentation and control system of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Izhar Abu Hussin; Mohd Idris Taib; Nurfarhana Ayuni Joha; Roslan Md Dan

    2010-01-01

    Wide Range Channel is one of very important part of Reactor Instrumentation and Control system. Current system is using all analog system. The main functions of the new system are to provide Wide-log power and Multi-range linear power. The other functions are to provide Percent power and Power rate of change. The linear power level range is up to 125 % and the log power system to cover from below source level to 150 %. The main function of digital signal processor is for pulse shaping, pulse counting and root mean square signal processing. The system employs automatic on-line self diagnostics and calibration verification. (author)

  15. Brain Gain Malaysia (BGM): Feasibility Studies to Upgrading the Power of TRIGA PUSPATI Reactor (RTP)

    International Nuclear Information System (INIS)

    Naim Shauqi Hamzah; Mohd Fairus Abdul Farid; Julia Abdul Karim

    2011-01-01

    BGM Programme introduced by MOSTI has give the opportunities for Reactor Technology Division to get the expertise from Romania for upgrading the power output of RTP. 2 and a half months programme include expertise development in neutronic fields and thermal hydraulics and also introduction of reactor technology to IPTA and IPTS students. This programme also benefited the staffs of BTR as activities conducted intensively and hands-on to make the researchers can improved their knowledge on related computer code effectively. (author)

  16. Development and methodology of level 1 probability safety assessment at PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mazleha Maskin; Phongsakorn, P.T.; Tonny, A.L.; Fedrick, C.M.B.; Faizal Mohamed; Mohamad Fauzi Saad; Ahmad Razali Ismail; Mohamad Puad Haji Abu

    2013-01-01

    Full-text: As a consequence of the accident at the Fukushima Dai-ichi Nuclear Power Plant in Japan, the safety aspects of the one and only research reactor (31 years old) in Malaysia need be reviewed. Based on this decision, Malaysian Nuclear Agency in collaboration with Atomic Energy Licensing Board and Universiti Kebangsaan Malaysia develop a Level-1 Probability Safety Assessment on this research reactor. This work is aimed to evaluate the potential risks of incidents in RTP and at the same time to identify internal and external hazard that may cause any extreme initiating events. This report documents the methodology in developing a Level 1 PSA performed for the RTP as a complementary approach to deterministic safety analysis both in neutronics and thermal hydraulics. This Level-1 PSA work has been performed according to the procedures suggested in relevant IAEA publications and at the same time numbers of procedures has been developed as part of an Integrated Management System programme implemented in Nuclear Malaysia. (author)

  17. Provision of nuclear information in Malaysia with particular reference to PUSPATI

    Energy Technology Data Exchange (ETDEWEB)

    Samat, M I

    1982-09-01

    It is the purpose of this dissertation to look into the availability of scientific and technical information sources in Malaysia; to explain the situation of data communication and telecommunications in Malaysia; to discuss the availability, utilization, hardware and software of computers in Malaysia; to show the operation and services provided by INIS to its members; to propose several methods of undertaking literature searches either by manual, online, batch processing or telex; to discuss what are the methods available to acquire the original documents; and to compare the estimate cost of each method in order to conclude upon the most economical method of obtaining nuclear information. (author).

  18. Safety evaluation for instrumentation and control system upgrading project of Malaysian TRIGA MARK II PUSPATI Research reactor

    International Nuclear Information System (INIS)

    Ridha Roslan; Nik Mohd Faiz Khairuddin

    2013-01-01

    Full-text: Malaysian TRIGA MARK II research reactor has been in safe operation since its first criticality in 1982. The reactor is licensed to be operated by Malaysian Nuclear Agency to perform training and research development related activities. Due to its extensive operation since last three decades, the option of modifications for safety and safety-related item and component become a necessary to replace the outdated equipment to a stat-of-art, reliable technologies. This paper will present the current regulatory activities performed by Atomic Energy Licensing Board (AELB) to ensure the upgrading of analogue to digital instrumentation and control system is implemented in safe manner. The review activity includes documentation review, manufacturer quality audit and on-site inspection for commissioning. The review performed by AELB is based on The International Atomic Energy Agency (IAEA) Safety Requirements NS-R-4, entitled Safety of Research Reactors. During this endeavour, AELB seeks technical cooperation from Korea Institute of Nuclear Safety (KINS), the nuclear experts organization of the country of origin of the instrumentation and control technology. The regulatory activity is still on-going and is expected to be completed by issuance of Authorization for Restart on December 2013. (author)

  19. Study on relationship of performance shaping factor in human error probability with prevalent stress of PUSPATI TRIGA reactor operators

    Science.gov (United States)

    Rahim, Ahmad Nabil Bin Ab; Mohamed, Faizal; Farid, Mohd Fairus Abdul; Fazli Zakaria, Mohd; Sangau Ligam, Alfred; Ramli, Nurhayati Binti

    2018-01-01

    Human factor can be affected by prevalence stress measured using Depression, Anxiety and Stress Scale (DASS). From the respondents feedback can be summarized that the main factor causes the highest prevalence stress is due to the working conditions that require operators to handle critical situation and make a prompt critical decisions. The relationship between the prevalence stress and performance shaping factors found that PSFFitness and PSFWork Process showed positive Pearson’s Correlation with the score of .763 and .826 while the level of significance, p = .028 and p = .012. These positive correlations with good significant values between prevalence stress and human performance shaping factor (PSF) related to fitness, work processes and procedures. The higher the stress level of the respondents, the higher the score of selected for the PSFs. This is due to the higher levels of stress lead to deteriorating physical health and cognitive also worsened. In addition, the lack of understanding in the work procedures can also be a factor that causes a growing stress. The higher these values will lead to the higher the probabilities of human error occur. Thus, monitoring the level of stress among operators RTP is important to ensure the safety of RTP.

  20. TRIGA reactor as an experimental tool

    Energy Technology Data Exchange (ETDEWEB)

    Nahrul Khair bin Alang Mohammad Rashid (PUSPATI, Selangor (Malaysia))

    1981-01-01

    Article reviewed on the general features, operation and capabilities, and utilization of a research reactor, PUSPATI TRIGA MARK II. The paper also described the arrangements for the use of the PUSPATI reactor.

  1. Triga reactor as an experimental tool

    International Nuclear Information System (INIS)

    Nahrul Khair bin Alang Mohammad Rashid

    1981-01-01

    Article reviewed on the general features, operation and capabilities, and utilization of a research reactor, PUSPATI TRIGA MARK II. The paper also described the arrangements for the use of the PUSPATI reactor

  2. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  3. Neutron flux and power in RTP core-15

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na’im Syauqi Bin [Nuclear and reactor Physics Section, Nuclear Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  4. Radioisotope production and distribution in Australia

    International Nuclear Information System (INIS)

    Brough, J.

    1986-01-01

    The high quality of radioactive products and services, provided by the Commercial Products Unit of Australian Atomic Energy Agency for industrial and medical applications are discussed. The production program has changed from research driven to being market driven. The Commission in fact not only manufactures radioisotopes and radiopharmaceuticals but also acts as a Centralized Dispensing Service for over sea products. The advantages associated with centralize distribution are discussed. The delivery arrangements and the existed problems are explained. With the unique experience, assistance and advice are provided for many years now to Nuclear Energy Unit at PUSPATI via staff training programs and many visits by the Commission staff to assist in the commissioning of the facilities in which enables PUSPATI to provide Malaysia and surrounding neighbour countries (on a smaller scale) with the similar type of service that the Commission does within Australia. (A.J.)

  5. Final Stage Development of Reactor Console Simulator

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Nurfarhana Ayuni Joha

    2013-01-01

    The Reactor Console Simulator PUSPATI TRIGA Reactor was developed since end of 2011 and now in the final stage of development. It is will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behavior and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of human system interface (HSI) is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate and estimated reactor console parameters. The capabilities in user interface, reactor physics and thermal-hydraulics can be expanded and explored to simulation as well as modeling for New Reactor Console, Research Reactor and Nuclear Power Plant. (author)

  6. Experience in the recruitment, organization and training of operations and maintenance personnel for the Malaysian research reactor

    International Nuclear Information System (INIS)

    Jamal Khair Ibrahim.

    1983-01-01

    The TRIGA Reactor located at the Tun Ismail Atomic Research Centre (PUSPATI) Complex is owned and operated by the Nuclear Energy Unit of the Prime Minster's Department. The operations and maintenance personnel are part and parcel of the national civil service organization. As such, the requirement and remuneration of these personnel are handled by a central federal government personnel management agency in common with personnel from other federal government agencies. In addition, the reactor is the first and only one in Malaysia, a developing country, which is the process of committing herself towards a nuclear power programme. These factors coupled with the absence of an independent reactor operator licensing agency posed unique problems in the recruitment, organization, training and licensing of operations personnel for the facility. The paper discusses these factors and their bearing on the recruitment, training, licensing and career development prospects of the PUSPATI TRIGA Reactor operators. (author)

  7. A report on the extent of radioisotope usage in Malaysia

    International Nuclear Information System (INIS)

    1983-04-01

    A market survey was carried out to study the extent of radioisotope usage in Malaysia. From the survey, the radioisotopes and their activities/quantities that are used in Industry, Medicine and Research were identified. The radioisotopes that are frequently needed or routinely used were also determined and this formed the basis of the recommendations put forward in this report. It is proposed that PUSPATI adopt the concept of a Distribution Centre in order to provide a service to the Malaysian community. (author)

  8. Achievements of BTP for 40 years

    International Nuclear Information System (INIS)

    Rehir Dahalan

    2012-01-01

    In his speech , speaker address the audients about his division since the establishment of Malaysian Nuclear Agency 40 years ago. Medical Technology Division is division that established in doing a research mainly in nuclear medicine. This division also is committed to produce safe, effective and reliable radiopharmaceuticals. 1986, this division has produced their own Tc-99m using TRIGA PUSPATI Reactor. In the middle of 1989, this services has ceased and Molybdenum sources has been bought from outside. (author)

  9. Malaysian Nuclear Agency: Annual report 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2008. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2008 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  10. Malaysian Nuclear Agency: Annual report 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2009. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2009 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  11. Malaysian Nuclear Agency; Annual report 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2013. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2013 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers

  12. Malaysian Nuclear Agency: Annual report 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2010. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2010 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  13. Malaysian Nuclear Agency; Annual report 2014

    International Nuclear Information System (INIS)

    2009-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2014. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2014 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers

  14. Malaysian Nuclear Agency; Annual report 2011

    International Nuclear Information System (INIS)

    2008-01-01

    The establishment of Malaysian Nuclear Agency (Nuclear Malaysia) was mooted from idea of the then Malaysia's Deputy Prime Minister, Tun Dr. Ismail Dato Abdul Rahman, that Malaysia should play a role in the development of nuclear science and technology for peaceful purposes. The Centre for Application of Nuclear Energy (CRANE) was the entity to mark the of Malaysia's nuclear programme, focussing on manpower development for a nuclear power programme to provide an option for energy source, following the worldwide oil crisis of the early 1970s. The Cabinet officially approved the establishment of the Tun Ismail Atomic Research Centre (PUSPATI), under the Ministry of Science, Technology and the environment on 19 September 1972. The era of nuclear research in Malaysia began with the historic event signified by the Reaktor TRIGA PUSPATI reaching its first criticality on 28 June 1982. When PUSPATI was placed under the auspices of the Prime Ministers Department, it assumed the name Nuclear Energy Unit (UTN). The Nuclear Energy Unit was later placed under the Minister of Science, Technology and the Environment. In line with the national development, the institute was name Malaysian Institute for Nuclear Technology Research (MINT) on 10 August 1994. To reflect its vision, mission, objectives and activities in the challenging world, a new identity was established, and was officially named as Malaysian Nuclear Agency (Nuclear Malaysia) on 28 September 2006. Nuclear Malaysia, is strategically located nearby the government administration, centre Putrajaya, and Cyberjaya. These annual report highlights all the activities that have been through by the agency in 2011. All the achievements and triumph were highlights in this annual report. It also contained all the agency planning during 2011 to fulfill the objectives, mission and vision to become main players in nuclear research in Malaysia. Finally, there also highlights some publications contribute by all the researchers from

  15. Fuel Transfer Cask; Procedure Option and Radiation Protection during Transferring the Spent Fuel

    International Nuclear Information System (INIS)

    Muhammad Khairul Ariff Mustafa; Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Mohd Fazli Zakaria

    2011-01-01

    Reactor TRIGA PUSPATI (RTP) has been operating almost 30 years. Many components are ageing. Nuclear Malaysia has taken an initiative to manage this ageing problem to prolong the life of the reactor. Hence, reactor upgrading project already commence started with the reactor console. To upgrade the core, all the fuel must be taken out from the core. A conceptual design of fuel transfer cask already done. This paper will discuss about the option of safe working procedure for transferring the fuel to the spent fuel pool for temporary. Hence, radiation protection for operator should be considered during the process. (author)

  16. CFD Simulation on Cooling Down of Beryllium Filters for Neutron Conditioning for Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Azraf Azman; Shahrir Abdullah; Mohd Rizal Mamat

    2011-01-01

    The cryogenic system for cooling Beryllium filter utilizing liquid nitrogen was designed, fabricated, tested and installed at SANS instrument of TRIGA MARK II PUSPATI research reactor. A computational fluid dynamics (CFD) modeling was used to predict the cooling performance of the beryllium for optimization of neutron beam resolution and transmission. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat flux. The simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium. (author)

  17. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  18. Training and Certification of Research Reactor Personnel

    International Nuclear Information System (INIS)

    Zarina Masood

    2011-01-01

    The safe operation of a research reactor requires that reactor personnel be fully trained and certified by the relevant authorities. Reactor operators at PUSPATI TRIGA Reactor underwent extensive training and are certified, ever since the reactor first started its operation in 1982. With the emphasis on enhancing reactor safety in recent years, reactor operator training and certification have also evolved. This paper discusses the changes that have to be implemented and the challenges encountered in developing a new training programme to be in line with the national standards. (author)

  19. Malaysia: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Muhammad Rawi Mohamed Zin

    2012-01-01

    Inspection of cultural heritage artifact by neutron imaging becoming interesting and important research area since its able to sees internal structure non-destructively. Therefore advanced neutron imaging capability to conduct this kind of inspection is needed. Associated with this needs, TRIGA MARK II PUSPATI reactor has neutron imaging facility, NUR-2 which capable for radiography and tomography usage. Details parameters of current set up is given. Neutron radiography capability at this facility has been relied on direct method technique by the usage of SR-45 KODAK film technology. Current set-up has been used by university student through-out the country to conduct their research in various levels of educations

  20. Present status and future plans of the National Atomic Research Center of Malaysia

    International Nuclear Information System (INIS)

    Rashid, N.K.

    1980-01-01

    The Malaysian Atomic Research Center (PUSPATI) was established in 1972 and operates under the Ministry of Science, Technology and the Environment. It is the first research center of this kind in Malaysia. Some of the objectives of this center are: operation and maintenance of the research reactor; research and development in reactor science and technology; production of short-lived radioisotopes for use in medicine, agriculture and industry; coordination of the utilization of the reactor and its experimental facilities among the various research institutes and universities; training in nuclear radiation field; personnel monitoring and environmental surveillance

  1. Technology Transfer Programme In Reactor Digital Instrumentation And Control System (REDICS) Project: Knowledge, Experiences And Future Expectations

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Mohamad Puad Abu; Izhar Abu Hussin; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Mohd Idris Taib

    2013-01-01

    The PUSPATI TRIGA MARK II research reactor in Malaysia was commissioned in 1982. After 31 years of operation, Nuclear Malaysia is taking an approach for a better research and development in nuclear radiations as well as the technical services that provided. Reactor TRIGA PUSPATI (RTP) is currently upgrading its control console from analogue to digital system. The Reactor Digital Instrumentation and Control System (ReDICS) project is done on cooperation with Korea Atomic Energy Research Institute (KAERI), Korea including the technical part from the design stage until commissioning as well as the Technology Transfer Program (TTP). TTP in this ReDICS project is a part of Human Resource and System Development Program. It was carried out from the design stage until the commissioning of the system. It covers all subjects related to the design on the digital system and the requirements for the operation of RTP. The objective of this paper is to share the knowledge and experiences gained through this ReDICS project. This paper will also discuss the future expectations from this ReDICS project for Nuclear Malaysia and its personnel, as well as to the country. (author)

  2. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  3. Fuel element transfer cask modelling using MCNP technique

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2009-01-01

    Full text: After operating for more than 25 years, some of the Reaktor TRIGA PUSPATI (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement. (author)

  4. Fuel Element Transfer Cask Modelling Using MCNP Technique

    International Nuclear Information System (INIS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  5. Division of Agro technology and Biosciences: Past, Present and Future

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim

    2012-01-01

    In presenter speech, he outlined several topics regarding development of Agro technology and Biosciences Division from 31 years ago. This division started with Unit Sains Hidupan Liar under PUSPATI in 1981 and change their names to Program Isotop dan Sinaran dalam Biologi dan Pertanian under Nuclear Technology Unit (UTN) (1983). In 1990 their premise change to MINT-Tech Park. This program responsible for conducting research in agro technology using nuclear technology. Several achievements achieved by this division since established. They also succeed in mutating banana namely Novaria banana (1994), Tongkat Ali rice (1990), ground nut (2003), orchids, organic fertilizer and foliage in 2000. The vision of this division are to promote and enhance innovation and applications in nuclear technology to achieve security in food productivity, safety and quality and ecological awareness for economics competitiveness and vibrancy in agrobioindustry and community development. (author)

  6. Application of Code Of Conduct on the Safety of Research Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ahmad Nabil Abd Rahim; Zarina Masood

    2014-01-01

    The implementation and the practices of the effective safety system at research reactors are important to ensure that the worker, public and environment do not receive any abnormal causes. Many international safety related support agencies for research reactor such as International Atomic Energy Agency (IAEA) providing guidelines that can be applied to enhance and strengthen the enforcement of safety namely Code of Conduct on the Safety of Research Reactor (IAEA/CODEOC/RR/2006). The excellent safety management, reliability, and maintainability of RTP reactor structures, coupled with personnel numerous lessons and experiences learned, Reactor TRIGA PUSPATI research reactor providing Nuclear Malaysia personnel and visitor the very safe working and visiting environment. This paper will discuss the status, practices and improvement strategies over the past few years. (author)

  7. General purpose nuclear irradiation chamber

    International Nuclear Information System (INIS)

    Nurul Fadzlin Hasbullah; Nuurul Iffah Che Omar; Nahrul Khair Alang Md Rashid; Jaafar Abdullah

    2013-01-01

    Nuclear technology has found a great need for use in medicine, industry, and research. Smoke detectors in our homes, medical treatments and new varieties of plants by irradiating its seeds are just a few examples of the benefits of nuclear technology. Portable neutron source such as Californium-252, available at Industrial Technology Division (BTI/ PAT), Malaysian Nuclear Agency, has a 2.645 year half-life. However, 252 Cf is known to emit gamma radiation from the source. Thus, this chamber aims to provide a proper gamma shielding for samples to distinguish the use of mixed neutron with gamma-rays or pure neutron radiation. The chamber is compatible to be used with other portable neutron sources such as 241 Am-Be as well as the reactor TRIGA PUSPATI for higher neutron dose. This chamber was designed through a collaborative effort of Kulliyyah Engineering, IIUM with the Industrial Technology Division (BTI) team, Malaysian Nuclear Agency. (Author)

  8. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  9. Sister Lab Program Prospective Partner Nuclear Profile: Malaysia

    International Nuclear Information System (INIS)

    Bissani, M; Tyson, S

    2006-01-01

    The Malaysian Deputy Prime Minister Tun Dr Ismail Abdul Rahman suggested in the early 1970s that Malaysia should have a role in the development of nuclear science and technology for peaceful purposes. Accordingly, the Center for the Application of Nuclear Energy (CRANE) was established, with a focus on the development of a scientific and technical pool critical to a national nuclear power program. The Malaysian Cabinet next established the Tun Ismail Atomic Research Center (TIARC) under the Ministry of Science, Technology and the Environment on 19 September 1972, at a site in Bangi, about 35 km south of Kuala Lampur. On 28 June 1982, the PUSPATI reactor, a 1-MW TRIGA MK-II research reactor, first reached criticality. On 10 August 1994, TIARC was officially renamed as the Malaysian Institute for Nuclear Technology Research (MINT). In addition to radioisotope production and neutron radiography conducted at the PUSPATI research reactor, MINT also supports numerous programs employing nuclear technology for medicine, agriculture and industry, and has been involved in both bilateral and multilateral technical cooperation to extend its capabilities. As an energy exporting country, Malaysia has felt little incentive to develop a nuclear energy program, and high level opposition within the government discouraged it further. A recent statement by Malaysia's Science, Technology and Innovation Minister supported this view, indicating that only a near-catastrophic jump in world oil prices might change the government's view. However, the rate at which Malaysia is using its natural gas and oil reserves is expected to force it to reassess the role of nuclear energy in the near future. In addition, the government does intend to construct a radioactive waste repository to dispose of naturally occurring radioactive materials (extracted during tin mining, in particular). Also, Malaysia's growing economy could encourage expansion in Malaysia's existing nuclear-applications programs

  10. Effective utilization and management of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, R [International Atomic Energy Agency, Vienna (Austria). Div. of Research and Isotopes

    1984-06-01

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors.

  11. Development of 3D CFD simulation method in nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mariah Adam

    2012-01-01

    One of the most prevailing issues in the operation of nuclear reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing have always brought about public fear on anything related to nuclear. Most findings on the nuclear reactor accidents are closely related to the reactor cooling system. Thus, the understanding of the behaviour of reactor cooling system is very important to ensure the development and improvement on safety can be continuously done. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last three decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. This paper discusses the development of 3D CFD usage in nuclear reactor safety analysis worldwide. A brief review on the usage of CFD at Malaysia's Reactor TRIGA PUSPATI is also presented. (author)

  12. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  13. Investigate the capability of INAA absolute method to determine the concentrations of 238U and 232Th in rock samples

    International Nuclear Information System (INIS)

    Alnour, I.A.

    2014-01-01

    This work aimed to study the capability of INAA absolute method in determining the elemental concentration of 238 U and 232 Th in the rock samples. The INAA absolute method was implemented in PUSPATI TRIGA Mark II research reactor, Malaysian Nuclear Agency (NM). The accuracy of INAA absolute method was performed by analyzing the IAEA certified reference material (CRM) Soil-7. The analytical results showed the deviations between experimental and certified values were mostly less than 10 % with Z-score in most cases less than 1. In general, the results of analysed CRM Soil-7 show a good agreement between certified and experimental results which mean that the INAA absolute method can be used accurately for elemental analysis of uranium and thorium in various types of samples. The concentration of 238 U and 232 Th ranged from 1.77 to 24.25 and 0.88 to 95.50 ppm respectively. The highest value of 238 U and 232 Th was recorded for granite rock sample G17 of 238 U and sample G9 of 232 Th, whereas the lower value was 1.77 ppm of 238 U recorded in sandstone rock and 0.88 ppm of 232 Th for gabbro. Moreover, a comparison of the 238 U and 232 Th results obtained by the INAA absolute method shows an acceptable level of consistency with those obtained by the INAA relative method. (author)

  14. Re-Development of Radiocarbon Dating Laboratory in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Nita Salina Abu Bakar; Phillip, E.

    2015-01-01

    Nuclear Dating Laboratory, formerly known as Radiocarbon Laboratory was established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1983. A benzene synthesis line for radiocarbon (carbon-14) dating was installed in this laboratory by Australian Atomic Energy Commission (AAEC) under the Hydrology Isotope Project, a collaboration project between IAEA, AAEC and PUSPATI (former name for Nuclear Malaysia). Determining the age of samples could be performed using this facility throughout two main processes, namely the production of benzene containing C-14 isotopes and activity determination of C-14 using Liquid Scintillation Counter. Realizing the need and importance of Nuclear Dating Laboratory for the nations science and technology development, the Top Management of Nuclear Malaysia was agreed to hand over this laboratory and its facilities to Waste Technology and Environmental Division (BAS) started in June 2013 for the redevelopment. Hence, this paper will highlight the weaknesses and problems that need to be addressed and improved to enable it to be used in providing a good service. (author)

  15. Progress and Overview on Neutronics Modelling Development in RTP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Julia Abdul Karim

    2016-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as k_e_f_f, reactivity, neutron flux, power distribution, B_e_f_f, and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP behaviour. (author)

  16. Measurement and simulation of thermal neutron flux distribution in the RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  17. Fault detection and analysis in nuclear research facility using artificial intelligence methods

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Abu Bakar, E-mail: Abakar@uniten.edu.my [Department of Electronics & Communication, College of Engineering, Universiti Tenaga Nasional, 43009 Kajang, Selangor (Malaysia); Ibrahim, Maslina Mohd [Instrumentation Program, Malaysian Nuclear Agency, Bangi (Malaysia)

    2016-01-22

    In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either ‘yes’ or ‘no’ state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.

  18. Radioactivity of spent TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P. [Reactor Department, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  19. Commercialization of technology in MINT

    International Nuclear Information System (INIS)

    Daud Mohamad; Razali Hamzah

    2005-01-01

    Full text:The Malaysian Institute for Nuclear Technology Research (MINT), was officially established in 1972 (PUSPATI as it was known then) and has progressed leaps and bounds to become one of the country's leading research organization particularly in the field of nuclear science and technology. Primarily set up as a full fledge research and development entity with one of the initial aims was looking into the possibility of embarking in the generation of power via the use of nuclear technology as an alternative source of energy for the nation. MINTs role has somewhat changed in tandem with her stage of development and national priorities. In line with the Government's policy on sustainability and self-reliance and a drive to commercialize R and D findings, the R and D institutions are expected to be self sufficiency at 30% of institutional operating budget. MINT has embarked on the commercialization program since in 1987 even before the the policy was instituted. Unlike other corporate R and D institutions and universities which do have some liberty and flexibility in the management of the organizations, MINT as a full fledge government R and D institute faces a number of challenges in the commercialization exercise. The paper describes the technologies developed at MINT, our product and services, and challenges and limitations in commercializing our R and D endeavors. (Author)

  20. Characteristic Study of the Al 6061 T-6 used in RTP Primary Cooling System Using Scanning Electron Microscope (SEM)

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Yusof Abdullah; Tom, P.P.

    2011-01-01

    Reactor TRIGA PUSPATI (RTP) is the only nuclear research reactor in Malaysia. Since the first criticality on 28th June 1982, RTP has been going through the safe operation and well maintenance. Along the period of operation almost 30 years, some of the reactor system and component has been refurbished, upgraded and replaced to ensure the functionality and safety to the reactor itself as well as to protect personnel and environment. Primary cooling system is to provide the sufficient cooling to the reactor by removal of the heat generated in the reactor core through the heat transfer process in the heat exchanger. In 2009, RTP has been undergoing the primary cooling system upgrades. Primary cooling system components including aluminium pipes has been dismantled and replaced with the new system. As a part of the ageing management programme and radiation damage study, the disposed aluminum pipes were taken and used in this study. Scanning Electron Microscope (SEM) is used to study the surface topography and elemental composition in conjunction of energy dispersive x-ray spectroscopy analysis. This paper presents the study that has been conducted. (author)

  1. NDT Nuclear Malaysia 35 Years History

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail

    2016-01-01

    ASME V-2015, Article 1 defined Non-destructive Examination as a development and application of technical methods to examine materials and/or components in ways that do not impair future usefulness and serviceability in order to detect, locate, measure, interpret, and evaluate flaws. NDT unit in Nuclear Malaysia (PUSPATI) was first established in 1980 headed by Mr Ashaari Abas. He then moved to open an NDT company and was replaced by Dr. Abd Nassir Ibrahim followed by Dr Azali Muhammad, Dr Ab Razak Hamzah and myself. At the early stage from 1980-1983, most of the activities were attending NDT training courses in France, Singapore, Japan, Pakistan and Australia. Our first contribution is on NDT training. The first course is radiation safety in industrial radiography. Then moving ahead giving NDT services to industries especially in oil and gas and power generation. Recently we are seriously involved in research and development and innovation. To be a centre of excellence, NDT activities need to cover three important areas i.e. training, services, consultation and applied research. In the future, the fundamental research maybe included. (author)

  2. Radioactivity of spent TRIGA fuel

    International Nuclear Information System (INIS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-01-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive

  3. The centralised production and quality control of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Boyd, R.E.

    1980-01-01

    The concept of a centralised facility for the production testing and distribution within a metropolitan, regional or national area, although not new, is now gaining widespread acceptance in many countries. The rationalisation of resources and operation on a large scale ensures savings in costs. The aim of the centralised radiopharmacy is the regular and routine provision of high quality radiopharmaceuticals and to do this it must have access to a multidisciplinary group of scientists working with the support of trained technicians. These specialists require working facilities which are quite unique and designed according to complex engineering criteria to ensure the safety both of the environment and the patient. Production processes and equipment must be selected on the basis of reliability, minimal operational skill and the ease of maintenance. The infra structure of the organisation must provide the logistic support to ensure that the products from the centralized radiopharmacy reach the end-users at the times, places and in the amounts requested. This should be achieved with a success rate which engenders confidence. The Australian Atomic Energy Commission has operated a national radiopharmacy for more than a decade, delivering more than 150000 patient doses per year over the vast distances which separate the Australian capital cities. These activities have helped nuclear medicine to flourish in Australia; it is expected that the creation of the radioisotope production facilities at PUSPATI will have the same effect in Malaysia. (author)

  4. Modelling of a general purpose irradiation chamber using a Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Dhiyauddin Ahmad Fauzi; Sheik, F.O.A.; Nurul Fadzlin Hasbullah

    2013-01-01

    Full-text: The aim of this research is to stimulate the effectiveness use of a general purpose irradiation chamber to contain pure neutron particles obtained from a research reactor. The secondary neutron and gamma particles dose discharge from the chamber layers will be used as a platform to estimate the safe dimension of the chamber. The chamber, made up of layers of lead (Pb), shielding, polyethylene (PE), moderator and commercial grade aluminium (Al) cladding is proposed for the use of interacting samples with pure neutron particles in a nuclear reactor environment. The estimation was accomplished through simulation based on general Monte Carlo N-Particle transport code using Los Alamos MCNPX software. Simulations were performed on the model of the chamber subjected to high neutron flux radiation and its gamma radiation product. The model of neutron particle used is based on the neutron source found in PUSPATI TRIGA MARK II research reactor which holds a maximum flux value of 1 x 10 12 neutron/ cm 2 s. The expected outcomes of this research are zero gamma dose in the core of the chamber and neutron dose rate of less than 10 μSv/ day discharge from the chamber system. (author)

  5. Development of automated controller system for controlling reactivity by using FPGA in research reactor application

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib

    2012-01-01

    The scope for this research paper is to produce a detail design for Development of Automated Controller System for Controlling Reactivity by using FPGA in Research Reactor Application for high safety nuclear operation. The development of this project including design, purchasing, fabrication, installation, testing and validation and verification for one prototype automated controller system for controlling reactivity in industry local technology for human capacity and capability development towards the first Nuclear Power Programme (NPP) in Malaysia. The specific objectives of this research paper are to Development of Automated Controller System for Controlling Reactivity (ACSCR) in Research Reactor Application (PUSPATI TRIGA Reactor) by using simultaneous movement method; To design, fabricate and produce the accuracy of Control Rods Drive Mechanism to 0.1 mm resolution using a stepper motor as an actuator; To design, install and produce the system response to be more faster by using Field Programmable Gate Array (FPGA) and High Speed Computer; and to improve the Safety Level of the Research Reactor in high safety nuclear operation condition. (author)

  6. Effective utilization and management of research reactors

    International Nuclear Information System (INIS)

    Muranaka, R.

    1984-01-01

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors

  7. Neutronics calculation of RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  8. Analysis of Gamma Dose Rate for RTP 2 MW Core Configuration Using MCNP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mohd Amin Sharifuldin Salleh; Julia Abdul Karim

    2011-01-01

    The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of gamma dose rate at water pool surface and concrete shielding surface of the proposed 2-MW core configuration of PUSPATI TRIGA Reactor. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core with pool water and concrete shielding and validation of the input by comparisons with the measured and available safety analysis report (SAR) of the reactor. The model represents in detailed all components of the reactor with literally no physical approximation. Continuous energy cross section data from the more recent nuclear data as well as S(α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed. (author)

  9. Structural strength analysis of lug component for RTP fuel transfer cask

    International Nuclear Information System (INIS)

    Ahmad Nabil Abdul Rahim; Tonny Lanyau; Mazleha Maskin

    2012-01-01

    A three decade aging PUSPATI TRIGA Reactor will soon require spent fuels to be replaced with fresh fuels. Initial procedure requires these spent fuels be cooled down due to high temperature and high radioactivity resulted from fission products activities and then transferred out of reactor tank into a spent fuel pool. Performing this task will need a fuel transfer cask (FTC) to provide sufficient radiation shielding for the workers during fuels transferring task. Currently the only economically viable route FTC to get into reactor tank is through the top of reactor tank using crane. The huge and high density lead filled FTC will be hanging throughout the task of transferring each fuel element thus FTC is subjected to tensile stress during its operation. Lug component is anticipated to be one of the main weaknesses of FTC design subjected under tensile load due to it diminutive in size but very large amount of stress to be introduced on it. Therefore lugs component requires an adequate stress analysis to prove the design reliability. This paper will discuss the structural strength using conventional engineering calculation based on best estimate approach. (author)

  10. Managing RTP Console Upgrading Project: Best Practice for Nuclear Malaysia as TSO in Supporting NPP Development

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Syahirah Abdul Rahman; Izhar Abu Hussin

    2011-01-01

    Human Resource Development (HRD) is required for Nuclear Power Programme (NPP). To be a Technical Support Organisation (TSO) for NPP, Nuclear Malaysia should be ready to take the responsibility in supporting Nuclear Regulatory Agency (NRA) and NPP Operators. In nurturing Nuclear Malaysia as TSO, the prime important and focus of HRD for the NPP is the reactor engineering technology. Nuclear Malaysia gives various phases of supports needed to build NPP such as during siting, design, planning, licensing, construction, commissioning, operation and maintenance in its own way and capability. The current Nuclear Malaysia unique approach is the TRIGA PUSPATI reactor (RTP) upgrading project. Research reactor plays an important role in Research and Developpement organization as a nuclear facility to assist the development of NPP. Therefore, upgrading the research reactor is needed to build the skills and gain knowledge of workers to work safely. After 29 years of operation, the RTP system is facing aging problems due to many components in the reactor are outdated. Therefore, immediate action should be carried out to mitigate the aging factor of the reactor to prevent the worsening of the aging problem, and to prevent untoward incident from happening. Action should also cover short and long term planning to prevent current situation from recurring. Currently, RTP is upgrading its console from analog to digital system. One of the achievements in this console upgrading project is the development and implementation of project management. This paper comprises the overview on the RTP console upgrading project, the project management and how this project can lead Nuclear Malaysia to be a good TSO for the development of NPP. (author)

  11. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  12. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Noorddin Ibrahim; Rosnie Akang

    2009-01-01

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  13. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  14. Malaysia

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: Malaysia's transition from a production-based economy to a knowledge-based economy is a vital step towards achieving a developed nation status by the year 2020. A large pool of skilled labor force including those with tertiary level education is critical for Malaysia's transition to a knowledge-based economy. Malaysia's policies related to education and training emphasize the need to address the shortage and to enhance the quality of human resources, in particular human resources in science and technology. In this regard, a target has been set for a ratio of 60:40 science to arts students at the secondary school and tertiary level education institutions. The total number of post-graduate enrollment in universities will be increased to 25 per cent of total enrollment by the year 2010. Human resource with tertiary level education, especially at the post-graduate level is essential for upgrading capability in research and development (R and D). The target is to enlarge the pool of researchers from 15.6 researchers per 10,000 labor force in the year 2000 to 60 researchers per 10,000 labor force by the year 2010. The Malaysian Institute for Nuclear Technology Research (MINT), previously known as the Tun Ismail Atomic Research Centre (PUSPATI) was established in 1972 to promote nuclear science and technology development and application. Since nuclear energy is not included as one of Malaysia's energy options, MINT's programs focus on the development and application of nuclear science and technology in medicine, agriculture, industry and environment. MINT operates a 1 MW TRIGA MKII research reactor and several radiation facilities. As the largest employer of nuclear science and technology graduates, MINT has a major role in ensuring the sustainable supply of nuclear workforce and the preservation of nuclear knowledge. In this connection, MINT collaborates with institutions of higher education in the development of human resource in nuclear science and

  15. Analysis of trace elements in power plant and industrial incinerator fly ashes by instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Al-Areqi, Wadeeah M.; Amran Abdul Majid; Sukiman Sarmani

    2008-01-01

    An elemental analysis of fly ash samples from Selangor and Perak coal-fired power plants and an industrial incinerator from Negeri Sembilan were carried out using instrumental neutron activation analysis (INAA). All samples were irradiated at the Malaysian Nuclear Agency laboratory PUSPATI Reactor for 6 hours and later counted at the Nuclear Science Program, UKM using an HPGe detector with a relative efficiency of 10% and resolution of 1.8 KeV (FWHM) at 1.33 MeV. International Atomic Energy Agency (IAEA) coal fly ash 1633a reference material (SRM) was used as a standard for quantitative analysis. A total of 11 elements (i.e. As, Ba, Ca, Ce, Cr, Co, Fe, Hf, Sc, Th and U) were determined in all three types of fly ashes. The concentration range of environmentally concern elements, As and Cr in the Selangor coal-fired power plant samples are 11.17 - 23.24 and 160.28 - 867.97 μg.g -1 respectively. The concentration range of radioactive elements U and Th are 4.79 - 10.29 and 14.6 - 61.29 μg.g -1 respectively, and the concentration range of Co, Hf, Fe, Sc, Ba, Ce, Ca are 11.88-83.61, 3.24 - 10.48, 30338 - 53885, 16.62 - 28.48, 178.97 - 8491, 127.41 - 217.2 and 10447 -20647 μg.g -1 respectively. The concentration range of As, Cr, U, Th in the Perak samples were found to be 22.16 - 48.38, 44.37 - 74.78, 4.18 - 6.85, 8.71 - 11.43 μg.g -1 respectively, whereas the concentration range of Co, Fe, Sc, Ba, Ce and Ca are 23.21 -29.66, 54621 - 71099, 30.9 - 31.77, 100.34 - 116.61 and 11533 -16423 μg.g -1 respectively. Differences exist in the elemental concentrations of both power plant fly ash samples due to the different feed coal and combustion temperature used. The concentration of Cr, Th and Ce in the Selangor fly ash samples was generally higher compared to the samples obtained from the Perak power plant. This study also shows that only As and Ca were detected in the Negeri Sembilan samples with the concentration ranging from 36.66 - 98.67 and 31709.10 - 45606 μg.g -1