WorldWideScience

Sample records for pusan kori-1 reactor

  1. Evaluation on radioactive waste disposal amount of Kori Unit 1 reactor vessel considering cutting and packaging methods

    International Nuclear Information System (INIS)

    Choi, Yu Jong; Lee, Seong Cheol; Kim, Chang Lak

    2016-01-01

    Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation

  2. Plant specific PTS analysis of Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Sung-Yull, Hong; Changheui, Jang; Ill-Seok, Jeong [Korea Eletric Power Research Inst., Daejon (Korea, Republic of); Tae-Eun, Jin [Korea Power Engineering Company, Yonging (Korea, Republic of)

    1997-09-01

    Currently, a nuclear PLIM (Plant Lifetime Management) program is underway in Korea to extend the operation life of Kori-1 which was originally licensed for 30 years. For the life extension of nuclear power plants, the residual lives of major components should be evaluated for the extended operation period. According to the residual life evaluation of reactor pressure vessel, which was classified as one of the major components crucial to life extension, it was found by screening analysis that reference PTS temperature would exceed screening criteria before the target extended operation years. In order to deal with this problem, a plant-specific PTS analysis for Kori-1 RPV has been initiated. In this paper, the relationship between PTS analysis and Kori-1 PLIM program is briefly described. The plant-specific PTS analysis covers system transient analysis, downcomer mixing analysis, and probabilistic fracture mechanics analysis to check the integrity or RPV during various PTS transients. The step-by-step procedure of the analysis will be described in detail. Finally, various issues regarding RPV materials and its integrity will be briefly mentioned, and their implications on Kori-1 PTS analysis will be discussed. Despite of the screening analysis result concern, it is now expected that Kori-1 PTS issues can be handled through the plant-specific PTS analysis. (author). 14 refs, 4 figs, 2 tabs.

  3. The 4th surveillance testing for Kori unit 3 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-10-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 3 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 4.983E+18, 1.641E+19, 3.158E+19, and 4.469E+19n/cm{sup 2}, respectively. The bias factor, the ratio of calculation/measurement, was 0.840 for the 1st through 4th testing and the calculational uncertainty, 12% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.362E+19n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.481E+19, 4.209E+19, 5.144E+19 and 5.974E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 3 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 41 tabs. (Author)

  4. The 5th surveillance testing for Kori unit 2 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-03-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules V, R, P, T and N are 2.837E+18, 1.105E+19, 2.110E+19, 3.705E+19 and 4.831E+19n/cm{sup 2}, respectively. The bias factor, the ratio of measurement/calculation, was 0.918 for the 1st through 5th testing and the calculational uncertainty, 11.6% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.898E+19n/cm{sup 2} based on the end of 15th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 4.203E+19, 5.232E+19, 6.262E+19 and 7.291E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 49 refs., 35 figs., 48 tabs. (Author)

  5. Relative power density distribution calculations of the Kori unit 1 pressurized water reactor with full-scope explicit modeling of monte carlo simulation

    International Nuclear Information System (INIS)

    Kim, J. O.; Kim, J. K.

    1997-01-01

    Relative power density distributions of the Kori unit 1 pressurized water reactor calculated by Monte Carlo modeling with the MCNP code. The Kori unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starting with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system coverages to a κ value of 1.00039 ≥ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root mean square error of 2.159%. (author)

  6. Development of the Kori 1 simulator for the MCR modernization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Soo; Hong, Jin Hyuk [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Kori Unit 1 is the first commercial nuclear power reactor, pressurized water reactor that came into commercial service in April 1978 and is licensed for continued operation till 2017. The Main Control Board (MCB) was designed and was not applied the Human Factor Engineering (HFE) program during the construction phase but was performed the D CRDR (Detailed Control Room Design Review) as a post-TMI action. So Korea Hydro Nuclear Power, Ltd. (KHNP) has selected the hybrid type MCR by considering the existing equipment conditions and the operability of the plant as follows. .. Operator console upgrade, .. Plant Computer System (PCS) upgrade, .. PAS (Plant alarm System) upgrade, .. Remote Shutdown Panel (RSP) upgrade, .. Electrical control panel upgrade, and .. Interior improvement including lighting system. KINS will conduct the safety review of the new control room in Kori 1 as the same review level of construction permit (CP), operating license (OL) process. KHNP Central research Institute (CRI) developed a Kori 1 Full Scope Simulator (FSS) to have HFE Verification and Validation Test and operator training for the new modernized I and C of the MCR. This paper describes the several features and the results of the Kori 1 FSS. The NSSS thermal hydraulics model for the Kori 1 Simulator was developed by using the RELAP5 RT code, the real time version of RELAP5 developed by Idaho National Laboratory(INL). It could be configured from RELAP5/MOD3.2 by choosing the correct set of conditional coding and the base RELAP5 nodalization was shown in Figure 2. The NESTLE is a true two energy group neutronics code that computes the neutron flux and power for each node at every time step.

  7. Final report for the 1st ex-vessel neutron dosimetry installations and evaluations for Kori unit 2 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 2 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 20 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 20.

  8. Final report for the 1st ex-vessel neutron dosimetry installation and evaluations for Kori unit 4 reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Chang, Kee Ok; Gong, Un Sik; Choi, Kwon Jae; Chang, Jong Hwa; Lim, Nam Jin; Hong, Joon Wha; Cheon, Byeong Jin

    2006-11-15

    This report describes a neutron fluence assessment performed for the Kori unit 4 pressure vessel belt line region based on the guidance specified in regulatory guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During cycle 16 of reactor operation, an ex-vessel neutron dosimetry program was instituted at Kori unit 4 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the ex-vessel neutron dosimetry program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-vessel neutron dosimetry has been evaluated at the conclusion of cycle 16.

  9. The 5th surveillance testing for Kori unit 1 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-08-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed primarily by Korea Atomic Energy Research Institute and Westinhouse corporation partially involved in testing and calculation data evaluation in order to obtain reliable test result. Fast neutron fluences for capsule V, T, S, R and P were 5.087E+18, 1.115E+19, 1.228E+19, 2.988E+19, and 3.938E+19n/cm2, respectively. The bias factor, the ratio of calculation/measurement, was 0.940 for the 1st through 5th testing and the calculational uncertainty, 7% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.9846E+19n/cm{sup 2} based on the end of 17th fuel cycle and it was predicted that the fluences of vessel inside surface at 24, 32, 40 and 48EFPY would reach 3.0593E+19, 4.0695E+19, 5.0797E+19 and 6.0900E+19n/cm{sup 2} based on the current calculation. PTS analysis for Kori unit 1 showed that 27.93EFPY was the threshold value for 300 deg F requirement. 71 refs., 33 figs., 52 tabs. (Author)

  10. Reload safety evaluation report for kori nuclear power plant unit 2 cycle 9

    International Nuclear Information System (INIS)

    Cho, Beom Jin; Kim, Si Yong; Kim, Oh Hwan; Nam, Kee Il; Um, Gil Sup; Ban, Chang Hwan; Choi, Dong Uk; Yoon, Kyung Ho

    1992-04-01

    The Kori Nuclear Power Plant Unit 2 (Kori-2) is anticipated to be refuelled with 16x16 Korean Fuel Assemblies (KOFA), which are based on the KAERI design starting from Cycle 8. This report presents a reload safety evaluation for Kori-2, Cycle 9 and demonstrates that the reactor core being composed of various fuel assembly types as described below will not adversely affect the safety of the public and the plant. The evaluation of Kori-2, Cycle 9 was accomplished utilizing the methodology described in 'Reload Transition Safety Report for KORI 2' (Ref. /1-1/). The reload core for Kori-2, Cycle 9 is entirely comprised of 16x16 KOFA. In the Kori-2 licensing documentation to KEPCO the reference safety evaluation was provided for the operation of a reactor core fully loaded with KOFA as well as associated proposed changes to the Kori-2 Technical Specifications. The reload for Kori-2, Cycle 9 also introduces UO 2 /Gd 2 O 3 containing fuel rods. The use of fuel rods with Gd 2 O 3 poisoning of the fuel has been approved as a part of the above mentioned licensing documentation. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 9 core design described herein. (Author)

  11. Functional Analysis of Kori Unit 1

    International Nuclear Information System (INIS)

    Choi, Seong Soo; Han, Jeong Hyun; Heo, Tae Young

    2009-07-01

    Function Analysis of Kori Unit 1 has been performed as a part of independent human factors review tasks for control room renovation of the plant. The top level goal defined for the scope of function analysis is 'Generate Electricity'. Through this function analysis of Kori Unit 1, the detailed sub-functions extracted from the existing design documents and procedures, functional relationships among the high level functions, functional classification of each hierarchical level, and tree diagrams of the hierarchical function structures of the plant were developed and identified as the result of the project. In addition, we investigated and compiled the specifications of MMIS devices used in Ulchin Nuclear Power Plant Unit 5,6 in accordance with the request from KAERI. The results of those researches will be used as basis data for independent review of the control room MMIS design of the Kori Unit 1

  12. Analysis of the necessity for inserting new surveillance capsule into the Kori Unit 1 RPV to monitor material fracture toughness

    International Nuclear Information System (INIS)

    Song, Taek Ho

    2007-01-01

    In association with monitoring of reactor pressure vessel (RPV) fracture toughness, surveillance capsule test specimens have been used to monitor the material property of nuclear reactor vessel. As far as Kori Unit 1 is concerned, 6 capsules were put into the vessel before commercial operation of the plant. Up to now, all the six capsules have been withdrawn to test and monitor the fracture toughness of RPV material. The last capsule has been withdrawn on June this year, and the Kori unit 1 has been shut downed since July 2007 and will be shut downed until December this year for about 6 months, preparing the life extension of the plant to operate the plant 10 more years. With the situation that all the surveillance capsules have been withdrawn, public ask the following question, 'To extend the life of Kori Unit 1 more than 10 years, is it necessary to insert new surveillance capsules into the Kori Unit 1 to monitor RPV material fracture toughness?' In connection with this issue, planning project have been carried out since spring this year. In this paper, it is described that inserting new surveillance capsule into the Kori Unit 1 RPV has some meaning in some public acceptance point of view and is not necessary in material engineering point of view

  13. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Yong, Lee Jae; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  14. Determination of optimum pressurizer level for kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee Jae Yong; Kim, Yo Han; Lee, Dong Hyuk [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are performed. The methodology is developed by evaluating {sup d}ecrease in secondary heat removal{sup e}vents such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling. The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. 6 refs., 5 figs. (Author)

  15. Reload safety evaluation report for Kori nuclear power unit 1, cycle 14

    International Nuclear Information System (INIS)

    Kim, Joo Young; Kim, Oh Hwan; Nam, Kee Il; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1994-05-01

    This report presents the reload safety evaluation for Kori-1, Cycle 14 and demonstrate that the reactor core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 14 core design described herein. (Author) 1 refs., 9 figs., 5 tabs

  16. Spent fuel pool cooling system upgrade for Kori Unit 1

    International Nuclear Information System (INIS)

    Sun Park, Jong; In Shin, Kyung

    2014-01-01

    Following Fukushima nuclear power plant accident, the needs for reliable performance of its own safety functions of Spent Fuel Pool Cooling System (SFPCS) has risen significantly to maintain the plant in a safe condition. Regulatory Guide 1.13 of United States Nuclear Regulatory Commission (USNRC) requires the SFPCS shall be designed safety related as Quality Group C and Seismic Category 1. However, the existing Spent Fuel Pool (SFP) of KORI Unit 1 was not designed as a safety system. In order to comply with the above licensing requirement for the extended operational life of KORI Unit 1, it has been decided to add a safety related Seismic Category 1 Makeup System to KORI Unit 1 and the existing SFPCS to be modified in dedicated channels with safety related equipment to enhance system's reliability as a means of providing diversity. This paper focuses on describing the relevant design requirements, applications, and supplemental facilities to the SFPCS of KORI Unit 1. (authors)

  17. Postirradiation examination of Kori-1 nuclear power plant fuels

    International Nuclear Information System (INIS)

    Ro, S.G.; Kim, E.K.; Lee, K.S.; Min, D.K.

    1994-01-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institue. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity. (orig.)

  18. Postirradiation examination of Kori-1 nuclear power plant fuels

    Science.gov (United States)

    Seung-Gy, Ro; Eun-Ka, Kim; Key-Soon, Lee; Duck-Kee, Min

    1994-05-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institute. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity.

  19. Reload safety evaluation report for Kori nuclear power plant unit 1, cycle 13

    International Nuclear Information System (INIS)

    Park, Chan Oh; Moon, Bok Ja; Cho, Byeong Ho; Nam, Kee Il; Kim, Oh Hwan; Chang, Doo Soo; Yoon, Han Young; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1993-03-01

    This report presents the reload safety evaluation for Kori-1, Cycle 13 and demonstrates that the reactor core being composed of various fuel assembly types applied in this evaluation will not adversely affect the safety of the public and the plant. All of the accidents comprising the licensing bases which could potentially be affected by the reload fuel assemblies have been reviewed for the Cycle 13 core and results are described in this report. (Author)

  20. Multi-dimensional analysis of the ECC behavior in the UPI plant Kori Unit 1

    International Nuclear Information System (INIS)

    Bae, Sungwon; Chung, Bub-Dong; Bang, Young Seok

    2008-01-01

    A multi-dimensional transient analysis during the LBLOCA of the Kori Unit 1 has been performed by using the MARS code. Based on 1-D nodalization of the Kori Unit 1, the reactor vessel nodalizations have been replaced by the multi-dimensional component. The multi-dimensional component for the reactor vessel is designed as 5 radial, 8 peripheral, and 21 vertical grids. It is assumed that the fuel assemblies are homogeneously distributed in inner 3 radial grids. The outer 1 radial grid region is modeled as the core bypass. The outer-model 1 radial grid is used for the downcomer region. The corresponding heat structures and fuels are modified to fit for the multi-dimensional reactor vessel model. The form drag coefficients for the upper plenum and the core have been designated as 0.6 and 9.39, respectively. The form drag coefficients for the radial and peripheral directions are assigned to the same on the assumption of homogeneous distribution of the flow obstacles. After obtaining the 102% power steady operation condition, cold leg LOCA simulation is performed during 400 second period. The multi-dimensional steady run results show no severe differences compared to the traditional 1-D nodalization results. After the ECC injection starts, a liquid pool is maintained at the upper plenum because the ECCS water can not overcome the upward gas flow that comes from the reactor core through the upper tie plate. The depth of ECCS water pool is predicted as about 20% of the total height from the upper tie plate and the center line of the hot leg pipe. At the vicinity region of the active ECCS show higher depth of liquid pool. The accumulated water flow rate passing the upper tie plate is calculated by the transient result. Much downward water flow is obtained at the outer-most region of upper plenum space. The downward flow dominant region is about 32.3% of the total upper tie plate area. The accumulated ECCS bypass ratio is predicted as 27.64% at 300 second. It is calculated

  1. Development of Severe Accident Management Strategies for Shin-Kori 3 and 4

    International Nuclear Information System (INIS)

    Lee, Youngseung; Kim, Hyeongtaek; Shin, Jungmin

    2013-01-01

    Shin-Kori units 3 and 4 are new reactors under construction as an APR 1400 type reactor. The plants which considered coping with severe accident from design phase are different from other operating plants in view of severe accident management strategies. The purpose of this paper is to establish optimal strategies for Shin-Kori 3 and 4. A scheme for optimized severe accident management was drawn up with the object of achieving core cooling, containment integrity, and decreased release of fission product. Shin-Kori units 3 and 4 are a new reactor and designed to add mitigating systems for coping with severe accident such as ECSBS, PAR, and CFS. Also the plants are reflected as a part of Fukushima followup measures The strategies of SAMG for Shin-Kori 3 and 4 were developed. The strategic approach was based on the concept of defense in depth. Firstly, strategies for core cooling were chosen such as RCS depressurization, injection to SG, injection to RCS, and injection to reactor cavity. Secondly, the plans for containment integrity were developed for controlling pressure and hydrogen in containment. Lastly, reduced release of fission product was considered for protection of the public after containment failure. The achieved strategies meet the needs of effective methods for severe accident management and enhancement of safety

  2. Preparation status for continuous operation of Kori unit 1 NPP in Korea

    International Nuclear Information System (INIS)

    Choi, C.H. . E-mail : chechee@khnp.co.kr

    2005-01-01

    Kori unit 1 Nuclear Power Plant is the first commercial operation plant in Korea. In Korea, the life extension of NPP beyond design lifetime reached practically application stage. Preparations status for continuous operation of Kori unit 1, Many researches have demonstrated that life extension beyond design lifetime is possible in terms of technology. This paper is to introduce and to share the continuous operation preparations status and schedule for Kori unit 1 License Renewal Process an additional every 10 years beyond the design life 30 years term. (author)

  3. Development of Neutronics Model for ShinKori Unit 1 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hong, JinHyuk; Lee, MyeongSoo; Lee, SeungHo; Suh, JungKwan; Hwang, DoHyun [KEPRI, Daejeon (Korea, Republic of)

    2008-05-15

    ShinKori-Unit 1 and 2 is being built in the Kori site which will be operated at 2815 MWt of thermal core power. The purpose of this paper is to report on the performance of the developed neutronics model of ShinKori Unit 1 and 2. Also this report includes the convenient tool (XS2R5) for processing the large quantity of information received from the DIT/ROCS model and generating cross-sections. The neutronics model is based on the NESTLE code inserted to RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster{sup TM} of the WSC). As some examples for the verification of the developed neutronics model, some figures are provided. The output of the developed neutronics model is in accord with the Preliminary Safety Analysis Report (PSAR) of the reference plant.

  4. Fan Cooler Operation in Kori 1 for Mitigating Severe Accident

    International Nuclear Information System (INIS)

    Suh, Nam Duk; Park, Jae Hong

    2005-01-01

    The Korea Ministry of Science and Technology (MOST) issued the 'Policy on Severe Accident of Nuclear Power Plants' in August 2001. According to the policy it was required for the licensee to develop a plant specific severe accident management guideline (SAMG) and to implement it. Thus the utility has made an implementation plan to develop SAMGs for operating plants. The SAMG for Kori unit 1 was submitted to the government on January 2004. Since then, the government trusted KINS to review the submitted SAMG in view of its feasibility and effectiveness. The first principle of the developed SAMG is to use only the available facilities as it is without introducing any system change. Because Kori-1 has no mitigative facility against combustible gases during severe accident, it relies heavily both on spray and on fan cooler systems to control the containment condition. Thus one of the issues raised during the review is to know whether the fan coolers which are designed for DBA LOCA can be effective in mitigating the severe accident conditions. This paper presents an analysis result of fan cooler operation in controlling the containment condition during severe accident of Kori 1

  5. Upgrade of KNPEC no.2 Simulator for Kori Unit 3 Power Uprating

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin-Hyuk; Lee, Seung-Ho [KEPRI, Daejeon (Korea, Republic of)

    2007-07-01

    Kori-Unit 3 and 4 is preparing the operation of the power-uprating (2900MWt), and therefore the Korea regulatory body(KINS) requested the operator training with the simulator reflecting the power-uprating. As a result of the intensive research and expertise of KEPRI on the simulators, KEPRI accomplished the upgrade project of KNPEC no.2 simulator for Kori-Unit 3 power-uprating. This project includes various high-tech methods incorporating - realtime neutronics model based on MASTER (Multi-purpose Analyzer for Static and Transient Effects of Reactors) code, best-estimate neutronics code by the KINS, (By using the RMASTER, the precision of the simulation of the neutron behaviors in the core is highly improved.) - betterment of the reactor coolant system and the balance-of-plant system - modification of the corresponding setpoints due to the power-uprating And the acceptance test procedure (ATP) was successfully carried out through the integration of system models and its performance tests. Through the success of this project, the operator training for the power uprating of the Kori-Unit 3 will be accomplished before its power operation and, after all, this simulator will contribute to the safe operation for the power-uprating of the Kori-Unit 3 and 4.

  6. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Ha, Sang Jun [KHNP CRI, Daejeon (Korea, Republic of); Han, Kee Soo [Nuclear Engineering Service and Solution (NESS) Co. Ltd., Deajeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Constructd., Deajeon (Korea, Republic of)

    2016-10-15

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings.

  7. Assessment of Coping Capability of KORI Unit 1 under Extended Loss AC Power and Loss of Ultimate Heat Sink Initiated by Beyond Design Natural Disaster

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Ha, Sang Jun; Han, Kee Soo; Park, Chan Eok

    2016-01-01

    In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. This paper presents assessment results of coping capability of KORI Unit 1 under the simultaneous Extended Loss of AC Power (ELAP) and Loss of Ultimate Heat Sink (LUHS) which is a representative plant condition initiated by beyond design natural disaster. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings

  8. Features of Computerized Procedure System of Shin-Kori unit 5 and 6

    International Nuclear Information System (INIS)

    Seong, Nokyu; Jung, Yeonsub; Sung, Chanho

    2016-01-01

    The Computerized Procedure System (CPS) is one of the Man Machine Interface (MMI) resources of Main Control Room (MCR) of the Advanced Power Reactor 1400 (APR1400). The CPS has been continuously improved since it was installed in Shin-Kori unit 3 and 4. The Korea Hydro Nuclear Power Central Research Institute (KHNP CRI) has found the points of improvement of CPS through CPS centered Human Factors Engineering Verification and Validation (HFE V and V) and Operating Experience Review (OER) of reference power plant. This paper shows the main features of CPS of Shin-Kori 5 and 6 unit. This paper shows the main features of CPS of Shin-Kori 5 and 6. These are some of improvements of CPS. This prototype of CPS currently is implementing in CRI. The respective function can be more detailed after testing the prototype. These features will be applied to Shin-Kori 5 and 6 CPS after HFE V and V

  9. Features of Computerized Procedure System of Shin-Kori unit 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Nokyu; Jung, Yeonsub; Sung, Chanho [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Computerized Procedure System (CPS) is one of the Man Machine Interface (MMI) resources of Main Control Room (MCR) of the Advanced Power Reactor 1400 (APR1400). The CPS has been continuously improved since it was installed in Shin-Kori unit 3 and 4. The Korea Hydro Nuclear Power Central Research Institute (KHNP CRI) has found the points of improvement of CPS through CPS centered Human Factors Engineering Verification and Validation (HFE V and V) and Operating Experience Review (OER) of reference power plant. This paper shows the main features of CPS of Shin-Kori 5 and 6 unit. This paper shows the main features of CPS of Shin-Kori 5 and 6. These are some of improvements of CPS. This prototype of CPS currently is implementing in CRI. The respective function can be more detailed after testing the prototype. These features will be applied to Shin-Kori 5 and 6 CPS after HFE V and V.

  10. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  11. Relaxation of inservice test frequency requirement for Kori 1 ASME code pumps

    International Nuclear Information System (INIS)

    Sohn, Gap Heon; Choi, Hae Yoon; Min, Kyung Sung; Rim, Nam Jin

    1994-08-01

    The objective of this investigation is to evaluate the technical and regulational requirements to justify the relaxation of the test frequency of Kori 1 pumps through reviewing the related rules and codes and standards, technical specifications of Kori 1 and other similar plants, standard technical specifications, research results for tech. spec. improvements and site test records. It is concluded that the relaxation of test frequency to quarterly be justified based on the conformance with rules and codes and standard, quarterly test cases in similar plants and standard tech. spec., recommendations of research result and stable site test records. (Author) 16 refs., 26 figs., 13 tabs

  12. Lifetime management research trend of Kori-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, J. S.; Jeong, I. S.; Hong, S. Y.

    1998-01-01

    KEPRI launched the Nuclear Power Plant Lifetime Management Study(II) for the management of the latter half life of Kori-1. Main goal of LCM-IV study is the detail evaluation of main equipment life and establishment of aging management based on LCM-IV result. The result of LCM-IV on the kori-1 confirmed the technical and economical feasibility of life extension beyond the design life. Owing to absence of The regulatory policy for the life extension in korea, LCM-IV will focus on the minimum study which is essential for the actual lifetime management for the old nuclear power plant. License renewal study is expected after the establishment of Regulatory policy about the life extension of nuclear power plant. LCM trend in korea and abroad, result of technical and economical feasibility study and summary of LCM-IV is described on this paper

  13. Development of the Real-time Core and Thermal-Hydraulic Models for Kori-1 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Hyuk; Lee, Myeong Soo; Hwang, Do Hyun; Byon, Soo Jin [KEPRI, Daejeon (Korea, Republic of)

    2010-10-15

    The operation of the Kori-Unit 1 (1723.5MWt) is expanded to additional 10 years with upgrades of the Main Control Room (MCR). Therefore, the revision of the procedures, performance tests and works related with the exchange of the Main Control Board (MCB) are currently carried out. And as a part of it, the fullscope simulator for the Kori-1 is being developed for the purpose of the pre-operation and emergence response capability for the operators. The purpose of this paper is to report on the performance of the developed neutronics and thermal-hydraulic (TH) models of Kori Unit 1 simulator. The neutronics model is based on the NESTLE code and TH model based on the RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster{sup TM} of the WSC). As some examples for the verification of the developed neutronics and TH models, some figures are provided. The outputs of the developed neutronics and TH models are in accord with the Nuclear Design Report (NDR) and Final Safety Analysis Report (FSAR) of the reference plant

  14. Radiographic monitoring of the ossification of long bones in kori (Ardeotis kori) and white-bellied (Eupodotis senegalensis) bustards

    International Nuclear Information System (INIS)

    Naldo, J.L.; Samour, J.H.; Bailey, T.A.

    1998-01-01

    A serial radiographic study was conducted on eight kori bustard (Ardeotis kori) and four white-bellied bustard (Eupodotis senegalensis) chicks to determine the pattern of long bone development and to establish radiographic standards for assessing skeletal maturity. The ossification pattern, appearance of secondary ossification centres, and epiphyseal fusion of the long bones in kori and white-bellied bustards were similar to those in houbara bustards (Chlamydotis undulata macqueenii),rufous-crested bustards (Eupodotis ruficrista), domestic fowl (Gallusgallus), house wrens (Troglodytes aedon aedon), racing pigeons (Columba livia), and barn owls (Tyto alba). Secondary ossification centres were present at the proximal and distal tibiotarsus, proximal tarsometatarsus and proximal metacarpal III. The ossification of long bones occurred earlier in female kori bustards compared with males

  15. Thermal recovery characteristics of Kori-unit 1 linde 80 weld

    International Nuclear Information System (INIS)

    Chi, S. H.; Hong, J. H.; Kuk, I. H.; Kim, I. S.

    1997-01-01

    The recovery activation energy, the order of reaction and the characteristic recovery rate constant were determined by isochronal (573K -823K) and isothermal (723K - 775K) annealing experiments on specimens made from a broken half of a Kori-Unit 1 surveillance weld specimen (fluence: 1.21 x 10 23 n/m 2 , E (1MeV, Cu: 0.29 wt%) to investigate the recovery characteristics of a high copper weld of neutron-irradiated reactor pressure vessel (RPV). Vickers microhardness tests were conducted to trace the recovery behavior after heat treatments. The results were analyzed in terms of recovery stages, behavior of responsible defects and recovery kinetics. It was shown that recovery occurred through two annealing stages (stage I: 673K - 753K, stage II: 753K - 823K) with recovery activation energies of 2.68 eV and 2.83 eV for stage I and II, respectively. The isothermal hardness recovery at 723 K and 775 K coincided with the ratio of the characteristic rate constant for each recovery stage. The order of reaction was 2 for both recovery stages. The recovery activation energies of present specimens are approximately equal to that of copper diffusion in α-iron in the presence of vacancies, suggesting that recovery may occur through the diffusion of copper atoms. The present results strongly support the copper precipitate coarsening model. (author)

  16. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    International Nuclear Information System (INIS)

    Kang, Ho Weon

    1998-01-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs

  17. Life extension program of KORI Unit 1 NPP in Korea

    International Nuclear Information System (INIS)

    Hong, Sun-Yull

    1998-01-01

    The two phases of Life extension program for KORI Unit 1 NPP are presented. Phase I is completed. It was concluded that life extension is a feasible option in technical and economic aspects. Detailed analysis of RPV is underway, plan for Phase II is finished. It deals with screening and sorting of all relevant SSCs, detailed life evaluation of SSCs, ageing management program and documentation for license renewal application

  18. Dose mapping in working space of KORI unit 1 using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. W.; Shin, C. H.; Kim, J. G. [Hanyang University, Seoul (Korea, Republic of); Kim, S. Y. [Innovative Techonology Center for Radiation Safety, Seoul (Korea, Republic of)

    2004-07-01

    Radiation field analysis in nuclear power plant mainly depends on actual measurements. In this study, the analysis using computational calculation is performed to overcome the limits of measurement and provide the initial information for unfolding. The radiation field mapping is performed, which makes it possible to analyze the trends of the radiation filed for whole space. By using MCNPX code, containment building inside is modeled for KORI unit 1 cycle 21 under operation. Applying the neutron spectrum from the operating reactor as a radiation source, the ambient doses are calculated in the whole space, containment building inside, for neutron and photon fields. Dose mapping is performed for three spaces, 6{approx}20, 20{approx}44, 44{approx}70 ft from bottom of the containment building. The radiation distribution in dose maps shows the effects from structures and materials of components. With this dose maps, radiation field analysis contained the region near the detect position. The analysis and prediction are possible for radiation field from other radiation source or operating cycle.

  19. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Weon [Korea Electric Power Corp. Ko-Ri nuclear power division, Ko-Ri (Korea, Republic of)

    1998-07-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs.

  20. IAEA Completes Expert Mission to Kori 1 Nuclear Power Plant in the Republic of Korea

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) has completed a review of safety practices at the Kori 1 Nuclear Power Plant (NPP) near Busan in the Republic of Korea. The IAEA assembled the team at the request of Korea Hydro and Nuclear Power Co., Ltd. (KHNP) following a station blackout event on 9 February 2012. The team - comprised of experts from Belgium, France, Sweden, United Kingdom and the IAEA - conducted its mission from 4 to 11 June 2012 under the leadership of the IAEA's Division of Nuclear Installation Safety. The expert mission applied the methodology of the IAEA's Operational Safety Review (OSART) missions and covered the areas of Management, Organization and Administration; Operations; Maintenance and Operating Experience. The conclusions of the review are based on the IAEA's Safety Standards, which are developed by the Agency to help nations improve their nuclear safety practices, which are the responsibility of every nation that undertakes nuclear-related activities. Throughout the review, the exchange of information between the experts and plant personnel was very open, professional and productive. Prior to the mission, Korea's Nuclear Safety and Security Commission completed an interim investigation, and it continues to perform additional investigations and technical reviews. The Commission identified corrective actions for the plant concerning reinforcing safety culture, emergency diesel generator reliability, configuration control and risk management during refueling outage, test and maintenance procedures and emergency action level declaration. The expert mission confirmed that some corrective actions have already been completed and others are in progress. The expert mission found the management and staff of Kori 1 NPP to be committed and working hard to complete all improvements. The root cause analysis of the event at Kori 1 NPP is still in progress and is expected to lead to

  1. Main Control Room Upgrade for Kori Unit 1 in Korea

    International Nuclear Information System (INIS)

    Ha, Jae Taeg; Choi, Moon Jae

    2014-01-01

    Kori Unit 1 is a 30 years old nuclear power plant and its MCR and MCB was upgraded based on the latest Human Factors Engineering (HFE) principles. The objectives of applying the Human Factors Engineering (HFE) principles are to minimize the human errors and to enhance the safe operation of the plant. In order to systematically incorporate the HFE design principles into the Human System Interface (HSI) design, HFE Program Plan (HFEPP) for Kori Unit 1 was developed and the plan provided an overview of the HSI design process along with detailed methods and results. The upgrade includes addition of Bypassed and Inoperable Status Indication System (BISI) and the replacement of the conventional MMI devices such as hardwired hand switches, recorders and indicators with new advanced control and display devices using VDUs (Video Display Units). The VDUs significantly improve the effectiveness and efficiency of the monitoring function. Plant Monitoring System (PMS) and Plant Annunciator System (PAS) were upgraded also by replacing the outdated systems with advanced digital systems with future expansion capability. In addition, the MCR related equipment and/or facilities were replaced or improved. Some of these include the enhancement of MCR interior designs for better working environment, dimmable ceiling lighting, aesthetically pleasing decor of ceiling, wall and floor as well as ergonomically improved operator consoles

  2. Main Control Room Upgrade for Kori Unit 1 in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Taeg; Choi, Moon Jae [KEPCO, Daejeon (Korea, Republic of)

    2014-08-15

    Kori Unit 1 is a 30 years old nuclear power plant and its MCR and MCB was upgraded based on the latest Human Factors Engineering (HFE) principles. The objectives of applying the Human Factors Engineering (HFE) principles are to minimize the human errors and to enhance the safe operation of the plant. In order to systematically incorporate the HFE design principles into the Human System Interface (HSI) design, HFE Program Plan (HFEPP) for Kori Unit 1 was developed and the plan provided an overview of the HSI design process along with detailed methods and results. The upgrade includes addition of Bypassed and Inoperable Status Indication System (BISI) and the replacement of the conventional MMI devices such as hardwired hand switches, recorders and indicators with new advanced control and display devices using VDUs (Video Display Units). The VDUs significantly improve the effectiveness and efficiency of the monitoring function. Plant Monitoring System (PMS) and Plant Annunciator System (PAS) were upgraded also by replacing the outdated systems with advanced digital systems with future expansion capability. In addition, the MCR related equipment and/or facilities were replaced or improved. Some of these include the enhancement of MCR interior designs for better working environment, dimmable ceiling lighting, aesthetically pleasing decor of ceiling, wall and floor as well as ergonomically improved operator consoles.

  3. Experience of Ko-Ri Unit 1 water chemistry

    International Nuclear Information System (INIS)

    Tae Il Lee

    1983-01-01

    The main focus is placed on operational experience in secondary system water chemistry (especially the steam generator) of the Ko-Ri nuclear power plant Unit 1, Republic of Korea, but primary side chemistry is also discussed. The major concern of secondary water chemistry in a PWR is that the condition of the steam generator be well maintained. Full flow deep bed condensate polishers have recently been installed and operation started in July 1982. Boric acid treatment of the steam generator was stopped and only the all volatile treatment method was used thereafter. A review of steam generator integrity, the chemistry control programme, secondary water quality, etc. is considered to be of great value regarding the operation of Unit 1 and future units now under startup testing or construction in the Republic of Korea. (author)

  4. Fracture Toughness Evaluation of Kori-1 RPV Beltline Weld for a Long-Term Operation

    International Nuclear Information System (INIS)

    Lee, Bong-Sang; Kim, Min-Chul; Ahn, Sang-Bok; Kim, Byung-Chul; Hong, Jun-Hwa

    2007-01-01

    Irradiation embrittlement of RPV (reactor pressure vessel) material is the most important aging issue for a long-term operation of nuclear power plants. KORI unit 1, which is the first PWR in Korea, is approaching its initial licensing life of 30 years. In order to operate the reactor for another 10 years and more, it should be demonstrated that the irradiation embrittlement of the reactor will be adequately managed by ensuring that the fracture toughness properties have a certain level of the safety margin. The current regulation requires Charpy V-notch impact data through conventional surveillance tests. It is based on the assumption that Charpy impact test results are well correlated with the fracture toughness properties of many engineering steels. However, Charpy V-notch impact data may not be adequate to estimate the fracture toughness of certain materials, such as Linde 80 welds. During the last decade, a tremendous number of fracture toughness data on many RPV steels have been produced in accordance with the new standard test method, the so-called master curve method. ASTM E1921 represents a revolutionary advance in characterizing fracture toughness of RPV steels, since it permits establishing the ductile to brittle transition portion of the fracture toughness curve with direct measurements on a relatively small number of relatively small specimens, such as pre-cracked Charpy specimens. Actual fracture toughness data from many different RPV steels revealed that the Charpy test estimations are generally conservative with the exception of a few cases. Recent regulation codes in USA permit the master curve fracture toughness methodology in evaluating an irradiation embrittlement of commercial nuclear reactor vessels

  5. Evaluation of SPACE code for simulation of inadvertent opening of spray valve in Shin Kori unit 1

    International Nuclear Information System (INIS)

    Kim, Seyun; Youn, Bumsoo

    2013-01-01

    SPACE code is expected to be applied to the safety analysis for LOCA (Loss of Coolant Accident) and Non-LOCA scenarios. SPACE code solves two-fluid, three-field governing equations and programmed with C++ computer language using object-oriented concepts. To evaluate the analysis capability for the transient phenomena in the actual nuclear power plant, an inadvertent opening of spray valve in startup test phase of Shin Kori unit 1 was simulated with SPACE code. To evaluate the analysis capability for the transient phenomena in the actual nuclear power plant, an inadvertent opening of spray valve in startup test phase of Shin Kori unit 1 was simulated with SPACE code

  6. Reload safety evaluation report for kori nuclear power plant unit 4, cycle 8

    International Nuclear Information System (INIS)

    Park, Chan Oh; Jung, Yil Sup; Kim, Si Yong; Kim, Ki Hang; Kwon, Hyuk Sung; Oh, Dong Seok; Kim, Du Ill; Ban, Chang Hwan; Choi, Dong Uk

    1993-06-01

    This report presents the reload safety evaluation for Kori-4, Cycle 8 and demonstrate that the reactor core being entirely composed of KOFA as described in the report will not adversely affect the safety of the public and the plant. All of the accidents comprising the licening bases which could potentially be affected by the fuel reload have been reviewed for the Cycle 8 core design described herein. (Author)

  7. Reevaluation of Kori Unit 4 Natural Circulation Test

    Energy Technology Data Exchange (ETDEWEB)

    Yassin, Nassir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The simulation results showed that the natural circulation flow developed by density difference was capable of removing decay heat from the fuel rod. The maximum pellet centerline temperature of the hot channel showed large margin to the pellet melting temperature. The maximum coolant temperature in the hot channel was well below the saturation temperature. If steam generators provide heat sink to the primary coolant system and thus natural circulation is maintained, the integrity of the fuel in the core can be sustained with large margin. Passive cooling of reactor is inevitable in case of failures in forced cooling system such as loss of electric power for cooling pumps. Fukushima accident showed the importance of the passive core cooling. During the commissioning test of PWRs, natural circulation test is performed to demonstrate the passive core cooling by natural convection. The driving force for coolant flow is developed by the density deference along the loop multiplied by the gravitation. Using the data from 'natural circulation test' and 'RCS flow coast down test' of Kori Unit 4, fuel behavior was reevaluated by FRAPTRAN code. RCS natural circulation test of Kori Unit 4 was reevaluated by FRAPTYRAN simulation to study the fuel behavior during the flow coast down transient and at the equilibrium condition in which decay heat transport and RCS flow were stabilized.

  8. Final Report of the 2nd Ex-Vessel Neutron Dosimetry Installation And Evaluations for Yonggwang Unit 1 Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chul; Yoo, Choon Sung; Lee, Sam Lai; Gong, Un Sik; Choi, Kwon Jae; Chung, Kyoung Ki; Kim, Kwan Hyun; Chang, Jong Hwa; Ha, Jea Ju

    2008-01-15

    This report describes a neutron fluence assessment performed for the Kori Unit 2 pressure vessel belt line region based on the guidance specified in Regulatory Guide 1.190. In this assessment, maximum fast neutron exposures expressed in terms of fast neutron fluence (E>1 MeV) and iron atom displacements (dpa) were established for the belt line region of the pressure vessel. During Cycle 21 of reactor operation, an Ex-Vessel Neutron Dosimetry Program was instituted at Kori Unit 2 to provide continuous monitoring of the belt line region of the reactor vessel. The use of the Ex-Vessel Neutron Dosimetry Program coupled with available surveillance capsule measurements provides a plant specific data base that enables the evaluation of the vessel exposure and the uncertainty associated with that exposure over the service life of the unit. Ex-Vessel Neutron Dosimetry has been evaluated at the conclusion of Cycle 21.

  9. Design Modification of Kori Unit 1 for the Equipment Qualification

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, M. Y.; Han, K. T.; Park, J. D.

    2007-01-01

    There has not been a strict regulatory requirements for the Equipment Qualification(EQ) in 1970's when Kori Unit 1 had begun the construction and the commercial operation. The Korean regulatory body requested the EQ on the various safety-related components, as a result of Periodic Safety Review. However, the EQ itself is impossible in some areas, due to the high pressure/temperature and flooding environment conditions from the pipe breaks. Design modification is being considered in the Auxiliary Building, the Intermediate Building, the Component Cooling Water Heat Exchanger Building and the Turbine Building, in order to mitigate the environmental conditions for the EQ

  10. Comparison of the Radionuclides Dispersion at the UAE Barakah Site with that at the ROK Shin-Kori Site - Comparison of the radionuclides dispersion in Barakah site with that in Shin-Kori site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lee, Kun Jai; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Beeley, Philip A. [Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates)

    2014-07-01

    In order to understand the characteristics of atmospheric dispersion of radionuclides in the desert environment of Barakah site in UAE, comparison research with the results of other environments could be an appropriate way to facilitate it. Shin-Kori site is the proper comparison target because same reactor type of APR1400 with that in Barakah site is under construction. Hypothetical accident scenario was considered and accident source term which had been developed in previous research has been applied as releasing source. After reviewing several computation codes, ADMS5 has been selected as an atmospheric dispersion modeling tool which is installing advanced Gaussian plum model and plentiful options. The climate data of both Barakah and Shin-Kori were acquired and the environments of both sites have been simulated considering wind speed, wind direction, temperature, humidity, ground surface roughness and etc. Near field final human doses on the maps have been schematised regarding statistical meteorological data of both sites and dose conversion factors from the publications of ICRP and federal guidance report of EPA. The results of this research are expected to enhance the understanding about differences between two environments which have same reactor type and to improve the comprehension of desert environment of Barakah site as well. Applying different dose conversion factors to Barakah site considering the desert biosphere could be further study to obtain more accurate results. (authors)

  11. Analysis of a station blackout transient at the Kori units 3/4

    International Nuclear Information System (INIS)

    Bang, Young Seok; Kim, Hho Jung

    1992-01-01

    A transient analysis of station blackout accident is performed to evaluate the plant specific capability to cope with the accident at the Kori Units 3/4. The RELAP5/MOD3/5m5 code and full three loop modelling scheme are used in the calculation. The leak flow from reactor coolant system due to a failure of reactor coolant pump seal following the accident is assumed to be 25 gpm and the turbine driven aux feedwater unavailable. As a result, it is found that no core uncovery occurs in the plant until 7100 sec following a station blackout, the steam generator has a decay heat removal capability until 3100 sec, and the natural circulation over the reactor coolant loop until the complete loop seal voiding are observed. And the Nuclear Plant Analyzer is used and found to be effective in improving the phenomenological understanding on the accident

  12. Economic evaluation of Kori and Wolsong Unit 1 plant life extension

    International Nuclear Information System (INIS)

    Song, T. H.; Jeong, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Wolsong Unit 1 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by the utility company. In this paper, the methodologies and results of plant lifetime management economic evaluations of both units have been presented in comparison with Korean standard nuclear power plant 10, 20 and 30 year life extension cases respectively. In addition to that, sensitivity analysis and break even point analysis results are presented with the variables of capacity factor, operation and maintenance cost, and discount rate

  13. Cutset Quantification Error Evaluation for Shin-Kori 1 and 2 PSA model

    International Nuclear Information System (INIS)

    Choi, Jong Soo

    2009-01-01

    Probabilistic safety assessments (PSA) for nuclear power plants (NPPs) are based on the minimal cut set (MCS) quantification method. In PSAs, the risk and importance measures are computed from a cutset equation mainly by using approximations. The conservatism of the approximations is also a source of quantification uncertainty. In this paper, exact MCS quantification methods which are based on the 'sum of disjoint products (SDP)' logic and Inclusion-exclusion formula are applied and the conservatism of the MCS quantification results in Shin-Kori 1 and 2 PSA is evaluated

  14. HIV-positive patients in Pusan servitude : clinical and chest radiographic findings

    International Nuclear Information System (INIS)

    Son, Young Keun; Kim, Kun Il

    2001-01-01

    To analyze the clinical and chest radiolographic findings of HIV-positive in Pusan survitude. We reviewed the medical records of 74 admission cases of 41 HIV-positive patients (38 mem and 3 women), confirmed in NIH and admitted to our hospital between May 1990 and September 1997. We evaluated the clinical findings including the pulmonary disease diagnosed at each admission, and using the pattern approach assessed the radiographic findings in 63 cases available among 74 admission cases. For statistical analysis the Pearson Chi-Square test was used, and the chest CT findings available in 19 cases among 17 patients were also evaluated. In all cases the mode of transmission was sexual contact, and they were more frequently contacted with foreigners (73%) than koreans (27%). During the follow-up period, pulmonary diseases were diagnosed in 52 (70%) of 74 admission cases. The diagnoses were pneumocystis cabrini pneumonia (PCP, n=15), pneumonia(n=15), pulmonary tuberculosis(n=15), combined infection with PCP and pulmonary tuberculosis(n=5), and combined infection with PCP and bacterial pneumonia(n=1). The count of CD4+ lymphocyte in 33 of 55 available admissions cases was less than 50 cells/mm?. In 28 patients(68%) who died, the time between confirmation of HIV-positive status to death ranged from 2 to 81 (mean, 39) months. Chest radiographs of 46 available admission cases (73%) showed the followingabnormal findings: interstitial opacities(n=26), consolidation(n=17), single or multiple nodules (n=9), hilar or mediastinal lymph node enlargement(n=10), pleural effusion(n=8), cyst(n=2), mass(n=1), and pericardial effusion(n=1). Diffuse ground glass opacity was observed in eight (89%) of nine PCP cases (p<0.05), and in cases of pulmonary tubercolosis, hilar or mediastinal lymph node enlargement was frequent (p<0.05). Pulmonary diseases in HIV-positive patients in Pusan servitude were diagnosed during follow-up in 70% of cases. The majority of these diseases were infectious

  15. HIV-positive patients in Pusan servitude : clinical and chest radiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young Keun; Kim, Kun Il [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of)

    2001-04-01

    To analyze the clinical and chest radiolographic findings of HIV-positive in Pusan survitude. We reviewed the medical records of 74 admission cases of 41 HIV-positive patients (38 mem and 3 women), confirmed in NIH and admitted to our hospital between May 1990 and September 1997. We evaluated the clinical findings including the pulmonary disease diagnosed at each admission, and using the pattern approach assessed the radiographic findings in 63 cases available among 74 admission cases. For statistical analysis the Pearson Chi-Square test was used, and the chest CT findings available in 19 cases among 17 patients were also evaluated. In all cases the mode of transmission was sexual contact, and they were more frequently contacted with foreigners (73%) than koreans (27%). During the follow-up period, pulmonary diseases were diagnosed in 52 (70%) of 74 admission cases. The diagnoses were pneumocystis cabrini pneumonia (PCP, n=15), pneumonia(n=15), pulmonary tuberculosis(n=15), combined infection with PCP and pulmonary tuberculosis(n=5), and combined infection with PCP and bacterial pneumonia(n=1). The count of CD4+ lymphocyte in 33 of 55 available admissions cases was less than 50 cells/mm?. In 28 patients(68%) who died, the time between confirmation of HIV-positive status to death ranged from 2 to 81 (mean, 39) months. Chest radiographs of 46 available admission cases (73%) showed the followingabnormal findings: interstitial opacities(n=26), consolidation(n=17), single or multiple nodules (n=9), hilar or mediastinal lymph node enlargement(n=10), pleural effusion(n=8), cyst(n=2), mass(n=1), and pericardial effusion(n=1). Diffuse ground glass opacity was observed in eight (89%) of nine PCP cases (p<0.05), and in cases of pulmonary tubercolosis, hilar or mediastinal lymph node enlargement was frequent (p<0.05). Pulmonary diseases in HIV-positive patients in Pusan servitude were diagnosed during follow-up in 70% of cases. The majority of these diseases were infectious

  16. Development and application of the lancing system of delta-60 steam generator-Kori nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Jeong, W. T.; Han, D. Y.; Ahn, N. S.; Jo, B. H.; Hong, Y. W.

    2001-01-01

    A lancing system for removing the deposits on the tube sheet of a nuclear steam generator using high pressure water was developed and applied to Kori Nuclear Power Plant( NPP) Unit 1. As the place where the lancing system is to be installed is relatively high radioactive area, every part consisting the equipment is carefully selected to be radiation resistant. The lancing robot was designed to be water proof to aviod possible malfunction of the lancing robot because of high pressure water. To minimize radiation exposure to operators, the system was designed considering easy installation and maintenance in mind. Water ejection nozzle are designed to have high strength with special material and heat treatment so as to lessen abrasion caused by high pressure ejection. The lancing system showed good performance during the on-site lancing using the system for Delta-60 steam generator of Kori NPP No. 1 in October 2000

  17. The technology development for surveillance test of reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Sun Phil; Park, Day Young; Choi, Kwen Jai

    1997-12-01

    Benchmark test was performed in accordance with the requirement of US NRC Reg. Guide DG-1053 for Kori unit-1 in order to determine best-estimated fast neutron fluence irradiated into reactor vessel. Since the uncertainty of radiation analysis comes from the calculation error due to neutron cross-section data, reactor core geometrical dimension, core source, mesh density, angular expansion and convergence criteria, evaluation of calculational uncertainty due to analytical method was performed in accordance with the regulatory guide and the proof was performed for entire analysis by comparing the measurement value obtained by neutron dosimetry located in surveillance capsule. Best-estimated neutron fluence in reactor vessel was calculated by bias factor, neutron flux measurement value/calculational value, from reanalysis result from previous 1st through 4th surveillance testing and finally fluence prediction was performed for the end of reactor life and the entire period of plant life extension. Pressurized thermal shock analysis was performed in accordance with 10 CFR 50.61 using the result of neutron fluence analysis in order to predict the life of reactor vessel material and the criteria of safe operation for Kori unit 1 was reestablished. (author). 55 refs., 55 figs.

  18. Development of radiation protection technology for application of the retired steam generator, Kori Unit no. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Jang, D. C.; Song, K. S.; Lee, S. J.; Ahn, C. S.; Kim, D. H.; Im, Y. K.; Kim, H. D. [Hanil Nuclear Co., Ltd., Anyang (Korea, Republic of)

    2005-04-15

    It is a field study to develop and verify maintenance technologies such as verification and technology development of ECT (Eddy current test) using failure, heat tube excavation and field pressure test regarding the utilization of retired steam generator using 2 units of Retired Steam Generator in Kori 1 that was replaced for the first time in Korea in 1998. Since May, 2003, our team has investigated Retired Steam Generator which was stored in Radioactive waste warehouse in Korea Hydro and Nuclear Power Kori unit no.1 Branch, in order to study natural fault ECT signal acquisition, maintenance technology verification, small tubes/samples abstraction. A temporal task zone was made focusing on 'Man Way at the bottom of Chamber 'A'.' The purpose of the study is to establish Radiological Protection and Radioactive Waste Treatment Plan by setting ALARA (As Low As Reasonably Achievable) goal systematically, which is the basic concept of Radiological Protection and reduction in exposure of radiological workers to radioactive materials with proper Radiological Protection countermeasures according to the changes in radioactivity, to prevent expansion from contamination and to manage 'Radioactive Waste Reduction Activities' effectively.

  19. Aging management strategy for reactor internals of Korean nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Soung Woo; Lee, Sam Lai; Hong, Seung Mo; Kim, Hong Pyo; Kim, Dong Jin; Lim, Yun Soo; Kim, Joung Soo; Jung, Man Kyo; Park, Jang Yul

    2010-01-01

    This report describes various factors on the IASCC of reactor internals in terms of fluence, stress, water chemistries and materials. Materials of each components of Korean nuclear power plants have been surveyed. A technical report for a management of reactor internals issued by EPRI was reviewed for a selection of most susceptible area among many components. Baffle former bolts are considered to be the most susceptible parts due to high irradiation level(fluence) and high tensile stress. Neutron fluence of Kori-1 and Kori-2 was calculated based on fuel exchange history, fuel performance and plant operation history. This report will be used for more advanced inspection and maintenance guidelines development by supplying inspection intervals and components (most susceptible regions) for the long term operation plants

  20. An Australian View of the Pusan Political Crisis in Korea, 1952

    Directory of Open Access Journals (Sweden)

    Munro Ronald

    2015-02-01

    Full Text Available This paper examines the ‘Pusan Political Crisis’ through Australian archival documents. Though Australia was a member of the UNTCOK (United Nations Temporary Commission on Korea, it opposed the strategy of the US to establish a divided government in Korea. Thus, Australia paid sharp attention to the political situation in Korea as it took part in the UNCURK (United Nations Commission for the Unification and Rehabilitation of Korea. The scramble for power broke out in Pusan, which was the ROK’s interim wartime capital. The president was to be elected by the National Assembly according to the Constitution, but the majority of National Assembly members didn’t support Syngman Rhee. Thus, he intended to change over to a direct presidential election system to win re-election. The members of the National Assembly opposed to Syngman Rhee appealed to the Australian diplomat to assist in preventing Rhee formally becoming a dictator. Although the Australian diplomat sincerely desired to intervene in this event due to his belief in and desire for adherence to democratic principles he was to some extent reluctant to do so as he did not have specific orders and to interfere in the domestic affairs of a sovereign was not a step to be taken lightly. Plimsoll was also fully aware of the propaganda victory it would give the Soviet Union-the UNO removing the head of state of a country it had brought into being. Eventually Rhee concluded this crisis by proclaiming martial law and arresting his opponents in the National Assembly.

  1. Nuclear design report for Kori nuclear power plant unit 1, cycle 13

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Moon, Bok Ja; Cho, Byeong Ho; Jung, Yil Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-04-01

    This report presents nuclear design calculations for cycle 13 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 13 amounts to 355 EFPD corresponding to a cycle burnup of 13240 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  2. Fracture toughness master curve characterization of Linde 1092 weld metal for Beaver valley 1 reactor

    International Nuclear Information System (INIS)

    Lee, Bong Sang; Yang, Won Jon; Hong, Jun Hwa

    2000-12-01

    This report summarizes the test results obtained from the Korean contribution to the integrity assessment of low toughness Beaver Valley reactor vessel by characterizing the fracture toughness of Linde 1092 (No. 305414) weld metal. 10 PCVN specimens and 10 1T-CT specimens were tested in accordance with the ASTM E 1921-97 standard, 'Standard test method for determination of reference temperature, T o , for ferritic steels in the transition range'. This results can also be useful for assessment of Linde 80 low toughness welds of Kori-1

  3. Fracture toughness master curve characterization of Linde 1092 weld metal for Beaver valley 1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Yang, Won Jon; Hong, Jun Hwa

    2000-12-01

    This report summarizes the test results obtained from the Korean contribution to the integrity assessment of low toughness Beaver Valley reactor vessel by characterizing the fracture toughness of Linde 1092 (No. 305414) weld metal. 10 PCVN specimens and 10 1T-CT specimens were tested in accordance with the ASTM E 1921-97 standard, 'Standard test method for determination of reference temperature, T{sub o}, for ferritic steels in the transition range'. This results can also be useful for assessment of Linde 80 low toughness welds of Kori-1.

  4. A Preliminary Study on the Containment Integrity following BIT Removal for Kori NPP Unit 3,4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Byun, Choong Sup [KEPRI, Nuclear Power Generation Laboratory, Daejeon (Korea, Republic of); Jo, Jong Young [ENERGEO Inc., Sungnam (Korea, Republic of)

    2008-05-15

    The Boron Injection Tank (BIT) is to provide high concentrated boric acid to the reactor in order to mitigate the consequences of postulated Main Steam Line Break accidents (MSLB). Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, pipe clog, precipitation and continuous heat tracing have to be provided. This paper is for the feasibility study of containment integrity using CONTEMPT code for BIT removal of Kori Nuclear Power Plant (NPP) Unit 3, 4.

  5. A Preliminary Study on the Containment Integrity following BIT Removal for Kori NPP Unit 3,4

    International Nuclear Information System (INIS)

    Song, Dong Soo; Byun, Choong Sup; Jo, Jong Young

    2008-01-01

    The Boron Injection Tank (BIT) is to provide high concentrated boric acid to the reactor in order to mitigate the consequences of postulated Main Steam Line Break accidents (MSLB). Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, pipe clog, precipitation and continuous heat tracing have to be provided. This paper is for the feasibility study of containment integrity using CONTEMPT code for BIT removal of Kori Nuclear Power Plant (NPP) Unit 3, 4

  6. Neutron spectrum measurement inside containment vessel at Kori nuclear power plant unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. M.; Kim, T. W.; Kim, K. D.; Youn, C. H. [Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    2003-10-01

    There would be a case for the radiation worker have to work inside of the containment vessel to inspect or repair reactor facilities. In this case, the information about distribution of neutron field is needed to estimate neutron exposure dose of worker. Neutron spectra were measured by BMS(Bonner Multisphere Spectrometer) at 4 points of 6 ft and 20 ft, 2 points of 44 ft, 5 points of 70 ft in containment vessel of Kori unit 1. From the calculation, the following results were obtained. Neutron fluxes of 6 ft were between 2.623 x 10{sup 2} and 2.746 x 10{sup 4} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 9.209 x 10{sup -6} and 3.377 x 10{sup -2} MeV, equivalent doses of neutron were between 0.025 and 2.675 mSv/hr. Neutron fluxes of 20 ft were between 1.771 x 10{sup 1} and 1.682 x 10{sup 3} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 6.084 x 10{sup -6} and 2.988 x 10{sup -1} MeV, equivalent doses of neutron were between 0.004 and 0.228 mSv/hr. Neutron fluxes of 44 ft were between 3.367 x 10{sup 2} and 3.483 x 10{sup 2} neutron / cm{sup 2}{center_dot}sec, average neutron energies were between 3.962 x 10{sup -2} and 7.360 x 10{sup -2} MeV, equivalent doses of neutron were between 0.069 and 0.089 mSv/hr. Neutron fluxes of 70 ft were between 4.553 x 10{sup 3} and 1.407 x 10{sup 4} neutron/cm{sup 2}{center_dot}sec, average neutron energies were between 3.668 x 10{sup -4} and 6.764 x 10{sup -2} MeV, equivalent doses of neutron were between 0.449 and 2.660 mSv/hr.

  7. Calculation of DPA in the Reactor Internal Structural Materials of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Yong Deong; Lee, Hwan Soo

    2014-01-01

    The embrittlement is mainly caused by atomic displacement damage due to irradiations with neutrons, especially fast neutrons. The integrity of the reactor internal structural materials has to be ensured over the reactor life time, threatened by the irradiation induced displacement damage. Accurate modeling and prediction of the displacement damage is a first step to evaluate the integrity of the reactor internal structural materials. Traditional approaches for analyzing the displacement damage of the materials have relied on tradition model, developed initially for simple metals, Kinchin and Pease (K-P), and the standard formulation of it by Norgett et al. , often referred to as the 'NRT' model. An alternative and complementary strategy for calculating the displacement damage is to use MCNP code. MCNP uses detailed physics and continuous-energy cross-section data in its simulations. In this paper, we have performed the evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling and compared with predictions results of displacement damage using the classical NRT model. The evaluation of the displacement damage of the reactor internal structural materials in Kori NPP unit 1 using detailed Monte Carlo modeling has been performed. The maximum value of the DPA rate was occurred at the baffle side of the reactor internal where the node has the maximum neutron flux

  8. Development of a GUI based RETRAN running environment for Kori NPP units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Doo

    2000-09-01

    RETRAN was developed by EPRI and introduced for domestic use. RETRAN, which is a best-estimate system code approved by USNRC and used by most utilities in US, can be used in various plant support activities such as licensing calculations for plant design changes, EOP validation, and training. RETRAN, however, has been limited to only a few groups of specialists because of the difficulty involved in its usage. The aim of this project is to develop a graphic user interface (GUI) based code running environment for RETRAN named PRE (RETRAN Running Environment) in order to assist ordinary users in their input preparation, code execution, and output interpretation. TRIP and CONTROL BLOCK and VOLUME/JUNCTION input cards from base input are designed to be able to modify the existing input cards and add a new input cards through dialog boxes for users who have not much expertise in use of RETRAN. The RRE is designed to provide the calculated results though on-line X-Y graphs, plant mimics, indicators, nodalization window for easy interpretation of its output. It also provides the replay function using pre-calculated results saved in files. The RRE was developed for Kori NPP units 1 and 2 using Delphi 4.0 and Visual Fortran 6.0 and it runs on personal computers to increase the accessibility. The RRE developed in this study for Kori units 1 and 2 can be used in various plant support activities which require thermal-hydraulic analysis of the NSSS (Nuclear Steam Supply System) such as licensing calculations for plant design change, validation of EOP improvement, and operator training. The RRE developed can be expanded its application to other nuclear plants with low expense.

  9. Development of a GUI based RETRAN running environment for Kori NPP units 1 and 2

    International Nuclear Information System (INIS)

    Kim, Kyung Doo

    2000-09-01

    RETRAN was developed by EPRI and introduced for domestic use. RETRAN, which is a best-estimate system code approved by USNRC and used by most utilities in US, can be used in various plant support activities such as licensing calculations for plant design changes, EOP validation, and training. RETRAN, however, has been limited to only a few groups of specialists because of the difficulty involved in its usage. The aim of this project is to develop a graphic user interface (GUI) based code running environment for RETRAN named PRE (RETRAN Running Environment) in order to assist ordinary users in their input preparation, code execution, and output interpretation. TRIP and CONTROL BLOCK and VOLUME/JUNCTION input cards from base input are designed to be able to modify the existing input cards and add a new input cards through dialog boxes for users who have not much expertise in use of RETRAN. The RRE is designed to provide the calculated results though on-line X-Y graphs, plant mimics, indicators, nodalization window for easy interpretation of its output. It also provides the replay function using pre-calculated results saved in files. The RRE was developed for Kori NPP units 1 and 2 using Delphi 4.0 and Visual Fortran 6.0 and it runs on personal computers to increase the accessibility. The RRE developed in this study for Kori units 1 and 2 can be used in various plant support activities which require thermal-hydraulic analysis of the NSSS (Nuclear Steam Supply System) such as licensing calculations for plant design change, validation of EOP improvement, and operator training. The RRE developed can be expanded its application to other nuclear plants with low expense

  10. Nuclear design report for Kori nuclear power plant unit 1, cycle 14

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Kim, Joo Young; Park, Sang Yoon; Song, Jae Woong; Lee, Chong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report presents nuclear design calculations for cycle 14 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 14 amounts to 366 EFPD corresponding to a cycle burnup of 13680 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs. nozzle by vortex formation during mid-loop operation condition are experimentally investigated. The critical submergence is determined for various types of suction nozzle, and the measurements of velocity distribution are performed in the flow fields near the t-shaped suction nozzle. (Author) 11 refs., 41 figs., 13 tabs.

  11. Measuring the Willingness to Pay for Tap Water Quality Improvements: Results of a Contingent Valuation Survey in Pusan

    Directory of Open Access Journals (Sweden)

    Chang-Seob Kim

    2013-10-01

    Full Text Available With increasing concern regarding health, people have developed an interest in the safety of drinking water. In this study, we attempt to measure the economic benefits of tap water quality improvement through a case study on Pusan, the second largest city in Korea. To this end, we use a scenario that the government plans to implement a new project of improving water quality and apply the contingent valuation (CV method. A one-and-one-half bounded dichotomous choice question (OOHBDC format is employed to reduce the potential for response bias in multiple-bound formats such as the double-bound model, while maintaining much of the efficiency. Moreover, we employ the spike model to deal with zero willingness to pay (WTP responses from the OOHBDC CV survey. The CV survey of 400 randomly selected households was rigorously designed to comply with the guidelines for best-practice CV studies using person-to-person interviews. From the spike OOHBDC CV model, the mean WTP for the improvement was estimated to be KRW 2,124 (USD 2.2, on average, per household, per month. The value amounts to 36.6% of monthly water bill and 20.2% of production costs of water. The conventional OOHBDC model produces statistically insignificant mean WTP estimate and even negative value, but the OOHBDC spike model gives us statistically significant mean WTP estimate and fitted our data well. The WTP value to Pusan residents can be computed to be KRW 31.2 billion (USD 32.1 million per year.

  12. Assessment on the Reactor Containment Cooling Capability of Kori Unit 1 Under LOCA Conditions with Loss of Offsite Power

    International Nuclear Information System (INIS)

    Lee, Jin Yong; Park, Jong Woon; Kim, Hyeong Taek

    2006-01-01

    The fan cooler system is designed to remove heat from containment under postulated accident conditions. During a postulated LOCA concurrent with a Loss of Offsite Power (LOOP), the Component Cooling Water (CCW) pumps that supply cooling water to the fan cooler and the fan that supplies containment air to the fan cooler will temporarily lose power. Then, the high temperature steam in the containment atmosphere will pass over the fan cooler tubing without forced cooling water flow. In that case, boiling may occur in the fan cooler tubes causing steam bubbles to form and pass into the attached CCW piping creating steam voids. Prior to the CCW pumps restart, the presence of steam and subcooled water can induce the potential for water hammer. As the CCW pumps restart, the accumulated steam condenses and the pumped water can produce a water hammer when the void closes. The hydrodynamic loads caused by such a water hammer event could challenge the integrity and the function of the fan cooler and associated CCW system. With respect to this phenomena, the United States Nuclear Regulatory Commission (USNRC) issued the Generic Letter (GL) 96-06, which requests an assessment of the possibility of boiling and water hammer in the cooling water system. The objectives of this study are to develop a analysis method for predicting the thermal hydraulic status of containment fan cooler and then to assess the containment fan cooler of Kori Unit 1 using the developed model under a LOCA with LOOP

  13. Development of a crack growth analysis is program for reactor head penetration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Choi, Kwang Hee; Park, Jeong Il [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kang, Young Hwan; Park, Sung Ho; Kim, Il; Kim, Young Jong; Yoo, Young Joon; Yoo, Wan; Maeng, Wan Young; Choi, Suk Nam; Kim, Kee Suk; Yoon, Sung Won; Kim, Jee Ho; Park, Myung Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Crack growth analysis program for Reactor Head Penetration is being developed for applying to plants such as, Kori 1, Kori 2, Kori 3,4 YoungKwang 1,2 and Uljin 1,2 (1) Stress Evaluation - The stress analysis is required to evaluate the structure integrity for the RVH penetration tubes. The RVH penetration tubes are geometrically non-symmetry except center one. Thus, 3D finite element analysis should be employed for the stress analysis. The magnitude and distribution of residual stress resulted from welding can be determined analytically by simulation welding procedure. (2) Flaw Evaluation - There are two objectives of the penetration tube flaw evaluation to predict the time required for a crack to propagate to the acceptance criteria. The first objective is to perform the parametric evaluation for a postulated crack. The second objective is to develop the flaw evaluation program for the crack detected during the inspection. (3) Characterization of Material Properties of Alloy 600 - These study is to provide data which similarly represent the properties of PWR power plants in Korea. The data is used for analyzing of the stress distribution around penetration tubes. And the PWSCC data will be used for the crack growth rate of the penetration tubes. (author). 92 refs., 121 figs.

  14. Continuous operation of NPP Kori Unit 1 - Fireproof paint for cables

    International Nuclear Information System (INIS)

    Wendt, Dipl-Ing. Ruediger; Kim, Duill; Sik, Cho Hong

    2008-01-01

    Fireproof cable coating materials have been used in European NPP, especially in Germany, Russia, Ukraine, Czech Republic, Lithuania, Switzerland. Wide experiences were made during operation while applying these systems. In NPP Kori, Unit 1, a fire proof cable coating project was realised for the first time in a NPP of KHNP. The scope of services of the cable trays to coat amounts to 15,587m 2 . In different fire compartments and rooms the cables should be coated partially respectively completely with the fire proof cable coating system. The extent of cable surfaces to coat was stipulated by KHNP on the basis of an analysis made by KHNP. The project was tendered on the basis of a technical specification of KHNP. The specification is mainly predicted on Korean and US standards. The most important criteria for the fire proof cable coating is resumed as follows: The fireproof cable coating has to assure the fire protection of the cables for a period defined and for operational conditions defined in such a manner that the general conditions for the operation of the cable installation will not be affected

  15. Review of the research proposal for the steam generator retired from Kori unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Han, Joung Ho; Kim, Hong Pyo; Lim, Yun Soo; Lee, Deok Hyun; Hwang, Seong Sik; Hur, Do Haeng [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    The tubes of the steam generator retired form Kori unit 1 have many different kinds of failures, such as denting pitting, wastage, ODSCC, PWSCC.Korea Electric Power Research Institute (KEPRI) submitted a research proposal for the steam generator to the Korea Institute S and T Evaluation and Planning (KSITEP). The KISTEP requested Korea Atomic Energy Research Institute to review the proposal by organizing a committee which should be composed of the specialists of the related domestic research institutes. Opinions of the committee on the objectives, research fields, economic benefit and validity in the research proposal were reviewed and suggested optimal research fields to be fulfilled successfully for the retired steam generator. Also, the rolls for the participants in the research works were allocated, which is critical in order to do the project effectively. 6 figs., 5 tabs. (Author)

  16. Svakodnevna militarizacija života: etički aspekti korištenja djece u ratu

    OpenAIRE

    Rupčić, Darija

    2017-01-01

    Namjera je rada ukazati na problematiku izmijenjene naravi ratovanja u posljednjih nekoliko desetljeća 20. i 21. stoljeća, s osobitim naglaskom na problem korištenja sve većeg broja djece ratnika. Osnovna je teza rada ta da je praksa korištenja i regrutiranja djece u oružanim sukobima diljem svijeta najmanje prepoznata i najviše zanemarena forma zlostavljanja djece u suvremenom društvu te da je ona manje stvar kulture i nepostojanja stave društva prema vrijednostima djeteta, a više stvar prag...

  17. Experiments and analysis of thermal stresses around the nozzle of the reactor vessel

    International Nuclear Information System (INIS)

    Song, D.H.; Oh, J.H.; Song, H.K.; Park, D.S.; Shon, K.H.

    1981-01-01

    This report describes the results of analysis and experiments on the thermal stress around the reactor vessel nozzle performed to establish a capability of thermal stress analysis of pressure vessel subjected to thermal loadings. Firstly, heat conduction analysis during reactor design transients and analysis on the experimental model were performed using computer code FETEM-1 for the purpose of verification of FETEM-1 which was developed in 1979 and will be used to obtain the temperature distribution in a solid body under the steady-state and the transient conditions. The results of the analysis was compared to the results in the Stress Report of Kori-1 reactor vessel and those from experiments on the model, respectively

  18. An advanced NSSS integrity monitoring system for Shin-Kori nuclear units 3 and 4

    International Nuclear Information System (INIS)

    Oh, Y. G.; Kim, H. B.; Galin, S. R.; Kim, S. H.; Lee, S. J.

    2009-01-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling. (authors)

  19. An Advanced NSSS Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4

    Science.gov (United States)

    Oh, Yang Gyun; Galin, Scott R.; Lee, Sang Jeong

    2010-12-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling.

  20. Metallurgical characteristics and fracture mechanical properties of unirradiated Kori-1 RPV weld: Linde 80, WF-233

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Lee, B. S.; Oh, Y. J.; Chi, S. H.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Oh, J. M.

    2000-07-01

    The fracture toughness transition properties of the low upper shelf weld, Linde 80 WF-233, of Kori-1 RPV were evaluated by the master curve method, which is designated by ASTM E 1921, 'Standard test method for determination of reference temperature, T o , for ferritic steels in the transition range'. The reference temperature, T o =-83 deg C, was determined by PCVN specimens at -90 deg C. This value is similar to that of other high copper welds. The initial RT NDT was conservatively estimated as -26 deg F from the current fracture toughness results. From the studies on the chemistry and microstructure, the fracture mechanical properties of WF-233 weld is convincingly not worse than WF-70 and 72W welds

  1. The application experience of ethanol amine at KORI unit 4

    International Nuclear Information System (INIS)

    Lee, Sang-hak; Park, Jong-il; Lee, Jae-won; Kim, Guem-Soo

    2004-01-01

    The secondary system water chemistry in the KORI PWR units has been well controlled by reducing the corrosion in the tubes of the steam generators; the pH agent has been changing from ammonia to ethanol amine (ETA) (1.8 to 2.0 ppm). For example, the iron concentration in the system was reduced by 40 to 70% compared with ammonia treatment. The paper presents the detailed information, such as ETA injection concentration and the variation of pH, concentration of organic acid products, and irons in the system, and a significant change on sludge after ETA application. (S. Ohno)

  2. Numerical Simulation of Groundwater Flow at Kori Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Sohn, Wook; Sohn, Soon Whan; Chon, Chul Min; Kim, Kue Youn

    2010-01-01

    Recently, the understanding of hydrogeological characteristics of nuclear power sites is getting more importance with increasing public concerns over the environment since such understanding is essential for an environmentally friendly operation of plants. For such understanding, the prediction of groundwater flow pattern onsite plays the most critical role since it is the most dynamic of the factors to be considered. In this study, the groundwater flow at the Kori Plant 1 site has been simulated numerically with aim of providing fundamental information needed for improving the understanding of the hydrogeological characteristics of the site

  3. Audit Technical of Kori Rubber Dam in the River of Keyang District of Ponorogo East Java Province

    Science.gov (United States)

    Murnianto, E.; Suprapto, M.; Ikhsan, C.

    2018-03-01

    The development of science and technology for the utilization and protection of rivers has embodied various types of river infrastructure. Without proper maintenance, rapid river sediments undergo physical degradation and function. Problems that occur in Kori Rubber Dam, among others, the damage to the body of the rubber dam that is made of rubber, so that the function of flower deflection is not optimal. This happens because of limited operational and maintenance activities (OM). A technical audit is a process of identifying problems, analyzing, and evaluating ones conducted independently, objectively and professionally on the basis of examination, to assess the truth, accuracy, credibility, and reliability of information about a job. In this case an assessment of the Kori Rubber Dam, which is basically a benchmarking activity. Assessment of rubber dam components includes the physical conditions and functions that affect the weir. This research is expected to know the performance of Kori rubber Dam as a recommendation material in the implementation of OM Rubber Dam activities.

  4. Development of Level-2 PSA Technology: A Development of the Database of the Parametric Source Term for Kori Unit 1 Using the MAAP4 Code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Soon; Mun, Ju Hyun; Yun, Jeong Ick; Cho, Young Hoo; Kim, Chong Uk [Seoul National University, Seoul (Korea, Republic of)

    1997-07-15

    To quantify the severe accident source term of the parametric model method, the uncertainty of the parameters should be analyzed. Generally, to analyze the uncertainties, the cumulative distribution functions(CDF`S) of the parameters are derived. This report introduces a method of derivation of the CDF`s of the basic parameters, FCOR, FVES and FDCH. The calculation tool of the source term is the MAAP version 4.0. In the MAAP code, there are model parameters to consider an uncertain physical and/or chemical phenomenon. In general, the parameters have not a point value but a range. In this paper, considering this point, the input values of model parameters influencing each parameter are sampled using LHS. Then, the calculation results are shown in the cumulative distribution form. For a case study, the CDF`s of FCOR, FVES and FDCH of KORI unit 1 are derived. The target scenarios for the calculation are the ones whose initial events are large LOCA, small LOCA and transient, respectively. It is found that the distributions of this study are consistent to those of NUREG-1150 and are proven to be adequate in assessing the uncertainties in the severe accident source term of KORI Unit 1. 15 refs., 27 tabs., 4 figs. (author)

  5. Physical and other data from bottle and XBT casts from the PUSAN-852 and other platforms from the Philippine Sea from 1978-01-17 to 1988-06-04 (NODC Accession 8900142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and other data from bottle and XBT casts from the PUSAN-852 and other platforms from the Philippine Sea. Data were collected by the Maritime Safety Agency;...

  6. Marine ecosystem analysis for Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, C.H.; Kim, Y.H.; Cho, T.S.

    1980-01-01

    The effect of both radioactive and thermal effluents discharged from the plant on aquatic ecosystem is one of the primary concerns in evaluating the environmental impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases. There is also another possible synergistic effect, that is, the combination of the above stresses, which may cause an impact severer than that of the sum of the individual impact. This report deals with species diversity and seasonal variations of those numbers of phytoplankton, marine algae and microorganisms, and distribution of radioactivity of marine organisms, as well as those data pertaining to sea water analysis. The present survey is designed to provide a partial baseline information for environmental impact assessment of Kori nuclear plant unit no. 1. (author)

  7. A study on optimization of environmental qualification envelope for Kori 3 and 4 NPP

    International Nuclear Information System (INIS)

    Song, Dong Soo; Byun, Choong Sup; Jo, Jong Young

    2009-01-01

    The purpose of this study is to present the reevaluation of the Main Steam Line Break (MSLB) applied Boron Injection Tank (BIT) removal and to optimize the environmental qualification (EQ) temperature envelope with thermal lag analysis and liquid entrainment method. BIT alleviates the reactor power excursion during Main Steam Line Break (MSLB) accident. Thermal lag analysis methods by NUREG-0588 is using four times condensing heat transfer coefficient on the passive heat sink surface, the forced convection heat transfer coefficient whenever the condensing is not occurring and during blowdown stage. And the entrainment model is that the all of the break regions within the secondary side are represented by non-homogeneous vapor volumes in which the liquid and steam are uniformly mixed throughout. These methods are focused on making higher the surface temperature of the safety equipment. For the analysis, amount of released mass and energy is calculated using the LOFTRAN code and containment temperature is predicted by CONTEMPT-LT 28 code. These two codes are used to for safety analysis. In accordance with the analysis result, a plant specific EQ test envelope was proposed for Kori 3 and 4 NPP

  8. A study on optimization of environmental qualification envelope for Kori 3 and 4 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Byun, Choong Sup; Jo, Jong Young [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-07-01

    The purpose of this study is to present the reevaluation of the Main Steam Line Break (MSLB) applied Boron Injection Tank (BIT) removal and to optimize the environmental qualification (EQ) temperature envelope with thermal lag analysis and liquid entrainment method. BIT alleviates the reactor power excursion during Main Steam Line Break (MSLB) accident. Thermal lag analysis methods by NUREG-0588 is using four times condensing heat transfer coefficient on the passive heat sink surface, the forced convection heat transfer coefficient whenever the condensing is not occurring and during blowdown stage. And the entrainment model is that the all of the break regions within the secondary side are represented by non-homogeneous vapor volumes in which the liquid and steam are uniformly mixed throughout. These methods are focused on making higher the surface temperature of the safety equipment. For the analysis, amount of released mass and energy is calculated using the LOFTRAN code and containment temperature is predicted by CONTEMPT-LT 28 code. These two codes are used to for safety analysis. In accordance with the analysis result, a plant specific EQ test envelope was proposed for Kori 3 and 4 NPP.

  9. The trip status and the reduction countermeasure in Kori nuclear power plant unit 1 and 2

    International Nuclear Information System (INIS)

    Kim, Jung-Soo

    1991-01-01

    Nuclear power account for 36% of Korea's total electric capacity and provided over 50% of the net electric power supply by June 1991. These plants supply US with the cheapest and most stable electric supply available. However each units capacity is very large and a plant trip due to failure of a component or a human error has a great influence on the nations electric power supply and drastically decreases the reserve margin. This report will analyze the trip causes and measure the trip frequency from the first commercial operation of Kori unit 1 and 2 to the end of June 1991, reflect to the plant operation, management and facility modification, etc. This will minimize the number of trips or urgent power reductions and thus contribute to an increase in plant capacity factor and safety, and stabilize the electric power demand and supply. The safety and the economy of nuclear power plant have to be secured and raised respectably by increasing the capacity factor. Since the prevention of trips plays an important role in the plant safety and economy, we have to do our best to prevent the unexpected trip

  10. Measurement of gamma ray flux within the containment building at the first unit of Kori nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. W.; Kim, K. D.; Yoon, C. H.; Han, J. M.; Hu, Y. H. [Korea Hydraulic and Nuclear Power Company, Taejon (Korea, Republic of)

    2004-07-01

    To evaluate gamma ray dose response of GM counter being used for monitoring of gamma ray field in nuclear power plants, gamma ray energy spectra and fluxes were obtained for three positions at the unit 1 of the Kori nuclear power station. By applying the response values of Eberline's E112B survey meter to the results, the doses represented on the survey meter were overestimated from 1.31 to 1.37 times when compared to the real doses for these three positions.

  11. Application of a Virtual Ovation System to the ShinKori-3 Simulator

    International Nuclear Information System (INIS)

    Hong, Jin Hyuk; Lee, Myeong Soo; Chung, Kyung Hun

    2011-01-01

    The Ovation system for the Shin-Kori Unit 3 Simulator is essentially a non-redundant, repackaged subset of the actual plant I and C equipment, with additional interface computers (SimStations). This system also present in the simulator to provide communication between the plant model computer and the stimulated Ovation equipment. The stimulated Ovation equipment in the simulator system includes Operator HMI (Human- Machine Interface) equipment and Ovation virtual controllers hosted by Virtual Controller Host workstations, which are not present in the actual plant DCS system. The simulator for the Shin-Kori Unit 3 and 4 is being developed by Korea Hydro and Nuclear Power's Central Research Institute (KHNP CRI). One of the features of the simulator is its application of a virtual Ovation system capable of simulated functionalities such as run, freeze, snapshot, backtrack and others required by ANSI/ANS-3.5 in addition to the original functionality for the actual Ovation system applied at the plant. This is the first application of a virtual Ovation system to a full-scope simulator for a nuclear power plant in Korea. The purpose of this paper is to provide the overall architecture of the communication system between the virtual system and the simulator model and to describe the current situation of the development of the system and recent relevant studies

  12. Locating the Source of Atmospheric Contamination Based on Data From the Kori Field Tracer Experiment

    Directory of Open Access Journals (Sweden)

    Piotr Kopka

    2015-01-01

    Full Text Available Accidental releases of hazardous material into the atmosphere pose high risks to human health and the environment. Thus it would be valuable to develop an emergency reaction system which can recognize the probable location of the source based only on concentrations of the released substance as reported by a network of sensors. We apply a methodology combining Bayesian inference with Sequential Monte Carlo (SMC methods to the problem of locating the source of an atmospheric contaminant. The input data for this algorithm are the concentrations of a given substance gathered continuously in time. We employ this algorithm to locating a contamination source using data from a field tracer experiment covering the Kori nuclear site and conducted in May 2001. We use the second-order Closure Integrated PUFF Model (SCIPUFF of atmospheric dispersion as the forward model to predict concentrations at the sensors' locations. We demonstrate that the source of continuous contamination may be successfully located even in the very complicated, hilly terrain surrounding the Kori nuclear site. (original abstract

  13. Lifetime assessment on PWR reactor vessel internals in Korea

    International Nuclear Information System (INIS)

    Jung, Sung-Gyu; Jin, Tae-Eun; Jeong, Ill-Seok

    2002-01-01

    In order to extend the operating time of the Kori Unit 1 reactor internals, a comprehensive review of the potential ageing problems and a safety assessment have been performed. As the plant ages, reactor internal components which are subject to various ageing mechanism should be identified and evaluated based on the systematic technical procedure. In this respect, technical procedure for lifetime evaluation had been developed and applied to reactor internals. This paper describes a overall assessment and ageing management procedure and evaluation results for reactor internals. Also this paper suggests the optimal ageing management programs to maintain the integrity of reactor internals beyond design life based on the evaluation results. A review of all known potential ageing mechanisms was performed for each of the reactor internal subcomponents. From these results, 8 ageing mechanisms such as void swelling, irradiation and thermal embrittlement, fatigue, stress corrosion cracking, IASCC, stress relaxation, and wear for the reactor internal components were expected to be of major concerns during the current or extended plant life. In this study, 8 ageing mechanisms were identified for lifetime evaluation. For these ageing mechanisms, lifetime assessment was performed. As a result of this evaluation, it is expected that core barrel will exceed the IASCC threshold value during 40 operating years, and baffle/former and baffle former bolts will exceed the threshold value for void swelling, irradiation embrittlement, IASCC, stress relaxation during 40 operating years. However, for all other reactor internals subcomponents, thermal embrittlement, fatigue, SCC, and wear were identified as nonsignificant. As a result of lifetime evaluations, 4 ageing mechanisms were established to be plausible for 3 subcomponents. These results are shown. The existing ageing management programs (AMPs) for Kori Unit 1, such as ISI, water chemistry control, rod drop time testing etc., were

  14. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  15. Field measurement of the piping system vibration of Ko-Ri unit 4 during the load-following operation

    International Nuclear Information System (INIS)

    Chung, Tae-Young; Hong, Sung-Yull; Kim, Bum-Nyun.

    1989-01-01

    During the load-following operation of nuclear power plants, flow rate, temperature, and pressure in the piping system can be varied by changing the electric power output level, and these variations can cause different vibration phenomena in the piping system. The piping system vibration is important because it is directly related to the dynamic stress of the piping system and can affect the life of the piping system through structural fatigue. An assessment of vibration levels for the classes II and III piping systems of the Ko-Ri Unit 4950-MW nuclear power plant was performed according to the given pattern of the load-following operation to study its feasibility from the viewpoint of piping system vibration. The classes II and III piping system vibration of the Ko-Ri Unit 4 may not cause any potential problem under the given pattern of the load-following operation; however, it is recommended that long-term operation in the 85 to 95% power range be avoided as much as possible

  16. Unavailability Analysis of the Reactor Core Protection System using Reliability Block Diagram

    International Nuclear Information System (INIS)

    Shin, Hyun Kook; Kim, Sung Ho; Choi, Woong Suk; Kim, Jae Hack

    2006-01-01

    The reactor core of nuclear power plants needs to be monitored for the early detection of core abnormal conditions to protect plants from a severe accident. The core protection calculator system (CPCS) has been provided to calculate the departure from nucleate boiling ratio (DNBR) and the local power density (LPD) based on measured parameters of reactor and coolant system. The original CPCS for OPR 1000 has been designed and implemented based on the concurrent 3205 computer system whose components are obsolete. The CPCS based on Westinghouse Common-Q system has recently been implemented for the Shin-Kori Nuclear Power Plant, Units 1 and 2(SKN 1 and 2). An R and D project has been launched to develop new core protection system called as RCOPS (Reactor Core Protection System) with the partnership of KOPEC and Doosan Heavy Industries and Construction Co. RCOPS is implemented on the HFC-6000 safety class programmable logic controller (PLC). In this paper, the reliability of RCOPS is analyzed using the reliability block diagram (RBD) method. The calculated results are compared with that of the CPCS for SKN 1 and 2

  17. Marine-ecosystem analysis for the Kori nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.

    1979-01-01

    The effects of radioactive effluents and warm water discharged from the plant on aquatic ecosystem is one of the primary considerations in evaluating the impact due to the operation of the nuclear power plant. Biological alteration of aquatic ecosystems may be resulted from radioactive effluents, thermal pollution and chemical releases; there is also the possible synergistic effect, that is, the combination of the above stresses, which may cause an effect greater than that of the sum of the individual effects. This report deals with species diversity and seasonal vegetation of phytoplankton, marine algae and microorganisms, radioactive contamination of marine organisms, and lateral distribution of sea water temperature from discharge point. The present investigation is designed to provide a partial baseline information for environmental safety against Kori nuclear power plant. (author)

  18. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    International Nuclear Information System (INIS)

    Seo, Kwi Hyun; Byun, Choong Sup; Song, Dong Soo

    2006-01-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information

  19. Thermal Analysis for Environmental Qualification of Kori Nuclear power plant unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwi Hyun [ENERGEO Inc., Sungnam (Korea, Republic of); Byun, Choong Sup; Song, Dong Soo [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    This paper shows the temperature profiles of safety related electrical equipment exposed to MSLB inside containment. It must be demonstrated that the LOCA qualification conditions exceed or are equivalent to the maximum calculated MSLB conditions. COPATTA as Bechtel's vendor code is used for the containment pressure and temperature prediction in power uprating project for Kori 3,4 and Yonggwang 1,2 nuclear power plants(NPPs). However, CONTEMPT-LT/028 is used for calculating the containment pressure and temperatures in equipment qualification project for the same NPPs. Power uprating code that is, COPATTA benchmarking study performed in six equipment at saturation temperature and surface temperature. Specially, thermal analysis carefully investigate that view point environmental qualification and NUREG- 0588 be mentioned in regard to safety-related heat sink it boundary condition or geometry information.

  20. Development of PSI and ISI technique

    International Nuclear Information System (INIS)

    Chung, M.K.; Park, D.Y.; Choi, S.P.; Kim, H.J.; Moon, Y.S.; Shon, G.H.; Kim, T.S.

    1983-01-01

    This report describes the experimental results of the subjects selected from the PSI/ISI related problems which encountered by us in 1982. The main contents are 1) the characteristics of the typical ECT signals from the steam generator tubes of nuclear power plant and the results of ECT evaluation of Kori-1 steam generators, 2) the experimental result for the research for directional effects of ultrasonic transducers, 3) the basic experiment for the ultrasonic testing technique by immersion testing method, 4) how to write the scan plan of the mechanized ultrasonic testing for nuclear reactor. Attached appendix is a part of necessary materials for the scan plan of the mechanized ultrasonic testing for Kori-2 nuclear reactor. (Author)

  1. Nuclear design report for Kori nuclear power plant unit 4 cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyoon; Jung, Yil Sub; Kim, Si Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s 48 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 421 EFPD corresponding to a cycle burnup of 16950 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  2. Uslovi korišćenja plovnih dizalica za dizanje potonulih objekata na unutrašnjim plovnim putevima

    OpenAIRE

    Radojević M. Slobodan

    2012-01-01

    U radu se prikazuju uslovi korišćenja plovnih dizalica za dizanje potonulih plovnih i drugih objekata na unutrašnjim plovnim putevima. Prikazani su osnovni načini podizanja plovnim dizalicama i osnovni tehnički podaci sa proračunskim pojedinostima za predložen postupak dizanja. Ukazano je na značaj dizanja potonulih objekata i njihovog uklanjanja iz unutrašnjih plovnih puteva u Republici Srbiji.

  3. A study on the application of CRUDTRAN code in primary systems of domestic pressurized heavy-water reactors for prediction of radiation source term

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Cho, Hoon Jo; Jung, Min Young; Lee, Sang Heon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.

  4. Nuclear power plant life time improvement and management program in Korea

    International Nuclear Information System (INIS)

    Sung Yull Hong; Ill Seok Jeong; Taek Ho Song

    1995-01-01

    Korea Electric Power Research Institute (KEPRI) of Korea Electric Power Corporation (KEPCO) has performed a lifetime management of nuclear power plant program (LMNPP), ''Nuclear Power Plant Lifetime Management (PLIM) (I)'', since November 1993, which is a feasibility study of the Kori Unit 1 lifetime management including aging evaluation of the thirteen major components. The results of the PLIM(I) will provide information which is necessary for decision making of the Kori Unit 1 lifetime improvement. A plan of the work scope and schedule for the next phase, PLIM(II), will also be provided by this project. This paper introduced KEPRI's basic strategy of LMNPP, PLIM organization, current status, some interim results of the PLIM(I), and other related programs in Korea. So far, we have done field data survey, systems/structures screening, components prioritization, lifetime evaluation methodology study, and fracture mechanics tests of the Kori Unit 1 reactor pressure vessel surveillance coupons. Currently life assessment of the major components and PLIM economic evaluation of Kori Unit 1 are under way. (author)

  5. Containment Response Analysis for Equipment Qualification of Kori Nuclear Power Plant Unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Choong Sup; Song, Dong Soo; Hwang, Yong Jun [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Seo, Kwi Hyun; Song, Wan Jung [ENERGEO Inc., Sungnam (Korea, Republic of)

    2006-07-01

    Equipment that is used to perform a necessary safety function must be capable of maintaining functional operability under all service condition postulated to occur during the installed life for the time it is required. The pressure and temperature analyses for loss of coolant accident and main steam line break accident provide the bounding test envelope inside containment for the operability evaluation of safety equipment in harsh environmental. This paper describes the results of the containment pressure and temperature analysis for the equipment qualification (EQ) envelopes of Kori unit 3 and 4.

  6. Sensitivity Study on Analysis of Reactor Containment Response to LOCA

    International Nuclear Information System (INIS)

    Chung, Ku Young; Sung, Key Yong

    2010-01-01

    As a reactor containment vessel is the final barrier to the release of radioactive material during design basis accidents (DBAs), its structural integrity must be maintained by withstanding the high pressure conditions resulting from DBAs. To verify the structural integrity of the containment, response analyses are performed to get the pressure transient inside the containment after DBAs, including loss of coolant accidents (LOCAs). The purpose of this study is to give regulative insights into the importance of input variables in the analysis of containment responses to a large break LOCA (LBLOCA). For the sensitivity study, a LBLOCA in Kori 3 and 4 nuclear power plant (NPP) is analyzed by CONTEMPT-LT computer code

  7. Sensitivity Study on Analysis of Reactor Containment Response to LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ku Young; Sung, Key Yong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-10-15

    As a reactor containment vessel is the final barrier to the release of radioactive material during design basis accidents (DBAs), its structural integrity must be maintained by withstanding the high pressure conditions resulting from DBAs. To verify the structural integrity of the containment, response analyses are performed to get the pressure transient inside the containment after DBAs, including loss of coolant accidents (LOCAs). The purpose of this study is to give regulative insights into the importance of input variables in the analysis of containment responses to a large break LOCA (LBLOCA). For the sensitivity study, a LBLOCA in Kori 3 and 4 nuclear power plant (NPP) is analyzed by CONTEMPT-LT computer code

  8. Pretreatment Process for performance Improvement of SIES at Kori Unit 2 in Korea

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Yang, Ho Yeon; Shin, Sang Woon; Song, Myung Jae

    1994-01-01

    Pretreatment process consisted of submerged hollow-fiber microfiltration(HMF) membrane and spiral-wound nanofiltration(SNF) membrane has been developed by NETEC, KHNP for the purpose of improving the impurities of liquid radioactive waste before entering Selective Ion Exchange System(SIES). The lab-scale combined system was installed at Kori NPP no. 2 nuclear power plant and demonstration tests using actual liquid radioactive waste were carried out to verify the performance of the combined system. The submerged HMF membrane was adopted for removal of suspended solid in liquid radioactive waste and the SNF membrane was used for removal of particulate radioisotope such as, Ag-110m and oily waste because ion exchange resin can not remove particulate radioisotopes. The liquid waste in Waste Holdup Tank(WHT) was processed with HMF and SNF membrane, and SIES. The initial SS concentration and total activity of actual waste were 38,000ppb and 1.534x10 -3 μCi/cc, respectively. The SS concentration and total activity of permeate were 30ppb and lower than LLD(Lower Limit of Detection), respectively

  9. Current status and prospect on the radioactive waste management program in the Republic of Korea. Focusing on recent development

    International Nuclear Information System (INIS)

    Park, Hyun-Soo; Chang, In-Soon

    1996-01-01

    Since its first commercial operation at Kori near the city of Pusan in 1978, nuclear energy has become one of the prime resources for the electricity. However, proper treatment of its byproducts, radioactive wastes, has been the national concern. Despite vigorous effort by the Korean Government and NEMAC(Nuclear Environment Management Center), the series of attempts for the site selection to build the national radioactive waste complex has been ruined. After the failure at Guleop Island, the Government recently amended its policy so that the major tasks on the management program of radioactive wastes shall be transferred to KEPCO(Korea Electric Power Corporation), sole national electric utility, while the current authority, KAERI(Korea Atomic Energy Research Institute)/NEMAC is limited to focus on the research and development in the safe management of spent fuels. Detailed plan to support the Government redirection is under discussion among concerned institutes. (author)

  10. Comparison of APR1400 safety between brake site and shin-Kori site Due to the difference in the climate conditions

    International Nuclear Information System (INIS)

    Yoon, Ho Joon; Lee, Jeong Ik; Lee, Jeong Ik

    2012-01-01

    Brake Nuclear Power Plant (BNPP) is now under the construction based on APR1400 designed by Korean Electric Power Corporation (KEPCO). APR1400 is a two loop pressurized water reactor, the nuclear steam supply system (NSSS) US designed for about put of 4,000 MWt, with a corresponding electrical output of approximately 1,390 MWe. The first APR1400 (SKN 3 and 4) constructed in Shin-Kori, Korea has been modified according to the surrounding environment of the United Arab Emirates. In this paper, authors would like to compare safety issues between B NPP and Skin due to the changes of surroundings, since the site characteristics are very different. For instance, the mean annual air temperature in the UAE is 28 .deg. C and the peak air temperature was recorded as 48.8 .deg. C. Sea temperatures are varying from 17. deg. C in January to 35. deg. C in August, while that of Korea is in 9-16. deg. C range. Hot climate of UAE and the malfunction of HVAC system can lead the increasing of the water temperature in safety injection system (SIS). The heated water in SIS may affect the safety margin of the peak cladding temperature (PCT). The change of PCT and response time according to design basis accident scenarios such as large break LOCA are analyzed in detail. To evaluate such effect, Mars code was utilized to evaluate assumed condition by KAIST and the analyses of the results were carried out by Khalifa Univ.

  11. Guidelines of Decommissioning Schedule Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Yun, Taesik; Kim, Younggook; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning has recently become an issue highlighted in Korea due to the Permanent Shutdown (PS) of Kori-1 plant. Since Korea Hydro and Nuclear Power (KHNP) Company decided the PS of Kori-1 instead of further continued operation, Kori-1 will be the first decommissioning plant of the commercial reactors in Korea. Korean regulatory authority demands Initial Decommissioning Plan (IDP) for all the plants in operation and under construction. In addition, decommissioning should be considered for the completion of the life cycle of NPPs. To date, Korea has no experience regarding decommissioning of the commercial reactor and a lot of uncertainties will be expected due to its site-specific factors. However, optimized decommissioning process schedule must be indispensable in the safety and economic efficiency of the project. Differed from USA, Korea has no experience and know-hows of the operation and site management for decommissioning. Hence, in Korea, establishment of decommissioning schedule has to give more weight to safety than precedent cases. More economical and rational schedule will be composed by collecting and analyzing the experience data and site-specific data and information as the decommissioning progresses. In a long-range outlook, KHNP having capability of NPP decommissioning will try to decommissioning business in Korea and foreign countries.

  12. Interface between Core/TH Model and Simulator for OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk; Lee, Seung Ho; Suh, Jung Kwan [KEPRI, Daejeon (Korea, Republic of)

    2009-05-15

    OPR1000 simulator for ShinKori-Unit 1, which will be operated at 2815MWt of thermal core power, is being developed while the ShinKori-Unit 1 and 2 is being built. OPR1000 simulator adopted the RELAP5 R/T code, which is the adaptation of RELAP5 and NESTLE codes to run in real-time mode with graphical visualization, to model Nuclear Steam Supply System (NSSS) Thermal-Hydraulics (TH) and Reactor Core. The RELAP5 is an advanced, best estimate, reactor TH simulation code developed at Idaho National Engineering and Environment Laboratory(INEEL) and the NESTLE is a true two-energy group neutronics code that computes the neutron flux and power for each node at every time step. As a simulator environment, the 3KEYMASTER{sup TM}, a commercial environment tool of WSC is used.

  13. Interface between Core/TH Model and Simulator for OPR1000

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk; Lee, Seung Ho; Suh, Jung Kwan

    2009-01-01

    OPR1000 simulator for ShinKori-Unit 1, which will be operated at 2815MWt of thermal core power, is being developed while the ShinKori-Unit 1 and 2 is being built. OPR1000 simulator adopted the RELAP5 R/T code, which is the adaptation of RELAP5 and NESTLE codes to run in real-time mode with graphical visualization, to model Nuclear Steam Supply System (NSSS) Thermal-Hydraulics (TH) and Reactor Core. The RELAP5 is an advanced, best estimate, reactor TH simulation code developed at Idaho National Engineering and Environment Laboratory(INEEL) and the NESTLE is a true two-energy group neutronics code that computes the neutron flux and power for each node at every time step. As a simulator environment, the 3KEYMASTER TM , a commercial environment tool of WSC is used

  14. The relaxation of ESFAS/RPS surveillance test requirements

    International Nuclear Information System (INIS)

    Hah, Yung Joon; Koo, Jung Eui; Choi, Hae Yoon

    1994-01-01

    The surveillance test requirement of ESFAS/RPS is reviewed for 950 MWe class westinghouse reactor (YGN unit 1 and 2, Kori unit 3 and 4). The current requirements of frequent test and maintenance in the tech. spec. can lead to human errors, jeopardizing safety of the plant, and reduction in the availability of the plant. Meanwhile, the ESFAS designs do not provide for complete online testing capabilities for their protection systems. Therefore, ESFAS slave relays cannot be tested during plant operation as actuation of associated equipment could result in unwanted plant transient or trip conditions. In this study, westinghouse's PSA results, NRC recommendation and NRC approval status for specific U.S. nuclear power plant have been reviewed and evaluated. Since YGN 1 and 2 and Kori 3 and 4 are essentially the same plant as the operating westinghouse plant in the U.S., it is expected that YGN 1 and 2 and Kori 3 and 4 will be justified for having ESFAS/RPS surveillance test requirements relaxation program. Finally the extension of surveillance testing intervals and allowed outage times for test and maintenance will be verified by PSA program for YGN 1 and 2 and Kori 3 and 4. Various findings during the project can be used in the possible future revision of current technical specification with further refinements through the PSA program for YGN 1 and 2 and Kori 3 and 4. (Author) 10 refs., 8 figs., 24 tabs

  15. The relaxation of ESFAS/RPS surveillance test requirements

    Energy Technology Data Exchange (ETDEWEB)

    Hah, Yung Joon; Koo, Jung Eui; Choi, Hae Yoon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    The surveillance test requirement of ESFAS/RPS is reviewed for 950 MWe class westinghouse reactor (YGN unit 1 and 2, Kori unit 3 and 4). The current requirements of frequent test and maintenance in the tech. spec. can lead to human errors, jeopardizing safety of the plant, and reduction in the availability of the plant. Meanwhile, the ESFAS designs do not provide for complete online testing capabilities for their protection systems. Therefore, ESFAS slave relays cannot be tested during plant operation as actuation of associated equipment could result in unwanted plant transient or trip conditions. In this study, westinghouse`s PSA results, NRC recommendation and NRC approval status for specific U.S. nuclear power plant have been reviewed and evaluated. Since YGN 1 and 2 and Kori 3 and 4 are essentially the same plant as the operating westinghouse plant in the U.S., it is expected that YGN 1 and 2 and Kori 3 and 4 will be justified for having ESFAS/RPS surveillance test requirements relaxation program. Finally the extension of surveillance testing intervals and allowed outage times for test and maintenance will be verified by PSA program for YGN 1 and 2 and Kori 3 and 4. Various findings during the project can be used in the possible future revision of current technical specification with further refinements through the PSA program for YGN 1 and 2 and Kori 3 and 4. (Author) 10 refs., 8 figs., 24 tabs.

  16. Long-Term Behaviors of the OPC Concrete with Fly-ash and Type V Concrete Applied on Reactor Containment Building

    International Nuclear Information System (INIS)

    Yoon, Eui Sik; Lee, Hee Taik; Paek, Yong Lak; Park, Young Soo

    2010-01-01

    The prestressed concrete has been used extensively in the construction of Reactor Containment Buildings (RCBs) in Korea in order to strengthen the RCBs and at the same time, prevent the release of radiation due to the Design Basis Accident and Design Basis Earthquake. It is well known that the prestressed concrete loses its prestressing force over the age, and the shrinkage and creep of the concrete significantly contributes to these long term prestressing losses. In this study, an evaluations of long term behaviors of the concrete such as creep and shrinkage have been performed for two types of concretes : Ordinary Portland Cement containing fly-ash used for the Shin- Kori 1 and 2 NPP and Type V cement used for the Ul- Chin 5 and 6 NPP

  17. Long-Term Behaviors of the OPC Concrete with Fly-ash and Type V Concrete Applied on Reactor Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eui Sik; Lee, Hee Taik; Paek, Yong Lak [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Park, Young Soo [Korea Hydro and Nuclear Power Co., Busan (Korea, Republic of)

    2010-10-15

    The prestressed concrete has been used extensively in the construction of Reactor Containment Buildings (RCBs) in Korea in order to strengthen the RCBs and at the same time, prevent the release of radiation due to the Design Basis Accident and Design Basis Earthquake. It is well known that the prestressed concrete loses its prestressing force over the age, and the shrinkage and creep of the concrete significantly contributes to these long term prestressing losses. In this study, an evaluations of long term behaviors of the concrete such as creep and shrinkage have been performed for two types of concretes : Ordinary Portland Cement containing fly-ash used for the Shin- Kori 1 and 2 NPP and Type V cement used for the Ul- Chin 5 and 6 NPP

  18. Establishment of design concept of large capacity passive reactor KP1000 and performance evaluation of safety system for LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong O.; Hwang, Young Dong; Kim, Young In; Chang, Moon Hee

    1997-03-01

    This study was performed to establish the design concepts and to evaluate the performance of safety features of large capacity passive reactor (1000 MWe grade). The design concepts of the large capacity passive reactor `KP1000` were established to generate 1000 MW electric power based on the AP600 of Westinghouse by increasing the number of reactor coolant loop and by increasing the size of reactor internals/core. To implement the analysis of the LBLOCA for KP1000, various kinds of computer codes being considered, it was concluded that RELAP5 was the most appropriate one in availability and operations in present situation. By the analysis of the computer code `RELAP5/Mod3.2.1.2`, following conclusions were derived as described below. First, by spectrum analysis of the discharge factor of the berak part, the most conservative discharge factor C{sub D}=1.2 and the PCT value of KP1000 was 1254F, which is slightly higher than the value of AP600 but is much less than the existing active reactor `Kori 3 and 4` where blowdown PCT value is 1693.4 deg F and reflooding PCT is 1918.4 deg F. Second, after the 200 seconds from the initiation of LBLOCA, IRWST water was supplied in a stable state and the maximum temperature of clad were maintained in a saturated condition. Therefore, it was concluded that the passive safety features of KP1000 keep reactor core from being damaged for large break LOCA. (author). 11 refs., 28 tabs., 37 figs.

  19. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells

    OpenAIRE

    Kwak TW; Lee HL; Song YH; Kim C; Kim JS; Seo SJ; Jeong YI; Kang DH

    2017-01-01

    Tae Won Kwak,1,* Hye Lim Lee,2,* Yeon Hui Song,2 Chan Kim,3 Jungsoo Kim,2 Sol-Ji Seo,2 Young-Il Jeong,2 Dae Hwan Kang2,4 1Medical Convergence Textile Center, Gyeongbuk, Republic of Korea; 2Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea; 3Amogreentech Co. Ltd. Gyeonggi-do, Republic of Korea; 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea *These auth...

  20. Optimization of Nuclear Reactor power Distribution using Genetic Algorithm

    International Nuclear Information System (INIS)

    Kim, Hyu Chan

    1996-02-01

    The main purpose of study is to develop a computer code named as 'MGA-SCOUPE' which can determine an optimal fuel-loading pattern for the nuclear reactor. The developed code, MGA-SCOUPE, automatically lots of searches for the globally optimum solutions based upon the modified Genetic Algorithm(MGA). The optimization goal of the MGA-SCOUPE is (1) the minimization of the deviations in the power peaking factors both at BOC and EOC, and (2) the maximization of the average burnup ration at EOC of the total fuel assemblies. For the reactor core calculation module in the MGA-SCOUPE, the SCOUPE code was partially modified and used. It had been developed originally in MIT and has been used currently in Kyung Hee University. The application of the MGA-SCOUPE to KORI 4-4 Cycle Model show several satisfactory results. Among them, two dominant improvements compared with the SCOUPE code can be summarized as follow: - The MGA-SCOUPE removes the user-dependency problem of the SCOUPE in the optimal loading pattern searches. Therefore, the searching process in the MGA-SCOUPE can be easily automated. - The final fuel loading pattern obtained by the MGA-SCOUPE shows 25.8%, 18.7% reduced standard deviations of the power peaking factors both at BOC and EOC, and 45% increased avg. burnup ratio at EOC compare with those of the SCOUPE

  1. Analysis of inadvertent safety injection incident at Kori unit 3 on september 6, 1990

    International Nuclear Information System (INIS)

    Kim, Kyun Tae; Chung, Bub Dong; Kim, In Goo; Kim, Hho Jung

    1992-01-01

    The inadvertent safety injection incident occurred at Kori Unit 3 on September 6, 1990 is analyzed using RELAP5/MOD3 code. The event was initiated by a failure of main feedwater control valve in one of three steam generators. The actual sequence of plant transient with the proper estimations of the operator actions is investigated in the present calculation. The calculational results are compared with the plant transient data. It is shown that the results of the plant behaviors are in good agreement with the plant data. The emergency response guidelines is assessed for the time of the SI termination and the establishment of natural circulation. The changes in the time of the SI termination do not significantly affect the overall plant behaviors, and the natural circulation is established

  2. Assessment on Event Classification of One Steam Generator Tube Rupture in EU-APR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hwan; Kim, Yong Soo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Fukushima Daiichi nuclear power plant accident showed the vulnerability of coping strategy to beyond design natural disaster such as beyond design earthquake and tsunami. In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. Recently, the stress tests for WOLSONG Unit 1 and KORI Unit 1 have been performed and their assessment results have been reviewed by Korean regulatory body. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings. The several additional items for safety improvement has been drawn to enhance the coping capability for loss of safety functions under beyond design natural disaster in addition to post Fukushima action items.

  3. Assessment on Event Classification of One Steam Generator Tube Rupture in EU-APR

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; Kim, Yong Soo

    2016-01-01

    The Fukushima Daiichi nuclear power plant accident showed the vulnerability of coping strategy to beyond design natural disaster such as beyond design earthquake and tsunami. In Korea, the government and industry performed comprehensive safety inspection on all domestic nuclear power plants against beyond design basis external events and fifty action items have been issued. In addition to post- Fukushima action items, the stress tests for all domestic nuclear power plants are on the way to enhance the safety of domestic nuclear power plants through finding the vulnerabilities in intentional stress conditions initiated by beyond design natural disaster. Recently, the stress tests for WOLSONG Unit 1 and KORI Unit 1 have been performed and their assessment results have been reviewed by Korean regulatory body. The assessment of the coping capability of KORI Unit 1 has been performed under simultaneous the extended loss of AC power and loss of ultimate heat sink initiated by beyond design natural disaster. It is concluded that KORI Unit 1 has the capability, in the event of loss of safety functions by beyond design natural disaster, to sufficiently cool down the reactor core without fuel damage, to keep pressure boundaries of the reactor coolant system in transient condition and to control containment and temperature to maintain the integrity of the containment buildings. The several additional items for safety improvement has been drawn to enhance the coping capability for loss of safety functions under beyond design natural disaster in addition to post Fukushima action items

  4. Training courses at VR-1 reactor

    International Nuclear Information System (INIS)

    Sklenka, L.; Kropik, M.

    2006-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilization - i.e. extensive educational program. The educational program is intended for the training of university students and selected nuclear power plant personnel. The training courses provide them experience in reactor and neutron physics, dosimetry, nuclear safety and operation of nuclear facilities. At present, the training course participants can go through more than 20 standard experimental exercises; particular exercises for special training can be prepared. Approximately 200 university students become familiar with the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. The VR-1 reactor takes also part in Eugene Wigner Course on Reactor Physics Experiments in the framework of European Nuclear Educational Network (ENEN) association. Recently, training courses for Bulgarian research reactor specialists supported by IAEA were carried out. An attractive program including demonstration of reactor operation is prepared also for high school students. Every year, more than 1500 high school students come to visit the reactor, as do many foreigner visitors. (author)

  5. Current status of the Thai Research Reactor (TRR-1/M1)

    International Nuclear Information System (INIS)

    Chueinta, Siripone; Julanan, Mongkol; Charncanchee, Decharchai

    2006-01-01

    The first Thai Research Reactor, TRR-1 went critical on 27 October 1962 at the maximum power of 1 MW. It was located at Office of Atoms for Peace (OAP) in Bangkok. Since then, TRR-1 was continuously operated and eventually shut down in 1975. Plate type, high-enriched uranium (HEU) and U 3 O 8 A1 cladding were used as the reactor fuel. Light water was used as moderator and coolant as well. In 1975, because of the problem from fuel supplier and also to supporting the Treaty of Non Proliferation of Nuclear Weapon or NPT, TRR-1 was shut down for modification. The reactor core and control system were disassembled and replaced by TRIGA Mark III. A new core was a hexagonal core shape designed by General Atomics (GA). Afterwards, TRR-1 was officially renamed to the Thai Research Reactor-1/Modification 1 (TRR-1/M1). TRR-1/M1 is a multipurpose swimming pool type reactor with nominal power of 2 MW. The TRR-1/M1 uses uranium enriched at 20% in U-235 (LEU) and ZrH alloy as fuel. Light water is also used as coolant and moderator. At present, the reactor is operating with core No.14. The reactor has been serving for various kinds of utilization namely, radioisotope production, neutron activation analysis, beam experiments and reactor physics experiments. (author)

  6. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  7. Study of Irradiation Effects on the Fracture Properties of A533-Series Ferritic Steels

    International Nuclear Information System (INIS)

    Lee, Yong Bok; Lee, Gyeong Geun; Kwon, Jun Hyun

    2011-01-01

    Since the Kori nuclear power plant unit 3 (Kori-3) was founded in 1986, the surveillance tests have been conducted five times. One of the primary objectives of the surveillance test is to determine the effects of irradiation on reactor pressure vessel (RPV) steel embrittlement. The RPV is made out of ferritic steels such as SA533 type B class 1, which were used for early nuclear power plants industry including Kori-2, 3, 4 and Yonggwang-1, 2 units in Korea. The Westinghouse supplied Kori-3 with the RPV steels ASTM A533 grade B class 1, which is equivalent to SA533 type B class 1. The irradiation effects on tensile properties in ASTM A533 grade B class 1 steel had been studied by Steichen and Williams. They experimentally determined the effect of strain rate and temperature on the tensile properties of unirradiated and irradiated A533 grade B steel 1. The effects of neutron irradiation on ferritic steels could be determined from tensile properties, as well as the fracture strength and toughness measurements. Hunter and Williams have reported that the strength and ductility for unirradiated material at a low strain rate increase with decreasing test temperature. Also, neutron irradiation increases strength and decreases ductility. Crosley and Ripling revealed that the yield strength of unirradiated material rapidly increases with the strain rate. Therefore, yield strength for unirradiated and irradiated materials should be determined by test parameters along with strain rate and temperature. In this study we compare ASTM A533 grad B class 1 steel obtained from several papers with SA533 type B class 1 steel taken from the surveillance data of Kori-3 unit, whose mechanical property of unirradiated and irradiated materials was correlated with the rate-temperature parameter

  8. Analysis of effects on plant performance by major measuring points in the secondary systems of Kori nuclear power plant units 3 and 4

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Park, Jae Chang; Lee, Jung Woon; Kim, Jung Taek; Chang, Soon Heung; Lee, Gwang Gu; Heo, Gyun Young; Lee, Sung Jin; Han, Kyu Hyun; Shin, Byung Soo

    2003-06-01

    In this study, correlation analysis was achieved for the major sensor position and the behavior of secondary system in Kori NPP unit 3, 4. Using the data from simulation model, the correlation between sensor position and electrical output, the correlation between sensor position and heat rate, and the correlation between different sensor positions were analyzed. On the basis of study results, a performance evaluation model was proposed, which can carry out secondary system performance diagnosis

  9. Annual report on JEN-1 reactor

    International Nuclear Information System (INIS)

    Montes, J.

    1972-01-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  10. The 4th surveillance test and evaluation of the reactor pressure vessel material (capsule W) of Yonggwang nuclear power plant unit 2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-02-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Yonggwang unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 5.762E+18, 1.5391E+19, 3.5119E+19, and 4.2610E+19 n/cm{sup 2}, respectively. The bias factor, the ratio of measurement versus calculation, was 0.899 for the 1st through 4th testing and the calculational uncertainty, 12.3% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.357E+19 n/cm{sup 2} based on the end of 11th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.525E+19, 4.337E+19, 5.148E+19 and 5.960E+19 n/cm{sup 2} based on the current calculation. The result through this analysis for Yonggwang unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 42 tabs. (Author)

  11. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In nuclear power plants, ferritic low alloy steel nozzle was connected with austenitic stainless steel piping system through alloy 82/182 butt weld. Accurate estimation of residual stress for weldment is important in the sense that alloy 82/182 is susceptible to stress corrosion cracking. There are many results which predict residual stress distribution for alloy 82/182 weld between nozzle and pipe. However, nozzle and piping system usually connected through safe end which has short length. In this paper, residual stress distribution for pressurizer nozzle of Kori nuclear power plant was predicted using FE analysis, which considered safe end. As a result, existing residual stress profile was redistributed and residual stress of inner surface was decreased specially. It means that safe end should be considered to reduce conservatism when estimating the piping system.

  12. Safety Evaluation of Full Digital Plant Protection System of Shin-Kori 3 and 4 in Korea

    International Nuclear Information System (INIS)

    Koh, J. S.; Kim, D. I.; Jeong, C. H.; Park, H. S.; Ji, S. H.; Kang, Y. D.; Park, G. Y.

    2009-01-01

    Keeping pace with the emerging trend of digital computer technologies, KHNP has utilized full digital plant protection system into the design of I and C systems at SKN 3 and 4. This paper presents safety review activities and results related to digital plant protection systems during the licensing of construction permit for the Shin-Kori 3 and 4(SKN 3 and 4) in Korea. The major licensing issues regarding the digital systems were software quality and cyber security during planning stage, system integrity with fail-safe design, EMI equipment qualification of digital systems, FPGA qualification and communication independence between safety and non-safety System. This paper addresses our approach to evaluate full digital protection systems with revised safety review guidelines and the resulting discussion to resolve the licensing issues

  13. Safety operation of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    2001-01-01

    There are three nuclear research reactors in the Czech Republic in operation now: light water reactor LVR-15, maximum reactor power 10 MW t , owner and operator Nuclear Research Institute Rez; light water zero power reactor LR-0, maximum reactor power 5 kW t , owner and operator Nuclear Research Institute Rez and training reactor VR-1 Sparrow, maximum reactor power 5 kW t , owner and operate Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. The training reactor VR-1 Vrabec 'Sparrow', operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly it is designed for training the students of Czech universities, preparing the experts for the Czech nuclear programme, as well as for certain research work, and for information programmes in the nuclear programme, as well as for certain research work, and for information programmes in sphere of using the nuclear energy (public relations). (author)

  14. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  15. Effects of environmental radiation of Kori nuclear power plant on the human population

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1979-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on human population, the base line survey for the human monitoring, the fauna of land nocturnal insects, and the karyotypes of amphibian species which have been living around the power plant site were carried out. ''Kilchunri'' population which took for the human monitoring lie within a 2km distance from power plant site. Human monitoring, house and food characteristics, individual experience of X-ray exposures, human chromosome analysis and fauna of nocturnal land insects were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows; Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana migromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, and Bufo bufo 2N=22. (author)

  16. Extensive utilization of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, Karel; Sklenka, Lubomir

    2003-01-01

    Full text: The training reactor VR-1 Vrabec ('Sparrow'), operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly, it is designed and operated for training of students from Czech universities, preparing of experts for the Czech nuclear programme, as well as for certain research and development work, and for information programmes in the sphere of non-military nuclear energy use (public relation). The VR-1 training reactor is a pool-type light-water reactor based on enriched uranium with maximum thermal power 1kWth and short time period up to 5kW th . The moderator of neutrons is light demineralized water (H 2 O) that is also used as a reflector, a biological shielding, and a coolant. Heat is removed from the core with natural convection. The reactor core contains 14 to 18 fuel assemblies IRT-3M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The core is accommodated in a cylindrical stainless steel vessel - pool, which is filled with water. UR-70 control rods serve the reactor control and safe shutdown. Training of the VR-1 reactor provides students with experience in reactor and neutron physics, dosimetry, nuclear safety, and nuclear installation operation. Students from technical universities and from natural sciences universities come to the reactor for training. Approximately 200 university students are introduced to the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. Practical Course on Reactor Physics in Framework of European Nuclear Engineering Network has been newly introduced. Currently, students can try out more than 20 experimental exercises. Further training courses have been included

  17. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  18. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    Energy Technology Data Exchange (ETDEWEB)

    Vins, M. [Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)], E-mail: vinsmiro@seznam.cz

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  19. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  20. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  1. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Pusan National University, Busan 609 735, Korea; School of Mechanical Engineering, Pusan National University, Busan 609 735, Korea; Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 609 735, Korea; Material Testing Centre, Korea Testing Laboratory, Seoul 152 718, Korea ...

  3. Occupational analysis for the Angra-1 reactor

    International Nuclear Information System (INIS)

    Moraes, A.

    1991-01-01

    Due to several modifications which were imposed to its time schedule during construction, the Angra-1 reactor did not enter to the grid in 1982 as it was initially foreseen. These modifications occurred due to an unforeseen scenario that was verified in steam generators (serie D-3, Westinghouse) of power stations with similar configurations which had been installed in other countries such as Ringhals-3 (Sweden), Almaraz-1 (Spain) and McGuine-1 (USA). So, among the main events that occurred in the Angra-1 reactor, which were of interest from the point of view of radiation protection, it could be pointed out the personnel monitoring, and the occupational exposure measurements at different reactor power, during the reactor fueling and during modification and tests performed at the steam generators and at ducts of the primary coolant circuit. (author)

  4. Reactor operations at SAFARI-1

    International Nuclear Information System (INIS)

    Vlok, J.W.H.

    2003-01-01

    A vigorous commercial programme of isotope production and other radiation services has been followed by the SAFARI-1 research reactor over the past ten years - superimposed on the original purpose of the reactor to provide a basic tool for nuclear research, development and education to the country at an institutional level. A combination of the binding nature of the resulting contractual obligations and tighter regulatory control has demanded an equally vigorous programme of upgrading, replacement and renovation of many systems in order to improve the safety and reliability of the reactor. Not least among these changes is the more effective training and deployment of operations personnel that has been necessitated as the operational demands on the reactor evolved from five days per week to twenty four hours per day, seven days per week, with more than 300 days per year at full power. This paper briefly sketches the operational history of SAFARI-1 and then focuses on the training and structuring currently in place to meet the operational needs. There is a detailed step-by-step look at the operator?s career plan and pre-defined milestones. Shift work, especially the shift cycle, has a negative influence on the operator's career path development, especially due to his unavailability for training. Methods utilised to minimise this influence are presented. The increase of responsibilities regarding the operation of the reactor, ancillaries and experimental facilities as the operator progresses with his career are discussed. (author)

  5. Extensive utilization of training reactor VR-1

    International Nuclear Information System (INIS)

    Karel, Matejka; Lubomir, Sklenka

    2005-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilisation - i.e. extensive educational programme. The educational programme is intended for the training of university students (all technical universities in Czech Republic) and selected nuclear power plant personnel. At the present, students can go through more than 20 different experimental exercises. An attractive programme including demonstration of reactor operation is prepared also for high school students. Moreover, research and development works and information programmes proceed at the VR-1 reactor as well

  6. Stability analysis of the Ghana Research Reactor-1 (GHARR-1)

    International Nuclear Information System (INIS)

    Della, R.; Alhassan, E.; Adoo, N.A.; Bansah, C.Y.; Nyarko, B.J.B.; Akaho, E.H.K.

    2013-01-01

    Highlights: • We developed a theoretical model to study the stability of the Ghana Research Reactor-1. • The neutronics transfer function was described by the point kinetics model for a single group of delayed neutrons. • The thermal hydraulics transfer function was based on the modified lumped parameter concept. • A computer code, RESA (REactor Stability Analysis) was developed. • Results show that the closed-loop transfer function was stable and well damped for variable operating power levels. - Abstract: A theoretical model has been developed to study the stability of the Ghana Research Reactor one (GHARR-1). The closed-loop transfer function of GHARR-1 was established based on the model, which involved the neutronics and the thermal hydraulics transfer functions. The reactor kinetics was described by the point kinetics model for a single group of delayed neutrons, whilst the thermal hydraulics transfer function was based on the modified lumped parameter concept. The inherent internal feedback effect due to the fuel and the coolant was represented by the fuel temperature coefficient and the moderator temperature coefficient respectively. A computer code, RESA (REactor Stability Analysis), entirely in Java was developed based on the model for systems analysis. Stability analysis of the open-loop transfer function of GHARR-1 based on the Nyquist criterion and Bode diagrams using RESA, has shown that the closed-loop transfer function was marginally stable for variable operating power levels. The relative stability margins of GHARR-1 were also identified

  7. Design and implementation of an advanced protection system for the Shin-Kori 3 and 4 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Yonghak; Choi, Woongseock; Kwon, Jongsoo; Wilkosz, Stephen J.; Ridolfo, Charles F.; Yanosy, Paul L.

    2008-01-01

    The Nuclear Power Industry is currently embracing modern digital technology for upgrades to existing Instrumentation and Control (I and C) infrastructures as well as for incorporation into the next generation of new plants which will be coming 'on-line' during the next decade. This technology is being fully exploited for the next generation of advanced plant protection systems which will be initially deployed on the Shin-Kori 3 and 4 Nuclear Power Plant in the Republic of Korea. The system design for this plant protection system is being performed by the Korea Power Engineering Company (KOPEC) and builds upon the past generation of digital safety systems which were initially implemented at Ulchin 5 and 6. The advanced protection system is an evolution of this existing design and includes a number of improved operating attributes including: · Integration of Reactor Protection, Engineered Safety Features Actuation, and Qualified Indication and Alarm functions which were previously implemented by separate systems in the past. · Use of a 'soft control' interface which provides convenient accessibility to the safety systems from 'operator workstations' · Implementation of a Large Display Panel (LDP) which provides a consistent and constant representation of the overall plant state and of the plant safety status. The equipment for the advanced plant protection system is being provided by Westinghouse Electric Company (WEC) and utilizes the Westinghouse 'Common Q' Standardized qualified platform (where 'Q' denotes 'qualified'). The 'Common Q' platform is comprised of commercially dedicated Programmable Logic Controllers (PLC's), color-graphic Flat Panel Displays (FPD's) with integral touch screens, and high speed data communication links. It is a mature product that is in wide use for a number of safety-related applications. Among its key attributes are: · High overall system availability, which is achieved via use of a multiple channel configuration that is tolerant

  8. Research on the improvement of nuclear safety -Development of a nuclear power plant system analysis code TASS (Transient and setpoint simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Suk Koo; Jang, Won Pyo; Kim, Heui Chul; Kim, Kyung Doo; Lee, Sung Jae; Hah, Kyooi Suk; Song, Soon Jah; Um, Kil Sub; Yoon, Han Yung; Kim, Doo Il; Yoo, Hyung Keun; Choi, Jae Don; Lee, Byung Il; Kim, Jung Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    During the third year of the project the development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the Westinghouse and CE type operating reactors as well as the PWR reactors under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the YGN-3/4 FSAR transients, Kori-3 loss of AC power transient, plant data, Kori-4 load rejection and YGN-3 startup test data as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best estimate RELAP5/MOD 3.1 calculation for the YGN-3/4 FASR transients and shows its capability in simulating plant transient and startup data as well as the thermal hydraulic transient test data. Topical reports on TASS 1.0 code have been prepared and will be submitted to Korea Institute of Nuclear Safety for its licensing application to Westinghouse and CE type PWR transient analyses. The development of TASS 2.0 code has been head started in this year to timely utilize the TASS 2.0 code for the KNGR design certification. 65 figs, 30 tabs, 44 refs. (Author).

  9. Estimation of radioactivity in structural materials of ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National Center for Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Precise knowledge of the thermal neutron flux in the different structural materials of a reactor is necessary to estimate the radioactive inventory in these materials that are needed in any decommissioning study of the reactor. ETRR-1 is a research reactor that went critical on 2/1691. In spite of this long age of the reactor, the effective operation time of this reactor is very short since the reactor was shutdown for long periods. Because of this long age one may think of reactor decommissioning. For this purpose, the radioactivity of the reactor structural materials was estimated. Apart from the reactor core, the important structural materials in the ETRR-1 are the reactor tank, shielding concrete, and the graphite thermal column. The thermal neutron flux was determined by the monte Carlo method in these materials and the isotope inventory and the radioactivity were calculated by the international code ORIGEN-JR. 1 fig.

  10. Final report on effects of environmental radiation of Kori nuclear power plant on human population

    International Nuclear Information System (INIS)

    Kim, Y.J.; Kim, J.B.; Chung, K.H.; Lee, K.S.; Kim, S.R.; Yang, S.Y.

    1980-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on the human population, the base line survey for the human monitoring, human life habits, expected individual exposure dose, frequencies of chromosomal aberration, gene frequencies and karyotypes in amphibia, fauna, and radiation sensitivities in microorganisms which have been living around the power plant site were carried out. Kilchonri population which took for the human monitoring lie within a 2 km distance from the power plant site. Human monitoring, house and food characteristics, individual experience of x-ray exposures, human chromosome analysis and fauna were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows: Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana nigromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, Bufo bufo 2N=22. (author)

  11. Operation characteristics and conditions of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.; Kolros, A.; Polach, S.; Sklenka, L.

    1994-01-01

    The first 3 years of operation of the VR-1 training reactor are reviewed. This period includes its physical start-up (preparation, implementation, results) and operation development as far as the current operating configuration of the reactor core. The physical start-up was commenced using a reactor core referred to as AZ A1, whose physical parameters had been verified by calculation and whose configuration was based on data tested experimentally on the SR-0 reactor at Vochov. The next operating core, labelled AZ A2, was already prepared during the test operation of the VR-1 reactor. Its configuration was such that both of the main horizontal channels, radial and tangential, could be employed. The configuration that followed, AZ A3, was an intermediate step before testing the graphite side reflector. The current reactor core, labelled AZ A3 G, was obtained by supplementing the previous core with a one-sided graphite side reflector. (Z.S.). 2 tabs., 11 figs., 2 refs

  12. Burnup measurements at the RECH-1 research reactor

    International Nuclear Information System (INIS)

    Henriquez, C.; Navarro, G.; Pereda, C.; Torres, H.; Pena, L.; Klein, J.; Calderon, D.; Kestelman, A.J.

    2002-01-01

    The Chilean Nuclear Energy Commission has decided to produce LEU fuel elements for the RECH-1 research reactor. During December 1998, the Fuel Fabrication Plant delivered the first four fuel elements, called leaders, to the RECH-1 reactor. The set was introduced into the reactor's core, following the normal routine, but performing a special follow-up on their behavior inside and outside the core. In order to measure the burn-up of the leader fuel elements, it was decided to develop a burn-up measurements system to be installed into the RECH-1 reactor pool, and to decline the use of a similar system, which operates in a hot cell. The main reason to build this facility was to have the capability to measure the burn-up of fuel elements without waiting for long decay period. This paper gives a brief description of the facility to measure the burn-up of spent fuel elements installed into the reactor pool, showing the preliminary obtained spectra and briefly discussing them. (author)

  13. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  14. Sludge Removal and Retrieval of Foreign Object in SG of Kori Nuclear Power Plant, Unit 4

    International Nuclear Information System (INIS)

    Jeong, Wootae; Kim, Sangtae; Kim, Youngkug; Kang, Seokchul

    2014-01-01

    Sludge deposit was removed and foreign objects were inspected and retrieved on secondary side tube sheet of the SG during January 23 and February 22, April 15 and 27 in 2013. FOLAS-I lancing system, video probe and retrieval tools were used for lancing and foreign object removal respectively. Operators of the lancing system participated in mock-up training before doing the service to minimize operation time and radiation dose. Foreign objects were searched on top of 7 th TSP (tube support plate), on annulus and in tube bundle. Four objects were found and removed on annulus and in tube bundle. During the 21 st OH of Kori NPP unit 4, we removed 345.9 kilo gram of sludge and four foreign objects from three steam generators. Foreign objects which were removed from inside of SG showed us that relatively large object such as the hooked bolt might exists in steam generators. We can conclude that identifying and removing foreign object is very important to avoid possible tube failure. Removing circular metal of 152.4 gram also was successfully removed

  15. Estimation of stature from different anthropometric measurements in Kori population of North India

    Directory of Open Access Journals (Sweden)

    Renu Kamal

    2016-12-01

    Full Text Available In medico-legal cases, most often the personal identity of the deceased is a mystery. The stature, sex and other parameters in such scenarios are ascertained using the physical evidence present at the crime scene. One of the key methods of ascertaining the sex and stature is by using the human bones. The method of achieving accuracy in estimation of stature from bones has been well established in past. There are several regression formulae for conducting such estimation. However, it must be kept in mind that these regression equations can vary depending upon the population and region. Thus, it is very necessary to study a particular population thoroughly before formulating regression equations for that specific population patch. In this paper, we have penned down the study of KORI POPULATION, who are native to Kanpur region of Uttar Pradesh state, in India. In this study, we have observed the statistics of 202 individuals (106 females and 96 males. In totality, eight bone dimensions including stature, total arm length, length of the middle finger, knee length, foot length, foot breadth, maximum head length and maximum head breadth have been recorded in this research paper. The regression formulae for females and males have been derived separately. Further, there are various parameters that have been compared to find which parameter provides the best results in terms of accuracy in stature estimation.

  16. Thermal and hydraulic characteristics of the JEN-1 Reactor; Caracteristicas hidraulicas y termicas del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Otra Otra, F; Leira Rey, G

    1971-07-01

    In this report an analysis is made of the thermal and hydraulic performances of the JEN-1 reactor operating steadily at 3 Mw of thermal power. The analysis is made separately for the core, main heat exchanger and cooling tower. A portion of the report is devoted to predict the performances of these three main components when and if the reactor was going to operate at a power higher than the maximum 3 Mw attainable today. Finally an study is made of the unsteady operation of the reactor, focusing the attention towards the pumping characteristics and the temperatures obtained in the fuel elements. Reference is made to several digital calculation programmes that nave been developed for such purpose. (Author) 21 refs.

  17. IEA-R1 reactor - Spent fuel management

    International Nuclear Information System (INIS)

    Mattos, J.R.L. De

    1996-01-01

    Brazil currently has one Swimming Pool Research Reactor (IEA-R1) at the Instituto de Pesquisas Energeticas e Nucleares - Sao Paulo. The spent fuel produced is stored both at the Reactor Pool Storage Compartment and at the Dry Well System. The present situation and future plans for spent fuel storage are described. (author). 3 refs, 2 figs, 2 tabs

  18. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  19. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K.

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  20. Modernization and Refurbishment of the RECH-1 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Daie, J. [Nuclear Application Department, Chilean Nuclear Energy Commission (CCHEN), Santiago (Chile)

    2014-08-15

    The Chilean Nuclear Energy Commission (Comisión Chilena de Energía Nuclear, or CCHEN) has operated the RECH-1 research reactor since 1974. This reactor is located at La Reina Nuclear Centre in Santiago, Chile. It is a pool type reactor using LEU MTR fuel assemblies, light water as moderator and coolant, and beryllium as reflector. The reactor has been operated at the nominal power of 5 MW in a continuous shift of 20 hours per week, 48 weeks per year. The main utilizations of the RECH-1 reactor are radioisotope production and neutron activation analysis. Among the most relevant refurbishment and modernization campaigns undertaken at the reactor are: full core conversion to the use of LEU fuel, replacement of the cooling tower, improvement of the containment building by changing the doors and gates and by a better sealant for the penetrations, introduction of an additional source of water by connecting the raw water supply system to the emergency cooling system, improvement of the emergency ventilation system, introduction of a fire detection and alarm system for detection and mitigation to protect the I&C racks, introduction of a radioactive liquid release for those generated at the reactor, introduction of a delay tank degasification system and renewal of the environmental monitoring system. At present we are assessing the possibility of replacing the old analog electronics of control for new digital systems. Detailed descriptions of these diverse activities are presented in the paper. (author)

  1. Extensive utilisation of VR-1 reactor for nuclear education and training

    International Nuclear Information System (INIS)

    Rataj, J.

    2010-01-01

    The paper presents utilisation of the VR-1 reactor for nuclear education and training at national and international level. VR-1 reactor has been operating by the Czech Technical University since December 1990. The reactor is a pool-type light water reactor based on enriched uranium (19.7% 235 U) with maximum thermal power 1kW and for short time period up to 5kW. The moderator of neutrons is light water, which is also used as a reflector, a biological shielding and a coolant. Heat is removed from the core by natural convection. The pool disposition of the reactor facilitates access to the core, setting and removing of various experimental samples and detectors, easy and safe handling of fuel assemblies. The reactor core can contain from 17 to 21 fuel assemblies IRT-4M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The reactor is equipped with several experimental devices; e.g. horizontal, radial and tangential channels used to take out a neutron beam, reactivity oscillator for dynamics study and bubble boiling simulator. The reactor has been used very efficiently especially for education and training of university students and NPP's specialists for more than 18 years. The VR-1 reactor is utilised within various national and international activities such as Czech Nuclear Education Network (CENEN), European Nuclear Education Network and also Eastern European Research Reactor Initiative (EERRI). The reactor is well equipped for education and training not only by the experimental facility itself but also by incessant development of training methods and improvement of education experiments. The education experiments can be combined into training courses attended by students according to their study specialization and knowledge level. The training programme is aimed to the reactor and neutron physics, dosimetry, nuclear safety, and control of nuclear installations. Every year, approximately 250 university students undergo

  2. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    International Nuclear Information System (INIS)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do

    2015-01-01

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability

  3. System and Software Design for the Plant Protection System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Seok; Kim, Young Geul; Choi, Woong Seock; Sohn, Se Do [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    The Reactor Protection System(RPS) protects the core fuel design limits and reactor coolant system pressure boundary for Anticipated Operational Occurrences (AOOs), and provides assistance in mitigating the consequences of Postulated Accidents (PAs). The ESFAS sends the initiation signals to Engineered Safety Feature - Component Control System (ESF-CCS) to mitigate consequences of design basis events. The Common Q platform Programmable Logic Controller (PLC) was used for Shin-Wolsung Nuclear Power Plant Units 1 and 2 and Shin-Kori Nuclear Power Plant Units 1, 2, 3 and 4 since Digital Plant Protection System (DPPS) based on Common Q PLC was applied for Ulchin Nuclear Power Plant Units 5 and 6. The PPS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) was developed using POSAFE-Q PLC for the first time for the PPS. The SHN1 and 2 PPS was delivered to the sites after completion of Man Machine Interface System Integrated System Test (MMIS-IST). The SHN1 and 2 PPS was developed to have the redundancy in each channel and to use the benefits of POSAFE-Q PLC, such as diagnostic and data communication. The PPS application software was developed using ISODE to minimize development time and human errors, and to improve software quality, productivity, and reusability.

  4. Annual report on JEN-1 and JEN-2 Reactors; Informe periodico de Reactores JEN-1 y JEN-2 correpondiente al ano 1972

    Energy Technology Data Exchange (ETDEWEB)

    Montes Ponce de Leon, J.

    1974-07-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  5. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  6. Use of the VR-1 ''Vrabec'' training reactor

    International Nuclear Information System (INIS)

    Matejka, K.; Kolros, A.; Krops, S.; Polach, S.; Sklenka, L.

    1994-01-01

    An overview is presented of the extent and ways of using the VR-1 training reactor, which is operated by the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague. A list and the characteristics of 16 problems developed for teaching purposes is given, and the 14 faculties and 2 research institutes participating in the teaching activities are listed. The reactor is used in the education and training of nuclear scientists and engineers. The instrumentation, experimental, handling and operating tools, as well as documentation and texts relating to the reactor are described. The following examples of the teaching activities are included: a guided visit to the operating reactor site, reactor dynamics study and delayed neutron measurement, training course, and the basic criticality experiment. Nuclear safety aspects (hypothetical accidents, quality control and system qualification demonstration, safety culture) are stressed during the education. The reactor department is involved in international cooperation projects. (J.B.). 3 refs

  7. Proceedings of Conference on Variable-Resolution Modeling, Washington, DC, 5-6 May 1992

    Science.gov (United States)

    1992-05-01

    lag (MM Kim (S󈨘-M 881 received the B.S.IM1. and M.S.F.n degrees from Ptisan National t.’ni- veisnv. Korea , and kwmpook National Univer- sity. Koiea...position in the Department Electronics. National Fisheries University of Pusan. Pusan. Korea , research interests include artificial intelligence...with the data or the modeler/analyst/ gamer is forced to make up interactions such as fire allocation, detailed acquisition predictions, small unit

  8. Electrical system regulations of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Mello, Jose Roberto de; Madi Filho, Tufic

    2013-01-01

    The IEA-R1 reactor of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), is a research reactor open pool type, designed and built by the U.S. firm Babcock and Wilcox, having, as coolant and moderator, deionized light water and beryllium and graphite, as reflectors. Until about 1988, the reactor safety systems received power from only one source of energy. As an example, it may be cited the control desk that was powered only by the vital electrical system 220V, which, in case the electricity fails, is powered by the generator group: no-break 220V. In the years 1989 and 1990, a reform of the electrical system upgrading to increase the reactor power and, also, to meet the technical standards of the ABNT (Associacao Brasileira de Normas Tecnicas) was carried out. This work has the objective of showing the relationship between the electric power system and the IEA-R1 reactor security. Also, it demonstrates that, should some electrical power interruption occur, during the reactor operation, this occurrence would not start an accident event. (author)

  9. Modernization of control instrumentation and security of reactor IAN - R1

    International Nuclear Information System (INIS)

    Gonzalez, J. M.

    1993-01-01

    The program to modernize IAN-R1 research reactor control and safety instrumentation has been carried out considering two main aspects: updating safety philosophy requirements and acquiring the newest reactor control instrumentation controlled by computer, following the present criteria internationally recognized, for safety and reliable reactor operations and the latest developments of nuclear electronic technology. The new IAN-R1 reactor instrumentation consist of two wide range neutron monitoring channels, commanded by microprocessor a data acquisition system and reactor control, (controlled by computers). The reactor control desk is providing through two displays; all safety and control signals to the reactor operators; furthermore some signals like reactor power, safety and period signals are also showed on digital bar graphics, which are hard wired directly from the neutron monitoring channels

  10. Operation and maintenance of 1MW PUSPATI TRIGA reactor

    International Nuclear Information System (INIS)

    Adnan Bokhari; Mohammad Suhaimi Kassim

    2006-01-01

    The Malaysian Research Reactor, Reactor TRIGA PUSPATI (RTP) has been successfully operated for 22 years for various experiments. Since its commissioning in June 1982 until December 2004, the 1MW pool-type reactor has accumulated more than 21143 hours of operation, corresponding to cumulative thermal energy release of about 14083 MW-hours. The reactor is currently in operation and normally operates on demand, which is normally up to 6 hours a day. Presently the reactor core is made up of standard TRIAGA fuel element consists of 8.5 wt%, 12 wt% and 20 wt% types; 20%-enriched and stainless steel clad. Several measures such as routine preventive maintenance and improving the reactor support systems have been taken toward achieving this long successful operation. Besides normal routine utilization like other TRIGA reactors, new strategies are implemented for effective increase in utilization. (author)

  11. Perspectives on reactor safety. Revision 1

    International Nuclear Information System (INIS)

    Haskin, F.E.; Hodge, S.A.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  12. Perspectives on reactor safety. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  13. Pusan East AFS K-9, Pusan, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO)

    Science.gov (United States)

    1968-02-26

    ww.5 .5 - . . - --- "_ __ WNW * f_ 1*W 6.0 1W*__ NNIW .4 o f I 2_ es ofŕ’ fog__ __ v__. -’ ._ .I-_- __ - _ _ 11 -"- -- CALM 2.9. I Iso $ 127.0 2.3 01...27.2 48.3 48.9 49.6 49.6 9.6 49.7 49. 9.7 7T.7 4 ;9.7 49-/ 149. .7 ? iso 130.5 56.8 59.4 60.5 60.5 60.5 60.6 60.6 60.6 60.6 6C.6 6C.6 6C.6 6C.6 6C.6 cC...72.5 72. 72 . 72.5 72: I r Boo 26.7 68.3 70.3 71.6 73.0 73.1 73.6 73.7 73.7 74.C0 74.0 74. ,C 407. 27000 26.7 68.6 710.6 71.8 73.3 73.4 73.9 14.0

  14. Annual report on JEN-1 and JEN-2 Reactors

    International Nuclear Information System (INIS)

    Montes Ponce de Leon, J.

    1974-01-01

    In the annual report on the JEN-1 and JEN-2 reactors the main fractures of the reactor operations and maintenance are described. The reactor has been in operation for 2188 hours, what means 74% of the total working time. Maintenance and periodical tests have occupied the rest of the time. Maintenance operations are shown according to three main subjects, the main failures so as the reactor scrams are also described. Different date relating with radiation level and health Physics are also included. (Author)

  15. Advances in Reactor Physics, Mathematics and Computation. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).

  16. Stationary low power reactor No. 1 (SL-1) accident site decontamination ampersand dismantlement project

    International Nuclear Information System (INIS)

    Perry, E.F.

    1995-01-01

    The Army Reactor Area (ARA) II was constructed in the late 1950s as a test site for the Stationary Low Power Reactor No. 1 (SL-1). The SL-1 was a prototype power and heat source developed for use at remote military bases using a direct cycle, boiling water, natural circulation reactor designed to operate at a thermal power of 3,000 kW. The ARA II compound encompassed 3 acres and was comprised of (a) the SL-1 Reactor Building, (b) eight support facilities, (c) 50,000-gallon raw water storage tank, (d) electrical substation, (e) aboveground 1,400-gallon heating oil tank, (f) underground 1,000-gallon hazardous waste storage tank, and (g) belowground power, sewer, and water systems. The reactor building was a cylindrical, aboveground facility, 39 ft in diameter and 48 ft high. The lower portion of the building contained the reactor pressure vessel surrounded by gravel shielding. Above the pressure vessel, in the center portion of the building, was a turbine generator and plant support equipment. The upper section of the building contained an air cooled condenser and its circulation fan. The major support facilities included a 2,500 ft 2 two story, cinder block administrative building; two 4,000 ft 2 single story, steel frame office buildings; a 850 ft 2 steel framed, metal sided PL condenser building, and a 550 ft 2 steel framed decontamination and laydown building

  17. Reactor utilization, Part 1

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1981-01-01

    The reactor operating plan for 1981 was subject to the needs of testing operation with the 80% enriched fuel and was fulfilled on the whole. This annex includes data about reactor operation, review of shorter interruptions due to demands of the experiments, data about safety shutdowns caused by power cuts. Period of operation at low power levels was used mostly for activation analyses, and the operation at higher power levels were used for testing and regular isotope production. Detailed data about samples activation are included as well as utilization of the reactor as neutron source and the operating plan for 1982 [sr

  18. Refurbishment of Pakistan research reactor (PARR-1) for stainless steel lining of the reactor pool

    International Nuclear Information System (INIS)

    Salahuddin, A.; Israr, M.; Hussain, M.

    2002-01-01

    Pakistan Research Reactor-1 (PARR-1) is a pool-type research reactor. Reactor aging has resulted in the increase of water seepage from the concrete walls of the reactor pool. To stop the seepage, it was decided to augment the existing pool walls with an inner lining of stainless steel. This could be achieved only if the pool walls could be accessed unhindered and without excessive radiation doses. For this purpose a partial decommissioning was done by removing all active core components including standard/control fuel elements, reflector elements, beam tubes, thermal shield, core support structure, grid plate and the pool's ceramic tiles, etc. An overall decommissioning program was devised which included procedures specific to each item. This led to the development of a fuel transport cask for transportation, and an interim fuel storage bay for temporary storage of fuel elements (until final disposal). The safety of workers and the environment was ensured by the use of specially designed remote handling tools, appropriate shielding and pre-planned exposure reduction procedures based on the ALARA principle. During the implementation of this program, liquid and solid wastes generated were legally disposed of. It is felt that the experience gained during the refurbishment of PARR-1 to install the stainless steel liner will prove useful and better planning and execution for the future decommissioning of PARR-1, in particular, and for other research reactors like PARR-2 (27 kW MNSR), in general. Furthermore, due to the worldwide activities on decommissioning, especially those communicated through the IAEA CRP on 'Decommissioning Techniques for Research Reactors', the importance of early planning has been well recognized. This has made possible the implementation of some early steps like better record keeping, rehiring of trained manpower, and creation of interim and final waste storage. (author)

  19. RA research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1985

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1985-01-01

    According to the plan, RA reactor was to be in operation in mid September 1985. But, since the building of the emergency cooling system, nor the reconstruction of the existing special ventilation system were not finished until the end of August reactor was not operated during 1985. During the previous four years reactor operation was limited by the temporary operating license issued by the Committee of Serbian ministry for health and social care, which was cancelled in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. This temporary license has limited the reactor power to 2 MW from 1981-1984. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. In order to enable future reliable operation of the RA reactor, according to new licensing regulations, during 1984, three major tasks have started: building of the new emergency system, reconstruction of the existing ventilation system, and renewal of the reactor instrumentation. IAEA has approved the amount of 1,300,000 US dollars for the renewal of the instrumentation [sr

  20. New instrumentation for the IPR-R1 reactor of CDTN

    International Nuclear Information System (INIS)

    Carvalho, P.V.R. de.

    1992-01-01

    The Nuclear Engineering Institute reactor instrumentation area has developed systems and equipment for reactor operation and safety. In such way, the new I and C for IEN Argonauta reactor and the nuclear instrumentation for IPEN critical facility were built. This paper describes our real work, the new I and C systems for IPR-R1, a Triga type reactor, located at CDTN (Belo Horizonte - MG). (author)

  1. Major update of Safety Analysis Report for Thai Research Reactor-1/Modification 1

    Energy Technology Data Exchange (ETDEWEB)

    Tippayakul, Chanatip [Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2013-07-01

    Thai Research Reactor-1/Modification 1 (TRR-1/M1) was converted from a Material Testing Reactor in 1975 and it had been operated by Office of Atom for Peace (OAP) since 1977 until 2007. During the period, Office of Atom for Peace had two duties for the reactor, that is, to operate and to regulate the reactor. However, in 2007, there was governmental office reformation which resulted in the separation of the reactor operating organization from the regulatory body in order to comply with international standard. The new organization is called Thailand Institute of Nuclear Technology (TINT) which has the mission to promote peaceful utilization of nuclear technology while OAP remains essentially the regulatory body. After the separation, a new ministerial regulation was enforced reflecting a new licensing scheme in which TINT has to apply for a license to operate the reactor. The safety analysis report (SAR) shall be submitted as part of the license application. The ministerial regulation stipulates the outlines of the SAR almost equivalent to IAEA standard 35-G1. Comparing to the IAEA 35-G1 standard, there were several incomplete and missing chapters in the original SAR of TRR1/M1. The major update of the SAR was therefore conducted and took approximately one year. The update work included detail safety evaluation of core configuration which used two fuel element types, the classification of systems, structures and components (SSC), the compilation of detail descriptions of all SSCs and the review and evaluation of radiation protection program, emergency plan and emergency procedure. Additionally, the code of conduct and operating limits and conditions were revised and finalized in this work. A lot of new information was added to the SAR as well, for example, the description of commissioning program, information on environmental impact assessment, decommissioning program, quality assurance program and etc. Due to the complexity of this work, extensive knowledge was

  2. Establishment of the operating procedure to prevent boron precipitation during Post-LOCA long term cooling for Korean Westinghouse 3-loop NPPs

    International Nuclear Information System (INIS)

    Choi, Han Rim; Kwon, Tae Soon; Ban, Chang Hwan; Jeong, Jae Hoon; Lee, Young Jin.

    1996-11-01

    During post-LOCA LTC the increase of the excess reactivity for the extended fuel cycle should require increasing the RWST boron concentration in order to ensure core subcritical state. To quantify the concentration increment, the calculation methods was developed for the post-LOCA RCS/Sump mixed mean boron concentration, which applied for Kori 3 and 4 and Ulchin 1 and 2 of the Westinghouse 3-loop nuclear power plants in Korean. From the calculation results, the minimum boric acid concentrations increased of the RWST and accumulator were determined consideration of the convenient operation for operator on reloading. Boric acid concentrations of the RWST and the accumulators for Westinghouse 3-loop type plants were increased to meet the post-LOCA shutdown requirement for the long life cycles from 12 months to 18 months. To maintain LTC capability following a LOCA, the switchover time is examined using boron code of prevent the boron precipitation in the reactor core with the increased boron concentrations. The analysis results showed that hot leg recirculation switchover times were shortened to 7.5 hours from 24 hours after the initiation of LOCA for Kori 3 and 4 and 8 hours from 18 hours for Ulchin 1 and 2, respectively. The flow path in the mode J for Kori 3 and 4 was recommended to realign to the simultaneous recirculation of both hot and cold legs from the cold leg recirculation, as done by Ulchin 1 and 2. (author). 2 tabs., 12 figs., 13 refs

  3. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Fortini, Maria Auxiliadora

    2002-01-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  4. Zmiany czynności kory ruchowej mózgu po leczeniu botuliną u pacjentów ze stwardnieniem rozsianym i spazmem kończyn dolnych

    Directory of Open Access Journals (Sweden)

    Pavel Hok

    2011-12-01

    Full Text Available Miejscowe skurcze toniczne to powszechnie spotykany objaw stwardnienia rozsianego (łac. sclerosis multiplex, SM. Do ich zwalczania coraz częściej stosowany jest zastrzyk domięśniowy botuliny typu A. Do analizy statystycznej zaakceptowaliśmy 4 z 10 badanych pacjentów z SM i spastycznością kończyn dolnych oraz 5 zdrowych wolontariuszy. Pacjenci zostali poddani badaniu fMRI trzykrotnie: w tygodniu przed zastrzykiem botuliny A, a następnie w 4. i 12. tygodniu po iniekcji. Podczas badań fMRI probanci wykonywali zginanie i prostowanie stawu kolanowego według planu blokowego, przy czym faza czynna zamieniała się z fazą spoczynku w 15-sekundowych odstępach. Obraz przeciętnej aktywacji pacjentów podczas pierwszej sesji wskazywał, w porównaniu z grupą kontrolną, na istotny wzrost aktywacji obustronnej kory czuciowo-ruchowej płatu czołowego i ciemieniowego. Podczas drugiej sesji w 4. tygodniu aktywacja zmalała do tego stopnia, że statystycznie nie różniła się od zdrowej kontroli. Z kolei w obrazach trzeciej sesji po 12 tygodniach odnotowano w związku z wygaśnięciem efektu botuliny A ponowny wzrost aktywacji niemal do objętości pierwotnej. Wnioski: Stwierdzamy, że aktywacja kory ruchowej odzwierciedla zmiany w obwodowym układzie nerwowym zachodzące podczas leczenia za pomocą botuliny A, w czym prawdopodobnie pośredniczą zmiany w aferentacji. Jest to nowe odkrycie, aczkolwiek nie wykracza poza stwierdzenia podobnych badań przeprowadzonych innymi metodami.

  5. New human machine interface for VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Sklenka, L.; Chab, V.

    2002-01-01

    The contribution describes a new human machine interface that was installed at the VR-1 training reactor. The human machine interface update was completed in the summer 2001. The human machine interface enables to operate the training reactor. The interface was designed with respect to functional, ergonomic and aesthetic requirements. The interface is based on a personal computer equipped with two displays. One display enables alphanumeric communication between a reactor operator and the control and safety system of the nuclear reactor. Messages appear from the control system, the operator can write commands and send them there. The second display is a graphical one. It is possible to represent there the status of the reactor, principle parameters (as power, period), control rods' positions, the course of the reactor power. Furthermore, it is possible to set parameters, to show the active core configuration, to perform reactivity calculations, etc. The software for the new human machine interface was produced in the InTouch developing environment of the WonderWare Company. It is possible to switch the language of the interface between Czech and English because of many foreign students and visitors at the reactor. The former operator's desk was completely removed and superseded with a new one. Besides of the computer and the two displays, there are control buttons, indicators and individual numerical displays of instrumentation there. Utilised components guarantee high quality of the new equipment. Microcomputer based communication units with proper software were developed to connect the contemporary control and safety system with the personal computer of the human machine interface and the individual displays. New human machine interface at the VR-1 training reactor improves the safety and comfort of the reactor utilisation, facilitates experiments and training, and provides better support of foreign visitors.(author)

  6. Reactor Engineering Department annual report (April 1, 1987 - March 31, 1988)

    International Nuclear Information System (INIS)

    1988-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1987 (April 1, 1987 - March 31, 1988). The major activities in the Department concerns the programs of the high temperature gas-cooled reactor, the high conversion light water reactor, the advanced fission reactor system and the fusion reactor at JAERI and the fast breeder reactor at PNC. The report contains the latest progress in nuclear data and group constants, theoretical methods and code development, reactor physics experiments and analyses, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control/diagnosis and robotics, as well as the new topics from this fiscal year on advanced reactors system design studies and technique developments related the facilities in the Department. Also described are the activities of the Research Committee on Reactor Physics. (author)

  7. Department of Reactor Technology annual progress report 1 January -31 December 1977

    International Nuclear Information System (INIS)

    1978-04-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, reactor operation, structural reliability, system reliability, reactor physics, fuel management, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, experimental activation measurements and neutron radiography at the DR 1 reactor, underground storage of gas, solar heating and underground heat storage, wind power. (author)

  8. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  9. Reactor Engineering Department annual report (April 1, 1988 - March 31, 1989)

    International Nuclear Information System (INIS)

    1989-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1988 (April 1, 1988 - March 31, 1989). The Department has promoted cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and also to PNC's fast reactor project. Other major Department's programs are the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Application of a high energy accelerator to the nuclear engineering is also preliminarily assessed. The report also contains the latest progress in various basic researches as nuclear data and group constants, theoretical methods and code development, reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/ diagnosis and technical developments related to the reactor physics facilities. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  10. Thai Research Reactor (TRR-1/M1) Neutron Beam Measurements

    International Nuclear Information System (INIS)

    Ratanatongchai, Wichian

    2009-07-01

    Full text: Neutron beam tube of neutron radiography facility at Thai Research Reactor (TRR-1/M1) Thailand Institute of Nuclear Technology (public organization) is a divergent beam. The rectangular open-end of the beam tube is 16 cm x 17 cm while the inner-end is closed to the reactor core. The neutron beam size was measured using 20 cm x 40 cm neutron imaging plate. The measurement at the position 100 cm from the end of the collimator has shown that the beam size was 18.2 cm x 19.0 cm. Gamma ray in neutron the beam was also measured by the identical position using industrial X ray film. The area of gamma ray was 27.8 cm x 31.1 cm with the highest intensity found to be along the neutron beam circumference

  11. New measuring and protection system at VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Jurickova, M.

    2006-01-01

    The contribution describes the new measuring and protection system of the VR-1 training reactor. The measuring and protection system upgrade is an integral part of the reactor I and C upgrade. The new measuring and protection system of the VR-1 reactor consists of the operational power measuring and the independent power protection systems. Both systems measure the reactor power and power rate, initiate safety action if safety limits are exceeded and send data (power, power rate, status, etc.) to the reactor control system. The operational power measuring system is a full power range system that receives signal from a fission chamber. The signal is evaluated according to the reactor power either in the pulse or current mode. The current mode utilizes the DC current and Campbell techniques. The new independent power protection system operates in the two highest reactor power decades. It receives signals from a boron chamber and evaluates it in the pulse mode. Both systems are computer based. The operational power measuring and independent power protection systems are diverse - different types and location of chambers, completely different hardware, software algorithms for the power and power rate calculations, software development tools and teems for the software manufacturing. (author)

  12. Reactor Engineering Department annual report (April 1, 1990 - March 31, 1991)

    International Nuclear Information System (INIS)

    1991-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1990 (April 1, 1990 - March 31, 1991). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  13. Reactor Engineering Department annual report (April 1, 1991-March 31, 1992)

    International Nuclear Information System (INIS)

    1992-08-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1991 (April 1, 1991-March 31, 1992). The major Department's programs promoted in the year are assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researchers on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative work to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  14. Thermohydraulic analysis for power increase of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Umbehaun, Pedro E.; Bastos, Jose L.F.

    1996-01-01

    In this work has been presented the reactor core thermohydraulic model of IEAR-1, aiming its power operation increase from 2MW to 5MW. The design criteria adopted have been established in Safety Series 35. Three configurations of reactor core were analysed: fuel elements 20, 25 and 30

  15. Decommissioning and decontrolling the R1-reactor

    International Nuclear Information System (INIS)

    Bergman, C.; Holmberg, B.T.

    1985-01-01

    Sweden's first nuclear reactor - the research reactor R1 - situated in bedrock under the Royal Technical Institute of Stockholm, has in the period 1981-1983 been subject to a complete decommissioning. The National Institute for Radiation Protection has followed the work in detail, and has after the completion of the decommissioning performed measurements of radioactivity on site. The report gives an account of the work the Institute has done in preparation for- and during decommissioning and specifically report on the measurements for classification of the local as free for non-nuclear use. (aa)

  16. Upgrading of the research reactors FRG-1 and FRG-2

    International Nuclear Information System (INIS)

    Krull, W.

    1981-01-01

    In 1972 for the research reactor FRG-2 we applied for a license to increase the power from 15 MW to 21 MW. During this procedure a public laying out of the safety report and an upgrading procedure for both research reactors - FRG-1 (5 MW) and FRG-2 - were required by the licensing authorities. After discussing the legal background for licensing procedures in the Federal Republic of Germany the upgrading for both research reactors is described. The present status and future licensing aspects for changes of our research reactors are discussed, too. (orig.) [de

  17. RA Research reactor Annual report 1981 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    Sotic, O.; Milosevic, M.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.

    1981-12-01

    The RA nuclear reactor stopped operation after March 1979 campaign due to appearance of aluminium oxyhydrates deposits on the surface of fuel element claddings. Relevant decisions of the Sanitary inspection body of the Ministry of health and the Director General of the 'Boris Kidric' Institute of nuclear sciences, Vinca, banned further reactor operation until reasons caused aluminium oxyhydrates deposition are investigated and removed to enable regular reactor operation. Until the end of 1979 and during 1980, after a series of analyses and findings that caused cease of reactor operation, all the preparatory actions needed for restart were performed. Due to the fact that there is no emergency cooling system and no appropriate filtering system at the reactor, and according to the new regulations about start up of nuclear facilities, the Sanitary inspection body made a decision about temporary licence for reactor start-up meaning performance of the 'zero experiment' limiting the operating power to 1% of the nominal power. Accordingly the reactor was restarted on January 21 1981. Criticality was reached with the core made of 80% enriched fuel elements only. After the experiment was finished by the end of March a permission was demanded for operation at higher power levels at full power. Taking into account the state of the reactor components the operating licence was issued limiting the power to 2 MW until reconstruction of the ventilation system and construction of the emergency cooling system are fulfilled. Program of testing operation started on September 15 1981 increasing gradually the operating power. Thus the reactor was operated at 2 MW power for 15 days during November and December. The total production achieved in 1981 was 1698 MWh. This enabled isotopes production at the reactor during last two months. Control and maintenance of the reactor components and systems was done regularly and efficiently within limits imposed by availability of spare parts. The

  18. Department of Reactor Technology: annual progress report 1 January - 31 December 1976

    International Nuclear Information System (INIS)

    1977-06-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, structural reliability, system reliability, radiation fiels in nuclear power plants, reactor physics, fuel management, fission product decay analysis, steady-state thermo-hydraulics, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, control rod ejection accident analysis, economic studies for power plants, experimental activation measurements and neutron radiography at the DR 1 reactor. (author)

  19. Irradiation routine in the IPR-R1 Triga reactor

    International Nuclear Information System (INIS)

    Maretti Junior, F.

    1980-01-01

    Information about irradiations in the IPR-R1 TRIGA reactor and procedures necessary for radioisotope solicitation are presented All procedures necessary for asking irradiation in the reactor, shielding types, norms of terrestrial and aerial expeditions, payment conditions, and catalogue of disposable isotopes with their respective saturation activities are described. (M.C.K.)

  20. Neutron density optimal control of A-1 reactor analoque model

    International Nuclear Information System (INIS)

    Grof, V.

    1975-01-01

    Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)

  1. Department of Reactor Technology annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    1979-04-01

    The activities of the department of reactor technology at Risoe during 1978 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  2. Reactor Engineering Department annual report (April 1, 1996 - March 31, 1997)

    International Nuclear Information System (INIS)

    1997-10-01

    This report summarizes the research and development activities in the Reactor Engineering Department of JAERI during the fiscal year of 1996 (April 1, 1996 - March 31, 1997). The major Department's programs promoted in the year are the design activities of advanced reactor system and the development of a high power proton linear accelerator to construct an intense neutron source for innovative neutron science. Other Major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analysis, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC's fast reactor project were also progressed. The 99 papers are indexed individually. (J.P.N.)

  3. Reactor engineering department annual report. April 1, 1993-March 31, 1994

    International Nuclear Information System (INIS)

    1994-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1993 (April 1, 1993-March 31, 1994). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees organized by the Department are also summarized in this report. (author)

  4. Reactor Engineering Department annual report (April 1, 1996 - March 31, 1997)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This report summarizes the research and development activities in the Reactor Engineering Department of JAERI during the fiscal year of 1996 (April 1, 1996 - March 31, 1997). The major Department`s programs promoted in the year are the design activities of advanced reactor system and the development of a high power proton linear accelerator to construct an intense neutron source for innovative neutron science. Other Major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analysis, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC`s fast reactor project were also progressed. The 99 papers are indexed individually. (J.P.N.)

  5. Reactor engineering department annual report. April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    1995-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1994 (April 1, 1994 - March 31, 1995). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  6. Modification of the IAN-R1 reactor

    International Nuclear Information System (INIS)

    Jaime, J.; Ahumada, S.; Spin, R.A.

    1990-01-01

    The IAN-R1 reactor is the only nuclear reactor operating in Colombia; it is installed at the Institute of Nuclear Affairs (AIN) in Bogota, which is an official body coming under the Ministry of Mining and Energy. This reactor started operation in January 1965 with a rated power of 10 kW and was modified a year later to operate at 20 kW, which has been its rated power up to the present. Given its importance for the application of nuclear technology in Columbia for various purposes, principally in the areas of neutron activation analysis, determination of uranium content in minerals using the delayed neutron counting method, production of certain radioisotopes such as 198 Au and 82 Br for engineering applications, and production of radioactive material for teaching and research purposes, research has been in progress for some years into ways of increasing its power. The study on experimental requirements and on the demand for locally produced radioisotopes came to the conclusion that its power should be increased to 1000 kW, which would allow the facility to remain on the same site. The modification includes conversion of the core to low-enriched fuel, operation up to 1 MW, modification of the shielding, renovation of instrumentation and installation of a radioisotope processing plant. When the reactor is modified we will be able to produce other radioisotopes for applications in nuclear medicine, industry and engineering; at the same time, the safety of the facility will be optimized and the experimental facilities improved

  7. Measurement of β/Λ ratio in IEA-R1 reactor using noise technique

    International Nuclear Information System (INIS)

    Moreira, J.M.L.; Kassar, E.

    1986-01-01

    The ratio β/Λ for the IEA-R1 reactor is obtained experimentally through the noise analysis technique. This technique is based on the determination of the power spectral density of the reactor neutron population, with the reactor in a subcritical state driven by a 'white' neutron source. A ratio β/Λ of 43,5 s -1 is estimated from the break frequency of the measured transfer function of the IEA-R1 reactor. (Author) [pt

  8. Evaluation of applicability of alternative source terms to operating nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Lim, S. N.; Park, Y. S.; Nam, K. M.; Song, D. B.; Bae, Y. J.; Lee, Y. J.; Jung, C. Y.

    2002-01-01

    In 1995 and 2000, NRC issued NUREG-1465 and Regulatory Guide 1.183 with respect to Alternative Source Terms(AST) replacing the existing source terms of TID-14844 and Regulatory Guide 1.4, 1.25, and 1.77 for radiological Design Basis Accidents(DBA) analysis. In 1990, ICRP published ICRP Pub. 60 which represents new recommendations on dose criteria and concepts. In Korea, alternative source terms were used for evaluation of effective doses for design basis accidents of Advanced Power Reactor(APR1400) using the computer program developed by an overseas company. Recently, DBADOSE, new computer program for DBA analysis incorporating AST and effective dose concept was developed by KHNP and KOPEC, and reanalysis applying AST to operating nuclear power plants, Kori units 3 and 4 in Korea using DBADOSE has been performed. As the results of this analysis, it was concluded that some conservative variables or operation procedures of operating plants could be mitigated or simplified by virtue of increased safety margin and consequently, economical and operational benefits ensue. In this paper, methodologies and results of Kori 3 and 4 DBA reanalysis and sensitivity analysis for mitigation of main design variables are introduced

  9. Sensitivity analysis for maximum heat removal from debris in the lower head

    International Nuclear Information System (INIS)

    Kim, Yong Hoon; Suh, Kune Y.

    2000-01-01

    Sensitivity analyses were performed to determine the maximum heat removal capability from the debris and the reactor pressure vessel (RPV) wall through the gap that may be formed during a core melt relocation accident. Cases studied included four different nuclear power plant (TMI-2,KORI-2,YGN 3and4 and KNGR) per the thermal opower output. Results of the analysis show that the heat removal through gap cooling relative to flooding is efficacious as much as about 40% of the core material accumulated in the lower plenum in case of the TMI-2 reactor. In excess of 40%, however, the gap cooling alone was found not to be enough for heat removal from the core debris. There being uncertaainties aoboout the assumptions made in the present study,the analyses yield consistent results. If different cooling effects are considered, heat removal may be greatly enhanced. The LAVA experiements were performed at the Korea Atomic Energy Research Institute (KAERI) using al 2 O 3 /Fe thermite melt relocating down to the scaled vessel of a reactor lower head filled with preheated water. Test results indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices. If the cooling capacity of the intra-debris pores and crevices is comparable to debris-to-vessel heat removal capability, heat removal from the debris will be greatly augmented than heat removal by the gap cooling alone. The three nuclear reactor (KORI-2, YGN 3and4 and KNGR) calculation results for heat removal through the debris-to-vessel gap size of about 1mm were compared with the TMI-2 reactor calculation results for the case of gap cooling alone. (author)

  10. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Van-Duysen, Jean Claude

    2005-01-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called 'Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, ...) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program

  11. Development of a Real-Time Thermal Performance Diagnostic Monitoring system Using Self-Organizing Neural Network for Kori-2 Nuclear Power Unit

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1996-01-01

    In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. the system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the Kori-2 nuclear power unit is developed and examined is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, the algorithm is shown to be ale to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work. 5 figs., 3 tabs., 11 refs. (Author)

  12. Reactor engineering department annual report. April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    1996-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermalhydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermalhydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  13. Reactor engineering department annual report. April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1994 (April 1, 1994 - March 31, 1995). The major Department`s programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author).

  14. Reactor Engineering Department annual report. April 1, 1997 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Masaaki; Ohnuki, Akira; Ono, Toshihiko [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1997 (April 1, 1997 - March 31, 1998). The major Department`s programs promoted in the year are the achievement of the world-strongest lasing of Free Electron Laser and the verification of the core thermal integrity during design basis events in PWRs. Other Major tasks of the Department are various basic researches on the advanced reactor system design studies, the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  15. Reactor Engineering Department annual report. April 1, 1997 - March 31, 1998

    International Nuclear Information System (INIS)

    Ochiai, Masaaki; Ohnuki, Akira; Ono, Toshihiko

    1998-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1997 (April 1, 1997 - March 31, 1998). The major Department's programs promoted in the year are the achievement of the world-strongest lasing of Free Electron Laser and the verification of the core thermal integrity during design basis events in PWRs. Other Major tasks of the Department are various basic researches on the advanced reactor system design studies, the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC's fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  16. Reactor engineering department annual report. April 1, 1995 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The major Department`s programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermalhydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermalhydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  17. Present and future activities of TRIGA RC-1 Reactor

    International Nuclear Information System (INIS)

    Festinesi, A.

    1986-01-01

    A summary of reactor activities is presented and discussed. The RC-1 reactor is used by ENEA's laboratories, research institutes and national industries for different aims: research, analysis materials behaviour under neutron flux, etc. To satisfy the requests increase it is important to signalize: - the realization of a new radiochemical laboratory for radioisotopes production, to be used in a medical and/or diagnostic field in general; - the realization of a tritium handling laboratory, to study tritium solubility, release and diffusion in different material (particularly in ceramic breeder as lithium aluminate) to support Italian programs on fusion technology; - a research activity on the reactors computerized control by a console of advanced conception. The aim of this activity is the development of an ergonomic control room that could be a reference point for the planning of the power reactor control rooms

  18. Neutronic studies in the enrichment reduction of research reactor IEAR-1

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Fanaro, L.C.B.; Mai, L.A.; Ferreira, P.S.B.; Garone, J.G.M.

    1987-01-01

    In the present work the codes used by the Reactor Physics Division of IPEN-CNEN-SP in calculations for plate-type reactors are described analyzing research reactor IEAR-1. The IAEA model problem for a plate-type reactor 10 MW with high, medium and low enrichment is solved through different methodologies now in use at the RTF/IPEN-CNEN-SP (HAMMER and HAMMER-TECH-CITATION and LEO4-2DBP-UM) looking into the calculation capability for high to low enrichment conversion within the contract held with the IAEA (BRA-4661). Finally, present reactor configuration calculations are compared with experimental measurements with the aim to validate the calculation method. (Author)

  19. I and C success in Korea past and present projects and a view to the future

    International Nuclear Information System (INIS)

    Ridolfo, Charles F.

    2009-01-01

    Westinghouse Electric Company, LLC (WEC) has been providing advanced Instrumentation and Control (I and C) technology for the C E System 80, Korean Standard Nuclear Power Plant (KSNP), since the early 1990's. I and C equipment and technical support has been provided for a progression of these plants including Yonggwang Units 3,4,5,6, Ulchin Units 3,4,5,6, Shin Kori Units 1 and 2, Shin Wolsong Units 1 and 2, and most recently for Shin Kori Units 3 and 4. These I and C programs have been highly successful and have helped to contribute to the outstanding plant availability for the commissioned units at Yonggwang 3,4,5, and 6 and Ulchin 3,4,5, and 6; which are currently providing power on the grid. WEC has also recently delivered I and C equipment for Shin Kori Units 1 and 2 and Shin Wolsong Units 1 and 2 and is supporting the installation and startup of the equipment. In addition, WEC is in the initial design stages for providing an integrated protection system that will be deployed at Shin Kori Units 3 and 4 which are the first units to implement the APR1400; an advanced reactor of indigenous Korean design, which is based on the previous generation Optimized Power Reactor OPR1000. The success of the I and C programs has been the result of careful consideration of the appropriate technology to employ, applying comprehensive quality assurance measures, providing appropriate technical support and consultation services, implementation of a program of continued I and C logistic support, maintaining a professional and experienced I and C work force, and maintaining a strong and mutually supportive partnership with the Korea Power Engineering Company (KOPEC) and with Korea Hydro and Nuclear Power (KHNP). WEC takes great pride in its on going I and C partnership with Korea, which has included not only providing equipment and technical support services, but also completion of a comprehensive Technology Transfer program. This program was implemented to promote local 'elf

  20. RA Research reactor Annual report 1982 - Part 1, Operation, maintenance and utilization of the RA reactor

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.; Miokovic, J.

    1982-12-01

    Reactor test operation started in September 1981 at 2 MW power with 80% enriched fuel continued during 1982 according to the previous plan. The initial reactor core was made of 44 fuel channel each containing 10 fuel slugs. The first half of 1982 was used for the needed measurements and analysis of operating parameters and functioning of reactor systems and equipment under operating conditions. Program concerned with the testing operation at higher power levels was started in the second half of this year. It was found that the inherent excess reactivity and control rod worths ensure safe operation according to the IAEA safety standards. Excess reactivity is high enough to enable higher power level of 4.7 MW during 4 monthly cycles each lasting 15-20 days. Favourable conditions for cooling exist for the initial core configuration. Effects of poisoning at startup on the reactivity and power density distribution were measured as well as initial spatial distribution of the neutron flux which was 3,9 10 13 cm -2 s -1 at 2 MW power. Modification of the calibration coefficient in the system for automated power level control was determined. All the results show that all the safety criteria and limitations concerned with fuel utilization are fulfilled if reactor power would be 4.7 MW. Additional testing operation at 3, 4, and 4.7 MW power levels will be needed after obtaining the licence for operating at nominal power. Transition from the initial core with 44 fuel channels to the equilibrium lattice configuration with 72 fuel channels each containing 10 fuel slugs, would be done gradually. Reactor was not operated in September because of the secondary coolant pipes were exchanged between Danube and the horizontal sedimentary. Control and maintenance of the reactor equipment was done regularly and efficiently dependent on the availability of the spare parts. Difficulties in maintenance of the reactor instrumentation were caused by unavailability of the outdated spare parts

  1. Reliabitity study of the accumulator system for Angra-1 reactor

    International Nuclear Information System (INIS)

    Santos Maciel, C.C.R.

    1980-01-01

    The realibility of the Accumulator System of Angra 1 reactor is studied. The fault tree techniques is use for identification and evaluation of the probability of occurrence of the possible failure modes of the system. The study has as a guide the report WASH 1400 in which the analysis of the reliability of a Tipical PWR reactor of USA. Comparisons between results obtained for Accumulator System of Angra 1 and that published in the report WASH 1400 for the Accumulator System of the Typical Reactor are done. Critiques to the methodology used in the reportd WASH 1400 and an analysis of the sensitivity of the system in relation with its components are also done. (author) [pt

  2. Design of a new research reactor : 1st year conceptual design

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T.

    2004-01-01

    A new research reactor model satisfying the strengthened regulatory environments and the changed circumstances around nuclear society should be prepared for the domestic and international demand of research reactor. This can also lead to the improvement of technologies and fostering manpower obtained during the construction and the operation of HANARO. In this aspect, this study has been launched and the 1st year conceptual design has been carried out in 2003. The major tasks performed at the first year of conceptual design stage are as follows; Establishments of general design requirements of research reactors and experimental facilities, Establishment of fuel and reactor core concepts, Preliminary analysis of reactor physics and thermal-hydraulics for conceptual core, Conceptual design of reactor structure and major systems, International cooperation to establish foundations for exporting

  3. Education and research at the VR-1 Vrabec training reactor facility

    International Nuclear Information System (INIS)

    Matejka, K.

    1993-01-01

    The results of 12 years' efforts devoted to the construction of the VR-1 ''Vrabec'' training reactor at the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague and to establishing the training reactor department, as well as the contribution of the training reactor facility to the teaching and scientific activities of the Faculty are presented in a comprehensive manner. The thesis is divided into 2 parts: (i) preconditions, reactor construction and commissioning, and constituting the reactor department, and (ii) basic and comprehensive information concerning the current utilization of the reactor for the benefit of students from various university level institutions. The prospects of scientific activities of the department are also outlined. Attention is paid to selected nuclear safety aspects of the reactor during operation and teaching of students, as well as to its innovated digital control system whose implementation is planned. The results achieved are compared with the initial goals and with similar experience abroad. (P.A.)

  4. Graphite stack corrosion of BUGEY-1 reactor (synthesis)

    International Nuclear Information System (INIS)

    Petit, A.; Brie, M.

    1996-01-01

    The definitive shutdown date for the BUGEY-1 reactor was May 27th, 1994, after 12.18 full power equivalent years and this document briefly describes some of the feedback of experience from operation of this reactor. The radiolytic corrosion of graphite stack is the major problem for BUGEY-1 reactor, despite the inhibition of the reaction by small quantities of CH 4 added to the coolant gas. The mechanical behaviour of the pile is predicted using the ''INCA'' code (stress calculation), which uses the results of graphite weight loss variation determined using the ''USURE'' code. The weight loss of graphite is determined by annually taking core samples from the channel walls. The results of the last test programme undertaken after the definitive shutdown of BUGEY-1 have enabled an experimental graph to be established showing the evolution of the compression resistance (perpendicular and parallel direction to the extrusion axis) as a function of the weight loss. The numerous analyses, made on the samples carried out in the most sensitive regions, have allowed to verify that no brutal degradation of the mechanical properties of graphite happens for the high value of weight loss up to 40% (maximum weight loss reached locally). (author). 10 refs, 3 figs, 4 tabs

  5. Sandia reactor kinetics codes: SAK and PK1D

    International Nuclear Information System (INIS)

    Pickard, P.S.; Odom, J.P.

    1978-01-01

    The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time

  6. Core management and performance analysis for PWR

    International Nuclear Information System (INIS)

    Lee, J.B.; Lee, C.K.; Kim, J.S.; Lee, S.K.; Moon, K.S.; Chun, B.J.; Chang, J.W.; Kim, Y.J.

    1981-01-01

    The KINS (KAERI Improved Nodal Simulation) program, a three-dimensional nodal simulation code for pressurized water reactor fuel management, has been developed and benchmarked against the cycles 1 and 2 of the Kori-1 reactor. The critical boron concentration and three-dimensional power distribution at BOL, HZP condition have been calculated and compared with the operating data. A three-dimensional depletion calculation at HFP condition has been performed for cycle 1 with an interval of 1000 MWD/MTU and compared with the operating data. Similar calculation was also performed for cycle 2 and then compared with the design data of the reactor vendor. At the same time, a prediction of in-core detectors reaction rate was made so as to be compared with the operating data. As the result of comparisons, our calculation as well as the justification of the correlations is shown to be in excellent agreement with the operating data within an allowable limit

  7. Advanced Passive Reactors : Leading The U. S. Nuclear Renaissance

    International Nuclear Information System (INIS)

    Henderson, Ronald R.

    1990-01-01

    Twenty-one years have passed since Korea Electric Power Corporation and Westinghouse announced plans to build Kori 1. Today, Korea's nuclear program is one of the most successful in the world. The electricity generated from Kori 1 and eight other nuclear plants has helped to spark the remarkable growth and transformation of Korea into a modern industrial power. Westinghouse is proud to have been Korea's partner on six of those plants. It the past is the bast prophet of the future, then you and your countrymen should certainly be excited by your future. Korean industry is poised to continue its steady growth, and that means continued growth for your nuclear industry. Currently, the U. S. nuclear industry is experiencing a similar mood of excitement. In fact, it would be necessary to go almost all the way back to the beginning of the birth of the Korean nuclear industry, in 1969, to find a time when the future of nuclear power in the United States looked as bright as it does today. Part of our excitement stems from the welcome prospect of growth. In recent years, there has not been a market for new nuclear plants in the United States. Utilities either had excess capacity or were building plants they had ordered before 1974. For example, between 1980 and 1989, U. S. utilities completed 46 large nuclear units, but didn't order a single new one in that time. Since 1983, however, strong economic growth in the United States has caused the demand for electric power to grow about twice as fast as utilities had projected. Today, utilities will need to order new busload plants. When they do, utilities won't want technology developed 20 years ago. They'll be looking for plants that can meet the environmental, economic, and safety standards of the 21st century

  8. Ageing problems and renovation programme of ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Khattab, M.S.; Sultan, M.A.

    1995-01-01

    Based on Practical Experience gained from interfacing ageing systems in addition to operating new systems, current problems could be deduced whenever in-service inspection are carried out. This paper summarizes the in-service inspection made, and the proposed programme of rehabilitation of mechanical system in the ET-RR-1 research reactor at Inshass. Exchangeable experience in solving common problems in similar reactors play an important role in the effectiveness of such rehabilitation programme. The paper summarizes also the modernization of control, measuring and radiation monitoring system already carried out at the reactor. (orig.)

  9. Generating the flux map of Nigeria Research Reactor-1 for efficient ...

    African Journals Online (AJOL)

    One of the main uses to which the Nigeria Research Reactor-1 (NIRR-1) will be put is neutron activation analysis. The activation analyst requires information about the flux level at various points within and around the reactor core to enable him identify the point of optimum flux (at a given operating power) for any irradiation ...

  10. Reactor protection system. Revision 1

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Vincent, D.R.; Lesniak, L.M.

    1975-04-01

    The reactor protection system-II (RPS-II) designed for use on Babcock and Wilcox 145- and 205-fuel assembly pressurized water reactors is described. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W. (U.S.)

  11. RA Research nuclear reactor Part 1, RA Reactor operation and maintenance in 1987

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1987-01-01

    RA research reacto was not operated due to the prohibition issued in 1984 by the Government of Serbia. Three major tasks were finished in order to fulfill the licensing regulations about safety of nuclear facilities which is the condition for obtaining permanent operation licence. These projects involved construction of the emergency cooling system, reconstruction of the existing special ventilation system, and renewal of the system for electric power supply of the reactor systems. Renewal of the RA reactor instrumentation system was initiated. Design project was done by the Russian Atomenergoeksport, and is foreseen to be completed by the end of 1988. The RA reactor safety report was finished in 1987. This annual report includes 8 annexes concerning reactor operation, activities of services and financial issues, and three special annexes: report on testing the emergency cooling system, report on renewal of the RA reactor and design specifications for reactor renewal and reconstruction [sr

  12. Thirtieth anniversary of reactor accident in A-1 Nuclear Power Plant Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Kuruc, J.; Matel, L.

    2007-01-01

    The facts about reactor accidents in A-1 Nuclear Power Plant Jaslovske Bohunice, Slovakia are presented. There was the reactor KS150 (HWGCR) cooled with carbon dioxide and moderated with heavy water. A-1 NPP was commissioned on December 25, 1972. The first reactor accident happened on January 5, 1976 during fuel loading. This accident has not been evaluated according to the INES scale up to the present time. The second serious accident in A-1 NPP occurred on February 22, 1977 also during fuel loading. This INES level 4 of reactor accident resulted in damaged fuel integrity with extensive corrosion damage of fuel cladding and release of radioactivity into the plant area. The A-1 NPP was consecutively shut down and is being decommissioned in the present time. Both reactor accidents are described briefly. Some radioecological and radiobiological consequences of accidents and contamination of area of A-1 NPP as well as of Manivier Canal and Dudvah River as result of flooding during the decommissioning are presented (authors)

  13. Demolition of the FRJ-1 research reactor (MERLIN)

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2003-01-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [de

  14. Evaporation rate measurement in the pool of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Cegalla, Miriam A.; Baptista Filho, Benedito Dias

    2000-01-01

    The surface water evaporation in pool type reactors affects the ventilation system operation and the ambient conditions and dose rates in the operation room. This paper shows the results of evaporation rate experiment in the pool of IEA-R1 research reactor. The experiment is based on the demineralized water mass variation inside cylindrical metallic recipients during a time interval. Other parameters were measured, such as: barometric pressure, relative humidity, environmental temperature, water temperature inside the recipients and water temperature in the reactor pool. The pool level variation due to water contraction/expansion was calculated. (author)

  15. New digital control system for the operation of the Colombian research reactor IAN-R1; Nuevo sistema de control digital para la operacion del reactor de investigacion Colombiano IAN-R1

    Energy Technology Data Exchange (ETDEWEB)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J., E-mail: lina.celis@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  16. IEA-R1 research reactor: operational life extension and considerations regarding future decommissioning

    International Nuclear Information System (INIS)

    Frajndlich, Roberto

    2009-01-01

    The IEA-R1 reactor is a pool type research reactor moderated and cooled by light water and uses graphite and beryllium reflectors. The reactor is located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), in the city of Sao Paulo, Brazil. It is the oldest research reactor in the southern hemisphere and one of the oldest of this kind in the world. The first criticality of the reactor was obtained on September 16, 1957. Given the fact that Brazil does not have yet a definitive radioactive waste repository and a national policy establishing rules for the spent fuel storage, the institutions which operate the research reactors for more than 50 years in the country have searched internal solutions for continued operation. This paper describes the spent fuel assemblies and radioactive waste management process for the IEA-R1 reactor and the refurbishment and modernization program adopted to extend its lifetime. Some considerations about the future decommissioning of the reactor are also discussed which, in my opinion, might help the operating organization to make decisions about financial, legal and technical aspects of the decommissioning procedures in a time frame of 10-15 years(author)

  17. An Investigation on Irradiation-induced Grid Width Growth in Advanced Fuels

    International Nuclear Information System (INIS)

    Jang, Young Ki; Jeon, Kyeong Lak; Kim, Yong Hwan; Kim, Jae Ik; Hwang, Sun Tack; Kim, Man Su; Lee, Tae Hyoung; Yoo, Myeong Jong; Yoon, Yong Bae; Kim, Tae Wan

    2011-01-01

    The spacer grids for fuel assembly are fabricated from preformed Zircaloy or Inconel strips interlocked in an egg crate fashion and welded or brazed together. The spacer grid is the important component to maintain the fuel rod array by providing positive lateral restraint to the fuel rods but only frictional restraint to axial fuel rod motion. To improve economy and safety aspects, advanced nuclear fuels of PLUS7, 16ACE7 and 17ACE7 were developed. The former is for Optimized Power Reactor of 1000 MWe (OPR1000) and Advanced Power Reactor of 1400 MWe (APR1400) and the latter two are for 16x16 and 17x17 Westinghouse type reactors, respectively. The material for top and bottom spacer grids on these advanced fuels are Inconel and the mid grids are Zirlo patented by Westinghouse. For neutron economy, the fuel assemblies are arranged very closely and the gaps between assemblies are kept to around 1 mm based on the worst case. The Zirconium-based alloys grow during irradiation in reactor. The large growth may cause some difficulties in loading and unloading fuel assemblies during refueling outage in reactor. The severe growth may cause some problems that fuel assemblies may be stuck within the core shroud and a modification of loading pattern is required. In addition, the grid growth with grid spring relaxation may cause different rod vibration behavior and results in the different wear mechanism. The grid width growth on the advanced fuels were predicted by using the growth models before the irradiation in reactor and were examined using lead test assemblies (LTAs) after each cycle in Ulchin unit 3 and Kori units 2 and 3, respectively. To reconfirm irradiation performance results using LTAs, the additional examinations are being performed through the surveillance programs on the commercially supplied fuels in Yonggwang unit 5 and Kori units 2 and 4. It is investigated on this study whether the grid widths on the advanced fuels meet their criteria and the predicted models

  18. Survey monitoring of environmental radioactivity in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H. S.; Lee, J. [Busan Regional Monitoring Station, Busan (Korea, Republic of)

    2000-12-15

    At Pusan Regional Monitoring Station in Busan have been measured periodically in 2000 gross beta activities in the airborne dust, fallout, precipitation and tap water and gamma exposure rates. Gamma nuclides in airborne dust, fallout and precipitation have also been monitored at the station. As a part of environmental radiation/radioactivity distribution survey around Pusan, vegetables, fishes, shellfish, drinking water (total 23ea) samples were taken from sampling sites which were selected by KlNS. We analysis gamma nuclide for all. No significant changes from the previous survey have been found in both beta activities and gamma exposure rates. As the results of analyzing an gamma nuclide concentration in environmental samples in Pusan are fee of radiological contaminants.

  19. Establishment and Evaluation of Decommissioning Plant Inventory DB and Waste Quantity

    International Nuclear Information System (INIS)

    Oh, Jae Yong; Moon, Sang-Rae; Yun, Taesik; Kim, Hee-Geun; Sung, Nak-Hoon; Jung, Seung Hyuk

    2016-01-01

    Korea Hydro and Nuclear Power (KHNP) made a decision for permanent shutdown of Kori-1 and has progressed the strategy determination and R and D for the decommissioning of Kori-1. Decommissioning waste, Structure, System and Components (SSCs) is one of the most important elements. Decommissioning waste quantity is calculated based on Plant Inventory Database (PI DB) with activation and contamination data. Due to the largest portion of waste management and disposal in decommissioning, it is necessary to exactly evaluate waste quantity (applying the regulation, guideline and site-specific characterization) for economic feasibility. In this paper, construction of PI DB and evaluation of waste quantity for Optimized Pressurized Reactor (OPR-1000) are mainly described. Decommissioning waste quantities evaluated are going to be applied to calculation of the project cost. In fact, Ministry of Trade, Industry and Energy (MOTIE) in Korea expected the decommissioning waste quantity in a range of 14,500-18,850 drums, and predicted appropriate liability for decommissioning fund by using waste quantity. The result of this study is also computed by the range of 14,500-18,850 drums. Since there is no site-specific data for the NPP site, this evaluation is the preliminary analysis

  20. Establishment and Evaluation of Decommissioning Plant Inventory DB and Waste Quantity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Moon, Sang-Rae; Yun, Taesik; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of); Sung, Nak-Hoon; Jung, Seung Hyuk [KONES Corp., Seoul (Korea, Republic of)

    2016-10-15

    Korea Hydro and Nuclear Power (KHNP) made a decision for permanent shutdown of Kori-1 and has progressed the strategy determination and R and D for the decommissioning of Kori-1. Decommissioning waste, Structure, System and Components (SSCs) is one of the most important elements. Decommissioning waste quantity is calculated based on Plant Inventory Database (PI DB) with activation and contamination data. Due to the largest portion of waste management and disposal in decommissioning, it is necessary to exactly evaluate waste quantity (applying the regulation, guideline and site-specific characterization) for economic feasibility. In this paper, construction of PI DB and evaluation of waste quantity for Optimized Pressurized Reactor (OPR-1000) are mainly described. Decommissioning waste quantities evaluated are going to be applied to calculation of the project cost. In fact, Ministry of Trade, Industry and Energy (MOTIE) in Korea expected the decommissioning waste quantity in a range of 14,500-18,850 drums, and predicted appropriate liability for decommissioning fund by using waste quantity. The result of this study is also computed by the range of 14,500-18,850 drums. Since there is no site-specific data for the NPP site, this evaluation is the preliminary analysis.

  1. RA reactor operation and maintenance in 1992, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Tanaskovic, M.

    1992-01-01

    During 1992 Ra reactor was not in operation. All the activities were fulfilled according to the previously adopted plan. Basic activities were concerned with revitalisation of the RA reactor and maintenance of reactor components. All the reactor personnel was busy with reconstruction and renewal of the existing reactor systems and building of the new systems, maintenance of the reactor devices. Part of the staff was trained for relevant tasks and maintenance of reactor systems [sr

  2. Schisandrae fructus enhances myogenic differentiation and inhibits atrophy through protein synthesis in human myotubes

    Directory of Open Access Journals (Sweden)

    Kim CH

    2016-05-01

    Full Text Available Cy Hyun Kim,1,2,* Jin-Hong Shin,1,3,* Sung Jun Hwang,1,2 Yung Hyun Choi,4 Dae-Seong Kim,1,3 Cheol Min Kim2,51Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 2Center for Anti-Aging Industry, Pusan National University, Busan, 3Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 4Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 5Department of Biomedical Informatics, Pusan National University School of Medicine, Yangsan, Republic of Korea*These authors contributed equally to this work Abstract: Schisandrae fructus (SF has recently been reported to increase skeletal muscle mass and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube differentiation and its acting pathway. Various concentrations (0.1–10 µg/mL of SF extract were applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to quantify myotube differentiation. The maximum effect was observed at 0.5 µg/mL of SF extract, enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days after induction of differentiation compared to control. Phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate translation as downstream of mammalian target of rapamycin pathway, was upregulated in early phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle mass, especially in the aged

  3. Thermal hydraulic and safety analyses for Pakistan Research Reactor-1

    International Nuclear Information System (INIS)

    Bokhari, I.H.; Israr, M.; Pervez, S.

    1999-01-01

    Thermal hydraulic and safety analysis of Pakistan Research Reactor-1 (PARR-1) utilizing low enriched uranium (LEU) fuel have been performed using computer code PARET. The present core comprises of 29 standard and 5 control fuel elements. Results of the thermal hydraulic analysis show that the core can be operated at a steady-state power level of 10 MW for a flow rate of 950 m 3 /h, with sufficient safety margins against ONB (onset of nucleate boiling) and DNB (departure from nucleate boiling). Safety analysis has been carried out for various modes of reactivity insertions. The events studied include: start-up accident; accidental drop of a fuel element in the core; flooding of a beam tube with water; removal of an in-pile experiment during reactor operation etc. For each of these transients, time histories of reactor power, energy released and clad surface temperature etc. were calculated. The results indicate that the peak clad temperatures remain well below the clad melting temperature during these accidents. It is therefore concluded that the reactor can be safely operated at 10 MW without compromising safety. (author)

  4. Spent fuel management - two alternatives at the FiR 1 reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J.

    2001-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The reactor with its subsystems has experienced a large renovation work in 1996-97. The main purpose of the upgrading was to install the new Boron Neutron Capture Therapy (BNCT) irradiation facility. The BNCT work dominates the current utilization of the reactor: four days per week for BNCT purposes and only one day per week for neutron activation analysis and isotope production. The Council of State (government) granted for the reactor a new operating license for twelve years starting from the beginning of the year 2000. There is however a special condition in the new license. We have to achieve a binding agreement between our Research Centre and the domestic Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel, if we want to continue the reactor operation beyond the year 2006. In addition to the choosing of one of the spent fuel management alternatives the future of the reactor will also depend strongly on the development of the BNCT irradiations. If the number of patients per year increases fast enough and the irradiations of the patients will be economically justified, the operation of the reactor will continue independently of the closing of the USDOE alternative in 2006. Otherwise, if the number of patients will be low, the funding of the reactor will be probably stopped and the reactor will be shut down. (author)

  5. Measurement of the thermal flux distribution in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Tangari, C.M.; Moreira, J.M.L.; Jerez, R.

    1986-01-01

    The knowledge of the neutron flux distribution in research reactors is important because it gives the power distribution over the core, and it provides better conditions to perform experiments and sample irradiations. The measured neutron flux distribution can also be of interest as a means of comparison for the calculational methods of reactor analysis currently in use at this institute. The thermal neutron flux distribution of the IEA-R1 reactor has been measured with the miniature chamber WL-23292. For carrying out the measurements, it was buit a guide system that permit the insertion of the mini-chamber i between the fuel of the fuel elements. It can be introduced in two diferent positions a fuel element and in each it spans 26 axial positions. With this guide system the thermal neutron flux distribution of the IEA-R1 nuclear reactor can be obtained in a fast and efficient manner. The element measured flux distribution shows clearly the effects of control rods and reflectors in the IEA-R1 reactor. The difficulties encountered during the measurements are mentioned with detail as well as the procedures adopteed to overcome them. (Author) [pt

  6. Computer-aided testing and operational aids for PARR-1 nuclear reactor

    International Nuclear Information System (INIS)

    Ansari, S.A.

    1990-01-01

    The utilization of the plant computer of Pakistan Research Reactor (PARR-1) for automatic periodic testing of nuclear instrumentation in the reactor is described. Computer algorithms have been developed for on-line acquisition and real-time processing of nuclear channel signals. The mean value, standard deviation, and probability distributions of nuclear channel signals are obtained in real time, and the computer generates a warning message if the signal error exceeds the maximum permissible error. In this way a faulty channel is automatically identified. Other real-time algorithms are also described that assist the operator in safe reactor operation by automatically computing approach-to-criticality during reactor start-up and the control rod worth determination

  7. Properties of autoregressive model in reactor noise analysis, 1

    International Nuclear Information System (INIS)

    Yamada, Sumasu; Kishida, Kuniharu; Bekki, Keisuke.

    1987-01-01

    Under appropriate conditions, stochastic processes are described by the ARMA model, however, the AR model is popularly used in reactor noise analysis. Hence, the properties of AR model as an approximate representation of the ARMA model should be made clear. Here, convergence of AR-parameters and PSD of AR model were studied through numerical analysis on specific examples such as the neutron noise in subcritical reactors, and it was found that : (1) The convergence of AR-parameters and AR model PSD is governed by the ''zero nearest to the unit circle in the complex plane'' (μ -1 ,|μ| M . (3) The AR model of the neutron noise of subcritical reactors needs a large model order because of an ARMA-zero very close to unity corresponding to the decay constant of the 6-th group of delayed neutron precursors. (4) In applying AR model for system identification, much attention has to be paid to a priori unknown error as an approximate representation of the ARMA model in addition to the statistical errors. (author)

  8. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  9. Spent fuel management plans for the FiR 1 Reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S. E. J.

    2002-01-01

    The FiR 1-reactor, a 250 kW TRIGA reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. The final disposal site is situated in Olkiluoto, on the western coast of Finland. Olkiluoto is also one of the two nuclear power plant sites in Finland. In the new operating license of our reactor there is a special condition. We have to achieve a binding agreement between our Research Centre and either the domestic Nuclear Power Companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel or US DOE about the return of our spent fuel back to USA. If we want to continue the reactor operation beyond the year 2006. the domestic final disposal is the only possibility. At the moment it seems to be reasonable to prepare to both possibilities: the domestic final disposal and the return to the USA offered by US DOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will decide, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNCT treatments will cover the costs. If the BNCT and other irradiations develop satisfactorily, the reactor can be kept in operation beyond the year 2006 and the domestic final disposal will be implemented. If, however, there is still lack of money, there is no reason to continue the operation of the reactor and the choice of US DOE alternative is natural. (author)

  10. A study on the status of installation and utilization of magnetic resonance imaging in Korea

    International Nuclear Information System (INIS)

    Kim, Kyoung Bae; Lee, Man Jae

    1992-01-01

    Magnetic Resonance Imaging(MRI) is one of the most expensive and sophisticated diagnostic tool and has been hailed as the most exciting event in medical imaging 'since the introduction of X-rays', but a major disadvantage, high cost, is coming into focus especially in our country. To determine the status of distribution of MR imagers in Korea and to serve as a basic material for an efficient utilization of this imaging machine, a retrospective survey of nationwide and regional(3 hospitals in Pusan) installations was performed. The results were as follows: 1. As of April 30, 1991, a total of 33 MRI units(24 for superconducting, 6 for permanent and 3 for resistive units) were set up and operated. 91 % of the units were distributed in big cities with no one installation in 7 provinces among 12 provinces in our country. 85% of the units were imported. 2. Although 42.4% of the units were operated in Seoul, Taejeon had the best condition for the distribution of this imaging machine per population, hospital, and bed in Korea. 3. In Pusan: a) 5 units were operated with all superconducting magnet and medium magnetic field in type of machine. b) 80.1 % of the examinations were central nervous system (CNS). c) MRI examination occupied 1.4% of all radiographic examinations and the patients referred from other hospitals were composed of 23.4% of all patients. 4. The average days under operating of MRI unit a week in Pusan were higher(5.5) than that of Seoul(4.5), but the average number of examinations and hours a week and a day, respectively(33, 8.4), was less than that of Seoul(57, 12.9). 5. The patients with positive MRI findings in a hospital(B) in Pusan was 74.5 % on an average

  11. Experimental study of the IPR-R1 TRIGA reactor power channels responses

    International Nuclear Information System (INIS)

    Mesquita, Henrique F.A.; Ferreira, Andrea V.

    2015-01-01

    The IPR-R1 nuclear reactor installed at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil, is a Mark I TRIGA reactor (Training, Research, Isotopes, General Atomics) and became operational on November of 1960. The reactor has four irradiation devices: a rotary specimen rack with 40 irradiation channels, the central tube, and two pneumatic transfer tubes. The nuclear reactor is operated in a power range between zero and 100 kW. The instrumentation for IPR-R1 operation is mainly composed of four neutronic channels for power measurements. The aim of this work is to investigate the responses of neutronic channels of IPR-R1, Linear, Log N and Percent Power channels, and to check their linearity. Gold foils were activated at low powers (0.125-1.000 kW), and cobalt foils were activated at high powers (10-100kW). For each sample irradiated at rotary specimen rack, another one was irradiated at the same time at the pneumatic transfer tube-2. The obtained results allowed evaluating the linearity of the neutronic channels responses. (author)

  12. Irradiation experience of IPEN fuel at IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Perrotta, Jose A.; Neto, Adolfo; Durazzo, Michelangelo; Souza, Jose A.B. de; Frajndlich, Roberto

    1998-01-01

    IPEN/CNEN-SP produces, for its IEA-R1 Research Reactor, MTR fuel assemblies based on U 3 O 8 -Al dispersion fuel type. Since 1985 a qualification program on these fuel assemblies has been performed. Average 235 U burnup of 30% and peak burnup of 50% was already achieved by these fuel assemblies. This paper presents some results acquire, by these fuel assemblies, under irradiation at IEA-R1 Research Reactor. (author)

  13. RA reactor operation and maintenance in 1996, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1996-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. Since the RA reactor is shutdown since 1984, it is high time for decision making of its future status. Possible solutions for the future status of the RA reactor discussed in this report are: renewal of reactor components for the reactor restart, conservation of the reactor (temporary shutdown) or permanent reactor shutdown. Control and maintenance of the reactor instrumentation and devices was done regularly but dependent on the availability of the spare parts and financial means. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  14. Possible future roles for fast breeder reactors Part 1 and 2

    International Nuclear Information System (INIS)

    1978-06-01

    Part 1. The Fast Breeder Reactor (in particular in its sodium cooled version) has been steadily developed in the Community. This report attempts to quantify the advantages of this system in terms of fossil energy and uranium savings in the medium/long term as well as to examine some long term economic implications. The methodology of comparing scenarios, not individual reactor systems is followed. These scenarios have been chosen taking into account a range of assumptions concerning Community energy demand growth, fossil energy and uranium availability and technological capabilities. Part 2. The fast breeder reactor (FBR), particularly its sodium-cooled form (LMFBR) has been under development in the Community for many years. Industrial enterprises dedicated to its commercialisation have been formed and long range plans for its industrial utilisation are being formulated. The value of breeder reactors from the point of view of minimising Community fuel requirements has been discussed in Part I of this report (1). In Part II the consequences of delaying their introduction, and the demands placed upon the recycle industry by the introduction of fast reactors of different characteristics, using the Community electricity demand scenarios developed for Part I, are discussed. In addition comments are provided upon the effect of FBR introduction on the size of plutonium stocks

  15. The AMPS 1.5 MW low-pressure compact reactor

    International Nuclear Information System (INIS)

    Hewitt, J.S.

    1987-01-01

    The 1.5-MWt reactor of the Autonomous Marine Power Source (AMPS) is designed to meet the unusual requirements of its first application. To provide for 100 kWe (net) on board self-sustaining manned submersible vehicles, the AMPS reactor must deliver safely, reliably and without direct operator surveillance, its thermal output to freon Rankine-cycle engines at thermodynamically useful temperatures. It must also conform to space and weight limits on the order of less than 50 cubic metres and 70 tonnes. The safety requirements are met by (i) limiting lifetime excess reactivity requirements by incorporation of burnable poison in the U-Zr-H fuel, (ii) maintaining nominal pressures in the light-water primary system at about 1 atmosphere, and (iii) maintaining a large volume of primary reserve coolant at temperature depressed relative to that of the circulating coolant. The latter averages 90 degrees celsius as it is pumped around loops that include the reactor core and the freon evaporators during normal operation. In the event of loss of pumped flow, the system defaults by intrinsic means to core cooling through natural convective exchange with the reserve coolant. In the post-shutdown situation, this passive cooling mode continues to operate regardless of vessel orientation and decay heat is safely dissipated to the sea. The design of the AMPS system, including the reactor, the freon engines, the control and monitoring system, the safety shut-down system and the power source container, are in advanced stages of design. (author)

  16. Flux distribution measurements in the Bruce A unit 1 reactor

    International Nuclear Information System (INIS)

    Okazaki, A.; Kettner, D.A.; Mohindra, V.K.

    1977-07-01

    Flux distribution measurements were made by copper wire activation during low power commissioning of the unit 1 reactor of the Bruce A generating station. The distribution was measured along one diameter near the axial and horizontal midplanes of the reactor core. The activity distribution along the copper wire was measured by wire scanners with NaI detectors. The experiments were made for five configurations of reactivity control mechanisms. (author)

  17. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor; Analise termo-hidraulica do reator TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Marcelo Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Fortini, Maria Auxiliadora [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2002-07-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  18. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    Science.gov (United States)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  19. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    International Nuclear Information System (INIS)

    El-genk, M.S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept

  20. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lightwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. The research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology, are presented. (Author) [pt

  1. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W. de.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lighwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. It is also presented the research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology. (Author) [pt

  2. CAC-RA1 1958-1998. The first years of the Constituyentes Atomic Center (CAC). History of the first Argentine nuclear reactor (RA-1); CAC-RA-1 1958-1998. Los primeros anios del CAC. Historia del primer reactor nuclear argentino (RA-1)

    Energy Technology Data Exchange (ETDEWEB)

    Forlerer, Elena; Palacios, Tulio A [comps.

    1998-07-01

    After giving the milestones of the development of the Constituyentes Atomic Center since 1957, the history of the construction of the first nuclear reactor (RA-1) in Argentina, including the local fabrication of its fuel elements, is surveyed. The RA-1 reached criticality on January 17, 1958. The booklet commemorates the 40th year of the reactor operation.

  3. Benchmark testing of Canadol-2.1 for heavy water reactor

    International Nuclear Information System (INIS)

    Liu Ping

    1999-01-01

    The new version evaluated nuclear data library of ENDF-B 6.5 has been released recently. In order to compare the quality of evaluated nuclear data CENDL-2.1 with ENDF-B 6.5, it is necessary to do benchmarks testing for them. In this work, CENDL-2.1 and ENDF-B 6.5 were used to generated the WIMS-69 group library respectively, and benchmarks testing was done for the heavy water reactor, using WIMS5A code. It is obvious that data files of CENDL-2.1 is better than that of old WIMS library for the heavy water reactors calculations, and is in good agreement with those of ENDF-B 6.5

  4. Reactivity feedback coefficients Pakistan research reactor-1 using PRIDE code

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Ali; Ahmed, Siraj-ul-Islam; Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Inam-ul-Haq [Comsats Institute of Information Technology, Islamabad (Pakistan). Dept. of Physics

    2017-05-15

    Results of the analyses performed for fuel, moderator and void's temperature feedback reactivity coefficients for the first high power core configuration of Pakistan Research Reactor - 1 (PARR-1) are summarized. For this purpose, a validated three dimensional model of PARR-1 core was developed and confirmed against the reference results for reactivity calculations. The ''Program for Reactor In-Core Analysis using Diffusion Equation'' (PRIDE) code was used for development of global (3-dimensional) model in conjunction with WIMSD4 for lattice cell modeling. Values for isothermal fuel, moderator and void's temperature feedback reactivity coefficients have been calculated. Additionally, flux profiles for the five energy groups were also generated.

  5. Use of self powered neutron detectors in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Galo Rocha, F. del.

    1989-01-01

    A survey of self-powered neutron detectors, SPND, which are used as part of the in-core instrumentation of nuclear reactors is presented. Measurements with Co and Er SPND's were made in the IEA-R1 reactor for determining the neutron flux distribution and the integral reactor power. Due to the size of the available detectors, the neutron flux distribution could not be obtained with accuracy. The results obtained in the reactor power measurements demonstrate that the SPND have the linearity and the quick response necessary for a reactor power channel. This work also presents a proposed design of a SPND using Pt as wire emissor. This proposed design is based in the experience gained in building two prototypes. The greatest difficulties encountered include materials and technology to perform the delicate weldings. (author)

  6. Status of prompt gamma neutron activation analysis (PGAA) at TRR-1/M1 (Thai Research Reactor-1/Modified 1)

    Energy Technology Data Exchange (ETDEWEB)

    Asvavijnijkulchai, Chanchai; Dharmavanij, Wanchai; Siangsanan, Pariwat; Ratanathongchai, Wichian; Chongkum, Somporn [Physics Division, Office of Atomic Energy for Peace, Vibhavadi Rangsit Road, Chatuchak, Bangkok (Thailand)

    1999-08-01

    The first prompt gamma activation analysis (PGAA) was designed, constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/Modified 1 (TRR-1/M1) since 1989. Beam characteristic were made by Gd foil irradiation, X-ray film exposing and densitometry scanning consequently. The thermal neutron flux at sample position was measured by Au foil activation, and was about 1 x 10{sup 7} n.cm{sup 2}.sec{sup -1} at 700 kW operating power. The experiments have been conducted successfully. In 1998, the PGAA facility has been developed for the reactor operating power at 1.2 MW. The new PGAA system, e.g., beam shutter, gamma collimator and biological shields have been designed to reduce the leakage of neutrons and gamma radiation to the acceptance levels in accordance with the International Commission on Radiation Protection Publication 60 (ICRP 60). The construction and installation will be completed in April 1999. (author)

  7. Status of prompt gamma neutron activation analysis (PGAA) at TRR-1/M1 (Thai Research Reactor-1/Modified 1)

    International Nuclear Information System (INIS)

    Asvavijnijkulchai, Chanchai; Dharmavanij, Wanchai; Siangsanan, Pariwat; Ratanathongchai, Wichian; Chongkum, Somporn

    1999-01-01

    The first prompt gamma activation analysis (PGAA) was designed, constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/Modified 1 (TRR-1/M1) since 1989. Beam characteristic were made by Gd foil irradiation, X-ray film exposing and densitometry scanning consequently. The thermal neutron flux at sample position was measured by Au foil activation, and was about 1 x 10 7 n.cm 2 .sec -1 at 700 kW operating power. The experiments have been conducted successfully. In 1998, the PGAA facility has been developed for the reactor operating power at 1.2 MW. The new PGAA system, e.g., beam shutter, gamma collimator and biological shields have been designed to reduce the leakage of neutrons and gamma radiation to the acceptance levels in accordance with the International Commission on Radiation Protection Publication 60 (ICRP 60). The construction and installation will be completed in April 1999. (author)

  8. Reactor inventory monitoring system for Angra-1 reactor

    International Nuclear Information System (INIS)

    S Neto, Joaquim A.; Silva, Marcos C.; Pinheiro, Ronaldo F.M.; Soares, Milton; Martinez, Aquilino; Comerlato, Cesar A.; Oliveira, Eugenio A.

    1996-01-01

    This work describes the project of Reactor Inventory Monitoring System, which will be installed in Angra I Nuclear Power Plant. The inventory information is important to the operators take corrective actions in case of an incident that may cause a failure in the core cooling. (author)

  9. Modifications done in the IPR-R1 reactor and their auxiliary systems

    International Nuclear Information System (INIS)

    Maretti Junior, F.; Amorim, V.A. de; Coura, J.G.

    1986-01-01

    The improvements done in the IPR-R1 reactor for adequateness of operation conditions and increase of irradiation sample capability. The cooling systems, reactor pool, system of control rods were substituted. The optimization of transfer pneumatic system was done. (M.C.K.) [pt

  10. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities

  11. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  12. Continuous backfitting measures for the FRG-1 and FRG-2 research reactors

    International Nuclear Information System (INIS)

    Blom, K.H.; Falck, K.; Krull, W.

    1990-01-01

    The GKSS-Research Centre Geesthacht GmbH has been operating the research reactors FRG-1 and FRG-2 with power levels of 5 MW and 15 MW for 31 and 26 years respectively. Safe operation at full power levels over so many years with an average utilization between 180 d to 250 d per year is possible only with great efforts in modernization and upgrading of the research reactors. Emphasis has been placed on backfitting since around 1975. At that time within the Federal Republic of Germany many new guidelines, rules, ordinances, and standards in the field of (power) reactor safety were published. Much work has been done on the modernization of the FRG-1 and FRG-2 research reactors therefore within the last ten years. Work done within the last two years and presently underway includes: measures against water leakage through the concrete and along the beam tubes; repair of both cooling towers; modernization of the ventilation system; measures for fire protection; activities in water chemistry and water quality; installation of a double tubing for parts of the primary piping of the FRG-1; replacement of instrumentation, process control systems (operation and monitoring system) and alarm system; renewal of the emergency power supply; installation of internal lightning protection; installation of a cold neutron source; enrichment reduction for FRG-1. These efforts will continue to allow safe operation of our research reactors over their whole operational life

  13. Instrumentation renewal at the FIR 1 research reactor in Finland

    International Nuclear Information System (INIS)

    Bars, Bruno; Kall, Leif

    1982-01-01

    The Finnish TRIGA Mark II reactor (FIR 1 100 kW, later 250 kW steady state power and pulsing capability up to 250 MW) has been in operation for 20 years. The reactor is the only research reactor in Finland and is an important research training and service facility, which obviously will be operated for 10...20 years ahead. The mechanical parts of the reactor are in good shape. Some minor modifications have previously been made in the instrumentation. However, the original instrumentation could hardly have been used for 10...20 years ahead without extensive modifications and modernization. After a careful evaluation and planning process the whole reactor instrumentation was renewed in 1981 at a cost of about 400 000 dollar. The renewal was carried out in cooperation with the Central Research Institute for Physics (KFKI) at the Hungarian Academy of Sciences, which delivered the nuclear part of the instrumentation and with the Finnish company Valmet Oy Instrument Works, which delivered the conventional instrumentation, including the automatic power control system and the control console. The instrumentation, which is located in-a new isolated control room is based on modern industrial standard modular units with standardized signal ranges, electronic testing possibilities, galvanically isolated outputs etc. The instrument renewal project was brought successfully to completion in November 1981 after only about 10 working days of shut down time. The reactor is now in routine operation and the experiences gained from the new instrumentation are excellent. (author)

  14. Dose measurements in controlled area of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Alvarenga, F.L.; Junior, F.M.

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers

  15. ALARA review of the maintenance and repair jobs of repetitive high radiation dose at Kori Unit 3 and 4

    International Nuclear Information System (INIS)

    Cho, Y.H.; Moon, J.H.; Kang, C.S.; Lee, J.S.; Lee, D.H.

    2003-01-01

    The policy of maintaining occupational radiation dose (ORD) as low as reasonably achievable (ALARA) requires the effective reduction of ORD in the phases of design as well as operation of nuclear power plants. It has been identified that a predominant portion of ORD arises during maintenance and repair operations at nuclear power plants. The cost-effective reduction of ORD cannot be achieved without a comprehensive analysis of accumulated ORD data of existing nuclear power plants. To identify the jobs of repetitive high ORD, the ORD data of Kori Units 3 and 4 over 10-year period from 1986 to 1995 were compiled into the PC-based ORD database program. As the radiation job classification structure, 26 main jobs are considered, most of which are further subdivided into detailed jobs. According to the order of the collective dose values for 26 main jobs, 10 jobs of high collective dose are identified. As an ALARA review, then, top 10 jobs of high collective dose are statistically analyzed with regard to 1) dose rate, 2) crew number and 3) job frequency that are the factors determining the collective dose for the radiation job of interest. Through the ALARA review, main reasons causing to high collective dose values are identified as follows. The high collective dose of RCP maintenance job is mainly due to the large crew number and the high job frequency. The characteristics of refueling job are similar to those of RCP maintenance job. However, the high collective doses of SG-related jobs such as S/G nozzle dam job, S/G man-way job and S/G tube maintenance job are mainly due to high radiation dose rate. (author)

  16. Demolition of the FRJ-1 research reactor (MERLIN); Abbau des Reaktorblocks des Forschungsreaktors FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklearservice, Essen (Germany); Cremer, J. [SNT Siempelkamp Nukleartechnik, Heidelberg (Germany)

    2003-06-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [German] Der mit Leichtwasser gekuehlte und moderierte Schwimmbad-Forschungsreaktor FRJ-2 (MERLIN) wurde von 1958 bis 1962 fuer die damalige Kernforschungsanlage Juelich (KFA) errichtet. Von 1964 bis 1985 wurde er fuer Experimente mit zunaechst 5 MW und spaeter 10 MW thermischer Leistung bei einem maximalen thermischen Neutronenfluss von 1,1.10{sup 14} n/cm{sup 2}s genutzt. Im Jahr 1985 stellte der Reaktor seinen Betrieb ein. Die Brennelemente wurden aus der Anlage entfernt und in die USA und nach Grossbritannien verbracht. Seit 1996 erfolgen die wesentlichen Abbautaetigkeiten unter Leitung eines verantwortlichen Projektteams. Bis Ende 1998 wurde das komplette Sekundaerkuehlsystem entfernt. Dem Abbau der Kuehlkreislaeufe und Experimentiereinrichtungen folgte im Jahr 2000 der Ausbau der

  17. Equipment for neutron measurements at VR-1 Sparrow training reactor

    International Nuclear Information System (INIS)

    Kolros, Antonin; Huml, Ondrej; Kos, Josef

    2008-01-01

    Full text: The VR-1 Sparrow training reactor is the experimental nuclear facility especially employed for education and teaching of students from different technical universities in the Czech Republic and other countries. Since 2005 the uniform all-purpose devices EMK310 have been used for measurement at reactor laboratory with different type of gas filled neutron detectors. The neutron detection system are employed for reactivity measurement, control rod calibration, critical experiment, study of delayed neutrons, study of nuclear reactor dynamics and study of detection systems dead time. The small dimension isotropic detectors are especially used for measurement of thermal neutron flux distribution inside the reactor core. The EMK-310 is a high performance, portable, three-channel fast amplitude analyzer designed for counting applications. It was developed for nuclear applications and made in close co-operation with firm TEMA Ltd. The precise rack eliminates electromagnetic disturbance and contains the control unit and four modules. The modules of high voltage supply and amplifier for gas filled detectors or scintillation probes are used in basic configuration. Software is tailored specifically to the reactor measurement and allows full online control. For applications involving the study of signals that may vary with the time, example study of delayed neutrons or nuclear reactor dynamics, the EMK-310 provides a Multichannel Scaling (MCS) acquisition mode. MCS dwell time can be set from 2 ms. Now, the new generation of digital multichannel analyzers DA310 is introduced. They have similarly attributes as EMK310 but the output information of unipolar signals from detector is more complete. The pipeline A/D converter with field programmable gate array (FPGA) is the hearth of the DA310 device. The resolution is 12 bits (4096 channels); the sample frequency is 80 MHz. The application for the neutron noise analysis is supposed. The correction method for non linearity

  18. Report on safety related occurrences and reactor trips July 1, 1979 - December 31, 1979

    International Nuclear Information System (INIS)

    Olsson, S.; Andermo, L.

    1980-01-01

    This is a report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1 to December 31, 1979 inclusive. The facilities involved are Barsebaeck 1 and 2, Oskarshamn 1 and 2 and Ringhals 1 and 2. During this period of 6 months 76 safety related occurrences and 27 reactor trips have been reported to the Nuclear Power Inspectorate. It is to the greatest extent conventional components such as valves and pumps which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant system and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The total number of reactor trips are normal. The average value for these 6 months is 4.5 trips/unit. Approximetely one half of the reactor trips happened at zero or very low power operation. The fact that even small deviations from prescribed operation result in an automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The greatest outages are caused by occurrences without safety significance. (author)

  19. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1986

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1986-01-01

    In order to enable future reliable operation of the RA reactor, according to new licensing regulations, three major tasks started in 1984 were fulfilled: building of the new emergency system, reconstruction of the existing ventilation system, and reconstruction of the power supply system. Simultaneously in 1985/1986 renewal of the instrumentation and reconstruction of the system for handling and storage of the spent fuel in the reactor building have started. Design projects for these tasks are almost finished and the reconstruction of both systems is expected to be finished until 1988 and mid 1989 respectively. RA reactor Safety report was finished according to the recommendations of the IAEA. Investments in 1986 were used for 8000 kg of heavy water, maintenance of reactor systems and supply of new components, reconstruction of reactor systems. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  20. Progress in the neutronic core conversion (HEU-LEU) analysis of Ghana research reactor-1.

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Maakuu, B. T.; Akaho, E. H. K.; Andam, A.; Liaw, J. J. R.; Matos, J. E.; Nuclear Engineering Division; Ghana Atomic Energy Commission; Kwame Nkrumah Univ. of Science and Technology

    2006-01-01

    The Ghana Research Reactor-1 (GHARR-1) is a commercial version of the Miniature Neutron Source Reactor (MNSR) and has operated at different power levels since its commissioning in March 1995. As required for all nuclear reactors, neutronic and thermal hydraulic analysis are being performed for the HEU-LEU core conversion studies of the Ghana Research Reactor-1 (GHARR-1) facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR). Stochastic Monte Carlo particle transport methods and tools (MCNP4c/MCNP5) were used to fine-tune a previously developed 3-D MCNP model of the GHARR-1 facility and perform neutronic analysis of the 90.2% HEU reference and candidate LEU (UO{sub 2}, U{sub 3}Si{sub 2}, U-9Mo) fresh cores with varying enrichments from 12.6%-19.75%. In this paper, the results of the progress made in the Monte Carlo neutronic analysis of the HEU reference and candidate LEU fuels are presented. In particular, a comparative performance assessment of the LEU with respect to neutron flux variations in the fission chamber and experimental irradiation channels are highlighted.

  1. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1988

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1988-01-01

    According to the action plan for 1988, operation of the RA reactor should have been restarted in October, but the operating license was not obtained. Control and maintenance of the reactor components was done regularly and efficiently dependent on the availability of the spare parts. The major difficulty was maintenance of the reactor instrumentation. Period of the reactor shutdown was used for repair of the heavy water pumps in the primary coolant loop. With the aim to ensure future safe and reliable reactor operation, action were started concerning renewal of the reactor instrumentation. Design project was done by the soviet company Atomenergoeksport. The contract for constructing this equipment was signed, and it is planned that the equipment will be delivered by the end of 1990. In order to increase the space for storage of the irradiated fuel elements and its more efficient usage, projects were started concerned with reconstruction of the existing fuel handling equipment, increase of the storage space and purification of the water in the fuel storage pools. These projects are scheduled to be finished in mid 1989. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  2. IPR-R1 TRIGA research reactor decommissioning plan

    International Nuclear Information System (INIS)

    Andrade Grossi, Pablo; Oliveira de Tello, Cledola Cassia; Mesquita, Amir Zacarias

    2008-01-01

    The International Atomic Energy Agency (IAEA) is concerning to establish or adopt standards of safety for the protection of health, life and property in the development and application of nuclear energy for peaceful purposes. In this way the IAEA recommends that decommissioning planning should be part of all radioactive installation licensing process. There are over 200 research reactors that have either not operated for a considerable period of time and may never return to operation or, are close to permanent shutdown. Many countries do not have a decommissioning policy, and like Brazil not all installations have their decommissioning plan as part of the licensing documentation. Brazil is signatory of Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management, but until now there is no decommissioning policy, and specifically for research reactor there is no decommissioning guidelines in the standards. The Nuclear Technology Development Centre (CDTN/CNEN) has a TRIGA Mark I Research Reactor IPR-R1 in operation for 47 years with 3.6% average fuel burn-up. The original power was 100 k W and it is being licensed for 250 k W, and it needs the decommissioning plan as part of the licensing requirements. In the paper it is presented the basis of decommissioning plan, an overview and the end state / final goal of decommissioning activities for the IPR-R1, and the Brazilian ongoing activities about this subject. (author)

  3. The Chernobyl reactor accident. Pt. 1 and 2

    International Nuclear Information System (INIS)

    1986-06-01

    The report first summarizes the available information on the various incidents of the whole accident scenario, and combines the information to present a first general outline and a basis for appraisal. The most significant incidents reported, namely power excursion, core meltdown, and fire, are discussed with a view to the reactor design and safety of reactors installed in the FRG. The main differences and advantages of German reactor designs are shown, as e.g.: Power excursions are mastered by inherent physical conditions; far better redundancy of engineered safety systems; enclosure of the complete reactor cooling system in a pressure-retaining steel containment; reactor buildings being made of reinforced concrete. The second part of the report deals with the radiological effects to be expected for our country. Data are given on the varying radiological exposure of the different regions. The fate and uptake of radioactivity in the human body are discussed. The conclusion drawn from the data presented is that the individual exposure due to the reactor accident will remain within the variations and limits of natural radioactivity and effects. (orig./HP) [de

  4. Current activities at the FiR 1 TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, Seppo

    2002-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The epithermal neutrons needed for the irradiation of brain tumor patients are produced from the fast fission neutrons by a moderator block consisting of Al+AlF 3 (FLUENTAL), which showed to be the optimum material for this purpose. Twenty-one patients have been treated since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization. The treatment organization has a close connection to the Helsinki University Central Hospital. The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. In the near future the back end solutions of the spent fuel management will have a very important role in our activities. The Finnish Parliament ratified in May 2001 the Decision in Principle on the final disposal facility for spent fuel in Olkiluoto, on the western coast of Finland. There is a special condition in our operating license. We have now about two years' time to achieve a binding agreement between VTT and the Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel. If this will not happen, we have to make the agreement with the USDOE with the well-known time limits. At the moment it seems to be reasonable to prepare for both spent fuel management possibilities: the domestic final disposal and the return to the USA offered by USDOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will determine, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNC treatments will cover

  5. Insertion of reactivity (RIA) without scram in the reactor core IEA-R1 using code PARET

    International Nuclear Information System (INIS)

    Alves, Urias F.; Castrillo, Lazara S.; Lima, Fernando A.

    2013-01-01

    The modeling and analysis thermo hydraulics of a research reactor with MTR type fuel elements - Material Testing Reactor - was performed using the code PARET (Program for the Analysis of Reactor Transients) when in the system some external event is introduced that changed the reactivity in the reactor core. Transients of Reactivity Insertion of 0.5 , 1.5 and 2.0$/ 0.7s in the brazilian reactor IEA-R1 will be presented, and will be shown under what conditions it is possible to ensure the safe operation of its nucleus. (author)

  6. Expanding the storage capability at ET-RR-1 research reactor at Inshass

    International Nuclear Information System (INIS)

    Sultan, Mariy M.; Khattab, M.

    1999-01-01

    Storing of spent fuel from Test Reactor in developing countries has become a big dilemma for the following reasons: The transportation of spent fuel is very expensive; There are no reprocessing plants in most developing countries; The expanding of existing storage facilities in reactor building require experience that most of developing countries lack; Some political motivations from Nuclear Developed countries intervene which makes the transportation procedures and logistics to those countries difficult. This paper gives the conceptual design of a new spent fuel storage now under construction at Inshass research reactor (ET-RR-1). The location of the new storage facility is chosen to be within the premises of the reactor facility so that both reactor and the new storage are one Material Balance Area. The paper also proposes some ideas that can enhance the transportation and storage of spent fuel of test reactors, such as: Intensifying the role of IAEA in helping countries to get rid of the spent fuel; The initiation of regional spent fuel storage facilities in some developing countries. (author)

  7. Licensing of the first reload of Angra-1 reactor

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1985-01-01

    The historical aspects related to the licensing of the first reload of Angra-1 reactor are presented. The dates, the institutions, the experts, as well as the documents generated during that process are presented. (M.I.)

  8. Evaluation of the trial design studies for an advanced marine reactor, (1)

    International Nuclear Information System (INIS)

    1988-03-01

    The trial design of three type reactors, semi-integrated, integrated and integrated (self-pressurized) type, was carried out in order to clarify the reactor type for the advanced marine reactor that would be developed for its realization in future and in order to extract its research and development theme. The trial design was carried and finished as for the three type reactors in same specifications in order to improve the following characteristics, small in size, light in weight, high in safety and reliability, and economic. In this report, a comparison and review of the following items are described as for the above three type reactors, (1) specifications, (2) shielding, (3) refueling, (4) in-service inspection, (5) analysis of the transients and accidents, (6) piping systems, (7) control systems, (8) dynamic analysis, (9) overall comparison, (10) research and development theme and theme for study in future. (author)

  9. Enhancing the productivity of soluble green fluorescent protein ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... 1Department of Chemical Engineering, Pusan National University, Busan, South Korea. 2School ... protein sequences for consensus approach from whole sequence ..... stable proteins, especially if applied in buried or more.

  10. Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate

    NARCIS (Netherlands)

    deBest, JH; Jongema, H; Weijling, A; Doddema, HJ; Janssen, DB; Harder, W

    Biotransformation of 1,1,1-trichloroethane (CH3CCl3) was observed in an anaerobic packed-bed reactor under conditions of both sulfate reduction and methanogenesis. Acetate (1 mM) served as an electron donor. CH3CCl3 was completely converted up to the highest investigated concentration of 10 mu M.

  11. Evaluation of power behavior during startup and shutdown procedures of the IPR-R1 Triga Reactor

    International Nuclear Information System (INIS)

    Zangirolami, Dante M.; Mesquita, Amir Z.; Ferreira, Andrea V.

    2009-01-01

    The IPR-R1 nuclear reactor of Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN is a TRIGA Mark I pool type reactor cooled by natural circulation of light water. In the IPR-R1, the power is measured by four nuclear channels, neutron-sensitive chambers, which are mounted around the reactor core: the Startup Channel for power indication during reactor startup; the Logarithmic Wide Range Power Monitoring Channel; the Linear Multi-Range Power Monitoring Channel and the Percent Power Safety Channel. A data acquisition system automatically does the monitoring and storage of all the reactor operational parameters including the reactor power. The startup procedure is manual and the time to reach the desired reactor power level is different on each irradiation which may introduces differences in induced activity of samples irradiated in different irradiations. In this work, the power evolution during startup and shutdown periods of IPR-R1 operation was evaluated and the mean values of reactor energy production in these operational phases were obtained. The analyses were performed on basis of the Linear Multi-Range Channel data. The results show that the sum of startup and shutdown periods corresponds to 1% of released energy for irradiations during 1h at 100kW. This value may be useful to correct experimental data in neutron activation experiments. (author)

  12. Modernization of Safety and Control Instrumentation of the IEA-R1 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, P.V., E-mail: paulov@ien.gov.br [Institute of Nuclear Engineering (IEN), National Nuclear Energy Commission (CNEN), Rio de Janeiro (Brazil)

    2014-08-15

    The research reactor IEA-R1 located in the Institute of Energy and Nuclear Research (IPEN), São Paulo, Brazil, obtained its first criticality on 16 September 1957 and since then has served the scientific and medical community in the performance of experiments in applied nuclear physics, as well as the provision of radioisotopes for production of radiopharmaceuticals. The reactor produces radioisotopes {sup 82}Br and {sup 41}Ar for special processes in industrial inspection and {sup 192}Ir and {sup 198}Au as sources of radiation used in brachytherapy, {sup 153}Sm for pain relief in patients with bone metastasis, and calibrated sources of {sup 133}Ba, {sup 137}Cs, {sup 57}Co, {sup 60}Co, {sup 241}Am and {sup 152}Eu used in medical clinics and hospitals practicing nuclear medicine and research laboratories. Services are offered in regular non-destructive testing by neutron radiography, neutron irradiation of silicon for phosphorous doping and other various irradiations with neutrons. The reactor is responsible for producing approximately 70% of radiopharmaceutical {sup 131}I used in Brazil, which saves about US$ 800 000 annually for the country. After more than 50 years of use, most of its equipment and systems have been modernized, and recently the reactor power was increased to 5 MW in order to enhance radioisotope production capability. However, the control room and nuclear instrumentation system used for reactor safety have operated more than 30 years and require constant maintenance. Many equipment and electronic components are obsolete, and replacements are not available in the market. The modernization of the nuclear safety and control instrumentation systems of IEA-R1 is being carried out with consideration for the internationally recognized criteria for safety and reliable reactor operations and the latest developments in nuclear electronic technology. The project for the new reactor instrumentation system specifies three wide range neutron monitoring

  13. Operation and maintenance of the RA Reactor in 1985, Part 1, Annex A - Reactor applications

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1985-01-01

    This document describes reactor operation from 1981 to 1985, including data about short term (shorter than 24 hours) and long term operation interruptions, as well as safety shutdown and reactor applications. During 1982, 1983 until July 1984 reactor was operated at 2 MW power according to the plan. Plan was not fulfilled in 1983 because deposits were noticed again, at the end of 1982, on the surface of fuel elements. Reactor was mainly used for neutron activation purposes and isotope production as source of neutrons for experimental purposes [sr

  14. Report on safety related occurrences and reactor trips July 1, 1977 - December 31, 1977

    International Nuclear Information System (INIS)

    Andermo, L.; Sundman, B.

    1974-04-01

    This is a systematically arranged report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1 to December 31, 1977 inclusive. The facilities involved are Barsebaeck 1 and 2, Oskarshamn 1 and 2 and Ringhals 1 and 2. During this period of 6 months 48 safety related occurrences and 49 reactor trips have been reported to the Nuclear Power Inspectorate. Included is also one incident June 21 in Barsebaeck 2 which was not included in the last compilation of occurrences. As earlier experiences have shown it is to the greatest extent the conventional components which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant systems and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The total number of reactor trips have increased nearly 30% since the last period. Those occurred during power operation however, were less. More than 50% of the reactor trips happened in the shutdown condition. The fact that even small deviations from prescribed operation result in automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The greatest outages are caused by occurrences withou02068NRM 0000169 450

  15. New digital control system for the operation of the Colombian research reactor IAN-R1

    International Nuclear Information System (INIS)

    Celis del A, L.; Rivero, T.; Bucio, F.; Ramirez, R.; Segovia, A.; Palacios, J.

    2015-09-01

    En 2011, Mexico won the Colombian international tender for the renewal of instrumentation and control of the IAN-R1 Reactor, to Argentina and the United States. This paper presents the design criteria and the development made for the new digital control system installed in the Colombian nuclear reactor IAN-R1, which is based on a redundant and diverse architecture, which provides increased availability, reliability and safety in the reactor operation. This control system and associated instrumentation met all national export requirements, with the safety requirements established by the IAEA as well as the requirements demanded by the Colombian Regulatory Body in nuclear matter. On August 20, 2012, the Colombian IAN-R1 reactor reached its first criticality controlled with the new system developed at Instituto Nacional de Investigaciones Nucleares (ININ). On September 14, 2012, the new control system of the Colombian IAN-R1 reactor was officially handed over to the Colombian authorities, this being the first time that Mexico exported nuclear technology through the ININ. Currently the reactor is operating successfully with the new control system, and has an operating license for 5 years. (Author)

  16. Experimental study of the temperature distribution in the TRIGA IPR-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias

    2005-01-01

    The TRIGA-IPR-R1 Research Nuclear Reactor has completed 44 years in operation in November 2004. Its initial nominal thermal power was 30 kW. In 1979 its power was increased to 100 kW by adding new fuel elements to the reactor. Recently some more fuel elements were added to the core increasing the power to 250 kW. The TRIGA-IPR-R1 is a pool type reactor with a natural circulation core cooling system. Although the large number of experiments had been carried out with this reactor, mainly on neutron activation analysis, there is not many data on its thermal-hydraulics processes, whether experimental or theoretical. So a number of experiments were carried out with the measurement of the temperature inside the fuel element, in the reactor core and along the reactor pool. During these experiments the reactor was set in many different power levels. These experiments are part of the CDTN/CNEN research program, and have the main objective of commissioning the TRIGA-IPR-R1 reactor for routine operation at 250 kW. This work presents the experimental and theoretical analyses to determine the temperature distribution in the reactor. A methodology for the calibration and monitoring the reactor thermal power was also developed. This methodology allowed adding others power measuring channels to the reactor by using thermal processes. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were also experimentally valued. lt was also presented a correlation for the gap conductance between the fuel and the cladding. The experimental results were compared with theoretical calculations and with data obtained from technical literature. A data acquisition and processing system and a software were developed to help the investigation. This system allows on line monitoring and registration of the main reactor operational parameters. The experiments have given better comprehension of the reactor thermal-fluid dynamics and helped to develop numerical

  17. An estimation of uncertainties in containment P/T analysis using CONTEMPT/LT code

    International Nuclear Information System (INIS)

    Kang, Y.M.; Park, G.C.; Lee, U.C.; Kang, C.S.

    1991-01-01

    In a nuclear power plant, the containment design pressure and temperature (P/T) have been established based on the unrealistic conservatism with suffering from a drawback in the economics. Thus, it is necessary that the uncertainties of design P/T values have to be well defined through an extensive uncertainty analysis with plant-specific input data and or models used in the computer code. This study is to estimate plant-specific uncertainties of containment design P/T using the Monte Carlo method in Kori-3 reactor. Kori-3 plant parameters and Uchida heat transfer coefficient are selected to be treated statistically after the sensitivity study. The Monte Carlo analysis has performed based on the response surface method with the CONTEMPT/LT code and Latin Hypercube sampling technique. Finally, the design values based on 95 %/95 % probability are compared with worst estimated values to assess the design margin. (author)

  18. Report on safety related occurrences and reactor trips July 1, 1976-December 31, 1976

    International Nuclear Information System (INIS)

    Andermo, L.

    1977-04-01

    This is a systematically arranged report on all reported safety related occurrences and reactor trips in Swedish nuclear power plants in operation during July 1, 1976 to December 31, 1976 inclusive. The facilities involved are Oskarshamn 1 and 2, Ringhals 1 and 2 and Barsebaeck 1. During this period of the 6 months 37 safety related occurrences and 34 reactor trips have been reported to the Nuclear Power Inspectorate. As earlier experiences have shown it is to the greatest extent the conventional components which bring about the safety related occurrences or occurrences leading to outages or power reductions. However, the component errors discovered in the safety related systems have not affected the function of their redundant systems and other diverse systems have not been involved. Therefore the reactor safety has been satisfactory. The fact that even small deviations from prescribed operation results in automatic and safe shut down of the reactor, does not always imply a conflict with operational availability. The number of reactor trips are almost as low as during the last period, which is a drastic reduction compared to earlier time periods. The greatest outages are caused by occurrences without safety significance.(author)

  19. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    El-Messeiry, A M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs.

  20. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    International Nuclear Information System (INIS)

    El-Messeiry, A.M.

    1996-01-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs

  1. COSTANZA, 1-D 2 Group Space-Dependent Reactor Dynamics of Spatial Reactor with 1 Group Delayed Neutrons

    International Nuclear Information System (INIS)

    Agazzi, A.; Gavazzi, C.; Vincenti, E.; Monterosso, R.

    1964-01-01

    1 - Nature of physical problem solved: The programme studies the spatial dynamics of reactor TESI, in the two group and one space dimension approximation. Only one group of delayed neutrons is considered. The programme simulates the vertical movement of the control rods according to any given movement law. The programme calculates the evolution of the fluxes and temperature and precursor concentration in space and time during the power excursion. 2 - Restrictions on the complexity of the problem: The maximum number of lattice points is 100

  2. Monte Carlo simulation of core physics parameters of the Nigeria Research Reactor-1 (NIRR-1)

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, S.A. [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria, P.M.B. 1014 (Nigeria)], E-mail: jonahsa2001@yahoo.com; Liaw, J.R.; Matos, J.E. [RERTR Program, Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-12-15

    The Monte Carlo N-Particle (MCNP) code, version 4C (MCNP4C) and a set of neutron cross-section data were used to develop an accurate three-dimensional computational model of the Nigeria Research Reactor-1 (NIRR-1). The geometry of the reactor core was modeled as closely as possible including the details of all the fuel elements, reactivity regulators, the control rod, all irradiation channels, and Be reflectors. The following reactor core physics parameters were calculated for the present highly enriched uranium (HEU) core: clean cold core excess reactivity ({rho}{sub ex}), control rod (CR) and shim worth, shut down margin (SDM), neutron flux distributions in the irradiation channels, reactivity feedback coefficients and the kinetics parameters. The HEU input model was validated by experimental data from the final safety analyses report (SAR). The model predicted various key neutronics parameters fairly accurately and the calculated thermal neutron fluxes in the irradiation channels agree with the values obtained by foil activation method. Results indicate that the established Monte Carlo model is an accurate representation of the NIRR-1 HEU core and will be used to perform feasibility for conversion to low enriched uranium (LEU)

  3. Welding of the A1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Becka, J.

    1975-01-01

    As concerns welding, the A-1 reactor pressure vessel represents a geometrically complex unit containing 1492 welded joints. The length of welded sections varies between 10 and 620 mm. At an operating temperature of 120 degC and a pressure of 650 N/cm 2 the welded joints in the reactor core are exposed to an integral dose of 3x10 18 n/cm 2 . The chemical composition is shown for pressure vessel steel as specified by CSN 413090.9 modified by Ni, Ti and Al additions, and for the welding electrodes used. The requirements are also shown for the mechanical properties of the base and the weld metals. The technique and conditions of welding are described. No defects were found in ultrasonic testing of welded joints. (J.B.)

  4. Determination flux in the Reactor JEN-1

    International Nuclear Information System (INIS)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-01-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 μ gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs

  5. Comparison of the N Reactor and Ignalina Unit No. 2 Level 1 Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Coles, G.A.; McKay, S.L.

    1995-06-01

    A multilateral team recently completed a full-scope Level 1 Probabilistic Safety Assessment (PSA) on the Ignalina Unit No. 2 reactor plant in Lithuania. This allows comparison of results to those of the PSA for the U.S. Department of Energy's (DOE) N Reactor. The N Reactor, although unique as a Western design, has similarities to Eastern European and Soviet graphite block reactors

  6. Study of dietary supplements compositions by neutron activation analysis at the VR-1 training reactor

    Science.gov (United States)

    Stefanik, Milan; Rataj, Jan; Huml, Ondrej; Sklenka, Lubomir

    2017-11-01

    The VR-1 training reactor operated by the Czech Technical University in Prague is utilized mainly for education of students and training of various reactor staff; however, R&D is also carried out at the reactor. The experimental instrumentation of the reactor can be used for the irradiation experiments and neutron activation analysis. In this paper, the neutron activation analysis (NAA) is used for a study of dietary supplements containing the zinc (one of the essential trace elements for the human body). This analysis includes the dietary supplement pills of different brands; each brand is represented by several different batches of pills. All pills were irradiated together with the standard activation etalons in the vertical channel of the VR-1 reactor at the nominal power (80 W). Activated samples were investigated by the nuclear gamma-ray spectrometry technique employing the semiconductor HPGe detector. From resulting saturated activities, the amount of mineral element (Zn) in the pills was determined using the comparative NAA method. The results show clearly that the VR-1 training reactor is utilizable for neutron activation analysis experiments.

  7. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    West, C D [comp.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN{sub 2} test, Source LH2-H{sub 2}O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface.

  8. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    West, C.D.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN 2 test, Source LH2-H 2 O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface

  9. Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals

  10. Baikal-1 stand complex. Preparation and carrying out of the first energy start-up of the IVG-1 reactor

    International Nuclear Information System (INIS)

    Tikhomirov, L.N.

    1995-01-01

    The IVG-1 reactor was a first ground prototype of nuclear rocket engine. The reactor was built on the site 10 of the Semipalatinsk test site. Since the first energy start-up in 1975 the reactor was exploited 14 years till its modernization in 1989. The Bajkal-1 stand complex was designed and built for the carrying out of tests for fuel assemblies of different modifications. The energy start-up has been sum of long creative work of different research and constructive staffs on creation of high-temperature gas-cooled IVG-1 reactor. The history of construction, project and assembling of the stand complex is presented. Complex start and put works were carried out in the December 1974. Control physical start-up was carried out in the January 1975. Cold start-up by hydrogen was in the February 1975. Hot start-up was in the March 1975. The result of the hot start-up was experimental confirmation of metodics of thermohydrovlical estimations. 2 figs., 3 tabs

  11. RA reactor operation and maintenance in 1994, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1994-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. The spent fuel elements used from the very beginning of reactor operation are stored in the existing pools. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988 and was fulfilled in 1990. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  12. Determination flux in the Reactor JEN-1; Medida de flujos de neutrones en el nucleo del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Manas Diaz, L; Montes Ponce de leon, J.

    1960-07-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 {mu} gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs.

  13. Reactor core conversion studies of Ghana: Research Reactor-1 and proposal for addition of safety rod

    International Nuclear Information System (INIS)

    Odoi, H.C.

    2014-06-01

    The inclusion of an additional safety rod in conjunction with a core conversion study of Ghana Research Reactor-1 (GHARR-1) was carried out using neutronics, thermal hydraulics and burnup codes. The study is based on a recommendation by Integrated Safety Assessment for Research Reactors (INSARP) mission to incorporate a safety rod to the reactor safety system as well as the need to replace the reactor fuel with LEU. Conversion from one fuel type to another requires a complete re-evaluation of the safety analysis. Changes to the reactivity worth, shutdown margin, power density and material properties must be taken into account, and appropriate modifications made. Neutronics analysis including burnup was studied followed by thermal hydraulics analyses which comprise steady state and transients. Four computer codes were used for the analysis; MCNP, REBUS, PLTEP and PARET. The neutronics analysis revealed that the LEU core must be operated at 34 Kw in order to attain the flux of 1.0E12 n/cm 2 .s as the nominal flux of the HEU core. The auxiliary safety rod placed at a modified irradiation site gives a better worth than the cadmium capsules. For core excess reactivity of 4 mk, 348 fuel pins would be appropriate for the GHARR-1 LEU core. Results indicate that flux level of 1.0E12 n/cm 2 .s in the inner irradiation channel will not be compromised, if the power of the LEU core is increased to 34 kW. The GHARR-1 core using LEU-U0 2 -12.5% fuel can be operated for 23 shim cycles, with cycles length 2.5 years, for over 57 years at the 17 kW power level. All 23 LEU cycles meet the ∼ 4.0 mk excess reactivity required at the beginning of cycle . For comparison, the MNSR HEU reference core can also be operated for 23 shim cycles, but with a cycle length of 2.0 years for just over 46 years at 15.0kW power level. It is observed that the GHARR-1 core with LEU UO 2 fuel enriched to 12.5% and a power level of 34 kW can be operated ∼25% longer than the current HEU core operated at

  14. Development and application of an entrainment model for the PWR U-tube steam generators for main steam line break analysis

    International Nuclear Information System (INIS)

    Song, Dong-Soo; Park, Young-Chan

    2004-01-01

    The purpose of this paper is to present the analyses that were performed to develop and use an entrainment model for pressurized water reactor U-tube steam generators (SG) for main steam line break (MSLB) analyses. The entrainment model was developed using the RETRAN-3D computer program, and the model was benchmarked against experimental data of moisture carryover during a simulated MSLB accident. The application methodology was also developed to incorporate into the MSLB mass and energy release calculations for Kori Unit 1. This methodology utilizes LOFTRAN and RETRAN-3D codes in an iterative sequence of cases in which the LOFTRAN nuclear steam supply system model provides boundary conditions for the RETRAN-3D broken loop steam generator model, and the RETRAN-3D model provides the entrainment data that is input back into the LOFTRAN model. FORTRAN programs were developed to facilitate the sequencing of these iterative calculations. As a result of applying the entrainment model to Kori Unit 1, the temperature calculated inside Containment during MSLB accident using the CONTEMP-LT computer program decreased by about 25degC. Consequently this entrainment model provides a significant benefit by decreasing the temperature envelop for environment qualification as well as decreasing the peak Containment pressure. (author)

  15. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  16. New burnup calculation of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z.

    2015-01-01

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  17. Reactor Engineering Department annual report, April 1, 1985 - March 31, 1986

    International Nuclear Information System (INIS)

    1986-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1985 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor, High Conversion Light Water Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, reactor decommissioning technology, and activities of the Committee on Reactor Physics. (author)

  18. Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2

    International Nuclear Information System (INIS)

    1978-05-01

    An assessment of the impact of utilizing the 233 U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, 233 U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization

  19. Neutron flux measurement and thermal power calibration of the IAN-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarta Fuentes, Jose A.; Castiblanco Bohorquez, Luis A

    2008-10-29

    The IAN-R1 TRIGA reactor in Colombia was initially fueled with MTR-HEU enriched to 93% U-235, operated since 1965 at 10 kW, and was upgraded to 30 kW in 1980. General Atomics achieved in 1997 the conversion of HEU fuel to LEU fuel TRIGA type, and upgraded the reactor power to 100 kW. Since the IAN-R1 TRIGA reactor was in an extended shutdown during seven years, it was necessary to repeat some results of the commissioning test conducted in 1997. The thermal power calibration was carried out using the calorimetric method. The reactor was operated approximately at 20 kW during 3.5 hours, with manual power corrections since the automatic control system failed and with the forced refrigeration off. During the calorimetric experiment, the pool temperature was measured with a RTD which is installed near to the core. The dates were collected in intervals of 30 minutes. For establishing thermal power reactor, the water temperature versus the running were registered. For a calculated tank volume of 16 m{sup 3}, the tank constant calculated for the IAN-R1 TRIGA reactor is 0.0539 C/kW-hr. The reactor power determined was 19 kW. The core configuration is a rectangular grid plate that holds a combination of 4-rod and 3-rod clusters. The core contains 50 fuel rods with LEU fuel TRIGA (UZr H1.6) type enriched to 19.7%. The radial reflector consists of twenty graphite elements six of which are used for isotope production. The top an bottom reflectors are the cylindrical graphite end reflectors which are installed above and below of the active fuel section in each fuel rod. The spatial dependence of thermal neutron flux was measured axially in the 3-rod clusters 4C, 3D, 5E and in the 4F graphite element. The spatial distribution of the thermal neutron was determined using a self-powered detector and the absolute value of thermal neutron flux was determined by a gold activation detector. The (n, b- ) reaction is applied to determine the relative spatial distribution of thermal

  20. Problems of nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    Shal'nov, A.V.

    1995-01-01

    Proceedings of the 9. Topical Meeting 'Problems of nuclear reactor safety' are presented. Papers include results of studies and developments associated with methods of calculation and complex computerized simulation for stationary and transient processes in nuclear power plants. Main problems of reactor safety are discussed as well as rector accidents on operating NPP's are analyzed

  1. Experiment on continuous operation of the Brazilian IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Freitas Pintaud, M. de

    1994-01-01

    In order to increase the radioisotope production in the IEA-R1 research reactor at IPEN/CNEN-SP, it has been proposed a change in its operation regime from 8 hours per day and 5 days per week to continuous 48 hours per week. The necessary reactor parameters for this new operation regime were obtained through an experiment in which the reactor was for the first time operated in the new regime. This work presents the principal results from this experiment: xenon reactivity, new shutdown margins, and reactivity loss due to fuel burnup in the new operation regime. (author)

  2. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    Coura, J.G.

    1986-01-01

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author) [pt

  3. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  4. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    International Nuclear Information System (INIS)

    Novelli, A.

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer. (author)

  5. Thermal-hydraulic modelling of the SAFARI-1 research reactor using RELAP/SCDAPSIM/MOD3.4

    International Nuclear Information System (INIS)

    Sekhri, Abdelkrim; Graham, Andy; D'Arcy, Alan; Oliver, Melissa

    2008-01-01

    The SAFARI-1 reactor is a tank-in-pool MTR type research reactor operated at a nominal core power of 20 MW. It operates exclusively in the single phase liquid water regime with nominal water and fuel temperatures not exceeding 100 deg. C. RELAP/SCDAPSIM/MOD3.4 is a Best Estimate Code for light water reactors as well as for low pressure transients, as part of the code validation was done against low pressure facilities and research reactor experimental data. The code was used to simulate SAFARI-1 in normal and abnormal operation and validated against the experimental data in the plant and was used extensively in the upgrading of the Safety Analysis Report (SAR) of the reactor. The focus of the following study is the safety analysis of the SAFARI-1 research reactor and describes the thermal hydraulic modelling and analysis approach. Particular emphasis is placed on the modelling detail, the application of the no-boiling rule and predicting the Onset of Nucleate Boiling and Departure from Nucleate Boiling under Loss of Flow conditions. Such an event leads the reactor to switch to a natural convection regime which is an adequate mode to maintain the clad and fuel temperature within the safety margin. It is shown that the RELAP/SCDAPSIM/MOD3.4 model can provide accurate predictions as long as the clad temperature remains below the onset of nucleate boiling temperature and the DNB ratio is greater than 2. The results are very encouraging and the model is shown to be appropriate for the analysis of SAFARI-1 research reactor. (authors)

  6. Thermal hydraulic analysis of the IPR-R1 TRIGA research reactor using a RELAP5 model

    International Nuclear Information System (INIS)

    Costa, Antonella L.; Reis, Patricia Amelia L.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Mesquita, Amir Z.; Soares, Humberto V.

    2010-01-01

    The RELAP5 code is widely used for thermal hydraulic studies of commercial nuclear power plants. Current investigations and code adaptations have demonstrated that the RELAP5 code can be also applied for thermal hydraulic analysis of nuclear research reactors with good predictions. Therefore, as a contribution to the assessment of RELAP5/MOD3.3 for research reactors analysis, this work presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor at 50 kilowatts (kW) of power operation. The reactor is located in the Nuclear Technology Development Center (CDTN), Brazil. It is a 250 kW, light water moderated and cooled, graphite-reflected, open pool type research reactor. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of the RELAP5 model validation. The RELAP5 results were also compared with calculated data from the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The results obtained have shown that the RELAP5 model for the IPR-R1 TRIGA reproduces the actual steady-state reactor behavior in good agreement with the available data.

  7. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2000-01-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k eff values within about 1% Δk/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models

  8. Environmental radiation monitoring around the nuclear facilities

    International Nuclear Information System (INIS)

    Lee, H.D.; Lee, Y.B.; Lee, W.Y.; Park, D.W.; Chung, B.G.

    1980-01-01

    For the KAERI site, various environmental samples were collected three times a month, and the natural environmental radiation levels were also measured at each sampling point. Measurements for gross alpha and beta radioactivities of the samples were routinely measured for all samples. Strontium-90 concentrations were also analysed for the fallout and air samples collected daily basis on the roof of the main building. Accumulated exposure including the possibility of determination of low level environmental radiation field by employing thermoluminescent dosimeter, CaSO 4 : Dsub(y)-0.4 teflon disc type, at 6 posts in on-site of the KAERI. As for Kori site, at 19 points of ON, OFF-site, and at the same time the environmental radiation exposure rate at each sampling point were measured. Several environmental samples such as surface soil, pine needles, water samples, milk sample and pasture samples were collected and analysed on a quarterly basis. As a result of the survey it can be said that no significant release of radiation to the environment due to the operations of nuclear facilities including research reactor at the KAERI and power reactor at the Kori has been found during the period of the survey and monitoring. (author)

  9. Calculations of Changes in Reactivity during some regular periods of operation of JEN-1 MOD Reactor; Calculo de vairaciones de reactividad en algunos periodos regulares de operacion del reactor JEN-1 Mod.

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F

    1973-07-01

    By a Point-Reactor model and Perturbation Theory, changes in reactivity during some regular operating periods of JEN-1 MOD Reactor have been calculated and compared with available measured values. they were in good agreement. Also changes in reactivity have been calculated during operations at higher power levels than the present one, concluding some practical consequences for the case of increasing the present power of this reactor. (Author)

  10. Reactor Engineering Department annual report (April 1, 1986 - March 31, 1987)

    International Nuclear Information System (INIS)

    1987-08-01

    Research and development activities in the Department of Reactor Engineering in the fiscal year 1986 are described. The major activities of the Department are closely related to the reactor physics of very high temperature gas-cooled reactor, high conversion light water reactor and liquid metal fast breeder reactor and to blanket neutronics of fusion reactor. Contents of this report are divided into the activities on nuclear data and group constants, theoretical methods and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control, diagnosis and robotics. The activity of the Research Committee on Reactor Physics is also included. (author)

  11. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  12. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  13. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  14. Modelling of the RA-1 reactor using a Monte Carlo code; Modelado del reactor RA-1 utilizando un codigo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Quinteiro, Guillermo F; Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Reactores y Centrales Nucleares

    2000-07-01

    It was carried out for the first time, a model of the Argentine RA-1 reactor using the MCNP Monte Carlo code. This model was validated using data for experimental neutron and gamma measurements at different energy ranges and locations. In addition, the resulting fluxes were compared with the data obtained using a 3D diffusion code. (author)

  15. Neutronics and thermohydraulics of the reactor C.E.N.E. Pt. 1

    International Nuclear Information System (INIS)

    Caro, R.; Ahnert, C.; Esteban Naudin, A.; Martinez Fanegas, R.; Minguez, E.; Rovira, A.

    1976-01-01

    The analysis of neutronics (both statics and kinetics), of the 10 Mwt swimming pool reactor C.E.N.E. is included. A short description of the theoretical model used, along with the theoretical versus experimental cheking, carried out, whenever possible, with the reactors JEN-1 and JEN-2 of Junta de Energia Nuclear, is given in each of these chapters. (author) [es

  16. Crack of reactor vessel upper head penetration nozzles in Korean nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Doh, E.; Lee, T-S.; Kim, J-Y.; Lee, C-H. [KEPCO Plant Service and Engineering Co., Ltd., Busan (Korea, Republic of)

    2014-07-01

    Since the first CRDM nozzles of reactor vessel head at Kori unit 1 in Korea were inspected in 2003, no CRDM nozzle cracks had been revealed prior to the inspection at Hanbit unit 3 in October 2012, even though many foreign plants had been reporting PWSCC cracks. In October 2012, seven axial cracks from 6 CRDM nozzles at Hanbit unit 3, and in November 2013, six axial cracks from 6 CRDM nozzles at Hanbit unit 4 were detected by TOFD Ultrasonic testing from ID of nozzles. There were confirmed to be PWSCC by Dye penetrant testing and Replica on the surface of J-groove weld of CRDM nozzles. Both plants are OPR-1000 types. All flaws started from the surface of J-groove weld at interface with OD of nozzle, but did not grow up to the top of J-groove weld, and did not make any Leak path up to head outside. The Performance Demonstration Initiative (PDI) system of CRDM nozzle inspection for Westinghouse type plants has been applied in Korea since July 2011. However, its application for OPR-1000 is still under development in Korea. The experience of PDI inspection for Westinghouse type plant contributed greatly to the detection and evaluation of PWSCC of CRDM nozzles at OPR- 1000 of Hanbit unit 3 & 4. The experimentally based procedure of flaw detection and the enhanced detection technique of examiners made it possible to detect and to determine the PWSCC indications. Embedded Flaw Repair process was approved by government authority, and the repair of the 6 CRDM nozzles in each plant was conducted by a consortium of Westinghouse and KPS. (author)

  17. Applied research into direct numerical control of A-1 reactor temperature

    International Nuclear Information System (INIS)

    Karpeta, C.; Volf, K.

    1974-01-01

    Partial results of research efforts aimed at applying modern control theory in the control of the reactor of the A-1 nuclear power station are presented. A mathematical model of the process dynamics was developed. Some parameters of the model were determined using the results of an experimentally performed reactor scram. The optimal stochastic discrete regulator was determined and closed-loop transients were studied. The possibilities of implementing control routines were investigated using the RPP-16 computer. (author)

  18. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2002-01-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  19. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  20. Research reactor core conversion guidebook. V.1: Summary

    International Nuclear Information System (INIS)

    1992-04-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this guidebook has been prepared to assist research reactor operators in addressing the safety and licensing issues for conversion of their reactor cores from the use of HEU fuel to the use of low enriched uranium fuel. This Guidebook, in five volumes, addresses the effects of changes in the safety-related parameters of mixed cores and the converted core. It provides an information base which should enable the appropriate approvals processes for implementation of a specific conversion proposal, whether for a light or for a heavy water moderated research reactor. Refs, figs, bibliographies and tabs

  1. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits

  2. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits.

  3. NBR ISO 9001 Certification for activities carried out in IEA-R1 reactor

    International Nuclear Information System (INIS)

    Paiva, Rosemeire P.; Salvetti, Tereza C.

    2005-01-01

    Since its inauguration in 1957, the IEA-R1 research reactor has been used mainly for research, development and teaching by scientific community. In the last years, with the increase of the commercial radiopharmaceutical production by Radiopharmacy Center of IPEN, the IEA-R1 reactor was recognized as a service supplier for that center and has received a treatment more commercial from IPEN Management. In 1999 the radiopharmaceutical production obtained the NBR ISO 9002 Certification, since that the IPEN Management considered convenient to invest in the certification of its internal suppliers. In this context, in 2001 the Research Reactor Center (CRPq) began the implantation of a Quality Management System (QMS) based on NBR 9001: 2000 standard, for activities related to the operation and maintenance of the IEA-R1 research reactor and irradiation services. This QMS was structured to incorporate tools already implemented in order to complain the requirements related to nuclear and radiological safe for a nuclear installation established by the regulatory organism. The QMS is supported by a documentation system composed of approximately 150 documents including quality manual, business and action plans, operational procedures and work instruction. Carlos Alberto Vanzolini Foundation (FCAV), an INMETRO certified organism, certified the 'Operation and Maintenance of the IEA-R1 Research Reactor and Irradiation Services' in December 2002. In 2003 and 2004, the QMS was audited by FCAV that determined the maintenance of the certification. This work presents the main steps of the QMS implementation, including the difficulties found and results obtained in the process. (author)

  4. Life extension of the St. Lucie unit 1 reactor vessel

    International Nuclear Information System (INIS)

    Rowan, G.A.; Sun, J.B.; Mott, S.L.

    1991-01-01

    In late 1989, Florida Power and Light Company (FP and L) established the policy that St. Lucie unit 1 should not be prevented from achieving a 60-yr operating life by reactor vessel embrittlement. A 60-yr operating life means that the plant would be allowed to operate until the year 2036, which is 20 years beyond the current license expiration date of 2016. Since modifications to the reactor vessel and its components are projected to be expensive, the desire of FP and L management was to achieve this lifetime extension through the use of fuel management and proven technology. The following limitations were placed on any acceptable method for achieving this lifetime extension capability: low fuel cycle cost; low impact on safety parameters; very little or no operations impact; and use of normal reactor materials. A task team was formed along with the Advanced Nuclear Fuels Company (ANF) to develop a vessel-life extension program

  5. Reactor calculations in aid of isotope production at SAFARI-1

    International Nuclear Information System (INIS)

    Ball, G.

    2003-01-01

    Varying levels of reactor physics support is given to the isotope production industry. As the pressures on both the safety limits and economical production of reactor produced isotopes mount, reactor physics calculational support is playing an ever increasing role. Detailed modelling of the reactor, irradiation rigs and target material enables isotope production in reactors to be maximised with respect to yields and quality. NECSA's methodology in this field is described and some examples are given. (author)

  6. Shielding assessment of the ETRR-1 Reactor Under power upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The assessment of existing shielding of the ETRR-1 reactor in case of power upgrading is presented and discussed. It was carried out using both the present EK-10 type fuel elements and some other types of fuel elements with different enrichments. The shielding requirements for the ETRR-1 when power is upgraded are also discussed. The optimization curves between the upgraded reactor power and the shield thickness are presented. The calculation have been made using the ANISN code with the DLC-75 data library. The results showed that the present shield necessitates an additional layer of steel with thickness of 10.20 and 25 cm. When its power is upgraded to 3, 6 and 10 MWt in order to cutoff all neutron energy groups to be adequately safe under normal operating conditions. 4 figs.

  7. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core

    International Nuclear Information System (INIS)

    Chambadal, P.; Pascal, M.

    1955-01-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [fr

  8. Reload safety evaluation of boron dilution accident related to shutdown margin proportional to boron concentration

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Lee, Ki Bog; Song, Jae Woong

    1993-06-01

    This report investigates the efficient safety evaluation method and analysis procedure on Boron Dilution Accident(BDA) under the proportional shutdown margin to boron concentration. Also investigated are problems caused by applying this shutdown margin limit. Through this investigation, the safety of Kori-3 Cycle-8, Yonggwang-2 Cycle-7, Kori-4 Cycle-8 and Yonggwang-1 Cycle-8 with respect to BDA is verified. In order to satisfy the shutdown margin requirement in the Technical Specifications, it is shown that the High Flux Alarm at Shutdown Setting for Kori-4 Cycle-8 and Yonggwang-1 Cycle-8 at Mode 5 should be set at 2 or the Technical Specification should be revised. (Author)

  9. Development of a training simulator to operators of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carvalho, Ricardo Pinto de

    2006-01-01

    This work reports the development of a Simulator for the IEA-R1 Research Reactor. The Simulator was developed with Visual C++ in two stages: construction of the mathematics models and development and configuration of graphics interfaces in a Windows XP executable. A simplified modeling was used for main physics phenomena, using a point kinetics model for the nuclear process and the energy and mass conservation laws in the average channel of the reactor for the thermal hydraulic process. The dynamics differential equations were solved by using finite differences through the 4th order Runge- Kutta method. The reactivity control, reactor cooling, and reactor protection systems were also modeled. The process variables are stored in ASCII files. The Simulator allows navigating by screens of the systems and monitoring tendencies of the operational transients, being an interactive tool for teaching and training of IEA-R1 operators. It also can be used by students, professors, and researchers in teaching activities in reactor and thermal hydraulics theory. The Simulator allows simulations of operations of start up, power maneuver, and shut down. (author)

  10. An overview of the RECH-1 reactor conversion

    International Nuclear Information System (INIS)

    Klein, J.; Medel, J.; Daie, J.; Torres, H.

    2000-01-01

    The RECH-l research reactor achieved the first criticality on October 13, 1974 using HEU MTR type fuel elements, which were fabricated by the UKAEA at Dounreay, Scotland. In 1979, the conversion of the reactor to use LEU fuel was decided; however, a rough estimate of the uranium density needed to convert the reactor gave 3.7 g/cm 3 . This density was not available, and to maintain the overall fuel element geometry it was necessary to convert the reactor to use 45% enriched uranium fuel. In 1985, the conversion of the reactor to use medium enriched uranium was achieved. Some years later, the Chilean Nuclear Energy Commission developed the capability to produce fuel elements based on U 3 Si 2 -Al dispersion fuel. Once the plant and the manufacturing and quality control procedures were commissioned to permit the production of fuel elements, a fabrication program starts to produce LEU fuel elements with a uranium density of 3.4 g/cm 3 . A fabrication qualification period that extended to the required fuel plates for the assembly of two fuel elements started. In November 1998, the first four LEU fuel elements manufactured by the Chilean Fuel Fabrication Plant were delivered to the reactor. When the first two fuel elements were introduced into the core a LEU fuel element qualification program began. While those fuel elements remain in the core, an evaluation program is being applied to observe its performance under irradiation condition. (author)

  11. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  12. Verification of the linearity of the IPR-R1 TRIGA reactor power channels

    International Nuclear Information System (INIS)

    Souza, Rose Mary Gomes do Prado; Campolina, Daniel de Almeida Magalhaes

    2013-01-01

    The aim of this paper is to verify the linearity of the three power channels of the IPR-R1 TRIGA reactor. Located at Nuclear Technology Development Center-CDTN in Belo Horizonte, the IPR-R1 reactor is a typical 100 kW Mark I light-water reactor cooled by natural convection. When the experiments were performed, the reactor core had 59 fuel elements, containing 8% by weight of uranium enriched to 20% in 235 U. The core has cylindrical configuration with an annular graphite reflector. The responses of the detectors of the Linear, Log N and Percent Power channels were compared with the responses of detectors which only depend on the overall neutron flux within the reactor. Gold and cobalt foils were activated at low and high powers, respectively, and the specific count results were compared with measurements performed, simultaneously, with a fission chamber, and with the power registered by the three channels. The results show that the Linear channel responds linearly up to 100 kW, and the Log N channel responses are linear at low powers. In the range of high power, the Log N and the Percent Power channels exhibit linearity only from 10 kW to 50 kW. (author)

  13. Conceptual design study for the demonstration reactor of JSFR. (1) Current status of JSFR development

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Sakamoto, Yoshihiko; Kotake, Shoji; Aoto, Kazumi; Ohshima, Jun; Ito, Takaya

    2011-01-01

    JAEA is now conducting 'Fast Reactor Cycle Technology Development (FaCT)' project for the commercialization before 2050s. A demonstration reactor of Japan Sodium-cooled Fast Reactor (JSFR) is planned to start operation around 2025. In the FaCT project, conceptual design study on the demonstration reactor has been performed since 2007 to determine the referential reactor specifications for the next stage design work from 2011 for the licensing and construction. Plant performance as a demonstration reactor for the 1.5 GWe commercial reactor JSFR is being compared between 750 MWe and 500 MWe plant designs. By using the results of conceptual design study, output power will be determined during year of 2010. This paper describes development status of key technologies and comparison between 750 MWe and 500 MWe plants with the view points of demonstration ability for commercial JSFR plant. (author)

  14. An economic analysis of stretch-out for Angra-1 reactor

    International Nuclear Information System (INIS)

    Sakai, M.

    1989-01-01

    An application of NUCOST code for calculating nuclear energy cost is presented. Ann optimization of stretch-out for Angra-1 reactor based on international costs of nuclear fuel, operation and maintenance is done. (M.C.K.)

  15. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  16. Welding electrode for peripheral welds of A-1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    1975-01-01

    The properties are outlined of the VUZ-AC1-52 welding electrode used in welding the Bohunice A-1 reactor pressure vessel. The mechanical properties of welded joints after the final thermal treatment are summed up. (J.K.)

  17. 1-D Two-phase Flow Investigation for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Kim, Jae Cheol

    2007-02-01

    During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift

  18. The reactor kinetics code tank: a validation against selected SPERT-1b experiments

    International Nuclear Information System (INIS)

    Ellis, R.J.

    1990-01-01

    The two-dimensional space-time analysis code TANK is being developed for the simulation of transient behaviour in the MAPLE class of research reactors. MAPLE research reactor cores are compact, light-water-cooled and -moderated, with a high degree of forced subcooling. The SPERT-1B(24/32) reactor core had many similarities to MAPLE-X10, and the results of the SPERT transient experiments are well documented. As a validation of TANK, a series of simulations of certain SPERT reactor transients was undertaken. Special features were added to the TANK code to model reactors with plate-type fuel and to allow for the simulation of rapid void production. The results of a series of super-prompt-critical reactivity step-insertion transient simulations are presented. The selected SPERT transients were all initiated from low power, at ambient temperatures, and with negligible coolant flow. Th results of the TANK simulations are in good agreement with the trends in the experimental SPERT data

  19. Dismantling of the reactor block of the FRJ-1 research reactor (MERLIN); Abbau des Reaktorblocks des Forschungsreaktors FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Cremer, J. [Siempelkamp Nukleartechnik GmbH, Heidelberg (Germany)

    2003-07-01

    By the end of 1998 the complete secondary cooling system and the major part of the primary cooling system were dismantled. Furthermore, the experimental devices, including a rabbit system conceived as an in-core irradiation device, were disassembled and disposed of. In total, approx. 65 t of contaminated and/or activated material as well as approx. 70 t of clearance-measured material were disposed of within the framework of these activities. The dismantling of the coolant loops and experimental devices was followed in 2000 by the removal of the reactor tank internals and the subsequent draining of the reactor tank water. The reactor tank internals were essentially the core support plate, the core box, the flow channel and the neutron flux bridges (s. Fig. 2, detailed reactor core). All components consisted of aluminium, the connecting elements such as bolts and nuts, however, of stainless steel. Due to the high activation of the core internals, disassembly had to be remotely controlled under water. All removal work was carried out from a tank intermediate floor (s. Fig. 2). These activities, which served for preparing the dismantling of the reactor block, were completed in summer 2001. The waste parts arising were transferred to the Service Department for Decontamination of the Research Centre. This included approx. 2.5 t of waste parts with a total activity of approx. 8 x 10{sup 11} Bq. (orig.)

  20. . Effects of extended shutdown on the control rod drive mechanism of nigeria research reactor-1(NIRR-1)

    International Nuclear Information System (INIS)

    Yusuf, I; Mati, A. A.

    2010-01-01

    The control rod drive mechanism of the Nigeria Research Reactor-1 is being driven by a servo motor, type SDE-45 through a mechanical gear system. The servo motor ensures the position control of the control rod, and hence the stability of the neutron-flux of the nuclear research reactor. The control rod drive mechanism assembly is mounted on top of the reactor vessel, about 0.6m above 30m 3 volume of reactor pool water. The top of the pool is covered with a Perspex material to protect the water in the pool from environmental contamination and to reduce evaporation. Although most of the materials in the control rod drive mechanism assembly are made of stainless steel, the servo motor however contains corrodible materials. The paper reveals a practical experience of failure of the control rod drive mechanism as a result of corrosion growth between the rotor of the servo motor and its stator windings, due to an extended shutdown of the facility.

  1. VR-1 training reactor in use for twelve years to train experts for the Czech nuclear power sector

    International Nuclear Information System (INIS)

    Matejka, K.; Sklenka, L.

    2003-01-01

    The VR-1 training reactor has been serving students of the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, for more than 12 years now. The operation history of the reactor is highlighted. The major changes made at the VR-1 reactor are outlined and the main experimentally verified core configurations are shown. Some components of the new equipment installed on the VR-1 reactor are described in detail. The fields of application are shown: the reactor serves not only the training of university students within whole Czech Republic but also the training of specialists, research activities, and information programmes in the nuclear power domain. (P.A.)

  2. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  3. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  5. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  6. Nuclear material control at IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    1988-01-01

    The control measurements system and verification of physical inventory for fuel elements used in the operation of IEA-R1 nuclear research reactor are described. The computer code used for burn-up calculation are shown. (E.G.) [pt

  7. Determination of the neutron spectrum at different locations in the Argentine RA-1 Reactor; Determinacion del espectro neutronico en distintas posiciones del reactor RA-1

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, A M; Madariaga, M R [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    1999-12-31

    Full text: It is well known that the RA-1 reactor is used to irradiate different types of materials with neutrons. The Radio dosimetry Group (which belongs to the Nuclear Regulatory Authority) uses its fast column for the design, calibration and set up of criticality dosimeters as well as for a quick assessment of the dose to workers in case of an accident. With such purpose, Au(1), Au under Cd and In(2) foils were irradiated to estimate absolute thermal, epithermal and fast neutron fluxes at the irradiation location. The accuracy of this estimation is higher when the response to the present neutron spectrum of the different materials constituting the detectors is better known. This, in turn, requires the previous knowledge of such spectrum (a detailed energy dependence of neutron flux) at the analysed location. In this work a neutronic calculation is presented at the fast irradiation location. The whole calculation was carried out following two different methodologies, and considering a power of 40 kW. The reactor and its surroundings were represented by a simplified one-dimensional model, as a concentric cylindrical set of regions. Figures are drawn representing fast and thermal fluxes (with the cut at 0.4 eV) as a function of the distance to the core centre. The neutron flux (in n/cm{sup 2}sec.eV) as a function of energy is also shown at the fast irradiation location. Values of flux (in n/cm{sup 2}.sec.eV) are also provided as a function of energy in other typical locations, as well as the equivalent integrated flux values (in n/cm{sup 2}.sec). ((1) According to the reaction Au{sup 197}(n,{gamma})Au{sup 198}, having a cross section of {sigma}{sub 0}=98.8b for thermal neutrons. (2) According to the reaction In{sup 115}(n,n`)In{sup 115m}, with a cross section of some 70 mb for neutrons with energies above 1.2MeV). (author) [Espanol] Texto completo: Como se sabe, el reactor RA1 se utiliza para irradiar con neutrones distintos tipos de materiales. El grupo de

  8. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits

  9. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits.

  10. Reliability database of IEA-R1 Brazilian research reactor: Applications to the improvement of installation safety

    International Nuclear Information System (INIS)

    Oliveira, P.S.P.; Tondin, J.B.M.; Martins, M.O.; Yovanovich, M.; Ricci Filho, W.

    2010-01-01

    In this paper the main features of the reliability database being developed at Ipen-Cnen/SP for IEA-R1 reactor are briefly described. Besides that, the process for collection and updating of data regarding operation, failure and maintenance of IEA-R1 reactor components is presented. These activities have been conducted by the reactor personnel under the supervision of specialists in Probabilistic Safety Analysis (PSA). The compilation of data and subsequent calculation are based on the procedures defined during an IAEA Coordinated Research Project which Brazil took part in the period from 2001 to 2004. In addition to component reliability data, the database stores data on accident initiating events and human errors. Furthermore, this work discusses the experience acquired through the development of the reliability database covering aspects like improvements in the reactor records as well as the application of the results to the optimization of operation and maintenance procedures and to the PSA carried out for IEA-R1 reactor. (author)

  11. Assessment of a RELAP5 model for the IPR-R1 TRIGA research reactor

    International Nuclear Information System (INIS)

    Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F.; Mesquita, Amir Z.; Soares, Humberto V.

    2010-01-01

    RELAP5 code was developed at the Idaho National Environmental and Engineering Laboratory and it is widely used for thermal hydraulic studies of commercial nuclear power plants and, currently, it has been also applied for thermal hydraulic analysis of nuclear research systems with good predictions. This work is a contribution to the assessment of RELAP5/3.3 code for research reactors analysis. It presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor conditions operating at 50 and 100 kW. The reactor is located at the Nuclear Technology Development Centre (CDTN), Brazil. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of code-to-data validation. The RELAP5 results were also compared with calculation performed using the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The use of a cross flow model has been essential to improve results in the transient condition respect to preceding investigations.

  12. 1DB, a one-dimensional diffusion code for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Little, W.W. Jr.

    1991-09-01

    1DB is a multipurpose, one-dimensional (plane, cylinder, sphere) diffusion theory code for use in reactor analysis. The code is designed to do the following: To compute k eff and perform criticality searches on time absorption, reactor composition, reactor dimensions, and buckling by means of either a flux or an adjoint model; to compute collapsed microscopic and macroscopic cross sections averaged over the spectrum in any specified zone; to compute resonance-shielded cross sections using data in the shielding factor formnd to compute isotopic burnup using decay chains specified by the user. All programming is in FORTRAN. Because variable dimensioning is employed, no simple restrictions on problem complexity can be stated. The number of spatial mesh points, energy groups, upscattering terms, etc. is limited only by the available memory. The source file contains about 3000 cards. 4 refs

  13. Comparison of applicability of current transition temperature shift models to SA533B-1 reactor pressure vessel steel of Korean nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    The precise prediction of radiation embrittlement of aged reactor pressure vessels (RPVs) is a prerequisite for the long-term operation of nuclear power plants beyond their original design life. The expiration of the operation licenses for Korean reactors the RPVs of which are made from SA533B-1 plates and welds is imminent. Korean regulatory rules have adopted the US Nuclear Regulatory Commission's transition temperature shift (TTS) models to the prediction of the embrittlement of Korean reactor pressure vessels. The applicability of the TTS model to predict the embrittlement of Korean RPVs made of SA533B-1 plates and welds was investigated in this study. It was concluded that the TTS model of 10 CFR 50.61a matched the trends of the radiation embrittlement in the SA533B-1 plates and welds better than did that of Regulatory Guide (RG) 1.99 Rev. 2. This is attributed to the fact that the prediction performance of 10 CFR 50.61a was enhanced by considering the difference in radiation embrittlement sensitivity among the different types of RPV materials.

  14. Dominant accident sequences in Oconee-1 pressurized water reactor

    International Nuclear Information System (INIS)

    Dearing, J.F.; Henninger, R.J.; Nassersharif, B.

    1985-04-01

    A set of dominant accident sequences in the Oconee-1 pressurized water reactor was selected using probabilistic risk analysis methods. Because some accident scenarios were similar, a subset of four accident sequences was selected to be analyzed with the Transient Reactor Analysis Code (TRAC) to further our insights into similar types of accidents. The sequences selected were loss-of-feedwater, small-small break loss-of-coolant, loss-of-feedwater-initiated transient without scram, and interfacing systems loss-of-coolant accidents. The normal plant response and the impact of equipment availability and potential operator actions were also examined. Strategies were developed for operator actions not covered in existing emergency operator guidelines and were tested using TRAC simulations to evaluate their effectiveness in preventing core uncovery and maintaining core cooling

  15. The Status and Inspection of Bottom Mounted Instrumentation Nozzle in Korea

    International Nuclear Information System (INIS)

    Doh, Euisoon; Kim, Yoonwon; Kim, Jaeyoon; Lee, Tacksu; Lee, Changhun

    2012-01-01

    The PWSCC Cracking of Alloy 600 material has been issued since CRDM Penetration cracking of Bugey in France in 1990's. And J-groove weld cracking of CRDM at Oconee and PCR Nozzle cracking at Wolf Creek in USA were raising concern of the integrity for Dissimilar Metal Weld of Alloy 600. BMI(Bottom Mounted Instrumentation) Nozzle cracks were found at Takahama unit 1 in Japan and South Texas Project unit 1 in USA in 2003. And recent cracks of Reactor Head Vent line at Yonggwang unit 3 in Korea are enough to cause worry about the integrity for BMI Nozzles in Korea. BMI inspections of Westinghouse type plant were performed by KPS for Kori unit 1 in 2006, Ulchin unit 2 in 2007, and Kori unit 3 in 2008. The first inspection of OCR-1000 plant was carried out on May 2011 at Yonggwang unit 3. KPS developed the inspection technique of OCR-1000 plant for End Effector Module and controller, a quarterly actual sized Bottom head Mock up, Inspection probes meeting the regulatory guide lines and typical configuration of OCR-1000 plant. Two specimens with actual PWSCC cracks were used to demonstrate the Inspection technique of Detection and Sizing. and the quarterly actual sized Bottom head Mock up was very meaningful to check the Interference during the inspection by narrow gap between newly developments led to a successful inspection of the BMI Inspection. And the inspection was concurrently performed with 10 year Reactor Vessel ICI without hurting any critical path of the outage. This BMI inspection is contributing to keep Operational Safety of plants by prevention of Leakage at BMI nozzle and weld. And performing 10 Year ISI for BMI nozzle is very effective to prevent BMI nozzle Break by detecting PWSCC Initiation per PFM Sensitivity study

  16. RA reactor operation and maintenance in 1989, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Sanovic, V.

    1989-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in July 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The following major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the power supply system. Project concerned with renewal of RA reactor complete instrumentation was started at the end of 1988. Contract was signed between the IAEA and Soviet Atomenergoexport for supplying the new instrumentation for the RA reactor. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988. In 1989, device for water purification designed by the reactor staff started operation and spent fuel handling equipment is being mounted. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  17. Evaluation on Cooling Performance of Containment Fan Cooler during Design Basis Accident with Loss of Offsite Power for Kori 3 and 4 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Bok; Lee, Sang Won [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Park, Young Chan [Atomic Creative Technology Co., LTD., Daejeon (Korea, Republic of)

    2007-10-15

    The purpose of this study is to evaluate cooling performance of containment fan cooler units and to review a technical background related to Generic Letter 96-06. In case that design basis accident (DBA) and loss of offsite power (LOOP) occurs, component cooling water (CCW) pumps cannot provide the cooling water source to fan cooler units while fan coolers coast down. Fan cooler units and CCW pumps are restarted by emergency diesel generator (EDG) operation and it takes about 30 seconds. In this scenario, before the EDG restarts and CCW flowrate is restored, heated air in the containment passes through coil of fan cooler units without cooling water source. In this situation, the boiling of water in the fan cooler units may occur. Restarting of CCW pumps may bring about condensation by injected cooling water and water hammer may occur. This thermal-hydraulic effect is sensitive to system configuration, i.e system pressure, containment pressure/temperature, EDG restarting time, etc. In this study, the evaluation of containment fan cooler units was performed for Kori 3 and 4 nuclear power plant.

  18. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  19. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  20. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  1. Measurements and calculation of reactivity in the IEA-R1 nuclear reactor

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1988-01-01

    Techniques and experimentals procedures utilized in the measurement of some nuclear parameters related to reactivity are presented. Measurements of reactivity coefficients, such as void, temperature and power, and control rod worth were made in the IEA-R1 Research Reactor. The techniques used to perform the measurements were: i) stable period (control rod calibration), ii) inverse kinetics (digital reactivity meter), iii) aluminium slab insertion in the fuel element coolant channels (void reactivity), iv) nuclear reactor core temperature changes by means of the changes in the coolant systems of reactor core (isothermal reactivity coefficient) and v) by making perturbation in the core through the control rod motions (power reactivity coefficient and control rod calibration). By using the computer codes HAMMER, HAMMER-TECHNION and CITATION, the experiments realized in the IEA-R1 reactor were simulated. From this simulation, the theoretical reactivity parameters were estimated and compared with the respective experimental results. Furthermore, in the second fuel load of Angra-1 Nuclear Power Station, the IPEN-CNEN/SP digital reactivity - meter were used in the lower power test with the aim to assess the equipment performance. Among several tests, the reacticity-meter were used in parallel with a Westinghouse analogic reativimeter-meter) to measure the heat additiona point, critical boron concentration, control rod calibration, isothermal and moderator reactivity coefficient. These tests, and the results obtained by the digital reactivity-meter are described. The results were compared with those obtained by Westinghouse analogic reactivity meter, showing excellent agreement. (author) [pt

  2. Soluble common gamma chain exacerbates COPD progress through the regulation of inflammatory T cell response in mice

    Directory of Open Access Journals (Sweden)

    Lee B

    2017-03-01

    Full Text Available Byunghyuk Lee,1 Eunhee Ko,1 Jiyeon Lee,2 Yuna Jo,1 Hyunju Hwang,1 Tae Sik Goh,1,3 Myungsoo Joo,2 Changwan Hong1 1Department of Anatomy and Cell Biology, Pusan National University School of Medicine, 2Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, 3Department of Orthopedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea Abstract: Cigarette smoking (CS is a major cause of considerable morbidity and mortality by inducing lung cancer and COPD. COPD, a smoking-related disorder, is closely related to the alteration of immune system and inflammatory processes that are specifically mediated by T cells. Soluble common gamma chain (sγc has recently been identified as a critical regulator of the development and differentiation of T cells. We examined the effects of sγc in a cigarette smoke extract (CSE mouse model. The sγc level in CSE mice serum is significantly downregulated, and the cellularity of lymph node (LN is systemically reduced in the CSE group. Overexpression of sγc enhances the cellularity and IFNγ production of CD8 T cells in LN and also enhances Th1 and Th17 differentiation of CD4 T cells in the respiratory tract. Mechanistically, the downregulation of sγc expression mediated by CSE is required to prevent excessive inflammatory T cell responses. Therefore, our data suggest that sγc may be one of the target molecules for the control of immunopathogenic progresses in COPD. Keywords: COPD, T cell, soluble common gamma chain, cytokine

  3. Core calculations for the upgrading of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Perrotta, Jose A.; Bastos, Jose Luis F.; Yamaguchi, Mitsuo; Umbehaun, Pedro E.

    1998-01-01

    The IEA-R1 Research Reactor is a multipurpose reactor. It has been used for basic and applied research in the nuclear area, training and radioisotopes production since 1957. In 1995, the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) took the decision to modernize and upgrade the power from 2 to 5 MW and increase the operational cycle. This work presents the design requirements and the calculations effectuated to reach this goal. (author)

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  5. Dose measurements in controlled area and laboratory of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Alvarenga, Frederico Ladeia

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers. (author)

  6. Ageing Management Programme for the IEA-R1 Reactor in São Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, L. V. [Institute of Energy and Nuclear Research (IPEN), National Nuclear Energy Commission (CNEN), São Paulo (Brazil)

    2014-08-15

    IEA-R1 is a swimming pool type reactor. It is moderated and cooled by light water and uses graphite and beryllium as reflector elements. First criticality was achieved on 16 September 1957, and the reactor is currently operating at 4.0 MW on a 64 h per week cycle. In 1996, a reactor ageing study was established to determine general deterioration of systems and components such as cooling towers, secondary cooling system, piping, pumps, specimen irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation, and safety system. The basic structure of the reactor from the original design has been maintained, but several improvements and modifications have been made over the years to various components, systems and structures. During the period 1996–2005 the reactor power was increased from 2 MW to 5 MW and the operational cycle from 8 h per day for 5 days a week to 120 h continuous per week, mainly to increase production of {sup 99}Mo. Prior to increasing reactor power, several modifications were made to the reactor system and its components. Simultaneously, a vigorous ageing management, inspection and modernization programme was put in place.

  7. Simulation of a reactor FBR with hexagonal-Z geometry using the code PARCS 3.1; Simulacion de un reactor FBR con geometria hexagonal-Z usando el codigo PARCS 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. C.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Filio L, C., E-mail: rf.melisa@gmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    The nuclear reactor core type FBR (Fast Breeder Reactor) was modeled in three dimensions of hexagonal-Z geometry using the code PARCS (Purdue Advanced Reactor Core Simulator) version 3.1 developed by Purdue University researchers. To carry out the modeling of the mentioned reactor was taken the corresponding information to one of the described benchmarks in the document NEACRP-L-330 (3-D Neutron Transport Benchmarks, 1991); fundamentally the corresponding to the geometric data and the cross sections. Being a quick reactor of breeding, known as the Knk-II, for which are considered 4 energy groups without dispersions up. The reactor core is formed by prismatic elements of hexagonal transversal cut where part of them only corresponds to nuclear fuel assemblies. This has four reflector rings and 6 identical control elements that together with the active part of the core is configured with 8 different types of elements.With the extracted information of the mentioned document the entrance file was prepared for PARCS 3.1 only considering a sixth part of the core due to the symmetry that presents their configuration. The NEACRP-L-330 shows a wide range of results reported by those who collaborated in its elaboration using different solution techniques that go from the Monte Carlo method to the approaches S{sub 2} and P{sub 1}. Of all the results were selected those obtained with the code HEXNOD, to which were carried out a comparison of the effective multiplication factor, being smaller differences to the 300 pcm, for three different scenarios: a) with the control bars extracted totally, b) with the semi-inserted control bars and c) with the control bars inserted completely and two different axial meshes, a thick mesh with 14 slices and another fine with 38, that which implies that the results can be considered very similar among if same. Radial maps and axial profiles are included, as much of the power as of the neutrons flow. (Author)

  8. Operating reactors licensing actions summary. Volume 5, Number 1

    International Nuclear Information System (INIS)

    1985-03-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program

  9. Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software

    International Nuclear Information System (INIS)

    Faghihi, F.; Ramezani, E.; Yousefpour, F.; Mirvakili, S.M.

    2008-01-01

    The main goal of this review paper is to analyze the total frequency of the core damage of the Iranian Heavy Water Research Reactor (IHWRR) compared with standard criteria and to determine the strengths and the weaknesses of the reactor safety systems towards improving its design and operation. The PSA has been considered for full-power state of the reactor and this article represents a level-1 PSA analysis using System Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) software. It is specifically designed to permit a listing of the potential accident sequences, compute their frequencies of occurrence and assign each sequence to a consequence. The method used for modeling the systems and accident sequences, is Large Fault Tree/Small Event Tree method. This PSA level-1 for IHWRR indicates that, based on conservative assumptions, the total frequency of accidents that would lead to core damage from internal initiating events is 4.44E-05 per year of reactor operation

  10. Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Safety Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Ramezani, E. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of); Yousefpour, F. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of); Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51153 Shiraz (Iran, Islamic Republic of)

    2008-10-15

    The main goal of this review paper is to analyze the total frequency of the core damage of the Iranian Heavy Water Research Reactor (IHWRR) compared with standard criteria and to determine the strengths and the weaknesses of the reactor safety systems towards improving its design and operation. The PSA has been considered for full-power state of the reactor and this article represents a level-1 PSA analysis using System Analysis Programs for Hands-On Integrated Reliability Evaluations (SAPHIRE) software. It is specifically designed to permit a listing of the potential accident sequences, compute their frequencies of occurrence and assign each sequence to a consequence. The method used for modeling the systems and accident sequences, is Large Fault Tree/Small Event Tree method. This PSA level-1 for IHWRR indicates that, based on conservative assumptions, the total frequency of accidents that would lead to core damage from internal initiating events is 4.44E-05 per year of reactor operation.

  11. Source term determination from subcritical multiplication measurements at Koral-1 reactor

    International Nuclear Information System (INIS)

    Blazquez, J.B.; Barrado, J.M.

    1978-01-01

    By using an AmBe neutron source two independent procedures have been settled for the zero-power experimental fast-reactor Coral-1 in order to measure the source term which appears in the point kinetical equations. In the first one, the source term is measured when the reactor is just critical with source by taking advantage of the wide range of the linear approach to critical for Coral-1. In the second one, the measurement is made in subcritical state by making use of the previous calibrated control rods. Several applications are also included such as the measurement of the detector dead time, the determinations of the reactivity of small samples and the shape of the neutron importance of the source. (author)

  12. Studies in fusion reactor technology. Final report, September 1, 1974--August 31, 1977

    International Nuclear Information System (INIS)

    Axtmann, R.C.; Perkins, H.K.

    1977-08-01

    Two independent measurements of hydrogen permeation through stainless steel at driving pressures in the range from 10 -6 to 1 Pa indicate that most extant predictions of tritium permeation through fusion reactors are probably overestimated grossly. A comprehensive analysis demonstrates that, given available structural materials, the prospects are negligible for the economic production of synthetic fuels via radiolytic reactions in fusion reactor systems

  13. HRD System and Experience in the Korean Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Byoungkook [KHNP Nuclear Power Education Institute, Busan (Korea, Republic of)

    2012-03-15

    Korea began to nurture its nuclear energy pioneers in the 1950s when the government dispatched personnel in research and policy-making areas to foreign institutions. Then in 1959, KAERI was established and now plays a leading role in nuclear technology R and D. In addition, Korea's first research reactor, TRIGA Mark-II, was built and put into operation in 1962. This paved the way for advancements in operation and technical development of nuclear reactors. In turn, these accomplishments led to the birth of Korea's first commercial reactor, Kori Unit 1, in the 1970s, and HRD in the nuclear industry was put on the right track. However, the Korean nuclear industry remained heavily dependent on nuclear exporting countries such as the US, Canada, and France. Already confident in construction, Korea took the lead in building Kori Units 3 and 4 and Ulchin Units 1 and 2 in the 1980s, but the country was still in need of technological self-reliance. In order to achieve this, Korea proactively launched systematic HRD programs and dispatched nuclear professionals to overseas nuclear facilities to secure individuals competent in the areas of NPP operations, plant design, and major equipment manufacturing. Thanks to its diligent endeavors, Korea's nuclear entities established independent nuclear training institutes in the 1990s and began producing a large number of competent personnel. This allowed the country to ensure not only the best operation and maintenance engineers but also the essential nuclear technology required for plant design and equipment manufacturing. Since the beginning of the 21{sup st} century, Korea has been producing its nuclear personnel on its own and exchanging nuclear training instructors and trainees with other organizations in fields where specialized knowledge is needed. Furthermore, Korea is taking comprehensive nuclear HRD measures in response to the rising demand for human resources that result from ongoing construction of NPPs in

  14. HRD System and Experience in the Korean Nuclear Industry

    International Nuclear Information System (INIS)

    Kang, Byoungkook

    2012-01-01

    Korea began to nurture its nuclear energy pioneers in the 1950s when the government dispatched personnel in research and policy-making areas to foreign institutions. Then in 1959, KAERI was established and now plays a leading role in nuclear technology R and D. In addition, Korea's first research reactor, TRIGA Mark-II, was built and put into operation in 1962. This paved the way for advancements in operation and technical development of nuclear reactors. In turn, these accomplishments led to the birth of Korea's first commercial reactor, Kori Unit 1, in the 1970s, and HRD in the nuclear industry was put on the right track. However, the Korean nuclear industry remained heavily dependent on nuclear exporting countries such as the US, Canada, and France. Already confident in construction, Korea took the lead in building Kori Units 3 and 4 and Ulchin Units 1 and 2 in the 1980s, but the country was still in need of technological self-reliance. In order to achieve this, Korea proactively launched systematic HRD programs and dispatched nuclear professionals to overseas nuclear facilities to secure individuals competent in the areas of NPP operations, plant design, and major equipment manufacturing. Thanks to its diligent endeavors, Korea's nuclear entities established independent nuclear training institutes in the 1990s and began producing a large number of competent personnel. This allowed the country to ensure not only the best operation and maintenance engineers but also the essential nuclear technology required for plant design and equipment manufacturing. Since the beginning of the 21 st century, Korea has been producing its nuclear personnel on its own and exchanging nuclear training instructors and trainees with other organizations in fields where specialized knowledge is needed. Furthermore, Korea is taking comprehensive nuclear HRD measures in response to the rising demand for human resources that result from ongoing construction of NPPs in Korea and the UAE

  15. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  16. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    International Nuclear Information System (INIS)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira

    2015-01-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  17. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira, E-mail: ecfoliveira@hotmail.com, E-mail: lazara.castrillo@upe.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica de Pernambuco

    2015-07-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  18. Measurement of thermal neutron flux spatial distribution in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    D'Utra Bitelli, U.

    1993-01-01

    This work presents the spatial thermal neutron flux in IEA-R1 reactor obtained by activation foils methods. These measurements were made in 27 fuel elements of the reactor core (165 B configuration). The results are important to compare with theoretical values, power calibration and safety analysis. (author)

  19. AKR-1 nuclear training reactor of Dresden Technical University turns twenty-five

    International Nuclear Information System (INIS)

    Hansen, W.

    2003-01-01

    Twenty-five years ago, in the night of July 27 to 28, 1978, the AKR-1 nuclear training reactor of the Dresden Technical University went critical for the first time and was commissioned. On the occasion of this anniversary, a colloquy was arranged with representatives from science, politics and industry, at which the reactor's history, the excellent achievements in research and training with the reactor, and the status and perspectives of this research facility were described. The AKR-1 had been built within the framework of the Nuclear Development Program of the then German Democratic Republic (GDR). The Nuclear Power Scientific Division of the Dresden Technical University had been entrusted with the responsibility, among other things, to train university personnel for the GDR Nuclear Power Program. The review by an expert group in 1996 of this plant had resulted in a recommendation in favor of long-term plant operation. A nuclear licensing procedure to this effect was initiated, and the necessary technical backfitting measures were implemented. The AKR-1 plant now equally serves for the specialized training of students and for research. (orig.) [de

  20. Measures aimed at enhancing safe operation of the Nigeria Research Reactor-1 (NIRR-1)

    International Nuclear Information System (INIS)

    Balogun, G.I.; Jonah, S.A.; Umar, I.M.

    2005-01-01

    Safety culture has been defined as 'that assembly of characteristics and attitudes in organizations and individuals which establishes that as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. This paper briefly highlights efforts being made at the Centre for Energy Research and Training (CERT) towards realizing this broad objective as far as possible. To this end CERT realizes the need for instituted safety measures to reflect significant, site-specific peculiar characteristics of any generic reactor types. Consequently, standard procedures for pre-startup, startup and shutdown of NIRR-1 (a miniature neutron source reactor - MNSR) have been reviewed to reflect our local conditions and peculiarities. The review has revealed the need to incorporate important steps that impact on overall safety of the facility. For instance an interlocking system is being considered between NIRR-1 startup on the one hand and mandatory pre-startup measures on the other. Also a procedure has been put in place that would facilitate rapid response in the event of a rod-stuck-at-full-withdrawal incident. Furthermore, a program of automation of important analysis and design calculations of MNSRs is going on. Emphases are also placed, and deliberate efforts are being made, to ensure that a working atmosphere prevails that would foster the correct attitudinal approach to matters of reactor safety. A regime of constant dialogue and discussions amongst operating personnel has been factored into the overall operational program. (author)

  1. Reed Reactor Facility annual report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: (1) The number of new licensed student operators more than replaced the number of graduating seniors. Seven Reed College seniors used the reactor as part of their thesis projects. (2) The facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources. Battelle (Pacific Northwest Laboratory) has been generous in lending valuable equipment to the college. (3) The facility is developing more paid work. Income in the past academic year was much greater than the previous year, and next year should increase by even more. Additionally, the US Department of Energy's Reactor-Use Sharing grant increased significantly this year. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Assistant Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below one percent of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits. No radioactive waste was shipped from the facility during this period

  2. Reed Reactor Facility annual report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: (1) The number of new licensed student operators more than replaced the number of graduating seniors. Seven Reed College seniors used the reactor as part of their thesis projects. (2) The facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources. Battelle (Pacific Northwest Laboratory) has been generous in lending valuable equipment to the college. (3) The facility is developing more paid work. Income in the past academic year was much greater than the previous year, and next year should increase by even more. Additionally, the US Department of Energy`s Reactor-Use Sharing grant increased significantly this year. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Assistant Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below one percent of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits. No radioactive waste was shipped from the facility during this period.

  3. Circuits design of action logics of the protection system of nuclear reactor IAN-R1 of Colombia; Diseno de los circuitos de la logica de actuacion del sistema de proteccion del reactor nuclear IAN-R1 de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J. L.; Rivero G, T.; Sainz M, E., E-mail: joseluis.gonzalez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    Due to the obsolescence of the instrumentation and control system of the nuclear research reactor IAN-R1, the Institute of Geology and Mining of Colombia, IngeoMinas, launched an international convoking for renewal it which was won by the Instituto Nacional de Investigaciones Nucleares (ININ). Within systems to design, the reactor protection system is described as important for safety, because this carried out, among others two primary functions: 1) ensuring the reactor shutdown safely, and 2) controlling the interlocks to protect against operational errors if defined conditions have not been met. To fulfill these functions, the various subsystems related to the safety report the state in which they are using binary signals and are connected to the inputs of two redundant logic wiring circuits called action logics (Al) that are part of the reactor protection system. These Al also serve as logical interface to indicate at all times the status of subsystems, both the operator and other systems. In the event that any of the subsystems indicates a state of insecurity in the reactor, the Al generate signals off (or scram) of the reactor, maintaining the interlock until the operator sends a reset signal. In this paper the design, implementation, verification and testing of circuits that make up the Al 1 and 2 of IAN-R1 reactor is described, considering the fulfillment of the requirements that the different international standards imposed on this type of design. (Author)

  4. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    International Nuclear Information System (INIS)

    Block, R.C.; Feiner, F.

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  5. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Build-up of actinides in irradiated fuel rods of the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Naguib, K.; Morcos, H.N

    2001-09-01

    The content concentrations of actinides are calculated as a function of operating reactor regime and cooling time at different percentage of fuel burn-up. The build-up transmutation equations of actinides content in an irradiated fuel are solved numerically .A computer code BAC was written to operate on a PC computer to provide the required calculations. The fuel element of 10% {sup 235}U enrichment of ET-RR-1 reactor was taken as an example for calculations using the BAC code. The results are compared with other calculations for the ET-RR-1 fuel rod. An estimation of fissile build-up content of a proposed new fuel of 20% {sup 235}U enrichment for ET-RR-1 reactor is given. The sensitivity coefficients of build-up plutonium concentrations as a function of cross-section data uncertainties are also calculated.

  7. Calculation of the main neutron parameters of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Ojima, Mario Katsuhiko

    1977-01-01

    The main neutron parameters of the research reactor IEA-R1 were calculated using computer programs to generate cross sections and criticality calculations. A calculation procedure based on the programs available in the Processing Center Data of IEA was established and centered in the HAMMER and CITATION system. A study was done in order to verify the validity and accuracy of the calculation method comparing the results with experimental data. Some operating parameters of the reactor, namely the distribution of neutron flux, the critical mass, the variation of the reactivity with the burning of fuel, and the dead time of the reactor were determined

  8. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  9. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    International Nuclear Information System (INIS)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy's (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher's workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead

  10. Validation of the AZTRAN 1.1 code with problems Benchmark of LWR reactors; Validacion del codigo AZTRAN 1.1 con problemas Benchmark de reactores LWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Bastida O, G. E.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Xolocostli M, J. V.; Gomez T, A. M., E-mail: amhed.jvq@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The AZTRAN module is a computational program that is part of the AZTLAN platform (Mexican modeling platform for the analysis and design of nuclear reactors) and that solves the neutron transport equation in 3-dimensional using the discrete ordinates method S{sub N}, steady state and Cartesian geometry. As part of the activities of Working Group 4 (users group) of the AZTLAN project, this work validates the AZTRAN code using the 2002 Yamamoto Benchmark for LWR reactors. For comparison, the commercial code CASMO-4 and the free code Serpent-2 are used; in addition, the results are compared with the data obtained from an article of the PHYSOR 2002 conference. The Benchmark consists of a fuel pin, two UO{sub 2} cells and two other of MOX cells; there is a problem of each cell for each type of reactor PWR and BWR. Although the AZTRAN code is at an early stage of development, the results obtained are encouraging and close to those reported with other internationally accepted codes and methodologies. (Author)

  11. Fusion reactor technology studies. Final report for period August 1, 1972 - October 31, 1978

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Maynard, C.W.

    1984-04-01

    Major accomplishments for the period August 1, 1972 - October 31, 1978 include the publishing of four comprehensive fusion reactor conceptual design studies; experimental studies in the areas of radiation damage, plasma-wall interactions, superconducting magnets and 14-MeV neutron cross sections; development of the concepts of carbon curtains and ISSEC's for use in fusion reactors; development of a neutron and gamma heating computer code, a radioactivity and afterheat computer code and a neutral transport computer code; and studies in the areas of RF heating for tokamaks and resource assessment for fusion reactors

  12. PR-EDB: Power Reactor Embrittlement Data Base, version 1: Program description

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Kam, F.B.K.; Taylor, B.J.

    1990-06-01

    Data concerning radiation embrittlement of pressure vessel steels in commercial power reactors have been collected form available surveillance reports. The purpose of this NRC-sponsored program is to provide the technical bases for voluntary consensus standards, regulatory guides, standard review plans, and codes. The data can also be used for the exploration and verification of embrittlement prediction models. The data files are given in dBASE 3 Plus format and can be accessed with any personal computer using the DOS operating system. Menu-driven software is provided for easy access to the data including curve fitting and plotting facilities. This software has drastically reduced the time and effort for data processing and evaluation compared to previous data bases. The current compilation of the Power Reactor Embrittlement Data base (PR-EDB, version 1) contains results from surveillance capsule reports of 78 reactors with 381 data points from 110 different irradiated base materials (plates and forgings) and 161 data points from 79 different welds. Results from heat-affected-zone materials are also listed. Electric Power Research Institute (EPRI), reactor vendors, and utilities are in the process of providing back-up quality assurance checks of the PR-EDB and will be supplementing the data base with additional data and documentation. 2 figs., 28 tabs

  13. Project management plan for the 105-C Reactor interim safe storage project. Revision 1

    International Nuclear Information System (INIS)

    Miller, R.L.

    1997-01-01

    In 1942, the Hanford Site was commissioned by the US Government to produce plutonium. Between 1942 and 1955, eight water-cooled, graphite-moderated reactors were constructed along the Columbia River at the Hanford Site to support the production of plutonium. The reactors were deactivated from 1964 to 1971 and declared surplus. The Surplus Production Reactor Decommissioning Project (BHI 1994b) will decommission these reactors and has selected the 105-C Reactor to be used as a demonstration project for interim safe storage at the present location and final disposition of the entire reactor core in the 200 West Area. This project will result in lower costs, accelerated schedules, reduced worker exposure, and provide direct benefit to the US Department of Energy for decommissioning projects complex wide. This project sets forth plans, organizational responsibilities, control systems, and procedures to manage the execution of the Project Management Plan for the 105-C Reactor Interim Safe Storage Project (Project Management Plan) activities to meet programmatic requirements within authorized funding and approved schedules. The Project Management Plan is organized following the guidelines provided by US Department of Energy Order 4700.1, Project Management System and the Richland Environmental Restoration Project Plan (DOE-RL 1992b)

  14. Experimental Studies on Assemblies 1 and 2 of the Fast Reactor FR-0. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, T L; Hellstrand, E; Londen, S O; Tiren, L I

    1965-08-15

    FR0 is a fast zero power reactor built for experiments in reactor physics. It is a split table machine containing vertical fuel elements. 120 kg of U{sup 235} are available as fuel, which is fabricated into metallic plates of 20 % enrichment. The control system comprises 5 spring-loaded safety elements and 3 + 1 elements for startup operations and power control. The reactor went critical in February 1964. The first assemblies studied were made up of undiluted fuel into a cylindrical and a spherical core, respectively, surrounded by a reflector made of copper. The present report describes some experiments made on these systems. Primarily, critical mass determinations, flux distribution measurements and studies of the conversion ratio are dealt with. The measured quantities have been compared with theoretical predictions using various transport theory programmes (DSN, TDC) and cross section sets. The experimental results show that the neutron spectrum in the copper reflector is softer than predicted, but apart from this discrepancy agreement with theory has generally been obtained.

  15. Neutron radiography in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Pugliesi, R.; Moraes, A.P.V. de; Yamazaki, I.M.; Freitas Acosta, C. de.

    1988-08-01

    Neutronradiography of several materials have been obtained at the IEA-R1 Nuclear Research Reactor (IPEN-CNEN/SP), by means of two conversion techniques: a) (n, α) at the beam-hole n 0 3 where a collimated thermal neutron beam, exposure area 4 cm x 8cm and flux at the sample 10 5 n/s cm 2 is obtained. The film used was the CN-85 cellulose nitrate coated with lithium tetraborate (conversor). The time irradiation of the film was 15 minutes and in following was eteched during 30 minutes in a NaOH(10%) aqueous solution at a constant temperature of 60 0 C.; b) (n,γ) by using an experimental arrangement installed in the botton of the pool of the reactor. The flux of the collimated neutron beam is 10 5 n/s/cm 2 at the sample and the conversion is made by means of a dysprozium sheet. The film used was Kodak T-5. The irradiation and the transfering time was 2 hours and 20 hours respectively. (author) [pt

  16. The estimated evacuation time for the emergency planning zone of the Kori nuclear site, with a focus on the precautionary action zone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Hee; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Shin, Won Ki; Song, Eun Young; Cho, Cheol Woo [Div. of Nuclear Safety, Busan Metropolitan City, Busan (Korea, Republic of)

    2016-09-15

    The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to 10 mSv·h-1 of radiation at the Exclusion Area Boundaries (EAB) boundary and 4-6 mSv·h-1 at the PAZ boundary. It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.

  17. The estimated evacuation time for the emergency planning zone of the Kori nuclear site, with a focus on the precautionary action zone

    International Nuclear Information System (INIS)

    Lee, Jang Hee; Jeong, Jae Jun; Shin, Won Ki; Song, Eun Young; Cho, Cheol Woo

    2016-01-01

    The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to 10 mSv·h-1 of radiation at the Exclusion Area Boundaries (EAB) boundary and 4-6 mSv·h-1 at the PAZ boundary. It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts

  18. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients

  19. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  20. Circuits design of action logics of the protection system of nuclear reactor IAN-R1 of Colombia

    International Nuclear Information System (INIS)

    Gonzalez M, J. L.; Rivero G, T.; Sainz M, E.

    2014-10-01

    Due to the obsolescence of the instrumentation and control system of the nuclear research reactor IAN-R1, the Institute of Geology and Mining of Colombia, IngeoMinas, launched an international convoking for renewal it which was won by the Instituto Nacional de Investigaciones Nucleares (ININ). Within systems to design, the reactor protection system is described as important for safety, because this carried out, among others two primary functions: 1) ensuring the reactor shutdown safely, and 2) controlling the interlocks to protect against operational errors if defined conditions have not been met. To fulfill these functions, the various subsystems related to the safety report the state in which they are using binary signals and are connected to the inputs of two redundant logic wiring circuits called action logics (Al) that are part of the reactor protection system. These Al also serve as logical interface to indicate at all times the status of subsystems, both the operator and other systems. In the event that any of the subsystems indicates a state of insecurity in the reactor, the Al generate signals off (or scram) of the reactor, maintaining the interlock until the operator sends a reset signal. In this paper the design, implementation, verification and testing of circuits that make up the Al 1 and 2 of IAN-R1 reactor is described, considering the fulfillment of the requirements that the different international standards imposed on this type of design. (Author)

  1. Low-enrichment and long-life Scalable LIquid Metal cooled small Modular (SLIMM-1.2) reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed S., E-mail: mgenk@unm.edu [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Department, University of New Mexico, Albuquerque, NM (United States); Chemical and Biological Engineering Department, University of New Mexico, Albuquerque, NM (United States); Palomino, Luis M.; Schriener, Timothy M. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States)

    2017-05-15

    Highlights: • Developed low enrichment and natural circulation cooled SLIMM-1.2 SMR for generating 10–100 MW{sub th}. • Neutronics analyses estimate operation life and temperature reactivity feedback. • At 100 MW{sub th}, SLIMM-1.2 operates for 6.3 FPY without refueling. • SLIMM-1.2 has relatively low power peaking and maximum UN fuel temperature < 1400 K. - Abstract: The Scalable LIquid Metal cooled small Modular (SLIMM-1.0) reactor with uranium nitride fuel enrichment of 17.65% had been developed for generating 10–100 MW{sub th} continuously, without refueling for ∼66 and 5.9 full power years, respectively. Natural circulation of in-vessel liquid sodium (Na) cools the core of this fast energy spectrum reactor during nominal operation and after shutdown, with the aid of a tall chimney and an annular Na/Na heat exchanger (HEX) of concentric helically coiled tubes. The HEX at the top of the downcomer maximizes the static pressure head for natural circulation. In addition to the independent emergency shutdown (RSS) and reactor control (RC), the core negative temperature reactivity feedback safely decreases the reactor thermal power, following modest increases in the temperatures of UN fuel and in-vessel liquid sodium. The decay heat is removed from the core by natural circulation of in-vessel liquid sodium, with aid of the liquid metal heat pipes laid along the reactor vessel wall, and the passive backup cooling system (BCS) using natural circulation of ambient air along the outer surface of the guard vessel wall. This paper investigates modifying the SLIMM-1.0 reactor design to lower the UN fuel enrichment. To arrive at a final reactor design (SLIMM-1.2), the performed neutronics and reactivity depletion analyses examined the effects of various design and material choices on both the cold-clean and the hot-clean excess reactivity, the reactivity shutdown margin, the full power operation life at 100 MW{sub th}, the fissile production and depletion, the

  2. Digital Systems Implemented at the IPEN Nuclear Research Reactor (IEA-R1): Results and Necessities

    International Nuclear Information System (INIS)

    Nahuel-Cardenas, Jose-Patricio; Madi-Filho, Tufic; Ricci-Filho, Walter; Rodrigues-de-Carvalho, Marcos; Lima-Benevenuti, Erion-de; Gomes-Neto, Jose

    2013-06-01

    (Nuclear and Energy Research Institute) was founded in 1956 with the main purpose of doing research and development in the field of nuclear energy and its applications. It is located at the campus of University of Sao Paulo (USP), in the city of Sao Paulo, in an area of nearly 500, 000 m2. It has over 1.000 employees and 40% of them have qualification at master or doctor level The institute is recognized as a national leader institution in research and development (R and D) in the areas of radiopharmaceuticals, industrial applications of radiation, basic nuclear research, nuclear reactor operation and nuclear applications, materials science and technology, laser technology and applications. Along with the R and D, it has a strong educational activity, having a graduate program in Nuclear Technology, in association with the University of Sao Paulo, ranked as the best university in the country. The Federal Government Evaluation institution CAPES, granted to this course grade 6, considering it a program of Excellence. This program started at 1976 and has awarded 458 Ph.D. degrees and 937 master degrees since them. The actual graduate enrollment is around 400 students. One of major nuclear installation at IPEN is the IEA-R1 research reactor; it is the only Brazilian research reactor with substantial power level suitable for its utilization in researches concerning physics, chemistry, biology and engineering as well as for producing some useful radioisotopes for medical and other applications. IEA-R1 reactor is a swimming pool type reactor moderated and cooled by light water and uses graphite and beryllium as reflectors. The first criticality was achieved on September 16, 1957. The reactor is currently operating at 4.5 MW power level with an operational schedule of continuous 64 hours a week. In 1996 a Modernization Program was started to establish recommendations in order to mitigate equipment and structures ageing effects in the reactor components, detect and evaluate

  3. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  4. Unitary theory of xenon instability in nuclear thermal reactors - 1. Reactor at 'zero power'

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, A. (Politecnico di Milano (Italy). Centro Studi Nucleari E. Fermi)

    1982-01-01

    The question of nuclear thermal-reactor instability against xenon oscillations is widespread in the literature, but most theories, concerned with such an argument, contradict each other and, above all, they conflict with experimentally-observed instability at very low reactor power, i.e. without any power feedback. It is shown that, in any nuclear thermal reactor, xenon instability originates at very low power levels, and a very general stability condition is deduced by an extension of the rigorous, simple and powerful reduction of the Nyquist criterion, first performed by F. Storrer.

  5. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Carlos Ruben Calabrese

    1999-01-01

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  6. Measurements of reactivity of reactor G1

    International Nuclear Information System (INIS)

    Bernot, J.; Koechlin, J.C.; Portes, L.; Teste du Bailler, A.

    1957-01-01

    The various methods used during the physical study of the reactor G1 to determine the variations of the effective multiplication factor consecutive to a given change in the geometry of the multiplying medium, are presented and discussed. The comparison of the results obtained by these various methods has allowed their validity to be tested and precise conditions of use to be given. In the first part are presented the principles used and their ranges of validity. In the second part the experimental results are given, together with some indications on their comparison with theoretical estimations. (author) [fr

  7. Summary Report of Commercial reactor Criticality Data for Three Mile Island Unit 1

    International Nuclear Information System (INIS)

    Larry B. Wimmer

    2001-01-01

    The objective of the ''Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit I'' is to present the CRC data for the TMI-1 reactor. Results from the CRC evaluations will support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel. These models and their validation are discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000)

  8. Prilog ispitivanju korištenja instrumentarija različitih tehničkih izvedbi pri uspostavljanju nivelmanskih mreža posebnih namjena u inženjerskoj geodeziji : Contribution on study possibilities in using instruments of different technical performances in establishing special purposes leveling networks in engineering geodesy

    OpenAIRE

    Nihad Kapetanović; Jusuf Topoljak; Admir Mulahusić; Ramiz Selmani

    2015-01-01

    Ispitivanje mogućnosti korištenja geodetskih instrumenata sličnih tehničkih karakteristika, ali različitih tehničkih izvedbi je uvijek zanimljiva geodetska tema. Osnovna svrha ovog istraživanja je analiziranje tačnosti testne nivelmanske mreže, unutar koje su visinske razlike izmjerene nivelirima Koni 007CZJ i Leica DNA 03. Rezultati dobiveni na kraju istraživanja pokazali su da oba nivelira zadovoljavaju kriterije preciznog nivelmana, ali se prednost daje niveliru DNA 03. : Examination of po...

  9. Modifications in the operational conditions of the IEA-R1 reactor under continuous 48 hours operation

    International Nuclear Information System (INIS)

    Moreira, Joao Manoel Losada; Frajndlich, Roberto

    1995-01-01

    This work shows the required changes in the IEA-R1 reactor for operation at 2 Mw, 48 hours continuously. The principal technical change regards the operating conditions of the reactor, namely, the required excess reactivity which now will amount to 4800 pcm in order to compensate the Xe poisoning at equilibrium at 2 Mw. (author). 6 refs, 1 fig, 1 tab

  10. Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Leonard J. [Iowa State Univ., Ames, IA (United States); Bowler, John R. [Iowa State Univ., Ames, IA (United States)

    2017-08-30

    The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-service inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO3-xPbTiO3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.

  11. Analysis of core melt accident in Fukushima Daiichi-Unit 1 nuclear reactor

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    2011-01-01

    In order to obtain a profound understanding of the serious situation in Unit 1 and Unit 2/3 reactors of Fukushima Daiichi Nuclear Power Station (hereafter abbreviated as 1F1 and 1F2/3, respectively), which was directly caused by tsunami due to a huge earthquake on 11 March 2011, analyses of severe core damage are performed. In the present report, the analysis method and 1F1 analysis are described. The analysis is essentially based on the total energy balance in the core. In the analysis, the total energy vs. temperature curve is developed for each reactor, which is based on the estimated core materials inventory and material property data. Temperature and melt fraction are estimated by comparing the total energy curve with the total stored energy in the core material. The heat source is the decay heat of fission products and actinides together with reaction heat from the zirconium steam reaction. (author)

  12. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 1

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Tähtinen, S.; Moilanen, P.

    CrZr(HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Special experimental facilities were designed and fabricated for this purpose. A number of in-reactor creep-fatigue experiments were successfully carried out in the BR-2 reactor at Mol...

  13. Reactor of the XXI century

    International Nuclear Information System (INIS)

    Zhotabaev, Zh.R.; Solov'ev, Yu.A.

    2001-01-01

    The advantages of both molten salt reactors (MSR) and homogenous molten salt reactors (HMSR) are illuminated. It is noted that the MSR possess accident probability A=10 -6 1/reactor.years and the HMSR with integral configuration has A=10 -7 1/reactor.years. The methods for these reactors technological problems solution - tritium removal, salt melt circulation and capacity pick up - are discussed

  14. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  15. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  17. Extension of cycle 8 of Angra-1 reactor, optimization of electric power generation reduction

    International Nuclear Information System (INIS)

    Miranda, Anselmo Ferreira; Moreira, Francisco Jose; Valladares, Gastao Lommez

    2000-01-01

    The main objective of extending fuel cycle length of Angra-1 reactor, is in fact of that each normal refueling are changed about 40 fuel elements of the reactor core. Considering that these elements do not return for the reactor core, this procedure has became possible a more gain of energy of these elements. The extension consists in, after power generation corresponding to a cycle burnup of 13700 MWD/TMU or 363.3 days, to use the reactivity gain by reduction of power and temperature of primary system for power generation in a low energy patamar

  18. Power Trip Set-points of Reactor Protection System for New Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Yang, Soohyung

    2013-01-01

    This paper deals with the trip set-point related to the reactor power considering the reactivity induced accident (RIA) of new research reactor. The possible scenarios of reactivity induced accidents were simulated and the effects of trip set-point on the critical heat flux ratio (CHFR) were calculated. The proper trip set-points which meet the acceptance criterion and guarantee sufficient margins from normal operation were then determined. The three different trip set-points related to the reactor power are determined based on the RIA of new research reactor during FP condition, over 0.1%FP and under 0.1%FP. Under various reactivity insertion rates, the CHFR are calculated and checked whether they meet the acceptance criterion. For RIA at FP condition, the acceptance criterion can be satisfied even if high power set-point is only used for reactor trip. Since the design of the reactor is still progressing and need a safety margin for possible design changes, 18 MW is recommended as a high power set-point. For RIA at 0.1%FP, high power setpoint of 18 MW and high log rate of 10%pp/s works well and acceptance criterion is satisfied. For under 0.1% FP operations, the application of high log rate is necessary for satisfying the acceptance criterion. Considering possible decrease of CHFR margin due to design changes, the high log rate is suggested to be 8%pp/s. Suggested trip set-points have been identified based on preliminary design data for new research reactor; therefore, these trip set-points will be re-established by considering design progress of the reactor. The reactor protection system (RPS) of new research reactor is designed for safe shutdown of the reactor and preventing the release of radioactive material to environment. The trip set point of RPS is essential for reactor safety, therefore should be determined to mitigate the consequences from accidents. At the same time, the trip set-point should secure margins from normal operational condition to avoid

  19. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  20. The Osiris reactor. Descriptive report - Volume 1 - text

    International Nuclear Information System (INIS)

    1969-05-01

    Osiris is a pool type reactor with a 70 MW thermal power. Its main purpose is to irradiate under high flows of neutrons the materials of which future nuclear power stations are made. This report proposes a description of this pool reactor. A first part describes the functional aspects and general characteristics of all installations which are in principle definitely defined (premises, irradiation and experimentation equipment, water circuits, power supply, venting, controls). The second part addresses elements which are likely to be changed, and more particularly the reactor core: fuel elements and controls (uranium and boron load in different fuel element generations, experimental locations within the core), neutron transport aspects (calculation and experiment), and thermal aspects (power generation and removal) of the pile). The third part addresses the operation: operation cycles, stops, exploitation organisation [fr

  1. CANDU reactors with reactor grade plutonium/thorium carbide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Atilim Univ., Ankara (Turkey). Faculty of Engineering; Khan, Mohammed Javed; Ahmed, Rizwan [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Gazi Univ., Ankara (Turkey). Faculty of Technology

    2011-08-15

    Reactor grade (RG) plutonium, accumulated as nuclear waste of commercial reactors can be re-utilized in CANDU reactors. TRISO type fuel can withstand very high fuel burn ups. On the other hand, carbide fuel would have higher neutronic and thermal performance than oxide fuel. In the present work, RG-PuC/ThC TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 60%. The fuel compacts conform to the dimensions of sintered CANDU fuel compacts are inserted in 37 zircolay rods to build the fuel zone of a bundle. Investigations have been conducted on a conventional CANDU reactor based on GENTILLYII design with 380 fuel bundles in the core. Three mixed fuel composition have been selected for numerical calculation; (1) 10% RG-PuC + 90% ThC; (2) 30% RG-PuC + 70% ThC; (3) 50% RG-PuC + 50% ThC. Initial reactor criticality values for the modes (1), (2) and (3) are calculated as k{sub {infinity}}{sub ,0} = 1.4848, 1.5756 and 1.627, respectively. Corresponding operation lifetimes are {proportional_to} 2.7, 8.4, and 15 years and with burn ups of {proportional_to} 72 000, 222 000 and 366 000 MW.d/tonne, respectively. Higher initial plutonium charge leads to higher burn ups and longer operation periods. In the course of reactor operation, most of the plutonium will be incinerated. At the end of life, remnants of plutonium isotopes would survive; and few amounts of uranium, americium and curium isotopes would be produced. (orig.)

  2. Liquid radioactive waste processing system in Improved OPR-1000

    International Nuclear Information System (INIS)

    Lee, Soonmin; Kim, Kiljung; Park, Jungsu

    2008-01-01

    The design goal of liquid rad waste system is to minimize the release of radioactive materials to the environment, the occupational radiation exposure to workers, and the solid rad waste volume generated from LRS operation. In 1998, KOPEC in conjunction with KHNP (Korea Hydro and Nuclear Power Co.) started a special task study which had been focused on the worldwide advanced technologies in the liquid rad waste process area by considering the design goals above. As a result of this task, KOPEC and KHNP finally decided to adopt a reverse osmosis processing method for Improved OPR-1000 in Korea. The advanced LRS design incorporating the R/O process has been introduced into Shin-Wolsong 1 and 2 (SWN 1 and 2) as well as Shin-Kori 1 and 2 (SKN 1 and 2), which are recently under construction, and also is adopted for Shin-Kori 3 and 4 (SKN 3 and 4) and Shin-Ulchin 1 and 2 (SUN 1 and 2), which are planned for the near future construction as the first APR-1400 type of Korean reactors. The LRS shop performance test for SKN 1 and 2 (Improved OPR-1000 R/O package system) was conducted by DOOSAN and DTS (Diversified Technologies Services, Inc) in January, 2008. The purpose of the test was to demonstrate the performance of actual R/O system to be installed in SKN 1 and 2 site. In this paper, overall system configuration and the shop performance test result is presented based on Improved OPR-1000 LRS R/O Package system

  3. Monitoring of primary circuit and reactor of NPP A-1

    International Nuclear Information System (INIS)

    Prazska, M.; Majersky, M.; Rezbarik, J.; Sekely, S.; Vozarik, P.; Walthery, R.; Stuller, P.

    2005-01-01

    Nuclear Power Plant A-1 in Jaslovske Bohunice was commissioned in 1972. Heavy water moderated, carbon dioxide cooled channel type reactor was shut down after two accidents in 1977. During more serious second accident, the reduced coolant flow caused local overheating of the fuel and consequent damage/melting of the fuel channel. Both accidents had led to the damage of several fuel assemblies with extensive local damage of fuel claddings. As a consequence, the main cooling circuit was significantly contaminated by fission products and long-life alpha nuclides. The detailed monitoring of dose rates, smearable contamination and sampling of contamination was performed. Extended monitoring in reacto vessel, primary circuit pipes, turbo-compressors, steam generators, main valves, gas tanks and also heavy water system with collectors, coolers, distilling and purification station, pumps and valves was done. Appropriate devices and procedures for the monitoring and examination of the installations were prepared and applied. Obtained results will serve for the future planning of the decontamination and decommissioning works. The 3-D model of the reactor that had been developed as part of this Project proved invaluable for orientation, visualisation, planning and analysis of results. Dose rates were measured in the technological channels from the reactor hall floor to the bottom of the hot gas chamber in decrements of 1 m and 0.5 m. The highest absolute values of dose rates were found in channels located in the middle of the reactor (up to 1900 mGy/h in the active zone region). It is estimated that the total contaminated area of primary circuit equipment (pipework, steam generators and turbo-compressors) is some 48 000 m 2 . It follows that the total gamma contamination is of the order of 10 14 to 10 15 Bq and total alpha contamination 10 11 to 10 13 Bq. The total amount of deposits in the gas circuit is about 14.3 tons. (authors)

  4. Characterisation of reactor control rod drives. Specification 1-6. Reaktorstellstabantriebe. Typenblaetter 1-6

    Energy Technology Data Exchange (ETDEWEB)

    1975-03-01

    The committee 'Kernreaktorregelung' of VDI/VDE-Gesellschaft Mess- und Regelungstechnik has developed 6 specifications (Typenblaetter) of reactor control rod drives. The specifications are aimed at giving engineers in reactor control systems an outline concerning the function as well as some construction characteristics. (orig./LN).

  5. The FRJ-1 (MERLIN) research reactor: its main activity inventory has been removed by successful demolition of the reactor block

    International Nuclear Information System (INIS)

    Stahn, B.; Printz, R.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2004-01-01

    The FRJ-1 (MERLIN) research reactor was decommissioned in 1985 after twenty-three years of operation. Demolition of the plant was begun in 1996. The article contains a survey of the demolition steps carried out so far within the framework of three partial permits. The main activity is the demolition of the reactor core structures as a precondition for subsequent measures to ensure clearance measurements of the building. The core structures are demolished which were exposed to high neutron fluxes during reactor operation and now show the highest activity and dose rate levels, except for the core internals. For demolition and disassembly of the metal structures in this part of the plant, the tools specially designed and made include a remotely operated sawing system and a pipe cutting system for internal segmentation of the beam lines. The universal demolition tool for use also above and beyond the concrete structures has been found to be a remotely controlled electrohydraulic demolition shovel. Spreading contamination in the course of the demolition work was avoided. One major reason for this success was the fact that no major airborne contamination existed at any time as a consequence of the quality of the material demolished and also of the consistent use of technical tools. While the reactor block was being demolished, an application for clearance measurement of the reactor hall and subsequent release from the scope of the Atomic Energy Act was filed as early as in mid-2003. The fourth partial permit covering these activities is expected to be issued in the spring of 2004. (orig.)

  6. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  7. Civilian Power Program. Part 1, Summary, Current status of reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Author, Not Given

    1959-09-01

    This study group covered the following: delineation of the specific objectives of the overall US AEC civilian power reactor program, technical objectives of each reactor concept, preparation of a chronological development program for each reactor concept, evaluation of the economic potential of each reactor type, a program to encourage the the development, and yardsticks for measuring the development. Results were used for policy review by AEC, program direction, authorization and appropriation requests, etc. This evaluation encompassed civilian power reactors rated at 25 MW(e) or larger and related experimental facilities and R&D. This Part I summarizes the significant results of the comprehensive effort to determine the current technical and economic status for each reactor concept; it is based on the 8 individual technical status reports (Part III).

  8. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  9. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  10. Calculations of Changes in Reactivity during some regular periods of operation of JEN-1 MOD Reactor

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1973-01-01

    By a Point-Reactor model and Perturbation Theory, changes in reactivity during some regular operating periods of JEN-1 MOD Reactor have been calculated and compared with available measured values. they were in good agreement. Also changes in reactivity have been calculated during operations at higher power levels than the present one, concluding some practical consequences for the case of increasing the present power of this reactor. (Author)

  11. Characterisation of reactor control rod drives. Specification 1-6

    International Nuclear Information System (INIS)

    1975-03-01

    The committee 'Kernreaktorregelung' of VDI/VDE-Gesellschaft Mess- und Regelungstechnik has developed 6 specifications (Typenblaetter) of reactor control rod drives. The specifications are aimed at giving engineers in reactor control systems an outline concerning the function as well as some construction characteristics. (orig./LN) [de

  12. Developing maintainability in controlled thermonuclear reactors. Progress report, October 1, 1977--April 30, 1978

    International Nuclear Information System (INIS)

    Zahn, H.S.

    1977-05-01

    During the period 1 October 1977 through 30 April 1978 the study has completed work on Task 6, Candidate Reference Systems. Four candidate reference systems have been defined. These are based on the conceptual designs of the UWMAK-III, the General Atomic Company Demonstration Power Reactor, the Oak Ridge National Laboratory Cassette defined in the Demonstration Power Study and the Culham laboratory Mark II Reactors. These reactor concepts are normalized to 3000 MW/sub th/ and near minimum cost of electricity. In addition, designs of four major subsystems have been selected and defined for application to these reactors. These include a primary coolant system, primary and secondary vacuum zone systems, the neutral beam injection system and the magnetic field system. These magnet systems are unique to each reactor. The cases for which maintenance plans are being developed in Task 7 have been selected to allow evaluation of design features, particularly the vacuum wall locations, and the impacts of unscheduled and contact maintenance of subsystems on the cost of electricity

  13. The IPR-R1 TRIGA Mark I Reactor in 39 years: Operations and general improvements

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Prado Fernandes, Marcio; Oliveira, Paulo Fernando; Alves de Amorim, Valter

    1999-01-01

    The nuclear IPR-R1 TRIGA Mark I Reactor operating in the Nuclear Technology Development Center, originally Institute for Radioactive Research in Minas Gerais, Brazil, was dedicated in November 11, 1960. Initially operating for the production of radioisotopes for different uses, it started later to be used in large scale for neutron activation analysis and training of operators for nuclear power plants. Many improvements have been made throughout these years to provide a better performance in its operation and safety conditions. A new cooling system to operate until 300 kW, a new control rod mechanism, an aluminum tank for the reactor pool, an optimization in the pneumatic system, a new reactor control console and a general remodeling of the reactor laboratory were some of the improvements added. To prevent and mitigate the ageing effects, the reactor operation personnel is starting a program to minimize future operation problems. This paper describes the improvements made, the results obtained during the past 39 years, and the precautions taken to ensure future safe operation of the reactor to give operators better conditions of safe work. (author)

  14. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  15. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  16. Supervisory system to monitor the neutron flux of the IPR-R1 TRIGA research reactor at CDTN

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Tello, Cledola Cassia Oliveira

    2009-01-01

    The IPR-R1 TRIGA Mark I nuclear research reactor at the Nuclear Technology Development Center - CDTN (Belo Horizonte) is a pool type reactor. It was designed for research, training and radioisotope production. The International Atomic Energy Agency- IAEA - recommends the use of friendly interfaces for monitoring and controlling the operational parameters of nuclear reactors. This paper reports the activities for implementing a supervisory system, using LabVIEW software, with the purpose to provide the IPR-R1 TRIGA research reactor with a modern, safe and reliable system to monitor the time evolution of the power of its core. The use of the LabVIEW will introduce modern techniques, based on electronic processor and visual interface in video monitor, substituting the mechanical strip chart recorders (ink-pen drive and paper) that monitor the current neutrons flux, which is proportional to the thermal power supplied by reactor core. The main objective of the system will be to follow the evolution of the neutronic flux originated in the Linear and Logarithmic channels. A great advantage of the supervisory software nowadays, in relation to computer programs currently used in the facility, is the existence of new resources such as the data transmission and graphical interfaces by net, grid lines display in the graphs, and resources for real time reactor core video recordings. The considered system could also in the future be optimized, not only for data acquisition, but also for the total control of IPR-R1 TRIGA reactor(author)

  17. Probabilistic risk analysis of Angra-1 reactor

    International Nuclear Information System (INIS)

    Spivak, R.C.; Collussi, I.; Silva, M.C. da; Onusic Junior, J.

    1986-01-01

    The first phase of probabilistic study for safety analysis and operational analysis of Angra-1 reactor is presented. The study objectives and uses are: to support decisions about safety problems; to identify operational and/or project failures; to amplify operator qualification tests to include accidents in addition to project base; to provide informations to be used in development and/or review of operation procedures in emergency, test and maintenance procedures; to obtain experience for data collection about abnormal accurences; utilization of study results for training operators; and training of evaluation and reliability techniques for the personnel of CNEN and FURNAS. (M.C.K.) [pt

  18. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  19. Estimated long lived isotope activities in ET-RR-1 reactor structural materials for decommissioning study

    International Nuclear Information System (INIS)

    Ashoub, N.; Saleh, H.

    1995-01-01

    The first Egyptian research reactor, ET-RR-1 is tank type with light water as a moderator, coolant and reflector. Its nominal power is 2MWt and the average thermal neutron flux is 10 13 n/cm 2 sec -1 . Its criticality was on the fall of 1961. The reactor went through several modifications and updating and is still utilized for experimental research. A plan for decommissioning of ET-RR-1 reactor should include estimation of radioactivity in structural materials. The inventory will help in assessing the radiological consequences of decommissioning. This paper presents a conservative calculation to estimate the activity of the long lived isotopes which can be produced by neutron activation. The materials which are presented in significant quantities in the reactor structural materials are aluminum, cast iron, graphite, ordinary and iron shot concrete. The radioactivity of each component is dependent not only upon the major elements, but also on the concentration of the trace elements. The main radioactive inventory are expected to be from 60 Co and 55 Fe which are presented in aluminium as trace elements and in large quantities in other construction materials. (author)

  20. Integral tightness measurements at the Paks-1 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Taubner, R.; Techy, Z. (Villamosenergiaipari Kutato Intezet, Budapest (Hungary))

    1983-01-01

    The containment system experiments of the Paks-1 nuclear reactor are described. The integrated tightness measurements of the hermetic system were completed in 1982. The principles and methods and the evaluation of the results of the measurements are discussed. Some features of the filtration characteristics are demonstrated using relative values and a method enabling the description of the physical contents of the characteristics by flow technical functions is outlined.

  1. Molten-salt reactor strategies viewed from fuel conservation effect, (1)

    International Nuclear Information System (INIS)

    Furuhashi, Akira

    1976-01-01

    Saving of material requirements in the long-term fuel cycle is studied by introducing molten-salt reactors with good neutron economy into a projection of nuclear generating capacity in Japan. In this first report an examination is made on the effects brought by the introduction of molten-salt converter reactors starting with Pu which are followed by 233 U breeders of the same type. It is shown that the sharing of some Pu in the light water- and fast breeder-reactor system with molten-salt reactors provides a more rapid transition to the self-supporting, breeding cycle than the simple fast breeding system, thus leading to an appreciable fuel conservation. Considerations are presented on the strategic repartition of generating capacity among reactor types and it is shown that all of the converted 233 U should be promptly invested to molten-salt breeders to quickly establish the dual breeding system, instead of recycling to converters themselves. (auth.)

  2. Security devices and experiment facilities at ENEA TRIGA RC-1 reactor

    International Nuclear Information System (INIS)

    Bianchi, P.; Festinesi, A.; Santoro, E.; Tardani, G.; Magli, M.; Reis, G.

    1990-01-01

    RC-1 TRIGA operating exercise staff has produced some auxiliary security devices. These are the neutron source automatic handling device, irradiated samples rabbit connection rotating rack, and auxiliary equipment for transferring hot fuel elements. The reactor electronic control instrumentation system includes various instrumentation channels, the operating capability of which must be verified by the licensee as per Italian regulations. In order to obtain automatic and repeatable operations, TEMAV designed and constructed a remotely-driven source transfer device, based on requirements, performance specifications and technical data supplied by ENEA-TIB. The pneumatic irradiating system for short lived materials allows extraction of radiated samples in a time no longer than 4 seconds. To optimize the system, both as to operability and health protection, a specific rotating rack for the connection of irradiated samples with pneumatic transfer (RABBIT) was produced. To permit 1 MW hot fuel element storage in pits it is necessary to remove hot 100 KW fuel elements and transfer them to a re-treatment plant. Feasibility studies showed the impossibility of using heavy trucks inside the reactor hall. To avoid problems trucks are left outside the reactor hall and only the PEGASO container is removed with a special device that runs on rails. Movement from Rail truck is assured by an electromotor driving pull device and security cable

  3. Qualification process of dispersion fuels in the IEAR1 research reactor

    International Nuclear Information System (INIS)

    Domingos, D.B.; Silva, A.T.; Silva, J.E.R.

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a miniplate irradiation device (MID) to be placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 -Al dispersion fuels, LEU type (19,9% of 235 U) with uranium densities of, respectively, 3.0 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and TWODB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer code LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. This paper also presents a system designed for fuel swelling evaluation. The determination of the fuel swelling will be performed by means of the fuel miniplate thickness measurements along the irradiation time. (author)

  4. HAV-1-A multipurpose multimonitor for reactor neutron flux characterization

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Alvarez, I.; Herrera, E.; Lima, L.; Tores, J.; Lopez, M.C.; Ixquiac, M.

    1996-01-01

    A simple method non-solid multi monitor HAV-1 for the systematic evaluation of reactor neutron flux parameters for K o neutron activation analysis is presented. Solution of Au, Zr, Co, Zn, Sn, U and Th (deposited in filter paper) are used to study the parameters alpha and f. Dissolved Lu is used to neutron temperature (Tn) determination, according to the Wescott's formalism. A multipurpose multi monitor HAV-1 preparation, certification and evaluations presented

  5. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp strain DCA1

    NARCIS (Netherlands)

    Hage, J.C.; Houten, R.T.; Tramper, J.; Hartmans, S.

    2004-01-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown

  6. TRAC-BD1: transient reactor analysis code for boiling-water systems

    International Nuclear Information System (INIS)

    Spore, J.W.; Weaver, W.L.; Shumway, R.W.; Giles, M.M.; Phillips, R.E.; Mohr, C.M.; Singer, G.L.; Aguilar, F.; Fischer, S.R.

    1981-01-01

    The Boiling Water Reactor (BWR) version of the Transient Reactor Analysis Code (TRAC) is being developed at the Idaho National Engineering Laboratory (INEL) to provide an advanced best-estimate predictive capability for the analysis of postulated accidents in BWRs. The TRAC-BD1 program provides the Loss of Coolant Accident (LOCA) analysis capability for BWRs and for many BWR related thermal hydraulic experimental facilities. This code features a three-dimensional treatment of the BWR pressure vessel; a detailed model of a BWR fuel bundle including multirod, multibundle, radiation heat transfer, leakage path modeling capability, flow-regime-dependent constitutive equation treatment, reflood tracking capability for both falling films and bottom flood quench fronts, and consistent treatment of the entire accident sequence. The BWR component models in TRAC-BD1 are described and comparisons with data presented. Application of the code to a BWR6 LOCA is also presented

  7. CAC-RA1 1958-1998. The first years of the Constituyentes Atomic Center (CAC). History of the first Argentine nuclear reactor (RA-1)

    International Nuclear Information System (INIS)

    Forlerer, Elena; Palacios, Tulio A.

    1998-01-01

    After giving the milestones of the development of the Constituyentes Atomic Center since 1957, the history of the construction of the first nuclear reactor (RA-1) in Argentina, including the local fabrication of its fuel elements, is surveyed. The RA-1 reached criticality on January 17, 1958. The booklet commemorates the 40th year of the reactor operation

  8. ATMEA and medium power reactors. The ATMEA joint venture and the ATMEA1 medium power reactor

    International Nuclear Information System (INIS)

    Mathet, Eric; Castello, Gerard

    2012-01-01

    This Power Point presentation presents the ATMEA company (a joint venture of Areva and Mitsubishi), the main features of its medium power reactor (ATMEA1) and its building arrangement, indicates the general safety objectives. It outlines the features of its robust design which aim at protecting, cooling down and containing. It indicates the regulatory and safety frameworks, comments the review of the safety options by the ASN and the results of this assessment

  9. Study on application of operating experience to new nuclear power plant

    International Nuclear Information System (INIS)

    Hong, Nam Pyo

    1991-01-01

    From the standpoint of designing the nuclear power plant, nine operating units have been designed and constructed as turn-key base by foreign Nuclear Steam Supply System (NSSS) Suppliers or as component base by foreign Architect/Engineer companies. In case of the component base project, the owner of electric company generally has merits that owner's operational experiences can be effectively incorporated from the beginning stage of design by A/E. Even though six nuclear units, Kori Units 3 and 4, Yonggwang Units 1 and 2, and Ulchin Units 1 and 2, were designed as component base by foreign A/E's, operational experience feedback from Kori Unit 1, such as design improvement and system upgrade, could not be reflected, because the design process of the following units started well ahead before Kori Unit 1 operating experience is obtained enough to reflect on future nuclear power plant design. It can be stated that foreign A/E's used their experience in designing nuclear projects on very limited basis

  10. Proposal to the United States Energy Research and Development Administration for continuation of fusion reactor technology studies. Progress report October 1, 1977--July 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1978-01-01

    Since the last progress report we have concentrated on three main areas of research: (1) the study of the NUWMAK reactor design, (2) the study of rf heating for tokamak reactors, and (3) the initiation of a tandem mirror reactor study. The initial work on the tandem mirror reactor is included as background in the technical proposal. Summaries of our work on recent assessments of lithium reserves and neutral transport codes are included.

  11. Proposal to the United States Energy Research and Development Administration for continuation of fusion reactor technology studies. Progress report October 1, 1977--July 1, 1978

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1978-01-01

    Since the last progress report we have concentrated on three main areas of research: (1) the study of the NUWMAK reactor design, (2) the study of rf heating for tokamak reactors, and (3) the initiation of a tandem mirror reactor study. The initial work on the tandem mirror reactor is included as background in the technical proposal. Summaries of our work on recent assessments of lithium reserves and neutral transport codes are included

  12. University Reactor Sharing Program. Period covered: September 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Hajek, B.K.; Myser, R.D.; Miller, D.W.

    1982-12-01

    During the period from September 1, 1981 to August 31, 1982, the Ohio State University Nuclear Reactor Laboratory participated in the Reactor Sharing Program by providing services to eight colleges and universities. A laboratory on Neutron Activation Analysis was developed for students in the program. A summary of services provided and a copy of the laboratory procedure are attached. Services provided in the last funded period were in three major areas. These were neutron activation analysis, nuclear engineering labs, and introductions to nuclear research. One group also performed radiation surveys and produced isotopes for calibration of their own analytical equipment

  13. Reversal of OFI and CHF in Research Reactors Operating at 1 to 50 Bar. Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, A. P. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Matos, J. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-28

    The conditions at which the critical heat flux (CHF) and the heat flux at the onset of Ledinegg flow instability (OFI) are equal, are determined for a coolant channel with uniform heat flux as a function of five independent parameters: the channel exit pressure (P), heated length (Lh) , heated diameter (Dh), inlet temperature (Tin), and mass flux (G). A diagram is made by plotting the mass flux and heat flux at the OFI-CHF intersection (reversal from CHF > OFI to CHF < OFI as G increases) as a function of P (1 to 50 bar), for 36 combinations of the remaining three parameters (Lh , Dh , Tin): Lh = 0.28, 0.61, 1.18 m; Dh = 3, 4, 6, 8 mm; Tin = 30, 50, 70 °C. The use of the diagram to scope whether a research reactor is OFI-limited (below the curve) or CHF-limited based on the five parameters of its coolant channel is described. Justification for application of the diagram to research reactors with axially non-uniform heat flux is provided. Due to its limitations (uncertainties not included), the diagram cannot replace the detailed thermal-hydraulic analysis required for a reactor safety analysis. In order to make the OFI-CHF intersection diagram, two world-class CHF prediction methods (the Hall-Mudawar correlation and the extended Groeneveld 2006 table) are compared for 216 combinations of the five independent parameters. The two widely used OFI correlations (the Saha- Zuber and the Whittle-Forgan with η = 32.5) are also compared for the same combinations of the five parameters. The extended Groeneveld table and the Whittle-Forgan OFI correlation are selected for use in making the diagram. Using the above five design parameters, a research reactor can be represented by a point on the reversal diagram, and the diagram can be used to scope, without a thermal-hydraulic calculation, whether the OFI will occur before the CHF, or the CHF will occur before the OFI when the reactor power is increased keeping the five parameters fixed.

  14. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  15. Primena metode MUSIC za određivanje smera dolaska radio-signala korišćenjem antenskih nizova ADCOCK / Application of the MUSIC method for direction of arrival estimation using the ADCOCK antenna arrays

    Directory of Open Access Journals (Sweden)

    Miljko M. Erić

    2002-01-01

    Full Text Available Analiziran je problem procene smera dolaska radio-signala metodom MUSIC korišćenjem antenskih nizova ADCOCK. Formulisan je matematički model signala na antenskom nizu ADCOCK. Izvedene su relacije između vektora prostiranja ADCOCK i vektora prostiranja ukupnog antenskog niza (niza od koga se ADCOCK-ov niz formira. Definisana je kriterijumska funkcija algoritma MUSIC i funkcija neodređenosti antenskog niza ADCOCK. Prikazani su rezultati simulacije, kao i rezultati praktične verifikacije mogućnosti primene metode MUSIC na antenske nizove ADCOCK. / The MUSIC based Direction of Arrival estimation using the ADCOCK antenna arrays is considered. Starting from signal model formulation, the cost function of the MUSIC algorithm and the ambiguity functions for the ADCOCK antenna array have been formulated. Some simulation results and some preliminary results of the verification in practice are presented.

  16. Upgrade of Instrumentation for Purdue Reactor PUR-1

    International Nuclear Information System (INIS)

    Revankar, S.T.; Merritt, E.; Bean, R.

    2000-01-01

    The major objective of this program was to upgrade and replace instruments and equipment that significantly improve the performance, control and operational capability of the Purdue University nuclear reactor (PUR-1). Under this major objective two projects on instrument upgrade were implemented. The first one was to convert the vacuum tube control and safety amplifiers (CSA) to solid state electronics, and the other was to upgrade the electrical and electronic shielding. This report is the annual report and gives the efforts and progress achieved on these two projects from July 1999 to June 2000

  17. Main refurbishment activities on electronic and electrical equipment for the FRG-1 research reactor

    International Nuclear Information System (INIS)

    Blom, K.H.; Krull, W.

    1997-01-01

    As GKSS intends to operate the research reactor FRG-1 safely and reliably for many years to come, the plant is constantly refurbished and upgraded both in the interests of safety and operational reasons. The following electronic and electrical systems have been replaced or improved since 1990: Information and signalling systems; Emergency power plant (permit applied for); External and internal lightning protection system; Reactor protection system (in part); Safety lighting; Alarm and staff locating system; Control room telephone system; Closed-circuit television system; Beam tube controls; Storage plant for radioactive liquid waste; Ambient dose rate measuring system; Meteorological measuring system; Control and measuring system for the primary cooling circuit; Control rod drives; Control rod control system; Soft start for the secondary pumps; Control and switching devices for the emergency power plant; Trailing cable installation for the reactor bridge; Main-voltage distribution systems/cable routes. (author). 13 figs, 1 tab

  18. Modernization of turbine control system and reactor control system in Almaraz 1 and 2; MOdernizacion de los sistemas de control de turbina y del reactor en Almaraz 1 y 2

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, C.; Diez, J.; Carrasco, J. A.; Lopez, L.

    2005-07-01

    The replacement of the Turbine Control System and Reactor Control System are part of the Almaraz modernization program for the Instrumentation and Control. For these upgrades Almaraz has selected the Ovation Platform that provides open architecture and easy expansion to other systems, these platforms is highly used in many nuclear and thermal plants around the world. One of the main objective for this project were to minimize the impact on the installation and operation of the plant, for that reason the project is implemented in two phases, Turbine Control upgrade and Reactor Control upgrade. Another important objective was to increase the reliability of the control system making them fully fault tolerant to single failures. The turbine Control System has been installed in Units 1 and 2 while the Reactor Control System will be installed in 2006 and 2007 outages. (Author)

  19. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  20. Nuclear reactor (1960)

    International Nuclear Information System (INIS)

    Maillard, M.L.

    1960-01-01

    The first French plutonium-making reactors G1, G2 and G3 built at Marcoule research center are linked to a power plant. The G1 electrical output does not offset the energy needed for operating this reactor. On the contrary, reactors G2 and G3 will each generate a net power of 25 to 30 MW, which will go into the EDF grid. This power is relatively small, but the information obtained from operation is great and will be helpful for starting up the power reactor EDF1, EDF2 and EDF3. The paper describes how, previous to any starting-up operation, the tests performed, especially those concerned with the power plant and the pressure vessel, have helped to bring the commissioning date closer. (author) [fr

  1. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  2. Fission product monitoring of TRISO coated fuel for the advanced gas reactor-1 experiment

    International Nuclear Information System (INIS)

    Scates, Dawn M.; Hartwell, John K.; Walter, John B.; Drigert, Mark W.; Harp, Jason M.

    2010-01-01

    The US Department of Energy has embarked on a series of tests of TRISO coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burnup of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B's) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  3. HAV-1-A multipurpose multimonitor for reactor neutron flux characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rizo, O; Alvarez, I; Herrera, E; Lima, L; Tores, J [Secretaria Ejecutiva para Asuntos Nucleares, Holguin (Cuba). Delegacion Territorial; Manso, M V [Centro de Isotopos, La Habana (Cuba); Lopez, M C [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Ixquiac, M [Universidad de San Carlos de Guatemala, Guatemala City (Guatemala)

    1997-12-31

    A simple method non-solid multi monitor HAV-1 for the systematic evaluation of reactor neutron flux parameters for K{sub o} neutron activation analysis is presented. Solution of Au, Zr, Co, Zn, Sn, U and Th (deposited in filter paper) are used to study the parameters alpha and f. Dissolved Lu is used to neutron temperature (Tn) determination, according to the Wescott`s formalism. A multipurpose multi monitor HAV-1 preparation, certification and evaluations presented.

  4. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    International Nuclear Information System (INIS)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo

    2011-01-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  5. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  6. Necessity of research reactors

    International Nuclear Information System (INIS)

    Ito, Tetsuo

    2016-01-01

    Currently, only three educational research reactors at two universities exist in Japan: KUR, KUCA of Kyoto University and UTR-KINKI of Kinki University. UTR-KINKI is a light-water moderated, graphite reflected, heterogeneous enriched uranium thermal reactor, which began operation as a private university No. 1 reactor in 1961. It is a low power nuclear reactor for education and research with a maximum heat output of 1 W. Using this nuclear reactor, researches, practical training, experiments for training nuclear human resources, and nuclear knowledge dissemination activities are carried out. As of October 2016, research and practical training accompanied by operation are not carried out because it is stopped. The following five items can be cited as challenges faced by research reactors: (1) response to new regulatory standards and stagnation of research and education, (2) strengthening of nuclear material protection and nuclear fuel concentration reduction, (3) countermeasures against aging and next research reactor, (4) outflow and shortage of nuclear human resources, and (5) expansion of research reactor maintenance cost. This paper would like to make the following recommendations so that we can make contribution to the world in the field of nuclear power. (1) Communication between regulatory authorities and business operators regarding new regulatory standards compliance. (2) Response to various problems including spent fuel measures for long-term stable utilization of research reactors. (3) Personal exchanges among nuclear experts. (4) Expansion of nuclear related departments at universities to train nuclear human resources. (5) Training of world-class nuclear human resources, and succession and development of research and technologies. (A.O.)

  7. Real time monitoring system of the operation variables of the TRIGA IPR-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Mesquita, Amir Zacarias

    2007-01-01

    During the last two years all the operation parameters of the TRIGA IPR-R1 were monitored and real time indicated bu the data acquisition system developed for the reactor. All the information were stored on a rigid disk, at the collection system computer, leaving the information on the reactor performance and behaviour available for consultation in a chronological order. The data acquisition program has been updated and new reactor operation parameters were included for increasing the investigation and experiments possibilities. The register of reactor operation variables are important for the immediate or subsequent safety analyses for reporting the reactor operations to the external organizations. This data acquisition satisfy the IAEA recommendations. (author)

  8. The different generation of nuclear reactors from Generation-1 to Generation-4

    International Nuclear Information System (INIS)

    Cognet, G.

    2010-01-01

    In this work author deals with the history of the development of nuclear reactors from Generation-1 to Generation-4. The fuel cycle and radioactive waste management as well as major accidents are presented, too.

  9. Measured and calculated effective delayed neutron fraction of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G.P.; Dalle, Hugo M.; Campolina, Daniel A.M., E-mail: souzarm@cdtn.b, E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The effective delayed neutron fraction, {beta}{sub eff}, one of the most important parameter in reactor kinetics, was measured for the 100 kW IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil. The current reactor core has 63 fuel elements, containing about 8.5% and 8% by weight of uranium enriched to 20% in U{sup 235}. The core has cylindrical configuration with an annular graphite reflector. Since the first criticality of the reactor in November 1960, the core configuration and the number of fuel elements have been changed several times. At that time, the reactor power was 30 kW, there were 56 fuel elements in the core, and the {beta}{sub eff} value for the reactor recommended by General Atomic (manufacturer of TRIGA) was 790 pcm. The current {beta}{sub eff} parameter was determined from experimental methods based on inhour equation and on the control rod drops. The estimated values obtained were (774 {+-} 38) pcm and (744 {+-} 20) pcm, respectively. The {beta}{sub eff} was calculated by Monte Carlo transport code MCNP5 and it was obtained 747 pcm. The calculated and measured values are in good agreement, and the relative percentage error is -3.6% for the first case, and 0.4% for the second one. (author)

  10. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  11. RPV-1: a first virtual reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, St.

    2005-01-01

    The presented work was aimed at building a first VTR (virtual test reactor) to simulate irradiation effects in pressure vessel steels of nuclear reactor. It mainly consisted in: - modeling the formation of the irradiation induced damage in such steels, as well as their plasticity behavior - selecting codes and models to carry out the simulations of the involved mechanisms. Since the main focus was to build a first tool (rather than a perfect tool), it was decided to use, as much as possible, existing codes and models in spite of their imperfections. - developing and parameterizing two missing codes: INCAS and DUPAIR. - proposing an architecture to link the selected codes and models. - constructing and validating the tool. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or transmit data. A user friendly Python interface facilitates the running of the simulations and the visualization of the results. RPV-1 relies on many simplifications and approximations and has to be considered as a prototype aimed at clearing the way. According to the functionalities targeted for RPV-1, the main weakness is a bad Ni and Mn sensitivity. However, the tool can already be used for many applications (understanding of experimental results, assessment of effects of material and irradiation conditions,....). (O.M.)

  12. Feasibility study of application of Prompt Gamma Neutron Activation Analysis (PGNAA) method in TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Guerra, Bruno Teixeira

    2016-01-01

    The TRIGA Mark I IPR-R1 research reactor is located at Nuclear Technology Development Centre (CDTN), Brazilian Commission for Nuclear Energy (CNEN), in Belo Horizonte, Brazil. The reactor operates at 100 kW but the core configuration allows the increasing of the power up to 250 kW. It has been applied research, training and radioisotopes production. The establishment of the Prompt Gamma Neutron Activation Analysis (PGNAA) method at the TRIGA IPR-R1 reactor will significantly increase the types of matrices analysed as well as the number of chemical elements. Additionally it will complement the neutron activation analysis. This work presents a proposed design of a PGNAA facility to be installed at the TRIGA IPR-R1. The proposed design is based on a tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room’s level where shall be located the rack containing the set sample/detector/shielding. Thus, the aim of this study is to verify the feasibility to establish the PGNAA method in IPR-R1 through theoretical study applying the Monte Carlo code. The feasibility of establishing the PGAA method at the IPR-R1 installations was evaluated through of the calculations of neutron flux, radioactive capture reaction rates and detection limits for some isotopes. According to the obtained results, it can be concluded that is possible to establish the PGAA method at the IPR-R1 reactor, even with some restrictions in its theoretical design calculated by MCNP. (author)

  13. Study of essential safety features of a three-loop 1,000 MWe light water reactor (PWR) and a corresponding heavy water reactor (HWR) on the basis of the IAEA nuclear safety standards

    International Nuclear Information System (INIS)

    1989-02-01

    Based on the IAEA Standards, essential safety aspects of a three-loop pressurized water reactor (1,000 MWe) and a corresponding heavy water reactor were studied by the TUeV Baden e.V. in cooperation with the Gabinete de Proteccao e Seguranca Nuclear, a department of the Ministry which is responsible for Nuclear power plants in Portugal. As the fundamental principles of this study the design data for the light water reactor and the heavy water reactor provided in the safety analysis reports (KWU-SSAR for the 1,000 MWe PWR, KWU-PSAR Nuclear Power Plant ATUCHA II) are used. The assessment of the two different reactor types based on the IAEA Nuclear Safety Standards shows that the reactor plants designed according to the data given in the safety analysis reports of the plant manufacturer meet the design requirements laid down in the pertinent IAEA Standards. (orig.) [de

  14. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966; 2. Jugoslovenski simpozijum iz reaktorske fizike, Deo 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-07-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities.

  15. Application of Cherenkov light observation to reactor measurements (1). Estimation of reactor power from Cherenkov light intensity

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Kimura, Nobuaki; Ohtsuka, Noriaki; Tsuchiya, Kunihiko; Sano, Tadafumi; Nakajima, Ken; Homma, Ryohei; Kosuge, Fumiaki

    2015-01-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. The system would be applied as a monitoring system in severe accidents and for the advanced operation management technology in existing LWRs. The calculation and the observation were performed to obtain the quantity of the Cherenkov light caused by the gamma and beta rays emitted from the fuels in the core of Kyoto University Research Reactor. The results indicate that the real-time reactor power can be estimated from the brightness of the Cherenkov light observed by a CCD camera. This method can also work for the estimation of the burn-up of spent fuels at commercial reactors. Since the observed brightness value of the Cherenkov light was influenced by the camera position, the optical observation method should be improved to achieve high accuracy observation. (author)

  16. Measurements and calculations of reactivity for the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.; Maiorino, J.R.; Yamaguchi, M.

    1988-01-01

    This work shows a measurement of reactivity parameters, such as integral and diferential control rod worth, local void coefficient, and moderator temperature coefficient for the research reactor IEA-R1. The measured values were compared with those calculated through HAMMER-CITATION codes, having shown good agreement. (author) [pt

  17. Accident management strategies for VVER-1000 reactors. Part 1: text

    International Nuclear Information System (INIS)

    Sdouz, G.; Sonneck, G.; Pachole, M.

    1994-10-01

    This report describes the effect of different accident management strategies on the onset, development and end of the core-concrete-interaction as well as on the containment integrity for a TMLB'-type sequence in a Pressurized Water Reactor of the type VVER- 1000. Using the computer code MARCH3 the following strategies were investigated: (1) One or more Spray and LP ECC Systems available with and without coolers after 10 hours (2) Inclusion of the reactor pressure vessel testing facility room to the cavity (3) Containment venting (4) External water supply and (5) Different electric power restoration times. The results show that some of these accident management measures will maintain the containment integrity and reduce the source term drastically, others will reduce the source term rate. For some measures final conclusions can only be given after complete source term calculations have been performed. (authors)

  18. Verification of using SABINE-3.1 code for calculations of radioactive inventory in reactor shield

    International Nuclear Information System (INIS)

    Moukhamadeev, R.; Suvorov, A.

    2000-01-01

    This report presents the results of calculations of radioactive inventory and doses of activation radiation for the International Benchmark Calculations of Radioactive Inventory for Fission Reactor Decommissioning, IAEA, and measurements of activation doses in shield of WWER-440 (Armenian NPP), using one-dimension modified code SABINE-3.1. For decommissioning of NPP it is very important to evaluate in correct manner radioactive inventory in reactor construction and shield materials. One-dimension code SABINE-3.1 (removing-diffusion method for neutron calculation) was modified to perform calculation of radioactive inventory in reactor shield materials and dose from activation photons behind them. These calculations are carried out on the base of nuclear constant system ABBN-78 and new library of activation data for a number of long-lived isotopes, prepared by authors on the base of [9], which present at shield materials as microimpurities and manage radiation situation under the decay more than 1 year. (Authors)

  19. VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling

    International Nuclear Information System (INIS)

    Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail

  20. Reactor outage schedule (tentative)

    Energy Technology Data Exchange (ETDEWEB)

    Walton, R.P.

    1969-11-01

    This single page document is the November 1, 1969 reactor refueling outage schedule for the Hanford Production Reactor. It also contains data on the amounts and types of fuels to be loaded and relocated in the production reactor.