WorldWideScience

Sample records for pusan kori-2 reactor

  1. The 5th surveillance testing for Kori unit 2 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-03-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules V, R, P, T and N are 2.837E+18, 1.105E+19, 2.110E+19, 3.705E+19 and 4.831E+19n/cm{sup 2}, respectively. The bias factor, the ratio of measurement/calculation, was 0.918 for the 1st through 5th testing and the calculational uncertainty, 11.6% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.898E+19n/cm{sup 2} based on the end of 15th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 4.203E+19, 5.232E+19, 6.262E+19 and 7.291E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 49 refs., 35 figs., 48 tabs. (Author)

  2. Reload safety evaluation report for kori nuclear power plant unit 2 cycle 9

    International Nuclear Information System (INIS)

    Cho, Beom Jin; Kim, Si Yong; Kim, Oh Hwan; Nam, Kee Il; Um, Gil Sup; Ban, Chang Hwan; Choi, Dong Uk; Yoon, Kyung Ho

    1992-04-01

    The Kori Nuclear Power Plant Unit 2 (Kori-2) is anticipated to be refuelled with 16x16 Korean Fuel Assemblies (KOFA), which are based on the KAERI design starting from Cycle 8. This report presents a reload safety evaluation for Kori-2, Cycle 9 and demonstrates that the reactor core being composed of various fuel assembly types as described below will not adversely affect the safety of the public and the plant. The evaluation of Kori-2, Cycle 9 was accomplished utilizing the methodology described in 'Reload Transition Safety Report for KORI 2' (Ref. /1-1/). The reload core for Kori-2, Cycle 9 is entirely comprised of 16x16 KOFA. In the Kori-2 licensing documentation to KEPCO the reference safety evaluation was provided for the operation of a reactor core fully loaded with KOFA as well as associated proposed changes to the Kori-2 Technical Specifications. The reload for Kori-2, Cycle 9 also introduces UO 2 /Gd 2 O 3 containing fuel rods. The use of fuel rods with Gd 2 O 3 poisoning of the fuel has been approved as a part of the above mentioned licensing documentation. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 9 core design described herein. (Author)

  3. The 4th surveillance testing for Kori unit 3 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-10-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 3 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 4.983E+18, 1.641E+19, 3.158E+19, and 4.469E+19n/cm{sup 2}, respectively. The bias factor, the ratio of calculation/measurement, was 0.840 for the 1st through 4th testing and the calculational uncertainty, 12% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.362E+19n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.481E+19, 4.209E+19, 5.144E+19 and 5.974E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 3 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 41 tabs. (Author)

  4. Final report for the 1st ex-vessel neutron dosimetry installations and evaluations for Kori unit 2 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 2 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 20 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 20.

  5. Upgrade of KNPEC no.2 Simulator for Kori Unit 3 Power Uprating

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin-Hyuk; Lee, Seung-Ho [KEPRI, Daejeon (Korea, Republic of)

    2007-07-01

    Kori-Unit 3 and 4 is preparing the operation of the power-uprating (2900MWt), and therefore the Korea regulatory body(KINS) requested the operator training with the simulator reflecting the power-uprating. As a result of the intensive research and expertise of KEPRI on the simulators, KEPRI accomplished the upgrade project of KNPEC no.2 simulator for Kori-Unit 3 power-uprating. This project includes various high-tech methods incorporating - realtime neutronics model based on MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors) code, best-estimate neutronics code by the KINS, (By using the RMASTER, the precision of the simulation of the neutron behaviors in the core is highly improved.) - betterment of the reactor coolant system and the balance-of-plant system - modification of the corresponding setpoints due to the power-uprating And the acceptance test procedure (ATP) was successfully carried out through the integration of system models and its performance tests. Through the success of this project, the operator training for the power uprating of the Kori-Unit 3 will be accomplished before its power operation and, after all, this simulator will contribute to the safe operation for the power-uprating of the Kori-Unit 3 and 4.

  6. Evaluation on radioactive waste disposal amount of Kori Unit 1 reactor vessel considering cutting and packaging methods

    International Nuclear Information System (INIS)

    Choi, Yu Jong; Lee, Seong Cheol; Kim, Chang Lak

    2016-01-01

    Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation

  7. Relative power density distribution calculations of the Kori unit 1 pressurized water reactor with full-scope explicit modeling of monte carlo simulation

    International Nuclear Information System (INIS)

    Kim, J. O.; Kim, J. K.

    1997-01-01

    Relative power density distributions of the Kori unit 1 pressurized water reactor calculated by Monte Carlo modeling with the MCNP code. The Kori unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system coverages to a κ value of 1.00039 ≥ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root mean square error of 2.159%. (author)

  8. Plant specific PTS analysis of Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Sung-Yull, Hong; Changheui, Jang; Ill-Seok, Jeong [Korea Eletric Power Research Inst., Daejon (Korea, Republic of); Tae-Eun, Jin [Korea Power Engineering Company, Yonging (Korea, Republic of)

    1997-09-01

    Currently, a nuclear PLIM (Plant Lifetime Management) program is underway in Korea to extend the operation life of Kori-1 which was originally licensed for 30 years. For the life extension of nuclear power plants, the residual lives of major components should be evaluated for the extended operation period. According to the residual life evaluation of reactor pressure vessel, which was classified as one of the major components crucial to life extension, it was found by screening analysis that reference PTS temperature would exceed screening criteria before the target extended operation years. In order to deal with this problem, a plant-specific PTS analysis for Kori-1 RPV has been initiated. In this paper, the relationship between PTS analysis and Kori-1 PLIM program is briefly described. The plant-specific PTS analysis covers system transient analysis, downcomer mixing analysis, and probabilistic fracture mechanics analysis to check the integrity or RPV during various PTS transients. The step-by-step procedure of the analysis will be described in detail. Finally, various issues regarding RPV materials and its integrity will be briefly mentioned, and their implications on Kori-1 PTS analysis will be discussed. Despite of the screening analysis result concern, it is now expected that Kori-1 PTS issues can be handled through the plant-specific PTS analysis. (author). 14 refs, 4 figs, 2 tabs.

  9. Development of the Kori 1 simulator for the MCR modernization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Soo; Hong, Jin Hyuk [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Kori Unit 1 is the first commercial nuclear power reactor, pressurized water reactor that came into commercial service in April 1978 and is licensed for continued operation till 2017. The Main Control Board (MCB) was designed and was not applied the Human Factor Engineering (HFE) program during the construction phase but was performed the D CRDR (Detailed Control Room Design Review) as a post-TMI action. So Korea Hydro Nuclear Power, Ltd. (KHNP) has selected the hybrid type MCR by considering the existing equipment conditions and the operability of the plant as follows. .. Operator console upgrade, .. Plant Computer System (PCS) upgrade, .. PAS (Plant alarm System) upgrade, .. Remote Shutdown Panel (RSP) upgrade, .. Electrical control panel upgrade, and .. Interior improvement including lighting system. KINS will conduct the safety review of the new control room in Kori 1 as the same review level of construction permit (CP), operating license (OL) process. KHNP Central research Institute (CRI) developed a Kori 1 Full Scope Simulator (FSS) to have HFE Verification and Validation Test and operator training for the new modernized I and C of the MCR. This paper describes the several features and the results of the Kori 1 FSS. The NSSS thermal hydraulics model for the Kori 1 Simulator was developed by using the RELAP5 RT code, the real time version of RELAP5 developed by Idaho National Laboratory(INL). It could be configured from RELAP5/MOD3.2 by choosing the correct set of conditional coding and the base RELAP5 nodalization was shown in Figure 2. The NESTLE is a true two energy group neutronics code that computes the neutron flux and power for each node at every time step.

  10. Development of Severe Accident Management Strategies for Shin-Kori 3 and 4

    International Nuclear Information System (INIS)

    Lee, Youngseung; Kim, Hyeongtaek; Shin, Jungmin

    2013-01-01

    Shin-Kori units 3 and 4 are new reactors under construction as an APR 1400 type reactor. The plants which considered coping with severe accident from design phase are different from other operating plants in view of severe accident management strategies. The purpose of this paper is to establish optimal strategies for Shin-Kori 3 and 4. A scheme for optimized severe accident management was drawn up with the object of achieving core cooling, containment integrity, and decreased release of fission product. Shin-Kori units 3 and 4 are a new reactor and designed to add mitigating systems for coping with severe accident such as ECSBS, PAR, and CFS. Also the plants are reflected as a part of Fukushima followup measures The strategies of SAMG for Shin-Kori 3 and 4 were developed. The strategic approach was based on the concept of defense in depth. Firstly, strategies for core cooling were chosen such as RCS depressurization, injection to SG, injection to RCS, and injection to reactor cavity. Secondly, the plans for containment integrity were developed for controlling pressure and hydrogen in containment. Lastly, reduced release of fission product was considered for protection of the public after containment failure. The achieved strategies meet the needs of effective methods for severe accident management and enhancement of safety

  11. The 5th surveillance testing for Kori unit 1 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-08-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed primarily by Korea Atomic Energy Research Institute and Westinhouse corporation partially involved in testing and calculation data evaluation in order to obtain reliable test result. Fast neutron fluences for capsule V, T, S, R and P were 5.087E+18, 1.115E+19, 1.228E+19, 2.988E+19, and 3.938E+19n/cm2, respectively. The bias factor, the ratio of calculation/measurement, was 0.940 for the 1st through 5th testing and the calculational uncertainty, 7% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.9846E+19n/cm{sup 2} based on the end of 17th fuel cycle and it was predicted that the fluences of vessel inside surface at 24, 32, 40 and 48EFPY would reach 3.0593E+19, 4.0695E+19, 5.0797E+19 and 6.0900E+19n/cm{sup 2} based on the current calculation. PTS analysis for Kori unit 1 showed that 27.93EFPY was the threshold value for 300 deg F requirement. 71 refs., 33 figs., 52 tabs. (Author)

  12. Final report for the 1st ex-vessel neutron dosimetry installation and evaluations for Kori unit 4 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 4 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 16 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 4 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 16.

  13. Features of Computerized Procedure System of Shin-Kori unit 5 and 6

    International Nuclear Information System (INIS)

    Seong, Nokyu; Jung, Yeonsub; Sung, Chanho

    2016-01-01

    The Computerized Procedure System (CPS) is one of the Man Machine Interface (MMI) resources of Main Control Room (MCR) of the Advanced Power Reactor 1400 (APR1400). The CPS has been continuously improved since it was installed in Shin-Kori unit 3 and 4. The Korea Hydro Nuclear Power Central Research Institute (KHNP CRI) has found the points of improvement of CPS through CPS centered Human Factors Engineering Verification and Validation (HFE V and V) and Operating Experience Review (OER) of reference power plant. This paper shows the main features of CPS of Shin-Kori 5 and 6 unit. This paper shows the main features of CPS of Shin-Kori 5 and 6. These are some of improvements of CPS. This prototype of CPS currently is implementing in CRI. The respective function can be more detailed after testing the prototype. These features will be applied to Shin-Kori 5 and 6 CPS after HFE V and V

  14. Features of Computerized Procedure System of Shin-Kori unit 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Nokyu; Jung, Yeonsub; Sung, Chanho [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Computerized Procedure System (CPS) is one of the Man Machine Interface (MMI) resources of Main Control Room (MCR) of the Advanced Power Reactor 1400 (APR1400). The CPS has been continuously improved since it was installed in Shin-Kori unit 3 and 4. The Korea Hydro Nuclear Power Central Research Institute (KHNP CRI) has found the points of improvement of CPS through CPS centered Human Factors Engineering Verification and Validation (HFE V and V) and Operating Experience Review (OER) of reference power plant. This paper shows the main features of CPS of Shin-Kori 5 and 6 unit. This paper shows the main features of CPS of Shin-Kori 5 and 6. These are some of improvements of CPS. This prototype of CPS currently is implementing in CRI. The respective function can be more detailed after testing the prototype. These features will be applied to Shin-Kori 5 and 6 CPS after HFE V and V.

  15. Analysis of the necessity for inserting new surveillance capsule into the Kori Unit 1 RPV to monitor material fracture toughness

    International Nuclear Information System (INIS)

    Song, Taek Ho

    2007-01-01

    In association with monitoring of reactor pressure vessel (RPV) fracture toughness, surveillance capsule test specimens have been used to monitor the material property of nuclear reactor vessel. As far as Kori Unit 1 is concerned, 6 capsules were put into the vessel before commercial operation of the plant. Up to now, all the six capsules have been withdrawn to test and monitor the fracture toughness of RPV material. The last capsule has been withdrawn on June this year, and the Kori unit 1 has been shut downed since July 2007 and will be shut downed until December this year for about 6 months, preparing the life extension of the plant to operate the plant 10 more years. With the situation that all the surveillance capsules have been withdrawn, public ask the following question, 'To extend the life of Kori Unit 1 more than 10 years, is it necessary to insert new surveillance capsules into the Kori Unit 1 to monitor RPV material fracture toughness?' In connection with this issue, planning project have been carried out since spring this year. In this paper, it is described that inserting new surveillance capsule into the Kori Unit 1 RPV has some meaning in some public acceptance point of view and is not necessary in material engineering point of view

  16. Radiographic monitoring of the ossification of long bones in kori (Ardeotis kori) and white-bellied (Eupodotis senegalensis) bustards

    International Nuclear Information System (INIS)

    Naldo, J.L.; Samour, J.H.; Bailey, T.A.

    1998-01-01

    A serial radiographic study was conducted on eight kori bustard (Ardeotis kori) and four white-bellied bustard (Eupodotis senegalensis) chicks to determine the pattern of long bone development and to establish radiographic standards for assessing skeletal maturity. The ossification pattern, appearance of secondary ossification centres, and epiphyseal fusion of the long bones in kori and white-bellied bustards were similar to those in houbara bustards (Chlamydotis undulata macqueenii),rufous-crested bustards (Eupodotis ruficrista), domestic fowl (Gallusgallus), house wrens (Troglodytes aedon aedon), racing pigeons (Columba livia), and barn owls (Tyto alba). Secondary ossification centres were present at the proximal and distal tibiotarsus, proximal tarsometatarsus and proximal metacarpal III. The ossification of long bones occurred earlier in female kori bustards compared with males

  17. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    International Nuclear Information System (INIS)

    Kang, Ho Weon

    1998-01-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs

  18. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Yong, Lee Jae; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  19. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee Jae Yong; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  20. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Weon [Korea Electric Power Corp. Ko-Ri nuclear power division, Ko-Ri (Korea, Republic of)

    1998-07-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs.

  1. Development of Neutronics Model for ShinKori Unit 1 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hong, JinHyuk; Lee, MyeongSoo; Lee, SeungHo; Suh, JungKwan; Hwang, DoHyun [KEPRI, Daejeon (Korea, Republic of)

    2008-05-15

    ShinKori-Unit 1 and 2 is being built in the Kori site which will be operated at 2815 MWt of thermal core power. The purpose of this paper is to report on the performance of the developed neutronics model of ShinKori Unit 1 and 2. Also this report includes the convenient tool (XS2R5) for processing the large quantity of information received from the DIT/ROCS model and generating cross-sections. The neutronics model is based on the NESTLE code inserted to RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster{sup TM} of the WSC). As some examples for the verification of the developed neutronics model, some figures are provided. The output of the developed neutronics model is in accord with the Preliminary Safety Analysis Report (PSAR) of the reference plant.

  2. Functional Analysis of Kori Unit 1

    International Nuclear Information System (INIS)

    Choi, Seong Soo; Han, Jeong Hyun; Heo, Tae Young

    2009-07-01

    Function Analysis of Kori Unit 1 has been performed as a part of independent human factors review tasks for control room renovation of the plant. The top level goal defined for the scope of function analysis is 'Generate Electricity'. Through this function analysis of Kori Unit 1, the detailed sub-functions extracted from the existing design documents and procedures, functional relationships among the high level functions, functional classification of each hierarchical level, and tree diagrams of the hierarchical function structures of the plant were developed and identified as the result of the project. In addition, we investigated and compiled the specifications of MMIS devices used in Ulchin Nuclear Power Plant Unit 5,6 in accordance with the request from KAERI. The results of those researches will be used as basis data for independent review of the control room MMIS design of the Kori Unit 1

  3. Reload safety evaluation report for Kori nuclear power unit 1, cycle 14

    International Nuclear Information System (INIS)

    Kim, Joo Young; Kim, Oh Hwan; Nam, Kee Il; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1994-05-01

    This report presents the reload safety evaluation for Kori-1, Cycle 14 and demonstrate that the reactor core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 14 core design described herein. (Author) 1 refs., 9 figs., 5 tabs

  4. Reload safety evaluation report for kori nuclear power plant unit 4, cycle 8

    International Nuclear Information System (INIS)

    Park, Chan Oh; Jung, Yil Sup; Kim, Si Yong; Kim, Ki Hang; Kwon, Hyuk Sung; Oh, Dong Seok; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1993-06-01

    This report presents the reload safety evaluation for Kori-4, Cycle 8 and demonstrate that the reactor core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licening bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 8 core design described herein. (Author)

  5. Reevaluation of Kori Unit 4 Natural Circulation Test

    Energy Technology Data Exchange (ETDEWEB)

    Yassin, Nassir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The simulation results showed that the natural circulation flow developed by density difference was capable of removing decay heat from the fuel rod. The maximum pellet centerline temperature of the hot channel showed large margin to the pellet melting temperature. The maximum coolant temperature in the hot channel was well below the saturation temperature. If steam generators provide heat sink to the primary coolant system and thus natural circulation is maintained, the integrity of the fuel in the core can be sustained with large margin. Passive cooling of reactor is inevitable in case of failures in forced cooling system such as loss of electric power for cooling pumps. Fukushima accident showed the importance of the passive core cooling. During the commissioning test of PWRs, natural circulation test is performed to demonstrate the passive core cooling by natural convection. The driving force for coolant flow is developed by the density deference along the loop multiplied by the gravitation. Using the data from 'natural circulation test' and 'RCS flow coast down test' of Kori Unit 4, fuel behavior was reevaluated by FRAPTRAN code. RCS natural circulation test of Kori Unit 4 was reevaluated by FRAPTYRAN simulation to study the fuel behavior during the flow coast down transient and at the equilibrium condition in which decay heat transport and RCS flow were stabilized.

  6. Reload safety evaluation report for Kori nuclear power plant unit 1, cycle 13

    International Nuclear Information System (INIS)

    Park, Chan Oh; Moon, Bok Ja; Cho, Byeong Ho; Nam, Kee Il; Kim, Oh Hwan; Chang, Doo Soo; Yoon, Han Young; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1993-03-01

    This report presents the reload safety evaluation for Kori-1, Cycle 13 and demonstrates that the reactor core being composed of various fuel assembly types applied in this evaluation will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the reload fuel assemblies have been reviewed for the Cycle 13 core and results are described in this report. (Author)

  7. Postirradiation examination of Kori-1 nuclear power plant fuels

    International Nuclear Information System (INIS)

    Ro, S.G.; Kim, E.K.; Lee, K.S.; Min, D.K.

    1994-01-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institue. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity. (orig.)

  8. Postirradiation examination of Kori-1 nuclear power plant fuels

    Science.gov (United States)

    Seung-Gy, Ro; Eun-Ka, Kim; Key-Soon, Lee; Duck-Kee, Min

    1994-05-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institute. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity.

  9. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Kori Unit 2 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 21 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 21.

  10. Multi-dimensional analysis of the ECC behavior in the UPI plant Kori Unit 1

    International Nuclear Information System (INIS)

    Bae, Sungwon; Chung, Bub-Dong; Bang, Young Seok

    2008-01-01

    A multi-dimensional transient analysis during the LBLOCA of the Kori Unit 1 has been performed by using the MARS code. Based on 1-D nodalization of the Kori Unit 1, the reactor vessel nodalizations have been replaced by the multi-dimensional component. The multi-dimensional component for the reactor vessel is designed as 5 radial, 8 peripheral, and 21 vertical grids. It is assumed that the fuel assemblies are homogeneously distributed in inner 3 radial grids. The outer 1 radial grid region is modeled as the core bypass. The outer-model 1 radial grid is used for the downcomer region. The corresponding heat structures and fuels are modified to fit for the multi-dimensional reactor vessel model. The form drag coefficients for the upper plenum and the core have been designated as 0.6 and 9.39, respectively. The form drag coefficients for the radial and peripheral directions are assigned to the same on the assumption of homogeneous distribution of the flow obstacles. After obtaining the 102% power steady operation condition, cold leg LOCA simulation is performed during 400 second period. The multi-dimensional steady run results show no severe differences compared to the traditional 1-D nodalization results. After the ECC injection starts, a liquid pool is maintained at the upper plenum because the ECCS water can not overcome the upward gas flow that comes from the reactor core through the upper tie plate. The depth of ECCS water pool is predicted as about 20% of the total height from the upper tie plate and the center line of the hot leg pipe. At the vicinity region of the active ECCS show higher depth of liquid pool. The accumulated water flow rate passing the upper tie plate is calculated by the transient result. Much downward water flow is obtained at the outer-most region of upper plenum space. The downward flow dominant region is about 32.3% of the total upper tie plate area. The accumulated ECCS bypass ratio is predicted as 27.64% at 300 second. It is calculated

  11. Comparison of the Radionuclides Dispersion at the UAE Barakah Site with that at the ROK Shin-Kori Site - Comparison of the radionuclides dispersion in Barakah site with that in Shin-Kori site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lee, Kun Jai; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Beeley, Philip A. [Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates)

    2014-07-01

    In order to understand the characteristics of atmospheric dispersion of radionuclides in the desert environment of Barakah site in UAE, comparison research with the results of other environments could be an appropriate way to facilitate it. Shin-Kori site is the proper comparison target because same reactor type of APR1400 with that in Barakah site is under construction. Hypothetical accident scenario was considered and accident source term which had been developed in previous research has been applied as releasing source. After reviewing several computation codes, ADMS5 has been selected as an atmospheric dispersion modeling tool which is installing advanced Gaussian plum model and plentiful options. The climate data of both Barakah and Shin-Kori were acquired and the environments of both sites have been simulated considering wind speed, wind direction, temperature, humidity, ground surface roughness and etc. Near field final human doses on the maps have been schematised regarding statistical meteorological data of both sites and dose conversion factors from the publications of ICRP and federal guidance report of EPA. The results of this research are expected to enhance the understanding about differences between two environments which have same reactor type and to improve the comprehension of desert environment of Barakah site as well. Applying different dose conversion factors to Barakah site considering the desert biosphere could be further study to obtain more accurate results. (authors)

  12. Analysis of a station blackout transient at the Kori units 3/4

    International Nuclear Information System (INIS)

    Bang, Young Seok; Kim, Hho Jung

    1992-01-01

    A transient analysis of station blackout accident is performed to evaluate the plant specific capability to cope with the accident at the Kori Units 3/4. The RELAP5/MOD3/5m5 code and full three loop modelling scheme are used in the calculation. The leak flow from reactor coolant system due to a failure of reactor coolant pump seal following the accident is assumed to be 25 gpm and the turbine driven aux feedwater unavailable. As a result, it is found that no core uncovery occurs in the plant until 7100 sec following a station blackout, the steam generator has a decay heat removal capability until 3100 sec, and the natural circulation over the reactor coolant loop until the complete loop seal voiding are observed. And the Nuclear Plant Analyzer is used and found to be effective in improving the phenomenological understanding on the accident

  13. Spent fuel pool cooling system upgrade for Kori Unit 1

    International Nuclear Information System (INIS)

    Sun Park, Jong; In Shin, Kyung

    2014-01-01

    Following Fukushima nuclear power plant accident, the needs for reliable performance of its own safety functions of Spent Fuel Pool Cooling System (SFPCS) has risen significantly to maintain the plant in a safe condition. Regulatory Guide 1.13 of United States Nuclear Regulatory Commission (USNRC) requires the SFPCS shall be designed safety related as Quality Group C and Seismic Category 1. However, the existing Spent Fuel Pool (SFP) of KORI Unit 1 was not designed as a safety system. In order to comply with the above licensing requirement for the extended operational life of KORI Unit 1, it has been decided to add a safety related Seismic Category 1 Makeup System to KORI Unit 1 and the existing SFPCS to be modified in dedicated channels with safety related equipment to enhance system's reliability as a means of providing diversity. This paper focuses on describing the relevant design requirements, applications, and supplemental facilities to the SFPCS of KORI Unit 1. (authors)

  14. Cutset Quantification Error Evaluation for Shin-Kori 1 and 2 PSA model

    International Nuclear Information System (INIS)

    Choi, Jong Soo

    2009-01-01

    Probabilistic safety assessments (PSA) for nuclear power plants (NPPs) are based on the minimal cut set (MCS) quantification method. In PSAs, the risk and importance measures are computed from a cutset equation mainly by using approximations. The conservatism of the approximations is also a source of quantification uncertainty. In this paper, exact MCS quantification methods which are based on the 'sum of disjoint products (SDP)' logic and Inclusion-exclusion formula are applied and the conservatism of the MCS quantification results in Shin-Kori 1 and 2 PSA is evaluated

  15. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Han, Kee Soo [Nuclear Engineering Service and Solution (NESS) Co. Ltd., Deajeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Constructd., Deajeon (Korea, Republic of)

    2016-10-15

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings.

  16. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Ha, Sang Jun; Han, Kee Soo; Park, Chan Eok

    2016-01-01

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings

  17. HIV-positive patients in Pusan servitude : clinical and chest radiographic findings

    International Nuclear Information System (INIS)

    Son, Young Keun; Kim, Kun Il

    2001-01-01

    To analyze the clinical and chest radiolographic findings of HIV-positive in Pusan survitude. We reviewed the medical records of 74 admission cases of 41 HIV-positive patients (38 mem and 3 women), confirmed in NIH and admitted to our hospital between May 1990 and September 1997. We evaluated the clinical findings including the pulmonary disease diagnosed at each admission, and using the pattern approach assessed the radiographic findings in 63 cases available among 74 admission cases. For statistical analysis the Pearson Chi-Square test was used, and the chest CT findings available in 19 cases among 17 patients were also evaluated. In all cases the mode of transmission was sexual contact, and they were more frequently contacted with foreigners (73%) than koreans (27%). During the follow-up period, pulmonary diseases were diagnosed in 52 (70%) of 74 admission cases. The diagnoses were pneumocystis cabrini pneumonia (PCP, n=15), pneumonia(n=15), pulmonary tuberculosis(n=15), combined infection with PCP and pulmonary tuberculosis(n=5), and combined infection with PCP and bacterial pneumonia(n=1). The count of CD4+ lymphocyte in 33 of 55 available admissions cases was less than 50 cells/mm?. In 28 patients(68%) who died, the time between confirmation of HIV-positive status to death ranged from 2 to 81 (mean, 39) months. Chest radiographs of 46 available admission cases (73%) showed the followingabnormal findings: interstitial opacities(n=26), consolidation(n=17), single or multiple nodules (n=9), hilar or mediastinal lymph node enlargement(n=10), pleural effusion(n=8), cyst(n=2), mass(n=1), and pericardial effusion(n=1). Diffuse ground glass opacity was observed in eight (89%) of nine PCP cases (p<0.05), and in cases of pulmonary tubercolosis, hilar or mediastinal lymph node enlargement was frequent (p<0.05). Pulmonary diseases in HIV-positive patients in Pusan servitude were diagnosed during follow-up in 70% of cases. The majority of these diseases were infectious

  18. HIV-positive patients in Pusan servitude : clinical and chest radiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young Keun; Kim, Kun Il [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of)

    2001-04-01

    To analyze the clinical and chest radiolographic findings of HIV-positive in Pusan survitude. We reviewed the medical records of 74 admission cases of 41 HIV-positive patients (38 mem and 3 women), confirmed in NIH and admitted to our hospital between May 1990 and September 1997. We evaluated the clinical findings including the pulmonary disease diagnosed at each admission, and using the pattern approach assessed the radiographic findings in 63 cases available among 74 admission cases. For statistical analysis the Pearson Chi-Square test was used, and the chest CT findings available in 19 cases among 17 patients were also evaluated. In all cases the mode of transmission was sexual contact, and they were more frequently contacted with foreigners (73%) than koreans (27%). During the follow-up period, pulmonary diseases were diagnosed in 52 (70%) of 74 admission cases. The diagnoses were pneumocystis cabrini pneumonia (PCP, n=15), pneumonia(n=15), pulmonary tuberculosis(n=15), combined infection with PCP and pulmonary tuberculosis(n=5), and combined infection with PCP and bacterial pneumonia(n=1). The count of CD4+ lymphocyte in 33 of 55 available admissions cases was less than 50 cells/mm?. In 28 patients(68%) who died, the time between confirmation of HIV-positive status to death ranged from 2 to 81 (mean, 39) months. Chest radiographs of 46 available admission cases (73%) showed the followingabnormal findings: interstitial opacities(n=26), consolidation(n=17), single or multiple nodules (n=9), hilar or mediastinal lymph node enlargement(n=10), pleural effusion(n=8), cyst(n=2), mass(n=1), and pericardial effusion(n=1). Diffuse ground glass opacity was observed in eight (89%) of nine PCP cases (p<0.05), and in cases of pulmonary tubercolosis, hilar or mediastinal lymph node enlargement was frequent (p<0.05). Pulmonary diseases in HIV-positive patients in Pusan servitude were diagnosed during follow-up in 70% of cases. The majority of these diseases were infectious

  19. Preparation status for continuous operation of Kori unit 1 NPP in Korea

    International Nuclear Information System (INIS)

    Choi, C.H. . E-mail : chechee@khnp.co.kr

    2005-01-01

    Kori unit 1 Nuclear Power Plant is the first commercial operation plant in Korea. In Korea, the life extension of NPP beyond design lifetime reached practically application stage. Preparations status for continuous operation of Kori unit 1, Many researches have demonstrated that life extension beyond design lifetime is possible in terms of technology. This paper is to introduce and to share the continuous operation preparations status and schedule for Kori unit 1 License Renewal Process an additional every 10 years beyond the design life 30 years term. (author)

  20. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  1. Aging management strategy for reactor internals of Korean nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Soung Woo; Lee, Sam Lai; Hong, Seung Mo; Kim, Hong Pyo; Kim, Dong Jin; Lim, Yun Soo; Kim, Joung Soo; Jung, Man Kyo; Park, Jang Yul

    2010-01-01

    This report describes various factors on the IASCC of reactor internals in terms of fluence, stress, water chemistries and materials. Materials of each components of Korean nuclear power plants have been surveyed. A technical report for a management of reactor internals issued by EPRI was reviewed for a selection of most susceptible area among many components. Baffle former bolts are considered to be the most susceptible parts due to high irradiation level(fluence) and high tensile stress. Neutron fluence of Kori-1 and Kori-2 was calculated based on fuel exchange history, fuel performance and plant operation history. This report will be used for more advanced inspection and maintenance guidelines development by supplying inspection intervals and components (most susceptible regions) for the long term operation plants

  2. An Australian View of the Pusan Political Crisis in Korea, 1952

    Directory of Open Access Journals (Sweden)

    Munro Ronald

    2015-02-01

    Full Text Available This paper examines the ‘Pusan Political Crisis’ through Australian archival documents. Though Australia was a member of the UNTCOK (United Nations Temporary Commission on Korea, it opposed the strategy of the US to establish a divided government in Korea. Thus, Australia paid sharp attention to the political situation in Korea as it took part in the UNCURK (United Nations Commission for the Unification and Rehabilitation of Korea. The scramble for power broke out in Pusan, which was the ROK’s interim wartime capital. The president was to be elected by the National Assembly according to the Constitution, but the majority of National Assembly members didn’t support Syngman Rhee. Thus, he intended to change over to a direct presidential election system to win re-election. The members of the National Assembly opposed to Syngman Rhee appealed to the Australian diplomat to assist in preventing Rhee formally becoming a dictator. Although the Australian diplomat sincerely desired to intervene in this event due to his belief in and desire for adherence to democratic principles he was to some extent reluctant to do so as he did not have specific orders and to interfere in the domestic affairs of a sovereign was not a step to be taken lightly. Plimsoll was also fully aware of the propaganda victory it would give the Soviet Union-the UNO removing the head of state of a country it had brought into being. Eventually Rhee concluded this crisis by proclaiming martial law and arresting his opponents in the National Assembly.

  3. A Preliminary Study on the Containment Integrity following BIT Removal for Kori NPP Unit 3,4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Byun, Choong Sup [KEPRI, Nuclear Power Generation Laboratory, Daejeon (Korea, Republic of); Jo, Jong Young [ENERGEO Inc., Sungnam (Korea, Republic of)

    2008-05-15

    The Boron Injection Tank (BIT) is to provide high concentrated boric acid to the reactor in order to mitigate the consequences of postulated Main Steam Line Break accidents (MSLB). Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, pipe clog, precipitation and continuous heat tracing have to be provided. This paper is for the feasibility study of containment integrity using CONTEMPT code for BIT removal of Kori Nuclear Power Plant (NPP) Unit 3, 4.

  4. A Preliminary Study on the Containment Integrity following BIT Removal for Kori NPP Unit 3,4

    International Nuclear Information System (INIS)

    Song, Dong Soo; Byun, Choong Sup; Jo, Jong Young

    2008-01-01

    The Boron Injection Tank (BIT) is to provide high concentrated boric acid to the reactor in order to mitigate the consequences of postulated Main Steam Line Break accidents (MSLB). Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, pipe clog, precipitation and continuous heat tracing have to be provided. This paper is for the feasibility study of containment integrity using CONTEMPT code for BIT removal of Kori Nuclear Power Plant (NPP) Unit 3, 4

  5. Measuring the Willingness to Pay for Tap Water Quality Improvements: Results of a Contingent Valuation Survey in Pusan

    Directory of Open Access Journals (Sweden)

    Chang-Seob Kim

    2013-10-01

    Full Text Available With increasing concern regarding health, people have developed an interest in the safety of drinking water. In this study, we attempt to measure the economic benefits of tap water quality improvement through a case study on Pusan, the second largest city in Korea. To this end, we use a scenario that the government plans to implement a new project of improving water quality and apply the contingent valuation (CV method. A one-and-one-half bounded dichotomous choice question (OOHBDC format is employed to reduce the potential for response bias in multiple-bound formats such as the double-bound model, while maintaining much of the efficiency. Moreover, we employ the spike model to deal with zero willingness to pay (WTP responses from the OOHBDC CV survey. The CV survey of 400 randomly selected households was rigorously designed to comply with the guidelines for best-practice CV studies using person-to-person interviews. From the spike OOHBDC CV model, the mean WTP for the improvement was estimated to be KRW 2,124 (USD 2.2, on average, per household, per month. The value amounts to 36.6% of monthly water bill and 20.2% of production costs of water. The conventional OOHBDC model produces statistically insignificant mean WTP estimate and even negative value, but the OOHBDC spike model gives us statistically significant mean WTP estimate and fitted our data well. The WTP value to Pusan residents can be computed to be KRW 31.2 billion (USD 32.1 million per year.

  6. Fan Cooler Operation in Kori 1 for Mitigating Severe Accident

    International Nuclear Information System (INIS)

    Suh, Nam Duk; Park, Jae Hong

    2005-01-01

    The Korea Ministry of Science and Technology (MOST) issued the 'Policy on Severe Accident of Nuclear Power Plants' in August 2001. According to the policy it was required for the licensee to develop a plant specific severe accident management guideline (SAMG) and to implement it. Thus the utility has made an implementation plan to develop SAMGs for operating plants. The SAMG for Kori unit 1 was submitted to the government on January 2004. Since then, the government trusted KINS to review the submitted SAMG in view of its feasibility and effectiveness. The first principle of the developed SAMG is to use only the available facilities as it is without introducing any system change. Because Kori-1 has no mitigative facility against combustible gases during severe accident, it relies heavily both on spray and on fan cooler systems to control the containment condition. Thus one of the issues raised during the review is to know whether the fan coolers which are designed for DBA LOCA can be effective in mitigating the severe accident conditions. This paper presents an analysis result of fan cooler operation in controlling the containment condition during severe accident of Kori 1

  7. Thermal recovery characteristics of Kori-unit 1 linde 80 weld

    International Nuclear Information System (INIS)

    Chi, S. H.; Hong, J. H.; Kuk, I. H.; Kim, I. S.

    1997-01-01

    The recovery activation energy, the order of reaction and the characteristic recovery rate constant were determined by isochronal (573K -823K) and isothermal (723K - 775K) annealing experiments on specimens made from a broken half of a Kori-Unit 1 surveillance weld specimen (fluence: 1.21 x 10 23 n/m 2 , E (1MeV, Cu: 0.29 wt%) to investigate the recovery characteristics of a high copper weld of neutron-irradiated reactor pressure vessel (RPV). Vickers microhardness tests were conducted to trace the recovery behavior after heat treatments. The results were analyzed in terms of recovery stages, behavior of responsible defects and recovery kinetics. It was shown that recovery occurred through two annealing stages (stage I: 673K - 753K, stage II: 753K - 823K) with recovery activation energies of 2.68 eV and 2.83 eV for stage I and II, respectively. The isothermal hardness recovery at 723 K and 775 K coincided with the ratio of the characteristic rate constant for each recovery stage. The order of reaction was 2 for both recovery stages. The recovery activation energies of present specimens are approximately equal to that of copper diffusion in α-iron in the presence of vacancies, suggesting that recovery may occur through the diffusion of copper atoms. The present results strongly support the copper precipitate coarsening model. (author)

  8. Development of a GUI based RETRAN running environment for Kori NPP units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Doo

    2000-09-01

    RETRAN was developed by EPRI and introduced for domestic use. RETRAN, which is a best-estimate system code approved by USNRC and used by most utilities in US, can be used in various plant support activities such as licensing calculations for plant design changes, EOP validation, and training. RETRAN, however, has been limited to only a few groups of specialists because of the difficulty involved in its usage. The aim of this project is to develop a graphic user interface (GUI) based code running environment for RETRAN named PRE (RETRAN Running Environment) in order to assist ordinary users in their input preparation, code execution, and output interpretation. TRIP and CONTROL BLOCK and VOLUME/JUNCTION input cards from base input are designed to be able to modify the existing input cards and add a new input cards through dialog boxes for users who have not much expertise in use of RETRAN. The RRE is designed to provide the calculated results though on-line X-Y graphs, plant mimics, indicators, nodalization window for easy interpretation of its output. It also provides the replay function using pre-calculated results saved in files. The RRE was developed for Kori NPP units 1 and 2 using Delphi 4.0 and Visual Fortran 6.0 and it runs on personal computers to increase the accessibility. The RRE developed in this study for Kori units 1 and 2 can be used in various plant support activities which require thermal-hydraulic analysis of the NSSS (Nuclear Steam Supply System) such as licensing calculations for plant design change, validation of EOP improvement, and operator training. The RRE developed can be expanded its application to other nuclear plants with low expense.

  9. Development of a GUI based RETRAN running environment for Kori NPP units 1 and 2

    International Nuclear Information System (INIS)

    Kim, Kyung Doo

    2000-09-01

    RETRAN was developed by EPRI and introduced for domestic use. RETRAN, which is a best-estimate system code approved by USNRC and used by most utilities in US, can be used in various plant support activities such as licensing calculations for plant design changes, EOP validation, and training. RETRAN, however, has been limited to only a few groups of specialists because of the difficulty involved in its usage. The aim of this project is to develop a graphic user interface (GUI) based code running environment for RETRAN named PRE (RETRAN Running Environment) in order to assist ordinary users in their input preparation, code execution, and output interpretation. TRIP and CONTROL BLOCK and VOLUME/JUNCTION input cards from base input are designed to be able to modify the existing input cards and add a new input cards through dialog boxes for users who have not much expertise in use of RETRAN. The RRE is designed to provide the calculated results though on-line X-Y graphs, plant mimics, indicators, nodalization window for easy interpretation of its output. It also provides the replay function using pre-calculated results saved in files. The RRE was developed for Kori NPP units 1 and 2 using Delphi 4.0 and Visual Fortran 6.0 and it runs on personal computers to increase the accessibility. The RRE developed in this study for Kori units 1 and 2 can be used in various plant support activities which require thermal-hydraulic analysis of the NSSS (Nuclear Steam Supply System) such as licensing calculations for plant design change, validation of EOP improvement, and operator training. The RRE developed can be expanded its application to other nuclear plants with low expense

  10. The technology development for surveillance test of reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Sun Phil; Park, Day Young; Choi, Kwen Jai

    1997-12-01

    Benchmark test was performed in accordance with the requirement of US NRC Reg. Guide DG-1053 for Kori unit-1 in order to determine best-estimated fast neutron fluence irradiated into reactor vessel. Since the uncertainty of radiation analysis comes from the calculation error due to neutron cross-section data, reactor core geometrical dimension, core source, mesh density, angular expansion and convergence criteria, evaluation of calculational uncertainty due to analytical method was performed in accordance with the regulatory guide and the proof was performed for entire analysis by comparing the measurement value obtained by neutron dosimetry located in surveillance capsule. Best-estimated neutron fluence in reactor vessel was calculated by bias factor, neutron flux measurement value/calculational value, from reanalysis result from previous 1st through 4th surveillance testing and finally fluence prediction was performed for the end of reactor life and the entire period of plant life extension. Pressurized thermal shock analysis was performed in accordance with 10 CFR 50.61 using the result of neutron fluence analysis in order to predict the life of reactor vessel material and the criteria of safe operation for Kori unit 1 was reestablished. (author). 55 refs., 55 figs.

  11. Relaxation of inservice test frequency requirement for Kori 1 ASME code pumps

    International Nuclear Information System (INIS)

    Sohn, Gap Heon; Choi, Hae Yoon; Min, Kyung Sung; Rim, Nam Jin

    1994-08-01

    The objective of this investigation is to evaluate the technical and regulational requirements to justify the relaxation of the test frequency of Kori 1 pumps through reviewing the related rules and codes and standards, technical specifications of Kori 1 and other similar plants, standard technical specifications, research results for tech. spec. improvements and site test records. It is concluded that the relaxation of test frequency to quarterly be justified based on the conformance with rules and codes and standard, quarterly test cases in similar plants and standard tech. spec., recommendations of research result and stable site test records. (Author) 16 refs., 26 figs., 13 tabs

  12. Development of a crack growth analysis is program for reactor head penetration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Choi, Kwang Hee; Park, Jeong Il [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kang, Young Hwan; Park, Sung Ho; Kim, Il; Kim, Young Jong; Yoo, Young Joon; Yoo, Wan; Maeng, Wan Young; Choi, Suk Nam; Kim, Kee Suk; Yoon, Sung Won; Kim, Jee Ho; Park, Myung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Crack growth analysis program for Reactor Head Penetration is being developed for applying to plants such as, Kori 1, Kori 2, Kori 3,4 YoungKwang 1,2 and Uljin 1,2 (1) Stress Evaluation - The stress analysis is required to evaluate the structure integrity for the RVH penetration tubes. The RVH penetration tubes are geometrically non-symmetry except center one. Thus, 3D finite element analysis should be employed for the stress analysis. The magnitude and distribution of residual stress resulted from welding can be determined analytically by simulation welding procedure. (2) Flaw Evaluation - There are two objectives of the penetration tube flaw evaluation to predict the time required for a crack to propagate to the acceptance criteria. The first objective is to perform the parametric evaluation for a postulated crack. The second objective is to develop the flaw evaluation program for the crack detected during the inspection. (3) Characterization of Material Properties of Alloy 600 - These study is to provide data which similarly represent the properties of PWR power plants in Korea. The data is used for analyzing of the stress distribution around penetration tubes. And the PWSCC data will be used for the crack growth rate of the penetration tubes. (author). 92 refs., 121 figs.

  13. Lifetime management research trend of Kori-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, J. S.; Jeong, I. S.; Hong, S. Y.

    1998-01-01

    KEPRI launched the Nuclear Power Plant Lifetime Management Study(II) for the management of the latter half life of Kori-1. Main goal of LCM-IV study is the detail evaluation of main equipment life and establishment of aging management based on LCM-IV result. The result of LCM-IV on the kori-1 confirmed the technical and economical feasibility of life extension beyond the design life. Owing to absence of The regulatory policy for the life extension in korea, LCM-IV will focus on the minimum study which is essential for the actual lifetime management for the old nuclear power plant. License renewal study is expected after the establishment of Regulatory policy about the life extension of nuclear power plant. LCM trend in korea and abroad, result of technical and economical feasibility study and summary of LCM-IV is described on this paper

  14. Svakodnevna militarizacija života: etički aspekti korištenja djece u ratu

    OpenAIRE

    Rupčić, Darija

    2017-01-01

    Namjera je rada ukazati na problematiku izmijenjene naravi ratovanja u posljednjih nekoliko desetljeća 20. i 21. stoljeća, s osobitim naglaskom na problem korištenja sve većeg broja djece ratnika. Osnovna je teza rada ta da je praksa korištenja i regrutiranja djece u oružanim sukobima diljem svijeta najmanje prepoznata i najviše zanemarena forma zlostavljanja djece u suvremenom društvu te da je ona manje stvar kulture i nepostojanja stave društva prema vrijednostima djeteta, a više stvar prag...

  15. An advanced NSSS integrity monitoring system for Shin-Kori nuclear units 3 and 4

    International Nuclear Information System (INIS)

    Oh, Y. G.; Kim, H. B.; Galin, S. R.; Kim, S. H.; Lee, S. J.

    2009-01-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling. (authors)

  16. An Advanced NSSS Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4

    Science.gov (United States)

    Oh, Yang Gyun; Galin, Scott R.; Lee, Sang Jeong

    2010-12-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling.

  17. Development of the Real-time Core and Thermal-Hydraulic Models for Kori-1 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Hyuk; Lee, Myeong Soo; Hwang, Do Hyun; Byon, Soo Jin [KEPRI, Daejeon (Korea, Republic of)

    2010-10-15

    The operation of the Kori-Unit 1 (1723.5MWt) is expanded to additional 10 years with upgrades of the Main Control Room (MCR). Therefore, the revision of the procedures, performance tests and works related with the exchange of the Main Control Board (MCB) are currently carried out. And as a part of it, the fullscope simulator for the Kori-1 is being developed for the purpose of the pre-operation and emergence response capability for the operators. The purpose of this paper is to report on the performance of the developed neutronics and thermal-hydraulic (TH) models of Kori Unit 1 simulator. The neutronics model is based on the NESTLE code and TH model based on the RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster{sup TM} of the WSC). As some examples for the verification of the developed neutronics and TH models, some figures are provided. The outputs of the developed neutronics and TH models are in accord with the Nuclear Design Report (NDR) and Final Safety Analysis Report (FSAR) of the reference plant

  18. Dose mapping in working space of KORI unit 1 using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. W.; Shin, C. H.; Kim, J. G. [Hanyang University, Seoul (Korea, Republic of); Kim, S. Y. [Innovative Techonology Center for Radiation Safety, Seoul (Korea, Republic of)

    2004-07-01

    Radiation field analysis in nuclear power plant mainly depends on actual measurements. In this study, the analysis using computational calculation is performed to overcome the limits of measurement and provide the initial information for unfolding. The radiation field mapping is performed, which makes it possible to analyze the trends of the radiation filed for whole space. By using MCNPX code, containment building inside is modeled for KORI unit 1 cycle 21 under operation. Applying the neutron spectrum from the operating reactor as a radiation source, the ambient doses are calculated in the whole space, containment building inside, for neutron and photon fields. Dose mapping is performed for three spaces, 6{approx}20, 20{approx}44, 44{approx}70 ft from bottom of the containment building. The radiation distribution in dose maps shows the effects from structures and materials of components. With this dose maps, radiation field analysis contained the region near the detect position. The analysis and prediction are possible for radiation field from other radiation source or operating cycle.

  19. The application experience of ethanol amine at KORI unit 4

    International Nuclear Information System (INIS)

    Lee, Sang-hak; Park, Jong-il; Lee, Jae-won; Kim, Guem-Soo

    2004-01-01

    The secondary system water chemistry in the KORI PWR units has been well controlled by reducing the corrosion in the tubes of the steam generators; the pH agent has been changing from ammonia to ethanol amine (ETA) (1.8 to 2.0 ppm). For example, the iron concentration in the system was reduced by 40 to 70% compared with ammonia treatment. The paper presents the detailed information, such as ETA injection concentration and the variation of pH, concentration of organic acid products, and irons in the system, and a significant change on sludge after ETA application. (S. Ohno)

  20. Pretreatment Process for performance Improvement of SIES at Kori Unit 2 in Korea

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Yang, Ho Yeon; Shin, Sang Woon; Song, Myung Jae

    1994-01-01

    Pretreatment process consisted of submerged hollow-fiber microfiltration(HMF) membrane and spiral-wound nanofiltration(SNF) membrane has been developed by NETEC, KHNP for the purpose of improving the impurities of liquid radioactive waste before entering Selective Ion Exchange System(SIES). The lab-scale combined system was installed at Kori NPP no. 2 nuclear power plant and demonstration tests using actual liquid radioactive waste were carried out to verify the performance of the combined system. The submerged HMF membrane was adopted for removal of suspended solid in liquid radioactive waste and the SNF membrane was used for removal of particulate radioisotope such as, Ag-110m and oily waste because ion exchange resin can not remove particulate radioisotopes. The liquid waste in Waste Holdup Tank(WHT) was processed with HMF and SNF membrane, and SIES. The initial SS concentration and total activity of actual waste were 38,000ppb and 1.534x10 -3 μCi/cc, respectively. The SS concentration and total activity of permeate were 30ppb and lower than LLD(Lower Limit of Detection), respectively

  1. Fracture Toughness Evaluation of Kori-1 RPV Beltline Weld for a Long-Term Operation

    International Nuclear Information System (INIS)

    Lee, Bong-Sang; Kim, Min-Chul; Ahn, Sang-Bok; Kim, Byung-Chul; Hong, Jun-Hwa

    2007-01-01

    Irradiation embrittlement of RPV (reactor pressure vessel) material is the most important aging issue for a long-term operation of nuclear power plants. KORI unit 1, which is the first PWR in Korea, is approaching its initial licensing life of 30 years. In order to operate the reactor for another 10 years and more, it should be demonstrated that the irradiation embrittlement of the reactor will be adequately managed by ensuring that the fracture toughness properties have a certain level of the safety margin. The current regulation requires Charpy V-notch impact data through conventional surveillance tests. It is based on the assumption that Charpy impact test results are well correlated with the fracture toughness properties of many engineering steels. However, Charpy V-notch impact data may not be adequate to estimate the fracture toughness of certain materials, such as Linde 80 welds. During the last decade, a tremendous number of fracture toughness data on many RPV steels have been produced in accordance with the new standard test method, the so-called master curve method. ASTM E1921 represents a revolutionary advance in characterizing fracture toughness of RPV steels, since it permits establishing the ductile to brittle transition portion of the fracture toughness curve with direct measurements on a relatively small number of relatively small specimens, such as pre-cracked Charpy specimens. Actual fracture toughness data from many different RPV steels revealed that the Charpy test estimations are generally conservative with the exception of a few cases. Recent regulation codes in USA permit the master curve fracture toughness methodology in evaluating an irradiation embrittlement of commercial nuclear reactor vessels

  2. Audit Technical of Kori Rubber Dam in the River of Keyang District of Ponorogo East Java Province

    Science.gov (United States)

    Murnianto, E.; Suprapto, M.; Ikhsan, C.

    2018-03-01

    The development of science and technology for the utilization and protection of rivers has embodied various types of river infrastructure. Without proper maintenance, rapid river sediments undergo physical degradation and function. Problems that occur in Kori Rubber Dam, among others, the damage to the body of the rubber dam that is made of rubber, so that the function of flower deflection is not optimal. This happens because of limited operational and maintenance activities (OM). A technical audit is a process of identifying problems, analyzing, and evaluating ones conducted independently, objectively and professionally on the basis of examination, to assess the truth, accuracy, credibility, and reliability of information about a job. In this case an assessment of the Kori Rubber Dam, which is basically a benchmarking activity. Assessment of rubber dam components includes the physical conditions and functions that affect the weir. This research is expected to know the performance of Kori rubber Dam as a recommendation material in the implementation of OM Rubber Dam activities.

  3. Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Yong Deong; Lee, Hwan Soo

    2014-01-01

    The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux

  4. Physical and other data from bottle and XBT casts from the PUSAN-852 and other platforms from the Philippine Sea from 1978-01-17 to 1988-06-04 (NODC Accession 8900142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data from bottle and XBT casts from the PUSAN-852 and other platforms from the Philippine Sea. Data were collected by the Maritime Safety Agency;...

  5. Life extension program of KORI Unit 1 NPP in Korea

    International Nuclear Information System (INIS)

    Hong, Sun-Yull

    1998-01-01

    The two phases of Life extension program for KORI Unit 1 NPP are presented. Phase I is completed. It was concluded that life extension is a feasible option in technical and economic aspects. Detailed analysis of RPV is underway, plan for Phase II is finished. It deals with screening and sorting of all relevant SSCs, detailed life evaluation of SSCs, ageing management program and documentation for license renewal application

  6. IAEA Completes Expert Mission to Kori 1 Nuclear Power Plant in the Republic of Korea

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) has completed a review of safety practices at the Kori 1 Nuclear Power Plant (NPP) near Busan in the Republic of Korea. The IAEA assembled the team at the request of Korea Hydro and Nuclear Power Co., Ltd. (KHNP) following a station blackout event on 9 February 2012. The team - comprised of experts from Belgium, France, Sweden, United Kingdom and the IAEA - conducted its mission from 4 to 11 June 2012 under the leadership of the IAEA's Division of Nuclear Installation Safety. The expert mission applied the methodology of the IAEA's Operational Safety Review (OSART) missions and covered the areas of Management, Organization and Administration; Operations; Maintenance and Operating Experience. The conclusions of the review are based on the IAEA's Safety Standards, which are developed by the Agency to help nations improve their nuclear safety practices, which are the responsibility of every nation that undertakes nuclear-related activities. Throughout the review, the exchange of information between the experts and plant personnel was very open, professional and productive. Prior to the mission, Korea's Nuclear Safety and Security Commission completed an interim investigation, and it continues to perform additional investigations and technical reviews. The Commission identified corrective actions for the plant concerning reinforcing safety culture, emergency diesel generator reliability, configuration control and risk management during refueling outage, test and maintenance procedures and emergency action level declaration. The expert mission confirmed that some corrective actions have already been completed and others are in progress. The expert mission found the management and staff of Kori 1 NPP to be committed and working hard to complete all improvements. The root cause analysis of the event at Kori 1 NPP is still in progress and is expected to lead to

  7. Evaluation of SPACE code for simulation of inadvertent opening of spray valve in Shin Kori unit 1

    International Nuclear Information System (INIS)

    Kim, Seyun; Youn, Bumsoo

    2013-01-01

    SPACE code is expected to be applied to the safety analysis for LOCA (Loss of Coolant Accident) and Non-LOCA scenarios. SPACE code solves two-fluid, three-field governing equations and programmed with C++ computer language using object-oriented concepts. To evaluate the analysis capability for the transient phenomena in the actual nuclear power plant, an inadvertent opening of spray valve in startup test phase of Shin Kori unit 1 was simulated with SPACE code. To evaluate the analysis capability for the transient phenomena in the actual nuclear power plant, an inadvertent opening of spray valve in startup test phase of Shin Kori unit 1 was simulated with SPACE code

  8. Main Control Room Upgrade for Kori Unit 1 in Korea

    International Nuclear Information System (INIS)

    Ha, Jae Taeg; Choi, Moon Jae

    2014-01-01

    Kori Unit 1 is a 30 years old nuclear power plant and its MCR and MCB was upgraded based on the latest Human Factors Engineering (HFE) principles. The objectives of applying the Human Factors Engineering (HFE) principles are to minimize the human errors and to enhance the safe operation of the plant. In order to systematically incorporate the HFE design principles into the Human System Interface (HSI) design, HFE Program Plan (HFEPP) for Kori Unit 1 was developed and the plan provided an overview of the HSI design process along with detailed methods and results. The upgrade includes addition of Bypassed and Inoperable Status Indication System (BISI) and the replacement of the conventional MMI devices such as hardwired hand switches, recorders and indicators with new advanced control and display devices using VDUs (Video Display Units). The VDUs significantly improve the effectiveness and efficiency of the monitoring function. Plant Monitoring System (PMS) and Plant Annunciator System (PAS) were upgraded also by replacing the outdated systems with advanced digital systems with future expansion capability. In addition, the MCR related equipment and/or facilities were replaced or improved. Some of these include the enhancement of MCR interior designs for better working environment, dimmable ceiling lighting, aesthetically pleasing decor of ceiling, wall and floor as well as ergonomically improved operator consoles

  9. Main Control Room Upgrade for Kori Unit 1 in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Taeg; Choi, Moon Jae [KEPCO, Daejeon (Korea, Republic of)

    2014-08-15

    Kori Unit 1 is a 30 years old nuclear power plant and its MCR and MCB was upgraded based on the latest Human Factors Engineering (HFE) principles. The objectives of applying the Human Factors Engineering (HFE) principles are to minimize the human errors and to enhance the safe operation of the plant. In order to systematically incorporate the HFE design principles into the Human System Interface (HSI) design, HFE Program Plan (HFEPP) for Kori Unit 1 was developed and the plan provided an overview of the HSI design process along with detailed methods and results. The upgrade includes addition of Bypassed and Inoperable Status Indication System (BISI) and the replacement of the conventional MMI devices such as hardwired hand switches, recorders and indicators with new advanced control and display devices using VDUs (Video Display Units). The VDUs significantly improve the effectiveness and efficiency of the monitoring function. Plant Monitoring System (PMS) and Plant Annunciator System (PAS) were upgraded also by replacing the outdated systems with advanced digital systems with future expansion capability. In addition, the MCR related equipment and/or facilities were replaced or improved. Some of these include the enhancement of MCR interior designs for better working environment, dimmable ceiling lighting, aesthetically pleasing decor of ceiling, wall and floor as well as ergonomically improved operator consoles.

  10. Development of radiation protection technology for application of the retired steam generator, Kori Unit no. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Jang, D. C.; Song, K. S.; Lee, S. J.; Ahn, C. S.; Kim, D. H.; Im, Y. K.; Kim, H. D. [Hanil Nuclear Co., Ltd., Anyang (Korea, Republic of)

    2005-04-15

    It is a field study to develop and verify maintenance technologies such as verification and technology development of ECT (Eddy current test) using failure, heat tube excavation and field pressure test regarding the utilization of retired steam generator using 2 units of Retired Steam Generator in Kori 1 that was replaced for the first time in Korea in 1998. Since May, 2003, our team has investigated Retired Steam Generator which was stored in Radioactive waste warehouse in Korea Hydro and Nuclear Power Kori unit no.1 Branch, in order to study natural fault ECT signal acquisition, maintenance technology verification, small tubes/samples abstraction. A temporal task zone was made focusing on 'Man Way at the bottom of Chamber 'A'.' The purpose of the study is to establish Radiological Protection and Radioactive Waste Treatment Plan by setting ALARA (As Low As Reasonably Achievable) goal systematically, which is the basic concept of Radiological Protection and reduction in exposure of radiological workers to radioactive materials with proper Radiological Protection countermeasures according to the changes in radioactivity, to prevent expansion from contamination and to manage 'Radioactive Waste Reduction Activities' effectively.

  11. A study on optimization of environmental qualification envelope for Kori 3 and 4 NPP

    International Nuclear Information System (INIS)

    Song, Dong Soo; Byun, Choong Sup; Jo, Jong Young

    2009-01-01

    The purpose of this study is to present the reevaluation of the Main Steam Line Break (MSLB) applied Boron Injection Tank (BIT) removal and to optimize the environmental qualification (EQ) temperature envelope with thermal lag analysis and liquid entrainment method. BIT alleviates the reactor power excursion during Main Steam Line Break (MSLB) accident. Thermal lag analysis methods by NUREG-0588 is using four times condensing heat transfer coefficient on the passive heat sink surface, the forced convection heat transfer coefficient whenever the condensing is not occurring and during blowdown stage. And the entrainment model is that the all of the break regions within the secondary side are represented by non-homogeneous vapor volumes in which the liquid and steam are uniformly mixed throughout. These methods are focused on making higher the surface temperature of the safety equipment. For the analysis, amount of released mass and energy is calculated using the LOFTRAN code and containment temperature is predicted by CONTEMPT-LT 28 code. These two codes are used to for safety analysis. In accordance with the analysis result, a plant specific EQ test envelope was proposed for Kori 3 and 4 NPP

  12. A study on optimization of environmental qualification envelope for Kori 3 and 4 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Byun, Choong Sup; Jo, Jong Young [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-07-01

    The purpose of this study is to present the reevaluation of the Main Steam Line Break (MSLB) applied Boron Injection Tank (BIT) removal and to optimize the environmental qualification (EQ) temperature envelope with thermal lag analysis and liquid entrainment method. BIT alleviates the reactor power excursion during Main Steam Line Break (MSLB) accident. Thermal lag analysis methods by NUREG-0588 is using four times condensing heat transfer coefficient on the passive heat sink surface, the forced convection heat transfer coefficient whenever the condensing is not occurring and during blowdown stage. And the entrainment model is that the all of the break regions within the secondary side are represented by non-homogeneous vapor volumes in which the liquid and steam are uniformly mixed throughout. These methods are focused on making higher the surface temperature of the safety equipment. For the analysis, amount of released mass and energy is calculated using the LOFTRAN code and containment temperature is predicted by CONTEMPT-LT 28 code. These two codes are used to for safety analysis. In accordance with the analysis result, a plant specific EQ test envelope was proposed for Kori 3 and 4 NPP.

  13. Neutron spectrum measurement inside containment vessel at Kori nuclear power plant unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. M.; Kim, T. W.; Kim, K. D.; Youn, C. H. [Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    2003-10-01

    There would be a case for the radiation worker have to work inside of the containment vessel to inspect or repair reactor facilities. In this case, the information about distribution of neutron field is needed to estimate neutron exposure dose of worker. Neutron spectra were measured by BMS(Bonner Multisphere Spectrometer) at 4 points of 6 ft and 20 ft, 2 points of 44 ft, 5 points of 70 ft in containment vessel of Kori unit 1. From the calculation, the following results were obtained. Neutron fluxes of 6 ft were between 2.623 x 10{sup 2} and 2.746 x 10{sup 4} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 9.209 x 10{sup -6} and 3.377 x 10{sup -2} MeV, equivalent doses of neutron were between 0.025 and 2.675 mSv/hr. Neutron fluxes of 20 ft were between 1.771 x 10{sup 1} and 1.682 x 10{sup 3} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 6.084 x 10{sup -6} and 2.988 x 10{sup -1} MeV, equivalent doses of neutron were between 0.004 and 0.228 mSv/hr. Neutron fluxes of 44 ft were between 3.367 x 10{sup 2} and 3.483 x 10{sup 2} neutron / cm{sup 2}{center_dot}sec, average neutron energies were between 3.962 x 10{sup -2} and 7.360 x 10{sup -2} MeV, equivalent doses of neutron were between 0.069 and 0.089 mSv/hr. Neutron fluxes of 70 ft were between 4.553 x 10{sup 3} and 1.407 x 10{sup 4} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 3.668 x 10{sup -4} and 6.764 x 10{sup -2} MeV, equivalent doses of neutron were between 0.449 and 2.660 mSv/hr.

  14. The 4th surveillance test and evaluation of the reactor pressure vessel material (capsule W) of Yonggwang nuclear power plant unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-02-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Yonggwang unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 5.762E+18, 1.5391E+19, 3.5119E+19, and 4.2610E+19 n/cm{sup 2}, respectively. The bias factor, the ratio of measurement versus calculation, was 0.899 for the 1st through 4th testing and the calculational uncertainty, 12.3% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.357E+19 n/cm{sup 2} based on the end of 11th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.525E+19, 4.337E+19, 5.148E+19 and 5.960E+19 n/cm{sup 2} based on the current calculation. The result through this analysis for Yonggwang unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 42 tabs. (Author)

  15. The trip status and the reduction countermeasure in Kori nuclear power plant unit 1 and 2

    International Nuclear Information System (INIS)

    Kim, Jung-Soo

    1991-01-01

    Nuclear power account for 36% of Korea's total electric capacity and provided over 50% of the net electric power supply by June 1991. These plants supply US with the cheapest and most stable electric supply available. However each units capacity is very large and a plant trip due to failure of a component or a human error has a great influence on the nations electric power supply and drastically decreases the reserve margin. This report will analyze the trip causes and measure the trip frequency from the first commercial operation of Kori unit 1 and 2 to the end of June 1991, reflect to the plant operation, management and facility modification, etc. This will minimize the number of trips or urgent power reductions and thus contribute to an increase in plant capacity factor and safety, and stabilize the electric power demand and supply. The safety and the economy of nuclear power plant have to be secured and raised respectably by increasing the capacity factor. Since the prevention of trips plays an important role in the plant safety and economy, we have to do our best to prevent the unexpected trip

  16. Experiments and analysis of thermal stresses around the nozzle of the reactor vessel

    International Nuclear Information System (INIS)

    Song, D.H.; Oh, J.H.; Song, H.K.; Park, D.S.; Shon, K.H.

    1981-01-01

    This report describes the results of analysis and experiments on the thermal stress around the reactor vessel nozzle performed to establish a capability of thermal stress analysis of pressure vessel subjected to thermal loadings. Firstly, heat conduction analysis during reactor design transients and analysis on the experimental model were performed using computer code FETEM-1 for the purpose of verification of FETEM-1 which was developed in 1979 and will be used to obtain the temperature distribution in a solid body under the steady-state and the transient conditions. The results of the analysis was compared to the results in the Stress Report of Kori-1 reactor vessel and those from experiments on the model, respectively

  17. Experience of Ko-Ri Unit 1 water chemistry

    International Nuclear Information System (INIS)

    Tae Il Lee

    1983-01-01

    The main focus is placed on operational experience in secondary system water chemistry (especially the steam generator) of the Ko-Ri nuclear power plant Unit 1, Republic of Korea, but primary side chemistry is also discussed. The major concern of secondary water chemistry in a PWR is that the condition of the steam generator be well maintained. Full flow deep bed condensate polishers have recently been installed and operation started in July 1982. Boric acid treatment of the steam generator was stopped and only the all volatile treatment method was used thereafter. A review of steam generator integrity, the chemistry control programme, secondary water quality, etc. is considered to be of great value regarding the operation of Unit 1 and future units now under startup testing or construction in the Republic of Korea. (author)

  18. Numerical Simulation of Groundwater Flow at Kori Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Sohn, Wook; Sohn, Soon Whan; Chon, Chul Min; Kim, Kue Youn

    2010-01-01

    Recently, the understanding of hydrogeological characteristics of nuclear power sites is getting more importance with increasing public concerns over the environment since such understanding is essential for an environmentally friendly operation of plants. For such understanding, the prediction of groundwater flow pattern onsite plays the most critical role since it is the most dynamic of the factors to be considered. In this study, the groundwater flow at the Kori Plant 1 site has been simulated numerically with aim of providing fundamental information needed for improving the understanding of the hydrogeological characteristics of the site

  19. Application of a Virtual Ovation System to the ShinKori-3 Simulator

    International Nuclear Information System (INIS)

    Hong, Jin Hyuk; Lee, Myeong Soo; Chung, Kyung Hun

    2011-01-01

    The Ovation system for the Shin-Kori Unit 3 Simulator is essentially a non-redundant, repackaged subset of the actual plant I and C equipment, with additional interface computers (SimStations). This system also present in the simulator to provide communication between the plant model computer and the stimulated Ovation equipment. The stimulated Ovation equipment in the simulator system includes Operator HMI (Human- Machine Interface) equipment and Ovation virtual controllers hosted by Virtual Controller Host workstations, which are not present in the actual plant DCS system. The simulator for the Shin-Kori Unit 3 and 4 is being developed by Korea Hydro and Nuclear Power's Central Research Institute (KHNP CRI). One of the features of the simulator is its application of a virtual Ovation system capable of simulated functionalities such as run, freeze, snapshot, backtrack and others required by ANSI/ANS-3.5 in addition to the original functionality for the actual Ovation system applied at the plant. This is the first application of a virtual Ovation system to a full-scope simulator for a nuclear power plant in Korea. The purpose of this paper is to provide the overall architecture of the communication system between the virtual system and the simulator model and to describe the current situation of the development of the system and recent relevant studies

  20. Locating the Source of Atmospheric Contamination Based on Data From the Kori Field Tracer Experiment

    Directory of Open Access Journals (Sweden)

    Piotr Kopka

    2015-01-01

    Full Text Available Accidental releases of hazardous material into the atmosphere pose high risks to human health and the environment. Thus it would be valuable to develop an emergency reaction system which can recognize the probable location of the source based only on concentrations of the released substance as reported by a network of sensors. We apply a methodology combining Bayesian inference with Sequential Monte Carlo (SMC methods to the problem of locating the source of an atmospheric contaminant. The input data for this algorithm are the concentrations of a given substance gathered continuously in time. We employ this algorithm to locating a contamination source using data from a field tracer experiment covering the Kori nuclear site and conducted in May 2001. We use the second-order Closure Integrated PUFF Model (SCIPUFF of atmospheric dispersion as the forward model to predict concentrations at the sensors' locations. We demonstrate that the source of continuous contamination may be successfully located even in the very complicated, hilly terrain surrounding the Kori nuclear site. (original abstract

  1. Design Modification of Kori Unit 1 for the Equipment Qualification

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, M. Y.; Han, K. T.; Park, J. D.

    2007-01-01

    There has not been a strict regulatory requirements for the Equipment Qualification(EQ) in 1970's when Kori Unit 1 had begun the construction and the commercial operation. The Korean regulatory body requested the EQ on the various safety-related components, as a result of Periodic Safety Review. However, the EQ itself is impossible in some areas, due to the high pressure/temperature and flooding environment conditions from the pipe breaks. Design modification is being considered in the Auxiliary Building, the Intermediate Building, the Component Cooling Water Heat Exchanger Building and the Turbine Building, in order to mitigate the environmental conditions for the EQ

  2. Marine ecosystem analysis for Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, C.H.; Kim, Y.H.; Cho, T.S.

    1980-01-01

    The effect of both radioactive and thermal effluents discharged from the plant on aquatic ecosystem is one of the primary concerns in evaluating the environmental impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases. There is also another possible synergistic effect, that is, the combination of the above stresses, which may cause an impact severer than that of the sum of the individual impact. This report deals with species diversity and seasonal variations of those numbers of phytoplankton, marine algae and microorganisms, and distribution of radioactivity of marine organisms, as well as those data pertaining to sea water analysis. The present survey is designed to provide a partial baseline information for environmental impact assessment of Kori nuclear plant unit no. 1. (author)

  3. Field measurement of the piping system vibration of Ko-Ri unit 4 during the load-following operation

    International Nuclear Information System (INIS)

    Chung, Tae-Young; Hong, Sung-Yull; Kim, Bum-Nyun.

    1989-01-01

    During the load-following operation of nuclear power plants, flow rate, temperature, and pressure in the piping system can be varied by changing the electric power output level, and these variations can cause different vibration phenomena in the piping system. The piping system vibration is important because it is directly related to the dynamic stress of the piping system and can affect the life of the piping system through structural fatigue. An assessment of vibration levels for the classes II and III piping systems of the Ko-Ri Unit 4950-MW nuclear power plant was performed according to the given pattern of the load-following operation to study its feasibility from the viewpoint of piping system vibration. The classes II and III piping system vibration of the Ko-Ri Unit 4 may not cause any potential problem under the given pattern of the load-following operation; however, it is recommended that long-term operation in the 85 to 95% power range be avoided as much as possible

  4. Unavailability Analysis of the Reactor Core Protection System using Reliability Block Diagram

    International Nuclear Information System (INIS)

    Shin, Hyun Kook; Kim, Sung Ho; Choi, Woong Suk; Kim, Jae Hack

    2006-01-01

    The reactor core of nuclear power plants needs to be monitored for the early detection of core abnormal conditions to protect plants from a severe accident. The core protection calculator system (CPCS) has been provided to calculate the departure from nucleate boiling ratio (DNBR) and the local power density (LPD) based on measured parameters of reactor and coolant system. The original CPCS for OPR 1000 has been designed and implemented based on the concurrent 3205 computer system whose components are obsolete. The CPCS based on Westinghouse Common-Q system has recently been implemented for the Shin-Kori Nuclear Power Plant, Units 1 and 2(SKN 1 and 2). An R and D project has been launched to develop new core protection system called as RCOPS (Reactor Core Protection System) with the partnership of KOPEC and Doosan Heavy Industries and Construction Co. RCOPS is implemented on the HFC-6000 safety class programmable logic controller (PLC). In this paper, the reliability of RCOPS is analyzed using the reliability block diagram (RBD) method. The calculated results are compared with that of the CPCS for SKN 1 and 2

  5. Development and application of the lancing system of delta-60 steam generator-Kori nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Jeong, W. T.; Han, D. Y.; Ahn, N. S.; Jo, B. H.; Hong, Y. W.

    2001-01-01

    A lancing system for removing the deposits on the tube sheet of a nuclear steam generator using high pressure water was developed and applied to Kori Nuclear Power Plant( NPP) Unit 1. As the place where the lancing system is to be installed is relatively high radioactive area, every part consisting the equipment is carefully selected to be radiation resistant. The lancing robot was designed to be water proof to aviod possible malfunction of the lancing robot because of high pressure water. To minimize radiation exposure to operators, the system was designed considering easy installation and maintenance in mind. Water ejection nozzle are designed to have high strength with special material and heat treatment so as to lessen abrasion caused by high pressure ejection. The lancing system showed good performance during the on-site lancing using the system for Delta-60 steam generator of Kori NPP No. 1 in October 2000

  6. Marine-ecosystem analysis for the Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.

    1979-01-01

    The effects of radioactive effluents and warm water discharged from the plant on aquatic ecosystem is one of the primary considerations in evaluating the impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases; there is also the possible synergistic effect, that is, the combination of the above stresses, which may cause an effect greater than that of the sum of the individual effects. This report deals with species diversity and seasonal vegetation of phytoplankton, marine algae and microorganisms, radioactive contamination of marine organisms, and lateral distribution of sea water temperature from discharge point. The present investigation is designed to provide a partial baseline information for environmental safety against Kori nuclear power plant. (author)

  7. Effects of environmental radiation of Kori nuclear power plant on the human population

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1979-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on human population, the base line survey for the human monitoring, the fauna of land nocturnal insects, and the karyotypes of amphibian species which have been living around the power plant site were carried out. ''Kilchunri'' population which took for the human monitoring lie within a 2km distance from power plant site. Human monitoring, house and food characteristics, individual experience of X-ray exposures, human chromosome analysis and fauna of nocturnal land insects were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows; Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana migromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, and Bufo bufo 2N=22. (author)

  8. Development of Level-2 PSA Technology: A Development of the Database of the Parametric Source Term for Kori Unit 1 Using the MAAP4 Code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Soon; Mun, Ju Hyun; Yun, Jeong Ick; Cho, Young Hoo; Kim, Chong Uk [Seoul National University, Seoul (Korea, Republic of)

    1997-07-15

    To quantify the severe accident source term of the parametric model method, the uncertainty of the parameters should be analyzed. Generally, to analyze the uncertainties, the cumulative distribution functions(CDF`S) of the parameters are derived. This report introduces a method of derivation of the CDF`s of the basic parameters, FCOR, FVES and FDCH. The calculation tool of the source term is the MAAP version 4.0. In the MAAP code, there are model parameters to consider an uncertain physical and/or chemical phenomenon. In general, the parameters have not a point value but a range. In this paper, considering this point, the input values of model parameters influencing each parameter are sampled using LHS. Then, the calculation results are shown in the cumulative distribution form. For a case study, the CDF`s of FCOR, FVES and FDCH of KORI unit 1 are derived. The target scenarios for the calculation are the ones whose initial events are large LOCA, small LOCA and transient, respectively. It is found that the distributions of this study are consistent to those of NUREG-1150 and are proven to be adequate in assessing the uncertainties in the severe accident source term of KORI Unit 1. 15 refs., 27 tabs., 4 figs. (author)

  9. Development of a Real-Time Thermal Performance Diagnostic Monitoring system Using Self-Organizing Neural Network for Kori-2 Nuclear Power Unit

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1996-01-01

    In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. the system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the Kori-2 nuclear power unit is developed and examined is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, the algorithm is shown to be ale to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work. 5 figs., 3 tabs., 11 refs. (Author)

  10. Economic evaluation of Kori and Wolsong Unit 1 plant life extension

    International Nuclear Information System (INIS)

    Song, T. H.; Jeong, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Wolsong Unit 1 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by the utility company. In this paper, the methodologies and results of plant lifetime management economic evaluations of both units have been presented in comparison with Korean standard nuclear power plant 10, 20 and 30 year life extension cases respectively. In addition to that, sensitivity analysis and break even point analysis results are presented with the variables of capacity factor, operation and maintenance cost, and discount rate

  11. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    International Nuclear Information System (INIS)

    Seo, Kwi Hyun; Byun, Choong Sup; Song, Dong Soo

    2006-01-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information

  12. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwi Hyun [ENERGEO Inc., Sungnam (Korea, Republic of); Byun, Choong Sup; Song, Dong Soo [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information.

  13. Development of PSI and ISI technique

    International Nuclear Information System (INIS)

    Chung, M.K.; Park, D.Y.; Choi, S.P.; Kim, H.J.; Moon, Y.S.; Shon, G.H.; Kim, T.S.

    1983-01-01

    This report describes the experimental results of the subjects selected from the PSI/ISI related problems which encountered by us in 1982. The main contents are 1) the characteristics of the typical ECT signals from the steam generator tubes of nuclear power plant and the results of ECT evaluation of Kori-1 steam generators, 2) the experimental result for the research for directional effects of ultrasonic transducers, 3) the basic experiment for the ultrasonic testing technique by immersion testing method, 4) how to write the scan plan of the mechanized ultrasonic testing for nuclear reactor. Attached appendix is a part of necessary materials for the scan plan of the mechanized ultrasonic testing for Kori-2 nuclear reactor. (Author)

  14. Final report on effects of environmental radiation of Kori nuclear power plant on human population

    International Nuclear Information System (INIS)

    Kim, Y.J.; Kim, J.B.; Chung, K.H.; Lee, K.S.; Kim, S.R.; Yang, S.Y.

    1980-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on the human population, the base line survey for the human monitoring, human life habits, expected individual exposure dose, frequencies of chromosomal aberration, gene frequencies and karyotypes in amphibia, fauna, and radiation sensitivities in microorganisms which have been living around the power plant site were carried out. Kilchonri population which took for the human monitoring lie within a 2 km distance from the power plant site. Human monitoring, house and food characteristics, individual experience of x-ray exposures, human chromosome analysis and fauna were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows: Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana nigromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, Bufo bufo 2N=22. (author)

  15. Nuclear design report for Kori nuclear power plant unit 4 cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyoon; Jung, Yil Sub; Kim, Si Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s 48 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 421 EFPD corresponding to a cycle burnup of 16950 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  16. Nuclear design report for Kori nuclear power plant unit 1, cycle 13

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Moon, Bok Ja; Cho, Byeong Ho; Jung, Yil Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-04-01

    This report presents nuclear design calculations for cycle 13 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 13 amounts to 355 EFPD corresponding to a cycle burnup of 13240 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  17. Uslovi korišćenja plovnih dizalica za dizanje potonulih objekata na unutrašnjim plovnim putevima

    OpenAIRE

    Radojević M. Slobodan

    2012-01-01

    U radu se prikazuju uslovi korišćenja plovnih dizalica za dizanje potonulih plovnih i drugih objekata na unutrašnjim plovnim putevima. Prikazani su osnovni načini podizanja plovnim dizalicama i osnovni tehnički podaci sa proračunskim pojedinostima za predložen postupak dizanja. Ukazano je na značaj dizanja potonulih objekata i njihovog uklanjanja iz unutrašnjih plovnih puteva u Republici Srbiji.

  18. Lifetime assessment on PWR reactor vessel internals in Korea

    International Nuclear Information System (INIS)

    Jung, Sung-Gyu; Jin, Tae-Eun; Jeong, Ill-Seok

    2002-01-01

    In order to extend the operating time of the Kori Unit 1 reactor internals, a comprehensive review of the potential ageing problems and a safety assessment have been performed. As the plant ages, reactor internal components which are subject to various ageing mechanism should be identified and evaluated based on the systematic technical procedure. In this respect, technical procedure for lifetime evaluation had been developed and applied to reactor internals. This paper describes a overall assessment and ageing management procedure and evaluation results for reactor internals. Also this paper suggests the optimal ageing management programs to maintain the integrity of reactor internals beyond design life based on the evaluation results. A review of all known potential ageing mechanisms was performed for each of the reactor internal subcomponents. From these results, 8 ageing mechanisms such as void swelling, irradiation and thermal embrittlement, fatigue, stress corrosion cracking, IASCC, stress relaxation, and wear for the reactor internal components were expected to be of major concerns during the current or extended plant life. In this study, 8 ageing mechanisms were identified for lifetime evaluation. For these ageing mechanisms, lifetime assessment was performed. As a result of this evaluation, it is expected that core barrel will exceed the IASCC threshold value during 40 operating years, and baffle/former and baffle former bolts will exceed the threshold value for void swelling, irradiation embrittlement, IASCC, stress relaxation during 40 operating years. However, for all other reactor internals subcomponents, thermal embrittlement, fatigue, SCC, and wear were identified as nonsignificant. As a result of lifetime evaluations, 4 ageing mechanisms were established to be plausible for 3 subcomponents. These results are shown. The existing ageing management programs (AMPs) for Kori Unit 1, such as ISI, water chemistry control, rod drop time testing etc., were

  19. Containment Response Analysis for Equipment Qualification of Kori Nuclear Power Plant Unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Choong Sup; Song, Dong Soo; Hwang, Yong Jun [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Seo, Kwi Hyun; Song, Wan Jung [ENERGEO Inc., Sungnam (Korea, Republic of)

    2006-07-01

    Equipment that is used to perform a necessary safety function must be capable of maintaining functional operability under all service condition postulated to occur during the installed life for the time it is required. The pressure and temperature analyses for loss of coolant accident and main steam line break accident provide the bounding test envelope inside containment for the operability evaluation of safety equipment in harsh environmental. This paper describes the results of the containment pressure and temperature analysis for the equipment qualification (EQ) envelopes of Kori unit 3 and 4.

  20. Continuous operation of NPP Kori Unit 1 - Fireproof paint for cables

    International Nuclear Information System (INIS)

    Wendt, Dipl-Ing. Ruediger; Kim, Duill; Sik, Cho Hong

    2008-01-01

    Fireproof cable coating materials have been used in European NPP, especially in Germany, Russia, Ukraine, Czech Republic, Lithuania, Switzerland. Wide experiences were made during operation while applying these systems. In NPP Kori, Unit 1, a fire proof cable coating project was realised for the first time in a NPP of KHNP. The scope of services of the cable trays to coat amounts to 15,587m 2 . In different fire compartments and rooms the cables should be coated partially respectively completely with the fire proof cable coating system. The extent of cable surfaces to coat was stipulated by KHNP on the basis of an analysis made by KHNP. The project was tendered on the basis of a technical specification of KHNP. The specification is mainly predicted on Korean and US standards. The most important criteria for the fire proof cable coating is resumed as follows: The fireproof cable coating has to assure the fire protection of the cables for a period defined and for operational conditions defined in such a manner that the general conditions for the operation of the cable installation will not be affected

  1. Fracture toughness master curve characterization of Linde 1092 weld metal for Beaver valley 1 reactor

    International Nuclear Information System (INIS)

    Lee, Bong Sang; Yang, Won Jon; Hong, Jun Hwa

    2000-12-01

    This report summarizes the test results obtained from the Korean contribution to the integrity assessment of low toughness Beaver Valley reactor vessel by characterizing the fracture toughness of Linde 1092 (No. 305414) weld metal. 10 PCVN specimens and 10 1T-CT specimens were tested in accordance with the ASTM E 1921-97 standard, 'Standard test method for determination of reference temperature, T o , for ferritic steels in the transition range'. This results can also be useful for assessment of Linde 80 low toughness welds of Kori-1

  2. Fracture toughness master curve characterization of Linde 1092 weld metal for Beaver valley 1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Yang, Won Jon; Hong, Jun Hwa

    2000-12-01

    This report summarizes the test results obtained from the Korean contribution to the integrity assessment of low toughness Beaver Valley reactor vessel by characterizing the fracture toughness of Linde 1092 (No. 305414) weld metal. 10 PCVN specimens and 10 1T-CT specimens were tested in accordance with the ASTM E 1921-97 standard, 'Standard test method for determination of reference temperature, T{sub o}, for ferritic steels in the transition range'. This results can also be useful for assessment of Linde 80 low toughness welds of Kori-1.

  3. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  4. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  5. Assessment on the Reactor Containment Cooling Capability of Kori Unit 1 Under LOCA Conditions with Loss of Offsite Power

    International Nuclear Information System (INIS)

    Lee, Jin Yong; Park, Jong Woon; Kim, Hyeong Taek

    2006-01-01

    The fan cooler system is designed to remove heat from containment under postulated accident conditions. During a postulated LOCA concurrent with a Loss of Offsite Power (LOOP), the Component Cooling Water (CCW) pumps that supply cooling water to the fan cooler and the fan that supplies containment air to the fan cooler will temporarily lose power. Then, the high temperature steam in the containment atmosphere will pass over the fan cooler tubing without forced cooling water flow. In that case, boiling may occur in the fan cooler tubes causing steam bubbles to form and pass into the attached CCW piping creating steam voids. Prior to the CCW pumps restart, the presence of steam and subcooled water can induce the potential for water hammer. As the CCW pumps restart, the accumulated steam condenses and the pumped water can produce a water hammer when the void closes. The hydrodynamic loads caused by such a water hammer event could challenge the integrity and the function of the fan cooler and associated CCW system. With respect to this phenomena, the United States Nuclear Regulatory Commission (USNRC) issued the Generic Letter (GL) 96-06, which requests an assessment of the possibility of boiling and water hammer in the cooling water system. The objectives of this study are to develop a analysis method for predicting the thermal hydraulic status of containment fan cooler and then to assess the containment fan cooler of Kori Unit 1 using the developed model under a LOCA with LOOP

  6. Sensitivity Study on Analysis of Reactor Containment Response to LOCA

    International Nuclear Information System (INIS)

    Chung, Ku Young; Sung, Key Yong

    2010-01-01

    As a reactor containment vessel is the final barrier to the release of radioactive material during design basis accidents (DBAs), its structural integrity must be maintained by withstanding the high pressure conditions resulting from DBAs. To verify the structural integrity of the containment, response analyses are performed to get the pressure transient inside the containment after DBAs, including loss of coolant accidents (LOCAs). The purpose of this study is to give regulative insights into the importance of input variables in the analysis of containment responses to a large break LOCA (LBLOCA). For the sensitivity study, a LBLOCA in Kori 3 and 4 nuclear power plant (NPP) is analyzed by CONTEMPT-LT computer code

  7. Sensitivity Study on Analysis of Reactor Containment Response to LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ku Young; Sung, Key Yong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-10-15

    As a reactor containment vessel is the final barrier to the release of radioactive material during design basis accidents (DBAs), its structural integrity must be maintained by withstanding the high pressure conditions resulting from DBAs. To verify the structural integrity of the containment, response analyses are performed to get the pressure transient inside the containment after DBAs, including loss of coolant accidents (LOCAs). The purpose of this study is to give regulative insights into the importance of input variables in the analysis of containment responses to a large break LOCA (LBLOCA). For the sensitivity study, a LBLOCA in Kori 3 and 4 nuclear power plant (NPP) is analyzed by CONTEMPT-LT computer code

  8. Current status and prospect on the radioactive waste management program in the Republic of Korea. Focusing on recent development

    International Nuclear Information System (INIS)

    Park, Hyun-Soo; Chang, In-Soon

    1996-01-01

    Since its first commercial operation at Kori near the city of Pusan in 1978, nuclear energy has become one of the prime resources for the electricity. However, proper treatment of its byproducts, radioactive wastes, has been the national concern. Despite vigorous effort by the Korean Government and NEMAC(Nuclear Environment Management Center), the series of attempts for the site selection to build the national radioactive waste complex has been ruined. After the failure at Guleop Island, the Government recently amended its policy so that the major tasks on the management program of radioactive wastes shall be transferred to KEPCO(Korea Electric Power Corporation), sole national electric utility, while the current authority, KAERI(Korea Atomic Energy Research Institute)/NEMAC is limited to focus on the research and development in the safe management of spent fuels. Detailed plan to support the Government redirection is under discussion among concerned institutes. (author)

  9. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells

    OpenAIRE

    Kwak TW; Lee HL; Song YH; Kim C; Kim JS; Seo SJ; Jeong YI; Kang DH

    2017-01-01

    Tae Won Kwak,1,* Hye Lim Lee,2,* Yeon Hui Song,2 Chan Kim,3 Jungsoo Kim,2 Sol-Ji Seo,2 Young-Il Jeong,2 Dae Hwan Kang2,4 1Medical Convergence Textile Center, Gyeongbuk, Republic of Korea; 2Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea; 3Amogreentech Co. Ltd. Gyeonggi-do, Republic of Korea; 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea *These auth...

  10. Establishment of design concept of large capacity passive reactor KP1000 and performance evaluation of safety system for LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong O.; Hwang, Young Dong; Kim, Young In; Chang, Moon Hee

    1997-03-01

    This study was performed to establish the design concepts and to evaluate the performance of safety features of large capacity passive reactor (1000 MWe grade). The design concepts of the large capacity passive reactor `KP1000` were established to generate 1000 MW electric power based on the AP600 of Westinghouse by increasing the number of reactor coolant loop and by increasing the size of reactor internals/core. To implement the analysis of the LBLOCA for KP1000, various kinds of computer codes being considered, it was concluded that RELAP5 was the most appropriate one in availability and operations in present situation. By the analysis of the computer code `RELAP5/Mod3.2.1.2`, following conclusions were derived as described below. First, by spectrum analysis of the discharge factor of the berak part, the most conservative discharge factor C{sub D}=1.2 and the PCT value of KP1000 was 1254F, which is slightly higher than the value of AP600 but is much less than the existing active reactor `Kori 3 and 4` where blowdown PCT value is 1693.4 deg F and reflooding PCT is 1918.4 deg F. Second, after the 200 seconds from the initiation of LBLOCA, IRWST water was supplied in a stable state and the maximum temperature of clad were maintained in a saturated condition. Therefore, it was concluded that the passive safety features of KP1000 keep reactor core from being damaged for large break LOCA. (author). 11 refs., 28 tabs., 37 figs.

  11. The relaxation of ESFAS/RPS surveillance test requirements

    International Nuclear Information System (INIS)

    Hah, Yung Joon; Koo, Jung Eui; Choi, Hae Yoon

    1994-01-01

    The surveillance test requirement of ESFAS/RPS is reviewed for 950 MWe class westinghouse reactor (YGN unit 1 and 2, Kori unit 3 and 4). The current requirements of frequent test and maintenance in the tech. spec. can lead to human errors, jeopardizing safety of the plant, and reduction in the availability of the plant. Meanwhile, the ESFAS designs do not provide for complete online testing capabilities for their protection systems. Therefore, ESFAS slave relays cannot be tested during plant operation as actuation of associated equipment could result in unwanted plant transient or trip conditions. In this study, westinghouse's PSA results, NRC recommendation and NRC approval status for specific U.S. nuclear power plant have been reviewed and evaluated. Since YGN 1 and 2 and Kori 3 and 4 are essentially the same plant as the operating westinghouse plant in the U.S., it is expected that YGN 1 and 2 and Kori 3 and 4 will be justified for having ESFAS/RPS surveillance test requirements relaxation program. Finally the extension of surveillance testing intervals and allowed outage times for test and maintenance will be verified by PSA program for YGN 1 and 2 and Kori 3 and 4. Various findings during the project can be used in the possible future revision of current technical specification with further refinements through the PSA program for YGN 1 and 2 and Kori 3 and 4. (Author) 10 refs., 8 figs., 24 tabs

  12. The relaxation of ESFAS/RPS surveillance test requirements

    Energy Technology Data Exchange (ETDEWEB)

    Hah, Yung Joon; Koo, Jung Eui; Choi, Hae Yoon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    The surveillance test requirement of ESFAS/RPS is reviewed for 950 MWe class westinghouse reactor (YGN unit 1 and 2, Kori unit 3 and 4). The current requirements of frequent test and maintenance in the tech. spec. can lead to human errors, jeopardizing safety of the plant, and reduction in the availability of the plant. Meanwhile, the ESFAS designs do not provide for complete online testing capabilities for their protection systems. Therefore, ESFAS slave relays cannot be tested during plant operation as actuation of associated equipment could result in unwanted plant transient or trip conditions. In this study, westinghouse`s PSA results, NRC recommendation and NRC approval status for specific U.S. nuclear power plant have been reviewed and evaluated. Since YGN 1 and 2 and Kori 3 and 4 are essentially the same plant as the operating westinghouse plant in the U.S., it is expected that YGN 1 and 2 and Kori 3 and 4 will be justified for having ESFAS/RPS surveillance test requirements relaxation program. Finally the extension of surveillance testing intervals and allowed outage times for test and maintenance will be verified by PSA program for YGN 1 and 2 and Kori 3 and 4. Various findings during the project can be used in the possible future revision of current technical specification with further refinements through the PSA program for YGN 1 and 2 and Kori 3 and 4. (Author) 10 refs., 8 figs., 24 tabs.

  13. Long-Term Behaviors of the OPC Concrete with Fly-ash and Type V Concrete Applied on Reactor Containment Building

    International Nuclear Information System (INIS)

    Yoon, Eui Sik; Lee, Hee Taik; Paek, Yong Lak; Park, Young Soo

    2010-01-01

    The prestressed concrete has been used extensively in the construction of Reactor Containment Buildings (RCBs) in Korea in order to strengthen the RCBs and at the same time, prevent the release of radiation due to the Design Basis Accident and Design Basis Earthquake. It is well known that the prestressed concrete loses its prestressing force over the age, and the shrinkage and creep of the concrete significantly contributes to these long term prestressing losses. In this study, an evaluations of long term behaviors of the concrete such as creep and shrinkage have been performed for two types of concretes : Ordinary Portland Cement containing fly-ash used for the Shin- Kori 1 and 2 NPP and Type V cement used for the Ul- Chin 5 and 6 NPP

  14. Long-Term Behaviors of the OPC Concrete with Fly-ash and Type V Concrete Applied on Reactor Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eui Sik; Lee, Hee Taik; Paek, Yong Lak [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Park, Young Soo [Korea Hydro and Nuclear Power Co., Busan (Korea, Republic of)

    2010-10-15

    The prestressed concrete has been used extensively in the construction of Reactor Containment Buildings (RCBs) in Korea in order to strengthen the RCBs and at the same time, prevent the release of radiation due to the Design Basis Accident and Design Basis Earthquake. It is well known that the prestressed concrete loses its prestressing force over the age, and the shrinkage and creep of the concrete significantly contributes to these long term prestressing losses. In this study, an evaluations of long term behaviors of the concrete such as creep and shrinkage have been performed for two types of concretes : Ordinary Portland Cement containing fly-ash used for the Shin- Kori 1 and 2 NPP and Type V cement used for the Ul- Chin 5 and 6 NPP

  15. Measurement of gamma ray flux within the containment building at the first unit of Kori nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. W.; Kim, K. D.; Yoon, C. H.; Han, J. M.; Hu, Y. H. [Korea Hydraulic and Nuclear Power Company, Taejon (Korea, Republic of)

    2004-07-01

    To evaluate gamma ray dose response of GM counter being used for monitoring of gamma ray field in nuclear power plants, gamma ray energy spectra and fluxes were obtained for three positions at the unit 1 of the Kori nuclear power station. By applying the response values of Eberline's E112B survey meter to the results, the doses represented on the survey meter were overestimated from 1.31 to 1.37 times when compared to the real doses for these three positions.

  16. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  17. Nuclear design report for Kori nuclear power plant unit 1, cycle 14

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Kim, Joo Young; Park, Sang Yoon; Song, Jae Woong; Lee, Chong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report presents nuclear design calculations for cycle 14 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 14 amounts to 366 EFPD corresponding to a cycle burnup of 13680 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs. nozzle by vortex formation during mid-loop operation condition are experimentally investigated. The critical submergence is determined for various types of suction nozzle, and the measurements of velocity distribution are performed in the flow fields near the t-shaped suction nozzle. (Author) 11 refs., 41 figs., 13 tabs.

  18. Optimization of Nuclear Reactor power Distribution using Genetic Algorithm

    International Nuclear Information System (INIS)

    Kim, Hyu Chan

    1996-02-01

    The main purpose of study is to develop a computer code named as 'MGA-SCOUPE' which can determine an optimal fuel-loading pattern for the nuclear reactor. The developed code, MGA-SCOUPE, automatically lots of searches for the globally optimum solutions based upon the modified Genetic Algorithm(MGA). The optimization goal of the MGA-SCOUPE is (1) the minimization of the deviations in the power peaking factors both at BOC and EOC, and (2) the maximization of the average burnup ration at EOC of the total fuel assemblies. For the reactor core calculation module in the MGA-SCOUPE, the SCOUPE code was partially modified and used. It had been developed originally in MIT and has been used currently in Kyung Hee University. The application of the MGA-SCOUPE to KORI 4-4 Cycle Model show several satisfactory results. Among them, two dominant improvements compared with the SCOUPE code can be summarized as follow: - The MGA-SCOUPE removes the user-dependency problem of the SCOUPE in the optimal loading pattern searches. Therefore, the searching process in the MGA-SCOUPE can be easily automated. - The final fuel loading pattern obtained by the MGA-SCOUPE shows 25.8%, 18.7% reduced standard deviations of the power peaking factors both at BOC and EOC, and 45% increased avg. burnup ratio at EOC compare with those of the SCOUPE

  19. Analysis of inadvertent safety injection incident at Kori unit 3 on september 6, 1990

    International Nuclear Information System (INIS)

    Kim, Kyun Tae; Chung, Bub Dong; Kim, In Goo; Kim, Hho Jung

    1992-01-01

    The inadvertent safety injection incident occurred at Kori Unit 3 on September 6, 1990 is analyzed using RELAP5/MOD3 code. The event was initiated by a failure of main feedwater control valve in one of three steam generators. The actual sequence of plant transient with the proper estimations of the operator actions is investigated in the present calculation. The calculational results are compared with the plant transient data. It is shown that the results of the plant behaviors are in good agreement with the plant data. The emergency response guidelines is assessed for the time of the SI termination and the establishment of natural circulation. The changes in the time of the SI termination do not significantly affect the overall plant behaviors, and the natural circulation is established

  20. Interface between Core/TH Model and Simulator for OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk; Lee, Seung Ho; Suh, Jung Kwan [KEPRI, Daejeon (Korea, Republic of)

    2009-05-15

    OPR1000 simulator for ShinKori-Unit 1, which will be operated at 2815MWt of thermal core power, is being developed while the ShinKori-Unit 1 and 2 is being built. OPR1000 simulator adopted the RELAP5 R/T code, which is the adaptation of RELAP5 and NESTLE codes to run in real-time mode with graphical visualization, to model Nuclear Steam Supply System (NSSS) Thermal-Hydraulics (TH) and Reactor Core. The RELAP5 is an advanced, best estimate, reactor TH simulation code developed at Idaho National Engineering and Environment Laboratory(INEEL) and the NESTLE is a true two-energy group neutronics code that computes the neutron flux and power for each node at every time step. As a simulator environment, the 3KEYMASTER{sup TM}, a commercial environment tool of WSC is used.

  1. Interface between Core/TH Model and Simulator for OPR1000

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk; Lee, Seung Ho; Suh, Jung Kwan

    2009-01-01

    OPR1000 simulator for ShinKori-Unit 1, which will be operated at 2815MWt of thermal core power, is being developed while the ShinKori-Unit 1 and 2 is being built. OPR1000 simulator adopted the RELAP5 R/T code, which is the adaptation of RELAP5 and NESTLE codes to run in real-time mode with graphical visualization, to model Nuclear Steam Supply System (NSSS) Thermal-Hydraulics (TH) and Reactor Core. The RELAP5 is an advanced, best estimate, reactor TH simulation code developed at Idaho National Engineering and Environment Laboratory(INEEL) and the NESTLE is a true two-energy group neutronics code that computes the neutron flux and power for each node at every time step. As a simulator environment, the 3KEYMASTER TM , a commercial environment tool of WSC is used

  2. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  3. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  4. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  5. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  6. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2001-01-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given

  7. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  8. Review of the research proposal for the steam generator retired from Kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Han, Joung Ho; Kim, Hong Pyo; Lim, Yun Soo; Lee, Deok Hyun; Hwang, Seong Sik; Hur, Do Haeng [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The tubes of the steam generator retired form Kori unit 1 have many different kinds of failures, such as denting pitting, wastage, ODSCC, PWSCC.Korea Electric Power Research Institute (KEPRI) submitted a research proposal for the steam generator to the Korea Institute S and T Evaluation and Planning (KSITEP). The KISTEP requested Korea Atomic Energy Research Institute to review the proposal by organizing a committee which should be composed of the specialists of the related domestic research institutes. Opinions of the committee on the objectives, research fields, economic benefit and validity in the research proposal were reviewed and suggested optimal research fields to be fulfilled successfully for the retired steam generator. Also, the rolls for the participants in the research works were allocated, which is critical in order to do the project effectively. 6 figs., 5 tabs. (Author)

  9. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  10. A study on the application of CRUDTRAN code in primary systems of domestic pressurized heavy-water reactors for prediction of radiation source term

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Cho, Hoon Jo; Jung, Min Young; Lee, Sang Heon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.

  11. Reactor BR2. Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2002-01-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system

  12. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2002-04-01

    The BR2 materials testing reactor is one of SCK-CEN's most important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. In 2001, the reactor was operated for a total of 123 days at a mean power of 59 MW in order to satisfy the irradiation conditions of the internal and external programmes using mainly the CALLISTO PWR loop. The mean consumption of fresh fuel elements was 5.26 per 1000 MWd. Main achievements in 2001 included the development of a three-dimensional full-scale model of the BR2 reactor for simulation and prediction of irradiation conditions for various experiments; the construction of the FUTURE-MT device designed for the irradiation of fuel plates under representative conditions of geometry, neutron spectrum, heat flux and thermal-hydraulic conditions and the development of in-pile instrumentation and a data acquisition system.

  13. Metallurgical characteristics and fracture mechanical properties of unirradiated Kori-1 RPV weld: Linde 80, WF-233

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Lee, B. S.; Oh, Y. J.; Chi, S. H.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Oh, J. M.

    2000-07-01

    The fracture toughness transition properties of the low upper shelf weld, Linde 80 WF-233, of Kori-1 RPV were evaluated by the master curve method, which is designated by ASTM E 1921, 'Standard test method for determination of reference temperature, T o , for ferritic steels in the transition range'. The reference temperature, T o =-83 deg C, was determined by PCVN specimens at -90 deg C. This value is similar to that of other high copper welds. The initial RT NDT was conservatively estimated as -26 deg F from the current fracture toughness results. From the studies on the chemistry and microstructure, the fracture mechanical properties of WF-233 weld is convincingly not worse than WF-70 and 72W welds

  14. Analysis of effects on plant performance by major measuring points in the secondary systems of Kori nuclear power plant units 3 and 4

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Park, Jae Chang; Lee, Jung Woon; Kim, Jung Taek; Chang, Soon Heung; Lee, Gwang Gu; Heo, Gyun Young; Lee, Sung Jin; Han, Kyu Hyun; Shin, Byung Soo

    2003-06-01

    In this study, correlation analysis was achieved for the major sensor position and the behavior of secondary system in Kori NPP unit 3, 4. Using the data from simulation model, the correlation between sensor position and electrical output, the correlation between sensor position and heat rate, and the correlation between different sensor positions were analyzed. On the basis of study results, a performance evaluation model was proposed, which can carry out secondary system performance diagnosis

  15. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  16. Comparison of APR1400 safety between brake site and shin-Kori site Due to the difference in the climate conditions

    International Nuclear Information System (INIS)

    Yoon, Ho Joon; Lee, Jeong Ik; Lee, Jeong Ik

    2012-01-01

    Brake Nuclear Power Plant (BNPP) is now under the construction based on APR1400 designed by Korean Electric Power Corporation (KEPCO). APR1400 is a two loop pressurized water reactor, the nuclear steam supply system (NSSS) US designed for about put of 4,000 MWt, with a corresponding electrical output of approximately 1,390 MWe. The first APR1400 (SKN 3 and 4) constructed in Shin-Kori, Korea has been modified according to the surrounding environment of the United Arab Emirates. In this paper, authors would like to compare safety issues between B NPP and Skin due to the changes of surroundings, since the site characteristics are very different. For instance, the mean annual air temperature in the UAE is 28 .deg. C and the peak air temperature was recorded as 48.8 .deg. C. Sea temperatures are varying from 17. deg. C in January to 35. deg. C in August, while that of Korea is in 9-16. deg. C range. Hot climate of UAE and the malfunction of HVAC system can lead the increasing of the water temperature in safety injection system (SIS). The heated water in SIS may affect the safety margin of the peak cladding temperature (PCT). The change of PCT and response time according to design basis accident scenarios such as large break LOCA are analyzed in detail. To evaluate such effect, Mars code was utilized to evaluate assumed condition by KAIST and the analyses of the results were carried out by Khalifa Univ.

  17. Application of MCNPX 2.7.D for reactor core management at the research reactor BR2

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2011-01-01

    The paper discusses application of the Monte Carlo burn up code MCNPX 2.7.D for whole core criticality and depletion analysis of the Material Testing Research Reactor BR2 at SCK-CEN in Mol, Belgium. Two different approaches in the use of MCNPX 2.7.D are presented. The first methodology couples the evolution of fuel depletion, evaluated by MCNPX 2.7.D in an infinite lattice with a steady-state 3-D power distribution in the full core model. The second method represents fully automatic whole core depletion and criticality calculations in the detailed 3-D heterogeneous geometry model of the BR2 reactor. The accuracy of the method and computational time as function of the number of used unique burn up materials in the model are being studied. The depletion capabilities of MCNPX 2.7.D are compared vs. the developed at the BR2 reactor department MCNPX & ORIGEN-S combined method. Testing of MCNPX 2.7.D on the criticality measurements at the BR2 reactor is presented. (author)

  18. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In nuclear power plants, ferritic low alloy steel nozzle was connected with austenitic stainless steel piping system through alloy 82/182 butt weld. Accurate estimation of residual stress for weldment is important in the sense that alloy 82/182 is susceptible to stress corrosion cracking. There are many results which predict residual stress distribution for alloy 82/182 weld between nozzle and pipe. However, nozzle and piping system usually connected through safe end which has short length. In this paper, residual stress distribution for pressurizer nozzle of Kori nuclear power plant was predicted using FE analysis, which considered safe end. As a result, existing residual stress profile was redistributed and residual stress of inner surface was decreased specially. It means that safe end should be considered to reduce conservatism when estimating the piping system.

  19. Safety Evaluation of Full Digital Plant Protection System of Shin-Kori 3 and 4 in Korea

    International Nuclear Information System (INIS)

    Koh, J. S.; Kim, D. I.; Jeong, C. H.; Park, H. S.; Ji, S. H.; Kang, Y. D.; Park, G. Y.

    2009-01-01

    Keeping pace with the emerging trend of digital computer technologies, KHNP has utilized full digital plant protection system into the design of I and C systems at SKN 3 and 4. This paper presents safety review activities and results related to digital plant protection systems during the licensing of construction permit for the Shin-Kori 3 and 4(SKN 3 and 4) in Korea. The major licensing issues regarding the digital systems were software quality and cyber security during planning stage, system integrity with fail-safe design, EMI equipment qualification of digital systems, FPGA qualification and communication independence between safety and non-safety System. This paper addresses our approach to evaluate full digital protection systems with revised safety review guidelines and the resulting discussion to resolve the licensing issues

  20. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  1. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  2. Core monitoring at the WNP-2 reactor

    International Nuclear Information System (INIS)

    Skeen, D.R.; Torres, R.H.; Burke, W.J.; Jenkins, I.; Jones, S.W.

    1992-01-01

    The WNP-2 reactor is a 3,323-MW(thermal) boiling water reactor (BWR) that is operated by the Washington Public Power Supply System. The WNP-2 reactor began commercial operation in 1984 and is currently in its eighth cycle. The core monitoring system used for the first cycle of operation was supplied by the reactor vendor. Cycles 2 through 6 were monitored with the POWERPLEX Core Monitoring Software System (CMSS) using the XTGBWR simulation code. In 1991, the supply system upgraded the core monitoring system by installing the POWERPLEX 2 CMSS prior to the seventh cycle of operation for WNP-2. The POWERPLEX 2 CMSS was developed by Siemens Power Corporation (SPC) and is based on SPC's advanced state-of-the-art reactor simulator code MICROBURN-B. The improvements in the POWERPLEX 2 system are possible as a result of advances in minicomputer hardware

  3. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  4. EBR-2 [Experimental Breeder Reactor-2] test programs

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.; Hill, D.J.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  5. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  6. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  7. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  8. Development of software for the microsimulator for the KO-RI nuclear power plant unit 2

    International Nuclear Information System (INIS)

    Seok, H.; No, H.C.; Cho, S.J.; Park, S.D.; Jun, H.Y.; Lee, Y.K.

    1994-01-01

    A workstation-based real-time simulator for two-loop pressurized water reactor plants is developed for classroom training in support of a full-scale simulator, on-site transient analysis, and engineering studies. The present simulator consists of three functional modules: plant module, graphic module, and man-machine interaction module. The plant module includes models for the core kinetics, reactor coolant system, steam generator, main steam line, balance of plant, and control and protection system. Each of the models is optimized to obtain the capability of real-time simulation. The graphic module is designed to provide the user with more information at a glance by dynamically displaying schematic diagrams of the systems, symbols indicating the operating status of each component, trend curves, and the main control room. As tools for the man-machine interface, the man-machine interaction model uses a color cathode ray tube monitor, a standard keyboard, and the mouse. The interactive communication module receives parameters from the user via the keyboard and mouse, and transfers them to the plant module so as to enable the user to perform his specific actions. This module provides the user with various initiating events (malfunctions and manual controls) through SYSTEM, CONTROL ROOM, and ACCIDENTS menus, and thus a wide range of nuclear steam supply system transients can be easily simulated. The FISA-2/WS is verified through comparisons with analytical solutions, separated tests and integral tests, and predictions by RETRAN-2 and RELAP5/MOD3

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Pusan National University, Busan 609 735, Korea; School of Mechanical Engineering, Pusan National University, Busan 609 735, Korea; Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 609 735, Korea; Material Testing Centre, Korea Testing Laboratory, Seoul 152 718, Korea ...

  10. Ageing management of the BR2 research reactor

    International Nuclear Information System (INIS)

    Verpoortem, J. R.; Van Dyck, S.

    2014-01-01

    At the Belgian nuclear research centre (SCK.CEN) several test reactors are operated. Among these, Belgian Reactor 2 (BR2) is the largest Material Test Reactor (MTR). This water-cooled, beryllium moderated reactor with a maximum thermal power of 100 MW became operational in 1962. Except for two major refurbishment campaigns of one year each, this reactor has been operated continuously over the past 50 years, with a frequency of 5-12 cycles per year. At present, BR2 is used for different research activities, the production of medical isotopes, the production of n-doped silicon and various training and education activities. (Author)

  11. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  12. Nuclear power plant life time improvement and management program in Korea

    International Nuclear Information System (INIS)

    Sung Yull Hong; Ill Seok Jeong; Taek Ho Song

    1995-01-01

    Korea Electric Power Research Institute (KEPRI) of Korea Electric Power Corporation (KEPCO) has performed a lifetime management of nuclear power plant program (LMNPP), ''Nuclear Power Plant Lifetime Management (PLIM) (I)'', since November 1993, which is a feasibility study of the Kori Unit 1 lifetime management including aging evaluation of the thirteen major components. The results of the PLIM(I) will provide information which is necessary for decision making of the Kori Unit 1 lifetime improvement. A plan of the work scope and schedule for the next phase, PLIM(II), will also be provided by this project. This paper introduced KEPRI's basic strategy of LMNPP, PLIM organization, current status, some interim results of the PLIM(I), and other related programs in Korea. So far, we have done field data survey, systems/structures screening, components prioritization, lifetime evaluation methodology study, and fracture mechanics tests of the Kori Unit 1 reactor pressure vessel surveillance coupons. Currently life assessment of the major components and PLIM economic evaluation of Kori Unit 1 are under way. (author)

  13. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  14. Study of Irradiation Effects on the Fracture Properties of A533-Series Ferritic Steels

    International Nuclear Information System (INIS)

    Lee, Yong Bok; Lee, Gyeong Geun; Kwon, Jun Hyun

    2011-01-01

    Since the Kori nuclear power plant unit 3 (Kori-3) was founded in 1986, the surveillance tests have been conducted five times. One of the primary objectives of the surveillance test is to determine the effects of irradiation on reactor pressure vessel (RPV) steel embrittlement. The RPV is made out of ferritic steels such as SA533 type B class 1, which were used for early nuclear power plants industry including Kori-2, 3, 4 and Yonggwang-1, 2 units in Korea. The Westinghouse supplied Kori-3 with the RPV steels ASTM A533 grade B class 1, which is equivalent to SA533 type B class 1. The irradiation effects on tensile properties in ASTM A533 grade B class 1 steel had been studied by Steichen and Williams. They experimentally determined the effect of strain rate and temperature on the tensile properties of unirradiated and irradiated A533 grade B steel 1. The effects of neutron irradiation on ferritic steels could be determined from tensile properties, as well as the fracture strength and toughness measurements. Hunter and Williams have reported that the strength and ductility for unirradiated material at a low strain rate increase with decreasing test temperature. Also, neutron irradiation increases strength and decreases ductility. Crosley and Ripling revealed that the yield strength of unirradiated material rapidly increases with the strain rate. Therefore, yield strength for unirradiated and irradiated materials should be determined by test parameters along with strain rate and temperature. In this study we compare ASTM A533 grad B class 1 steel obtained from several papers with SA533 type B class 1 steel taken from the surveillance data of Kori-3 unit, whose mechanical property of unirradiated and irradiated materials was correlated with the rate-temperature parameter

  15. Design and implementation of an advanced protection system for the Shin-Kori 3 and 4 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Yonghak; Choi, Woongseock; Kwon, Jongsoo; Wilkosz, Stephen J.; Ridolfo, Charles F.; Yanosy, Paul L.

    2008-01-01

    The Nuclear Power Industry is currently embracing modern digital technology for upgrades to existing Instrumentation and Control (I and C) infrastructures as well as for incorporation into the next generation of new plants which will be coming 'on-line' during the next decade. This technology is being fully exploited for the next generation of advanced plant protection systems which will be initially deployed on the Shin-Kori 3 and 4 Nuclear Power Plant in the Republic of Korea. The system design for this plant protection system is being performed by the Korea Power Engineering Company (KOPEC) and builds upon the past generation of digital safety systems which were initially implemented at Ulchin 5 and 6. The advanced protection system is an evolution of this existing design and includes a number of improved operating attributes including: · Integration of Reactor Protection, Engineered Safety Features Actuation, and Qualified Indication and Alarm functions which were previously implemented by separate systems in the past. · Use of a 'soft control' interface which provides convenient accessibility to the safety systems from 'operator workstations' · Implementation of a Large Display Panel (LDP) which provides a consistent and constant representation of the overall plant state and of the plant safety status. The equipment for the advanced plant protection system is being provided by Westinghouse Electric Company (WEC) and utilizes the Westinghouse 'Common Q' Standardized qualified platform (where 'Q' denotes 'qualified'). The 'Common Q' platform is comprised of commercially dedicated Programmable Logic Controllers (PLC's), color-graphic Flat Panel Displays (FPD's) with integral touch screens, and high speed data communication links. It is a mature product that is in wide use for a number of safety-related applications. Among its key attributes are: · High overall system availability, which is achieved via use of a multiple channel configuration that is tolerant

  16. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  17. Pressurized water reactor simulator. Workshop material. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development. And the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21, 2nd edition, 'WWER-1000 Reactor Simulator' (2005). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23, 2nd edition, 'Boiling Water Reactor Simulator' (2005). This report consists of course material for workshops using a pressurized water reactor simulator

  18. Sensitivity analysis for maximum heat removal from debris in the lower head

    International Nuclear Information System (INIS)

    Kim, Yong Hoon; Suh, Kune Y.

    2000-01-01

    Sensitivity analyses were performed to determine the maximum heat removal capability from the debris and the reactor pressure vessel (RPV) wall through the gap that may be formed during a core melt relocation accident. Cases studied included four different nuclear power plant (TMI-2,KORI-2,YGN 3and4 and KNGR) per the thermal opower output. Results of the analysis show that the heat removal through gap cooling relative to flooding is efficacious as much as about 40% of the core material accumulated in the lower plenum in case of the TMI-2 reactor. In excess of 40%, however, the gap cooling alone was found not to be enough for heat removal from the core debris. There being uncertaainties aoboout the assumptions made in the present study,the analyses yield consistent results. If different cooling effects are considered, heat removal may be greatly enhanced. The LAVA experiements were performed at the Korea Atomic Energy Research Institute (KAERI) using al 2 O 3 /Fe thermite melt relocating down to the scaled vessel of a reactor lower head filled with preheated water. Test results indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices. If the cooling capacity of the intra-debris pores and crevices is comparable to debris-to-vessel heat removal capability, heat removal from the debris will be greatly augmented than heat removal by the gap cooling alone. The three nuclear reactor (KORI-2, YGN 3and4 and KNGR) calculation results for heat removal through the debris-to-vessel gap size of about 1mm were compared with the TMI-2 reactor calculation results for the case of gap cooling alone. (author)

  19. Advances in Reactor Physics, Mathematics and Computation. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, Volume 2, are divided into 7 sessions bearing on: - session 7: Deterministic transport methods 1 (7 conferences), - session 8: Interpretation and analysis of reactor instrumentation (6 conferences), - session 9: High speed computing applied to reactor operations (5 conferences), - session 10: Diffusion theory and kinetics (7 conferences), - session 11: Fast reactor design, validation and operating experience (8 conferences), - session 12: Deterministic transport methods 2 (7 conferences), - session 13: Application of expert systems to physical aspects of reactor design and operation.

  20. Guidelines of Decommissioning Schedule Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Yun, Taesik; Kim, Younggook; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning has recently become an issue highlighted in Korea due to the Permanent Shutdown (PS) of Kori-1 plant. Since Korea Hydro and Nuclear Power (KHNP) Company decided the PS of Kori-1 instead of further continued operation, Kori-1 will be the first decommissioning plant of the commercial reactors in Korea. Korean regulatory authority demands Initial Decommissioning Plan (IDP) for all the plants in operation and under construction. In addition, decommissioning should be considered for the completion of the life cycle of NPPs. To date, Korea has no experience regarding decommissioning of the commercial reactor and a lot of uncertainties will be expected due to its site-specific factors. However, optimized decommissioning process schedule must be indispensable in the safety and economic efficiency of the project. Differed from USA, Korea has no experience and know-hows of the operation and site management for decommissioning. Hence, in Korea, establishment of decommissioning schedule has to give more weight to safety than precedent cases. More economical and rational schedule will be composed by collecting and analyzing the experience data and site-specific data and information as the decommissioning progresses. In a long-range outlook, KHNP having capability of NPP decommissioning will try to decommissioning business in Korea and foreign countries.

  1. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  2. Sludge Removal and Retrieval of Foreign Object in SG of Kori Nuclear Power Plant, Unit 4

    International Nuclear Information System (INIS)

    Jeong, Wootae; Kim, Sangtae; Kim, Youngkug; Kang, Seokchul

    2014-01-01

    Sludge deposit was removed and foreign objects were inspected and retrieved on secondary side tube sheet of the SG during January 23 and February 22, April 15 and 27 in 2013. FOLAS-I lancing system, video probe and retrieval tools were used for lancing and foreign object removal respectively. Operators of the lancing system participated in mock-up training before doing the service to minimize operation time and radiation dose. Foreign objects were searched on top of 7 th TSP (tube support plate), on annulus and in tube bundle. Four objects were found and removed on annulus and in tube bundle. During the 21 st OH of Kori NPP unit 4, we removed 345.9 kilo gram of sludge and four foreign objects from three steam generators. Foreign objects which were removed from inside of SG showed us that relatively large object such as the hooked bolt might exists in steam generators. We can conclude that identifying and removing foreign object is very important to avoid possible tube failure. Removing circular metal of 152.4 gram also was successfully removed

  3. Estimation of stature from different anthropometric measurements in Kori population of North India

    Directory of Open Access Journals (Sweden)

    Renu Kamal

    2016-12-01

    Full Text Available In medico-legal cases, most often the personal identity of the deceased is a mystery. The stature, sex and other parameters in such scenarios are ascertained using the physical evidence present at the crime scene. One of the key methods of ascertaining the sex and stature is by using the human bones. The method of achieving accuracy in estimation of stature from bones has been well established in past. There are several regression formulae for conducting such estimation. However, it must be kept in mind that these regression equations can vary depending upon the population and region. Thus, it is very necessary to study a particular population thoroughly before formulating regression equations for that specific population patch. In this paper, we have penned down the study of KORI POPULATION, who are native to Kanpur region of Uttar Pradesh state, in India. In this study, we have observed the statistics of 202 individuals (106 females and 96 males. In totality, eight bone dimensions including stature, total arm length, length of the middle finger, knee length, foot length, foot breadth, maximum head length and maximum head breadth have been recorded in this research paper. The regression formulae for females and males have been derived separately. Further, there are various parameters that have been compared to find which parameter provides the best results in terms of accuracy in stature estimation.

  4. Pusan East AFS K-9, Pusan, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    Science.gov (United States)

    1968-02-26

    ww.5 .5 - . . - --- "_ __ WNW * f_ 1*W 6.0 1W*__ NNIW .4 o f I 2_ es ofŕ’ fog__ __ v__. -’ ._ .I-_- __ - _ _ 11 -"- -- CALM 2.9. I Iso $ 127.0 2.3 01...27.2 48.3 48.9 49.6 49.6 9.6 49.7 49. 9.7 7T.7 4 ;9.7 49-/ 149. .7 ? iso 130.5 56.8 59.4 60.5 60.5 60.5 60.6 60.6 60.6 60.6 6C.6 6C.6 6C.6 6C.6 6C.6 cC...72.5 72. 72 . 72.5 72: I r Boo 26.7 68.3 70.3 71.6 73.0 73.1 73.6 73.7 73.7 74.C0 74.0 74. ,C 407. 27000 26.7 68.6 710.6 71.8 73.3 73.4 73.9 14.0

  5. TPDWR2: thermal power determination for Westinghouse reactors, Version 2. User's guide

    International Nuclear Information System (INIS)

    Kaczynski, G.M.; Woodruff, R.W.

    1985-12-01

    TPDWR2 is a computer program which was developed to determine the amount of thermal power generated by any Westinghouse nuclear power plant. From system conditions, TPDWR2 calculates enthalpies of water and steam and the power transferred to or from various components in the reactor coolant system and to or from the chemical and volume control system. From these results and assuming that the reactor core is operating at constant power and is at thermal equilibrium, TPDWR2 calculates the thermal power generated by the reactor core. TPDWR2 runs on the IBM PC and XT computers when IBM Personal Computer DOS, Version 2.00 or 2.10, and IBM Personal Computer Basic, Version D2.00 or D2.10, are stored on the same diskette with TPDWR2

  6. Once-through CANDU reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % 235 U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given

  7. Radiation protection at the RA Reactor in 1988, Part -2, RA reactor annual report

    International Nuclear Information System (INIS)

    Ninkovic, M.; Ajdacic, N.; Zaric, M.; Vukovic, Z.

    1988-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor and radiation protection; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Decontamination and relevant actions, collecting and treatment of fluid effluents; and and solid radioactive wastes [sr

  8. Research on the improvement of nuclear safety -Development of a nuclear power plant system analysis code TASS (Transient and setpoint simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Suk Koo; Jang, Won Pyo; Kim, Heui Chul; Kim, Kyung Doo; Lee, Sung Jae; Hah, Kyooi Suk; Song, Soon Jah; Um, Kil Sub; Yoon, Han Yung; Kim, Doo Il; Yoo, Hyung Keun; Choi, Jae Don; Lee, Byung Il; Kim, Jung Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    During the third year of the project the development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the Westinghouse and CE type operating reactors as well as the PWR reactors under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the YGN-3/4 FSAR transients, Kori-3 loss of AC power transient, plant data, Kori-4 load rejection and YGN-3 startup test data as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best estimate RELAP5/MOD 3.1 calculation for the YGN-3/4 FASR transients and shows its capability in simulating plant transient and startup data as well as the thermal hydraulic transient test data. Topical reports on TASS 1.0 code have been prepared and will be submitted to Korea Institute of Nuclear Safety for its licensing application to Westinghouse and CE type PWR transient analyses. The development of TASS 2.0 code has been head started in this year to timely utilize the TASS 2.0 code for the KNGR design certification. 65 figs, 30 tabs, 44 refs. (Author).

  9. Irradiation effects on Zr-2.5Nb in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Song, C., E-mail: Carol.Song@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Zirconium alloys are widely used as structural materials in nuclear applications because of their attractive properties such as a low absorption cross-section for thermal neutrons, excellent corrosion resistance in water, and good mechanical properties at reactor operating temperatures. Zr-2.5Nb is one of the most commonly used zirconium alloys and has been used for pressure tube materials in CANDU (Canada Deuterium Uranium) and RBMK (Reaktor Bolshoy Moshchnosti Kanalnyy, 'High Power Channel-type Reactor') reactors for over 40 years. In a recent report from the Electric Power Research Institute, Zr-2.5Nb was identified as one of the candidate materials for use in normal structural applications in light-water reactors owing to its increased resistance to irradiation-induced degradation as compared with currently used materials. Historically, the largest program of in-reactor tests on zirconium alloys was performed by Atomic Energy of Canada Limited. Over many years of in-reactor testing and CANDU operating experience with Zr- 2.5Nb, extensive research has been conducted on the irradiation effects on its microstructures, mechanical properties, deformation behaviours, fracture toughness, delayed hydride cracking, and corrosion. Most of the results on Zr-2.5Nb obtained from CANDU experience could be used to predict the material performance under light water reactors. This paper reviews the irradiation effects on Zr-2.5Nb in power reactors (including heavy-water and light-water reactors) and summarizes the current state of knowledge. (author)

  10. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1.

  11. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1

  12. Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

    1981-05-01

    The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O 2 , N 2 , etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized

  13. Radiation protection at the RA Reactor in 1998, RA reactor annual report, Part -2

    International Nuclear Information System (INIS)

    Ninkovic, M.; Pavlovic, R.; Mandic, M.; Pavlovic, S.; Grsic, Z.

    1998-01-01

    Radiation protection tasks which enable safe operation of the RA reactor, and are defined according the the legal regulations and IAEA safety recommendations are sorted into four categories in this report: (1) Control of the working environment, dosimetry at the RA reactor; (2) Radioactivity control in the vicinity of the reactor and meteorology measurements; (3) Collecting and treatment of fluid effluents; and (4) radioactive wastes, decontamination and actions. Each of the category is described as a separate annex of this report [sr

  14. Establishment of the operating procedure to prevent boron precipitation during Post-LOCA long term cooling for Korean Westinghouse 3-loop NPPs

    International Nuclear Information System (INIS)

    Choi, Han Rim; Kwon, Tae Soon; Ban, Chang Hwan; Jeong, Jae Hoon; Lee, Young Jin.

    1996-11-01

    During post-LOCA LTC the increase of the excess reactivity for the extended fuel cycle should require increasing the RWST boron concentration in order to ensure core subcritical state. To quantify the concentration increment, the calculation methods was developed for the post-LOCA RCS/Sump mixed mean boron concentration, which applied for Kori 3 and 4 and Ulchin 1 and 2 of the Westinghouse 3-loop nuclear power plants in Korean. From the calculation results, the minimum boric acid concentrations increased of the RWST and accumulator were determined consideration of the convenient operation for operator on reloading. Boric acid concentrations of the RWST and the accumulators for Westinghouse 3-loop type plants were increased to meet the post-LOCA shutdown requirement for the long life cycles from 12 months to 18 months. To maintain LTC capability following a LOCA, the switchover time is examined using boron code of prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results showed that hot leg recirculation switchover times were shortened to 7.5 hours from 24 hours after the initiation of LOCA for Kori 3 and 4 and 8 hours from 18 hours for Ulchin 1 and 2, respectively. The flow path in the mode J for Kori 3 and 4 was recommended to realign to the simultaneous recirculation of both hot and cold legs from the cold leg recirculation, as done by Ulchin 1 and 2. (author). 2 tabs., 12 figs., 13 refs

  15. Active species in a large volume N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Kutasi, K; Pintassilgo, C D; Loureiro, J; Coelho, P J

    2007-01-01

    A large volume post-discharge reactor placed downstream from a flowing N 2 -O 2 microwave discharge is modelled using a three-dimensional hydrodynamic model. The density distributions of the most populated active species present in the reactor-O( 3 P), O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ), NO(X 2 Π), NO(A 2 Σ + ), NO(B 2 Π), NO 2 (X), O 3 , O 2 (X 3 Σ g - ) and N( 4 S)-are calculated and the main source and loss processes for each species are identified for two discharge conditions: (i) p = 2 Torr, f = 2450 MHz, and (ii) p = 8 Torr, f = 915 MHz; in the case of a N 2 -2%O 2 mixture composition and gas flow rate of 2 x 10 3 sccm. The modification of the species relative densities by changing the oxygen percentage in the initial gas mixture composition, in the 0.2%-5% range, are presented. The possible tuning of the species concentrations in the reactor by changing the size of the connecting afterglow tube between the active discharge and the large post-discharge reactor is investigated as well

  16. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do

    2015-01-01

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability

  17. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  18. G 2 reactor project; Projet de pile a double fin: G 2

    Energy Technology Data Exchange (ETDEWEB)

    Ailleret, [Electricite de France (EDF), Dir. General des Etudes de Recherches, 75 - Paris (France); Taranger, P; Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA actually constructs the G-2 reactor core working with natural uranium, which will use graphite as moderator, and gas under pressure as cooling fluid. This report presents the specificity of the new reactor: - the different elements of the reactor core, - the control and the security of the reactor, - the renewal of the fuel, - the biologic surrounding wall, - and the cooling circuit. (M.B.) [French] le Commissariat a l'Energie Atomique construit actuellement la pile G-2 a Uranium naturel, qui utilisera le graphite comme moderateur, et le gaz sous pression comme fluide de refroidissement. Ce rapport presente les specificite du nouveau reacteur: - les differents elements de la pile, - le controle et la securite du reacteur, - le renouvellement du combustible, - l'enceinte biologique, - et le circuit de refroidissement. (M.B.)

  19. Reactor handbook. 2. rev. ed.

    International Nuclear Information System (INIS)

    Lederer, B.J.; Wildberg, D.W.

    1992-01-01

    On the basis of the guidelines on expert knowledge, the book discusses the subjects of atomic physics, heat transfer, nuclear power plants, reactor materials, radiation protection, reactor safety, reactor instrumentation, and reactor operation, with special regard to nuclear power plants with LWR-type reactors. The book is intended for shift personnel, especially gang bosses, reactor operators, and control station operators: for this reason a practical and rather popular style has been chosen. However, the book will also be a manual for other operating personnel, personnel of producer companies, expert organisations, authorities, and students. It can be used as a textbook for staff training, a manual for the practice, and as accompanying book for teaching at nuclear engineering schools. (orig.) With 173 figs [de

  20. Annual report on JEN-1 and JEN-2 Reactors; Informe periodico de Reactores JEN-1 y JEN-2 correpondiente al ano 1972

    Energy Technology Data Exchange (ETDEWEB)

    Montes Ponce de Leon, J.

    1974-07-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  1. Optimized Control Rods of the BR2 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, Silva; Koonen, E.

    2007-09-15

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  2. Optimized Control Rods of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, E.

    2007-01-01

    At the present time the BR-2 reactor uses control elements with cadmium as neutron absorbing part. The lower section of the control element is a beryllium assembly cooled by light water. Due to the burn up of the lower end of the cadmium section during the reactor operation, the presently used rods for reactivity control of the BR-2 reactor have to be replaced by new ones. Considered are various types Control Rods with full active part of the following materials: cadmium (Cd), hafnium (Hf), europium oxide (Eu2O3) and gadolinium (Gd2O3). Options to decrease the burn up of the control rod material in the hot spot, such as use of stainless steel in the lower active part of the Control Rod are discussed. Comparison with the characteristics of the presently used Control Rods types is performed. The changing of the characteristics of different types Control Rods and the perturbation effects on the reactor neutronics during the BR-2 fuel cycle are investigated. The burn up of the Control Rod absorbing material, total and differential control rods worth, macroscopic and effective microscopic absorption cross sections, fuel and reactivity evolution are evaluated during approximately 30 operating cycles.

  3. Upgrading of the research reactors FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    Krull, W.

    1981-01-01

    In 1972 for the research reactor FRG-2 we applied for a license to increase the power from 15 MW to 21 MW. During this procedure a public laying out of the safety report and an upgrading procedure for both research reactors - FRG-1 (5 MW) and FRG-2 - were required by the licensing authorities. After discussing the legal background for licensing procedures in the Federal Republic of Germany the upgrading for both research reactors is described. The present status and future licensing aspects for changes of our research reactors are discussed, too. (orig.) [de

  4. Zmiany czynności kory ruchowej mózgu po leczeniu botuliną u pacjentów ze stwardnieniem rozsianym i spazmem kończyn dolnych

    Directory of Open Access Journals (Sweden)

    Pavel Hok

    2011-12-01

    Full Text Available Miejscowe skurcze toniczne to powszechnie spotykany objaw stwardnienia rozsianego (łac. sclerosis multiplex, SM. Do ich zwalczania coraz częściej stosowany jest zastrzyk domięśniowy botuliny typu A. Do analizy statystycznej zaakceptowaliśmy 4 z 10 badanych pacjentów z SM i spastycznością kończyn dolnych oraz 5 zdrowych wolontariuszy. Pacjenci zostali poddani badaniu fMRI trzykrotnie: w tygodniu przed zastrzykiem botuliny A, a następnie w 4. i 12. tygodniu po iniekcji. Podczas badań fMRI probanci wykonywali zginanie i prostowanie stawu kolanowego według planu blokowego, przy czym faza czynna zamieniała się z fazą spoczynku w 15-sekundowych odstępach. Obraz przeciętnej aktywacji pacjentów podczas pierwszej sesji wskazywał, w porównaniu z grupą kontrolną, na istotny wzrost aktywacji obustronnej kory czuciowo-ruchowej płatu czołowego i ciemieniowego. Podczas drugiej sesji w 4. tygodniu aktywacja zmalała do tego stopnia, że statystycznie nie różniła się od zdrowej kontroli. Z kolei w obrazach trzeciej sesji po 12 tygodniach odnotowano w związku z wygaśnięciem efektu botuliny A ponowny wzrost aktywacji niemal do objętości pierwotnej. Wnioski: Stwierdzamy, że aktywacja kory ruchowej odzwierciedla zmiany w obwodowym układzie nerwowym zachodzące podczas leczenia za pomocą botuliny A, w czym prawdopodobnie pośredniczą zmiany w aferentacji. Jest to nowe odkrycie, aczkolwiek nie wykracza poza stwierdzenia podobnych badań przeprowadzonych innymi metodami.

  5. Annual report on JEN-1 and JEN-2 Reactors

    International Nuclear Information System (INIS)

    Montes Ponce de Leon, J.

    1974-01-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  6. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  7. System Design of a Supercritical CO_2 cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Cho, Seongkuk; Yu, Hwanyeal; Kim, Yonghee; Jeong, Yong Hoon; Lee, Jeong Ik

    2014-01-01

    Small modular reactor (SMR) systems that have advantages of little initial capital cost and small restriction on construction site are being developed by many research organizations around the world. Existing SMR concepts have the same objective: to achieve compact size and a long life core. Most of small modular reactors have much smaller size than the large nuclear power plant. However, existing SMR concepts are not fully modularized. This paper suggests a complete modular reactor with an innovative concept for reactor cooling by using a supercritical carbon dioxide. The authors propose the supercritical CO_2 Brayton cycle (S-CO_2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the reactor core and PCU in one vessel. A conceptual design of the proposed small modular reactor was developed, which is named as KAIST Micro Modular Reactor (MMR). The supercritical CO_2 Brayton cycle for the S-CO_2 cooled reactor core was optimized and the size of turbomachinery and heat exchanger were estimated preliminary. The nuclear fuel composed with UN was proposed and the core lifetime was obtained from a burnup versus reactivity calculation. Furthermore, a system layout with fully passive safety systems for both normal operation and emergency operation was proposed. (author)

  8. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  9. Operation of the SLOWPOKE-2 reactor in Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C.N.; Lalor, G.C.; Vuchkov, M.K. [University of the West Indies, Kingston (Jamaica)

    2001-07-01

    Over the past sixteen years lCENS has operated a SLOWPOKE 2 nuclear reactor almost exclusively for the purpose of neutron activation analysis. During this period we have adopted a strategy of minimum irradiation times while optimizing our output in an effort to increase the lifetime of the reactor core and to maintaining fuel integrity. An inter-comparison study with results obtained with a much larger reactor at IPEN has validated this approach. The parameters routinely monitored at ICENS are also discussed and the method used to predict the next shim adjustment. (author)

  10. Irradiation techniques at BR2 reactor

    International Nuclear Information System (INIS)

    Hebel, W.

    1978-01-01

    Since 1963 the material testing reactor BR2 at Mol is operated for the realisation of numerous research programs and experiments on the behavior of materials under nuclear radiation and in particular under intensive neutron exposure. During this period special irradiation techniques and experimental devices were developed according to the desiderata of the different experiments and to the irradiation possibilities offered at BR2. The design and the operating characteristics of quite a number of those irradiation rigs of proven reliability may be used or can be made available for new irradiation experiments. A brief description is given of some typical irradiation devices designed and constructed by CEN/SCK, Technology and Energy Dpt. They are compiled according to their main use for the different research and development programs realized at BR2. Their eventual application however for different objectives could be possible. A final chapter summarizes the principal irradiation conditions offered by BR2 reactor. (author)

  11. TMI-2 reactor vessel head removal

    International Nuclear Information System (INIS)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1985-09-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 (TMI-2) reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training, the head was safely removed and stored; and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities

  12. TMI-2 reactor vessel plenum final lift

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs

  13. Refurbishment programme for the BR2-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koonen, E [Centre d' Etude de l' Energie Nucleaire, Studiecentrum voor Kernenergie, BR2 Department, Boeretang, Mol (Belgium)

    1992-07-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  14. Refurbishment programme for the BR2-reactor

    International Nuclear Information System (INIS)

    Koonen, E.

    1992-01-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  15. Assessment on Event Classification of One Steam Generator Tube Rupture in EU-APR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hwan; Kim, Yong Soo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Fukushima Daiichi nuclear power plant accident showed the vulnerability of coping strategy to beyond design natural disaster such as beyond design earthquake and tsunami. In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. Recently, the stress tests for WOLSONG Unit 1 and KORI Unit 1 have been performed and their assessment results have been reviewed by Korean regulatory body. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings. The several additional items for safety improvement has been drawn to enhance the coping capability for loss of safety functions under beyond design natural disaster in addition to post Fukushima action items.

  16. Assessment on Event Classification of One Steam Generator Tube Rupture in EU-APR

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; Kim, Yong Soo

    2016-01-01

    The Fukushima Daiichi nuclear power plant accident showed the vulnerability of coping strategy to beyond design natural disaster such as beyond design earthquake and tsunami. In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. Recently, the stress tests for WOLSONG Unit 1 and KORI Unit 1 have been performed and their assessment results have been reviewed by Korean regulatory body. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings. The several additional items for safety improvement has been drawn to enhance the coping capability for loss of safety functions under beyond design natural disaster in addition to post Fukushima action items

  17. Refurbishing the BR2 materials testing reactor

    International Nuclear Information System (INIS)

    Baugnet, J.M.; Dekeyser, J.; Gubel, P.

    1995-01-01

    SCK/CEN is refurbishing its BR2 reactor to allow its further operation during the next 15 years; in doing so, it chooses to keep BR2 available for future scientific and technological irradiation programs within an international context. (author) 2 figs

  18. Proceedings of 2. Yugoslav symposium on reactor physics, Part 2, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 2 of the Proceedings of 2. Yugoslav symposium on reactor physics includes eight papers dealing with the following topics: method for measuring high anti reactivities of a reactor system; integration method for thermal reaction rate calculation; Determination of initial core configuration for BHWR-200 MWe; safety shutdowns and failures of the RA reactor equipment; determining the reactivity of absorption rods; measurements of thermal and fast neutron fluxes at the TRIGA reactor and other measurements during operation of the TRIGA reactor; mathematical modelling of the reactor safety; review of problems and methods for radiation risk assessment in the environment of a nuclear power plant

  19. SIRIUS 2: A versatile medium power research reactor

    International Nuclear Information System (INIS)

    Rousselle, P.

    1992-01-01

    Most of the Research Reactors in the world have been critical in the Sixties and operated for twenty to thirty years. Some of them have been completely shut down, modified, or simply refurbished; the total number of RR in operation has decreased but there is still an important need for medium power research reactors in order: - to sustain a power program with fuel and material testing for NPP or fusion reactors; - to produce radioisotopes for industrial or medical purposes, doped silicon, NAA or neutron radiography; - to investigate further the condensed matter, with cold neutrons routed through neutron guides to improved equipment; - to develop new technologies and applications such as medical alphatherapy. Hence, taking advantage of nearly hundred reactor x years operation and backed up by the CEA experience, TECHNICATOME assisted by FRAMATOME has designed a new versatile multipurpose Research Reactor (20-30 Mw) SIRIUS 2 taking into account: - more stringent safety rules; - the lifetime; - the flexibility enabling a wide range of experiments and, - the future dismantling of the facility according to the ALARA criteria

  20. An Investigation on Irradiation-induced Grid Width Growth in Advanced Fuels

    International Nuclear Information System (INIS)

    Jang, Young Ki; Jeon, Kyeong Lak; Kim, Yong Hwan; Kim, Jae Ik; Hwang, Sun Tack; Kim, Man Su; Lee, Tae Hyoung; Yoo, Myeong Jong; Yoon, Yong Bae; Kim, Tae Wan

    2011-01-01

    The spacer grids for fuel assembly are fabricated from preformed Zircaloy or Inconel strips interlocked in an egg crate fashion and welded or brazed together. The spacer grid is the important component to maintain the fuel rod array by providing positive lateral restraint to the fuel rods but only frictional restraint to axial fuel rod motion. To improve economy and safety aspects, advanced nuclear fuels of PLUS7, 16ACE7 and 17ACE7 were developed. The former is for Optimized Power Reactor of 1000 MWe (OPR1000) and Advanced Power Reactor of 1400 MWe (APR1400) and the latter two are for 16x16 and 17x17 Westinghouse type reactors, respectively. The material for top and bottom spacer grids on these advanced fuels are Inconel and the mid grids are Zirlo patented by Westinghouse. For neutron economy, the fuel assemblies are arranged very closely and the gaps between assemblies are kept to around 1 mm based on the worst case. The Zirconium-based alloys grow during irradiation in reactor. The large growth may cause some difficulties in loading and unloading fuel assemblies during refueling outage in reactor. The severe growth may cause some problems that fuel assemblies may be stuck within the core shroud and a modification of loading pattern is required. In addition, the grid growth with grid spring relaxation may cause different rod vibration behavior and results in the different wear mechanism. The grid width growth on the advanced fuels were predicted by using the growth models before the irradiation in reactor and were examined using lead test assemblies (LTAs) after each cycle in Ulchin unit 3 and Kori units 2 and 3, respectively. To reconfirm irradiation performance results using LTAs, the additional examinations are being performed through the surveillance programs on the commercially supplied fuels in Yonggwang unit 5 and Kori units 2 and 4. It is investigated on this study whether the grid widths on the advanced fuels meet their criteria and the predicted models

  1. OTUS - Reactor inventory management system based on ORIGEN2

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R; Toivonen, H; Lahtinen, J; Ilander, T

    1995-10-01

    ORIGEN2 is a computer code that calculates nuclide composition and other characteristics of nuclear fuel. The use of ORIGEN2 requires good knowledge in reactor physics. However, once the input has been defined for a particular reactor type, the calculations can be easily repeated for any burnup and decay time. This procedure produces large output files that are difficult to handle manually. A new computer code, known as OTUS, was designed to facilitate the postprocessing of the data. OTUS makes use of the inventory files precalculated with ORIGEN2 in a way that enables their versatile treatment for different safety analysis purposes. A data base is created containing a comprehensive set of ORIGEN2 calculations as a function of fuel burnup and decay time. OTUS is a reactor inventory management system for a microcomputer with Windows interface. Four major data operations are available: (1) Build data modifies ORIGEN2 output data into a suitable format, (2) View data enables flexible presentation of the data as such, (3) Different calculations, such as nuclide ratios and hot particle characteristics, can be performed for severe accident analyses, consequence analyses and research purposes, (4) Summary files contain both burnup dependent and decay time dependent inventory information related to the nuclide and the reactor specified. These files can be used for safeguards, radiation monitoring and safety assessment. (orig.) (22 refs., 29 figs.).

  2. The 2nd reactor core of the NS Otto Hahn

    International Nuclear Information System (INIS)

    Manthey, H.J.; Kracht, H.

    1979-01-01

    Details of the design of the 2nd reactor core are given, followed by a brief report summarising the operating experience gained with this 2nd core, as well as by an evaluation of measured data and statements concerning the usefulness of the knowledge gained for the development of future reactor cores. Quite a number of these data have been used to improve the concept and thus the specifications for the fuel elements of the 3rd core of the reactor of the NS Otto Hahn. (orig./HP) [de

  3. EL-2 reactor: Thermal neutron flux distribution

    International Nuclear Information System (INIS)

    Rousseau, A.; Genthon, J.P.

    1958-01-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  4. Physics design of advanced steady-state tokamak reactor A-SSTR2

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ushigusa, Kenkichi

    2000-10-01

    Based on design studies on the fusion power reactor such as the DEMO reactor SSTR, the compact power reactor A-SSTR and the DREAM reactor with a high environmental safety and high availability, a new concept of compact and economic fusion power reactor (A-SSTR2) with high safety and high availability is proposed. Employing high temperature superconductor, the toroidal filed coils supplies the maximum field of 23T on conductor which corresponds to 11T at the magnetic axis. A-SSTR2 (R p =6.2m, a p =1.5m, I p =12MA) has a fusion power of 4GW with β N =4. For an easy maintenance and for an enough support against a strong electromagnetic force on coils, a poloidal coils system has no center solenoid coils and consists of 6 coils located on top and bottom of the machine. Physics studies on the plasma equilibrium, controllability of the configuration, the plasma initiation and non-inductive current ramp-up, fusion power controllability and the diverter have shown the validity of the A-SSTR2 concept. (author)

  5. FORE-2, Thermohydraulics and Space-Independent Reactor Kinetics for Transients

    International Nuclear Information System (INIS)

    Fox, J.N.; Lawler, B.E.; Butz, H.R.; Heames, T.J.

    1984-01-01

    1 - Description of problem or function: FORE2 is a coupled thermal hydraulics-point kinetics digital computer code designed to calculate significant reactor parameters under steady-state conditions, or as functions of time during transients. The transients may result from a programmed reactivity insertion or a power change. Variable inlet coolant flow rate and temperature are considered. The code calculates the reactor power, the individual reactivity feedbacks, and the temperature of coolant, cladding, fuel, structure, and additional material for up to seven axial positions in three channel types which represent radial zones of the reactor. The heat of fusion, accompanying fuel melting, the liquid metal voiding reactivity, and the spatial and the time variation of the fuel cladding gap coefficient due to changes in gap size are considered. 2 - Method of solution: FORE2 input consists of property data, geometry, power and flow distribution factors, external time varying functions, experimental coefficients, and termination data. The differential equations for fluid flow, heat transfer, and point neutronics are solved by explicit finite-difference procedures. 3 - Restrictions on the complexity of the problem: Reactor excursions which can be calculated are restricted to those transients in which the reactor is not substantially destroyed. As a general rule, changes in reactor geometry and composition during an excursion are limited to those cases in which the reactivity effects of the changes may be considered as small perturbations of the initial system. Thus, accidents involving large-scale disassembly and bulk meltdown of a core are not covered by FORE2. FORE2 is valid only while the core retains its initial geometry

  6. I and C success in Korea past and present projects and a view to the future

    International Nuclear Information System (INIS)

    Ridolfo, Charles F.

    2009-01-01

    Westinghouse Electric Company, LLC (WEC) has been providing advanced Instrumentation and Control (I and C) technology for the C E System 80, Korean Standard Nuclear Power Plant (KSNP), since the early 1990's. I and C equipment and technical support has been provided for a progression of these plants including Yonggwang Units 3,4,5,6, Ulchin Units 3,4,5,6, Shin Kori Units 1 and 2, Shin Wolsong Units 1 and 2, and most recently for Shin Kori Units 3 and 4. These I and C programs have been highly successful and have helped to contribute to the outstanding plant availability for the commissioned units at Yonggwang 3,4,5, and 6 and Ulchin 3,4,5, and 6; which are currently providing power on the grid. WEC has also recently delivered I and C equipment for Shin Kori Units 1 and 2 and Shin Wolsong Units 1 and 2 and is supporting the installation and startup of the equipment. In addition, WEC is in the initial design stages for providing an integrated protection system that will be deployed at Shin Kori Units 3 and 4 which are the first units to implement the APR1400; an advanced reactor of indigenous Korean design, which is based on the previous generation Optimized Power Reactor OPR1000. The success of the I and C programs has been the result of careful consideration of the appropriate technology to employ, applying comprehensive quality assurance measures, providing appropriate technical support and consultation services, implementation of a program of continued I and C logistic support, maintaining a professional and experienced I and C work force, and maintaining a strong and mutually supportive partnership with the Korea Power Engineering Company (KOPEC) and with Korea Hydro and Nuclear Power (KHNP). WEC takes great pride in its on going I and C partnership with Korea, which has included not only providing equipment and technical support services, but also completion of a comprehensive Technology Transfer program. This program was implemented to promote local 'elf

  7. Keeping research reactors relevant: A pro-active approach for SLOWPOKE-2

    International Nuclear Information System (INIS)

    Cosby, L.R.; Bennett, L.G.I.; Nielsen, K.; Weir, R.

    2010-01-01

    The SLOWPOKE is a small, inherently safe, pool-type research reactor that was engineered and marketed by Atomic Energy of Canada Limited (AECL) in the 1970s and 80s. The original reactor, SLOWPOKE-1, was moved from Chalk River to the University of Toronto in 1970 and was operated until upgraded to the SLOWPOKE-2 reactor in 1973. In all, eight reactors in the two versions were produced and five are still in operation today, three having been decommissioned. All of the remaining reactors are designated as SLOWPOKE-2 reactors. These research reactors are prone to two major issues: aging components and lack of relevance to a younger audience. In order to combat these problems, one SLOWPOKE -2 facility has embraced a strategy that involves modernizing their reactor in order to keep the reactor up to date and relevant. In 2001, this facility replaced its aging analogue reactor control system with a digital control system. The system was successfully commissioned and has provided a renewed platform for student learning and research. The digital control system provides a better interface and allows flexibility in data storage and retrieval that was never possible with the analogue control system. This facility has started work on another upgrade to the digital control and instrumentation system that will be installed in 2010. The upgrade includes new computer hardware, updated software and a web-based simulation and training system that will allow licensed operators, students and researchers to use an online simulation tool for training, education and research. The tool consists of: 1) A dynamic simulation for reactor kinetics (e.g., core flux, power, core temperatures, etc). This tool is useful for operator training and student education; 2) Dynamic mapping of the reactor and pool container gamma and neutron fluxes as well as the vertical neutron beam tube flux. This research planning tool is used for various researchers who wish to do irradiations (e.g., neutron

  8. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems

  9. Thermal reactor benchmark tests on JENDL-2

    International Nuclear Information System (INIS)

    Takano, Hideki; Tsuchihashi, Keichiro; Yamane, Tsuyoshi; Akino, Fujiyoshi; Ishiguro, Yukio; Ido, Masaru.

    1983-11-01

    A group constant library for the thermal reactor standard nuclear design code system SRAC was produced by using the evaluated nuclear data JENDL-2. Furthermore, the group constants for 235 U were calculated also from ENDF/B-V. Thermal reactor benchmark calculations were performed using the produced group constant library. The selected benchmark cores are two water-moderated lattices (TRX-1 and 2), two heavy water-moderated cores (DCA and ETA-1), two graphite-moderated cores (SHE-8 and 13) and eight critical experiments for critical safety. The effective multiplication factors and lattice cell parameters were calculated and compared with the experimental values. The results are summarized as follows. (1) Effective multiplication factors: The results by JENDL-2 are considerably improved in comparison with ones by ENDF/B-IV. The best agreement is obtained by using JENDL-2 and ENDF/B-V (only 235 U) data. (2) Lattice cell parameters: For the rho 28 (the ratio of epithermal to thermal 238 U captures) and C* (the ratio of 238 U captures to 235 U fissions), the values calculated by JENDL-2 are in good agreement with the experimental values. The rho 28 (the ratio of 238 U to 235 U fissions) are overestimated as found also for the fast reactor benchmarks. The rho 02 (the ratio of epithermal to thermal 232 Th captures) calculated by JENDL-2 or ENDF/B-IV are considerably underestimated. The functions of the SRAC system have been continued to be extended according to the needs of its users. A brief description will be given, in Appendix B, to the extended parts of the SRAC system together with the input specification. (author)

  10. WWER-1000 reactor simulator. Material for training courses and workshops. 2. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No.12, Reactor Simulator Development (2001). Course material for workshops using a pressurized water reactor (PWR) simulator developed for the IAEA by Cassiopeia Technologies Inc. of Canada is presented in the IAEA publication, Training Course Series No. 22, 2nd edition, Pressurized Water Reactor Simulator (2005) and Training Course Series No.23, 2nd edition, Boiling Water Reactor Simulator (2005). This report consists of course material for workshops using the WWER-1000 Reactor Department Simulator from the Moscow Engineering and Physics Institute, Russian Federation

  11. ASAMPSA2 best-practices guidelines for L2 PSA development and applications. Volume 3 - Extension to Gen IV reactors

    International Nuclear Information System (INIS)

    Bassi, C.; Bonneville, H.; Brinkman, H.; Burgazzi, L.; Polidoro, F.; Vincon, L.; Jouve, S.

    2010-01-01

    The main objective assigned to the Work Package 4 (WP4) of the 'ASAMPSA2' project (EC 7. FPRD) consist in the verification of the potential compliance of L2PSA guidelines based on PWR/BWR reactors (which are specific tasks of WP2 and WP3) with Generation IV representative concepts. Therefore, in order to exhibit potential discrepancies between LWRs and new reactor types, the following work was based on the up-to-date designs of: - The European Fast Reactor (EFR) which will be considered as prototypical of a pool-type Sodium-cooled Fast Reactor (SFR); - The ELSY design for the Lead-cooled Fast Reactor (LFR) technology; - The ANTARES project which could be representative of a Very-High Temperature Reactor (VHTR); - The CEA 2400 MWth Gas-cooled Fast Reactor (GFR). (authors)

  12. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'Joyo'. 2-2

    International Nuclear Information System (INIS)

    Okuda, Eiji; Ito, Hiromichi; Yoshihara, Shizuya

    2014-01-01

    An accident occurred in experimental fast reactor 'Joyo' in 2007 which is obstruction of fuel change equipment caused by contacting rotating plug and MARICO-2. In addition, we confirmed two happenings in the reactor vessel that (1) Deformation of MARICO-2 subassembly on the in vessel storage rack together with a transfer pot, (2) Deformation of the Upper core structure of 'Joyo' caused by contacting MARICO-2 subassembly and the UCS. We do the restoration work for restoring it. This time, we describe current status of Replacement work of the UCS. (author)

  13. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  14. Sterilization of E. coli bacterium in a flowing N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Villeger, S; Cousty, S; Ricard, A; Sixou, M

    2003-01-01

    Effective destruction of Escherichia coli (E. coli) bacteria has been obtained in a flowing N 2 -O 2 microwave post-discharge reactor. The sterilizing agents are the O atoms and the UV emissions of NOβ which are produced by N and O atoms recombination in the reactor. In the following plasma conditions: pressure 5 Torr, flow rate 1 L n min -1 , microwave power of 100 W in a quartz tube of 5 mm, an O atom density of 2.5x10 15 cm -3 is measured by NO titration in the post-discharge reactor with UV emission in a N 2 -(5%)O 2 gas mixture. Full destruction of 10 13 cfu ml -1 E. coli is observed after a treatment time of 25 min. (rapid communication)

  15. Safe dismantling of the SVAFO research reactors R2 and R2-0 in Sweden

    International Nuclear Information System (INIS)

    ARNOLD, Hans-Uwe; BROY, Yvonne; Dirk Schneider

    2017-01-01

    The R2 and R2-0 reactors were part of the Swedish government's research program on nuclear power from the early 1960's. Both reactors were shut down in 2005 following a decision by former operator Studsvik Nuclear AB. The decommissioning of the R2 and R2-0 reactors is divided into three phases. The first phase - awarded to AREVA - involved dismantling of the reactors and associated systems in the reactor pool, treatment of the disassembled components as well as draining, cleaning and emptying the pool. In the second phase, the pool structure itself will be dismantled, while removal of remaining reactor systems, treatment and disposal of materials and clean-up will be carried out in the third stage. The entire work is planned to be completed before the end of this decade. The paper describes the several steps of phase 1 - starting with the team building, followed by the dismantling operations and covers challenges encountered and lessons learned as well. The reactors consist of 5.400 kg aluminum, 6.000 kg stainless steel restraint structures as well as, connection elements of the mostly flanged components (1.000 kg). The most demanding - from a radiological point of view - was the R2-0 reactor that was limited to ∼ 1 m"3 construction volumes but with an extremely heterogeneous activation profile. Based on the calculated radiological entrance data and later sampling, nuclide vectors for both reactors depending on the real placement of the single component and on the material (aluminum and stainless steel) were created. Finally, for the highest activated component from R2 reactor, 85 Sv/h were measured. The dismantling principles - adopted on a safety point of view - were the following: The always protected base area of the ponds served as a flexible buffer area for waste components and packaging. Specific protections were also installed on the walls to protect them from mechanical stress which may occur during dismantling work. A specific work platform was

  16. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  17. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  18. PCU arrangement of a supercritical CO{sub 2} cooled micro modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Baik, Seungjoon; Cho, Seong Kuk; Oh, Bong Seong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    As part of the SMR(Small Modular Reactor)s development effort, the authors propose a concept of supercritical CO{sub 2} (S-CO{sub 2}) cooled fast reactor combined with the S-CO{sub 2} Brayton cycle. The reactor concept is named as KAIST Micro Modular Reactor (MMR). The S-CO{sub 2} Brayton cycle has many strong points when it is used for SMR's power conversion unit. It occupies small footprints due to the compact cycle components and simple layout. Thus, a concept of one module containing the S-CO{sub 2} cooled fast reactor and power conversion system is possible. This module can be shipped via ground transportation (by trailer) or marine transportation. In this study, the authors propose a new conceptual layout for the S-CO{sub 2} cooled direct cycle while considering various issues for arranging cycle components. The new design has an improved cycle efficiency (from 31% to 34%) than the earlier version of MMR by reducing pressure drops in the heat exchangers. As a more efficient option, a recompression recuperated cycle was also designed. It improves 5% of thermal efficiency while 18tons of mass can be added in comparison to the simple recuperated cycle. Even if we adopt recompression cycle as a PCU, the weight of module (152tons) is less than the ground transportable limit (260tons)

  19. TMI-2 reactor vessel head removal

    International Nuclear Information System (INIS)

    Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

    1984-12-01

    This report describes the safe removal and storage of the Three Mile Island Unit 2 reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training the head was safely removed and stored and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities

  20. Neutronic study using oxide and nitride fuels for the Super Phenix 2 reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.

    1991-11-01

    This report presents a neutronic analysis and a description of the Super Phenix 2 reactor, taken as reference. We present the methodology and results for cell and global reactor calculations for oxide (U O 2 - Pu O 2 ) and nitride (U N - Pu N) fuels. To conclude we compare the performance of oxide and nitride fuels for the reference reactor. (author)

  1. Shadow corrosion evaluation in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Sanders, Ch.; Lysell, G.

    2000-01-01

    Post-irradiation examination has shown that increased corrosion occurs when zirconium alloys are in contact with or in proximity to other metallic objects. The observations indicate an influence of irradiation from the adjacent component as the enhanced corrosion occurs as a 'shadow' of the metallic object on the zirconium surface. This phenomenon could ultimately limit the lifetime of certain zirconium alloy components in the reactor. The Studsvik R2 materials test reactor has an In-Core Autoclave (INCA) test facility especially designed for water chemistry and materials research. The INCA facility has been evaluated and found suitable for shadow corrosion studies. The R2 reactor core containing the INCA facility was modeled with the Monte Carlo N-Particle (MCNP) code in order to evaluate the electron deposition in various materials and to develop a hypothesis of the shadow corrosion mechanism. (authors)

  2. Benchmark tests of JENDL-3.2 for thermal and fast reactors

    International Nuclear Information System (INIS)

    Takano, Hideki

    1995-01-01

    Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k eff and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k eff , reactivity worth of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments. (author)

  3. Radionuclide distribution in TMI-2 reactor building basement liquids and solids

    International Nuclear Information System (INIS)

    Horan, J.T.; McIsaac, C.V.; Keefer, D.G.

    1984-01-01

    As a result of the TMI-2 accident, approximately 2.46 x 10 6 L of contaminated water were released to the Reactor Building basement. The principal fission product release pathway from the damaged core was through the reactor coolant system (RCS) to the pressurizer, through the pressure-operated relief valve (PORV) on the pressurizer to the Reactor Coolant Drain Tank (RCDT), and then through the RCDT rupture disk to the Reactor Building basement. Since August 1979, a number of efforts have been made to determine the location, quantity, and composition of fission products released to the Reactor Building basement. These efforts have included sampling of the basement water and solids, the basement sump pump recirculation line, the RCDT, and visual surveys using a closed circuit television (CCTV) system. The analysis of basement samples has provided data on the physical and radioisotopic characteristics of the liquids and solids. This paper describes the sample collection techniques and discusses radiochemical analyses results

  4. An experimental investigation of fission product release in SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    Increasing radiation fields due to a release of fission products in the reactor container of several SLOWPOKE-2 reactors fuelled with a highly-enriched uranium (HEU) alloy core have been observed. It is believed that these increases are associated with the fuel fabrication where a small amount of uranium-bearing material is exposed to the coolant at the end-welds of the fuel element. To investigate this phenomenon samples of reactor water and gas from the headspace above the water have been obtained and examined by gamma spectrometry methods for reactors of various burnups at the University of Toronto, Ecole Polytechnique and Kanata Isotope Production Facility. An underwater visual examination of the fuel core at Ecole Polytechnique has also provided information on the condition of the core. This report (Volume 1) summarizes the equipment, analysis techniques and results of tests conducted at the various reactor sites. The data report is published as Volume 2. (author). 30 refs., 9 tabs., 20 figs

  5. The Oak Ridge Research Reactor: safety analysis: Volume 2, supplement 2

    International Nuclear Information System (INIS)

    Hurt, S.S.

    1986-11-01

    The Oak Ridge Research Reactor Safety Analysis was last updated via ORNL-4169, Vol. 2, Supplement 1, in May of 1978. Since that date, several changes have been effected through the change-memo system described below. While these changes have involved the cooling system, the electrical system, and the reactor instrumentation and controls, they have not, for the most part, presented new or unreviewed safety questions. However, some of the changes have been based on questions or recommendations stemming from safety reviews or from reactor events at other sites. This paper discusses those changes which were judged to be safety related and which include revisions to the syphon-break system and changes related to seismic considerations which were very recently completed. The maximum hypothetical accident postulated in the original safety analysis requires dynamic containment and filtered flow for compliance with 10CFR100 limits at the site boundary

  6. Loss of coolant analysis for the tower shielding reactor 2

    International Nuclear Information System (INIS)

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs

  7. Dalhousie SLOWPOKE-2 reactor: A nuclear analytical chemistry facility

    International Nuclear Information System (INIS)

    Chatt, A.; Holzbecher, J.

    1990-01-01

    SLOWPOKE is an acronym for Safe Low POwer Kritical Experiment. The SOWPOKE-2 is a compact, inherently safe, swimming-pool-type reactor designed by the Atomic Energy of Canada Limited for neutron activation analysis (NAA) and isotope production. The Dalhousie University SLOWPOKE-2 reactor (DUSR) has been operating since 1976; a large beryllium reflector was added in 1986 to extend its lifetime by another 8 to 10 yr. The DUSR is generally operated at half-power with a maximum thermal flux of 1.1 x 10 12 n/cm 2 ·s in the inner pneumatic sites and that of 5.4 x 10 11 n/cm 2 ·s in the outer sites. Despite this comparatively low flux, SLOWPOKE-2 reactors have many beneficial features that are continuously being exploited at the DUSR facility for developing nuclear analytical methods for fundamental as well as applied studies. Although NAA is a well-established analytical technique, much of the activation analysis being performed in most facilities has been limited to methods using fairly long-lived nuclides. The approach at the DUSR facility has been to utilize the highly homogeneous, stable, and reproducible neutron flux to develop NAA methods based on short-lived nuclides. SLOWPOKE reactors have a fairly high epithermal neutron flux, which is being advantageously used for determining several trace elements in complex matrices. Radiochemical NAA (RNAA) methods using coprecipitation, distillation, and ion-exchange separations have been used for the determination of very low levels of several elements in biological materials

  8. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    International Nuclear Information System (INIS)

    Greene, S.R.; Spellman, D.J.; Bevard, B.B.

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative

  9. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.R.; Spellman, D.J.; Bevard, B.B. [and others

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative.

  10. Dynamic simulation of the 2 MWt slowpoke heating reactor

    International Nuclear Information System (INIS)

    Tseng, C.M.; Lepp, R.M.

    1982-04-01

    A 2 MWt SLOWPOKE reactor, intended for commercial space heating, is being developed at the Chalk River Nuclear Laboratories. A small-signal dynamic simulation of this reactor, without closed-loop control, was developed. Basic equations were used to describe the physical phenomena in each kf the eight reactor subsystems. These equations were then linearized about the normal operation conditions and rearranged in a dimensionless form for implementation. The overall simulation is non-linear. Slow transient responses (minutes to days) of the simulation to both reactivity and temperature perturbations were measured at full power. In all cases the system reached a new steady state in times varying from 12 h to 250 h. These results illustrate the benefits of the inherent negative reactivity feedback of this reactor concept. The addition of closed-loop control using core outlet temperature as the controlled variable to move a beryllium reflector is also examined

  11. Distribution of energy of impulses of the modernized IBR-2 REACTOR

    International Nuclear Information System (INIS)

    Tayibov, L.A; Mehtiyeva, R.N.; )

    2011-01-01

    Full text: For the modernized IBR-2 reactor there are two main reasons causing fluctuations of energy of impulses [1,3] on low power of stochastic fluctuations, on the nominal - giving rise to fluctuations of external reactance. The fluctuations of pulse energy is quite significant (20%). They affect the dynamics of the reactor, the process of regulation, starting, as well as the work of the experimental apparatus, etc. It is clear that research of fluctuation of energy of impulses has special value for the IBR-2 type reactor. Sufficient information about the statistical properties of the reactor noise gives the density distribution of the energy pulse power. We used the usual procedure of statistical analysis of time series. Calculated pulse energy of density and the parameters of this distribution.

  12. Survey monitoring of environmental radioactivity in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H. S.; Lee, J. [Busan Regional Monitoring Station, Busan (Korea, Republic of)

    2000-12-15

    At Pusan Regional Monitoring Station in Busan have been measured periodically in 2000 gross beta activities in the airborne dust, fallout, precipitation and tap water and gamma exposure rates. Gamma nuclides in airborne dust, fallout and precipitation have also been monitored at the station. As a part of environmental radiation/radioactivity distribution survey around Pusan, vegetables, fishes, shellfish, drinking water (total 23ea) samples were taken from sampling sites which were selected by KlNS. We analysis gamma nuclide for all. No significant changes from the previous survey have been found in both beta activities and gamma exposure rates. As the results of analyzing an gamma nuclide concentration in environmental samples in Pusan are fee of radiological contaminants.

  13. Equipment for thermal neutron flux measurements in reactor R2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E; Nilsson, T; Claeson, S

    1960-04-15

    For most of the thermal neutron flux measurements in reactor R2 cobalt wires will be used. The loading and removal of these wires from the reactor core will be performed by means of a long aluminium tube and electromagnets. After irradiation the wires will be scanned in a semi-automatic device.

  14. A conceptual design of LIB fusion reactor: UTLIF(2)

    International Nuclear Information System (INIS)

    Madarame, Haruki; Kondo, Shunsuke; Iwata, Shuichi; Oka, Yoshiaki; Miya, Kenzo.

    1984-01-01

    UTLIF(2) is a conceptual design study on a light ion beam driven fusion reactor based on a concept of rod-bundle blanket. Survivability and maintainability of the first wall and the blanket are regarded as of major importance in the design. The blanket rod is composed of a thick tube which has enough stiffness, a thin wrapping wall which receives high heat flux, and liquid lithium which breeds tritium and removes generated heat. The rod can be pulled out from the outside of the reactor vessel, hence the replacement is very easy. Nuclear and thermal analysis have been made and the performance of the reactor has been shown to be satisfactory. (author)

  15. The BR2 materials testing reactor. Past, ongoing and under-study upgradings

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J M; Roedt, Ch de; Gubel, P; Koonen, E [Centre d' Etude de I' Energie Nucleaire, Studiecentrum voor Kernenergie, C.E.N./S.C.K., Mol (Belgium)

    1990-05-01

    The BR2 reactor (Mol, Belgium) is a high-flux materials testing reactor. The fuel is 93% {sup 235}U enriched uranium. The nominal power ranges from 60 to 100 MW. The main features of the design are the following: 1) maximum neutron flux, thermal: 1.2 x 10{sup 15} n/cm{sup 2} s; fast (E > 0.1 MeV) : 8.4 x 10{sup 14} n /cm{sup 2} s; 2) great flexibility of utilization: the core configuration and operation mode can be adapted to the experimental loading; 3) neutron spectrum tailoring; 4) availability of five 200 mm diameter channels besides the standard channels (84 mm diameter); 5) access to the top and bottom covers of the reactor authorizing the irradiation of loops. The reactor is used to study the behaviour of fuel elements and structural materials intended for future nuclear power stations of several types (fission and fusion). Irradiations are carried out in connection with performance tests up to very high burn-up or neutron fluence as well as for safety experiments, power cycling experiments, and generally speaking, tests under off-normal conditions. Irradiations for nuclear transmutation (production of high specific activity radio-isotopes and transplutonium elements), neutron-radiography, use of beam tubes for physics studies, and gamma irradiations are also carried out. The BR2 is used in support of Belgian programs, at the request of utilities, industry and universities and in the framework of international agreements. The paper reviews the past and ongoing upgrading and enhancement of reactor capabilities as well as those under study or consideration, namely with regard to: reactor equipment, fuel elements, irradiation facilities, reactor operation conditions and long-term strategy. (author)

  16. TiO2 Solar Photocatalytic Reactor Systems: Selection of Reactor Design for Scale-up and Commercialization—Analytical Review

    Directory of Open Access Journals (Sweden)

    Yasmine Abdel-Maksoud

    2016-09-01

    Full Text Available For the last four decades, viability of photocatalytic degradation of organic compounds in water streams has been demonstrated. Different configurations for solar TiO2 photocatalytic reactors have been used, however pilot and demonstration plants are still countable. Degradation efficiency reported as a function of treatment time does not answer the question: which of these reactor configurations is the most suitable for photocatalytic process and optimum for scale-up and commercialization? Degradation efficiency expressed as a function of the reactor throughput and ease of catalyst removal from treated effluent are used for comparing performance of different reactor configurations to select the optimum for scale-up. Comparison included parabolic trough, flat plate, double skin sheet, shallow ponds, shallow tanks, thin-film fixed-bed, thin film cascade, step, compound parabolic concentrators, fountain, slurry bubble column, pebble bed and packed bed reactors. Degradation efficiency as a function of system throughput is a powerful indicator for comparing the performance of photocatalytic reactors of different types and geometries, at different development scales. Shallow ponds, shallow tanks and fountain reactors have the potential of meeting all the process requirements and a relatively high throughput are suitable for developing into continuous industrial-scale treatment units given that an efficient immobilized or supported photocatalyst is used.

  17. Core management and performance analysis for PWR

    International Nuclear Information System (INIS)

    Lee, J.B.; Lee, C.K.; Kim, J.S.; Lee, S.K.; Moon, K.S.; Chun, B.J.; Chang, J.W.; Kim, Y.J.

    1981-01-01

    The KINS (KAERI Improved Nodal Simulation) program, a three-dimensional nodal simulation code for pressurized water reactor fuel management, has been developed and benchmarked against the cycles 1 and 2 of the Kori-1 reactor. The critical boron concentration and three-dimensional power distribution at BOL, HZP condition have been calculated and compared with the operating data. A three-dimensional depletion calculation at HFP condition has been performed for cycle 1 with an interval of 1000 MWD/MTU and compared with the operating data. Similar calculation was also performed for cycle 2 and then compared with the design data of the reactor vendor. At the same time, a prediction of in-core detectors reaction rate was made so as to be compared with the operating data. As the result of comparisons, our calculation as well as the justification of the correlations is shown to be in excellent agreement with the operating data within an allowable limit

  18. Planned Scientific programs around the Triga Mark 2 Reactor

    International Nuclear Information System (INIS)

    Majah, M Ibn.

    2007-01-01

    Full text: Nuclear techniques have been introduced to Morocco since the sixties. After the energy crisis of 1973, Morocco decides to create the National Center for Energy Sciences and Nuclear Techniques (CNESTEN) under the supervision of the Ministry of high Education and Research, with a research commercial and support vocation. CNESTEN is in charge of promoting nuclear application, to act as technical support for the authorities and to prepare the technological basis for nuclear power option. In 1998, CNESTEN started the construction of Nuclear Research Centre. The on going activities cover many sectors : earth and environmental sciences, high energy physics, safety and security, waste management. In 2001, CNESTEN started the construction of a 2MW TRiga Mark 2 Reactor, with the possibility to increase the power to 3 MW. The construction was achieved in January 2007. The operation of the reactor is expected for April 2007. The program of the utilization of the reactor was established with th contribution of the university and with the assistance of IAEA. Some of the experimental set-up installed around the reactor have been designed. CNESTEN has developed cooperation with Nuclear research centres from other countries and is receiving visitors and trainees mainly through the IAEA [fr

  19. Power noise spectrum classification in the problem of the IBR-2 reactor

    International Nuclear Information System (INIS)

    Bargel, M.; Kitowski, J.; Pepelyshev, Yu.N.

    1988-01-01

    The classification spectrum results of random fluctuations in the IBR-2 energy pulse are presented. The work is performed for the application of the obtained results to the reactor diagnostics and the study of its noise uncontrolled states. For classification of the spectra the method of pattern recognition based upon the ISODATA heuristic algorithm is used. It is shown that a set of noise uncontrolled reactor states, registered during the reactor operation period at power of 0.4-2 MVt with the first variant of moving reflector (1983-1986) is formed into 4(5) most typical states. Each of the states corresponds to the general conditions of the reactor core cooling and provides the normal work of the moving reflector. However, these states differ in coolant flow, power level and peculiarities of the moving reflector rotation regime. One type of anomal power noise, connected with some disorder in the moving reflctor work, is isolated. This work also presents the possibility of control over the state of moving reflectors according to the change in the amplitude of power oscillations at some frequences. The reactor noise classification results can be used as the data bank for the IBR-2 reactor diagnostic system

  20. Research reactor FR2 - 20 years chemical and radiochemical measurements

    International Nuclear Information System (INIS)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Hoffmann, W.; Beyer, J.

    1986-09-01

    The FR2 has been a D 2 O cooled and moderated research reactor with a thermal output of 44 MW. It was in operation from 1961 to 1981. Because of the operating conditions of the reactor, only a small number of routine measurements were performed. For these however special techniques had to be developed. During the 20 years of operation a number of special events occured or have been observed, sometimes with very amazing results, e.g. the 'aceton effect'. This report describes the chemical and radiochemical conditions of the reactor systems, as well as the results of the surveilance work. Not described are measurements for the many experiments. The last chapter gives in a short form a description of the most unusual events and observations. (orig.) [de

  1. Venting krypton-85 from the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Burton, H.M.

    1981-01-01

    To permit the less restricted access to the reactor building necessary to maintain instrumentation and equipment, and to proceed towad the total decontamination of the facility, General Public Utilities, operators of the facility referred to hereafter as GPU, asked the United States Nuclear Regulatory Commission, or NRC, for permission to remove the 85 Kr from the reactor building by venting it to the environment. GPU supported their request with the Safety Analysis and Environmental Assessment Report on the proposed reactor building venting plan. On June 12, 1980, after seven months of licensing deliberations and numerous public hearings, the NRC granted GPU's request. The actual venting took place between June 28 and July 11, 1980. This report presents an overview of the detailed effort involved in the TMI-2 reactor building venting program. The findings reported here are condensed from a published report entitled TMI-2 Reactor Building Purge--Kr-85 Venting

  2. Research on economics and CO2 emission of magnetic and inertial fusion reactors

    International Nuclear Information System (INIS)

    Mori, Kenjiro; Yamazaki, Kozo; Oishi, Tetsutarou; Arimoto, Hideki; Shoji, Tatsuo

    2011-01-01

    An economical and environment-friendly fusion reactor system is needed for the realization of attractive power plants. Comparative system studies have been done for magnetic fusion energy (MFE) reactors, and been extended to include inertial fusion energy (IFE) reactors by Physics Engineering Cost (PEC) system code. In this study, we have evaluated both tokamak reactor (TR) and IFE reactor (IR). We clarify new scaling formulas for cost of electricity (COE) and CO 2 emission rate with respect to key design parameters. By the scaling formulas, it is clarified that the plant availability and operation year dependences are especially dominant for COE. On the other hand, the parameter dependences of CO 2 emission rate is rather weak than that of COE. This is because CO 2 emission percentage from manufacturing the fusion island is lower than COE percentage from that. Furthermore, the parameters dependences for IR are rather weak than those for TR. Because the CO 2 emission rate from manufacturing the laser system to be exchanged is very large in comparison with CO 2 emission rate from TR blanket exchanges. (author)

  3. Development of a TiO2-coated optical fiber reactor for water decontamination

    International Nuclear Information System (INIS)

    Danion, A.

    2004-09-01

    The objective of this study was to built and to study a photo-reactor composed by TiO 2 -coated optical fibers for water decontamination. The physico-chemical characteristics and the optical properties of the TiO 2 coating were first studied. Then, the influences of different parameters as the coating thickness, the coating length and the coating volume were investigated both on the light transmission in the TiO 2 - coated fiber and on the photo-catalytic activity of the fiber for a model compound (malic acid). The photo-catalytic degradation of malic acid was optimized using the experimental design methodology allowing to build a multi-fiber reactor comprising 57 optical fibers. The photo-degradation of malic acid was conducted in the multi-fiber reactor and it was demonstrated that the multi-fiber reactor was more efficient than the single-fiber reactor at the same fibers density. Finally, the multi-fiber reactor was applied to the photo-degradation of a fungicide, called fenamidone, and a degradation pathway was proposed. (author)

  4. TMI-2 reactor-vessel head removal and damaged-core-removal planning

    International Nuclear Information System (INIS)

    Logan, J.A.; Hultman, C.W.; Lewis, T.J.

    1982-01-01

    A major milestone in the cleanup and recovery effort at TMI-2 will be the removal of the reactor vessel closure head, planum, and damaged core fuel material. The data collected during these operations will provide the nuclear power industry with valuable information on the effects of high-temperature-dissociated coolant on fuel cladding, fuel materials, fuel support structural materials, neutron absorber material, and other materials used in reactor structural support components and drive mechanisms. In addition, examination of these materials will also be used to determine accident time-temperature histories in various regions of the core. Procedures for removing the reactor vessel head and reactor core are presented

  5. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  6. Fissile fuel production and usage of thermal reactor waste fueled with UO2 by means of hybrid reactor system

    International Nuclear Information System (INIS)

    Ipek, O.

    1997-01-01

    The use of Fast Breeder Reactors to produce fissile fuel from nuclear waste and the operation of these reactors with a new neutron source are becoming today' topic. In the thermonuclear reactors, it is possible to use 2.45-14.1 MeV - neutrons which can be obtained by D-T, D-D Semicatalyzed (D-D) and other fusion reactions. To be able to do these, Hybrid Reactor System, which still has experimental and theoretical studies, have to be taken into consideration.In this study, neutronic analysis of hybrid blanket with grafit reflector, is performed. D-T driven fusion reaction is surrounded by UO 2 fuel layer and the production of ''2''3''9Pu fissile fuel from waste ''2''3''8U is analyzed. It is also compared to the other possible fusion reactions. The results show that 815.8 kg/year ''2''3''8Pu with D-T reaction and 1431.6 kg/year ''2''3''8Pu with semicatalyzed (D-D) reaction can be produced for 1000 MW fusion power. This means production of 2.8/ year and 4.94/ year LWR respectively. In addition, 1000 MW fusion flower is is multiplicated to 3415 MW and 4274 MW for D-T and semicatalyzed (D-D) reactions respectively. The system works subcritical and these values are 0.4115 and 0.312 in order. The calculations, ANISN-ORNL code, S 16 -P 3 approach and DLC36 data library are used

  7. A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2007-01-01

    In this theoretical work the CO2 conversion into methanol in both a traditional reactor (TR) and a membrane reactor (MR) is considered. The purpose of this study was to investigate the possibility of increasing CO2 conversion into methanol with respect to a TR. A zeolite MR, able to combine

  8. Cronos 2: a neutronic simulation software for reactor core calculations

    International Nuclear Information System (INIS)

    Lautard, J.J.; Magnaud, C.; Moreau, F.; Baudron, A.M.

    1999-01-01

    The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)

  9. Set of rules SOR 2 reactor site criteria

    International Nuclear Information System (INIS)

    1976-06-01

    The purpose of this set of rules is to describe criteria which guide the Director in his evaluation of the suitability of proposed sites for stationary power and testing reactors subject to SOR 2. (B.G.)

  10. Homogeneous fast reactor benchmark testing of CENDL-2 and ENDF/B-6

    International Nuclear Information System (INIS)

    Liu Guisheng

    1995-01-01

    How to choose correct weighting spectrum has been studied to produce multigroup constants for fast reactor benchmark calculations. A correct weighting option makes us obtain satisfying results of K eff and central reaction rate ratios for nine fast reactor benchmark testings of CENDL-2 and ENDF/B-6. (4 tabs., 2 figs.)

  11. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    International Nuclear Information System (INIS)

    Richard P. Wells

    2007-01-01

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year

  12. Homogeneous fast reactor benchmark testing of CENDL-2 and ENDF/B-6

    International Nuclear Information System (INIS)

    Liu Guisheng

    1995-11-01

    How to choose correct weighting spectrum has been studied to produce multigroup constants for fast reactor benchmark calculations. A correct weighting option makes us obtain satisfying results of K eff and central reaction rate ratios for nine fast reactor benchmark testing of CENDL-2 and ENDF/B-6. (author). 8 refs, 2 figs, 4 tabs

  13. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  14. ALARA review of the maintenance and repair jobs of repetitive high radiation dose at Kori Unit 3 and 4

    International Nuclear Information System (INIS)

    Cho, Y.H.; Moon, J.H.; Kang, C.S.; Lee, J.S.; Lee, D.H.

    2003-01-01

    The policy of maintaining occupational radiation dose (ORD) as low as reasonably achievable (ALARA) requires the effective reduction of ORD in the phases of design as well as operation of nuclear power plants. It has been identified that a predominant portion of ORD arises during maintenance and repair operations at nuclear power plants. The cost-effective reduction of ORD cannot be achieved without a comprehensive analysis of accumulated ORD data of existing nuclear power plants. To identify the jobs of repetitive high ORD, the ORD data of Kori Units 3 and 4 over 10-year period from 1986 to 1995 were compiled into the PC-based ORD database program. As the radiation job classification structure, 26 main jobs are considered, most of which are further subdivided into detailed jobs. According to the order of the collective dose values for 26 main jobs, 10 jobs of high collective dose are identified. As an ALARA review, then, top 10 jobs of high collective dose are statistically analyzed with regard to 1) dose rate, 2) crew number and 3) job frequency that are the factors determining the collective dose for the radiation job of interest. Through the ALARA review, main reasons causing to high collective dose values are identified as follows. The high collective dose of RCP maintenance job is mainly due to the large crew number and the high job frequency. The characteristics of refueling job are similar to those of RCP maintenance job. However, the high collective doses of SG-related jobs such as S/G nozzle dam job, S/G man-way job and S/G tube maintenance job are mainly due to high radiation dose rate. (author)

  15. Safety assessments relating to the use of new fuels in research reactors: application to the case of FRM 2 reactor fuel

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Bars, G.; Tran Dai

    2001-01-01

    After giving a brief reminder of the procedure applied in France for the licensing of the use of a new fuel type or design in a research reactor, we outline the main safety aspects associated with such a modification. Finally, by way of an example, we focus on the safety assessment relating to the IRIS irradiation device used in SILOE reactor, in particular for the qualification of the fuel dedicated to FRM II reactor of the Technical University of Munich. This qualification was carried out on a U 3 Si 2 fuel plate enriched to about 90 % in weight of 235 U and containing 1.5 g of uranium per cm 3 . The evaluation performed by the IPSN for GRS did not call into question the choice of U 3 Si 2 fuel plates for the FRM-II reactor. (authors)

  16. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  17. Apollo-L2, an advanced fuel tokamak reactor utilizing direct conversion

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Blanchard, J.P.; El-Guebaly, L.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.E.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Witt, R.J.

    1989-01-01

    A scoping study of a tokamak reactor fueled by a D- 3 He plasma is presented. The Apollo D- 3 He tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The low neutron wall loading (0.1 MW/m 2 ) permits a first wall lasting the life of the plant and enables the reactor to be classified as inherently safe. The cost of electricity is less than that from a similar power level DT reactor. 10 refs., 1 fig., 4 tabs

  18. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  19. Rapid data acquisition from the safety system of the FRJ-2 reactor

    International Nuclear Information System (INIS)

    Inhoven, H.

    1980-06-01

    The central department for research reactors (ZFR) of the Juelich Nuclear Research Centre (KFA) is operating the reactors FRJ-1 (MERLIN) and FRJ-2 (DIDO) since 1962. In 1976, a Siemens 330 computer has been put into operation especially for the processing of data from the DIDO reactor, followed by another computer of the same type for the purpose of processing data from the ZFR department in general. The present report is a result of the work investigating 'Data acquisition and data processing in the FRJ-2' and primarily discusses the complex of 'fast analog and binary signals'. The activities in this field of work have been and still are mainly concerned with general problems encountered in adapting a currently 14-year-old reactor system to a digital computer, namely problems such as data decoupling in the safety system of the reactor, data acquisition using the CAMAC system, data transfer via an 'extended branch', data acquisition software as core-resident programs, temporary storage as common data, interpreting software as peripheral - storage - resident programs. (orig./WB) [de

  20. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  1. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  2. Estimation of power feedback parameters of pulse reactor IBR-2M on transients

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Popov, A.K.

    2013-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) on a model of the reactor dynamics by mathematical treatment of two registered transients are estimated. Frequency characteristics and the pulse transient characteristics corresponding to these PFB parameters are calculated. PFB parameters received thus can be considered as their express tentative estimation as real measurements in this case occupy no more than 30 minutes. Total PFB is negative at 1 and 2 MW. At the received estimations of PFB parameters in a self-regulation mode it is possible to consider the stability margins of the IBR-2M reactor satisfactory

  3. Independent CO2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, Task 2.50.05

    International Nuclear Information System (INIS)

    Stojic, M.; Pavicevic, M.

    1964-01-01

    This report contains the following volumes V and VI of the Project 'Independent CO 2 loop for cooling the samples irradiated in RA reactor vertical experimental channels': Design project of the dosimetry control system in the independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, and Safety report for the Independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels [sr

  4. PSA Level 2 activities for RBMK reactors

    International Nuclear Information System (INIS)

    Gubler, R.

    1998-01-01

    Probabilistic safety analyses (PSAs) of the boiling water graphite moderated pressure tube reactors (RBMKs) have been developed only recently and they are limited to Level 1. Activities at the IAEA were first motivated because of the difficulties to characterize core damage for RBMK reactors. Core damage probability is used in documents of the IAEA as a convenient single valued measure, for example for probabilistic safety criteria. The limited number of PSAs that have been completed for the RBMK reactors have shown that several special features of these channel type reactors necessitate revisiting of the characterization of core damage for these reactors. Furthermore, it has become increasingly evident that detailed deterministic analysis of DBAs and beyond design basis accidents reveal considerable insights into RBMK response to various accident conditions. These analyses can also help in better characterizing the outstanding phenomenological uncertainties, improved EOPs and AM strategies, including potential risk-beneficial accident negative backfits. The deterministic efforts should be focused first on elucidating accident progression processes and phenomena, and second on finding, qualifying and implementing procedures to minimize the risk of severe accident states The IAEA PSA procedures were mainly developed in New of vessel type LWRs, and would therefore require extensions to make them directly applicable. to channel type reactors. (author) (author)

  5. Studsvik's R2 reactor - Review of activities

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, Mikael; Tomani, Hans; Graeslund, Christian; Rundquist, Hans; Skoeld, Kurt [Studsvik Nuclear AB, Nykoeping (Sweden)

    1993-07-01

    A general description of the R2 reactor, its associated facilities and its history is given. The facilities and range of work are described for the following types of activities: fuel testing, materials testing, neutron transmutation doping of silicon, activation analysis, radioisotope production and basic research including thermal neutron scattering, nuclear chemistry and neutron capture radiography. (author)

  6. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  7. Reproduction of the PSBR reactor with Exterminator-2; Reproduccion del reactor PSBR con exterminador-2

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1983-08-15

    To reproduce the reactor PSBR reported in (1), with the available version of the Exterminator-II in the ININ, they took the dimensions, composition specifications, effective sections of the different compositions (excepting those of the central thimble and of the moderator), the K{sub eff} and the factors of power (FP) for the different burners. Based on the comparison of the K{sub eff} and of the FP obtained with those reported the precision it is determined before in the reproduction of the reactor mentioned. (Author)

  8. Production of Sn-117m in the BR2 high-flux reactor.

    Science.gov (United States)

    Ponsard, B; Srivastava, S C; Mausner, L F; Russ Knapp, F F; Garland, M A; Mirzadeh, S

    2009-01-01

    The BR2 reactor is a 100MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry.

  9. Enhancing the productivity of soluble green fluorescent protein ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... 1Department of Chemical Engineering, Pusan National University, Busan, South Korea. 2School ... protein sequences for consensus approach from whole sequence ..... stable proteins, especially if applied in buried or more.

  10. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  11. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities

  12. Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas

    International Nuclear Information System (INIS)

    Jing Qiangshan; Lou Hui; Mo Liuye; Zheng Xiaoming

    2006-01-01

    Reforming of methane with carbon dioxide and oxygen was investigated over Ni/MgO-SiO 2 catalysts using fixed bed and fluidized bed reactors. The conversions of CH 4 and CO 2 in a fluidized bed reactor were close to thermodynamic equilibrium. The activity and stability of the catalyst in the fixed bed reactor were lower than that in the fluidized bed reactor due to carbon deposition and nickel sintering. TGA and TEM techniques were used to characterize the spent catalysts. The results showed that a lot of whisker carbon was found on the catalyst in the rear of the fixed bed reactor, and no deposited carbon was observed on the catalysts in the fluidized bed reactor after reaction. It is suggested that this phenomenon is related to a permanent circulation of catalyst particles between the oxygen rich and oxygen free zones. That is, fluidization of the catalysts in the fluidized bed reactor favors inhibiting deposited carbon and thermal uniformity in the reactor

  13. Benchmark testing of Canadol-2.1 for heavy water reactor

    International Nuclear Information System (INIS)

    Liu Ping

    1999-01-01

    The new version evaluated nuclear data library of ENDF-B 6.5 has been released recently. In order to compare the quality of evaluated nuclear data CENDL-2.1 with ENDF-B 6.5, it is necessary to do benchmarks testing for them. In this work, CENDL-2.1 and ENDF-B 6.5 were used to generated the WIMS-69 group library respectively, and benchmarks testing was done for the heavy water reactor, using WIMS5A code. It is obvious that data files of CENDL-2.1 is better than that of old WIMS library for the heavy water reactors calculations, and is in good agreement with those of ENDF-B 6.5

  14. Oxygen suppression in boiling water reactors. Phase 2. Annual report 1981, December 2, 1980-December 31, 1981

    International Nuclear Information System (INIS)

    Burley, E.L.

    1982-07-01

    A hydrogen addition test will be performed in the Dresden-2 reactor of Commonwealth Edison Company during 1982. Up to 2 ppM hydrogen will be added to and dissolved in the reactor feedwater to reverse the radiolysis reaction in the reactor core and suppress oxgen concentration in the primary coolant. At low oxygen levels the propensity of stressed and sensitized 304 stainless steel toward intergranular stress corrosion cracking is greatly reduced. The test will answer outstanding questions and uncertainties in the areas of water chemistry, equipment design and materials performance. Nine special sample facilities will be prepared in the primary coolant, main stream, feedwater/condensate, and offgas systems. Instrumentation will be available to measure hydrogen, oxygen, conductivity, pH, soluble and insoluble corrosion products, and electrochemical potentials. In addition, an autoclave in which confirming constant extension rate tests can be conducted in reactor water will be provided

  15. Characterization of fuel distributions in the Three-Mile Island Unit 2 (TMI-2) reactor system by neutron and gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McNeece, J.P.; Kaiser, B.J.; McElroy, W.N.

    1984-04-01

    The resolution of technical issues generated by the accident at Three-Mile Island Unit 2 (TMI-2) will inevitably be of long range benefit. Determination of the fuel debris dispersal in the TMI-2 reactor system represents a major technical issue. In reactor recovery operations, such as for the safe handling and final disposal of TMI-2 waste, quantitative fuel assessments are being conducted throughout the reactor core and primary coolant system

  16. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes

    Directory of Open Access Journals (Sweden)

    Kim CH

    2016-05-01

    Full Text Available Cy Hyun Kim,1,2,* Jin-Hong Shin,1,3,* Sung Jun Hwang,1,2 Yung Hyun Choi,4 Dae-Seong Kim,1,3 Cheol Min Kim2,51Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 2Center for Anti-Aging Industry, Pusan National University, Busan, 3Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 4Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 5Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Republic of Korea*These authors contributed equally to this work Abstract: Schisandrae fructus (SF has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 µg/mL of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 µg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged

  17. An estimation of uncertainties in containment P/T analysis using CONTEMPT/LT code

    International Nuclear Information System (INIS)

    Kang, Y.M.; Park, G.C.; Lee, U.C.; Kang, C.S.

    1991-01-01

    In a nuclear power plant, the containment design pressure and temperature (P/T) have been established based on the unrealistic conservatism with suffering from a drawback in the economics. Thus, it is necessary that the uncertainties of design P/T values have to be well defined through an extensive uncertainty analysis with plant-specific input data and or models used in the computer code. This study is to estimate plant-specific uncertainties of containment design P/T using the Monte Carlo method in Kori-3 reactor. Kori-3 plant parameters and Uchida heat transfer coefficient are selected to be treated statistically after the sensitivity study. The Monte Carlo analysis has performed based on the response surface method with the CONTEMPT/LT code and Latin Hypercube sampling technique. Finally, the design values based on 95 %/95 % probability are compared with worst estimated values to assess the design margin. (author)

  18. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  19. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to

  20. analysis and implementation of reactor protection system circuits - case study Egypt's 2 nd research reactor-

    International Nuclear Information System (INIS)

    Elnokity, O.E.M.

    2006-01-01

    this work presents a way to design and implement the trip unit of a reactor protection system (RPS) using a field programmable gate arrays (FPGA). instead of the traditional embedded microprocessor based interface design method, a proposed tailor made FPGA based circuit is built to substitute the trip unit (TU), which is used in Egypt's 2 nd research reactor ETRR-2. the existing embedded system is built around the STD32 field computer bus which is used in industrial and process control applications. it is modular, rugged, reliable, and easy-to-use and is able to support a large mix of I/O cards and to easily change its configuration in the future. therefore, the same bus is still used in the proposed design. the state machine of this bus is designed based around its timing diagrams and implemented in VHDL to interface the designed TU circuit

  1. Status and future prospects of extensive damage mitigation guidelines in Korea

    International Nuclear Information System (INIS)

    Lee, Sung Han; Kim, Han Chul; Kim, Tae Hyeong; Seul, Kwang Won

    2012-01-01

    Previous severe accidents such as TMI 2 and Chernobyl accidents occurred due to combinations of equipment failures and human errors. However, the Fukushima accident is the first severe accident caused by extreme natural hazards. The Fukushima accident indicated need for integration of accident management such as emergency operating procedures (EOPs), severe accident management guidelines (SAMGs), and extensive damage mitigation guidelines (EDMGs). Therefore, in order to mitigate the effect of simultaneous accidents at multiple units of a site due to extreme natural hazards such as earthquake, tsunami, flooding, the EDMGs in Korea are being evaluated in terms of its effectiveness in prevention and mitigation of a severe accident after the Fukushima accident. In the first step, the Generic EDMG will be developed by KHNP for Wolsong, Kori, Yonggwang, Ulchin, Shin Kori, Shin Wolsong sites by 2013 and then the Specific EDMG will be developed for six nuclear power plants that represent each type of reactors by 2015. The aim of this paper is to describe the EDMGs and also introduce the activities to improve effectiveness of EDMGs through efforts for reflecting lessons-learned from the Fukushima accident. Also, this paper provides the status of developing EDMGs in Korea

  2. General outline of the operation and utilization of the BR2 reactor

    International Nuclear Information System (INIS)

    Baugnet, J.M.; Leonard, F.; Gandolfo, J.M.; Lenders, H.

    1978-01-01

    The BR2 reactor is a high-flux material testing reactor of the thermal heterogeneous type. The fuel is 93% 235 U enriched uranium in the form of plates clad in aluminium. The moderator consists of beryllium and light water, the water being pressurized (12.5kg/cm 2 )and acting also as coolant. The pressure vessel is of aluminium, and is placed in a pool of demineralized water. One should stress the following main features of the design: the experimental channels are skew, the tube bundle presenting the form of a hyperboloid of revolution (see figure 1)-this gives easy access at the top and bottom reactor covers allowing complex instrumented devices, while maintaining a very high neutron flux at the core; great flexibilty of utilization, due to the fact that it is possible to adapt the core configuration to the experimental loading as the fissile charge can be centred on different experimental channels; although BR2 is a thermal reactor, it is possible to achieve neutron spectra very similar to those obtained in a fast reactor, either by the use of absorbing screens or by the use of fissile material within the experimental device; five 200mm diameter channels are available for loading large experimental irradiation devices, as in-pile sodium, gas or water loops. (author)

  3. Benchmark testing of CENDL-2 for U-fuel thermal reactors

    International Nuclear Information System (INIS)

    Zhang Baocheng; Liu Guisheng; Liu Ping

    1995-01-01

    Based on CENDL-2, NJOY-WIMS code system was used to generate 69-group constants, and do benchmark testing for TRX-1,2; BAPL-UO-2-1,2,3; ZEEP-1,2,3. All the results proved that CENDL-2 is reliable for thermal reactor calculations. (3 tabs.)

  4. Shadow corrosion testing in the INCA facility in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Nystrand, A.C.; Lassing, A.

    1999-01-01

    Shadow corrosion is a phenomenon which occurs when zirconium alloys are in contact with or in proximity to other metallic objects in a boiling water reactor environment (BWR, RBMK, SGHWR etc.). An enhanced corrosion occurs on the zirconium alloy with the appearance of a 'shadow' of the metallic object. The magnitude of the shadow corrosion can be significant, and is potentially limiting for the lifetime of certain zirconium alloy components in BWRs and other reactors with a similar water chemistry. In order to evaluate the suitability of the In-Core Autoclave (INCA) in the Studsvik R2 materials testing reactor as an experimental facility for studying shadow corrosion, a demonstration test has been performed. A number of test specimens consisting of Zircaloy-2 tubing in contact with Inconel were exposed in an oxidising water chemistry. Some of the specimens were placed within the reactor core and some above the core. The conclusion of this experiment after post irradiation examination is that it is possible to use the INCA facility in the Studsvik R2 reactor to develop a significant level of shadow corrosion after only 800 hours of irradiation. (author)

  5. Digital, remote control system for a 2-MW research reactor

    International Nuclear Information System (INIS)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs

  6. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  7. RHTF 2, a 1200 MWe high temperature reactor

    International Nuclear Information System (INIS)

    Brisbois, Jacques

    1978-01-01

    After having adapted to French conditions the 1160 MWe G.A.C. reactor, Commissariat a l'Energie Atomique and French Industry have decided to design an High Temperature Reactor 1200 MWe based on the G.A.C. technology and taking into account the point of view of Electricite de France and the experience of C.E.A. and industry on the gas cooled reactor technology. The main objective of this work is to produce a reactor design having a low technical risk, good operability, with an emphasis on the safety aspects easing the licensing problems

  8. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  9. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  10. Reactor building integrity testing: A novel approach at Gentilly 2 - principles and methodology

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1991-01-01

    In 1987, Hydro-Quebec embarked on an ambitious development program to provide the Gentilly 2 nuclear power station with an effective, yet practical reactor building Integrity Test. The Gentilly 2 Integrity Test employs an innovative approach based on the reference volume concept. It is identified as the Temperature Compensation Method (TCM) System. This configuration has been demonstrated at both high and low test pressure and has achieved extraordinary precision in the leak rate measurement. The Gentilly 2 design allows the Integrity Test to be performed at a nominal 3 kPa(g) test pressure during an (11) hour period with the reactor at full power. The reactor building Pressure Test by comparison, is typically performed at high pressure 124 kPa(g)) in a 7 day window during an annual outage. The Integrity Test was developed with the goal of demonstrating containment availability. Specifically it was purported to detect a leak or hole in the 'bottled-up' reactor building greater in magnitude than an equivalent pipe of 25 mm diameter. However it is considered feasible that the high precision of the Gentilly 2 TCM System Integrity Test and a stable reactor building leak characteristic will constitute sufficient grounds for the reduction of the Pressure Test frequency. It is noted that only the TCM System has, to this date, allowed a relevant determination of the reactor building leak rate at a nominal test pressure of 3 kPa(g). Classical method tests at low pressure have lead to inconclusive results due to the high lack of precision

  11. Maximum credible accident analysis for TR-2 reactor conceptual design

    International Nuclear Information System (INIS)

    Manopulo, E.

    1981-01-01

    A new reactor, TR-2, of 5 MW, designed in cooperation with CEN/GRENOBLE is under construction in the open pool of TR-1 reactor of 1 MW set up by AMF atomics at the Cekmece Nuclear Research and Training Center. In this report the fission product inventory and doses released after the maximum credible accident have been studied. The diffusion of the gaseous fission products to the environment and the potential radiation risks to the population have been evaluated

  12. UO{sub 2} and PuO{sub 2} utilization in high temperature engineering test reactor with helium coolant

    Energy Technology Data Exchange (ETDEWEB)

    Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra; Su’ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Aji, Indarta K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2016-03-11

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.

  13. The Chernobyl reactor accident. Pt. 1 and 2

    International Nuclear Information System (INIS)

    1986-06-01

    The report first summarizes the available information on the various incidents of the whole accident scenario, and combines the information to present a first general outline and a basis for appraisal. The most significant incidents reported, namely power excursion, core meltdown, and fire, are discussed with a view to the reactor design and safety of reactors installed in the FRG. The main differences and advantages of German reactor designs are shown, as e.g.: Power excursions are mastered by inherent physical conditions; far better redundancy of engineered safety systems; enclosure of the complete reactor cooling system in a pressure-retaining steel containment; reactor buildings being made of reinforced concrete. The second part of the report deals with the radiological effects to be expected for our country. Data are given on the varying radiological exposure of the different regions. The fate and uptake of radioactivity in the human body are discussed. The conclusion drawn from the data presented is that the individual exposure due to the reactor accident will remain within the variations and limits of natural radioactivity and effects. (orig./HP) [de

  14. Neutron Fluence Evaluation of Reactor Internal Structure Using 3D Transport Calculation Code, RAPTOR-M3G

    International Nuclear Information System (INIS)

    Maeng, YoungJae; Lim, MiJoung; Kim, KyungSik; Cho, YoungKi; Yoo, ChoonSung; Kim, ByoungChul

    2015-01-01

    Age-related degradation mechanisms are including the irradiation-assisted stress corrosion cracking(IASCC), void swelling, stress relaxation, fatigue, and etc. A lot of Baffle Former Bolts(BFBs) was installed at the former plate ends between baffle and barrel structure. These would undergo severe experiences, which are high temperature and pressure, bypass water flow and neutron exposure and have some radioactive limitation in inspecting their integrity. The objectives of this paper is to evaluate fast neutron fluence(n/cm 2 , E>1.0MeV) for PWR internals using 3D transport calculation code, RAPTOR-M3G, and to figure out a strategy to manage the effects of aging in PWR internals. One of age-related degradation mechanisms, IASCC, which is affected by fast neutron exposure rate, has been currently issued for PWR internals and has 2 x 10 21 (n/cm 2 ) of the threshold value by MRP-175. Because a lot of BFBs was installed around the internal components, closer inspections are required. As part of an aging management for Kori unit 2, 3D transport calculation code, RAPTOR-M3G, was applied for determining fast neutron fluence at baffle, barrel and former plates regions. As a result, the fast neutron fluence exceeds the screening or threshold values of IASCC in all of baffle, barrel and former plate region. And the most significant region is the baffle because it is located closest to the core. In addition, some regions including former plate tend to be more damaged because of less moderate ability than water. In conclusion, Ice's has been progressed for PWR internals of Kori unit 2. Several regions of internal components were damaged by fast neutron exposure and increase in size as time goes by

  15. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, Y.B.; Lee, W.Y.; Park, D.W.; Chung, B.G.

    1980-01-01

    For the KAERI site, various environmental samples were collected three times a month, and the natural environmental radiation levels were also measured at each sampling point. Measurements for gross alpha and beta radioactivities of the samples were routinely measured for all samples. Strontium-90 concentrations were also analysed for the fallout and air samples collected daily basis on the roof of the main building. Accumulated exposure including the possibility of determination of low level environmental radiation field by employing thermoluminescent dosimeter, CaSO 4 : Dsub(y)-0.4 teflon disc type, at 6 posts in on-site of the KAERI. As for Kori site, at 19 points of ON, OFF-site, and at the same time the environmental radiation exposure rate at each sampling point were measured. Several environmental samples such as surface soil, pine needles, water samples, milk sample and pasture samples were collected and analysed on a quarterly basis. As a result of the survey it can be said that no significant release of radiation to the environment due to the operations of nuclear facilities including research reactor at the KAERI and power reactor at the Kori has been found during the period of the survey and monitoring. (author)

  16. Synthesis of the IRSN report related to severe accidents and to the probabilistic level-2 safety study for the Flamanville EPR reactor. Referral of the Permanent Group of Experts for nuclear reactors (GPR), examination of probabilistic level-2 safety studies (EPS 2) and severe accidents (AG) of the Flamanville reactor nr 3. Opinion related to severe accidents and to the probabilistic level-2 safety study for the Flamanville EPR reactor (FA3). Electronuclear reactors - EDF - Flamanville 3 EPR reactor. Severe accidents and probabilistic level 2 studies

    International Nuclear Information System (INIS)

    2015-01-01

    This document gathers several documents. The first one recalls the main arrangements implemented on the FA3 EPR reactor regarding accidents with core fusion, reports the analysis made by the IRSN about the sizing of these arrangements to reach a controlled status of the installation after a severe accident, regarding the probabilistic level-2 safety assessment, regarding the radiological impact of a severe accident on the population and on the environment, regarding those aimed at facing a total and long duration loss of electric power sources and cold sources, and about the situation of the reactor with respect to WENRA positions on severe accidents for new reactors. The second document is a letter sent by the ASN to the Permanent Group of Experts for nuclear reactors (GPR) to address probabilistic level-2 safety studies (EPS2) and severe accidents for the Flamanville 3 reactor. The third one reports the opinion of the GPR on these both issues and proposes a set of recommendations. The next document is a letter sent by the ASN to the Flamanville 3 project manager at EDF which recalls the related objectives, the ASN opinion on the implemented arrangements for severe accidents (de-pressurization of the primary circuit, management of hydrogen-related risks, corium recovery and cooling outside the vessel, limitation of vapour explosion risks outside the vessel, heat evacuation system, containment enclosure, management of the risk of a return to criticality), to face a total and long duration loss of electricity sources and cold sources, and other aspects addressed in the IRSN analysis. Requests and remarks formulated by the ASN are provided in an appendix to this last document

  17. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  18. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  19. A Conceptual Study on a Supercritical CO_2-cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Yu, Hwanyeal; Hartanto, Donny; Kim, Yonghee

    2014-01-01

    A Micro Modular Reactor (MMR) using Supercritical-CO_2 (S-CO_2) as coolant has been investigated from the neutronics perspective. The MMR is designed to be transportable so it can reach the remote areas. The thermal power of the reactor is 36.2 M Wth. The size of the active core is limited to 1.2 m length and 93.16 cm width. The size of whole core is 2.8 m length and 166.9 cm width. The reactor lifetime design target is 20 years. To maximize the fuel volume fraction in the core, high density uranium nitride UN"1"5 was used. The PbO/MgO reflector was also utilized to improve the neutron economy. The S-CO_2 is chosen as the coolant because it offers a higher thermal efficiency. In this study, neutronics calculations and depletion using McCARD Monte Carlo code has been done to determine the lifetime and behavior of the core. Several important safety parameters such as Control Rod worth, Doppler reactivity coefficients and coolant void reactivity coefficient have also been analyzed. (author)

  20. Comparison of the N Reactor and Ignalina Unit No. 2 Level 1 Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Coles, G.A.; McKay, S.L.

    1995-06-01

    A multilateral team recently completed a full-scope Level 1 Probabilistic Safety Assessment (PSA) on the Ignalina Unit No. 2 reactor plant in Lithuania. This allows comparison of results to those of the PSA for the U.S. Department of Energy's (DOE) N Reactor. The N Reactor, although unique as a Western design, has similarities to Eastern European and Soviet graphite block reactors

  1. CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core

    International Nuclear Information System (INIS)

    Kotas, J.F.; Stroh, K.R.

    1983-01-01

    The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident that simulates a control-rod withdrawal at full power

  2. Proceedings of Conference on Variable-Resolution Modeling, Washington, DC, 5-6 May 1992

    Science.gov (United States)

    1992-05-01

    lag (MM Kim (S󈨘-M 881 received the B.S.IM1. and M.S.F.n degrees from Ptisan National t.’ni- veisnv. Korea , and kwmpook National Univer- sity. Koiea...position in the Department Electronics. National Fisheries University of Pusan. Pusan. Korea , research interests include artificial intelligence...with the data or the modeler/analyst/ gamer is forced to make up interactions such as fire allocation, detailed acquisition predictions, small unit

  3. Development of Zr-2.5Nb pressure tubes for Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Bickel, G.A.; Griffiths, M.; Douchant, A.; Douglas, S.; Woo, O.T.; Buyers, A.

    2010-01-01

    In an Advanced CANDU Reactor (ACR), pressure tubes of cold-worked Zr-2.5Nb materials will be used in the reactor core to contain the fuel bundles and the light water coolant. They will be subjected to higher temperature, pressure and flux than that in a CANDU reactor. In order to ensure that these tubes will perform acceptably over their 30-year design life in such an environment, a manufacturing process has been developed to produce 6.5 mm thick ACR pressure tubes with optimized chemical composition, improved mechanical properties and in-reactor behaviour. The test and examination results show that, when compared with current in-service pressure tubes, the mechanical properties of ACR pressure tubes are significantly improved. Based on previous experience with CANDU reactor pressure tubes an assessment of the grain structure and texture indicates that the in-reactor creep deformation will be improved also. Analysis of the distribution of texture parameters from a trial batch of 26 tubes shows that the variability is reduced relative to tubes fabricated in the past. This reduction in variability together with a shift to a coarser grain structure will result in a reduction in diametral creep design limits and thus a longer economic life for the fuel channels of the advanced CANDU reactor. (author)

  4. Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Kim, Min Gil; Bae, Seong Jun; Lee, Jeong Ik

    2013-01-01

    This paper suggests a complete modular reactor with an innovative concept of reactor cooling by using a supercritical carbon dioxide directly. Authors propose the supercritical CO 2 Brayton cycle (S-CO 2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the core and PCU in one vessel for the full modularization. This study suggests a conceptual design of small modular reactor including PCU which is named as KAIST Micro Modular Reactor (MMR). As a part of ongoing research of conceptual design of KAIST MMR, preliminary design of power generation cycle was performed in this study. Since the targets of MMR are full modularization of a reactor system with S-CO 2 coolant, authors selected a simple recuperated S-CO 2 Brayton cycle as a power conversion system for KAIST MMR. The size of components of the S-CO 2 cycle is much smaller than existing helium Brayton cycle and steam Rankine cycle, and whole power conversion system can be contained with core and safety system in one containment vessel. From the investigation of the power conversion cycle, recompressing recuperated cycle showed higher efficiency than the simple recuperated cycle. However the volume of heat exchanger for recompressing cycle is too large so more space will be occupied by heat exchanger in the recompressing cycle than the simple recuperated cycle. Thus, authors consider that the simple recuperated cycle is more suitable for MMR. More research for the KAIST MMR will be followed in the future and detailed information of reactor core and safety system will be developed down the road. More refined cycle layout and design of turbomachinery and heat exchanger will be performed in the future study

  5. Severe accident analysis for level 2 PSA of SMART reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Yong; Lee, Jeong Hun; Kim, Jong Uk; Yoo, Tae Geun; Chung, Soon Il; Kim, Min Gi [FNC Technology Co., Seoul (Korea, Republic of)

    2010-12-15

    The objectives of this study are to produce data for level 2 PSA and evaluation results of severe accident by analyzing severe accident sequence of transient events, producing fault tree of containment systems and evaluating direct containment heating of the SMART. In this project, severe accident analysis results were produced for general transient, loss of feedwater, station blackout, and steam line break events, and based on the results, design safety of SMART was verified. Also, direct containment heating phenomenon of the SMART was evaluated using TCE methodology. For level 2 PSA, fault tree of the containment isolation system, reactor cavity flooding system, plant chilled water system, and reactor containment building HVAC system was produced and analyzed

  6. Recent advances in the utilization and the irradiation technology of the refurbished BR2 reactor

    International Nuclear Information System (INIS)

    Dekeyser, J.; Benoit, P.; Decloedt, C.; Pouleur, Y.; Verwimp, A.; Weber, M.; Vankeerberghen, M.; Ponsard, B.

    1999-01-01

    Operation and utilization of the materials testing reactor BR2 at the Belgian Nuclear Research Centre (SCK·CEN) has since its start in 1963 always followed closely the needs and developments of nuclear technology. In particular, a multitude of irradiation experiments have been carried out for most types of nuclear power reactors, existing or under design. Since the early 1990s and increased focus was directed towards more specific irradiation testing needs for light water reactor fuels and materials, although other areas of utilization continued as well (e.g. fusion reactor materials, safety research, ...), including also the growing activities of radioisotope production and silicon doping. An important milestone was the decision in 1994 to implement a comprehensive refurbishment programme for the BR2 reactor and plant installations. The scope of this programme comprised very substantial studies and hardware interventions, which have been completed in early 1997 within planning and budget. Directly connected to this strategic decision for reactor refurbishment was the reinforcement of our efforts to requalify and upgrade the existing irradiation facilities and to develop advanced devices in BR2 to support emerging programs in the following fields: - LWR pressure vessel steel, - LWR irradiation assisted stress corrosion cracking (IASCC), - reliability and safety of high-burnup LWR fuel, - fusion reactor materials and blanket components, - fast neutron reactor fuels and actinide burning, - extension and diversification of radioisotope production. The paper highlights these advances in the areas of BR2 utilisation and the ongoing development activities for the required new generation of irradiations devices. (author)

  7. An improved thermal-hydraulic modeling of the Jules Horowitz Reactor using the CATHARE2 system code

    Energy Technology Data Exchange (ETDEWEB)

    Pegonen, R., E-mail: pegonen@kth.se [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Bourdon, S.; Gonnier, C. [CEA, DEN, DER, SRJH, CEA Cadarache, 13108 Saint-Paul-lez-Durance Cedex (France); Anglart, H. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2017-01-15

    Highlights: • An improved thermal-hydraulic modeling of the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during loss of flow accident. • The heat exchanger approach gives more realistic and less conservative results. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support current and future nuclear reactor designs. The reactor is under construction at the CEA Cadarache research center in southern France and is expected to achieve first criticality at the end of this decade. This paper presents an improved thermal-hydraulic modeling of the reactor using solely CATHARE2 system code. Up to now, the CATHARE2 code was simulating the full reactor with a simplified approach for the core and the boundary conditions were transferred into the three-dimensional FLICA4 core simulation. A new more realistic methodology is utilized to analyze the thermal-hydraulic simulation of the reactor during a loss of flow accident.

  8. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  9. Proceedings of 2. Yugoslav symposium on reactor physics, Part 2, Herceg Novi (Yugoslavia), 27-29 Sep 1966; 2. Jugoslovenski simpozijum iz reaktorske fizike, Deo 2, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-07-01

    This Volume 2 of the Proceedings of 2. Yugoslav symposium on reactor physics includes eight papers dealing with the following topics: method for measuring high anti reactivities of a reactor system; integration method for thermal reaction rate calculation; Determination of initial core configuration for BHWR-200 MWe; safety shutdowns and failures of the RA reactor equipment; determining the reactivity of absorption rods; measurements of thermal and fast neutron fluxes at the TRIGA reactor and other measurements during operation of the TRIGA reactor; mathematical modelling of the reactor safety; review of problems and methods for radiation risk assessment in the environment of a nuclear power plant.

  10. The estimated evacuation time for the emergency planning zone of the Kori nuclear site, with a focus on the precautionary action zone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Hee; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Shin, Won Ki; Song, Eun Young; Cho, Cheol Woo [Div. of Nuclear Safety, Busan Metropolitan City, Busan (Korea, Republic of)

    2016-09-15

    The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to 10 mSv·h-1 of radiation at the Exclusion Area Boundaries (EAB) boundary and 4-6 mSv·h-1 at the PAZ boundary. It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.

  11. The estimated evacuation time for the emergency planning zone of the Kori nuclear site, with a focus on the precautionary action zone

    International Nuclear Information System (INIS)

    Lee, Jang Hee; Jeong, Jae Jun; Shin, Won Ki; Song, Eun Young; Cho, Cheol Woo

    2016-01-01

    The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to 10 mSv·h-1 of radiation at the Exclusion Area Boundaries (EAB) boundary and 4-6 mSv·h-1 at the PAZ boundary. It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts

  12. Problems of nuclear reactor safety. Vol. 2

    International Nuclear Information System (INIS)

    Goncharov, L.A.

    1995-01-01

    Theses of proceedings of the 9 Topical Meeting on problems of nuclear power plant safety are presented. Reports include results of neutron-physical experiments carried out for reactor safety justification. Concepts of advanced reactors with improved safety are considered. Results of researches on fuel cycles are given too

  13. The Effect Of Beryllium Interaction With Fast Neutrons On the Reactivity Of ETRR-2 Research Reactor

    International Nuclear Information System (INIS)

    Aziz, M.; El Messiry, A.M.

    2000-01-01

    The effect of beryllium interactions with fast neutrons is studied for Etrr 2 research reactors. Isotope build up inside beryllium blocks is calculated under different irradiation times. a new model for the Etrr 2 research reactor is designed using MCNP code to calculate the reactivity and flux change of the reactor due to beryllium poison

  14. Reload safety evaluation of boron dilution accident related to shutdown margin proportional to boron concentration

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Lee, Ki Bog; Song, Jae Woong

    1993-06-01

    This report investigates the efficient safety evaluation method and analysis procedure on Boron Dilution Accident(BDA) under the proportional shutdown margin to boron concentration. Also investigated are problems caused by applying this shutdown margin limit. Through this investigation, the safety of Kori-3 Cycle-8, Yonggwang-2 Cycle-7, Kori-4 Cycle-8 and Yonggwang-1 Cycle-8 with respect to BDA is verified. In order to satisfy the shutdown margin requirement in the Technical Specifications, it is shown that the High Flux Alarm at Shutdown Setting for Kori-4 Cycle-8 and Yonggwang-1 Cycle-8 at Mode 5 should be set at 2 or the Technical Specification should be revised. (Author)

  15. Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2

    International Nuclear Information System (INIS)

    1978-05-01

    An assessment of the impact of utilizing the 233 U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, 233 U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization

  16. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  17. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  18. Utilization of the SLOWPOKE-2 research reactor

    International Nuclear Information System (INIS)

    Lalor, G.C.

    2001-01-01

    SLOWPOKEs are typically low power research reactors that have a limited number of applications. However, a significant range of NAA can be performed with such reactors. This paper describes a SLOWPOKE-based NAA program that is performing a valuable series of studies in Jamaica, including geological mapping and pollution assessment. (author)

  19. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  20. Measurements at the RA Reactor related to the VISA-2 project - Part 1, Start-up of the RA reactor and measurement of new RA reactor core parameters

    International Nuclear Information System (INIS)

    Markovic, H.

    1962-07-01

    The objective of the measurements was determining the neutron flux in the RA reactor core. Since the number of fuel channels is increased from 56 to 68 within the VISA-2 project, it was necessary to attain criticality of the RA reactor and measure the neutron flux properties. The 'program of RA reactor start-up' has been prepared separately and it is included in this report. Measurements were divided in two phases. First phase was measuring of the neutron flux after the criticality was achieved but at zero power. During phase two measurements were repeated at several power levels, at equilibrium xenon poisoning. This report includes experimental data of flux distributions and absolute values of the thermal and fast neutron flux in the RA reactor experimental channels and values of cadmium ratio for determining the neutron epithermal flux. Data related to calibration of regulatory rods for cold un poisoned core are included [sr

  1. Reactor limitation system improves the safety and availability of the Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Souza Mendes, J.E. de

    1987-01-01

    Beyond the classic Reactor Protection System and Reactor Control System, nuclear plant Angra 2 has a third system called Reactor Limitation System which combines the intelligence features of the control systems with the high reliability of the protection systems. In determined events, which are not controlled by the control system (e.g.: load rejection, failure of one main reactor coolant pump), the Reactor Limitation System actuates automatically in order to lead the plant to a safe operating condition and so it avoids the actuation of the Reactor Protection System and consequently the reactor trip. This increases safety and availability of the plant and reduces component stresses. After the safe operating condition is reached, the process guidance automatically returns to the control systems. (Author) [pt

  2. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  3. MULTI-LOOP CONTROL DESIGN IN MULTIVARIABLE (2X2 CONTINUOUS STIRRED TANK REACTOR

    Directory of Open Access Journals (Sweden)

    Abdul Wahid

    2015-06-01

    Full Text Available With this study, the design and tuning of multi-loop for multivariable (2x2 CSTR will be made in order to achieve optimum CSTR control performance. This study used Bequette model reactor and MATLAB software and is expected to be able to cope with disturbances in the reactor so that the reactor system is able to stabilize quickly despite the distractions. In this study, the design will be made using multi-loop approach, along with PI controller as the next step. Then, BLT and auto-tune tuning method will be used in PI controller and given disturbances to both of tuning method. The controller performances are then compared. Results of the study are then analyzed for discussions and conclusions. Results from this study have shown that in terms of disturbance rejection, BLT is better than auto-tune based on comparison between both of controller performances. For IAE for the case of temperature, BLT is 30% better than auto-tune, but it is almost the same for the case of concentration. For settling time for the case of concentration, BLT is 30% better than auto-tune, and for the case of temperature, BLT is 18% better than auto-tune. For rise time for the case of concentration and temperature, BLT is 30% better than auto-tune.

  4. Operating reactors licensing actions summary. Volume 5, No. 2

    International Nuclear Information System (INIS)

    1985-04-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the Operating Reactors Licensing Actions Program

  5. Tests of Neutron Spectrum Calculations with the Help of Foil Measurements in a D{sub 2}O and in an H{sub 2}O-Moderated Reactor and in Reactor Shields of Concrete an Iron

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R; Aalto, E

    1964-09-15

    Foil measurements covering the fast, epithermal and thermal neutron energy regions have been made in the centre of the Swedish D{sub 2}O-moderated reactor R1, in the pool reactor R2-0, and in different positions in reactor shields of iron, magnetite concrete and ordinary concrete. Neutron spectra have also been calculated for most of these positions, often with the help of a numerical integration of the Boltzmann equation. The measurements and the calculated spectra are presented.

  6. Microflow photochemistry: UVC-induced [2 + 2]-photoadditions to furanone in a microcapillary reactor

    Directory of Open Access Journals (Sweden)

    Sylvestre Bachollet

    2013-10-01

    Full Text Available [2 + 2]-Cycloadditions of cyclopentene and 2,3-dimethylbut-2-ene to furanone were investigated under continuous-flow conditions. Irradiations were conducted in a FEP-microcapillary module which was placed in a Rayonet chamber photoreactor equipped with low wattage UVC-lamps. Conversion rates and isolated yields were compared to analogue batch reactions in a quartz test tube. In all cases examined, the microcapillary reactor furnished faster conversions and improved product qualities.

  7. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  8. Thermal design of heat-exchangeable reactors using a dry-sorbent CO2 capture multi-step process

    International Nuclear Information System (INIS)

    Moon, Hokyu; Yoo, Hoanju; Seo, Hwimin; Park, Yong-Ki; Cho, Hyung Hee

    2015-01-01

    The present study proposes a multi-stage CO 2 capture process that incorporates heat-exchangeable fluidized-bed reactors. For continuous multi-stage heat exchange, three dry regenerable sorbents: K 2 CO 3 , MgO, and CaO, were used to create a three-stage temperature-dependent reaction chain for CO 2 capture, corresponding to low (50–150 °C), middle (350–650 °C), and high (750–900 °C) temperature stages, respectively. Heat from carbonation in the high and middle temperature stages was used for regeneration for the middle and low temperature stages. The feasibility of this process is depending on the heat-transfer performance of the heat-exchangeable fluidized bed reactors as the focus of this study. The three-stage CO 2 capture process for a 60 Nm 3 /h CO 2 flow rate required a reactor area of 0.129 and 0.130 m 2 for heat exchange between the mid-temperature carbonation and low-temperature regeneration stages and between the high-temperature carbonation and mid-temperature regeneration stages, respectively. The reactor diameter was selected to provide dense fluidization conditions for each bed with respect to the desired flow rate. The flow characteristics and energy balance of the reactors were confirmed using computational fluid dynamics and thermodynamic analysis, respectively. - Highlights: • CO 2 capture process is proposed using a multi-stage process. • Reactor design is conducted considering heat exchangeable scheme. • Reactor surface is designed by heat transfer characteristics of fluidized bed

  9. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  10. Core design calculations of IRIS reactor using modified CORD-2 code package

    International Nuclear Information System (INIS)

    Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.

    2002-01-01

    Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)

  11. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  13. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  14. BR2 reactor: medical and industrial applications

    International Nuclear Information System (INIS)

    Ponsard, B.

    2005-01-01

    The radioisotopes are produced for various applications in the nuclear medicine (diagnostic, therapy, palliation of metastatic bone pain), industry (radiography of welds, ...), agriculture (radiotracers, ...) and basic research. Due to the availability of high neutron fluxes (thermal neutron flux up to 10 15 n/cm 2 .s), the BR2 reactor is considered as a major facility through its contribution for a continuous supply of products such 99 Mo ( 99 mTc), 131 I, 133 Xe, 192 Ir, 186 Re, 153 Sm, 90 Y, 32 P, 188 W ( 188 Re), 203 Hg, 82 Br, 41 Ar, 125 I, 177 Lu, 89 Sr, 60 Co, 169 Yb, 147 Nd, and others. Neutron Transmutation Doped (NTD) silicon is produced for the semiconductor industry in the SIDONIE (Silicon Doping by Neutron Irradiation Experiment) facility, which is designed to continuously rotate and traverse the silicon through the neutron flux. These combined movements produce exceptional dopant homogeneity in batches of silicon measuring 4 and 5-inches in diameter by up to 750 mm in length. The main objectives of work performed were to provide a reliable and qualitative supply of radioisotopes and NTD-silicon to the customers in accordance with a quality system that has been certified to the requirements of the EN ISO 9001: 2000. This new Quality System Certificate has been obtained in November 2003 for the Production of radioisotopes for medical and industrial applications and the Production of Neutron Transmutation Doped (NTD) Silicon in the BR2 reactor

  15. Possible future roles for fast breeder reactors Part 1 and 2

    International Nuclear Information System (INIS)

    1978-06-01

    Part 1. The Fast Breeder Reactor (in particular in its sodium cooled version) has been steadily developed in the Community. This report attempts to quantify the advantages of this system in terms of fossil energy and uranium savings in the medium/long term as well as to examine some long term economic implications. The methodology of comparing scenarios, not individual reactor systems is followed. These scenarios have been chosen taking into account a range of assumptions concerning Community energy demand growth, fossil energy and uranium availability and technological capabilities. Part 2. The fast breeder reactor (FBR), particularly its sodium-cooled form (LMFBR) has been under development in the Community for many years. Industrial enterprises dedicated to its commercialisation have been formed and long range plans for its industrial utilisation are being formulated. The value of breeder reactors from the point of view of minimising Community fuel requirements has been discussed in Part I of this report (1). In Part II the consequences of delaying their introduction, and the demands placed upon the recycle industry by the introduction of fast reactors of different characteristics, using the Community electricity demand scenarios developed for Part I, are discussed. In addition comments are provided upon the effect of FBR introduction on the size of plutonium stocks

  16. A regression approach for Zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to Zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor Zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) When there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets. (2) Regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections. Multiple regression analysis performed on a set of carefully selected Zircaloy-2 in-reactor creep data leads to a model which provides excellent correlations for the data. (Auth.)

  17. Coolant radiolysis studies in the high temperature, fuelled U-2 loop in the NRU reactor

    International Nuclear Information System (INIS)

    Elliot, A.J.; Stuart, C.R.

    2008-06-01

    An understanding of the radiolysis-induced chemistry in the coolant water of nuclear reactors is an important key to the understanding of materials integrity issues in reactor coolant systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issue. In this respect, modelling the radiolysis chemistry has been successful enough to allow progress to be made. This report contains a description of the water radiolysis tests performed in the U-2 loop, NRU reactor in 1995, which measured the CHC under different physical conditions of the loop such as temperature, reactor power and steam quality. (author)

  18. Design and computational analysis of passive siphon breaker for 49-2 swimming pool reactor

    International Nuclear Information System (INIS)

    Yue Zhiting; Song Yunpeng; Liu Xingmin; Zou Yao; Wu Yuanyuan

    2014-01-01

    Based on safety considerations, a passive siphon breaker will be added to the primary cooling system of 49-2 Swimming Pool Reactor (SPR). With the breaker location determined, the capability of siphon breakers with diameters of 1.5 cm and 2.0 cm was calculated and analyzed respectively by RELAP5/MOD3.3 code. The results show that in the condition of large break loss of coolant accident these two sizes of siphon breakers are able to break the siphon phenomena, and maintain the pool water level above the reactor core when the reactor and the pump are shutdown. In the end, to be conservative, the siphon breaker with diameter of 2.0 cm is adopted. (authors)

  19. Evaluation on Cooling Performance of Containment Fan Cooler during Design Basis Accident with Loss of Offsite Power for Kori 3 and 4 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Bok; Lee, Sang Won [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Park, Young Chan [Atomic Creative Technology Co., LTD., Daejeon (Korea, Republic of)

    2007-10-15

    The purpose of this study is to evaluate cooling performance of containment fan cooler units and to review a technical background related to Generic Letter 96-06. In case that design basis accident (DBA) and loss of offsite power (LOOP) occurs, component cooling water (CCW) pumps cannot provide the cooling water source to fan cooler units while fan coolers coast down. Fan cooler units and CCW pumps are restarted by emergency diesel generator (EDG) operation and it takes about 30 seconds. In this scenario, before the EDG restarts and CCW flowrate is restored, heated air in the containment passes through coil of fan cooler units without cooling water source. In this situation, the boiling of water in the fan cooler units may occur. Restarting of CCW pumps may bring about condensation by injected cooling water and water hammer may occur. This thermal-hydraulic effect is sensitive to system configuration, i.e system pressure, containment pressure/temperature, EDG restarting time, etc. In this study, the evaluation of containment fan cooler units was performed for Kori 3 and 4 nuclear power plant.

  20. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    Science.gov (United States)

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Direct In Situ Quantification of HO2 from a Flow Reactor.

    Science.gov (United States)

    Brumfield, Brian; Sun, Wenting; Ju, Yiguang; Wysocki, Gerard

    2013-03-21

    The first direct in situ measurements of hydroperoxyl radical (HO2) at atmospheric pressure from the exit of a laminar flow reactor have been carried out using mid-infrared Faraday rotation spectroscopy. HO2 was generated by oxidation of dimethyl ether, a potential renewable biofuel with a simple molecular structure but rich low-temperature oxidation chemistry. On the basis of the results of nonlinear fitting of the experimental data to a theoretical spectroscopic model, the technique offers an estimated sensitivity of reactor exit temperature range of 398-673 K. Accurate in situ measurement of this species will aid in quantitative modeling of low-temperature and high-pressure combustion kinetics.

  2. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  3. Status and perspective of development of cold moderators at the IBR-2 reactor

    International Nuclear Information System (INIS)

    Kulikov, S; Shabalin, E

    2012-01-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams nos. 7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams nos. 2-3 and for beams nos. 1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (∼3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  4. Status and perspective of development of cold moderators at the IBR-2 reactor

    Science.gov (United States)

    Kulikov, S.; Shabalin, E.

    2012-03-01

    The modernized IBR-2M reactor will start its operation with three water grooved moderators in 2011. Afterwards, they will be exchanged by a new complex of moderators. The complex consists of three so-called kombi-moderators, each of them containing a pre-moderator, a cold moderator, grooved ambient water moderators and post-moderators. They are mounted onto three moveable trolleys that serve to deliver and install moderators near the reactor core. The project is divided in three stages. In 2012 the first stage of development of complex of moderators will be finished. The water grooved moderator will be replaced with the new kombi-moderator for beams #7, 8, 10, 11. Main parameters of moderators for this direction will be studied then. The next stages will be done for beams #2-3 and for beams #1, 9, 4-6, consequently. Cold moderator chambers at the modernized IBR-2 reactor are filled with thousands of beads (~3.5 - 4 mm in diameter) of moderating material. The cold helium gas flow delivers beads from the charging device to the moderator during the fulfillment process and cools down them during the reactor cycle. The mixture of aromatic hydrocarbons (mesithylen and m-xylen) has been chosen as moderating material. The explanation of the choice of material for novel cold neutron moderators, configuration of moderator complex for the modernized IBR-2 reactor and the main results of optimization of moderator complex for the third stage of moderator development are discussed in the article.

  5. A study on the status of installation and utilization of magnetic resonance imaging in Korea

    International Nuclear Information System (INIS)

    Kim, Kyoung Bae; Lee, Man Jae

    1992-01-01

    Magnetic Resonance Imaging(MRI) is one of the most expensive and sophisticated diagnostic tool and has been hailed as the most exciting event in medical imaging 'since the introduction of X-rays', but a major disadvantage, high cost, is coming into focus especially in our country. To determine the status of distribution of MR imagers in Korea and to serve as a basic material for an efficient utilization of this imaging machine, a retrospective survey of nationwide and regional(3 hospitals in Pusan) installations was performed. The results were as follows: 1. As of April 30, 1991, a total of 33 MRI units(24 for superconducting, 6 for permanent and 3 for resistive units) were set up and operated. 91 % of the units were distributed in big cities with no one installation in 7 provinces among 12 provinces in our country. 85% of the units were imported. 2. Although 42.4% of the units were operated in Seoul, Taejeon had the best condition for the distribution of this imaging machine per population, hospital, and bed in Korea. 3. In Pusan: a) 5 units were operated with all superconducting magnet and medium magnetic field in type of machine. b) 80.1 % of the examinations were central nervous system (CNS). c) MRI examination occupied 1.4% of all radiographic examinations and the patients referred from other hospitals were composed of 23.4% of all patients. 4. The average days under operating of MRI unit a week in Pusan were higher(5.5) than that of Seoul(4.5), but the average number of examinations and hours a week and a day, respectively(33, 8.4), was less than that of Seoul(57, 12.9). 5. The patients with positive MRI findings in a hospital(B) in Pusan was 74.5 % on an average

  6. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  7. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.

  8. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  9. Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes

    International Nuclear Information System (INIS)

    Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.

    2003-01-01

    The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power

  10. Further study on parameterization of reactor NAA: Pt. 2

    International Nuclear Information System (INIS)

    Tian Weizhi; Zhang Shuxin

    1989-01-01

    In the last paper, Ik 0 method was proposed for fission interference corrections. Another important kind of interferences in reator NAA is due to threshold reaction induced by reactor fast neutrons. In view of the increasing importance of this kind of interferences, and difficulties encountered in using the relative comparison method, a parameterized method has been introduced. Typical channels in heavy water reflector and No.2 horizontal channel of Heavy Water Research Reactor in the Insitute of Atomic Energy have been shown to have fast neutron energy distributions (E>4 MeV) close to primary fission neutron spectrum, by using multi-threshold detectors. On this basis, Ti foil is used as an 'instant fast neutron flux monitor' in parameterized corrections for threshold reaction interferences in the long irradiations. Constant values of φ f /φ s = 0.70 ± 0.02% have been obtained for No.2 rabbit channel. This value can be directly used for threshold reaction inference correction in the short irradiations

  11. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A; Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  12. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  13. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy; Charit, Indrajit; Manera, Annalisa; Downar, Thomas; Lee, John; Muldrow, Lycurgus; Upadhyaya, Belle; Hines, Wesley; Haghighat, Alierza

    2017-01-01

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project ''Integral Inherently Safe Light Water Reactors (I 2 S-LWR)''. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  14. Continuous backfitting measures for the FRG-1 and FRG-2 research reactors

    International Nuclear Information System (INIS)

    Blom, K.H.; Falck, K.; Krull, W.

    1990-01-01

    The GKSS-Research Centre Geesthacht GmbH has been operating the research reactors FRG-1 and FRG-2 with power levels of 5 MW and 15 MW for 31 and 26 years respectively. Safe operation at full power levels over so many years with an average utilization between 180 d to 250 d per year is possible only with great efforts in modernization and upgrading of the research reactors. Emphasis has been placed on backfitting since around 1975. At that time within the Federal Republic of Germany many new guidelines, rules, ordinances, and standards in the field of (power) reactor safety were published. Much work has been done on the modernization of the FRG-1 and FRG-2 research reactors therefore within the last ten years. Work done within the last two years and presently underway includes: measures against water leakage through the concrete and along the beam tubes; repair of both cooling towers; modernization of the ventilation system; measures for fire protection; activities in water chemistry and water quality; installation of a double tubing for parts of the primary piping of the FRG-1; replacement of instrumentation, process control systems (operation and monitoring system) and alarm system; renewal of the emergency power supply; installation of internal lightning protection; installation of a cold neutron source; enrichment reduction for FRG-1. These efforts will continue to allow safe operation of our research reactors over their whole operational life

  15. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    Science.gov (United States)

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  16. Exxon nuclear neutronics design methods for pressurized water reactors. Supplement 2

    International Nuclear Information System (INIS)

    Skogen, F.B.; Stout, R.B.

    1977-01-01

    Modifications to the Exxon Nuclear PWR neutronic design calculational methods are presented as well as the results obtained when these improved methods are compared to reactor measurements. The basic PWR design tools remain unchanged; i.e., the XPOSE code is used for generating the basic nuclear parameters, the PDQ-7 code is used for calculating reactivity and x-y power distributions, and the XTG code is used for three-dimensional analysis. The recent start-up experiences at D. C. Cook Unit 1 and H. B. Robinson Unit 2 have provided a significant increase in the data base supporting the current ENC PWR neutronic methods. The verification comparisons contained in the supplement include reactor measurements from D. C. Cook Unit 1, Cycle 2; H. B. Robinson Unit 2, Cycles 4 and 5; Palisades Cycle 2, and R. E. Ginna, Cycle 7

  17. Characterization of fuel distribution in the Three Mile Island Unit 2 (TMI-2) reactor system by neutron and gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McNeece, J.P.; Kaiser, B.J.; McElroy, W.N.

    1984-01-01

    Neutron and gamma-ray dosimetry are being used for nondestructive assessment of the fuel distribution throughout the Three Mile Island Unit 2 (TMI-2) reactor core region and primary cooling system. The fuel content of TMI-2 makeup and purification Demineralizer A has been quantified with Si(Li) continuous gamma-ray spectrometry and solid-state track recorder (SSTR) neutron dosimetry. For fuel distribution characterization in the core region, results from SSTR neutron dosimetry exposures in the TMI-2 reactor cavity are presented. These SSTR results are consistent with the presence of a significant amount of fuel debris, equivalent to several fuel assemblies or more, lying at the bottom of the reactor vessel. (Auth.)

  18. Estimation of power feedback parameters of the IBR-2M reactor by square wave reactivity

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Popov, A.K.; Sumkhuu, D.

    2016-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) are estimated based on the analysis of power transients caused by deliberate square wave reactivity when the pulsed reactor operates in the self-regulation mode. The PFB of the IBR-2M is described by three linear first-order differential equations. Two components of the PFB are responsible for the negative feedback and one, for the positive. The overall feedback is negative, i.e., it has a stabilizing effect for the operation of the reactor. The slowest negative component of the PFB is probably caused by heating of the fuel. Periodically repeated in the process of exploitation, estimation of the PFB parameters is one of the methods to ensure safety operation of the reactor. [ru

  19. Proceedings of 2. Yugoslav symposium on reactor physics, Part 3, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 3 of the Proceedings of 2. Yugoslav symposium on reactor physics includes three papers describing the following: model for spatial synthesis of automated control system of the GCR type reactor; model for analysis of hydrodynamic processes at the BHWR type reactors; mathematical model for safety analysis of heavy water power reactor

  20. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  1. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  2. Report on the operation in 1973 of the FR 2 research reactor

    International Nuclear Information System (INIS)

    Moeller, I.; Steiger, W.

    1975-04-01

    Also in 1973, the heavy-water moderated research and testing reactor FR 2 was operated to schedule at 44 MW nominal power. Again, the availability of the plant was slightly improved. Experimental utilization through instrumented irradiation capsules strongly increased as compared to the previous year. Up to 16 capsule test rigs at a time were inserted in the reactor. As to the beam tube experiments, up to 13 experiments covering a total of 18 test rigs were conducted simultaneously at the 12 reasonably usable beam holes. At the beginning of the year all of the positions available were occupied by 5 loop experiments. Isotope production reached its highest value with a total of 2,372 irradiated capsules (1.3% more than the year before). Some remarkable figures characterized the year 1973: On August 16, 1973 ten years of full power operation at a nominal power of 12 and 44 MW, respectively, had been reached. On July 24, 1973 the 50,000th isotope irradiation was performed in the reactor and on December 26, 1973 a total energy release of 100,000 MWd was recorded. Moreover, the 125,000th visitor of the reactor was welcomed on December 6, 1973. (orig./UA) [de

  3. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor building decontamination. Summary status report. Volume 2

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information relating to decontamination of the Three Mile Island Unit 2 (TMI-2) reactor building. The report covers activities for the period of June 1, 1979 through March 29, 1985. The data collected from activity reports, reactor containment entry records, and other sources were entered into a computerized data system which permits extraction/manipulation of specific information which can be used in planning for recovery from an accident similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during decontamination of the reactor building. Support activities conducted outside of radiation areas are excluded from the scope of this report. Computerized reports included in this document are: a chronological summary listing work performed relating to reactor building decontamination for the period specified; and summary reports for each major task during the period. Each task summary is listed in chronological order for zone entry and subtotaled for the number of personnel entries, exposures, and man-hours. Manually-assembled table summaries are included for: labor and exposures by department and labor and exposures by major activity

  4. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, D.; Adams, J. W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation.

  5. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    International Nuclear Information System (INIS)

    Dougherty, D.; Adams, J.W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation

  6. HERESY, 2-D Few-Group Static Eigenvalues Calculation for Thermal Reactor

    International Nuclear Information System (INIS)

    Finch, D.R.

    1965-01-01

    1 - Description of problem or function: HERESY3 solves the two- dimensional, few-group, static reactor eigenvalue problem using the heterogeneous (source-sink or Feinburg-Galanin) formalism. The solution yields the reactor k-effective and absorption reaction rates for each rod normalized to the most absorptive rod in the thermal level. Epithermal fissions are allowed at each resonance level, and lattice-averaged values of thermal utilization, resonance escape probability, thermal and resonance eta values, and the fast fission factor are calculated. Kernels in the calculation are based on age-diffusion theory. Both finite reactor lattices and infinitely repeating reactor super-cells may be calculated. Rod parameters may be calculated by several internal options, and a direct interface is provided to a HAMMER system (NESC Abstract 277) lattice library tape to obtain cell parameters. Criticality searches are provided on thermal utilization, thermal eta, and axial leakage buckling. 2 - Method of solution: Direct power iteration on matrix form of the heterogeneous critical equation is used. 3 - Restrictions on the complexity of the problem: Maxima of - 50 flux/geometry symmetry positions; 20 physically different assemblies; 9 resonance levels; 5000 rod coordinate positions

  7. G2 and G3 reactors design; Description des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Herreng,; Ertaud,; Pasquet, [Societe Alsacienne de Constructions Mecaniques (France)

    1958-07-01

    'FRANCE ATOME' Manufacturers Party has been entrusted with the G2 and G3 reactors engineering by the french A.E.C., for the first-five-year french project. Although these reactors are essentially plutonium generators, everyone has been linked with a power station which is supposed to supply with 40 MW, 'Electricite de France' has taken the liability upon itself. The reactor core includes most of G1 reactor parts (central gap excluded): horizontal channels, graphite parallelepipedic bricks stacking, steel thermal shield. The cooling is provided with CO{sub 2} under a 15 atmospheres pressure. This pressure is kept steady in a press-stressed concrete packing-case which is a cylinder horizontally shaped. Steel strips tightened encircle the concrete cylinder; itself protected by sole-plates. The cylinder bottom has brought about unusual problems which have been solved by the choice of an hemispheric shape. Packing-case tightness is provided by a 30 mm iron-plate connected with the inner wall of concrete. One of the reactor's special characteristics is the possibility of loading and unloading while operating. On loading side, barrel locks, each weighting 50 tons, allow new cans, at a pressure of 15 atmospheres, to pass. The cans process almost in a steady way through the channel, and finally drop down through bent spouts, then through spiral toboggans into a new lock. The cooling CO{sub 2} flow is provided with 3 turbo-bellows, these are actuated by average pressure-steam, obtained from exchangers. Every reactor supplies 4 exchangers which have been very difficult to build and to set up. The secondary cycle is standard and contains 3 stages (pressure 10,3: 2 and 0,5 kg/cm{sup 2}). Steam can be condensed in the event of a group turbo-generator stopping, with no modifion for the normal operating conditions of the reactor. Auxiliary circuits have to assure the continuous purifying of cooling CO{sub 2}, its storage and drain. 49 boron carbide rods are used to control the

  8. Investigation of hydrogen-burn damage in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Eidem, G.R.

    1982-06-01

    About 10 hours after the March 28, 1979 Loss-of-Coolant Accident began at Three Mile Island Unit 2, a hydrogen deflagration of undetermined extent occurred inside the reactor building. Examinations of photographic evidence, available from the first fifteen entries into the reactor building, yielded preliminary data on the possible extent and range of hydrogen burn damage. These data, although sparse, contributed to development of a possible damage path and to an estimate of the extent of damage to susceptible reactor building items. Further information gathered from analysis of additional photographs and samples can provide the means for estimating hydrogen source and production rate data crucial to developing a complete understanding of the TMI-2 hydrogen deflagration. 34 figures

  9. A review of the probabilistic safety assessment application to the TR-2 research reactor

    International Nuclear Information System (INIS)

    Goektepe, G.; Adalioglu, U.; Anac, H.; Sevdik, B.; Menteseoglu, S.

    2001-01-01

    A review of the Probabilistic Safety Assessment (PSA) to the TR-2 Research Reactor is presented. The level 1 PSA application involved: selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development, dependent failure analysis. Each of the steps of the analysis given above is reviewed briefly with highlights from the selected results. PSA application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. Insights gained from the application of PSA methodology to the TR-2 research reactor led to a significant safety review of the system

  10. Solid-state track recorder neutron dosimetry in the Three-Mile Island Unit-2 reactor cavity

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McElroy, W.N.

    1985-04-01

    Solid-state track recorder (SSTR) neutron dosimetry has been conducted in the Three-Mile Island Unit (TMI-2) reactor cavity (i.e., the annular gap between the pressure vessel and the biological shield) for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence of a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that there are at least 2 tonnes of fuel, which is roughly 4 fuel assemblies, at the bottom of the vessel. The existence of significant neutron streaming also explains the high count rate observed with the source range monitors (SRMs) that are located in the TMI-2 reactor cavity

  11. Prilog ispitivanju korištenja instrumentarija različitih tehničkih izvedbi pri uspostavljanju nivelmanskih mreža posebnih namjena u inženjerskoj geodeziji : Contribution on study possibilities in using instruments of different technical performances in establishing special purposes leveling networks in engineering geodesy

    OpenAIRE

    Nihad Kapetanović; Jusuf Topoljak; Admir Mulahusić; Ramiz Selmani

    2015-01-01

    Ispitivanje mogućnosti korištenja geodetskih instrumenata sličnih tehničkih karakteristika, ali različitih tehničkih izvedbi je uvijek zanimljiva geodetska tema. Osnovna svrha ovog istraživanja je analiziranje tačnosti testne nivelmanske mreže, unutar koje su visinske razlike izmjerene nivelirima Koni 007CZJ i Leica DNA 03. Rezultati dobiveni na kraju istraživanja pokazali su da oba nivelira zadovoljavaju kriterije preciznog nivelmana, ali se prednost daje niveliru DNA 03. : Examination of po...

  12. Neutron dosimetry in the Three-Mile Island Unit 2 reactor cavity with solid-state track recorders

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McElroy, W.N.; Rao, S.V.; Greenborg, J.; Fricke, V.R.

    1986-01-01

    Solid-state track recorder (SSTR) neutron dosimetry has been conducted in the Three-Mile Island Unit 2 (TMI-2) reactor cavity, for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence of a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that at least 2 tonnes of fuel, which is roughly 4 fuel assemblies, is lying at the bottom of the vessel. This existence of significant neutron streaming also explains the high count rate observed with the source range monitors that are located in the TMI-2 reactor cavity. (author)

  13. Degradation of gas-phase trichloroethylene over thin-film TiO2 photocatalyst in multi-modules reactor

    International Nuclear Information System (INIS)

    Kim, Sang Bum; Lee, Jun Yub; Kim, Gyung Soo; Hong, Sung Chang

    2009-01-01

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO 2 . A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  14. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  15. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  17. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele

    2014-01-01

    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  18. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  19. Liquid radioactive waste processing system in Improved OPR-1000

    International Nuclear Information System (INIS)

    Lee, Soonmin; Kim, Kiljung; Park, Jungsu

    2008-01-01

    The design goal of liquid rad waste system is to minimize the release of radioactive materials to the environment, the occupational radiation exposure to workers, and the solid rad waste volume generated from LRS operation. In 1998, KOPEC in conjunction with KHNP (Korea Hydro and Nuclear Power Co.) started a special task study which had been focused on the worldwide advanced technologies in the liquid rad waste process area by considering the design goals above. As a result of this task, KOPEC and KHNP finally decided to adopt a reverse osmosis processing method for Improved OPR-1000 in Korea. The advanced LRS design incorporating the R/O process has been introduced into Shin-Wolsong 1 and 2 (SWN 1 and 2) as well as Shin-Kori 1 and 2 (SKN 1 and 2), which are recently under construction, and also is adopted for Shin-Kori 3 and 4 (SKN 3 and 4) and Shin-Ulchin 1 and 2 (SUN 1 and 2), which are planned for the near future construction as the first APR-1400 type of Korean reactors. The LRS shop performance test for SKN 1 and 2 (Improved OPR-1000 R/O package system) was conducted by DOOSAN and DTS (Diversified Technologies Services, Inc) in January, 2008. The purpose of the test was to demonstrate the performance of actual R/O system to be installed in SKN 1 and 2 site. In this paper, overall system configuration and the shop performance test result is presented based on Improved OPR-1000 LRS R/O Package system

  20. Neutron dosimetry in the Three-Mile Island Unit 2 reactor cavity with solid-state track recorders

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.; Preston, C.C.; McElroy, W.N.; Rao, S.V.; Greenborg, J.; Fricke, V.R.

    1985-01-01

    Solid-state track recorder (SSTR) neutron dosimetry has been conducted in the Three-Mile Island Unit 2 (TMI-2) reactor cavity (i.e., the annular gap between the pressure vessel and the biological shield) for nondestructive assessment of the fuel distribution. Two axial stringers were deployed in the annular gap with 17 SSTR dosimeters located on each stringer. SSTR experimental results reveal that neutron streaming, upward from the bottom of the reactor cavity region, dominates the observed neutron intensity. These absolute thermal neutron flux observations are consistent with the presence of a significant amount of fuel debris lying at the bottom of the reactor vessel. A conservative lower bound estimated from these SSTR data implies that at least 2 tonnes of fuel, which is roughly 4 fuel assemblies, is lying at the bottom of the vessel. The existence of significant neutron streaming also explains the high count rate observed with the source range monitors (SRMs) that are located in the TMI-2 reactor cavity

  1. A Conceptual Study of a Supercritical CO2-Cooled Micro Modular Reactor

    Directory of Open Access Journals (Sweden)

    Hwanyeal Yu

    2015-12-01

    Full Text Available A neutronics conceptual study of a supercritical CO2-cooled micro modular reactor (MMR has been performed in this work. The suggested MMR is an extremely compact and truck-transportable nuclear reactor. The thermal power of the MMR is 36.2 MWth and it is designed to have a 20-year lifetime without refueling. A salient feature of the MMR is that all the components including the generator are integrated in a small reactor vessel. For a minimal volume and long lifetime of the MMR core, a fast neutron spectrum is utilized in this work. To enhance neutron economy and maximize the fuel volume fraction in the core, a high-density uranium mono-nitride U15N fuel is used in the fast-spectrum MMR. Unlike the conventional supercritical CO2-cooled fast reactors, a replaceable fixed absorber (RFA is introduced in a unique way to minimize the excess reactivity and the power peaking factor of the core. For a compact core design, the drum-type control absorber is adopted as the primary reactivity control mechanism. In this study, the neutronics analyses and depletions have been performed by using the continuous energy Monte Carlo Serpent code with the evaluated nuclear data file ENDF/B-VII.1 Library. The MMR core is characterized in view of several important safety parameters such as control system worth, fuel temperature coefficient (FTC and coolant void reactivity (CVR, etc. In addition, a preliminary thermal-hydraulic analysis has also been performed for the hottest channel of the Korea Advanced Institute of Science and Technology (KAIST MMR.

  2. Analysis of key hardware factors and countermeasure for restricting 49-2 swimming pool reactor lifetime

    International Nuclear Information System (INIS)

    Zhang Yadong; Guo Yue; Yang Xiao; Wang Yiwei; Wang Zhanwen

    2013-01-01

    Safe operation is the most important factor to determine the lifetime of aged 49-2 swimming pool reactor. In this paper, the hardware factors of lifetime were analyzed, such as the pool concrete aging, corrosion of aluminum container and primary coolant system, and graphite swelling etc., and then the corresponding measures such as surveillance, prevention and maintenance were purposed. The results show that 49-2 swimming pool reactor can continue to operate safely due to that container is safe under 8 degree earthquake, the reactor is safe on flood level of once per millennium, adding dam break, and the ageing condition of primary coolant system and container is acceptable. (authors)

  3. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    additional consideration should be required in nuclear design and fuel treating facilities due to reactivity coefficient being shifted to the plus side, larger neutron yield and increased heat source caused by MA loading. (2) Confirmation of TRU burning reactor core concepts. The core specification of sodium cooled-nitride fueled TRU burning large reactor was designed based on commercial type fast reactor (sodium cooled nitride fueled large fast reactor, 38000 MWt) which was designed in the feasibility studies on commercialized fast reactor cycle system. The composition of MAs from LWR's spent fuel was supposed. MA content in the core fuel is settled to 60 wt% based on the JAERI's design in order to maximize the MA transmutation amount. We need to exchange 25% of core fuel with zirconium hydride (ZrH 1.6 ) to attain Doppler coefficient being equivalent to that of the conventional type commercial fast reactor loaded 5 wt% MA. Furthermore, this reactor could transmute MAs produced in forty-eight sodium cooled nitride fueled large fast reactors generating the same output. In order to investigate the dependency of MA transmutation characteristics on the reactor output, 1200 MWt TRU burning middle or small reactor core concept was designed. This core was settled by reducing the number of core fuel assemblies from that of TRU burning large reactor designed above. MA transmutation rate in this core is smaller than that in the TRU burning large reactor core because the neutron flux of this core becomes smaller than that of the TRU burning large reactor core due to the higher Pu enrichment. (3) Comparison between TRU burning reactor and conventional type commercial fast reactor. MA transmutation and nuclear characteristics of the sodium cooled nitride fuel commercial type fast reactor loaded 5 wt%MA were evaluated and compared with those of TRU burning large reactor designed in (2). The commercial type fast reactor could only transmute MAs produced in seven sodium cooled nitride

  4. Properties of an irradiated heat-treated Zr-2.5Nb pressure tube removed from the NPD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chow, C.K. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Coleman, C.E. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Koike, M.H. [Power Reactor and Nuclear Fuel Development Corp., O-Arai Engineering Centre, O-Arai (Japan); Causey, A.R.; Ells, C.E.; Hosbons, R.R.; Sagat, S.; Urbanic, V.F.; Rodgers, D.K

    1997-07-01

    Some pressure tubes in reactors moderated by heavy water have been made from heat-treated (HT) Zr-2.5Nb. One such tube was removed from the NPD nuclear reactor after 20 years of operation. An extensive program was carried out jointly by AECL and PNC to evaluate the condition and properties of this pressure tube. The investigations include irradiation creep, tensile, corrosion, delayed hydride cracking (DHC), fatigue, and fracture properties. Results show that: (I) the in-reactor elongation rate is much lower and the transverse strain rates are slightly larger than in cold-worked (CW) Zr-2.5Nb tubes; (2) the tensile properties, hydrogen pickup, threshold stress intensity factor for DHC initiation, DHC velocity, and fatigue crack growth rates were similar to those of the CW Zr-2.5Nb material; (3) the fracture toughness of this tube, as measured by curved compact toughness specimens and burst tests, is slightly higher than the CW tubes. The results were also compared with other heat-treated Zr-2.5Nb materials irradiated in the Fugen reactor. The tube was in excellent condition when removed from the reactor and would have been satisfactory for further service. (author)

  5. On-line reactor building integrity testing at Gentilly-2 (summary of results 1987-1994)

    International Nuclear Information System (INIS)

    Collins, N.; Lafreniere, P.

    1994-01-01

    In 1987, Hydro-0uebec embarked on an ambitious development program to provide the Gentilly-2 Nuclear Power Station with an effective and practical Reactor Building Containment integrity Test (CIT). In October 1992, the inaugural low pressure (3 kPa(g) nominal) CIT at 100% F.P was performed. The test was conclusive and the CIT was declared In-Service for containment integrity verification on-line. Five subsequent CITs performed in 1993 and 1994 have demonstrated the expected leak rate results and good reliability. The outstanding feature of the CITs is the demonstrated accurary of better than 5% of the measured leak rate. The CIT was developed with the primary goal of demonstrating 'overall' containment availability. Specifically it was designed to detect a 25 mm. diameter leak or hole in the Reactor Building. However, the remarkable CIT accuracy allows reliable detection of a 2 mm. hole. The Gentilly-2 CIT is an innovative approach based on the Temperature Compensation Method (TCM) which uses a reference volume composed of an extensive tubular network of several different diameters. This eliminates the need to track numerous temperature points. A second independent tubular network includes numerous humidity sampling points, thereby enabling the mearurernent of minute pressure variations inside the Reactor Building, independant of the spatial and temporal humidity behaviour. This Gentilly-2 TOM System has been demonstrated to work at both high and low test pressures. The GentiIly-2 design allows the CIT to be performed at a nominal 3 kPa(g) test pressure during a 12-hour period (28 hours total with alignment time) with the reactor at full power. The traditional Reactor Building Pressure Test (RBPT) is typically performed at high pressure (124 kPa(g) in a 5-day critical path window (7 days total with alignment time) during an annual shutdown

  6. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  7. VENUS-2, Reactor Kinetics with Feedback, 2-D LMFBR Disassembly Excursions

    International Nuclear Information System (INIS)

    Jackson, J.F.; Nicholson, R.B.; Weber, D.P.

    1980-01-01

    1 - Description of problem or function: VENUS-2 is an improved edition of the VENUS fast-reactor disassembly program. It is a two- dimensional (r-z) coupled neutronics-hydrodynamics code that calculates the dynamic behavior of an LMFBR during a prompt-critical disassembly excursion. It calculates the power history and fission energy release as well as the space-time histories of the fuel temperatures, core material pressures, and core material motions. Reactivity feedback effects due to Doppler broadening and reactor material motion are taken into account. 2 - Method of solution: The power and energy release are calculated using a point-kinetics formulation with up to six delayed neutron groups. The reactivity is a combination of an input driving function and feedback effects due to Doppler broadening and material motion. An adiabatic model is used to calculate the temperature increase throughout the reactor based on an initial temperature distribution and power profile provided as input data. These temperatures are, in turn, converted to fuel pressures through one of several equation of state options provided. The material motion that results from the pressure buildup is calculated by a direct finite difference solution of a set of two-dimensional (r-z) hydrodynamics equations. This is done in Lagrangian coordinates. The reactivity change associated with this motion is calculated by first-order perturbation theory. The displacements are also used to adjust the fuel densities as required for the density dependent equation-of- state option. An automatic time-step-size selection scheme is provided. 3 - Restrictions on the complexity of the problem: VENUS-2 is written so that the dimensions of the storage arrays can be readily changed to accommodate a broad range of problem sizes. In the base version, the total number of mesh intervals is restricted such that (NR+3)*(NZ+3) is less than 700, where NR and NZ are the total number of mesh intervals in the r and z

  8. Energy Multiplier Module (EM{sup 2}) - advanced small modular reactor for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, T.; Schleicher, R.; Choi, H.; Rawls, J., E-mail: timothy.bertch@ga.com [General Atomics, San Diego, California (United States)

    2013-07-01

    In order to provide cost effective nuclear energy in other than large reactor, large grid applications, fission technology needs to make further advances. 'Convert and burn' fast reactors offer long life cores, improved fuel utilization, reduced waste and other benefits while achieving cost effective energy production in a smaller reactor. General Atomics' Energy Multiplier Module (EM{sup 2}), a helium-cooled compact fast reactor that augments its fissile fuel load with either depleted uranium (DU) or used nuclear fuel (UNF). The convert and burn in-situ provides 250 MWe with a 30 year core life. High temperature provides a simple, high efficiency direct cycle gas turbine which along with modular construction, fewer systems, road shipment and minimum on site construction support cost effectiveness. Additional advantages in fuel cycle, non-proliferation and siting flexibility and its ability to meet all safety requirements make for an attractive power source, especially in remote and small grid regions. (author)

  9. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  10. Proceedings of the international topical meeting on advanced reactors safety: Volume 2

    International Nuclear Information System (INIS)

    1997-01-01

    In this volume, 89 papers are grouped under the following headings: advances in research/test reactor safety; advanced reactor accident management and emergency actions; advanced reactors instrumentation/controls/human factors; probabilistic risk/safety and reliability assessments; steam explosion research and issues; advanced reactor severe accident issues and research (analysis and assessments); advanced reactor thermal hydraulics; accelerator-driven source safety; liquid-metal reactor safety; structural assessments and issues; late papers

  11. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  12. Primena metode MUSIC za određivanje smera dolaska radio-signala korišćenjem antenskih nizova ADCOCK / Application of the MUSIC method for direction of arrival estimation using the ADCOCK antenna arrays

    Directory of Open Access Journals (Sweden)

    Miljko M. Erić

    2002-01-01

    Full Text Available Analiziran je problem procene smera dolaska radio-signala metodom MUSIC korišćenjem antenskih nizova ADCOCK. Formulisan je matematički model signala na antenskom nizu ADCOCK. Izvedene su relacije između vektora prostiranja ADCOCK i vektora prostiranja ukupnog antenskog niza (niza od koga se ADCOCK-ov niz formira. Definisana je kriterijumska funkcija algoritma MUSIC i funkcija neodređenosti antenskog niza ADCOCK. Prikazani su rezultati simulacije, kao i rezultati praktične verifikacije mogućnosti primene metode MUSIC na antenske nizove ADCOCK. / The MUSIC based Direction of Arrival estimation using the ADCOCK antenna arrays is considered. Starting from signal model formulation, the cost function of the MUSIC algorithm and the ambiguity functions for the ADCOCK antenna array have been formulated. Some simulation results and some preliminary results of the verification in practice are presented.

  13. Application of 2DOF controller for reactor power control. Verification by numerical simulation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1996-09-01

    In this report the usefulness of the two degree of freedom (2DOF) control is discussed to improve the reference response characteristics and robustness for reactor power control system. The 2DOF controller consists of feedforward and feedback elements. The feedforward element was designed by model matching method and the feedback element by solving the mixed sensitivity problem of H ∞ control. The 2DOF control gives good performance in both reference response and robustness to disturbance and plant perturbation. The simulation of reactor power control was performed by digitizing the 2DOF controller with the digital control periods of 10[msec]. It is found that the control period of 10[msec] is enough not to make degradation of the control performance by digitizing. (author)

  14. Validation of SCALE4.4a for Calculation of Xe-Sm Transients After a Scram of the BR2 Reactor

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2007-01-01

    The aim of this report is to validate the computational modules system SCALE4.4a for evaluation of reactivity changes, macroscopic absorption cross sections and calculations of the positions of the Control Rods during their motion in Xe-Sm transient after a scram of the BR-2 reactor. The rapid shutting down of the reactor by inserting of negative reactivity by the Control Rods is known as a reactor scram. Following reactor scram, a large xenon and samarium buildup occur in the reactor, which may appreciably affect the multiplication factor of the core due to enormous neutron absorption. The validation of the calculations of Xe-Sm transients by SCALE4.4a has been performed on the measurements of the positions of the Control Rods during their motion in Xe-Sm transients of the BR-2 reactor and on comparison with the calculations by the standard procedure XESM, developed at the BR-2 reactor. A final conclusion is made that the SCALE4.4a modules system can be used for evaluation of Xe-Sm transients of the BR-2 reactor. The utilization of the code is simple, the computational time takes from few seconds.

  15. Nuclear powerplant standardization: light water reactors. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1981-06-01

    This volume contains working papers written for OTA to assist in preparation of the report, NUCLEAR POWERPLANT STANDARDIZATION: LIGHT WATER REACTORS. Included in the appendixes are the following: the current state of standardization, an application of the principles of the Naval Reactors Program to commercial reactors; the NRC and standardization, impacts of nuclear powerplant standardization on public health and safety, descriptions of current control room designs and Duke Power's letter, Admiral Rickover's testimony, a history of standardization in the NRC, and details on the impact of standardization on public health and safety

  16. Degradation of gas-phase trichloroethylene over thin-film TiO{sub 2} photocatalyst in multi-modules reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Lee, Jun Yub, E-mail: ljy02191@hanafos.com [Power Engineering Research Institute, Korea Power Engineering Company, Inc. (Korea, Republic of); Kim, Gyung Soo [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Hong, Sung Chang [Department of Environmental Engineering, Kyonggi University (Korea, Republic of)

    2009-07-30

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO{sub 2}. A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  17. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  18. Low-enrichment and long-life Scalable LIquid Metal cooled small Modular (SLIMM-1.2) reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed S., E-mail: mgenk@unm.edu [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Department, University of New Mexico, Albuquerque, NM (United States); Chemical and Biological Engineering Department, University of New Mexico, Albuquerque, NM (United States); Palomino, Luis M.; Schriener, Timothy M. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States)

    2017-05-15

    Highlights: • Developed low enrichment and natural circulation cooled SLIMM-1.2 SMR for generating 10–100 MW{sub th}. • Neutronics analyses estimate operation life and temperature reactivity feedback. • At 100 MW{sub th}, SLIMM-1.2 operates for 6.3 FPY without refueling. • SLIMM-1.2 has relatively low power peaking and maximum UN fuel temperature < 1400 K. - Abstract: The Scalable LIquid Metal cooled small Modular (SLIMM-1.0) reactor with uranium nitride fuel enrichment of 17.65% had been developed for generating 10–100 MW{sub th} continuously, without refueling for ∼66 and 5.9 full power years, respectively. Natural circulation of in-vessel liquid sodium (Na) cools the core of this fast energy spectrum reactor during nominal operation and after shutdown, with the aid of a tall chimney and an annular Na/Na heat exchanger (HEX) of concentric helically coiled tubes. The HEX at the top of the downcomer maximizes the static pressure head for natural circulation. In addition to the independent emergency shutdown (RSS) and reactor control (RC), the core negative temperature reactivity feedback safely decreases the reactor thermal power, following modest increases in the temperatures of UN fuel and in-vessel liquid sodium. The decay heat is removed from the core by natural circulation of in-vessel liquid sodium, with aid of the liquid metal heat pipes laid along the reactor vessel wall, and the passive backup cooling system (BCS) using natural circulation of ambient air along the outer surface of the guard vessel wall. This paper investigates modifying the SLIMM-1.0 reactor design to lower the UN fuel enrichment. To arrive at a final reactor design (SLIMM-1.2), the performed neutronics and reactivity depletion analyses examined the effects of various design and material choices on both the cold-clean and the hot-clean excess reactivity, the reactivity shutdown margin, the full power operation life at 100 MW{sub th}, the fissile production and depletion, the

  19. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  20. Development of the fast reactor group constant set JFS-3-J3.2R based on the JENDL-3.2

    CERN Document Server

    Chiba, G

    2002-01-01

    It is reported that the fast reactor group constant set JFS-3-J3.2 based on the newest evaluated nuclear data library JENDL3.2 has a serious error in the process of applying the weighting function. As the error affects greatly nuclear characteristics, and a corrected version of the reactor constant set, JFS-3-J3.2R, was developed, as well as lumped FP cross sections. The use of JFS-3-J3.2R improves the results of analyses especially on sample Doppler reactivity and reaction rate in the blanket region in comparison with those obtained using the JFS-3-J3.2.

  1. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  2. Consideration of LH2 and LD2 cold neutron sources in heavy water reactor reflector

    International Nuclear Information System (INIS)

    Potapov, I.A.; Serebrov, A.P.

    2001-01-01

    The reactor power, the required CNS dimensions and power of the cryogenic equipment define the CNS type with maximized cold neutron production. Cold neutron fluxes from liquid hydrogen (LH 2 ) and liquid deuterium (LD 2 ) cold neutron sources (CNS) are analyzed. Different CNS volumes, presents and absence of reentrant holes inside the CNS, different adjustment of beam tube and containment are considered. (orig.)

  3. Fusion reactor materials program plan. Section 2. Damage analysis and fundamental studies

    International Nuclear Information System (INIS)

    1978-07-01

    The scope of this program includes: (1) Development of procedures for characterizing neutron environments of test facilities and fusion reactors, (2) Theoretical and experimental investigations of the influence of irradiation environment on damage production, damage microstructure evolution, and mechanical and physical property changes, (3) Identification and, where appropriate, development of essential nuclear and materials data, and (4) Development of a methodology, based on damage mechanisms, for correlating the mechanical behavior of materials exposed to diverse test environments and projecting this behavior to magnetic fusion reactor (MFR) environments. Some major problem areas are addressed

  4. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  5. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  6. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  7. Advanced Passive Reactors : Leading The U. S. Nuclear Renaissance

    International Nuclear Information System (INIS)

    Henderson, Ronald R.

    1990-01-01

    Twenty-one years have passed since Korea Electric Power Corporation and Westinghouse announced plans to build Kori 1. Today, Korea's nuclear program is one of the most successful in the world. The electricity generated from Kori 1 and eight other nuclear plants has helped to spark the remarkable growth and transformation of Korea into a modern industrial power. Westinghouse is proud to have been Korea's partner on six of those plants. It the past is the bast prophet of the future, then you and your countrymen should certainly be excited by your future. Korean industry is poised to continue its steady growth, and that means continued growth for your nuclear industry. Currently, the U. S. nuclear industry is experiencing a similar mood of excitement. In fact, it would be necessary to go almost all the way back to the beginning of the birth of the Korean nuclear industry, in 1969, to find a time when the future of nuclear power in the United States looked as bright as it does today. Part of our excitement stems from the welcome prospect of growth. In recent years, there has not been a market for new nuclear plants in the United States. Utilities either had excess capacity or were building plants they had ordered before 1974. For example, between 1980 and 1989, U. S. utilities completed 46 large nuclear units, but didn't order a single new one in that time. Since 1983, however, strong economic growth in the United States has caused the demand for electric power to grow about twice as fast as utilities had projected. Today, utilities will need to order new busload plants. When they do, utilities won't want technology developed 20 years ago. They'll be looking for plants that can meet the environmental, economic, and safety standards of the 21st century

  8. Containment Loads Analysis for CANDU6 Reactor using CONTAIN 2.0

    International Nuclear Information System (INIS)

    Kim, Tae H.; Yang, Chae Y.

    2013-01-01

    The containment plays an important role to limit the release of radioactive materials to the environment during design basis accidents (DBAs). Therefore, the containment has to maintain its integrity under DBA conditions. Generally, a containment functional DBA evaluation includes calculations of the key containment loads, i. e., pressure and temperature effects associated with a postulated large rupture of the primary or secondary coolant system piping. In this paper, the behavior of containment pressure and temperature was evaluated for loss of coolant accidents (LOCAs) of the Wolsong unit 1 in order to assess the applicability of CONTAIN 2.0 code for the containment loads analysis of the CANDU6 reactor. The containment pressure and temperature of the Wolsong unit 1 were evaluated using the CONTAIN 2.0 code and the results were compared with the CONTEMPT4 code. The peak pressure and temperature calculated by CONTAIN 2.0 agreed well with those of CONTEMPT4 calculation. The overall result of this analysis shows that the CONTAIN 2.0 code can apply to the containment loads analysis for the CANDU6 reactor

  9. Mass transfer of ammonia escape and CO2 absorption in CO2 capture using ammonia solution in bubbling reactor

    International Nuclear Information System (INIS)

    Ma, Shuangchen; Chen, Gongda; Zhu, Sijie; Han, Tingting; Yu, Weijing

    2016-01-01

    Highlights: • Mass transfer coefficient models of ammonia escape were built. • Influences of temperature, inlet CO 2 and ammonia concentration were studied. • Mass transfer coefficients of ammonia escape and CO 2 absorption were obtained. • Studies can provide the basic data as a reference guideline for process application. - Abstract: The mass transfer of CO 2 capture using ammonia solution in the bubbling reactor was studied; according to double film theory, the mass transfer coefficient models and interface area model were built. Through our experiments, the overall volumetric mass transfer coefficients were obtained, while the interface areas in unit volume were estimated. The volumetric mass transfer coefficients of ammonia escaping during the experiment were 1.39 × 10 −5 –4.34 × 10 −5 mol/(m 3 s Pa), and the volumetric mass transfer coefficients of CO 2 absorption were 2.86 × 10 −5 –17.9 × 10 −5 mol/(m 3 s Pa). The estimated interface area of unit volume in the bubbling reactor ranged from 75.19 to 256.41 m 2 /m 3 , making the bubbling reactor a viable choice to obtain higher mass transfer performance than the packed tower or spraying tower.

  10. SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor

    Science.gov (United States)

    Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.

    2016-04-01

    Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.

  11. A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy

    NARCIS (Netherlands)

    Bos, Martin Johan; Brilman, Derk Willem Frederik

    2015-01-01

    A novel reactor design for the conversion of CO2 and H2 to methanol is developed. The conversion limitations because of thermodynamic equilibrium are bypassed via in situ condensation of a water/methanol mixture. Two temperatures zones inside the reactor ensure optimal catalyst activity (high

  12. Quality assurance in the project of RECH-2 research reactor

    International Nuclear Information System (INIS)

    Goycolea Donoso, C.; Nino de Zepeda Schele, A.

    1989-01-01

    The implantation of a Quality Assurance Program for the design, supply, construction, installation, and testing of the RECH-2 research reactor, is described in this paper. The obtained results, demonstrate that a Quality Assurance Program constitutes a suitable mean to assure that the installation complies with the safety and reliability requirements. (author)

  13. Soluble common gamma chain exacerbates COPD progress through the regulation of inflammatory T cell response in mice

    Directory of Open Access Journals (Sweden)

    Lee B

    2017-03-01

    Full Text Available Byunghyuk Lee,1 Eunhee Ko,1 Jiyeon Lee,2 Yuna Jo,1 Hyunju Hwang,1 Tae Sik Goh,1,3 Myungsoo Joo,2 Changwan Hong1 1Department of Anatomy and Cell Biology, Pusan National University School of Medicine, 2Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, 3Department of Orthopedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea Abstract: Cigarette smoking (CS is a major cause of considerable morbidity and mortality by inducing lung cancer and COPD. COPD, a smoking-related disorder, is closely related to the alteration of immune system and inflammatory processes that are specifically mediated by T cells. Soluble common gamma chain (sγc has recently been identified as a critical regulator of the development and differentiation of T cells. We examined the effects of sγc in a cigarette smoke extract (CSE mouse model. The sγc level in CSE mice serum is significantly downregulated, and the cellularity of lymph node (LN is systemically reduced in the CSE group. Overexpression of sγc enhances the cellularity and IFNγ production of CD8 T cells in LN and also enhances Th1 and Th17 differentiation of CD4 T cells in the respiratory tract. Mechanistically, the downregulation of sγc expression mediated by CSE is required to prevent excessive inflammatory T cell responses. Therefore, our data suggest that sγc may be one of the target molecules for the control of immunopathogenic progresses in COPD. Keywords: COPD, T cell, soluble common gamma chain, cytokine

  14. Set of rules SOR 2 licensing of nuclear reactors

    International Nuclear Information System (INIS)

    1976-05-01

    This is the set of rules promulgated by the Israel Atomic Energy Commission pursuant to the Supervision of Supplies and Services Law 5718-1957, Order regarding Supervision of Nuclear Reactors (1974) Chapter 3: Permits, to provide for the Licensing of Nuclear Reactors. (B.G.)

  15. HRD System and Experience in the Korean Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Byoungkook [KHNP Nuclear Power Education Institute, Busan (Korea, Republic of)

    2012-03-15

    Korea began to nurture its nuclear energy pioneers in the 1950s when the government dispatched personnel in research and policy-making areas to foreign institutions. Then in 1959, KAERI was established and now plays a leading role in nuclear technology R and D. In addition, Korea's first research reactor, TRIGA Mark-II, was built and put into operation in 1962. This paved the way for advancements in operation and technical development of nuclear reactors. In turn, these accomplishments led to the birth of Korea's first commercial reactor, Kori Unit 1, in the 1970s, and HRD in the nuclear industry was put on the right track. However, the Korean nuclear industry remained heavily dependent on nuclear exporting countries such as the US, Canada, and France. Already confident in construction, Korea took the lead in building Kori Units 3 and 4 and Ulchin Units 1 and 2 in the 1980s, but the country was still in need of technological self-reliance. In order to achieve this, Korea proactively launched systematic HRD programs and dispatched nuclear professionals to overseas nuclear facilities to secure individuals competent in the areas of NPP operations, plant design, and major equipment manufacturing. Thanks to its diligent endeavors, Korea's nuclear entities established independent nuclear training institutes in the 1990s and began producing a large number of competent personnel. This allowed the country to ensure not only the best operation and maintenance engineers but also the essential nuclear technology required for plant design and equipment manufacturing. Since the beginning of the 21{sup st} century, Korea has been producing its nuclear personnel on its own and exchanging nuclear training instructors and trainees with other organizations in fields where specialized knowledge is needed. Furthermore, Korea is taking comprehensive nuclear HRD measures in response to the rising demand for human resources that result from ongoing construction of NPPs in

  16. HRD System and Experience in the Korean Nuclear Industry

    International Nuclear Information System (INIS)

    Kang, Byoungkook

    2012-01-01

    Korea began to nurture its nuclear energy pioneers in the 1950s when the government dispatched personnel in research and policy-making areas to foreign institutions. Then in 1959, KAERI was established and now plays a leading role in nuclear technology R and D. In addition, Korea's first research reactor, TRIGA Mark-II, was built and put into operation in 1962. This paved the way for advancements in operation and technical development of nuclear reactors. In turn, these accomplishments led to the birth of Korea's first commercial reactor, Kori Unit 1, in the 1970s, and HRD in the nuclear industry was put on the right track. However, the Korean nuclear industry remained heavily dependent on nuclear exporting countries such as the US, Canada, and France. Already confident in construction, Korea took the lead in building Kori Units 3 and 4 and Ulchin Units 1 and 2 in the 1980s, but the country was still in need of technological self-reliance. In order to achieve this, Korea proactively launched systematic HRD programs and dispatched nuclear professionals to overseas nuclear facilities to secure individuals competent in the areas of NPP operations, plant design, and major equipment manufacturing. Thanks to its diligent endeavors, Korea's nuclear entities established independent nuclear training institutes in the 1990s and began producing a large number of competent personnel. This allowed the country to ensure not only the best operation and maintenance engineers but also the essential nuclear technology required for plant design and equipment manufacturing. Since the beginning of the 21 st century, Korea has been producing its nuclear personnel on its own and exchanging nuclear training instructors and trainees with other organizations in fields where specialized knowledge is needed. Furthermore, Korea is taking comprehensive nuclear HRD measures in response to the rising demand for human resources that result from ongoing construction of NPPs in Korea and the UAE

  17. Measurement of thermal conductivity of sintered UO{sub 2} in the reactor; Merenje toplotne provodljivosti sinterovanog UO{sub 2} u reaktoru

    Energy Technology Data Exchange (ETDEWEB)

    Katanic, J; Stevanovic, M [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1965-10-15

    Thermal conductivity is considered one of the fundamental properties of sintered UO{sub 2} fuel. Samples should be tested under real core conditions. This paper covers the methods and instruments for thermal conductivity measurement of UO{sub 2} samples in the reactor core, measurements outside the core under conditions similar to those in the core and outside the core after irradiation. Fuel samples are placed in capsules for irradiation in the reactor in-core loops.

  18. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    Science.gov (United States)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  19. Analysis of SBO accident and natural circulation of 49-2 swimming pool reactor

    International Nuclear Information System (INIS)

    Wu Yuanyuan; Liu Tiancai; Sun Wei

    2012-01-01

    The transient thermal hydraulic characteristics of 49-2 Swimming Pool Reactor (SPR) were analyzed by RELAP5/MOD3.3 code to verify the capability of natural circulation and minus reactivity feedback for accident mitigation under the condition of station blackout (SBO). Then, the effects on accident consequence and sequence for core channels and primary pumps were briefly discussed. The calculation results show that the reactor can be shutdown by the effect of minus reactivity feedback, and the residual heat can be removed through the stable natural circulation. Therefore, it demonstrates that the 49-2 SPR is safe during the accident of SBO. (authors)

  20. Status of IVO-FR2-Vg7 experiment for irradiation of fast reactor fuel rods

    International Nuclear Information System (INIS)

    Elbel, H.; Kummerer, K.; Bojarsky, K.; Lopez Jimenez, J.; Otero de la Gandara, J.L.

    1979-01-01

    Report on the Seminar celebrated in Madrid between KfK (Karlsruhe) and JEN (Madrid) concerning a Joint Irradiation Program of Fast Reactor Fuel Rods. The design of fuel rods in general is defined, and, in particular of those with a density 94% DT and diameter 7.6 mm up to a burn-up of 7% FIMA, to be irradiated in the FR2 Reactor (Karlsruhe). Together with the design of NaK and single-wall capsules used in this irradiation, other possibilities of irradiation in the reactor will also be described. (auth.)

  1. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  2. Revision of fast reactor group constant set JFS-3-J2

    International Nuclear Information System (INIS)

    Takano, Hideki; Kaneko, Kunio.

    1989-10-01

    To improve the fast reactor group constant set JFS-3-J2 to be applicable for high burnup reactor calculations, group constants for 155 fission product nuclides and the lumped group cross sections for four mother fission isotopes of U-235, U-238, Pu-239 and Pu-241 have been generated. Furthermore, the group constants for higher actinides such as Am and Cm have been produced on the basis of the JENDL-2 nuclear data, so as to be able to use for TRU-transmutation calculations. Benchmark test of this revised set has been performed by analysing the 21 fast critical experimental assemblies. Benchmark calculation system based on one-dimensional Sn-method has been developed to investigate the accuracy of one-dimensional diffusion calculations. Significant difference between the results obtained with the diffusion and transport calculations was observed for small cores and the assemblies with iron or nickel reflector. (author)

  3. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  4. N2O Catalytic Decomposition – from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Karásková, K.; Chromčáková, Ž.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 116-120 ISSN 0920-5861 R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : N2O * catalytic decomposition * fixed bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  5. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  6. Alteration of installation of reactors (alteration of No.1 and No.2 reactor facilities) in Oi Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission reported to the Minister of International Trade and Industry on October 27, 1983, that the technical capability was recognized to be adequate, and the safety after the alteration of the installation of reactors was judged to be ensured. At the time of deliberation, the guidelines for examining the safety design and safety evaluation of LWR facilities for power generation were used. Regarding the change of the degree of enrichment of replacement fuel from 3.2 to 3.4 wt.%, the limiting conditions are satisfied in the replacement core, and the nuclear design is appropriate. Eight test fuel assemblies using UO 2 pellets containing gadolinia are charged in the core of No.2 reactor, and the irradiation of two cycles is carried out. As the result of the safety examination regarding this test, the propriety of the nuclear design and mechanical design of the test fuel assemblies was confirmed. This alteration does not exert influence on the result of safety analysis made so far. This report was decided by the Committee on Examination of Reactor Safety based on the conclusion of No.26 subcommittee. (Kako, I.)

  7. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  8. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    Science.gov (United States)

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. COOLOD-N2: a computer code, for the analyses of steady-state thermal-hydraulics in research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1994-03-01

    The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode as well as COOLOD-N code. In the COOLOD-N2 code, a 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. (author)

  10. Ethanol production by immobilized yeast and its CO2 gas effects on a packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G M; Choi, C Y; Choi, Y D; Han, M H

    1982-10-01

    Immobilised yeast trapped in an alginate matrix demonstrated maximum activity at 30 degrees C and showed no pH effect between 3 and 7. Substrate inhibition was observed at glucose concentrations above 8% but the immobilised cells retained 70% of their maximum activity at 20% glucose concentration. The operation stability of immobilised cells was lower in simple glucose solution than in the activation medium in which only 20% of the activity was lost after 10 days operation. Inactivated immobilised yeast beads were reactivated by incubation in activation medium without a significant increase in cell numbers in a bead. During the operation of the immobilised yeast in a packed bed reactor, CO/sub 2/ gas accumulation adversely affected the reactor performance. An ideal plus flow reactor, not taking into account the formation of CO/sub 2/ gas bubbles and the presence of mass trasnfer resistance, was simulated using a kinetic model for the production of ethanol and the simulation results were compared with the actual reactor performance to determine the CO/sub 2/ gas effect, quantitatively. Up to 45% of the substrate conversion was lost due to the accumulation of CO/sub 2/ gas bubbles in all cases. (Refs. 21).

  11. Power Quality Problems Mitigation using Dynamic Voltage Restorer in Egypt Thermal Research Reactor (ETRR-2)

    International Nuclear Information System (INIS)

    Kandil, T.; Ayad, N.M.; Abdel Haleam, A.; Mahmoud, M.

    2013-01-01

    Egypt thermal research reactor (ETRR-2) was subjected to several Power Quality Problems such as voltage sags/swells, harmonics distortion, and short interruption. ETRR-2 encompasses a wide range of loads which are very sensitive to voltage variations and this leads to several unplanned shutdowns of the reactor due to trigger of the Reactor Protection System (RPS). The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances. It is considered as one of the most efficient and effective solution. Its appeal includes smaller size and fast dynamic response to the disturbance. This paper describes a proposal of a DVR to improve power quality in ETRR-2 electrical distribution systems . The control of the compensation voltage is based on d-q-o algorithm. Simulation is carried out by Matlab/Simulink to verify the performance of the proposed method

  12. Modernization of turbine control system and reactor control system in Almaraz 1 and 2; MOdernizacion de los sistemas de control de turbina y del reactor en Almaraz 1 y 2

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, C.; Diez, J.; Carrasco, J. A.; Lopez, L.

    2005-07-01

    The replacement of the Turbine Control System and Reactor Control System are part of the Almaraz modernization program for the Instrumentation and Control. For these upgrades Almaraz has selected the Ovation Platform that provides open architecture and easy expansion to other systems, these platforms is highly used in many nuclear and thermal plants around the world. One of the main objective for this project were to minimize the impact on the installation and operation of the plant, for that reason the project is implemented in two phases, Turbine Control upgrade and Reactor Control upgrade. Another important objective was to increase the reliability of the control system making them fully fault tolerant to single failures. The turbine Control System has been installed in Units 1 and 2 while the Reactor Control System will be installed in 2006 and 2007 outages. (Author)

  13. TRIGA reactor main systems

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  14. Study of the obtainment of Mo_2C by gas-solid reaction in a fixed and rotary bed reactor

    International Nuclear Information System (INIS)

    Araujo, C.P.B. de; Souza, C.P. de; Souto, M.V.M.; Barbosa, C.M.; Frota, A.V.V.M.

    2016-01-01

    Carbides' synthesis via gas-solid reaction overcomes many of the difficulties found in other processes, requiring lower temperatures and reaction times than traditional metallurgic routes, for example. In carbides' synthesis in fixed bed reactors (FB) the solid precursor is permeated by the reducing/carburizing gas stream forming a packed bed without mobility. The use of a rotary kiln reactor (RK) adds a mixing character to this process, changing its fluid-particle dynamics. In this work ammonium molybdate was subjected to carbo-reduction reaction (CH4 / H2) in both reactors under the same gas flow (15L / h) and temperature (660 ° C) for 180 minutes. Complete conversion was observed Mo2C (dp = 18.9nm modal particles sizes' distribution) in the fixed bed reactor. In the RK reactor this conversion was only partial (∼ 40%) and Mo2C and MoO3 (34nm dp = bimodal) could be observed on the produced XRD pattern. Partial conversion was attributed to the need to use higher solids loading in the reactor CR (50% higher) to avoid solids to centrifuge. (author)

  15. 2-DB, 2-D Multigroup Diffusion, X-Y, R-Theta, Hexagonal Geometry Fast Reactor, Criticality Search

    International Nuclear Information System (INIS)

    Little, W.W. Jr.; Hardie, R.W.; Hirons, T.J.; O'Dell, R.D.

    1969-01-01

    1 - Description of problem or function: 2DB is a flexible, two- dimensional (x-y, r-z, r-theta, hex geometry) diffusion code for use in fast reactor analyses. The code can be used to: (a) Compute fuel burnup using a flexible material shuffling scheme. (b) Perform criticality searches on time absorption (alpha), material concentrations, and region dimensions using a regular or adjoint model. Criticality searches can be performed during burnup to compensate for fuel depletion. (c) Compute flux distributions for an arbitrary extraneous source. 2 - Method of solution: Standard source-iteration techniques are used. Group re-balancing and successive over-relaxation with line inversion are used to accelerate convergence. Material burnup is by reactor zone. The burnup rate is determined by the zone and energy (group) averaged cross sections which are recomputed after each time-step. The isotopic chains, which can contain any number of isotopes, are formed by the user. The code does not contain built-in or internal chains. 3 - Restrictions on the complexity of the problem: Since variable dimensioning is employed, no simple bounds can be stated. The current 1108 version, however, is nominally restricted to 50 energy groups in a 65 K memory. In the 6600 version the power fraction, average burnup rate, and breeding ratio calculations are limited to reactors with a maximum of 50 zones

  16. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Memmott, Matthew [Brigham Young Univ., Provo, UT (United States); Boy, Guy [Florida Inst. of Technology, Melbourne, FL (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Lee, John [Univ. of Michigan, Ann Arbor, MI (United States); Muldrow, Lycurgus [Morehouse College, Atlanta, GA (United States); Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, Wesley [Univ. of Tennessee, Knoxville, TN (United States); Haghighat, Alierza [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-10-02

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  17. Operating reactors licensing actions summary. Vol. 4, No. 2

    International Nuclear Information System (INIS)

    1984-04-01

    This summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  18. Experimental estimations of the kinetics parameters of the IBR-2M reactor by stochastic noises

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tajybov, L.A.; Garibov, A.A.; Mekhtieva, R.N.

    2012-01-01

    Experimental investigations of stochastic fluctuations of pulse energy of the IBR-2M reactor have been carried out which allowed us to obtain some of the parameters of the reactor kinetics. At different levels of average power a sequence of values of pulse energy was recorded with the calculation of the distribution parameters. An ionization chamber with boron installed near the active zone was used as a neutron detector. The research results allowed us to estimate the average lifetime of prompt neutrons τ = (6.53±0.2)·10 -8 s, absolute power of the reactor and intensity of the source of spontaneous neutrons S sp ≤(6.72±0.12)·10 6 s -1 . It was shown that the experimental results are close to the calculated ones

  19. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I., E-mail: paul.hungler@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2014-07-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  20. Enhancements to the SLOWPOKE-2 nuclear research reactor at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Hungler, P.C.; Andrews, M.T.; Weir, R.D.; Nielson, K.S.; Chan, P.K.; Bennett, L.G.I.

    2014-01-01

    In 1985 a Safe Low Power C(K)ritical Experiment (SLOWPOKE) nuclear research reactor was installed at the Royal Military College of Canada (RMCC). The reactor at nominally 20 kW thermal was named SLOWPOKE-2 and the core was designed to have a total of 198 fuel pins with Low Enriched Uranium (LEU) fuel (19.89% U-235). Installation of the reactor was intended to provide an education tool for members of the Canadian Armed Forces (CAF) and an affordable neutron source for the application of neutron activation analysis (NAA) and radioisotope production. Today, the SLOWPOKE-2 at RMCC continues to be a key education tool for undergraduate and post-graduate students and successfully conducts NAA and isotope production as per its original design intent. RMCC has significantly upgraded the facility and instruments to develop capabilities such as delayed neutron and gamma counting (DNGC) and neutron imaging, including 2D thermal neutron radiography and 3D thermal neutron tomography. These unique nuclear capabilities have been applied to relevant issues in the CAF. The analog control system originally installed in 1985 has been removed and replaced in 2001 by the SLOWPOKE Integrated Reactor Control and Instrumentation System (SIRCIS) which is a digital controller. This control system continues to evolve with SIRCIS V2 currently in operation. The continual enhancement of the facility, instruments and systems at the SLOWPOKE-2 at RMCC will be discussed, including an update on RMCC's refueling plan. (author)

  1. Collective occupational dose for nuclear reactors of the 2., 3. and 4. generation

    International Nuclear Information System (INIS)

    Guidez, J.; Saturnin, A.

    2016-01-01

    In France during reactor operation the individual occupational doses are collected and recorded according to the law. When you sum up all the individual doses you get the yearly collective dose expressed in Man.Sv/year. This piece of information can be used to make comparisons between various types of reactors and between reactors of the same type. The results show a steady decrease of the collective dose for all types of reactors over the time except for CANDU reactors for which a slight increase of the dose has appeared since the years 1996-1998. The decrease is due to the continuous improvement of reactor operating and to changes in the reactor design. There is also a constant gap over time between the collective dose for a BWR reactor (1.12 Man.Sv/y) and a PWR reactor 0.60 Man.Sv/y), this gap is certainly due to N 16 nuclide that is created in the primary circuit and transported to turbines in the case of a BWR reactor. For sodium-cooled fast reactors (RNR-Na) the collective dose is below 0.40 Man.Sv/y except for the BN-600 reactor. (A.C.)

  2. Research reactor DHRUVA

    International Nuclear Information System (INIS)

    Veeraraghaven, N.

    1990-01-01

    DHRUVA, a 100 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay, attained first criticality during August, 1985. The reactor is fuelled with natural uranium and is cooled, moderated and reflected by heavy water. Maximum thermal neutron flux obtained in the reactor is 1.8 X 10 14 n/cm 2 /sec. Some of the salient design features of the reactor are discussed in this paper. Some important features of the reactor coolant system, regulation and protection systems and experimental facilities are presented. A short account of the engineered safety features is provided. Some of the problems that were faced during commissioning and the initial phase of power operation are also dealt upon

  3. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  4. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  5. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966; 2. Jugoslovenski simpozijum iz reaktorske fizike, Deo 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-07-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities.

  6. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    Sotic, O.; Markovic, H.; Ninkovic, M.; Strugar, P.; Dimitrijevic, Z.; Takac, S.; Stefanovic, D.; Kocic, A.; Vranic, S.

    1976-09-01

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  7. Status of French reactors

    International Nuclear Information System (INIS)

    Ballagny, A.

    1997-01-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm 3 . The OSIRIS reactor has already been converted to LEU. It will use U 3 Si 2 as soon as its present stock of UO 2 fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU

  8. Physical measurements at the RA reactor related to VISA-2, e. Measurements of flux and reactivity during RA reactor operation and exploitation; Fizicka merenja na reaktoru RA u vezi projekta VISA-2, e. Pracenje fluksa i reaktivnosti u toku eksploatacije reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, H [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-05-15

    This report includes the following: characteristics of neutron flux in vertical experimental channels of the RA reactor; characteristics of neutron flux in VISA-2 channels; reactivity changes in the reactor during VISA-2 irradiation including calibration of control rods.

  9. Passive Decay Heat Removal System Options for S-CO2 Cooled Micro Modular Reactor

    International Nuclear Information System (INIS)

    Moon, Jangsik; Jeong, Yong Hoon; Lee, Jeong Ik

    2014-01-01

    To achieve modularization of whole reactor system, Micro Modular Reactor (MMR) which has been being developed in KAIST took S-CO 2 Brayton power cycle. The S-CO 2 power cycle is suitable for SMR due to high cycle efficiency, simple layout, small turbine and small heat exchanger. These characteristics of S-CO 2 power cycle enable modular reactor system and make reduced system size. The reduced size and modular system motived MMR to have mobility by large trailer. Due to minimized on-site construction by modular system, MMR can be deployed in any electricity demand, even in isolated area. To achieve the objective, fully passive safety systems of MMR were designed to have high reliability when any offsite power is unavailable. In this research, the basic concept about MMR and Passive Decay Heat Removal (PDHR) system options for MMR are presented. LOCA, LOFA, LOHS and SBO are considered as DBAs of MMR. To cope with the DBAs, passive decay heat removal system is designed. Water cooled PDHR system shows simple layout, but has CCF with reactor systems and cannot cover all DBAs. On the other hand, air cooled PDHR system with two-phase closed thermosyphon shows high reliability due to minimized CCF and is able to cope with all DBAs. Therefore, the PDHR system of MMR will follows the air-cooled PDHR system and the air cooled system will be explored

  10. A study of UO2 wafer fuel for very high-power research reactors

    International Nuclear Information System (INIS)

    Hsieh, T.C.; Jankus, V.Z.; Rest, J.; Billone, M.C.

    1983-01-01

    The Reduced Enrichment Research and Test Reactor Program is aimed at reducing fuel enrichment to 2 caramel fuel is one of the most promising new types of reduced-enrichment fuel for use in research reactors with very high power density. Parametric studies have been carried out to determine the maximum specific power attainable without significant fission-gas release for UO 2 wafers ranging from 0.75 to 1.50 mm in thickness. The results indicate that (1) all the fuel designs considered in this study are predicted not to fail under full power operation up to a burnup, of 1.9x10 21 fis/cm 3 ; (2) for all fuel designs, failure is predicted at approximately the same fuel centerline temperature for a given burnup; (3) the thinner the wafer, the wider the margin for fuel specific power between normal operation and increased-power operation leading to fuel failure; (4) increasing the coolant pressure in the reactor core could improve fuel performance by maintaining the fuel at a higher power level without failure for a given burnup; and (5) for a given power level, fuel failure will occur earlier at a higher cladding surface temperature and/or under power-cycling conditions. (author)

  11. Microstructure in Zircaloy Creep Tested in the R2 Reactor

    International Nuclear Information System (INIS)

    Pettersson, Kjell

    2004-12-01

    Tubular specimens of Zircaloy-4 have been creep tested in bending in the R2 reactor in Studsvik. The creep deformation in the reactor core is accelerated in comparison with creep deformation outside the reactor core. The possible mechanisms behind this behaviour are described briefly. In order to determine which the actual mechanism is, the microstructure of the material creep tested in the R2 reactor has been examined by transmission electron microscopy. Due to the bending, material subjected to both tensile and compressive stress during creep was available. Since some of the proposed mechanisms might give microstructures which are different when the material is subjected to compressive or tensile stress it was assumed that examination of both types of material would give valuable information with regard to the operating mechanism. The result of the examination was that in the as-irradiated condition there were no obvious differences detected between materials which had been deformed in tension or compression. After a heat treatment to coarsen the irradiation induced microstructure there were still no significant differences between the two types of material. However it was now observed that in addition to dislocation loops the microstructure also contained network dislocations which presumably had been invisible in the electron microscope before heat treatment due to the high density of small dislocation loops in this state. It is therefore concluded that the most probable mechanism for irradiation creep in this case is climb and glide of the network dislocations. The role of irradiation is two-fold: It accelerates climb due to the production of point defects of which more interstitials than vacancies arrive to the network dislocations stopped at an obstacles. This leads to a net climb after which a dislocation is released from the obstacle and an amount of glide takes place. The second effect is the production of loops which serve as an increasing density of

  12. In-situ stripping of H{sub 2}S in gasoil hydrodesulphurization - reactor design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Nava, J.A.O.; Krishna, R. [Amsterdam Univ., Dept. of Chemical Engineering, Amsterdam (Netherlands)

    2004-02-01

    In order to meet future diesel specifications the sulphur content of diesel would need to be reduced to below 50 ppm. This requirement would require improved reactor configurations. In this study we examine the benefits of counter-current contacting of gas oil with H{sub 2}, over conventional co-current contacting in a trickle bed hydrodesulphurization (HDS) reactor. In counter-current contacting, we achieve in-situ stripping of H{sub 2}S from the liquid phase; this is beneficial to the HDS kinetics. A comparison simulation study shows that counter-current contacting would require about 20% lower catalyst load than co-current contacting. However, counter-current contacting of gas and liquid phases in conventionally used HDS catalysts, of 1.5 mm sizes, is not possible due to flooding limitations. The catalysts need to be housed in special wire gauze envelopes as in the catalytic bales or KATAPAK-S configurations. A preliminary hardware design of a counter-current HDS reactor using catalytic bales was carried out in order to determine the technical feasibility. Using a realistic sulphur containing feedstock, the target of 50 ppm S content of desulphurized oil could be met in a reactor of reasonable dimensions. The study also underlines the need for accurate modelling of thermal effects during desulphurization. Our study also shows that interphase mass transfer is unlikely to be a limiting factor and there is a need to develop improved reactor configurations allowing for increased catalyst loading, at the expense of gas-liquid interfacial area. (Author)

  13. Accidents of loss of flow for the ETTR-2 reactor; deterministic analysis

    International Nuclear Information System (INIS)

    El-Messiry, A.M.

    2000-01-01

    The main objective for reactor safety is to keep the fuel in a thermally safe condition with adequate safety margins during all operational modes (normal-abnormal and accidental states). To achieve this purpose an accident analysis of different design base accident (DBA) as loss of flow accident (LOFA), is required assessing reactor safety. The present work concerns this transients applied to Egypt Test and Research Reactor ETRR-3 (new reactor). An accident analysis code FLOWTR is developed to investigate the thermal behaviour of the core during such flow transients. The active core is simulated by two channels: 1 - hot channel (HC), and 2 - average channel (AC) representing the remainder of the core. Each channel is divided into four axial sections. The external loop, core plenums, and core chimney are simulated by different dynamic loops. The code includes modules for pump cast down, flow regimes, decay heat, temperature distributions, and feedback coefficients. FLOWTR is verified against results from RETRAN code, THERMIC code and commissioning tests for null transient case. The comparison shows a good agreement. The study indicates that for LOFA transients, provided the scram system is available, the core is shutdown safely by low flow signal (496.6 kg/s) at 1.4 s were the HC temperature reaches the maximum value, 45.64 o C after shutdown. On the other hand, if the scram system is unavailable, and at t = 47.33 s, the core flow decreases to 67.41 kg/s, the HC temperature increases to 164.02 o C, and the HC clad surface heat flux exceeds its critical value of 400.00 W/cm 2 resulting of fuel burnout. (author)

  14. Project requirements for reconstruction of the RA reactor ventilation system, Task 2.8. Measurement of radioactive iodine and other isotopes contents in the gas system of the RA reactor, Annex of the task

    International Nuclear Information System (INIS)

    Vujisic, Lj. et al

    1981-01-01

    This report is a supplement to the task 2.8. When planning and constructing the ventilation system, it was found that it is necessary to perform additional experiments during RA reactor operation at 2 MW power level for a longer period. In addition to the helium system, the potential source of radioactive pollutants is the space below the upper water shielding of the reactor. All the experimental and fuel channels are ending in this space. During repair and fuel exchange radioactivity can be released in this space. For that reason this space is important when planing and designing the filtration system for incidental conditions or planned dehermetisation of the reactor. The third point where radioactive isotope identification was done, was the entrance into the chimney during steady state operation and planned dehermetisation of the reactor. The following samples were measured: gas system during reactor operation at 2 MW power; entrance into the chimney during last 48 hours of reactor operation at 2 MW power; sample on the platform under the upper water shield with the opened fuel channel after the reactor shutdown; and simultaneously with the latter, measurement at the entrance to the chimney. This annex contains the list of identified radioactive isotopes, volatile and gaseous as well as concentration of volatile 131 I on the adsorbents [sr

  15. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  16. Decontamination and decommissioning project of the TRIGA Mark-2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K J; Baik, S T; Chung, U S; Jung, K H; Park, S K; Lee, B J; Kim, J K; Yang, S H

    2000-01-01

    During the review on the decommissioning plan and environmental impact assessment report by the KINS, the number of the inquired items were two hundred and fifty one, and the answers were made and sent until September 10, 1999, as the screened review results were reported to Ministry of Science and Technology(MOST) in December 14, 1999, all the reviews on the licence were over. Radioactive liquid wastes of 400 tons generated during the operation of the research reactors including reactor vessels are stored in the facility of the research reactor 1 and 2. Those liquid wastes have the low-level-radioactivity which can be discharged to the surroundings, but was wholly treated to be vaporized naturally by means of the increased numbers of the natural vaporization disposal facilities with the annual capacity of 200 tons for the purpose of the minimized environmental contamination.

  17. The Defect Inspection on the Irradiated Fuel Rod by Eddy Current Test

    International Nuclear Information System (INIS)

    Koo, D. S.; Park, Y. K.; Kim, E. K.

    1996-01-01

    The eddy current test(ECT) probe of differential encircling coil type was designed and fabricated, and the optimum condition of ECT was derived for the examination of the irradiated fuel rod. The correlation between ECT test frequency and phase and amplitude was derived by performing the test of the standard rig that includes inner notches, outer notches and through-holes. The defect of through-hole was predicted by ECT at the G33-N2 fuel rod irradiated in the Kori-1 nuclear power reactor. The metallographic examination on the G33-N2 fuel rod was Performed at the defect location predicted by ECT. The result of metallographic examination for the G33-N2 fuel rod was in good agreement with that of ECT. This proves that the evaluation for integrity of irradiated fuel rod by ECT is reliable

  18. Study on effects of development of reactor constant in fast reactor analysis

    International Nuclear Information System (INIS)

    Chiba, Gou

    2002-12-01

    Evaluation was carried out about an effect of development of the new generation reactor constant system that substitutes for the JFS library in fast reactor analysis. Analyzed cores were ZPPR in JUPITER critical experiment and several power reactor cores that were designed in the feasibility study. In the JUPITER analysis, large effects, over 10%, were observed in sodium void reactivity and sample Doppler reactivity. The former resulted from several factors, while the latter was due to an accurate of a resonance interaction effect between Doppler sample and core fuel. In the previous study, the effect had been evaluated in power reactor cores. The effect included an effect of corrosion of weighting spectrum because JFS-3-J3.2, which had been made with the incorrect weighting spectrum, was used in the evaluation. In the present study, JFS-3-J3.2R, which had been made with the correct weighting spectrum, was used. It was confirmed that the effect of development of reactor constant in power reactor was not as large as that in critical assembly. (author)

  19. Thermal and stress analyses of the reactor pressure vessel lower head of the Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Hashimoto, K.; Onizawa, K.; Kurihara, R.; Kawasaki, S.; Soda, K.

    1992-01-01

    Thermal and stress analyses were performed using the finite element analysis code ABAQUS to clarify the factors which caused tears in the stainless steel liner of the reactor pressure vessel lower head of the Three Mile Island Unit 2 (TMI-2) reactor pressure vessel during the accident on 28 March 1979. The present analyses covered the events which occurred after approximately 20 tons of molten core material were relocated to the lower head of the reactor pressure vessel. They showed that the tensile stress was highest in the case where the relocated core material consisting of homogeneous UO 2 debris was assumed to attack the lower head and the debris was then quenched. The peak tensile stress was in the vicinity of the welded zone of the penetration nozzle. This result agrees with the findings from the examination of the TMI-2 reactor pressure vessel that major tears in the stainless steel liner were observed around two penetration nozzles of the lower head. (author)

  20. Decontamination of Steam Generator tube using Abrasive Blasting Technology

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Choi, W. K.; Lee, K. W.; Kim, D. H.; Kim, K. H.; Kim, B. T.

    2010-01-01

    As a part of a technology development of volume reduction and self disposal for large metal waste project, We at KAERI and our Sunkwang Atomic Energy Safety (KAES) subcontractor colleagues are demonstrating radioactively contaminated steam generator tube by abrasive blasting technology at Kori-1 NPP. A steam generator is a crucial component in a PWR (pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary waste-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tube, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be cause of tube leakage, more and more steam generators are replaced today. Only in Korea, already 2 of them are replaced and will be replaced in the near future. The retired 300 ton heavy Steam generator was stored at the storage waste building of Kori NPP site. The steam generator waste has a large volume, so that it is necessary to reduce its volume by decontamination. A waste reduction effect can be obtained through decontamination of the inner surface of a steam generator. Therefore, it is necessary to develop an optimum method for decontamination of the inner surface of bundle tubes. The dry abrasive blasting is a very interesting technology for the realization of three-dimensional microstructures in brittle materials like glass or silicon. Dry abrasive blasting is applicable to most surface materials except those that might be shattered by the abrasive. It is most effective on flat surface and because the abrasive is sprayed and can also applicable on 'hard to reach' areas such as inner tube ceilings or behind equipment. Abrasive decontamination techniques have been applied in several countries, including Belgium, the CIS, France, Germany, Japan, the UK and the USA

  1. The Status and Inspection of Bottom Mounted Instrumentation Nozzle in Korea

    International Nuclear Information System (INIS)

    Doh, Euisoon; Kim, Yoonwon; Kim, Jaeyoon; Lee, Tacksu; Lee, Changhun

    2012-01-01

    The PWSCC Cracking of Alloy 600 material has been issued since CRDM Penetration cracking of Bugey in France in 1990's. And J-groove weld cracking of CRDM at Oconee and PCR Nozzle cracking at Wolf Creek in USA were raising concern of the integrity for Dissimilar Metal Weld of Alloy 600. BMI(Bottom Mounted Instrumentation) Nozzle cracks were found at Takahama unit 1 in Japan and South Texas Project unit 1 in USA in 2003. And recent cracks of Reactor Head Vent line at Yonggwang unit 3 in Korea are enough to cause worry about the integrity for BMI Nozzles in Korea. BMI inspections of Westinghouse type plant were performed by KPS for Kori unit 1 in 2006, Ulchin unit 2 in 2007, and Kori unit 3 in 2008. The first inspection of OCR-1000 plant was carried out on May 2011 at Yonggwang unit 3. KPS developed the inspection technique of OCR-1000 plant for End Effector Module and controller, a quarterly actual sized Bottom head Mock up, Inspection probes meeting the regulatory guide lines and typical configuration of OCR-1000 plant. Two specimens with actual PWSCC cracks were used to demonstrate the Inspection technique of Detection and Sizing. and the quarterly actual sized Bottom head Mock up was very meaningful to check the Interference during the inspection by narrow gap between newly developments led to a successful inspection of the BMI Inspection. And the inspection was concurrently performed with 10 year Reactor Vessel ICI without hurting any critical path of the outage. This BMI inspection is contributing to keep Operational Safety of plants by prevention of Leakage at BMI nozzle and weld. And performing 10 Year ISI for BMI nozzle is very effective to prevent BMI nozzle Break by detecting PWSCC Initiation per PFM Sensitivity study

  2. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  3. Reactor physics measurements with 19-element ThOsub(2)-sup(235)UOsub(2) cluster fuel in heavy water moderator

    International Nuclear Information System (INIS)

    French, P.M.

    1985-02-01

    Low power lattice physics measurements have been performed with a single rod of 19-element thorium oxide fuel enriched with 1.45 wt. percent sub(235)UOsub(2) (93 percent enriched) in a simulated heavy water moderated and cooled power reactor core. The experiments were designed to provide data relevant to a power reactor irradiation and to obtain some basic information on the physics of uranium-thorium fuel material. Some theoretical flux calculations are summarized and show reasonable agreement with experiment

  4. The performance of ENDF/B-V.2 nuclear data for fast reactor calculations

    International Nuclear Information System (INIS)

    Atkinson, C.A.; Collins, P.J.

    1987-01-01

    Calculations with ENDF/B-V.2 data have been made for twenty-five fast-spectrum integral assemblies covering a wide range of sizes and compositions. Analysis was done by transport codes with refined cross section processing methods and detailed reactor modelling. The predictions of fission rate distributions and control rod worths were emphasized for the more prototypic benchmark cores. The results show considerable improvements in agreement with experiment compared with analysis using ENDF/B-IV data, but it is apparent that significant errors remain for fast reactor design calculations

  5. TMI-2 reactor vessel and balance of plant status

    International Nuclear Information System (INIS)

    Kuehn, G.A.

    1990-01-01

    In the fall of 1988 a corporate decision was made which concentrated effort on support of reactor vessel defueling and minimized activity in balance-of-plant areas. The auxiliary and fuel handling building are in a safe/stable state but final preparations for monitored storage won't be pursued until defueling and fuel shipping are complete. In addition to dispositioning fuel, the project is actively preparing for disposal of the Accident Generated Water (2.3 million gallons) by evaporation

  6. Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Cho, C.H.; Shin, D.H. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Hong, Y.C., E-mail: ychong@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Shin, Y.W. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); School of Advanced Green Energy and Environments, Handong Global University, Heunghae-eup, Buk-gu, Pohang-city, Gyeongbuk (Korea, Republic of)

    2015-08-30

    Highlights: • We developed a microwave plasma torch with reverse vortex reactor (RVR). • We calculated a volume fraction and temperature distribution of discharge gas and waste. • The performance of reverse vortex reactor increased from 29% to 43% than conventional vortex reactor. - Abstract: Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45 GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF{sub 6}, NF{sub 3} by varying plasma power and N{sub 2} flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF{sub 3} was achieved without an additive gas at the N{sub 2} flow rate of 150 liter per minute (L/min) by applying a microwave power of 6 kW with RVR. Also, a DRE of SF{sub 6} was 99.99% at the N{sub 2} flow rate of 60 L/min using an applied microwave power of 6 kW. The performance of reverse vortex reactor increased about 43% of NF{sub 3} and 29% of SF{sub 6} abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  7. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  8. Slit-burst testing of cold-worked Zr-2.5 wt.% Nb pressure tubing for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Barrie, J.N.; Zink, R.J.

    1978-12-01

    This report documents the available data on critical crack length of cold-worked Zr-2.5 wt.% Nb pressure tubing in CANDU reactors. In particular, it includes data for tubing removed from the Pickering 3 and 4 reactors. (author)

  9. Cronos 2: a neutronic simulation software for reactor core calculations; Cronos 2: un logiciel de simulation neutronique des coeurs de reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lautard, J J; Magnaud, C; Moreau, F; Baudron, A M [CEA Saclay, Dept. de Mecanique et de Technologie (DMT/SERMA), 91 - Gif-sur-Yvette (France)

    1999-07-01

    The CRONOS2 software is that part of the SAPHYR code system dedicated to neutronic core calculations. CRONOS2 is a powerful tool for reactor design, fuel management and safety studies. Its modular structure and great flexibility make CRONOS2 an unique simulation tool for research and development for a wide variety of reactor systems. CRONOS2 is a versatile tool that covers a large range of applications from very fast calculations used in training simulators to time and memory consuming reference calculations needed to understand complex physical phenomena. CRONOS2 has a procedure library named CPROC that allows the user to create its own application environment fitted to a specific industrial use. (authors)

  10. TARMS, an on-line boiling water reactor operation management system. [3 D core simulator LOGOS 2

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, T.; Sakurai, S.; Uematsu, H.; Tsuiki, M.; Makino, K.

    1984-12-01

    The TARMS (Toshiba Advanced Reactor Management System) software package was developed as an effective on-line, on-site tool for boiling water reactor core operation management. It was designed to support a complete function set to meet the requirement to the current on-line process computers. The functions can be divided into two categories. One is monitoring of the present core power distribution as well as related limiting parameters. The other is aiding site engineers or reactor operators in making the future reactor operating plan. TARMS performs these functions with a three-dimensional BWR core physics simulator LOGOS 2, which is based on modified one-group, coarse-mesh nodal diffusion theory. A method was developed to obtain highly accurate nodal powers by coupling LOGOS 2 calculations with the readings of an in-core neutron flux monitor. A sort of automated machine-learning method also was developed to minimize the errors caused by insufficiency of the physics model adopted in LOGOS 2. In addition to these fundamental calculational methods, a number of core operation planning aid packages were developed and installed in TARMS, which were designed to make the operator's inputs simple and easy.

  11. Reactor Core Internals Replacement of Ikata Units 1 and 2

    International Nuclear Information System (INIS)

    Ikeda, K.; Ishikawa, T.; Miyoshi, T.; Takagi, T.

    2012-01-01

    This paper presents an overview of the reactor core internals replacement project carried out at the Ikata Nuclear Power Station in Japan, which was the first of its kind among PWRs in the world. Failure of baffle former bolts was first reported in 1989 at Bugey 2 in France. Since then, similar incidents have been reported in Belgium and in the U.S., but not in Japan. However, the possibility of these bolts failing in Japanese plants cannot be denied in the future as operating hours increase. Ageing degradation mechanisms for the reactor core internals include irradiation-assisted stress corrosion cracking of baffle former bolts and mechanical wear of control rod guide cards. Two different approaches can be taken to address these ageing issues: to inspect and repair whenever a problem is found; and to replace the entire core internals with those of a new design having advanced features to prevent ageing degradation problems. The choice of our company was the latter. This paper explains the reasons for the choice and summarizes the replacement project activities at Ikata Units 1 and 2 as well as the improvements incorporated in the new design. (author)

  12. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Khang, Ngo Phu [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The Dalat nuclear research reactor was reconstructed from TRIGA MARK II reactor, built in 1963 with nominal power of 250 KW, and reached its planned nominal power of 500 kW for the first time in Feb. 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc. (author). 10 refs., 10 figs., 2 tabs.

  13. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  14. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  15. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Kalcheva, S [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Sikik, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  16. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  17. Applications: fission, nuclear reactors. Fission: the various ways for reactors and cycles

    International Nuclear Information System (INIS)

    Bacher, P.

    1997-01-01

    A historical review is presented concerning the various nuclear reactor systems developed in France by the CEA: the UNGG (graphite-gas) system with higher CO 2 pressures, bigger fuel assemblies and powers higher than 500 MW e, allowed by studies on reactor physics, cladding material developments and reactor optimization; the fast neutron reactor system, following the graphite-gas development, led to the Superphenix reactor and important progress in simulation based on experiment and return of experience; and the PWR system, based on the american license, which has been successfully accommodated to the french industry and generates up to 75% of the electric power in France

  18. A method of reactor power decrease by 2DOF control system during BWR power oscillation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1998-09-01

    Occurrence of power oscillation events caused by void feedback effects in BWRs operated at low-flow and high-power condition has been reported. After thoroughly examining these events, BWRs have been equipped with the SRI (Selected Rod Insertion) system to avoid the power oscillation by decreasing the power under such reactor condition. This report presents a power control method for decreasing the reactor power stably by a two degree of freedom (2DOF) control. Performing a numerical simulation by utilizing a simple reactor dynamics model, it is found that the control system designed attains a satisfactory control performance of power decrease from a viewpoint of setting time and oscillation. (author)

  19. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  20. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  1. Study on application of operating experience to new nuclear power plant

    International Nuclear Information System (INIS)

    Hong, Nam Pyo

    1991-01-01

    From the standpoint of designing the nuclear power plant, nine operating units have been designed and constructed as turn-key base by foreign Nuclear Steam Supply System (NSSS) Suppliers or as component base by foreign Architect/Engineer companies. In case of the component base project, the owner of electric company generally has merits that owner's operational experiences can be effectively incorporated from the beginning stage of design by A/E. Even though six nuclear units, Kori Units 3 and 4, Yonggwang Units 1 and 2, and Ulchin Units 1 and 2, were designed as component base by foreign A/E's, operational experience feedback from Kori Unit 1, such as design improvement and system upgrade, could not be reflected, because the design process of the following units started well ahead before Kori Unit 1 operating experience is obtained enough to reflect on future nuclear power plant design. It can be stated that foreign A/E's used their experience in designing nuclear projects on very limited basis

  2. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  3. Reactor feedwater system

    International Nuclear Information System (INIS)

    Kagaya, Hiroyuki; Tominaga, Kenji.

    1993-01-01

    In a simplified water type reactor using a gravitationally dropping emergency core cooling system (ECCS), the present invention effectively prevents remaining high temperature water in feedwater pipelines from flowing into the reactor upon occurrence of abnormal events. That is, (1) upon LOCA, if a feedwater pipeline injection valve is closed, boiling under reduced pressure of the remaining high temperature water occurs in the feedwater pipelines, generated steams prevent the remaining high temperature water from flowing into the reactor. Accordingly, the reactor is depressurized rapidly. (2) The feedwater pipeline injection valve is closed and a bypassing valve is opened. Steams generated by boiling under reduced pressure of the remaining high temperature water in the feedwater pipelines are released to a condensator or a suppression pool passing through bypass pipelines. As a result, the remaining high temperature water is prevented from flowing into the reactor. Accordingly, the reactor is rapidly depressurized and cooled. It is possible to accelerate the depressurization of the reactor by the method described above. Further, load on the depressurization valve disposed to a main steam pipe can be reduced. (I.S.)

  4. Assessment of United States industry structural codes and standards for application to advanced nuclear power reactors: Appendices. Volume 2

    International Nuclear Information System (INIS)

    Adams, T.M.; Stevenson, J.D.

    1995-10-01

    Throughout its history, the USNRC has remained committed to the use of industry consensus standards for the design, construction, and licensing of commercial nuclear power facilities. The existing industry standards are based on the current class of light water reactors and as such may not adequately address design and construction features of the next generation of Advanced Light Water Reactors and other types of Advanced Reactors. As part of their on-going commitment to industry standards, the USNRC commissioned this study to evaluate US industry structural standards for application to Advanced Light Water Reactors and Advanced Reactors. The initial review effort included (1) the review and study of the relevant reactor design basis documentation for eight Advanced Light Water Reactors and Advanced Reactor Designs, (2) the review of the USNRCs design requirements for advanced reactors, (3) the review of the latest revisions of the relevant industry consensus structural standards, and (4) the identification of the need for changes to these standards. The results of these studies were used to develop recommended changes to industry consensus structural standards which will be used in the construction of Advanced Light Water Reactors and Advanced Reactors. Over seventy sets of proposed standard changes were recommended and the need for the development of four new structural standards was identified. In addition to the recommended standard changes, several other sets of information and data were extracted for use by USNRC in other on-going programs. This information included (1) detailed observations on the response of structures and distribution system supports to the recent Northridge, California (1994) and Kobe, Japan (1995) earthquakes, (2) comparison of versions of certain standards cited in the standard review plan to the most current versions, and (3) comparison of the seismic and wind design basis for all the subject reactor designs

  5. Generalities about nuclear reactors

    International Nuclear Information System (INIS)

    Jaouen, C.; Beroux, P.

    2012-01-01

    From Zoe, the first nuclear reactor, till the current EPR, the French nuclear industry has always advanced by profiting from the feedback from dozens of years of experience and operations, in particular by drawing lessons from the most significant events in its history, such as the Fukushima accident. The new generations of reactors must improve safety and economic performance so that the industry maintain its legitimacy and its share in the production of electricity. This article draws the history of nuclear power in France, gives a brief description of the pressurized water reactor design, lists the technical features of the different versions of PWR that operate in France and compares them with other types of reactors. The feedback experience concerning safety, learnt from the major nuclear accidents Three Miles Island (1979), Chernobyl (1986) and Fukushima (2011) is also detailed. Today there are 26 third generation reactors being built in the world: 4 EPR (1 in Finland, 1 in France and 2 in China); 2 VVER-1200 in Russia, 8 AP-1000 (4 in China and 4 in the Usa), 8 APR-1400 (4 in Korea and 4 in UAE), and 4 ABWR (2 in Japan and 2 in Taiwan)

  6. Model study of an automatic controller of the IBR-2 pulsed reactor

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Popov, A.K.

    2007-01-01

    For calculation of power transients in the IBR-2 reactor a special mathematical model of dynamics taking into account the discontinuous jump of reactivity by an automatic controller with the step motor is created. In the model the nonlinear dependence of the energy of power pulse on the reactivity and the influence of warming up of the reactor on the reactivity by means of introduction of a nonlinear feedback 'power-pulse energy - reactivity' are taken into account. With the help of the model the transients of relative deviation of power-pulse energy are calculated at various (random, mixed and regular) reactivity disturbances at the reactor mean power 1.475 MW. It is shown that to improve the quality of processes the choice of such regular values of parameters of the automatic controller is expedient, at which the least effect of smoothing of a signal acting on an automatic controller and the least speed of an automatic controller are provided, and the reduction of efficiency of one step of the automatic controller and introduction of a five-percent dead space are also expedient

  7. Backfitting of the FRG reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krull, W [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)

    1990-05-01

    The FRG-research reactors The GKSS-research centre is operating two research reactors of the pool type fueled with MTR-type type fuel elements. The research reactors FRG-1 and FRG-2 having power levels of 5 MW and 15 MW are in operation for 31 year and 27 years respectively. They are comparably old like other research reactors. The reactors are operating at present at approximately 180 days (FRG-1) and between 210 and 250 days (FRG-2) per year. Both reactors are located in the same reactor hall in a connecting pool system. Backfitting measures are needed for our and other research reactors to ensure a high level of safety and availability. The main backfitting activities during last ten years were concerned with: comparison of the existing design with today demands (criteria, guidelines, standards etc.); and probability approach for events from outside like aeroplane crashes and earthquakes; the main accidents were rediscussed like startup from low and full power, loss of coolant flow, loss of heat sink, loss of coolant and fuel plate melting; a new reactor protection system had to be installed, following today's demands; a new crane has been installed in the reactor hall. A cold neutron source has been installed to increase the flux of cold neutrons by a factor of 14. The FRG-l is being converted from 93% enriched U with Alx fuel to 20% enriched U with U{sub 3}Si{sub 2} fuel. Both cooling towers were repaired. Replacement of instrumentation is planned.

  8. Backfitting of the FRG reactors

    International Nuclear Information System (INIS)

    Krull, W.

    1990-01-01

    The FRG-research reactors The GKSS-research centre is operating two research reactors of the pool type fueled with MTR-type type fuel elements. The research reactors FRG-1 and FRG-2 having power levels of 5 MW and 15 MW are in operation for 31 year and 27 years respectively. They are comparably old like other research reactors. The reactors are operating at present at approximately 180 days (FRG-1) and between 210 and 250 days (FRG-2) per year. Both reactors are located in the same reactor hall in a connecting pool system. Backfitting measures are needed for our and other research reactors to ensure a high level of safety and availability. The main backfitting activities during last ten years were concerned with: comparison of the existing design with today demands (criteria, guidelines, standards etc.); and probability approach for events from outside like aeroplane crashes and earthquakes; the main accidents were rediscussed like startup from low and full power, loss of coolant flow, loss of heat sink, loss of coolant and fuel plate melting; a new reactor protection system had to be installed, following today's demands; a new crane has been installed in the reactor hall. A cold neutron source has been installed to increase the flux of cold neutrons by a factor of 14. The FRG-l is being converted from 93% enriched U with Alx fuel to 20% enriched U with U 3 Si 2 fuel. Both cooling towers were repaired. Replacement of instrumentation is planned

  9. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  10. Crack of reactor vessel upper head penetration nozzles in Korean nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Doh, E.; Lee, T-S.; Kim, J-Y.; Lee, C-H. [KEPCO Plant Service and Engineering Co., Ltd., Busan (Korea, Republic of)

    2014-07-01

    Since the first CRDM nozzles of reactor vessel head at Kori unit 1 in Korea were inspected in 2003, no CRDM nozzle cracks had been revealed prior to the inspection at Hanbit unit 3 in October 2012, even though many foreign plants had been reporting PWSCC cracks. In October 2012, seven axial cracks from 6 CRDM nozzles at Hanbit unit 3, and in November 2013, six axial cracks from 6 CRDM nozzles at Hanbit unit 4 were detected by TOFD Ultrasonic testing from ID of nozzles. There were confirmed to be PWSCC by Dye penetrant testing and Replica on the surface of J-groove weld of CRDM nozzles. Both plants are OPR-1000 types. All flaws started from the surface of J-groove weld at interface with OD of nozzle, but did not grow up to the top of J-groove weld, and did not make any Leak path up to head outside. The Performance Demonstration Initiative (PDI) system of CRDM nozzle inspection for Westinghouse type plants has been applied in Korea since July 2011. However, its application for OPR-1000 is still under development in Korea. The experience of PDI inspection for Westinghouse type plant contributed greatly to the detection and evaluation of PWSCC of CRDM nozzles at OPR- 1000 of Hanbit unit 3 & 4. The experimentally based procedure of flaw detection and the enhanced detection technique of examiners made it possible to detect and to determine the PWSCC indications. Embedded Flaw Repair process was approved by government authority, and the repair of the 6 CRDM nozzles in each plant was conducted by a consortium of Westinghouse and KPS. (author)

  11. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  12. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  13. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  14. Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights

    International Nuclear Information System (INIS)

    Yuan, Kai; Yang, Lijun; Du, Xiaoze; Yang, Yongping

    2014-01-01

    Highlights: • A new optical fiber monolith reactor model for CO 2 reduction was developed. • Methanol concentration versus fiber location and operation parameters was obtained. • Reaction efficiency increases by 31.1% due to the four fibers and inverse layout. • With increasing space of fiber and channel center, methanol concentration increases. • Methanol concentration increases as the vapor ratio and light intensity increase. - Abstract: Photocatalytic CO 2 reduction seems potential to mitigate greenhouse gas emissions and produce renewable energy. A new model of photocatalytic CO 2 reduction in optical fiber monolith reactor with multiple inverse lights was developed in this study to improve the conversion of CO 2 to CH 3 OH. The new light distribution equation was derived, by which the light distribution was modeled and analyzed. The variations of CH 3 OH concentration with the fiber location and operation parameters were obtained by means of numerical simulation. The results show that the outlet CH 3 OH concentration is 31.1% higher than the previous model, which is attributed to the four fibers and inverse layout. With the increase of the distance between the fiber and the monolith center, the average CH 3 OH concentration increases. The average CH 3 OH concentration also rises as the light input and water vapor percentage increase, but declines with increasing the inlet velocity. The maximum conversion rate and quantum efficiency in the model are 0.235 μmol g −1 h −1 and 0.0177% respectively, both higher than previous internally illuminated monolith reactor (0.16 μmol g −1 h −1 and 0.012%). The optical fiber monolith reactor layout with multiple inverse lights is recommended in the design of photocatalytic reactor of CO 2 reduction

  15. MASTER-2.0: Multi-purpose analyzer for static and transient effects of reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Oh; Song, Jae Seung; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    MASTER-2.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the two group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM(Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with AFEN/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. Master-2.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P model can be used selectively. In addition, MASTER-2.0 is designed to cover various PWRs including SMART as well as WH-and CE-type reactors, providing all data required in their design procedures. (author). 39 refs., 12 figs., 4 tabs.

  16. Fast reactors worldwide

    International Nuclear Information System (INIS)

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  17. Application of stable adaptive schemes to nuclear reactor systems, (2)

    International Nuclear Information System (INIS)

    Kukuda, Toshio

    1979-01-01

    The parameter identification and adaptive control schemes applied in a previous study to a nonlinear point reactor are extended to the case of a loosely-coupled-core reactor with internal feedbacks, constituting a nonlinear overall system. Both schemes are shown to be stable, with the system newly represented on the pattern of the Model Reference Adaptive System (MRAS) with use made of the Lyapunov's method. For either parameter identification or adaptive control of a loosely-coupled-core reactor, there exists no canonical form of multiple input-multiple output system which can be directly applied for deriving the MRAS with the matrix version of the Kalman-Yakubovich lemma as it was in the case of the point reactor. This difficulty is circumvented by the practical assumption that the neutron density can be directly measured on each core as reactivity change is applied as input into the coupled core as a whole. For parameter identification, the model parameters are adaptively adjusted to those of each core, while for the adaptive control, plant parameters of each core can be adaptively compensated, again through control inputs, to asymptotically reduce the output error between the model and the plant. The point reactor is shown to correspond to a special case. (author)

  18. Upgradation of Apsara reactor

    International Nuclear Information System (INIS)

    Mammen, S.; Mukherjee, P.; Bhatnagar, A.; Sasidharan, K.; Raina, V.K.

    2009-01-01

    Apsara is a 1 MW swimming pool type research reactor using high enriched uranium as fuel with light water as coolant and moderator. The reactor is in operation for more than five decades and has been extensively used for basic research, radioisotope production, neutron radiography, detector testing, shielding experiments etc. In view of its long service period, it is planned to carry out refurbishment of the reactor to extend its useful life. During refurbishment, it is also planned to upgrade the reactor to a 2 MW reactor to improve its utilization and to upgrade the structure, system and components in line with the current safety standards. This paper gives a brief account of the design features and safety aspects of the upgraded Apsara reactor. (author)

  19. Mixed core management: Use of 93% and 72% enriched uranium in the BR2 reactor

    International Nuclear Information System (INIS)

    Ponsard, B.

    2000-01-01

    The BR2 reactor, put into operation in 1963 and refurbished from July 1995 till April 1997, is a 100 MW high-flux Materials Testing Reactor, using 93% 235 U enriched uranium as standard fuel, light water as coolant and beryllium as moderator. The present operating regime consists of five irradiation cycles per year at an operating power between 50 and 70 MW; each cycle is characterized by 21 days operation. In the framework of a 'qualification programme', six 72% 235 U fuel elements fabricated with uranium recovered from the reprocessing of BR2 spent fuel at UKAEA-Dounreay have been successfully irradiated in the period 1994-1995 reaching a maximum mean burnup of 48% without the release of fission products. Since 1998, this type of fuel element is irradiated routinely together with standard 93% 235 U fuel elements in order to optimize the utilization of the available HEU inventory. The purpose of this paper is to present the strategy developed in order to optimize the mixed core management of the BR2 reactor. (author)

  20. Effect of fuel assembly when changing from AFA 2G to AFA 3G on seismic loads of reactor internal

    International Nuclear Information System (INIS)

    Liu Wenjin; Zeng Zhongxiu; Ye Xianhui; Wu Wanjun

    2013-01-01

    Nonlinear seismic model for reactor with fuel assemblies of AFA 2G and AFA 3G is established. Using ANSYS software, seismic nonlinear time -history analysis is completed and the effects on seismic loads of reactor system are obtained. The result shows that when the fuel assembly changing from AFA 2G to AFA 3G, it is necessary to reevaluate the fuel assembly itself, but not the reactor internal. (authors)