WorldWideScience

Sample records for purkinje cells

  1. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    Directory of Open Access Journals (Sweden)

    Anatoly Buchin

    2016-08-01

    Full Text Available Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR. While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.

  2. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  3. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  4. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2016-11-01

    Full Text Available The parallel fiber-Purkinje cell synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fibers activity generates fast postsynaptic currents via AMPA receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression and long-term potentiation have been widely described for the parallel fiber-Purkinje cell synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The parallel fiber-Purkinje cell synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline, and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the parallel fiber-Purkinje cell synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, parallel fiber-Purkinje cell synapse dysfunctions have been identified in several murine models of spinocerebellar ataxia (SCA types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27, while in others the mGlu1 pathway is affected (SCA1, 3, 5. Interestingly, the parallel fiber-Purkinje cell synapse has been shown to be hyper-functional in a mutant mouse model of autism

  5. Regularity, variability and bi-stability in the activity of cerebellar purkinje cells.

    Science.gov (United States)

    Rokni, Dan; Tal, Zohar; Byk, Hananel; Yarom, Yosef

    2009-01-01

    Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state), and a quiescent hyperpolarized state (down state). A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  6. Regularity, variabilty and bi-stability in the activity of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2009-11-01

    Full Text Available Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state, and a quiescent hyperpolarized state (down state. A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in-vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  7. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  8. The volume of Purkinje cells decreases in the cerebellum of acrylamide-intoxicated rats, but no cells are lost

    DEFF Research Database (Denmark)

    Larsen, Jytte Overgaard; Tandrup, T; Braendgaard, H

    1994-01-01

    The effects of acrylamide intoxication on the numbers of granule and Purkinje cells and the volume of Purkinje cell perikarya have been evaluated with stereological methods. The analysis was carried out in the cerebella of rats that had received a dose of 33.3 mg/kg acrylamide, twice a week, for 7.......5 weeks. The total numbers of cerebellar granule and Purkinje cells were estimated using the optical fractionator and the mean volume of the Purkinje cell perikarya was estimated with the vertical rotator technique. The volumes of the molecular layer, the granular cell layer and the white matter were...... estimated using the Cavalieri principle. The mean weight of the cerebellum of the intoxicated rats was 7% lower than that of the control rats (2P = 0.001). The numbers of the Purkinje cells and granule cells were the same in both groups, but the mean volume of the perikarya of the Purkinje cells...

  9. Transient developmental Purkinje cell axonal torpedoes in healthy and ataxic mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Lovisa Ljungberg

    2016-11-01

    Full Text Available Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wildtype and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11. This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occured largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6, and found elevated disease

  10. A note on the definition and the development of cerebellar purkinje cell zones

    NARCIS (Netherlands)

    J. Voogd (Jan)

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  11. A Note on the Definition and the Development of Cerebellar Purkinje Cell Zones

    OpenAIRE

    Voogd, J.

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  12. Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Grasselli

    2016-03-01

    Full Text Available The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning.

  13. Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal x irradiation

    International Nuclear Information System (INIS)

    Woodward, D.J.; Hoffer, B.J.; Altman, J.

    1974-01-01

    Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x irradiation applied during the first two weeks of postnatal life. Purkinje neurons in these rats, studied when adults, exhibited sustained spiking activity in Halothane anesthetized preparations. Mean firing rates were 35 to 40/sec, no different from normal. Spontaneous bursts presumed to be generated by climbing fiber synaptic activity differed from normal by often consisting of full sized spikes rather than characteristic inactivation responses. Intracellularly observed correlates of bursts consisted of epsp's of several discretely different amplitudes appearing independently in time. Stimulation of white matter revealed evidence for, a) graded synaptic excitation of Purkinje cells indicating more than one converging excitatory synapse, and b) inhibitory actions on Purkinje cells either through a few remaining inhibitory interneurons or through Purkinje cell recurrent collaterals. Iontophoretic drug application studies showed normal chemosensitivity of the Purkinje cell membrane, i.e., excitation by flutamate and inhibition by gamma-amino butyric acid, serotonin, norepinephrine, and 3'5' cyclic AMP. These studies indicate considerable autonomy of Purkinje cell ontogenesis in the absence of normal interneuronal input. A unique synaptic relation only rarely found in normal cerebellum is the innervation of single Purkinje cells by more than one climbing fiber. (U.S.)

  14. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  15. A new approach for determining phase response curves reveals that Purkinje cells can act as perfect integrators.

    Directory of Open Access Journals (Sweden)

    Elena Phoka

    2010-04-01

    Full Text Available Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs. PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.

  16. A novel approach to non-biased systematic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum.

    Science.gov (United States)

    Agashiwala, Rajiv M; Louis, Elan D; Hof, Patrick R; Perl, Daniel P

    2008-10-21

    Non-biased systematic sampling using the principles of stereology provides accurate quantitative estimates of objects within neuroanatomic structures. However, the basic principles of stereology are not optimally suited for counting objects that selectively exist within a limited but complex and convoluted portion of the sample, such as occurs when counting cerebellar Purkinje cells. In an effort to quantify Purkinje cells in association with certain neurodegenerative disorders, we developed a new method for stereologic sampling of the cerebellar cortex, involving calculating the volume of the cerebellar tissues, identifying and isolating the Purkinje cell layer and using this information to extrapolate non-biased systematic sampling data to estimate the total number of Purkinje cells in the tissues. Using this approach, we counted Purkinje cells in the right cerebella of four human male control specimens, aged 41, 67, 70 and 84 years, and estimated the total Purkinje cell number for the four entire cerebella to be 27.03, 19.74, 20.44 and 22.03 million cells, respectively. The precision of the method is seen when comparing the density of the cells within the tissue: 266,274, 173,166, 167,603 and 183,575 cells/cm3, respectively. Prior literature documents Purkinje cell counts ranging from 14.8 to 30.5 million cells. These data demonstrate the accuracy of our approach. Our novel approach, which offers an improvement over previous methodologies, is of value for quantitative work of this nature. This approach could be applied to morphometric studies of other similarly complex tissues as well.

  17. Dose response relationship of disturbed migration of Purkinje cells in the cerebellum due to X-irradiation

    International Nuclear Information System (INIS)

    Darmanto, W.; Inouye, Minoru; Hayasaka, Shizu; Takagishi, Yoshiko; Aolad, H.; Murata, Yoshiharu

    1998-01-01

    Pregnant rats were exposed to 2.0, 2.25 or 2.5 Gy X-irradiation on gestation day 21. Pups were sacrificed 12 hr after exposure, and on postnatal day 5 (P5), P7 and P9. Their cerebella were observed immunohistochemically using anti-inositol 1,4,5 triphosphate (IP3) receptor antibody to identify Purkinje cells. These cells were disturbed to migrate and remained in the internal granular layer and white matter of the cerebellum. They had short dendrites, and some showed an abnormal direction of dendrites in rats exposed to 2.25 or 2.5 Gy. Alignment of Purkinje cells was also disturbed when examined either on P5, P7 or P9 especially by doses of 2.25 and 2.5 Gy. There was a relationship between X-ray doses and the number of cells piling up in the Purkinje cell layer of the cerebellum. The dose-response relationship with the number of ectopic Purkinje cells was noted in the anterior lobes of the cerebellum. (author)

  18. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  19. Increased protein kinase C gamma activity induces Purkinje cell pathology in a mouse model of spinocerebellar ataxia 14.

    Science.gov (United States)

    Ji, Jingmin; Hassler, Melanie L; Shimobayashi, Etsuko; Paka, Nagendher; Streit, Raphael; Kapfhammer, Josef P

    2014-10-01

    Spinocerebellar ataxias (SCAs) are hereditary diseases leading to Purkinje cell degeneration and cerebellar dysfunction. Most forms of SCA are caused by expansion of CAG repeats similar to other polyglutamine disorders such as Huntington's disease. In contrast, in the autosomal dominant SCA-14 the disease is caused by mutations in the protein kinase C gamma (PKCγ) gene which is a well characterized signaling molecule in cerebellar Purkinje cells. The study of SCA-14, therefore, offers the unique opportunity to reveal the molecular and pathological mechanism eventually leading to Purkinje cell dysfunction and degeneration. We have created a mouse model of SCA-14 in which PKCγ protein with a mutation found in SCA-14 is specifically expressed in cerebellar Purkinje cells. We find that in mice expressing the mutated PKCγ protein the morphology of Purkinje cells in cerebellar slice cultures is drastically altered and mimics closely the morphology seen after pharmacological PKC activation. Similar morphological abnormalities were seen in localized areas of the cerebellum of juvenile transgenic mice in vivo. In adult transgenic mice there is evidence for some localized loss of Purkinje cells but there is no overall cerebellar atrophy. Transgenic mice show a mild cerebellar ataxia revealed by testing on the rotarod and on the walking beam. Our findings provide evidence for both an increased PKCγ activity in Purkinje cells in vivo and for pathological changes typical for cerebellar disease thus linking the increased and dysregulated activity of PKCγ tightly to the development of cerebellar disease in SCA-14 and possibly also in other forms of SCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    Science.gov (United States)

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  1. Red sorrel (Hibiscus Sabdariffa) prevents the ethanol-induced deficits of Purkinje cells in the cerebellum.

    Science.gov (United States)

    Suryanti, S; Partadiredja, G; Atthobari, J

    2015-01-01

    The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).

  2. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum.

    Science.gov (United States)

    Verheijen, Bert M; Gentier, Romina J G; Hermes, Denise J H P; van Leeuwen, Fred W; Hopkins, David A

    2017-06-01

    The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B +1 (UBB +1 ), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB +1 -expressing transgenic mice display widespread labeling for UBB +1 in brain and exhibit behavioral deficits. Here, we show that UBB +1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB +1 -expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.

  3. Sensorimotor-correlated discharge recorded from ensembles of cerebellar Purkinje cells varies across the estrous cycle of the rat.

    Science.gov (United States)

    Smith, S S

    1995-09-01

    1. In the present study, locomotor-correlated activity of cerebellar Purkinje cells, recorded using arrays of microwires chronically implanted in adult female rats, was examined across estrous-cycle-associated fluctuations in endogenous sex steroids. Ongoing studies from this laboratory have shown that systemic and local administration of the sex steroid 17 beta-estradiol (E2) augments excitatory responses of cerebellar Purkinje cells to iontophoretically applied glutamate, recorded in vivo from anesthetized female rats. In addition, this steroid potentiated discharge correlated with limb movement. For the present study, extracellular single-unit activity was recorded from as many as 5-11 Purkinje cells simultaneously during treadmill locomotion paradigms. Motor modulation of activity was recorded across three to five consecutive estrous cycles from behaviorally identified cohorts of neurons to test the hypothesis that fluctuations in endogenous sex steroids alter motor modulation of Purkinje cell discharge. 2. Locomotor-associated discharge correlated with treadmill locomotion was increased by a mean of 47% on proestrus, when E2 levels are elevated, relative to diestrus 1. These changes in discharge rate during treadmill locomotion were of significantly greater magnitude than corresponding cyclic alterations in discharge during stationary periods. 3. Correlations with the circadian cycle were also significant, because peak levels of locomotor-associated discharge on the night of behavioral estrus, following elevations in circulating E2, were on average 67% greater than corresponding discharge recorded during the light (proestrus). 4. Alterations in the step cycle were also observed across the estrous cycle: significant decreases in the duration of the flexion phase (by 265 ms, P estrus compared with diestrus. 5. When recorded on estrus, Purkinje cell discharge correlated with the stance or flexion phase of the step cycle was greater in magnitude and preceded the

  4. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  5. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    Science.gov (United States)

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition

  6. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  7. The effect of the timing of prenatal exposure to x-irradiation on Purkinje cell numbers in rat cerebellum

    International Nuclear Information System (INIS)

    Miki, T.; Satriotomo, I.; Matsumoto, Y.; Kuma, H.; Takeuchi, Y.; Gu

    2003-01-01

    Full text: Prenatal exposure of the developing brain to X-irradiation is known to cause various deleterious consequences. We have examined the effects of prenatal X-irradiation on the development of the cerebellum. Wistar rats were exposed to 1.5 Gy X-irradiation either on the 14, 15 or 16th day of gestation (E14, E15, E16). Sham-irradiated animals were used as controls. At seven postnatal weeks of age, male rats were deeply anesthetized and killed by intracardiac perfusion with 2.5 % glutaraldehyde in 0.1 M phosphate buffer. The unbiased stereological procedure known as the fractionator method was used to estimate the total number of Purkinje cells in the cerebellum. Body and cerebellar weights from E14 and E15, but not E16 irradiated rats showed significant deficits compared to control animals. Rats irradiated on E16 and control rats had about 285,100 - 304,800 Purkinje cells in the cerebellum. There was no significant difference between these values. However, E14 and E15 irradiated animals had about 117,500 and 196,300 Purkinje cells, respectively. These estimates were significantly different from those observed in both control and E16 irradiated rats. Given that the phase of division of Purkinje cell progenitors is mainly between E14-E15 and the phase of differentiation and migration is between E16-E20, it is concluded that the vulnerable period of the Purkinje cells to X-irradiation closely overlaps the phase of division of progenitors

  8. Inositol Hexakisphosphate Kinase-3 Regulates the Morphology and Synapse Formation of Cerebellar Purkinje Cells via Spectrin/Adducin

    Science.gov (United States)

    Fu, Chenglai; Xu, Jing; Li, Ruo-Jing; Crawford, Joshua A.; Khan, A. Basit; Ma, Ting Martin; Cha, Jiyoung Y.; Snowman, Adele M.; Pletnikov, Mikhail V.

    2015-01-01

    The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function. PMID:26245967

  9. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    Science.gov (United States)

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  10. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.

    Science.gov (United States)

    Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J

    2015-01-21

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.

  11. Prophylactic role of melatonin against radiation induced damage in mouse cerebellum with special reference to Purkinje cells

    Energy Technology Data Exchange (ETDEWEB)

    Sisodia, Rashmi; Kumari, Seema; Verma, Rajesh Kumar; Bhatia, A L [Neurobiology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004 (India)

    2006-06-15

    Melatonin, a hormone with a proven antioxidative efficacy, crosses all morphophysiological barriers, including the blood-brain barrier, and distributes throughout the cell. The present study is an attempt to investigate the prophylactic influence of a chronic low level of melatonin against an acute radiation induced oxidative stress in the cerebellum of Swiss albino mice, with special reference to Purkinje cells. After 15 days of treatment the mice were sacrificed at various intervals from 1 to 30 days. Biochemical parameters included lipid peroxidation (LPO) and glutathione (GSH) levels as the endpoints. The quantitative study included alterations in number and volume of Purkinje cells. Swiss albino mice were orally administered a very low dose of melatonin (0.25 mg/mouse/day) for 15 consecutive days before single exposure to 4 Gy gamma radiation. Melatonin checked the augmented levels of LPO, by approximately 55%, by day 30 day post-exposure. Radiation induced depleted levels of GSH could be raised by 68.9% by day 30 post-exposure. Radiation exposure resulted in a reduction of the volume of Purkinje cells and their total number. The administration of melatonin significantly protected against the radiation induced decreases in Purkinje cell volume and number. Results indicate the antioxidative properties of melatonin resulting in its prophylactic property against radiation induced biochemical and cellular alterations in the cerebellum. The findings support the idea that melatonin may be used as an anti-irradiation drug due to its potent free radical scavenging and antioxidative efficacy.

  12. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers.

    Science.gov (United States)

    Nayak, Alok Ranjan; Panfilov, A V; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  14. Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.

    Science.gov (United States)

    De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia

    2017-10-01

    Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element

    International Nuclear Information System (INIS)

    Arsenio Nunes, M.L.; Sotelo, C.; Wehrle, R.

    1988-01-01

    The organization of the spinocerebellar projection was analysed by the anterograde axonal WGA-HRP (horseradish peroxidase-wheat germ agglutinin conjugate) tracing method in three different types of agranular cerebellar cortex either induced experimentally by X-irradiation or occurring spontaneously in weaver (wv/wv) and staggerer (sg/sg) mutant mice. The results of this study show that in the X-irradiated rat and weaver mouse, in both of which the granule cells are directly affected and die early in development, the spinal axons reproduce, with few differences, the normal spinocerebellar pattern. Conversely, in staggerer mouse, in which the Purkinje cells are intrinsically affected and granule neurons do not seem to be primarily perturbed by the staggerer gene action, the spinocerebellar organization is severely modified. These findings appear somewhat paradoxical because if granule cells, the synaptic targets of mossy spinocerebellar fibers, were necessary for the organization of spinocerebellar projection, the staggerer cerebellum would exhibit a much more normal projectional map than the weaver and the X-irradiated cerebella. It is, therefore, obvious that granule cells, and even specific synaptogenesis, are not essential for the establishment of the normal spinocerebellar topography. On the other hand, the fact that the Purkinje cells are primarily affected in the unique agranular cortex in which the spinocerebellar organization is severely modified suggests that these neurons could be the main element in the organization of the spinocerebellar projection map. This hypothesis is discussed in correlation with already-reported findings on the zonation of the cerebellar cortex by biochemically different clusters of Purkinje cells

  16. Structural study of Purkinje cell axonal torpedoes in essential tremor.

    Science.gov (United States)

    Louis, Elan D; Yi, Hong; Erickson-Davis, Cordelia; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2009-02-06

    Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Formalin-fixed cerebellar cortical tissue from four prospectively collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from three ET brains, torpedoes were assessed using electron microscopy. Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10-12nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study.

  17. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.

    Science.gov (United States)

    Raghavan, Ramanujan T; Lisberger, Stephen G

    2017-08-01

    We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex. NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the

  18. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Directory of Open Access Journals (Sweden)

    Fabrice Ango

    2008-04-01

    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  19. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  20. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  1. Reminiscing about Jan Evangelista Purkinje: a pioneer of modern experimental physiology.

    Science.gov (United States)

    Cavero, Icilio; Guillon, Jean-Michel; Holzgrefe, Henry H

    2017-12-01

    This article reminisces about the life and key scientific achievements of Jan Evangelista Purkinje (1787-1869), a versatile 19th century Czech pioneer of modern experimental physiology. In 1804, after completing senior high school, Purkinje joined the Piarist monk order, but, after a 3-yr novitiate, he gave up the religious calling "to deal more freely with science." In 1818, he earned a Medical Doctor degree from Prague University by defending a dissertation on intraocular phenomena observed in oneself. In 1823, Purkinje became a Physiology and Pathology professor at the Prussian Medical University in Breslau, where he innovated the traditional teaching methods of physiology. Purkinje's contributions to physiology were manifold: accurate descriptions of various visual phenomena (e.g., Purkinje-Sanson images, Purkinje phenomenon), discovery of the terminal network of the cardiac conduction system (Purkinje fibers), identification of cerebellar neuronal bodies (Purkinje cells), formulation of the vertigo law (Purkinje's law), discovery of criteria to classify human fingerprints, etc. In 1850, Purkinje accepted and held until his death the Physiology chair at Prague Medical Faculty. During this period, he succeeded in introducing the Czech idiom (in addition to long-established German and Latin) as a Medical Faculty teaching language. Additionally, as a zealous Czech patriot, he actively contributed to the naissance and consolidation of a national Czech identity conscience. Purkinje was a trend-setting scientist who, throughout his career, worked to pave the way for the renovation of physiology from a speculative discipline, ancilla of anatomy, into a factual, autonomous science committed to the discovery of mechanisms governing in-life functions. Copyright © 2017 the American Physiological Society.

  2. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.

    Science.gov (United States)

    Alviña, Karina; Sawtell, Nathaniel B

    2014-07-15

    Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results. Copyright © 2014 the American Physiological Society.

  3. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  4. TACTILE STIMULATION EVOKES LONG-LASTING POTENTIATION OF PURKINJE CELL DISCHARGE IN VIVO

    Directory of Open Access Journals (Sweden)

    Ramakrishnan eKanchipuram

    2016-02-01

    Full Text Available In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in PC spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here we show that facial tactile stimuli organized in theta-patterns can induce stereotyped NMDA and GABA-A receptor-dependent changes in Purkinje cell (PCs and molecular layer interneuron (MLIs firing: invariably, all PCs showed a long-lasting increase (spike-related potentiation or SR-P and MLIs a long-lasting decrease (spike-related suppression or SR-S in baseline activity and spike response probability. These observations suggests that natural sensory stimulation engages multiple long-term plastic changes that are distributed along the mossy fiber – parallel fiber pathway and operate synergistically to potentiate spike generation in PCs. In contrast, theta-pattern electrical stimulation of PFs indistinctly induced SR-P and SR-S both in PCs and MLIs, suggesting that natural sensory stimulation preordinates plasticity upstream of the PF-PC synapse. All these effects occurred in the absence of complex spike changes, supporting the theoretical prediction that Purkinje cell activity is potentiated when the mossy fiber - parallel fiber system is activated in the absence of conjunctive climbing fiber activity.

  5. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  7. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease.

    Directory of Open Access Journals (Sweden)

    Chan Chung

    2016-05-01

    Full Text Available Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1, promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.

  8. Apoptosis of Purkinje and granular cells of the cerebellum following chronic ethanol intake.

    Science.gov (United States)

    Oliveira, Suelen A; Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz Aparecida; Lizarte Neto, Fermino Sanches; Novais, Paulo Cezar; Tirapelli, Luiz Fernando; Oishi, Jorge Camargo; Takase, Luiz Fernando; Stefanini, Maira Aparecida; Martinez, Marcelo; Martinez, Francisco Eduardo

    2014-12-01

    Ethanol alters motricity, learning, cognition, and cellular metabolism in the cerebellum. We evaluated the effect of ethanol on apoptosis in Golgi, Purkinje, and granule cells of the cerebellum in adult rats. There were two groups of 20 rats: a control group that did not consume ethanol and an experimental group of UChA rats that consumed ethanol at 10% (cerebellum of adult UChA rats.

  9. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Crepel, F; Delhaye-Bouchaud, N; Dupont, J L [Paris-5 Univ., 75 (France); Sotelo, C [Hopital Foch, 92 - Suresnes (France). Centre Medico-Chirurgical

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields.

  10. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    G.A. Higuera (Gustavo A.); Iaffaldano, G. (Grazia); Bedar, M. (Meiwand); G. Shpak (Guy); R. Broersen (Robin); S.T. Munshi (Shashini T.); Dupont, C. (Catherine); J.H. Gribnau (Joost); F.M.S. Vrij (Femke); S.A. Kushner (Steven); C.I. de Zeeuw (Chris)

    2017-01-01

    textabstractThe directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it

  11. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    Higuera, Gustavo A; Iaffaldano, Grazia; Bedar, Meiwand; Shpak, Guy; Broersen, Robin; Munshi, Shashini T; Dupont, Catherine; Gribnau, Joost; de Vrij, Femke M S; Kushner, Steven A; De Zeeuw, Chris I

    2017-01-01

    The directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it has not

  12. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    International Nuclear Information System (INIS)

    Crepel, F.; Delhaye-Bouchaud, N.; Dupont, J.L.; Sotelo, C.

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields. (author)

  13. A Simple Mathematical Model Inspired by the Purkinje Cells: From Delayed Travelling Waves to Fractional Diffusion.

    Science.gov (United States)

    Dipierro, Serena; Valdinoci, Enrico

    2018-07-01

    Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.

  14. Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST.

    Science.gov (United States)

    Perkins, Emma M; Suminaite, Daumante; Clarkson, Yvonne L; Lee, Sin Kwan; Lyndon, Alastair R; Rothstein, Jeffrey D; Wyllie, David J A; Tanaka, Kohichi; Jackson, Mandy

    2016-10-15

    Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.

  15. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.

    Science.gov (United States)

    Khaliq, Zayd M; Raman, Indira M

    2005-01-12

    In cerebellar Purkinje neurons, the reliability of propagation of high-frequency simple spikes and spikelets of complex spikes is likely to regulate inhibition of Purkinje target neurons. To test the extent to which a one-to-one correspondence exists between somatic and axonal spikes, we made dual somatic and axonal recordings from Purkinje neurons in mouse cerebellar slices. Somatic action potentials were recorded with a whole-cell pipette, and the corresponding axonal signals were recorded extracellularly with a loose-patch pipette. Propagation of spontaneous and evoked simple spikes was highly reliable. At somatic firing rates of approximately 200 spikes/sec, 375 Hz during somatic hyperpolarizations that silenced spontaneous firing to approximately 150 Hz during spontaneous activity. The probability of propagation of individual spikelets could be described quantitatively as a saturating function of spikelet amplitude, rate of rise, or preceding interspike interval. The results suggest that ion channels of Purkinje axons are adapted to produce extremely short refractory periods and that brief bursts of forward-propagating action potentials generated by complex spikes may contribute transiently to inhibition of postsynaptic neurons.

  16. Transferences of Purkinje systems

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2011-12-01

    Full Text Available The transferences of heterocentric astigmatic Purkinje systems are special: submatrices B and C, that is, the disjugacy and the divergence of the system, are symmetric and submatrix D (the divarication is the transpose of submatrix A (the dilation.  It is the primary purpose of this paper to provide a proof.  The paper also derives other relationships among the fundamental properties and compact expressions for the transference and optical axis locator of a Purkinje system. (S Afr Optom 2011 70(2 57-60

  17. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia.

    Directory of Open Access Journals (Sweden)

    Matthieu M Vermeren

    Full Text Available Phospholipase D2 (PLD2 is an enzyme that produces phosphatidic acid (PA, a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction.

  18. Downregulation of the Glial GLT1 Glutamate Transporter and Purkinje Cell Dysfunction in a Mouse Model of Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Géraldine Sicot

    2017-06-01

    Full Text Available Brain function is compromised in myotonic dystrophy type 1 (DM1, but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels.

  19. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  20. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishikawa

    Full Text Available The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs. There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum.

  1. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    International Nuclear Information System (INIS)

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana

    2007-01-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program

  2. Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures.

    Science.gov (United States)

    Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.

  3. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    Science.gov (United States)

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  4. [Hering, Vintschgau and the problem of Purkinje's succession].

    Science.gov (United States)

    Sablik, K

    1989-01-01

    The problem of Jan Evangelista Purkinje's succession will be presented according to the results of archival research. The Ministery of Cult and Education in Vienna, and especially Karl Rokitansky, who was the adviser for medical education, in 1867 created a new professorship and Institute for Physiology, beside Purkinje and his Institute. Maximilian Vintschgau was to assist the world-famous 80 years old Purkinje but was not permitted to teach the whole field of physiology and to examine students. The fact that the professors of the Prague Medical Faculty in 1868 started to remove the restrictions for Vintschgau with the argument of academic freedom and in 1869 tried to keep the second institute for the future, is not yet mentioned in the literature. Discussions about the problems of the Czech language and its use in physiological lectures were scarcely mentioned by the Ministery: if one day there should be a Czech-speaking lecturer, the problem would be solved. Unfortunately Purkinje had no genuine pupil in Prague, and after his death, Vintschgau was provisional director of the Institute for half a year. In this situation Rokitansky decided that there should only be one institute for physiology in Prague. The Medical Faculty wanted to have Hermann Helmholtz to succeed Purkinje, but Helmholtz refused to come. Ewald Hering, who was nominated in the second place by the Faculty, accepted the call. Vintschgau had only rank four, third was Conrad Eckhard from Giessen. The Ministery in Vienna, however, made a special decision: The Medical Faculty of Innsbruck was founded in 1869, and there was not professor for physiology at the beginning of 1870. The candidates of the Insbruck Medical Faculty were neglected in favour of Vintschgau, who was considered to be a trustworthy Austrian patriot. Hering and Vintschgau became professors on March 6, 1870, and Hering started his work in Prague in a new institute in the "Wenzelsbad".

  5. Systematic Regional Variations in Purkinje Cell Spiking Patterns

    Science.gov (United States)

    Xiao, Jianqiang; Cerminara, Nadia L.; Kotsurovskyy, Yuriy; Aoki, Hanako; Burroughs, Amelia; Wise, Andrew K.; Luo, Yuanjun; Marshall, Sarah P.; Sugihara, Izumi; Apps, Richard; Lang, Eric J.

    2014-01-01

    In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z−) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z− PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z− and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions. PMID:25144311

  6. Systematic regional variations in Purkinje cell spiking patterns.

    Directory of Open Access Journals (Sweden)

    Jianqiang Xiao

    Full Text Available In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+ and negative (Z- bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z- PCs, respectively. In both datasets significant differences in simple spike (SS activity were observed between cortical regions. Specifically, Z- and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions.

  7. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  8. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  9. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  10. Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network

    Directory of Open Access Journals (Sweden)

    Jean-Marc Good

    2017-11-01

    Full Text Available Neural circuits undergo massive refinements during postnatal development. In the developing cerebellum, the climbing fiber (CF to Purkinje cell (PC network is drastically reshaped by eliminating early-formed redundant CF to PC synapses. To investigate the impact of CF network refinement on PC population activity during postnatal development, we monitored spontaneous CF responses in neighboring PCs and the activity of populations of nearby CF terminals using in vivo two-photon calcium imaging. Population activity is highly synchronized in newborn mice, and the degree of synchrony gradually declines during the first postnatal week in PCs and, to a lesser extent, in CF terminals. Knockout mice lacking P/Q-type voltage-gated calcium channel or glutamate receptor δ2, in which CF network refinement is severely impaired, exhibit an abnormally high level of synchrony in PC population activity. These results suggest that CF network refinement is a structural basis for developmental desynchronization and maturation of PC population activity.

  11. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2011-02-01

    Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders. Copyright © 2010 by the Research Society on Alcoholism.

  12. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  13. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  14. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  15. Intraocular lens alignment from purkinje and Scheimpflug imaging.

    Science.gov (United States)

    Rosales, Patricia; De Castro, Alberto; Jiménez-Alfaro, Ignacio; Marcos, Susana

    2010-11-01

    The improved designs of intraocular lenses (IOLs) implanted during cataract surgery demand understanding of the possible effects of lens misalignment on optical performance. In this review, we describe the implementation, set-up and validation of two methods to measure in vivo tilt and decentration of IOLs, one based on Purkinje imaging and the other on Scheimpflug imaging. The Purkinje system images the reflections of an oblique collimated light source on the anterior cornea and anterior and posterior IOL surfaces and relies on the well supported assumption of the linearity of the Purkinje images with respect to IOL tilt and decentration. Scheimpflug imaging requires geometrical distortion correction and image processing techniques to retrieve the pupillary axis, IOL axis and pupil centre from the three-dimensional anterior segment image of the eye. Validation of the techniques using a physical eye model indicates that IOL tilt is estimated within an accuracy of 0.261 degree and decentration within 0.161 mm. Measurements on patients implanted with aspheric IOLs indicate that IOL tilt and decentration tend to be mirror symmetric between left and right eyes. The average tilt was 1.54 degrees and the average decentration was 0.21 mm. Simulated aberration patterns using custom models of the patients eyes, built using anatomical data of the anterior cornea and foveal position, the IOL geometry and the measured IOL tilt and decentration predict the experimental wave aberrations measured using laser ray tracing aberrometry on the same eyes. This reveals a relatively minor contribution of IOL tilt and decentration on the higher-order aberrations of the normal pseudophakic eye.

  16. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    Science.gov (United States)

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    Science.gov (United States)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  18. Selective loss of Purkinje cells in a patient with anti-gliadin-antibody-positive autoimmune cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Hasegawa Akira

    2011-02-01

    Full Text Available Abstract The patient was an 84-year-old woman who had the onset of truncal ataxia at age 77 and a history of Basedow's disease. Her ataxic gait gradually deteriorated. She could not walk without support at age 81 and she was admitted to our hospital at age 83. Gaze-evoked nystagmus and dysarthria were observed. Mild ataxia was observed in all limbs. Her deep tendon reflex and sense of position were normal. IgA anti-gliadin antibody, IgG anti-gliadin antibody, anti-SS-A/Ro antibody, anti-SS-B/La antibody and anti-TPO antibody were positive. A conventional brain MRI did not show obvious cerebellar atrophy. However, MRI voxel based morphometry (VBM and SPECT-eZIS revealed cortical cerebellar atrophy and reduced cerebellar blood flow. IVIg treatment was performed and was moderately effective. After her death at age 85, the patient was autopsied. Neuropathological findings were as follows: selective loss of Purkinje cells; no apparent degenerative change in the efferent pathways, such as the dentate nuclei or vestibular nuclei; no prominent inflammatory reaction. From these findings, we diagnosed this case as autoimmune cerebellar atrophy associated with gluten ataxia. All 3 autopsies previously reported on gluten ataxia have noted infiltration of inflammatory cells in the cerebellum. In this case, we postulated that the infiltration of inflammatory cells was not found because the patient's condition was based on humoral immunity. The clinical conditions of gluten ataxia have not yet been properly elucidated, but are expected to be revealed as the number of autopsied cases increases.

  19. Purkinje Cell Signaling Deficits in Animal Models of Ataxia

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2018-04-01

    Full Text Available Purkinje cell (PC dysfunction or degeneration is the most frequent finding in animal models with ataxic symptoms. Mutations affecting intrinsic membrane properties can lead to ataxia by altering the firing rate of PCs or their firing pattern. However, the relationship between specific firing alterations and motor symptoms is not yet clear, and in some cases PC dysfunction precedes the onset of ataxic signs. Moreover, a great variety of ionic and synaptic mechanisms can affect PC signaling, resulting in different features of motor dysfunction. Mutations affecting Na+ channels (NaV1.1, NaV1.6, NaVβ4, Fgf14 or Rer1 reduce the firing rate of PCs, mainly via an impairment of the Na+ resurgent current. Mutations that reduce Kv3 currents limit the firing rate frequency range. Mutations of Kv1 channels act mainly on inhibitory interneurons, generating excessive GABAergic signaling onto PCs, resulting in episodic ataxia. Kv4.3 mutations are responsible for a complex syndrome with several neurologic dysfunctions including ataxia. Mutations of either Cav or BK channels have similar consequences, consisting in a disruption of the firing pattern of PCs, with loss of precision, leading to ataxia. Another category of pathogenic mechanisms of ataxia regards alterations of synaptic signals arriving at the PC. At the parallel fiber (PF-PC synapse, mutations of glutamate delta-2 (GluD2 or its ligand Crbl1 are responsible for the loss of synaptic contacts, abolishment of long-term depression (LTD and motor deficits. At the same synapse, a correct function of metabotropic glutamate receptor 1 (mGlu1 receptors is necessary to avoid ataxia. Failure of climbing fiber (CF maturation and establishment of PC mono-innervation occurs in a great number of mutant mice, including mGlu1 and its transduction pathway, GluD2, semaphorins and their receptors. All these models have in common the alteration of PC output signals, due to a variety of mechanisms affecting incoming

  20. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases

    Science.gov (United States)

    Lin, Chi-Ying; Wang, Jie; Sims, Peter A.; Pan, Ming-Kai; Liou, Jyun-you; Lee, Danielle; Tate, William J.; Kelly, Geoffrey C.; Louis, Elan D.; Faust, Phyllis L.

    2017-01-01

    Changes in climbing fiber-Purkinje cell (CF-PC) synaptic connections have been found in the essential tremor (ET) cerebellum, and these changes are correlated with tremor severity. Whether these postmortem changes are specific to ET remains to be investigated. We assessed CF-PC synaptic pathology in the postmortem cerebellum across a range of degenerative movement disorders [10 Parkinson’s disease (PD) cases, 10 multiple system atrophy (MSA) cases, 10 spinocerebellar ataxia type 1 (SCA1) cases, and 20 ET cases] and 25 controls. We observed differences in terms of CF pathological features across these disorders. Specifically, PD cases and ET cases both had more CFs extending into the parallel fiber (PF) territory, but ET cases had more complex branching and increased length of CFs in the PF territory along with decreased CF synaptic density compared to PD cases. MSA cases and SCA1 cases had the most severely reduced CF synaptic density and a marked paucity of CFs extending into the PF territory. Furthermore, CFs in a subset of MSA cases formed collateral branches parallel to the PC layer, a feature not seen in other diagnostic groups. Using unsupervised cluster analysis, the cases and controls could all be categorized into four clusters based on the CF pathology and features of PC pathology, including counts of PCs and their axonal torpedoes. ET cases and PD cases co-segregated into two clusters, whereas SCA1 cases and MSA cases formed another cluster, separate from the control cluster. Interestingly, the presence of resting tremor seemed to be the clinical feature that separated the cases into the two ET-PD clusters. In conclusion, our study demonstrates that these degenerative movement disorders seem to differ with respect to the pattern of CF synaptic pathology they exhibit. It remains to be determined how these differences contribute to the clinical presentations of these diseases. PMID:27704282

  1. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  2. [Computer-assisted measurement of ocular misalignment in infants and young children using the digital Purkinje reflection pattern procedure].

    Science.gov (United States)

    Barry, J C; Effert, R; Kaupp, A; Kleine, M; Reim, M

    1994-02-01

    A digital image recording and processing system is presented that allows a quick diagnosis of microstrabismus in non-cooperative children. It is thus particularly suited for screening purposes. The Purkinje Reflection Pattern Evaluation (RPE) method is used: three small flashes are used to produce the desired Purkinje images. Two horizontal rows of the three 1st Purkinje images (anterior corneal reflections) and of the three 4th Purkinje images (posterior crystalline lens reflections) stemming from the three light sources form the characteristic Purkinje image reflection pattern. Each eye's position is calculated from the shift between the upper and lower rows of reflections by means of two simple formulae. From the angles obtained in binocular fixation and monocular fixation the manifest angle of strabismus corresponding to the angle measured in the simultaneous prism-and-cover test is computed. The measurement is performed at a fixation distance of 50 cm under natural viewing conditions. To obtain a picture one only has to get the child's attention for a short moment. The primary position is triggered with the fixation light, which is operated by a switch. The digital image recording is done with a hand-held device comprising two miniaturized video cameras, three photo flashes and a fixation light that is operated manually. An IBM-compatible PC equipped with a hard disk and two frame grabbers was adapted for the storage and processing of the pictures. The pictures are evaluated interactively in a few minutes on the workstation's monitor immediately after the measurement. To this end specially designed menu-driven software was implemented. Examples of the measuring procedure and clinical results in infants with microtropic highlight the potential of the system as a screening apparatus and for the exact measurement of small and large squint angles. Usually even 1-year-old children can cooperate well enough to get good-quality pictures in binocular fixation. The new

  3. Differential association of GABAB receptors with their effector ion channels in Purkinje cells.

    Science.gov (United States)

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo

    2018-04-01

    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  4. Plasticity of Cerebellar Purkinje Cells in Behavioral Training of Body Balance Control

    Directory of Open Access Journals (Sweden)

    Ray X. Lee

    2015-08-01

    Full Text Available Neural responses to sensory inputs caused by self-generated movements (reafference and external passive stimulation (exafference differ in various brain regions. The ability to differentiate such sensory information can lead to movement execution with better accuracy. However, how sensory responses are adjusted in regard to this distinguishability during motor learning is still poorly understood. The cerebellum has been hypothesized to analyze the functional significance of sensory information during motor learning, and is thought to be a key region of reafference computation in the vestibular system. In this study, we investigated Purkinje cell (PC spike trains as cerebellar cortical output when rats learned to balance on a suspended dowel. Rats progressively reduced the amplitude of body swing and made fewer foot slips during a 5-min balancing task. Both PC simple (SSs; 17 of 26 and complex spikes (CSs; 7 of 12 were found to code initially on the angle of the heads with respect to a fixed reference. Using periods with comparable degrees of movement, we found that such SS coding of information in most PCs (10 of 17 decreased rapidly during balance learning. In response to unexpected perturbations and under anesthesia, SS coding capability of these PCs recovered. By plotting SS and CS firing frequencies over 15-s time windows in double-logarithmic plots, a negative correlation between SS and CS was found in awake, but not anesthetized, rats. PCs with prominent SS coding attenuation during motor learning showed weaker SS-CS correlation. Hence, we demonstrate that neural plasticity for filtering out sensory reafference from active motion occurs in the cerebellar cortex in rats during balance learning. SS-CS interaction may contribute to this rapid plasticity as a form of receptive field plasticity in the cerebellar cortex between two receptive maps of sensory inputs from the external world and of efference copies from the will center for

  5. Antioxidant supplementation upregulates calbindin expression in cerebellar Purkinje cells of rat pups subjected to post natal exposure to sodium arsenite.

    Science.gov (United States)

    Dhar, Pushpa; Kaushal, Parul; Kumar, Pavan

    2018-07-01

    Optimal cytoplasmic calcium (Ca 2+ ) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca 2+ levels following impaired Ca 2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO 2 ) exposure (postnatal) of rat pups. NaAsO 2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  7. Absence of Rapid Propagation through the Purkinje Network as a Potential Cause of Line Block in the Human Heart with Left Bundle Branch Block.

    Science.gov (United States)

    Okada, Jun-Ichi; Washio, Takumi; Nakagawa, Machiko; Watanabe, Masahiro; Kadooka, Yoshimasa; Kariya, Taro; Yamashita, Hiroshi; Yamada, Yoko; Momomura, Shin-Ichi; Nagai, Ryozo; Hisada, Toshiaki; Sugiura, Seiryo

    2018-01-01

    Background: Cardiac resynchronization therapy is an effective device therapy for heart failure patients with conduction block. However, a problem with this invasive technique is the nearly 30% of non-responders. A number of studies have reported a functional line of block of cardiac excitation propagation in responders. However, this can only be detected using non-contact endocardial mapping. Further, although the line of block is considered a sign of responders to therapy, the mechanism remains unclear. Methods: Herein, we created two patient-specific heart models with conduction block and simulated the propagation of excitation based on a cellmodel of electrophysiology. In one model with a relatively narrow QRS width (176 ms), we modeled the Purkinje network using a thin endocardial layer with rapid conduction. To reproduce a wider QRS complex (200 ms) in the second model, we eliminated the Purkinje network, and we simulated the endocardial mapping by solving the inverse problem according to the actual mapping system. Results: We successfully observed the line of block using non-contact mapping in the model without the rapid propagation of excitation through the Purkinje network, although the excitation in the wall propagated smoothly. This model of slow conduction also reproduced the characteristic properties of the line of block, including dense isochronal lines and fractionated local electrocardiograms. Further, simulation of ventricular pacing from the lateral wall shifted the location of the line of block. By contrast, in the model with the Purkinje network, propagation of excitation in the endocardial map faithfully followed the actual propagation in the wall, without showing the line of block. Finally, switching the mode of propagation between the two models completely reversed these findings. Conclusions: Our simulation data suggest that the absence of rapid propagation of excitation through the Purkinje network is the major cause of the functional line

  8. Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment.

    Science.gov (United States)

    Whitney, Elizabeth R; Kemper, Thomas L; Rosene, Douglas L; Bauman, Margaret L; Blatt, Gene J

    2008-02-15

    In a study of human Purkinje cell (PC) number, a striking mismatch between the number of PCs observed with the Nissl stain and the number of PCs immunopositive for calbindin-D28k (CB) was identified in 2 of the 10 brains examined. In the remaining eight brains this mismatch was not observed. Further, in these eight brains, analysis of CB immunostained sections counterstained with the Nissl stain revealed that more than 99% Nissl stained PCs were also immunopositive for CB. In contrast, in the two discordant brains, only 10-20% of CB immunopositive PCs were also identified with the Nissl stain. Although this finding was unexpected, a historical survey of the literature revealed that Spielmeyer [Spielmeyer W. Histopathologie des nervensystems. Julius Springer: Berlin; 1922. p. 56-79] described human cases with PCs that lacked the expected Nissl staining intensity, an important historical finding and critical issue when studying postmortem human brains. The reason for this failure in Nissl staining is not entirely clear, but it may result from premortem circumstances since it is not accounted for by postmortem delay or processing variables. Regardless of the exact cause, these observations suggest that Nissl staining may not be a reliable marker for PCs and that CB is an excellent alternative marker.

  9. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs.

    Science.gov (United States)

    Dosdall, Derek J; Tabereaux, Paul B; Kim, Jong J; Walcott, Gregory P; Rogers, Jack M; Killingsworth, Cheryl R; Huang, Jian; Robertson, Peter G; Smith, William M; Ideker, Raymond E

    2008-08-01

    Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.

  10. His-Purkinje system-related incessant ventricular tachycardia arising from the left coronary cusp

    Directory of Open Access Journals (Sweden)

    Eiji Sato, MD

    2014-08-01

    Full Text Available We describe the case of a 23-year-old woman who had His-Purkinje system-related incessant ventricular tachycardia with a narrow QRS configuration. The ventricular tachycardia was ablated successfully in the left coronary cusp where the earliest endocardial activation had been recorded. We hypothesize that a remnant of the subaortic conducting tissue was the source of the ventricular arrhythmias.

  11. Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia.

    Science.gov (United States)

    Sawada, Yusuke; Konno, Ayumu; Nagaoka, Jun; Hirai, Hirokazu

    2016-06-13

    Neuron-specific enolase (NSE) is a glycolytic isoenzyme found in mature neurons and cells of neuronal origin. Injecting adeno-associated virus serotype 9 (AAV9) vectors carrying the NSE promoter into the cerebellar cortex is likely to cause the specific transduction of neuronal cells, such as Purkinje cells (PCs) and interneurons, but not Bergmann glia (BG). However, we found BG-predominant transduction without PC transduction along a traumatic needle tract for viral injection. The enhancement of neuroinflammation by the co-application of lipopolysaccharide (LPS) with AAV9 significantly expanded the BG-predominant area concurrently with the potentiated microglial activation. The BG-predominant transduction was gradually replaced by the PC-predominant transduction as the neuroinflammation dissipated. Experiments using glioma cell cultures revealed significant activation of the NSE promoter due to glucose deprivation, suggesting that intracellularly stored glycogen is metabolized through the glycolytic pathway for energy. Activation of the glycolytic enzyme promoter in BG concurrently with inactivation in PC may have pathophysiological significance for the production of lactate in activated BG and the utilization of lactate, which is provided by the BG-PC lactate shuttle, as a primary energy resource in injured PCs.

  12. Role of the Purkinje-Muscle Junction on the Ventricular Repolarization Heterogeneity in the Healthy and Ischemic Ovine Ventricular Myocardium

    Directory of Open Access Journals (Sweden)

    Marine E. Martinez

    2018-06-01

    Full Text Available Alteration of action potential duration (APD heterogeneity contributes to arrhythmogenesis. Purkinje-muscle junctions (PMJs present differential electrophysiological properties including longer APD. The goal of this study was to determine if Purkinje-related or myocardial focal activation modulates ventricular repolarization differentially in healthy and ischemic myocardium. Simultaneous epicardial (EPI and endocardial (ENDO optical mapping was performed on sheep left ventricular (LV wedges with intact free-running Purkinje network (N = 7. Preparations were paced on either ENDO or EPI surfaces, or the free-running Purkinje fibers (PFs, mimicking normal activation. EPI and ENDO APDs were assessed for each pacing configuration, before and after (7 min of the onset of no-flow ischemia. Experiments were supported by simulations. In control conditions, maximal APD was found at endocardial PMJ sites. We observed a significant transmural APD gradient for PF pacing with PMJ APD = 347 ± 41 ms and EPI APD = 273 ± 36 ms (p < 0.001. A similar transmural gradient was observed when pacing ENDO (49 ± 31 ms; p = 0.005. However, the gradient was reduced when pacing EPI (37 ± 20 ms; p = 0.005. Global dispersion of repolarization was the most pronounced for EPI pacing. In ischemia, both ENDO and EPI APD were reduced (p = 0.005 and the transmural APD gradient (109 ± 55 ms was increased when pacing ENDO compared to control condition or when pacing EPI (p < 0.05. APD maxima remained localized at functional PMJs during ischemia. Local repolarization dispersion was significantly higher at the PMJ than at other sites. The results were consistent with simulations. We found that the activation sequence modulates repolarization heterogeneity in the ischemic sheep LV. PMJs remain active following ischemia and exert significant influence on local repolarization patterns.

  13. The Secreted Protein C1QL1 and Its Receptor BAI3 Control the Synaptic Connectivity of Excitatory Inputs Converging on Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Séverine M. Sigoillot

    2015-02-01

    Full Text Available Precise patterns of connectivity are established by different types of afferents on a given target neuron, leading to well-defined and non-overlapping synaptic territories. What regulates the specific characteristics of each type of synapse, in terms of number, morphology, and subcellular localization, remains to be understood. Here, we show that the signaling pathway formed by the secreted complement C1Q-related protein C1QL1 and its receptor, the adhesion-GPCR brain angiogenesis inhibitor 3 (BAI3, controls the stereotyped pattern of connectivity established by excitatory afferents on cerebellar Purkinje cells. The BAI3 receptor modulates synaptogenesis of both parallel fiber and climbing fiber afferents. The restricted and timely expression of its ligand C1QL1 in inferior olivary neurons ensures the establishment of the proper synaptic territory for climbing fibers. Given the broad expression of C1QL and BAI proteins in the developing mouse brain, our study reveals a general mechanism contributing to the formation of a functional brain.

  14. Developmental disorders of the brain can be caused by PCBs; low doses of hydroxy-PCBs disrupt thyroid hormone-dependent dendrite formation from Purkinje neurons in culture

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Y; Kimura-Kuroda, J [Tokyo Metropol. Inst. for Neuroscience, Tokyo (Japan); Nagata, I [CREST/ JST, Tokyo (Japan)

    2004-09-15

    Exposure to some environmental chemicals during the perinatal period causes developmental disorders of the brain. Cognitive impairment and hyperactivity in infants were reported in Taiwan, known as Yu-cheng incidents caused by the accidental contamination of polychlorinated biphenyls (PCBs). Together with recent experimental data, Kuroda proposes a hypothesis that spatio-temporal disruptions of developing neuronal circuits by PCB exposure can cause the comobidity of learning disorders (LD), attention deficit hyperactivity disorder (ADHD) and autsm with the co-exposure to other environmental chemicals. PCBs and hydroxylated PCBs (OH-PCBs) have similar chemical structures to thyroid hormones (TH), thyroxine (T4) and triiodothyronine (T3). TH deficiency in the perinatal period causes cretinism children with severe cognitive and mental retardation. In primate model, Rice demonstrates that postnatal exposure to PCBs can dramatically influence later behavioral function. Epidemiological studies also indicate the possible developmental neurotoxicity of PCBs accumulated in human bodies. However, the precise underlying mechanisms and which types of PCB or OH-PCB with such effects have yet to be elucidated. It is important to establish a simple, reproducible, and sensitive in vitro assay for determining the effects of PCBs and OH-PCBs on the development of the central nervous system. Recently Iwasaki et al. established a reporter assay system and disclosed that low doses of PCBs potentially interfere TH-dependent gene expressions. This is the first demonstration that PCBs and OH-PCBs directly affect TH-receptor (TR)-mediated gene expressions crucial to the brain development, through unique mechanism. We also have demonstrated TH-dependent development of Purkinje neurons in vitro using a serum-free chemically defined medium. The degree of dendritic development of Purkinje cells is TH dose-dependent and exhibits high sensitivity in the pM order. Therefore, in the present study

  15. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  16. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  17. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  18. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  19. Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult x-irradiated rats and weaver and reeler mutant mice

    International Nuclear Information System (INIS)

    Shojaeian, H.; Delhaye-Bouchaud, N.; Mariani, J.

    1985-01-01

    Cell death in the developing rat inferior olive precedes the regression of the polyneuronal innervation of Purkinje cells by olivary axons (i.e., climbing fibers), suggesting that the involution of the redundant olivocerebellar contacts is caused by a withdrawal of supernumerary axonal collaterals rather than by degeneration of the parent cell. However, a subsequent apparent increase of the olivary population occurs, which could eventually mask a residual presynaptic cell death taking place at the same time. Therefore, cell counts were performed in the inferior olive of adult rodents in which the multiple innervation of Purkinje cells by olivary axons is maintained, with the idea that if cell death plays a role in the regression of supernumerary climbing fibers, the number of olivary cells should be higher in these animals than in their controls. The results show that the size of the cell population in the inferior olive of weaver and reeler mutant mice and rats degranulated by early postnatal x-irradiation does not differ significantly from that of their controls. Similarly, the distribution of the cells in the four main olivary subnuclei is not modified in weaver mice and x-irradiated rats. The present data further support the assumption that the regression of the polyneuronal innervation of Purkinje cells occurs independently of cell death in the presynaptic population

  20. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  1. Acute and long-term Purkinje cell loss following a single ethanol binge during the early third trimester equivalent in the rat.

    Science.gov (United States)

    Idrus, Nirelia M; Napper, Ruth M A

    2012-08-01

    In the rat, binge-like ethanol (EtOH) exposure during the early neonatal period (a developmental period equivalent to the human third trimester) can result in a permanent deficit of cerebellar Purkinje cells (Pcells). However, the consequences of a moderate binge alcohol exposure on a single day during this postnatal period have not been established. This is an issue of importance as many pregnant women binge drink periodically at social drinking levels. This study aimed to identify both the acute and long-term effects of exposure to a single alcohol binge that achieved a mean peak blood EtOH concentration of approximately 250 mg/dl during early postnatal life using a rat model of fetal alcohol spectrum disorders. Acute apoptotic Pcell death 10 hours after a moderate dose binge EtOH exposure from postnatal days (PDs) 0 to 10 was assessed using active caspase-3 immunolabeling. Acute Pcell apoptosis was quantified in cerebellar vermal lobules I-X using the physical disector method. Long-term effects were assessed at PD 60 using stereological methods to determine total Pcell numbers in the vermis, lobule III, and lobule IX, following a moderate dose binge EtOH exposure at PDs 0, 2, or 4. Acute apoptosis was induced by EtOH on PDs 1 to 8 in a time and lobular-dependent manner. For EtOH exposure on PD 2, significant long-term Pcell loss occurred in lobule III. EtOH exposure on PD 4 resulted in significant long-term Pcell loss throughout the entire vermis. These results indicate that a single, early EtOH episode of moderate dose can create significant and permanent Pcell loss in the developing cerebellum. Copyright © 2012 by the Research Society on Alcoholism.

  2. Studying cerebellar circuits by remote control of selected neuronal types with GABA-A receptors

    Directory of Open Access Journals (Sweden)

    William Wisden

    2009-12-01

    Full Text Available Although GABA-A receptor-mediated inhibition of cerebellar Purkinje cells by molecular layer interneurons (MLIs has been studied intensely on the cellular level, it has remained unclear how this inhibition regulates cerebellum-dependent behaviour. We have implemented two complementary approaches to investigate the function of the MLI-Purkinje cell synapse on the behavioral level. In the first approach we permanently disrupted inhibitory fast synaptic transmission at the synapse by genetically removing the postsynaptic GABA-A receptors from Purkinje cells (PC-Δγ2 mice. We found that chronic disruption of the MLI-Purkinje cell synapse strongly impaired cerebellar learning of the vestibular occular reflex (VOR, presumably by disrupting the temporal patterns of Purkinje cell activity. However, in PC-Δγ2 mice the baseline VOR reflex was only mildly affected; indeed PC-Δγ2 mice showed no ataxia or gait abnormalities suggesting that MLI control of Purkinje cell activity is either not involved in ongoing motor tasks or that the system has found a way to compensate for its loss. To investigate the latter possibility we have developed an alternative genetic technique; we made the MLI-Purkinje cell synapse selectively sensitive to rapid manipulation with the GABAA receptor modulator zolpidem (PC-γ2-swap mice. Minutes after intraperitoneal zolpidem injection, these PC-γ2-swap mice developed severe motor abnormalities, revealing a substantial contribution of the MLI-Purkinje cell synapse to real time motor control. The cell-type selective permanent knockout of synaptic GABAergic input, and the fast reversible modulation of GABAergic input at the same synapse illustrate how pursuing both strategies gives a fuller view.

  3. Zebrin II Is Expressed in Sagittal Stripes in the Cerebellum of Dragon Lizards (Ctenophorus sp.).

    Science.gov (United States)

    Wylie, Douglas R; Hoops, Daniel; Aspden, Joel W; Iwaniuk, Andrew N

    2016-01-01

    Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). In contrast, in snakes and turtles, ZII is not expressed heterogeneously; rather all Purkinje cells are ZII+. Here, we examined the expression of ZII in the cerebellum of lizards to elucidate the evolutionary origins of ZII stripes in Sauropsida. We focused on the central netted dragon (Ctenophorus nuchalis) but also examined cerebellar ZII expression in 5 other dragon species (Ctenophorus spp.). In contrast to what has been observed in snakes and turtles, we found that in these lizards, ZII is heterogeneously expressed. In the posterior part of the cerebellum, on each side of the midline, there were 3 sagittal stripes consisting of Purkinje cells with high ZII expression (ZII+) alternating with 2 sagittal stripes with weaker ZII expression (ZIIw). More anteriorly, most of the Purkinje cells were ZII+, except laterally, where the Purkinje cells did not express ZII (ZII-). Finally, all Purkinje cells in the auricle (flocculus) were ZII-. Overall, the parasagittal heterogeneous expression of ZII in the cerebellum of lizards is similar to that in mammals and birds, and contrasts with the homogenous ZII+ expression seen in snakes and turtles. We suggest that a sagittal heterogeneous expression of ZII represents the ancestral condition in stem reptiles which was lost in snakes and turtles. © 2017 S. Karger AG, Basel.

  4. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Sreenivasa R Sankavaram

    Full Text Available It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss.In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei.Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis, we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord.This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord

  5. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  6. Preliminary morphological and morphometric study of rat cerebellum following sodium arsenite exposure during rapid brain growth (RBG) period

    International Nuclear Information System (INIS)

    Dhar, Pushpa; Mohari, Nivedita; Mehra, Raj D.

    2007-01-01

    The effects of arsenic exposure during rapid brain growth (RBG) period were studied in rat brains with emphasis on the Purkinje cells of the cerebellum. The RBG period in rats extends from postnatal day 4 (PND 4) to postnatal day 10 (PND 10) and is reported to be highly vulnerable to environmental insults. Mother reared Wistar rat pups were administered intraperitoneal injections (i.p.) of sodium arsenite (aqueous solution) in doses of 1.0, 1.5 and 2.0 mg/kg body weight (bw) to groups II, III and IV (n = 6 animals/group) from PND 4 to 10 (sub acute). Control animals (group I) received distilled water by the same route. On PND 11, the animals were perfusion fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (PB) with pH 7.4. The cerebellum obtained from these animals was post-fixed and processed for paraffin embedding. Besides studying the morphological characteristics of Purkinje cells in cresyl violet (CV) stained paraffin sections (10 μm), morphometric analysis of Purkinje cells was carried out using Image Analysis System (Image Proplus software version 4.5) attached to Nikon Microphot-FX microscope. The results showed that on PND 11, the Purkinje cells were arranged in multiple layers extending from Purkinje cell layer (PL) to outer part of granule cell layer (GL) in experimental animals (contrary to monolayer arrangement within PL in control animals). Also, delayed maturation (well defined apical cytoplasmic cones and intense basal basophilia) was evident in Purkinje cells of experimental animals on PND 11. The mean Purkinje cell nuclear area was significantly increased in the arsenic treated animals compared to the control animals. The observations of the present study (faulty migration, delayed maturation and alteration in nuclear area measurements of Purkinje cells subsequent to arsenic exposure) thus provided the morphological evidence of structural alterations subsequent to arsenite induced developmental neurotoxicity which could be presumed to be

  7. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.

    Science.gov (United States)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-05-21

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions. Copyright © 2014 the authors 0270-6474/14/347203-13$15.00/0.

  8. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron

    NARCIS (Netherlands)

    J. Luthman (Johannes); F.E. Hoebeek (Freek); R. Maex (Reinoud); N. Davey (Neil); R. Adams (Rod); C.I. de Zeeuw (Chris); V. Steuber (Volker)

    2011-01-01

    textabstractNeurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is

  9. The morpho/functional discrepancy in the cerebellar cortex: Looks alone are deceptive.

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2008-12-01

    Full Text Available In a recent report we demonstrated that stimulation of cerebellar mossy fibers synchronously activates Purkinje cells that are located directly above the site of stimulation. We found that the activated Purkinje cells are arranged in a radial patch on the cerebellar surface and that this organization is independent of the integrity of the inhibitory system. This arrangement of activity is counterintuitive. The anatomical structure with the extensive parallel fiber system implies that mossy fiber stimulation will activate Purkinje cells along a beam of parallel fibers. In this short review we highlight this discrepancy between anatomical structure and functional dynamics and suggest a plausible underlying mechanism.

  10. Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse.

    Science.gov (United States)

    Finnie, J W; Blumbergs, P C; Manavis, J

    2016-05-01

    This study examined the temporal sequence of post-mortem changes in the cerebellar cortical granular and Purkinje cell layers of mice kept at a constant ambient temperature for up to 4 weeks. Nuclei of granule cell microneurons became pyknotic early after death, increasing progressively until, by 7 days, widespread nuclear lysis resulted in marked cellular depletion of the granular layer. Purkinje cells were relatively unaltered until about 96 h post mortem, at which time there was shrinkage and multivacuolation of the amphophilic cytoplasm, nuclear hyperchromasia and, sometimes, a perinuclear clear space. By 7 days, Purkinje cells had hypereosinophilic cytoplasm and frequent nuclear pyknosis. By 2 weeks after death, Purkinje cells showed homogenization, the cytoplasm being uniformly eosinophilic, progressing to a 'ghost-like' appearance in which the cytoplasm had pale eosinophilic staining with indistinct cell boundaries, and nuclei often absent. The results of this study could assist in differentiating post-mortem autolysis from ante-mortem lesions in the cerebellar cortex and determining the post-mortem interval. Moreover, this information could be useful when interpreting brain lesions in valuable mice found dead unexpectedly during the course of biomedical experiments. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  12. Neuronal death and synapse elimination in the olivocerebellar system: III. Cell counts in the inferior olive of developing rats X-irradiated from birth

    International Nuclear Information System (INIS)

    Geoffroy, B.; Shojaeian, H.; Delhaye-Bouchaud, N.; Mariani, J.

    1988-01-01

    The change with age of cell number in the developing inferior olivary nucleus (ION) of the normal rat, compared to the time course of the regression of the polyneuronal innervation of Purkinje cells by olivary axons (i.e., the climbing fibers), suggests that the involution of the redundant olivocerebellar contacts is caused by a reduction of axonal branching rather than by degeneration of the parent cells, this being also suggested by the normal size of the olivary population in adult rodents whose Purkinje cells retain polyneuronal innervation. However, the similar size of the adult ION population does not necessarily imply that the development history is the same in normal and multiply innervated adult rodents. Therefore, cell counts were performed in developing rats which had been repeatedly X-irradiated from birth until postnatal day 14 and which retained polyneuronal innervation. The results show that, although less marked than during normal development, the evolution of the ION population is also characterized by a phase of cell loss followed by a slow increase. However, the number of cells in X-irradiated rats is higher than in their controls from birth to postnatal day 15 but becomes identical at 20 days and later. These data confirm that cell death in the ION does not play a major role in the shaping of olivocerebellar connections

  13. Neuropharmacologic characterization of strychnine seizure potentiation in the inferior olive lesioned rat

    International Nuclear Information System (INIS)

    Anderson, M.C.

    1988-01-01

    Cerebellar stimulation is associated with anticonvulsant activity in several animal models. There are two afferent inputs to cerebellar Purkinje cells: (1) parallel fibers, which relay mossy fiber input, from brainstem, spinal cord, cerebral cortex and cerebellum, and (2) climbing fibers, arising from the inferior olive. Both climbing and parallel fibers release excitatory amino acid neurotransmitters, which stimulate Purkinje cells and cause GABA release in the deep cerebellar nuclei. Climbing fibers also exert tonic inhibition over Purkinje cell activity by producing an absolute refractory period following stimulation, rendering Purkinje cells unresponsive to parallel fibers. Climbing fiber deafferentation by bilateral inferior olive lesions produced a specific decrease in threshold for strychnine-seizures in the rat. Inferior olive lesions produced no change in threshold to seizures induced by picrotoxin, bicuculline or pentylenetetrazole. Inferior olive lesions also produced abnormal motor behavior including, myoclonus, backward locomotion and hyperextension, which was significantly aggravated by strychnine, brucine, picrotoxin, bicuculline and pentylenetetrazole. Inferior olive lesions produced a significant increase in quisqualate sensitive [ 3 H]AMPA ((Rs)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding to cerebellar membranes. AMPA is a glutamate analog with high affinity for quisqualate sensitive receptors

  14. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum.

    Science.gov (United States)

    Delbaere, Joke; Van Herck, Stijn L J; Bourgeois, Nele M A; Vancamp, Pieter; Yang, Shuo; Wingate, Richard J T; Darras, Veerle M

    2016-12-01

    The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T 3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T 3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may

  15. Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.

    Science.gov (United States)

    Louis, Elan D

    2016-06-01

    A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.

  16. Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1 in normal and transformed cerebellar cells

    Directory of Open Access Journals (Sweden)

    Baader Stephan L

    2007-10-01

    Full Text Available Abstract Background Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the developing murine cerebellum and human medulloblastoma specimens. Results During development, Mtss1 is transiently expressed in granule cells, from the time point they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells. Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells. Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear localization sequences. These overlap with the actin filament binding site of Mtss1, and one also harbors a potential PKA and PKC phosphorylation site. Conclusion Both the pattern of expression and splicing of Mtss1 is developmentally regulated in the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for cytoskeletal dynamics in developing and mature cerebellar neurons.

  17. Measuring Feedforward Inhibition and Its Impact on Local Circuit Function.

    Science.gov (United States)

    Hull, Court

    2017-05-01

    This protocol describes a series of approaches to measure feedforward inhibition in acute brain slices from the cerebellar cortex. Using whole-cell voltage and current clamp recordings from Purkinje cells in conjunction with electrical stimulation of the parallel fibers, these methods demonstrate how to measure the relationship between excitation and inhibition in a feedforward circuit. This protocol also describes how to measure the impact of feedforward inhibition on Purkinje cell excitability, with an emphasis on spike timing. © 2017 Cold Spring Harbor Laboratory Press.

  18. Cerebellar abiotrophy in a family of Border Collie dogs.

    Science.gov (United States)

    Sandy, J R; Slocombe, R E; Mitten, R W; Jedwab, D

    2002-11-01

    Cerebellar abiotrophies have a nonsex-linked, autosomal, recessively inherited basis in a number of species, and lesions typically reflect profound and progressive loss of Purkinje cells. In this report, an unusual form of abiotrophy is described for two sibling Border Collies. Extensive loss of the cerebellar granular cell layer was present with relative sparing of Purkinje cells of two female pups. The biochemical basis for this form of cerebellar abiotrophy is unknown, but the lack of disease in other siblings supports an autosomal recessive mode of inheritance.

  19. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  20. Optimal properties of analog perceptrons with excitatory weights.

    Directory of Open Access Journals (Sweden)

    Claudia Clopath

    Full Text Available The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF to Purkinje Cell (PC synapses is guided by the Climbing fibers (CF, which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as seen experimentally.

  1. The cerebellum for jocks and nerds alike

    Directory of Open Access Journals (Sweden)

    Laurentiu ePopa

    2014-06-01

    Full Text Available Historically the cerebellum has been implicated in the control of movement. However, the cerebellum’s role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex’s capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal

  2. The cerebellum for jocks and nerds alike.

    Science.gov (United States)

    Popa, Laurentiu S; Hewitt, Angela L; Ebner, Timothy J

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non

  3. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    International Nuclear Information System (INIS)

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H.

    1990-01-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C 6 glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C 6 glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion

  4. LINGO-1 and Neurodegeneration: Pathophysiologic Clues for Essential Tremor?

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-dong

    2012-03-01

    Full Text Available Essential tremor (ET, one of the most common adult-onset movement disorders, has been associated with cerebellar Purkinje cell degeneration and formation of brainstem Lewy bodies. Recent findings suggest that genetic variants of the leucine-rich repeat and Ig domain containing 1 (LINGO-1 gene could be risk factors for ET. The LINGO-1 protein contains both leucine-rich repeat (LRR and immunoglobulin (Ig-like domains in its extracellular region, as well as a transmembrane domain and a short cytoplasmic tail. LINGO-1 can form a ternary complex with Nogo-66 receptor (NgR1 and p75. Binding of LINGO-1 with NgR1 can activate the NgR1 signaling pathway, leading to inhibition of oligodendrocyte differentiation and myelination in the central nervous system. LINGO-1 has also been found to bind with epidermal growth factor receptor (EGFR and induce downregulation of the activity of EGFR–PI3K–Akt signaling, which might decrease Purkinje cell survival. Therefore, it is possible that genetic variants of LINGO-1, either alone or in combination with other genetic or environmental factors, act to increase LINGO-1 expression levels in Purkinje cells and confer a risk to Purkinje cell survival in the cerebellum. Here, we provide a concise summary of the link between LINGO-1 and neurodegeneration and discuss various hypotheses as to how this could be potentially relevant to ET pathogenesis.

  5. JPRS Report: Science and Technology, Central Eurasia: Life Sciences

    National Research Council Canada - National Science Library

    1993-01-01

    ... on Ultrastructure of Parallel Fiber-Purkinje Cell Synapses in Frog Cerebellum, Cloning and Expression of Human Proinsulin Gene in Bacillus Amyloliquefaciens Selected for Low Exoprotease Activity, Potato Cell...

  6. Solo/Trio8, a membrane-associated short isoform of Trio, modulates endosome dynamics and neurite elongation.

    Science.gov (United States)

    Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke

    2006-09-01

    With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.

  7. Radiation 2006. In association with the Polymer Division, Royal Australian Chemical Institute. Incorporating the 21st AINSE Radiation Chemistry Conference and the 18th Radiation Biology Conference, conference handbook

    International Nuclear Information System (INIS)

    Lavin, M. F.; Luff, J.; Peng, Cheng; Chen, P.; Gueven, N.; Bottle, S.; Hosokawa, K.

    2006-01-01

    Full text: Ataxia-telangiectasia (A-T) is an autosomal recessive genetic disorder characterized by immunodeficiency, cancer predisposition and neurological degeneration. Cells from A-T patients are hypersensitive to radiation, display cell cycle checkpoint defects and genome instability. The gene product defective in this syndrome, ATM, is activated by double strand breaks in DNA and signals these to the DNA repair machinery and the cell cycle checkpoints via a series of phosphorylated intermediates including p53, Chk2, Nbs1 and SMC1. It has been suggested that the neurodegenerative phenotype in A-T patients arises as a consequence of oxidative stress. This is supported by observations that A-T patients have significantly reduced levels of total antioxidant capacity and that A-T cells in culture are more sensitive to oxidative stress that normal cells. We have demonstrated that in vitro survival of cerebellar Purkinje cells of Atm-mutant mice is significantly reduced compared to their wild-type littermates and most neurons from these animals have dramatically reduced dendritic branching. We also showed that in vitro administration of the antioxidant 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) to Atm-deficient mice reduced the rate of cell death of Purkinje cells and enhanced dendritogenesis to wild-type levels. Intraperitoneal administration of this antioxidant throughout pregnancy enhanced survival of Purkinje cell neurons from Atm-disrupted animals and protected against oxidative stress in older animals as determined by levels of nitro-tyrosinated proteins and amount of catalase activity in the cerebellum. This antioxidant, a member of the nitroxide group, is a stable, free radical, capable of scavenging reactive oxygen species and may also circumvent Fenton-derived pathways by oxidizing the metals involved. We have recently demonstrated that CTMIO correct neuro-behavioural deficits in these mice and reduces oxidative damage to Purkinje cells. We

  8. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum.

    Science.gov (United States)

    Obana, Edwin A; Lundell, Travis G; Yi, Kevin J; Radomski, Kryslaine L; Zhou, Qiong; Doughty, Martin L

    2015-06-01

    Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly.

  9. Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers.

    Science.gov (United States)

    Yuzaki, Michisuke

    2010-07-01

    Several C1q family members, especially the Cbln and C1q-like subfamilies, are highly and predominantly expressed in the central nervous system. Cbln1, a member of the Cbln subfamily, plays two unique roles at parallel fiber (PF)-Purkinje cell synapses in the cerebellum: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytotic pathway. The delta2 glutamate receptor (GluD2), which is predominantly expressed in Purkinje cells, plays similar critical roles in the cerebellum. In addition, viral expression of GluD2 or the application of recombinant Cbln1 induces PF-Purkinje cell synaptogenesis in vitro and in vivo. Antigen-unmasking methods were necessary to reveal the immunoreactivities for endogenous Cbln1 and GluD2 at the synaptic junction of PF synapses. We propose that Cbln1 and GluD2 are located at the synaptic cleft, where various proteins undergo intricate molecular interactions with each other, and serve as a bidirectional synaptic organizer. © The Author (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation.

    Directory of Open Access Journals (Sweden)

    Kirsten Ridder

    2014-06-01

    Full Text Available Mechanisms behind how the immune system signals to the brain in response to systemic inflammation are not fully understood. Transgenic mice expressing Cre recombinase specifically in the hematopoietic lineage in a Cre reporter background display recombination and marker gene expression in Purkinje neurons. Here we show that reportergene expression in neurons is caused by intercellular transfer of functional Cre recombinase messenger RNA from immune cells into neurons in the absence of cell fusion. In vitro purified secreted extracellular vesicles (EVs from blood cells contain Cre mRNA, which induces recombination in neurons when injected into the brain. Although Cre-mediated recombination events in the brain occur very rarely in healthy animals, their number increases considerably in different injury models, particularly under inflammatory conditions, and extend beyond Purkinje neurons to other neuronal populations in cortex, hippocampus, and substantia nigra. Recombined Purkinje neurons differ in their miRNA profile from their nonrecombined counterparts, indicating physiological significance. These observations reveal the existence of a previously unrecognized mechanism to communicate RNA-based signals between the hematopoietic system and various organs, including the brain, in response to inflammation.

  11. Histomorphologic and Immunohistochemical Characterization of a Cardiac Purkinjeoma in a Bearded Seal (Erignathus barbatus

    Directory of Open Access Journals (Sweden)

    G. Krafsur

    2014-01-01

    Full Text Available The most common cardiac tumors of heart muscle are rhabdomyomas, solitary or multiple benign tumors of striated muscle origin. While cardiac rhabdomyomas are well described in human medical literature, limited information depicting the occurrence of cardiac rhabdomyomas in veterinary species exists. A case of multiple firm white nonencapsulated nodules in the heart of a bearded seal is described. Microscopic findings included cytoplasmic vacuolization with formation of spider cells, glycogen vacuoles, and striated myofibrils. These cells expressed immunoreactivity for neuron-specific enolase and protein gene product 9.5, a marker for neuronal tissue and Purkinje fiber cells. Immunoreactivity for protein gene product 9.5 along with other microscopic findings substantiates Purkinje fiber cell origin of the cardiac rhabdomyoma in the bearded seal and use of the term purkinjeoma to describe this lesion.

  12. Localizing genes to cerebellar layers by classifying ISH images.

    Directory of Open Access Journals (Sweden)

    Lior Kirsch

    Full Text Available Gene expression controls how the brain develops and functions. Understanding control processes in the brain is particularly hard since they involve numerous types of neurons and glia, and very little is known about which genes are expressed in which cells and brain layers. Here we describe an approach to detect genes whose expression is primarily localized to a specific brain layer and apply it to the mouse cerebellum. We learn typical spatial patterns of expression from a few markers that are known to be localized to specific layers, and use these patterns to predict localization for new genes. We analyze images of in-situ hybridization (ISH experiments, which we represent using histograms of local binary patterns (LBP and train image classifiers and gene classifiers for four layers of the cerebellum: the Purkinje, granular, molecular and white matter layer. On held-out data, the layer classifiers achieve accuracy above 94% (AUC by representing each image at multiple scales and by combining multiple image scores into a single gene-level decision. When applied to the full mouse genome, the classifiers predict specific layer localization for hundreds of new genes in the Purkinje and granular layers. Many genes localized to the Purkinje layer are likely to be expressed in astrocytes, and many others are involved in lipid metabolism, possibly due to the unusual size of Purkinje cells.

  13. Differential 3’ processing of specific transcripts expands regulatory and protein diversity across neuronal cell types

    Science.gov (United States)

    Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E

    2018-01-01

    Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408

  14. Expression of Brain-Derived Neurotrophic Factor (BDNF Increases the Resistance of Neurons to Death in the Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    I. V. Ostrova

    2015-01-01

    Full Text Available A search for substances that are able to protect brain cells from the damaging effect of hypoxia remains one of the most relevant issues in modern neurobiology and medicine. Whether neurotrophic factors, brain-derived neurotrophic factor (BDNF protein in particular, can be used to treat neurological diseases is the subject of wide speculation in the literature now. However, how the expression of this protein in the brain neurons changes after systemic circulatory arrest in the postresuscitation period remains uncertain.Objective: to estimate the level of BDNF expression in the highly ischemia-sensitive neuronal population of cerebellar Purkinje cells and the value of BDNF in the resistance of neurons to ischemia-reperfusion.Materials and methods. In mature outbred male albino rats (n=11, the heart was stopped under ether anesthesia at 12 minutes via intrathoracic ligation of the vascular fascicle, followed by revivification. A control group included pseudo-operated animals (n=11. On days 7 after revivification, a morphometric analysis of Nissl-stained paraffin sections 5—6 μm thick was used to determine the total number of Purkinje cells per 1 mm of their layer length. The expression of BDNF protein in the Purkinje cells was immunohistochemically examined by an indirect peroxidase-antiperoxidase test using primary polyclonal antibodies against BDNF. The count of Purkinje cells with different immune responses to BDNF protein was calculated. The intensity of BDNF expression was estimated from the mean optical density. Results. 12-minute systemic circulatory arrest in the rats resulted in a 12.5% reduction in the number of Purkinje cells. The immunohistochemical examination revealed a lower numbers of BDNF– neurons in the resuscitated rats. In this case, the count of BDNF+ and BDNF++ neurons corresponded to their reference level. Consequently, only BDNF-negative neurons, i.e. those that failed to express BDNF protein, died. Analysis of the

  15. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  16. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  17. The organization of plasticity in the cerebellar cortex: from synapses to control.

    Science.gov (United States)

    D'Angelo, Egidio

    2014-01-01

    The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing. © 2014 Elsevier B.V. All rights reserved.

  18. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    Science.gov (United States)

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  20. Paroxysmal atrioventricular block: Electrophysiological mechanism of phase 4 conduction block in the His-Purkinje system: A comparison with phase 3 block.

    Science.gov (United States)

    Shenasa, Mohammad; Josephson, Mark E; Wit, Andrew L

    2017-11-01

    Paroxysmal atrioventricular (A-V) block is relatively rare, and due to its transient nature, it is often under recognized. It is often triggered by atrial, junctional, or ventricular premature beats, and occurs in the presence of a diseased His-Purkinje system (HPS). Here, we present a 45-year-old white male who was admitted for observation due to recurrent syncope and near-syncope, who had paroxysmal A-V block. The likely cellular electrophysiological mechanisms(s) of paroxysmal A-V block and its differential diagnosis and management are discussed. Continuous electrocardiographic monitoring was done while the patient was in the cardiac unit. Multiple episodes of paroxysmal A-V block were documented in this case. All episodes were initiated and terminated with atrial/junctional premature beats. The patient underwent permanent pacemaker implantation and has remained asymptomatic since then. Paroxysmal A-V block is rare and often causes syncope or near-syncope. Permanent pacemaker implantation is indicated according to the current guidelines. Paroxysmal A-V block occurs in the setting of diseased HPS and is bradycardia-dependent. The detailed electrophysiological mechanisms, which involve phase 4 diastolic depolarization, and differential diagnosis are discussed. © 2017 Wiley Periodicals, Inc.

  1. Cytoplasmic location of α1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF aggregate is sufficient to cause cell death.

    Directory of Open Access Journals (Sweden)

    Makoto Takahashi

    Full Text Available The human α1A voltage-dependent calcium channel (Cav2.1 is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C-tail contains a small poly-glutamine (Q tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6. A recent study has shown that a 75-kDa C-terminal fragment (CTF containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (rCTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12 cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range than with Q13 (normal-length. Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB and phosphorylated-CREB (p-CREB in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei.

  2. Cytoplasmic Location of α1A Voltage-Gated Calcium Channel C-Terminal Fragment (Cav2.1-CTF) Aggregate Is Sufficient to Cause Cell Death

    Science.gov (United States)

    Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya

    2013-01-01

    The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410

  3. Kolaviron and vitamin E ameliorate hematotoxicity and oxidative stress in brains of prepubertal rats treated with an anticonvulsant phenytoin.

    Science.gov (United States)

    Owoeye, Olatunde; Adedara, Isaac A; Bakare, Oluwafemi S; Adeyemo, Oluwatobi A; Egun, Christa; Farombi, Ebenezer O

    2014-06-01

    Phenytoin (PHT), an anticonvulsant agent, widely used for the treatment of epilepsy has been reported to exhibit toxic side effects. The present study investigated the protective effects of kolaviron and vitamin E on hematotoxicity and neurotoxicity induced by phenytoin, in prepubertal male rats. The animals were treated with PHT (75 mg/kg) separately or in combination with either kolaviron (200 mg/kg) or vitamin E (500 mg/kg) for 14 days. Phenytoin treatment significantly decreased the hemoglobin, white blood cells, lymphocytes and mean corpuscular volume levels without affecting red blood cell, packed cell volume, neutrophils, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration when compared with the control rats. There was a significant increase in lipid peroxidation and hydrogen peroxide levels with marked depletion in antioxidant status in brains of PHT-treated rats when compared with the control. Although PHT treatment had no effect on the granular layer, widest diameter of Purkinje cells and Purkinje layer of the cerebellum, it significantly reduced its molecular layer and the density of Purkinje cell. Administration of PHT significantly reduced the densities of the granule cells of the dentate gyrus and the pyramidal neurons of the cornu ammonis of hippocampus proper. Co-treatment with kolaviron and vitamin E effectively reversed the PHT-mediated alterations in the hematology, brain antioxidant status and histomorphometry when compared to PHT only. Taken together, the present data indicate the abilities of kolaviron and vitamin E to ameliorate phenytoin-induced hematotoxicity and oxidative stress in brains of rats.

  4. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    Science.gov (United States)

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  5. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model.

    Science.gov (United States)

    Tabereaux, Paul B; Walcott, Greg P; Rogers, Jack M; Kim, Jong; Dosdall, Derek J; Robertson, Peter G; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E

    2007-09-04

    The roles of Purkinje fibers (PFs) and focal wave fronts, if any, in the maintenance of ventricular fibrillation (VF) are unknown. If PFs are involved in VF maintenance, it should be possible to map wave fronts propagating from PFs into the working ventricular myocardium during VF. If wave fronts ever arise focally during VF, it should be possible to map them appearing de novo. Six canine hearts were isolated, and the left main coronary artery was cannulated and perfused. The left ventricular cavity was exposed, which allowed direct endocardial mapping of the anterior papillary muscle insertion. Nonperfused VF was induced, and 6 segments of data, each 5 seconds long, were analyzed during 10 minutes of VF. During 36 segments of data that were analyzed, 1018 PF or focal wave fronts of activation were identified. In 534 wave fronts, activation was mapped propagating from working ventricular myocardium to PF. In 142 wave fronts, activation was mapped propagating from PF to working ventricular myocardium. In 342 wave fronts, activation was mapped arising focally. More than 1 of these 3 patterns could occur in the same wave front. PFs are highly active throughout the first 10 minutes of VF. In addition to retrograde propagation from the working ventricular myocardium to PFs, antegrade propagation occurs from PFs to working ventricular myocardium, which suggests PFs are important in VF maintenance. Prior plunge needle recordings in dogs indicate activation propagates from the endocardium toward the epicardium after 1 minute of VF, which suggests that focal sites on the endocardium may represent foci and not breakthrough. If so, in addition to reentry, abnormal automaticity or triggered activity may also occur during VF.

  6. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  7. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    Science.gov (United States)

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse

    Science.gov (United States)

    Kim, Jeesun

    2012-01-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm−/− mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm−/− mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm−/− mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm−/− mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm−/− mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm−/− mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  9. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures

    DEFF Research Database (Denmark)

    Skinner, P J; Koshy, B T; Cummings, C J

    1997-01-01

    a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic...... the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures approximately 0.......5 microm across, whereas the expanded ataxin-1 localizes to a single approximately 2-microm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show...

  10. 3D Culture for Self-Formation of the Cerebellum from Human Pluripotent Stem Cells Through Induction of the Isthmic Organizer.

    Science.gov (United States)

    Muguruma, Keiko

    2017-01-01

    Pluripotent stem cells (PSCs) possess self-organizing abilities in 3D culture. This property has been demonstrated in recent studies, including the generation of various neuroectodermal and endodermal tissues. For example, PSCs are able to differentiate into specific type of neural tissues, such as the neocortex and the optic cup, in response to local positional information brought about by signals during embryogenesis. In contrast, the generation of cerebellar tissue from PSCs requires a secondary induction by a signaling center, called the isthmic organizer, which first appears in the cell aggregate in 3D culture. Such developmental complexity of cerebellum has hampered establishment of effective differentiation culture system from PSCs, thus far.We recently reported that cerebellar neurons are generated from human PSCs (hPSCs). In this chapter, we describe an efficient protocol for differentiation of 3D cerebellar neuroepithelium from hPSCs. We also describe the protocols for further differentiation into specific neurons in the cerebellar cortex, such as Purkinje cells and the granule cells.

  11. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    Science.gov (United States)

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  12. PIXE maps of intracellular element distribution in cerebellar neurons

    Czech Academy of Sciences Publication Activity Database

    Kranda, Karel; Havránek, Vladimír; Purkrtová, Z.; Vožeh, F.; Hájková, L.

    2012-01-01

    Roč. 22, 1-2 (2012), s. 65-72 ISSN 0129-0835 R&D Projects: GA ČR GA309/09/1189 Institutional support: RVO:61389005 Keywords : MicroPIXE * 2D-mapping * cerebellum * mutant mice * Purkinje cells * cell death * metan concentration Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  13. Cerebellar Circuit Mechanisms Which Accompany Coordinated Limb Trajectory Patterns in the Rat: Use of a Model of Spontaneous Changes

    National Research Council Canada - National Science Library

    Smith, Sherry

    1997-01-01

    ...) and its target, Purkinje cells in the paravermal cerebellum. In many cases, simultaneous recordings were carried out from as many as 48 neurons in both areas during tredmill locomotion tasks used to evaluate concomitant sensorimotor performance...

  14. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    Science.gov (United States)

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  15. Cerebellar neurodegeneration in the absence of microRNAs

    Science.gov (United States)

    Schaefer, Anne; O'Carroll, Dónal; Tan, Chan Lek; Hillman, Dean; Sugimori, Mutsuyuki; Llinas, Rodolfo; Greengard, Paul

    2007-01-01

    Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell–specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders. PMID:17606634

  16. behavioural, biochemical and neurocytoarchitechural impact of ...

    African Journals Online (AJOL)

    2017-01-20

    Jan 20, 2017 ... dimensions, 100cm wide, 100cm long, and 50cm .... eyes color in the short term. Although .... coordination and memory function (Callaghan et al., 2006 .... of cerebellar Purkinje cells modulated by sensory stimulation. Nature ...

  17. The role of Abcb5 alleles in susceptibility to haloperidol-induced toxicity in mice and humans.

    KAUST Repository

    Zheng, Ming; Zhang, Haili; Dill, David L; Clark, J David; Tu, Susan; Yablonovitch, Arielle L; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M; Deng, Suhua; Eberlin, Livia S; Zare, Richard N; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary

    2015-01-01

    that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution

  18. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    International Nuclear Information System (INIS)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm

  19. Questioning the cerebellar doctrine.

    Science.gov (United States)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.

  20. Age-related changes of structures in cerebellar cortex of cat

    Indian Academy of Sciences (India)

    Madhu

    ness of the cerebellar cortex as well as loss of neurons, and hypertrophy and ... Purkinje cells. (PCs) in old cats showed much fewer NF-IR dendrites than those in young adults. ... diminution in motor control and motor learning) underlying.

  1. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    Science.gov (United States)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  2. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    International Nuclear Information System (INIS)

    Khimchenko, A; Bikis, C; Schulz, G; Hieber, S E; Deyhle, H; Thalmann, P; Müller, B; Zdora, M-C; Zanette, I; Vila-Comamala, J; Schweighauser, G; Hench, J

    2017-01-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers ( Stratum moleculare and Stratum granulosum ), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H and E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology. (paper)

  3. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts.

    Science.gov (United States)

    Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei

    2013-09-01

    Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell

  4. A single episode of neonatal seizures alters the cerebellum of immature rats

    Czech Academy of Sciences Publication Activity Database

    Lomoio, S.; Necchi, D.; Mareš, Vladislav; Scherini, E.

    2011-01-01

    Roč. 93, č. 1 (2011), s. 17-24 ISSN 0920-1211 Institutional research plan: CEZ:AV0Z50110509 Keywords : metrazol seizures * cerebellum * Purkinje cells * GluR2/3 * GLT1 Subject RIV: FH - Neurology Impact factor: 2.290, year: 2011

  5. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    Science.gov (United States)

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  6. The C1q complement family of synaptic organizers: not just complementary.

    Science.gov (United States)

    Yuzaki, Michisuke

    2017-08-01

    Molecules that regulate formation, differentiation, and maintenance of synapses are called synaptic organizers. Recently, various 'C1q family' proteins have been shown to be released from neurons, and serve as a new class of synaptic organizers. Cbln1 and C1ql1 proteins regulate the formation and maintenance of parallel fiber-Purkinje cell and climbing fiber-Purkinje cell synapses, respectively, in the cerebellum. Cbln1 also modulates the function of postsynaptic delta2 glutamate receptors to regulate synaptic plasticity. C1ql2 and C1ql3, released from mossy fibers, determine the synaptic localization of postsynaptic kainate receptors in the hippocampus. C1ql3 also regulates the formation of synapses between the basolateral amygdala and the prefrontal cortex. These findings indicate the diverse functions of C1q family proteins in various brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups

    Science.gov (United States)

    Sveinsdóttir, Kristbjörg; Länsberg, John-Kalle; Sveinsdóttir, Snjólaug; Garwicz, Martin; Ohlsson, Lennart; Hellström, Ann; Smith, Lois; Gram, Magnus; Ley, David

    2018-01-01

    Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population. PMID:28972955

  8. Cerebellum neurotransmission during postnatal development: [Pt(O,O'-acac)(γ-acac)(DMS)] vs cisplatin and neurotoxicity.

    Science.gov (United States)

    Piccolini, Valeria Maria; Esposito, Alessandra; Dal Bo, Veronica; Insolia, Violetta; Bottone, Maria Grazia; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Bernocchi, Graziella

    2015-02-01

    Several chemotherapeutic drugs are known to cause neurotoxicity. Platinum-based agents in use or in clinical trials display neurotoxic potential accompanied by neurological complications; recent studies have identified a large number of behavioural issues in paediatric oncology patients. To understand the toxicity of platinum drugs at the molecular and cellular levels, this study compares the possible cytotoxic effects of an older platinum compound, cisplatin and a new platinum compound, [Pt(O,O'-acac)(γ-acac)(DMS)], on the CNS of postnatally developing rats, which is much more vulnerable to injury than the CNS of adult rats. Since several drugs interact with neurotransmitters during neuronal maturation, we performed immunostainings with antibodies raised against markers of glutamate and GABA, the major neurotransmitters in the cerebellum. After a single injection of cisplatin at postnatal day 10 (PD10), the labelling of Purkinje cells with the neurotransmitter markers evidenced alterations between PD11 and PD30, i.e. atrophy of the dendrite tree, changes in the distribution of synaptic contacts of parallel and climbing fibres, delay in the elimination of transient synapses on cell soma and severely impaired pinceau formation at the axon hillock. After treatment with [Pt(O,O'-acac)(γ-acac)(DMS)], the sole relevant change concerned the timing of climbing fibres elimination; the transient synapses disappearance on the Purkinje cell soma was delayed in some cells; instead, the growth of Purkinje cell dendrite tree was normal as was the formation of inhibitory synaptic contacts on these neurons. These findings add new evidence not only on the lower neurotoxicity of [Pt(O,O'-acac)(γ-acac)(DMS)] vs cisplatin but also on the involvement of neurotransmitters and relative synaptic connections in the maturation of central nerve tissue. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  10. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2014-11-01

    Full Text Available Angelman syndrome is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3am-/p+ Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of Angelman syndrome, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type mice is missing in Ube3am-/p+ mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3am-/p+ mice. The control exerted by the cerebellum on the excitation vs inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike–timing dependent plasticity (STDP of the pyramidal neurons are discussed in the context of the present hypothesis.

  11. Effects of perinatal hypo- and hyperthyroidism on the levels of nerve growth factor and its low-affinity receptor in cerebellum.

    Science.gov (United States)

    Figueiredo, B C; Otten, U; Strauss, S; Volk, B; Maysinger, D

    1993-04-16

    Deficits or excesses of thyroid hormones during critical periods of mammalian cerebellar development can lead to profound biochemical and morphological abnormalities in this system. The goal of this study was to investigate the effects of perinatal hypo- and hyperthyroidism on the ontogeny of nerve growth factor (NGF) and its low-affinity receptor (p75NGFR) in the rat cerebellum. The concentration of NGF and of p75NGFR immunoreactivity (IR) were measured, several days after birth, in cerebella of rats which had received propylthiouracil (PTU) or thyroxine. NGF concentration was markedly enhanced only on postnatal day 2 (P2) in hyperthyroid rats, whereas in hypothyroid (PTU-treated) rats NGF values were similar to age-matched controls. These observations suggest that thyroid hormone affects NGF synthesis during early periods of cerebellar development. In Purkinje cells of control animals, p75NGFR IR peaked at P10. In hypothyroid rats, the expression of p75NGFR was retarded, peaking at P15, whereas in hyperthyroid rats it was advanced, peaking at P8. The increased p75NGFR IR found in Purkinje cell bodies and the delayed disappearance of p75NGFR IR from the external granular layer of hypothyroid rats suggest different roles for thyroid hormone in the developing cerebellum. We conclude that p75NGFR and NGF are independently regulated by thyroid hormone during critical periods of cerebellar development. The effect of thyroid hormone deficiency on p75NGFR content in Purkinje cells may involve complex mechanisms such as impaired efficiency of axonal transport.

  12. The conducting tissue in the adult chicken atria. A histological and immunohistochemical analysis

    NARCIS (Netherlands)

    de Groot, I. J.; Hardy, G. P.; Sanders, E.; Los, J. A.; Moorman, A. F.

    1985-01-01

    A three-dimensional reconstruction from serial sections of adult chicken heart was made to verify whether Purkinje cells, that can be recognized by a number of well-known histological criteria, form specialized tracts in the adult chicken atria. This reconstruction revealed a loosely arranged

  13. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice

    NARCIS (Netherlands)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-01-01

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised

  14. Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis

    NARCIS (Netherlands)

    Fazio, F.; Notartomaso, S.; Aronica, E.; Storto, M.; Battaglia, G.; Vieira, E.; Gatti, S.; Bruno, V.; Biagioni, F.; Gradini, R.; Nicoletti, F.; Di Marco, R.

    2008-01-01

    Recent evidence suggests that changes in the expression of membrane receptors/ion channels in cerebellar Purkinje cells contribute to the onset of cerebellar motor symptoms in patients with multiple sclerosis (MS). We examined the expression of group-I metabotropic glutamate receptors (mGlu1 and

  15. An Investigation into the Effects of Peptide Neurotransmitters and Intracellular Second Messengers in Rat Central Neurons in Culture.

    Science.gov (United States)

    1988-02-04

    Purkinje neurons. 3. Neuromodulation of synaptic efficacy in an invertebrate preparation that may be a useful model system for the actions of histamine in...neurotransmitters, neuromodulators , affect brain function. Nerve cells are the functional units of the brain, and changes in neuronal activity are ultimately

  16. Behavioral Analysis and Rescue of a Novel Cerebellar Mouse Model of Tuberous Sclerosis Complex

    Science.gov (United States)

    2012-05-01

    including: Purkinje cell loss, general cerebellar hypoplasia, vermal hypoplasia and hyperplasia, reduced gray matter, GABA dysfunction, and decreased...Lond B Biol Sci. 287, 167-201. Cappon, D., 1953. Clinical manifestations of autism and schizophrenia in childhood. Can Med Assoc J. 69, 44-9. Chan

  17. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    OpenAIRE

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified towards one in which sensory input modulates rather than dictate...

  18. Secretin Modulates the Postnatal Development of Mouse Cerebellar Cortex Via PKA- and ERK-dependent Pathways

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Postnatal development of the cerebellum is critical for its intact function such as motor coordination and has been implicated in the pathogenesis of psychiatric disorders. We previously reported that deprivation of secretin (SCT from cerebellar Purkinje neurons impaired motor coordination and motor learning function, while leaving the potential role of SCT in cerebellar development to be determined. SCT and its receptor (SCTR were constitutively expressed in the postnatal cerebellum in a temporal and cell-specific manner. Using a SCT knockout mouse model, we provided direct evidence showing altered developmental patterns of Purkinje cells (PCs and granular cells (GCs. SCT deprivation reduced the PC density, impaired the PC dendritic formation, induced accelerated GC migration and potentiated cerebellar apoptosis. Furthermore, our results indicated the involvement of protein kinase A (PKA and extracellular signal regulated kinase (ERK signaling pathways in SCT-mediated protective effects against neuronal apoptosis. Results of this study illustrated a novel function of SCT in the postnatal development of cerebellum, emphasizing the necessary role of SCT in cerebellar-related functions.

  19. Cerebellum-from J. E. Purkyně up to Contemporary Research.

    Science.gov (United States)

    Vožeh, František

    2017-06-01

    Jan. Evangelista Purkyně, the most famous among Czech physiologists, was the first who identified and described the largest nerve cells in the cerebellum. The most distinguished researchers of the nervous system then recommended naming these neurons Purkinje cells in his honor. Through experiments by Purkinje and his followers, the function of the cerebellum was properly attributed to the precision of motor movements and skills. This traditional concept was valid until early 1990s, when it was readjusted and replenished with new and important findings. It was discovered that the cerebellar cortex contains more neurons than the cerebral cortex and shortly thereafter was gradually revealed that such enormous numbers of neural cells are not without impact on brain functions. It was shown that the cerebellum, in addition to its traditional role, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described in this work.

  20. Differential responses of neuronal and spermatogenic cells to the doppel cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Kefeng Qin

    Full Text Available Although structurally and biochemically similar to the cellular prion (PrP(C, doppel (Dpl is unique in its biological functions. There are no reports about any neurodegenerative diseases induced by Dpl. However the artificial expression of Dpl in the PrP-deficient mouse brain causes ataxia with Purkinje cell death. Abundant Dpl proteins have been found in testis and depletion of the Dpl gene (Prnd causes male infertility. Therefore, we hypothesize different regulations of Prnd in the nerve and male productive systems. In this study, by electrophoretic mobility shift assays we have determined that two different sets of transcription factors are involved in regulation of the Prnd promoter in mouse neuronal N2a and GC-1 spermatogenic (spg cells, i.e., upstream stimulatory factors (USF in both cells, Brn-3 and Sp1 in GC-1 spg cells, and Sp3 in N2a cells, leading to the expression of Dpl in GC-1 spg but not in N2a cells. We have further defined that, in N2a cells, Dpl induces oxidative stress and apoptosis, which stimulate ataxia-telangiectasia mutated (ATM-modulating bindings of transcription factors, p53 and p21, to Prnp promoter, resulting the PrP(C elevation for counteraction of the Dpl cytotoxicity; in contrast, in GC-1 spg cells, phosphorylation of p21 and N-terminal truncated PrP may play roles in the control of Dpl-induced apoptosis, which may benefit the physiological function of Dpl in the male reproduction system.

  1. Cerebellar Codings for Control of Compensatory Eye Movements

    NARCIS (Netherlands)

    M. Schonewille (Martijn)

    2008-01-01

    textabstractThis thesis focuses on the control of the cerebellum on motor behaviour, and more specifically on the role of the cerebellar Purkinje cells in exerting this control. As the cerebellum is an online control system, we look at both motor performance and learning, trying to identify

  2. Questioning the cerebellar doctrine

    NARCIS (Netherlands)

    Galliano, Elisa; De Zeeuw, Chris I

    2014-01-01

    The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells

  3. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  4. Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice

    Science.gov (United States)

    Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.

    2012-01-01

    Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542

  5. Sensitivity difference between anterior and posterior lobes of rat cerebellum to prenatal exposure to 2.5 Gy X-irradiation. A histological study

    International Nuclear Information System (INIS)

    Darmanto, W.; Hayasaka, Shizu; Takagishi, Yoshiko; Aolad, H.M.; Inouye, Minoru

    1997-01-01

    We investigated the histological differences in abnormality between anterior lobes (vermian lobules II, III and culmen IV, V) and posterior lobes (lobules IX, X) of the rat cerebellum following prenatal exposure to X-irradiation. Pregnant rats were exposed to 2.5 Gy X-irradiation at gestation day-21 (GD-21), and pups were sacrificed from birth through 15 days of age. Their cerebella were examined histologically and immunohistochemically for glial fibrillary acidic protein in Bergmann fibers. Extensive cell death was found in the external granular layer (EGL) of the cerebellum on the day of birth. In the anterior lobes, the number of cell deaths was higher than in the posterior lobes. During 5 days after birth, the recovery of EGL was earlier in the posterior lobes than in the anterior lobes. Seven days after birth, Bergmann fibers were more irregular in the anterior lobes than in the posterior lobes. The number of Purkinje cells in ectopic locations was higher in the anterior lobes than in the posterior lobes. The EGL and migrating Purkinje cells showed different responses to X-irradiation in the anterior than in the posterior lobes of the cerebellum. (author)

  6. Histomorphometric studies on the effect of cyanide consumption of ...

    African Journals Online (AJOL)

    The density and size of the Purkinje cells were the same in both the control and experimental groups (P>0.05). Conclusion: Maternal consumption of 500 ppm cyanide in rats does not significantly affect light microscopic prenatal cerebellar development, but causes mild changes in the post-natal life. Maternal cyanide ...

  7. Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms

    Science.gov (United States)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.

  8. Effect of SkQ1 Antioxidant on Structural and Functional Conditions of The Brain in PostResuscitation Period

    Directory of Open Access Journals (Sweden)

    M. L. Lovat

    2016-01-01

    Full Text Available The aim was to assess the efficacy of mitochondriatargeted antioxidant SkQ1 in prevention of structural and functional abnormalities of brain postresuscitation after cardiac arrest.Materials and methods. Adult male Wistar rats (n=19 underwent cardiac arrest for 7 minutes followed by resuscitation. Nine rats were administered with 500 nmol/kg SkQ1 per os with water for 2 weeks (1 week before and 1 week after resuscitation. A control group consisted of shamoperated animals (n=10. At days 4—6 post operation locomotor activity and anxiety («elevated plus maze» test and sensorimotor function of limbs («beam walking» test were examined. Total numbers of neurons per 1 mm of their layer length in vulnerable neuronal populations (cerebellar Purkinje cells and piramidal neurons of hippocampus fields CA1 and CA4 were estimated by histological analysis of the specimens stained with cresyl violet on day 7 postresuscitation. To identify possible mechanisms of SkQ1 action, the immunohistochemical study of a glialderived neurotrophic factor (GDNF expression in piramidal neurons of hippocampus was performed by indirect peroxidaseantiperoxidase method and antiGDNF primary polyclonal antibodies.Results. Ischemiareperfusion resulted in neuronal loss in all studied brain areas followed by reduction in locomotor activity and development of sensorimotor deficit. SkQ1 prevented development of postresuscitative locomotor and sensorimotor irregularities, significantly reduced Purkinje cells loss, prevented death of piramidal neurons in hippocampal field CA4, but not in CA1. Data demonstrated, that iIn Purkinje cells from resuscitated rats treated with SkQ1 there was a significant increase in number of GDNFpositive neurons, which were more resistant to ischemia (transition of GDNFnegative cells toward the category of cells actively expressing this factor that promoted their survival postresuscitation.Conclusion. Data confirm the positive effects of SkQ1

  9. Opsoclonus-myoclonus syndrome: Correlation of radiographic and pathological observations

    International Nuclear Information System (INIS)

    Tuchman, R.F.; Alvarez, L.A.

    1989-01-01

    We report a case of a child with opsoclonus-myoclonus syndrome. Neuroradiological studies indicated a lesion in the cerebellar vermis. A cerebellar biopsy revealed changes consisting of Purkinje and granular cell loss with gliosis. This case report documents the correlation of radiologic and pathological findings in a patient with opsoclonus-myoclonus syndrome. (orig.)

  10. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    Science.gov (United States)

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  11. High-pass filtering and dynamic gain regulation enhance vertical bursts transmission along the mossy fiber pathway of cerebellum

    Directory of Open Access Journals (Sweden)

    Jonathan Mapelli

    2010-05-01

    Full Text Available Signal elaboration in the cerebellum mossy fiber input pathway presents controversial aspects, especially concerning gain regulation and the spot-like (rather than beam-like appearance of granular-to-molecular layer transmission. By using voltage-sensitive dye (VSD imaging in rat cerebellar slices (Mapelli et al., 2010, we found that mossy fiber bursts optimally excited the granular layer above ~50 Hz and the overlaying molecular layer above ~100 Hz, thus generating a cascade of high-pass filters. NMDA receptors enhanced transmission in the granular, while GABA-A receptors depressed transmission in both the granular and molecular layer. Burst transmission gain was controlled through a dynamic frequency-dependent involvement of these receptors. Moreover, while high-frequency transmission was enhanced along vertical lines connecting the granular to molecular layer, no high-frequency enhancement was observed along the parallel fiber axis in the molecular layer. This was probably due to the stronger effect of Purkinje cell GABA-A receptor-mediated inhibition occurring along the parallel fibers than along the granule cell axon ascending branch. The consequent amplification of burst responses along vertical transmission lines could explain the spot-like activation of Purkinje cells observed following punctuate stimulation in vivo .

  12. Experimental analysis of embryogenesis of cerebellum in rat. II. Morphogenetic malformations following x-ray irradiation on day 18 of gestation

    International Nuclear Information System (INIS)

    Das, G.D.

    1977-01-01

    Rat embryos of 18 days gestation were exposed in utero to 170 R of x-ray irradiation. Embryos were collected six hours, 1, 2, and 3 days after irradiation, and animals of 2-, 6-, 15- and 30-day-old postnatal age were sacrificed. Six hours after irradiation pyknosis of cells was noticed in the external granular layer along the posterior aspect of the cerebellum. Neuroblasts, destined to differentiate into Purkinje cells, were found arrested in their migratory path. During subsequent periods of embryogenesis the external granular layer was found recovered, and clustering of the neuroblasts were disorganized and fragmented. This abnormal clustering of neuroblasts was permanent, and the external granular layer followed the same abnormal pattern in its growth. During postnatal development the internal granular layer also was found to follow the abnormal pattern of Purkinje cell layer. Those abnormal developmental events were seen to lead to malformed folia in the anterior regions of the cerebellum. In addition to it the cerebellum of x-ray irradiated animals appeared smaller than the normal. Issues having a bearing on the differential radiosensitivity of different cells, factors determining the small size of the cerebellum, and cellular events determining the morphogenetic malformations are discussed

  13. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.

    Science.gov (United States)

    Anderson, C W

    2001-09-01

    Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the

  14. Spinocerebellar Ataxia Type 6 Protein Aggregates Cause Deficits in Motor Learning and Cerebellar Plasticity

    NARCIS (Netherlands)

    Mark, Melanie D; Krause, Martin; Boele, Henk-Jan; Kruse, Wolfgang; Pollok, Stefan; Kuner, Thomas; Dalkara, Deniz; Koekkoek, Sebastiaan; De Zeeuw, Chris I; Herlitze, Stefan

    2015-01-01

    Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that

  15. Caveats in transneuronal tracing with unmodified rabies virus: an evaluation of aberrant results using a nearly perfect tracing technique

    Directory of Open Access Journals (Sweden)

    Tom J.H. Ruigrok

    2016-07-01

    Full Text Available Apart from the genetically engineered, modified, strains of rabies virus (RABV, unmodified ‘fixed’ virus strains of RABV, such as the ‘French’ subtype of CVS11, are used to examine synaptically connected networks in the brain. This technique has been shown to have all the prerequisite characteristics for ideal tracing as it does not metabolically affect infected neurons within the time span of the experiment, it is transferred transneuronally in one direction only and to all types of neurons presynaptic to the infected neuron, number of transneuronal steps can be precisely controlled by survival time and it is easily detectable with a sensitive technique.Here, using the ‘French’ CVS 11 subtype of RABV in Wistar rats, we show that some of these characteristics may not be as perfect as previously indicated. Using injection of RABV in hind limb muscles, we show that RABV-infected spinal motoneurons may already show lysis 1 or 2 days after infection. Using longer survival times we were able to establish that Purkinje cells may succumb approximately 3 days after infection. In addition, some neurons seem to resist infection, as we noted that the number of RABV-infected inferior olivary neurons did not progress in the same rate as other infected neurons. Furthermore, in our hands, we noted that infection of Purkinje cells did not result in expected transneuronal labeling of cell types that are presynaptic to Purkinje cells such as molecular layer interneurons and granule cells. However, these cell types were readily infected when RABV was injected directly in the cerebellar cortex. Conversely, neurons in the cerebellar nuclei that project to the inferior olive did not take up RABV when this was injected in the inferior olive, whereas these cells could be infected with RABV via a transneuronal route. These results suggest that viral entry from the extracellular space depends on other factors or mechanisms than those used for retrograde

  16. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain

    Directory of Open Access Journals (Sweden)

    Tsunenari Takashi

    2006-05-01

    Full Text Available Abstract Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11. AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.

  17. Ameliorative effect of Pimpinella anisum oil on immunohistochemical and ultrastuctural changes of cerebellum of albino rats induced by aspartame.

    Science.gov (United States)

    Abdul-Hamid, Manal; Gallaly, Sanaa Rida

    2014-05-01

    The study aims to investigate the protective effect of Pimpinella anisum oil on aspartame (ASP) which resulted in cerebellar changes. The rats were divided into four equal groups: Group 1: (control group): served as control animals. Group 2: control P. anisum oil received .5 mL/kg/d/b wt. once daily. Group 3 (ASP group): received daily 250 mg/kg/b wt. of ASP dissolved in distilled water and given orally to the animals by intra-gastric tube for 2 months. Group 4: received .5 mL/kg/b wt. of prophylactic P. anisum oil once daily, followed by ASP after 2 h for 2 months. The histopathological approach revealed marked changes in the Purkinje cells, myleinated nerve fibers and granular cells of ASP-treated animals. Some of these cells appeared with deeply stained cytoplasm. Ultrastructural examination showed Purkinje cells with dilated rough endoplasmic reticulum and condensed mitochondria. Granular cells appeared with less c nuclei and surrounded by dissolution of most Mossy rosettes structures. Most myelinated nerve fibers showed thickening of myelinated sheath and others showed splitting of their myelin sheath. The histopathological, immunohistochemical and ultrastructural alterations were much less observed in concomitant use of P. anisum oil with ASP. Cerebellar cortex is considered target areas of ASP neurotoxicity, while P. anisum oil, when used in combination with ASP displays a protective action against neurotoxicity.

  18. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  19. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  20. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  1. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  2. Postresuscitative Changes of Brain-Derived Neurotrophic Factor (BDNF Protein Expression: Association With Neuronal Death

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2017-01-01

    Full Text Available Aim of the study: to evaluate expression level of BDNF and its association with the postresuscitative neuronal death in highly hypoxia-sensitive brain regions.Materials and methods. Cardiac arrest in adult albino male rats was evoked by intrathoracic clamping of supracardiac bundle of vessels for 10 min. Pyramidal neurons of the hippocampus and Purkinje cells of the cerebellum were analyzed at various time points after resuscitation (days 1, 4, 7, 14. Shame-operated rats served as controls. The expression of BDNF protein was immunohistochemically determined. The BDNF expression level was determined by evalution on the base of the average optical density. The number of neurons with different BDNF expression levels and the total number of neurons per 1 mm of the layer length were computed. Image analysis systems (Intel personal computer, Olympus BX-41 microscope, ImageScopeM, ImageJ 1,48v and MS Excel 2007 software packages were used in the study. Data statistical processing was performed with the aid of Statistica 7.0 program and Kolmogorov-Smirnov λ-test, Mann-Whitney U-test and Student's t-test.Results. The dynamics of postresuscitative shifts of BDNF immunoreactivity in neuronal populations of hippocampal pyramidal cells and cerebellar Purkinje cells was established. It was shown that the level of BDNF expression within the two neuronal populations decreased, that was accompanied by neuronal death. In the Purkinje cell population the neuronal death occurred by the 4th day after resuscitation, while in the hippocampus, it occurs only by the 7th day. Notably, only BDNF-negative neurons or neurons with low level of BDNF expression died in both neuronal populations.Conclusion. The results of the study indicate the existence of an interrelation between the shifts in BDNF expression and the postresuscitative neuronal death. It was shown that only the cells with none or poor BDNF expression underwent death in highly hypoxia-sensitive neuronal

  3. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  4. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    Science.gov (United States)

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  5. INTRINSIC ELECTRICAL PROPERTIES OF MAMMALIAN NEURONS AND CNS FUNCTION: A HISTORICAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2014-11-01

    Full Text Available This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified towards one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function.

  6. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice.

    Science.gov (United States)

    Beitzel, Christy S; Houck, Brenda D; Lewis, Samantha M; Person, Abigail L

    2017-10-18

    Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent

  7. The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis

    Directory of Open Access Journals (Sweden)

    Mario F Wullimann

    2011-04-01

    Full Text Available This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei. As for the lower rhombic lip (LRL, gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins and partially primary auditory nuclei (likely convergently evolved from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of the inferior olive (climbing fiber origin and (inhibitory cells of cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologues (i.e., eurydendroid cells from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogues and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei in jawless

  8. Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system.

    Science.gov (United States)

    Ivanova, Anna; Wuerfel, Jens; Zhang, Juan; Hoffmann, Olaf; Ballmaier, Matthias; Dame, Christof

    2010-07-28

    Thrombopoietin (Thpo) and its receptor (Mpl), which regulate megakaryopoiesis, are expressed in the central nervous system (CNS), where Thpo is thought to exert pro-apoptotic effects on newly generated neurons. Mpl expression has been analysed in brain tissue on transcript level and in cultured primary rat neurons and astrocytes on protein level. Herein, we analysed Mpl expression in the developing and adult murine CNS by immunohistochemistry and investigated the brain of mice with homozygous Mpl deficiency (Mpl-/-) by MRI. Mpl was not detectable at developmental stages E12 to E15 in any resident cells of the CNS. From E18 onwards, robust Mpl expression was found in various brain areas, including cerebral cortex, olfactory bulb, thalamus, hypothalamus, medulla, pons, and the grey matter of spinal cord. However, major developmental changes became obvious: In the subventricular zone of the cerebral cortex Mpl expression occurred only during late gestation, while in the hippocampus Mpl expression was detectable for first time at stage P4. In the white matter of the cerebellum Mpl expression was restricted to the perinatal period. In the adult cerebellum, Mpl expression switched to Purkinje cell. The majority of other Mpl-positive cells were NeuN-positive neurons. None of the cells could be double-labelled with astrocyte marker GFAP. Mpl-/- mice showed no gross abnormalities of the brain. Our data locate Mpl expression to neurons at different subdivisions of the spinal cord, rhombencephalon, midbrain and prosencephalon. Besides neuronal cells Mpl protein is also expressed in Purkinje cells of the adult cerebellum.

  9. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum.

    Science.gov (United States)

    Schweighofer, N; Spoelstra, J; Arbib, M A; Kawato, M

    1998-01-01

    The cerebellum is essential for the control of multijoint movements; when the cerebellum is lesioned, the performance error is more than the summed errors produced by single joints. In the companion paper (Schweighofer et al., 1998), a functional anatomical model for visually guided arm movement was proposed. The model comprised a basic feedforward/feedback controller with realistic transmission delays and was connected to a two-link, six-muscle, planar arm. In the present study, we examined the role of the cerebellum in reaching movements by embedding a novel, detailed cerebellar neural network in this functional control model. We could derive realistic cerebellar inputs and the role of the cerebellum in learning to control the arm was assessed. This cerebellar network learned the part of the inverse dynamics of the arm not provided by the basic feedforward/feedback controller. Despite realistically low inferior olive firing rates and noisy mossy fibre inputs, the model could reduce the error between intended and planned movements. The responses of the different cell groups were comparable to those of biological cell groups. In particular, the modelled Purkinje cells exhibited directional tuning after learning and the parallel fibres, due to their length, provide Purkinje cells with the input required for this coordination task. The inferior olive responses contained two different components; the earlier response, locked to movement onset, was always present and the later response disappeared after learning. These results support the theory that the cerebellum is involved in motor learning.

  10. Site Investigation Report. Volume 1. 120th Fighter Interceptor Group, Montana Air National Guard, International Airport, Great Falls, Montana

    Science.gov (United States)

    1992-02-01

    Layoffs at a local brewery and reductions in government employment have resulted in additional declines (Williams, 1986). 1-7 E2/AUZ/2MANGFNL February...fate process. Lead is stored in bone , kidneys, and the liver. The major adverse effects in humans include alterations in the hematopoietic and nervous...mercury com- pounds have included destruction of cortical cerebral neurons, damage to Purkinje cells , and lesions of the cerebellum. Clinical

  11. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat.

    Science.gov (United States)

    Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy

    2016-08-15

    EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. TRPC1 expression and distribution in rat hearts

    Directory of Open Access Journals (Sweden)

    W. Niu

    2009-12-01

    Full Text Available Transient receptor potential canonical (TRPC proteins have been identified as a family of plasma membrane calcium-permeable channels. TRPC proteins can be activated by various stimuli and act as cellular sensors in mammals. Stretch-activated ion channels (SACs have been proposed to underlie cardiac mechano-electric feedback (MEF, although the molecular entity of SAC remains unknown. There is evidence suggesting that transient receptor potential canonical 1 (TRPC1 is a stretch-activated ion channel. As a non-selective cation channel, TRPC1 may cause stretch-induced depolarization and arrhythmia and thus may contribute to the MEF of the heart. In this study, we examined the expression patterns of TRPC1 in detail at both the mRNA and protein levels in rat hearts.We isolated total RNA from the left and right atria, and the left and right ventricles, and detected TRPC1 mRNA in these tissues using reverse-transcriptase polymerase chain reaction (RT-PCR. To study the protein localization and targeting, we performed immunohistochemistry and immunofluorescence labeling with the antibody against TRPC1. TRPC1 was detected in the cardiomyocytes of the ventricle and atrium at both the mRNA and protein levels. The cell membrane and Ttubule showed strong fluorescence labeling in the ventricular myocytes. Purkinje cells, the endothelial cells and smooth muscle cells of the coronary arterioles also displayed TRPC1 labeling. No TRPC1 was detected in fibroblasts. In conclusion, TRPC1 is widely expressed in the rat heart, including in working cells, Purkinje cells and vascular cells, suggesting that it plays an important role in the heart. The specific distribution pattern offered a useful insight into its function in adult rat ventricular cells. Further investigations are needed to clarify the role of TRPC1 in regulating cardiac activity, including cardiac MEF.

  13. Impact of Afferent Inputs on Purkinje Cell Spiking Patterns and Motor Coordination

    NARCIS (Netherlands)

    A.M. Badura (Aleksandra)

    2011-01-01

    textabstractThe brain is what makes us human. Feelings, memories, complex social interactions, language and movement – all of it originates in the brain. On average, the human brain contains approximately 50–100 billion neurons that communicate with each other through the vast network of 100 –

  14. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Lim, Kenji Rowel Q; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin'ichi; Yokota, Toshifumi

    2017-04-18

    Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMD J ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMD J dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMD J dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.

  15. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony.

    Science.gov (United States)

    Marshall, Sarah P; Lang, Eric J

    2009-11-11

    Complex spike (CS) synchrony patterns are modulated by the release of GABA within the inferior olive (IO). The GABAergic projection to most of the IO arises from the cerebellar nuclei, which are themselves subject to strong inhibitory control by Purkinje cells in the overlying cortex. Moreover, the connections between the IO and cerebellum are precisely aligned, raising the possibility that each cortical region controls its own CS synchrony distribution. This possibility was tested using multielectrode recordings of CSs and simple spikes (SSs) in crus 2a of anesthetized rats. Picrotoxin or muscimol was applied to the cerebellar cortex at the borders of the recording array. These drugs induced significant changes in CS synchrony and in CS and SS firing rates and changes in post-CS pauses and modulation of SS activity. The level of CS synchrony was correlated with SS firing rate in control, and application of picrotoxin increased both. In contrast, muscimol decreased CS synchrony. Furthermore, when picrotoxin was applied only at the lateral edge of the array, changes in CS synchrony occurred sequentially across the recording array, with cells located in the lateral half of the array having earlier and larger changes in CS synchrony than cells in the medial half. The results indicate that a double-inhibitory feedback circuit from Purkinje cells to the IO provides a mechanism by which SS activity may regulate CS synchrony. Thus, CS synchrony may be a physiologically controlled parameter of cerebellar activity, with the cerebellum and IO comprising a series of self-updating circuits.

  16. Impairment of DNA synthesis in Gunn rat cerebellum.

    Science.gov (United States)

    Yamada, N; Sawasaki, Y; Nakajima, H

    1977-05-06

    Brain DNA synthesis was developmentally investigated in Gunn rat with marked cerebellar hypoplasia due to hereditary hyperbilirubinemia. In this mutant rat, the Purkinje cell was nearly selectively affected in the cerebellar cortex by bilirubin. The impaired DNA synthesis was observed in homozygous (jj) Gunn rat cerebellum, in which the DNA content and [3H]thymidine incorporation rate into DNA decreased after 10 days of age compared to those in the heterozygous (Jj)littermate. In contrast, these impairments were not found in the non-cerebellar parts of the brain and liver of jj Gunn rat. The activity of cerebellar thymidine kinase in jj Gunn rat decreased from a very early stae, being 80% of Jj rat at 6 days, and 50% at 10 days of age. The enzyme activity was not affected in the non-cerebellar parts of the brain. Although bilirubin competitively inhibited cerebellar thymidine kinase activity in vitro (15% at 10(-5) M), such bilirubin level was found to be about 1000-fold that in vivo. Moreover, photo-degradation of bilirubin in jj cerebellum exhibited no improvement in thymidine kinase activity, and the presence of an enzyme inactivator was not suggested in jj cerebellum. These results seem to indicate that the induction of thymidine kinase might be affected in jj Gunn rat cerebellum. The possibility that the impaired DNA synthesis in the external granular cells in jj cerebellum may be due to Purkinje cell damage is discussed.

  17. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  18. The anatomy and histology of the atrioventricular conducting system in the hedgehog (Hemiechinus auritus) heart

    OpenAIRE

    NABIPOUR, Abolghasem

    2014-01-01

    This study examined the atrioventricular conducting system in 4 adult male hedgehogs (Hemiechinus auritus). The histological structure of these components was studied using routine histological methods. The AVN was located at the lower and anterior part of the interatrial septum, near the root of the aorta. It was almost oval and consisted of twisted cells. Internodal pathways in the hedgehog heart were not observed, but there were numerous purkinje-like fibers within the myocardium of the at...

  19. Oscillations, Timing, Plasticity, and Learning in the Cerebellum.

    Science.gov (United States)

    Cheron, G; Márquez-Ruiz, J; Dan, B

    2016-04-01

    The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.

  20. Cerebellar Ataxia and Coenzyme Q Deficiency Through Loss of Unorthodox Kinase Activity

    OpenAIRE

    Stefely, Jonathan A.; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G.; Kemmerer, Zachary A.; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E.; Ulbrich, Arne; Hutchins, Paul D.; Wilkerson, Emily M.; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S.; Guo, Xiao

    2016-01-01

    The UbiB protein kinase-like (PKL) family is widespread—comprising one-quarter of microbial PKLs and five human homologs—yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical ana...

  1. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  2. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  3. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    NARCIS (Netherlands)

    A. Belmeguenai (Amor); P. Botta (Paolo); J.T. Weber (John); M. Carta (Mario); M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.F. Valenzuela (Fernando); C.R.W. Hansel (Christian)

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the

  4. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca2+ Rises Mainly Mediated by K+ and ATP Increases in the Extracellular Space

    Directory of Open Access Journals (Sweden)

    Romain Helleringer

    2017-11-01

    Full Text Available During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD. Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.

  5. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum.

    Science.gov (United States)

    Rancillac, Armelle; Crépel, Francis

    2004-02-01

    Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF-SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.

  6. Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models

    Directory of Open Access Journals (Sweden)

    Kung PJ

    2014-10-01

    Full Text Available Pin-Jui Kung,1,* Yu-Chen Tao,1,* Ho-Chiang Hsu,1 Wan-Ling Chen,1 Te-Hsien Lin,1 Donala Janreddy,2 Ching-Fa Yao,2 Kuo-Hsuan Chang,3 Jung-Yaw Lin,1 Ming-Tsan Su,1 Chung-Hsin Wu,1 Guey-Jen Lee-Chen,1 Hsiu-Mei Hsieh-Li1 1Department of Life Science, 2Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan; 3Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan *These authors contributed equally to this work Abstract: In spinocerebellar ataxia type 17 (SCA17, the expansion of a translated CAG repeat in the TATA box binding protein (TBP gene results in a long polyglutamine (polyQ tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment. Keywords: spinocerebellar ataxia type 17, TATA box binding protein, polyQ aggregation, indole and derivative, therapeutics

  7. Synchronization in primate cerebellar granule cell layer local field potentials: Basic anisotropy and dynamic changes during active expectancy

    Directory of Open Access Journals (Sweden)

    Richard Courtemanche

    2009-07-01

    Full Text Available The cerebellar cortex is remarkable for its organizational regularity, out of which task-related neural networks should emerge. So, in Purkinje cells, both complex and simple spike network patterns are evident in sensorimotor behavior. However, task-related patterns of activity in the granule cell layer (GCL have been less studied. We recorded local field potential (LFP activity simultaneously in pairs of GCL sites in monkeys performing an active expectancy (lever-press task, in passive expectancy, and at rest. LFP sites were selected when they showed strong 10-25 Hz oscillations; pair orientation was in stereotaxic sagittal and coronal (mainly, and diagonal. As shown previously, LFP oscillations at each site were modulated during the lever-press task. Synchronization across LFP pairs showed an evident basic anisotropy at rest: sagittal pairs of LFPs were better synchronized (more than double the cross-correlation coefficients than coronal pairs, and more than diagonal pairs. On the other hand, this basic anisotropy was modifiable: during the active expectancy condition, where sagittal and coronal orientations were tested, synchronization of LFP pairs would increase just preceding movement, most notably for the coronal pairs. This lateral extension of synchronization was not observed in passive expectancy. The basic pattern of synchronization at rest, favoring sagittal synchrony, thus seemed to adapt in a dynamic fashion, potentially extending laterally to include more cerebellar cortex elements. This dynamic anisotropy in LFP synchronization could underlie GCL network organization in the context of sensorimotor tasks.

  8. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia.

    Science.gov (United States)

    Main, Stacey L; Kulesza, Randy J

    2017-01-06

    Autism spectrum disorder (ASD) is a developmental brain disorder characterized by restricted and repetitive patterns of behavior, social and communication defects, and is commonly associated with difficulties with motor coordination. The etiology of ASD, while mostly idiopathic, has been linked to hereditary factors and teratogens, such as valproic acid (VPA). VPA is used clinically to treat epilepsy, mood disorders, and in the prevention of migraines. The use of VPA during pregnancy significantly increases the risk of ASD in the offspring. Neuropathological studies show decreased cerebellar function in patients with ASD, resulting in gait, balance and coordination impairments. Herein, we have exposed pregnant rats to a repeated oral dose of VPA on embryonic days 10 and 12 and performed a detailed investigation of the structure and function of the cerebellar vermis. We found that throughout all ten lobules of the cerebellar vermis, Purkinje cells were significantly smaller and expression of the calcium binding protein calbindin (CB) was significantly reduced. We also found that dendritic arbors of Purkinje cells were shorter and less complex. Additionally, animals exposed to a repeated dose of VPA performed significantly worse in a number of motor tasks, including beam walking and the rotarod. These results suggest that repeated embryonic exposure to VPA induces significant cerebellar dysfunction and is an effective animal model to study the cerebellar alterations in ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Intelligent Network Management and Functional Cerebellum Synthesis

    Science.gov (United States)

    Loebner, Egon E.

    1989-01-01

    Transdisciplinary modeling of the cerebellum across histology, physiology, and network engineering provides preliminary results at three organization levels: input/output links to central nervous system networks; links between the six neuron populations in the cerebellum; and computation among the neurons of the populations. Older models probably underestimated the importance and role of climbing fiber input which seems to supply write as well as read signals, not just to Purkinje but also to basket and stellate neurons. The well-known mossy fiber-granule cell-Golgi cell system should also respond to inputs originating from climbing fibers. Corticonuclear microcomplexing might be aided by stellate and basket computation and associate processing. Technological and scientific implications of the proposed cerebellum model are discussed.

  10. Effect of the Nerve Growth Factor Mimetic GK-2 on Brain Structural and Functional State in the Early Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2012-01-01

    Full Text Available Objective: to evaluate the efficacy of the nerve growth factor mimetic GK-2 used to improve the structural and functional state of the brain in the early postresuscitation period. Material and methods. Cardiac arrest was induced in mature male albino rats for 12 minutes, followed by resuscitation. The neurological state of the resuscitated animals was assessed by a scoring scale. On postresuscitation day 7, the density and composition of neuronal populations of Purkinje cells in the lateral cerebellar region and pyramidal neurons in the hippocampal CA1 sector were determined by a differential morphometric analysis. The results were statistically processed using the ANOVA method. Results. The use of GK-2 was found to accelerate neurological recovery in the resuscitated animals. On day 7 after 12-minute cardiac arrest, the resuscitated animals showed neuronal dystrophic changes and death in the neuronal populations highly susceptible to ischemia. It was shown that the systemic administration of the nerve growth factor mimetic GK-2 contributed to a reduction in the magnitude and depth of postresuscitation changes in the cerebellar Purkinje cells and prevented dystrophic changes in the pyramidal cells of the hippocampal CA1 sector. The findings suggest that GK-2 has a neuroprotective effect in the recovery period after total body ischemia. Conclusion. The results of this study indicate the efficiency of the systemic administration of the nerve growth factor mimetic GK-2 in improving the brain structural and functional state in the early postresuscitation period. This determines perspectives for the use of GK-2 to prevent and correct posthypoxic encephalopathies. Key words: the nerve growth factor mimetic GK-2, postresuscitation period, neuronal dystrophic changes and death, neurological status.

  11. CEREBELLUM: LINKS BETWEEN DEVELOPMENT, DEVELOPMENTAL DISORDERS AND MOTOR LEARNING

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2012-01-01

    Full Text Available The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodelling are being unravelled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip (RL, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signalling between granule cells and Purkinje neurons. The expression profile of SHH (Sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired development and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders.

  12. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.

    Directory of Open Access Journals (Sweden)

    John C Williams

    Full Text Available Channelrhodospin-2 (ChR2, a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1 accurate inward rectification in the current-voltage response across irradiances; 2 empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation; and 3 accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10 were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and

  13. Potential Role of Oxidative Stress in mediating the Effect of Hypergravity on the Developing CNS.

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Sulkowski, Z. L.; Lipinski, B.

    The present studies will explore the mechanisms through which altered gravity affects the developing CNS We have previously shown that exposure to hypergravity during the perinatal period adversely impacts cerebellar structure and function Pregnant rat dams were exposed to 1 65 G on a 24-ft centrifuge at NASA-ARC from gestational day G 5 through giving birth Both dams and their offspring remained at 1 65 G until pups reached postnatal day P 21 Control rats were raised under identical conditions in stationary cages On P21 motor behavior as determined by performance on a rotorod was more negatively impacted in hypergravity-exposed HG male 39 5 than in HG female pups 29 1 The total number of Purkinje cells determined stereologically in cerebella isolated from a subset of P21 rats was decreased in both HG males and HG female pups but the correlation between Purkinje cell number and rotorod performance was more consistent in male pups The level of 3-nitrosotyrosine 3-NT an index of oxidative damage to proteins was determined by ELISA in cerebellar tissue derived from a separate subset of P21 rats The level of 3-NT was increased by 127 in HG males but only 42 in HG females These results suggest that the effect of altered gravity on the developing brain may be mediated by oxidative stress These results also suggest that the developing male CNS may be more sensitive to hypergravity-induced oxidative stress than the developing female CNS Supported by NIEHS grant ES11946-01

  14. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia.

    Science.gov (United States)

    Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D

    2008-07-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.

  15. The Coding Question.

    Science.gov (United States)

    Gallistel, C R

    2017-07-01

    Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Spikes matter for phase-locked bursting in inhibitory neurons

    Science.gov (United States)

    Jalil, Sajiya; Belykh, Igor; Shilnikov, Andrey

    2012-03-01

    We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.045201 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike interactions. We reveal the role of spikes in generating multiple phase-locked states and demonstrate that this multistability is generic by analyzing diverse models of bursting networks with various fast inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, and the Purkinje neuron model.

  17. Suspected natural lysosomal storage disease from ingestion of pink morning glory (Ipomoea carnea) in goats in northern Argentina.

    Science.gov (United States)

    Ríos, Elvio E; Cholich, Luciana A; Chileski, Gabriela; García, Enrique N; Lértora, Javier; Gimeno, Eduardo J; Guidi, María G; Mussart, Norma; Teibler, Gladys P

    2015-07-01

    This study describes an occurrence of pink morning glory (Ipomoea carnea) intoxication in goats in northern Argentina. The clinical signs displayed by the affected animals were ataxia, lethargy, emaciation, hypertonia of the neck muscles, spastic paresis in the hind legs, abnormal postural reactions and death. The clinico-pathologic examination revealed that the affected animals were anemic and their serum level of aspartate aminotransferase was significantly increased. Cytoplasmic vacuolation in the Purkinje cells and pancreatic acinar cells was observed by histological examination. The neuronal lectin binding pattern showed a strong positive reaction to WGA (Triticum vulgaris), sWGA (succinylated T. vulgaris) and LCA (Lens culinaris). Although I. carnea is common in tropical regions, this is the first report of spontaneous poisoning in goats in Argentina.

  18. Chronic lithium treatment with or without haloperidol fails to affect the morphology of the rat cerebellum

    DEFF Research Database (Denmark)

    Licht, R W; Larsen, Jytte Overgaard; Smith, D

    2003-01-01

    We used unbiased stereological principles to determine whether long-term administration of lithium at human therapeutic levels, with or without haloperidol, affects the number or sizes of cerebellar Purkinje cells or the volume of histological layers in the rat cerebellum. Twenty-eight rats were...... randomly divided into three groups, receiving either no treatment, lithium, or lithium combined with haloperidol. The serum lithium levels ranged from 0.50 to 0.77 mmol/l. Haloperidol was given at a daily dose of 1 mg/kg. After 30 weeks of treatment, the animals were killed and the cerebelli were...

  19. Nonclinical cardiovascular safety of pitolisant: comparing International Conference on Harmonization S7B and Comprehensive in vitro Pro-arrhythmia Assay initiative studies.

    Science.gov (United States)

    Ligneau, Xavier; Shah, Rashmi R; Berrebi-Bertrand, Isabelle; Mirams, Gary R; Robert, Philippe; Landais, Laurent; Maison-Blanche, Pierre; Faivre, Jean-François; Lecomte, Jeanne-Marie; Schwartz, Jean-Charles

    2017-12-01

    We evaluated the concordance of results from two sets of nonclinical cardiovascular safety studies on pitolisant. Nonclinical studies envisaged both in the International Conference on Harmonization (ICH) S7B guideline and Comprehensive in vitro Pro-arrhythmia Assay (CiPA) initiative were undertaken. The CiPA initiative included in vitro ion channels, stem cell-derived human ventricular myocytes, and in silico modelling to simulate human ventricular electrophysiology. ICH S7B-recommended assays included in vitro hERG (K V 11.1) channels, in vivo dog studies with follow-up investigations in rabbit Purkinje fibres and the in vivo Carlsson rabbit pro-arrhythmia model. Both sets of nonclinical data consistently excluded pitolisant from having clinically relevant QT-liability or pro-arrhythmic potential. CiPA studies revealed pitolisant to have modest calcium channel blocking and late I Na reducing activities at high concentrations, which resulted in pitolisant reducing dofetilide-induced early after-depolarizations (EADs) in the ICH S7B studies. Studies in stem cell-derived human cardiomyocytes with dofetilide or E-4031 given alone and in combination with pitolisant confirmed these properties. In silico modelling confirmed that the ion channel effects measured are consistent with results from both the stem cell-derived cardiomyocytes and rabbit Purkinje fibres and categorized pitolisant as a drug with low torsadogenic potential. Results from the two sets of nonclinical studies correlated well with those from two clinical QT studies. Our findings support the CiPA initiative but suggest that sponsors should consider investigating drug effects on EADs and the use of pro-arrhythmia models when the results from CiPA studies are ambiguous. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  20. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    Science.gov (United States)

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  1. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.

    Science.gov (United States)

    Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie

    2013-06-01

    We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.

  2. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres

    Directory of Open Access Journals (Sweden)

    Aynun N. Begum

    2015-11-01

    Full Text Available Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. Neurospheres are the most commonly used neuroprogenitors for neuronal differentiation, but they often clump in culture, which has always represented a challenge for neurodifferentiation. In this study, we report a novel method and defined culture conditions for generating sub-type or region-specific neurons from human embryonic and induced pluripotent stem cells derived neurosphere without any genetic manipulation. Round and bright-edged neurospheres were generated in a supplemented knockout serum replacement medium (SKSRM with 10% CO2, which doubled the expression of the NESTIN, PAX6 and FOXG1 genes compared with those cultured with 5% CO2. Furthermore, an additional step (AdSTEP was introduced to fragment the neurospheres and facilitate the formation of a neuroepithelial-type monolayer that we termed the “neurosphederm”. The large neural tube-type rosette (NTTR structure formed from the neurosphederm, and the NTTR expressed higher levels of the PAX6, SOX2 and NESTIN genes compared with the neuroectoderm-derived neuroprogenitors. Different layers of cortical, pyramidal, GABAergic, glutamatergic, cholinergic neurons appeared within 27 days using the neurosphederm, which is a shorter period than in traditional neurodifferentiation-protocols (42–60 days. With additional supplements and timeline dopaminergic and Purkinje neurons were also generated in culture too. Furthermore, our in vivo results indicated that the fragmented neurospheres facilitated significantly better neurogenesis in severe combined immunodeficiency (SCID mouse brains compared with the non-fragmented neurospheres. Therefore, this neurosphere-based neurodifferentiation protocol is a valuable tool for studies of neurodifferentiation, neuronal transplantation and high throughput screening assays.

  3. Harmaline Tremor: Underlying Mechanisms in a Potential Animal Model of Essential Tremor

    Directory of Open Access Journals (Sweden)

    Adrian Handforth

    2012-09-01

    Full Text Available Background: Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor.Methods: Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans.Results: Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel.Discussion: Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials.

  4. The Effect of Salvia Rhytidea Extract on the Number of Cells of Different Layers of Cerebellar Cortex Following Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    M Farahmand

    2016-09-01

    Full Text Available Background & aim: Salvia has anti-oxidant oxygen free radicals which are generated during the interruption and reestablishment of ischemia reperfusion.  The aim of study was to investigate the effect of Salvia Rhytidea extract on the number of cells of different layers of cerebellar cortex following ischemia reperfusion in rats. Methods: In the present experimental study, 35 adult male rats were randomly divided into 7 groups of 5: Group 1 (control-: Sampling without ischemia. Group 2 (control +: Cerebellar ischemia with administration of normal saline. Group 3(sham: Manipulation without ischemia with normal saline administration. Group 4   received (3.2 mg/kg aqueous and alcoholic Salvia extract 2 hours after ischemia. Group 5 received 50 mg/kg silymarin drug, 2 hours after ischemia. Group 6 received 3.2 mg/kg aqueous and alcoholic Salvia extract 72, 48, 24 and 0 h before ischemia and group 7 received silymarin drug (50 mg/kg, 0, 24, 48, and 72, hrs. before ischemia. 24 hrs. following reperfusion, the rats were euthanized and samples of the cerebellum were obtained. By using routine histological technique, the sections were stained by H&E. The measurement of cell count in cerebellar cortex were accomplished. Data were evaluated with One-Way ANOVA and Tukey diagnostic tests. Results: A significant decrease was observed in the number of neural cells in granular layer in the non-treated ischemia group and in the groups which received Salvia extract and silymarin, two hours after the ischemia (p< 0.05. No significant decrease was observed in the number of cells of this layer in the groups which received salvia extract before ischemia. But regarding the cell number of molecular and purkinje layers in above groups, no significant difference was observed compared to the control group (P˃0.05. However, no significant differences was seen in the number of cells layers compared to the control group (P˃0.05. Conclusion: Finally, administration of

  5. Selective survival of β1-adenergic receptors in rat cerebellum following neonatal X-irradiation

    International Nuclear Information System (INIS)

    Minneman, K.P.; Pittman, R.N.; Wolfe, B.B.; Molinoff, P.B.

    1981-01-01

    To investigate the cellular localization of β 1 - and β 2 -adrenergic receptors, the effects of intermittent neonatal X-irradiation focused on the cerebellum were determined on the densities of the two subtypes of β-adrenergic receptor. This treatment destroys the late-maturing cerebellar interneurons including the granule, basket and stellate cells. The total number of β 2 -adrenergic receptors per cerebellum was reduced by 81-83% in 6- and 12-week-old X-irradiated rats. However, the number of β 1 -adrenergic receptors per cerebellum in 6- and 12-week-old X-irradiated rats was not significantly different from that in control animals. The results suggest that β 2 receptors in the rat cerebellum are primarily associated with the small interneurons destroyed by neonatal X-irradiation. The β 1 receptors may be located on a cell population which is unaffected by this treatment, possibly on cerebellar Purkinje cells. (Auth.)

  6. Age-related changes in spectral transmittance of the human crystalline lens in situ.

    Science.gov (United States)

    Sakanishi, Yoshihito; Awano, Masakazu; Mizota, Atsushi; Tanaka, Minoru; Murakami, Akira; Ohnuma, Kazuhiko

    2012-01-01

    It was the aim of this study to measure spectral transmission of the human crystalline lens in situ. The crystalline lens was illuminated by one of four light-emitting diodes of different colors. The relative spectral transmittance of the human crystalline lens was measured with the Purkinje-Sanson mirror images over a wide range of ages. The study evaluated 36 crystalline lenses of 28 subjects aged 21-76 years. There was a significant correlation between the age and spectral transmittance for blue light. Spectral transmittance of the crystalline lens in situ could be measured with Purkinje-Sanson mirror images. Copyright © 2012 S. Karger AG, Basel.

  7. Circadian Clock Proteins and Melatonin Receptors in Neurons and Glia of the Sapajus apella Cerebellum

    Directory of Open Access Journals (Sweden)

    Leila M. Guissoni Campos

    2018-02-01

    Full Text Available Oscillations of brain proteins in circadian rhythms are important for determining several cellular and physiological processes in anticipation of daily and seasonal environmental rhythms. In addition to the suprachiasmatic nucleus, the primary central oscillator, the cerebellum shows oscillations in gene and protein expression. The variety of local circuit rhythms that the cerebellar cortex contains influences functions such as motivational processes, regulation of feeding, food anticipation, language, and working memory. The molecular basis of the cerebellar oscillator has been demonstrated by “clock gene” expression within cells of the cerebellar layers. Genetic and epidemiological evidence suggests that disruption of circadian rhythms in humans can lead to many pathological conditions. Despite this importance, data about clock gene and protein expression in the cerebellum of diurnal (day-active species, specifically primates, is currently poorly explored, mainly in regard to cellular identity, as well as the relationship with other molecules also involved in cerebellar functions. These studies could contribute to clarification of the possible mechanisms behind cerebellar rhythmicity. Considering that calcium binding proteins (CaBPs play crucial roles in preserving and modulating cerebellar functions and that clock gene expression can be controlled by afferent projections or paracrine circadian signals such as the hormone melatonin, the present study aimed to describe cellular identities, distribution patterns and day/night expression changes in PER1, PER2, CaBPs, and MT1 and MT2 melatonin receptors in the cerebellar cortex of a diurnal primate using conventional fluorescence and peroxidase-antiperoxidase immunocytochemical techniques. PER1 and PER2 immunoreactive (IR cells were observed in the Purkinje cells of the cerebellum, and MT1 and MT2 receptors were localized around Purkinje cells in the Pj layer in Bergmann cells. This identity

  8. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    Science.gov (United States)

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  9. Quantitative histologic study on confusion of the cerebellar cortex architecture in perinatally irradiated mice

    International Nuclear Information System (INIS)

    Sasaki, S.

    1986-01-01

    This study was designed to know dose-response relationship and age-dependence for two types of confusion of the cerebellar cortex architecture. The first is inhibition of the laminar-pattern development, and the second is persistent remaining of granule cells in the molecular and Purkinje layer which implies disturbance of cell migration. Male B6C3F 1 mice were used. Animals were irradiated at day 0 to 6 of the postnatal age or day 17 of the prenatal age with doses ranging from 50 to 700 rad of γ-rays, and killed at 60 days of age. Confusion of architecture was analysed using microscopic photographs. Development of the laminar-pattern was inhibited by irradiation with 100 rad or higher doses at day 0 to 3. There was a distinct regional difference in inhibition of the laminar-pattern development. Remaining of granule cells was detected after irradiation with 50 or higher doses at day 0 or 2. Irradiation at day 1 to 4 was most effective to disturb cell migration, though ectopic granule cells were detected in all irradiated groups. (orig.)

  10. Signalling by CGRP and Adrenomedullin in the Cerebellum and Other Systems

    Directory of Open Access Journals (Sweden)

    David Poyner

    2001-01-01

    Full Text Available The best characterised signalling pathway activated by both CGRP and adrenomedullin is stimulation of adenylate cyclase via Gs. However, it is clear that in some circumstances the peptides can activate other signal transduction pathways, e.g., increases in intracellular calcium. Many of these signalling pathways can be observed in cultured cells but it is important also to examine isolated tissues to discover the full repertoire of transduction events. In the rat cerebellum there are receptors that respond to both CGRP and adrenomedullin. These seem to be located postsynaptically on Parallel Fibre nerve terminals and modulate transmission to Purkinje cells. Adrenomedullin acts via cAMP, apparently to augment neurotransmitter release. By contrast, CGRP decreases transmitter release, via a non-cAMP mediated pathway. We are currently examining the role of NO and tyrosine kinases in the responses to these peptides.

  11. Expression of the voltage-sensing phosphatase gene in the chick embryonic tissues and in the adult cerebellum.

    Science.gov (United States)

    Yamaguchi, Shinji; Aoki, Naoya; Kitajima, Takaaki; Okamura, Yasushi; Homma, Koichi J

    2014-10-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor domain (VSD) and the cytoplasmic domain with phosphoinositide-phosphatase activities. It operates as the voltage sensor and directly translates membrane potential into phosphoinositide turnover by coupling VSD to the cytoplasmic domain. VSPs are evolutionarily conserved from marine invertebrate up to humans. Recently, we demonstrated that ectopic expression of the chick ortholog of VSP, Gg-VSP, in a fibroblast cell line caused characteristic cell process outgrowths. Co-expression of chick PTEN suppressed such morphological change, suggesting that VSP regulates cell shape by increasing PI(3,4)P2. However, the in vivo function of Gg-VSP remains unclear. Here, we showed that in chick embryos Gg-VSP is expressed in the stomach, mesonephros, pharyngeal arch, limb bud, somites, floor plate of neural tube, and notochord. In addition, both Gg-VSP transcripts and the protein were found in the cerebellar Purkinje neurons. These findings provide an insight into the physiological functions of VSP.

  12. Vestibular cerebellum of thick-toed geckos (Chondrodactylus turnery GRAY, 1864) and C57/BL6N mice after the long-term space flight on the biosatellite BION-M1.

    Science.gov (United States)

    Alexandra, Proshchina; Anastasia, Kharlamova; Valeriy, Barabanov; Victoria, Gulimova; Sergey, Saveliev

    2017-01-01

    The aim of this study was to estimate the effects of long-term space flights on neuronal and glial cells of the vestibular cerebellum of C57/BL6N mice and thick-toed geckos (Chondrodactylus turnery GRAY, 1864). The cerebella from 26 mice and 13 geckos were used in this study. Ten mice and five geckos were flown aboard the BION-M1 biosatellite. The other animals were used as controls. We used immunohistochemical techniques and classical histological method to reveal cell types in the vestibular cerebellum. Nonspecific pathomorphological changes in the Purkinje cells (such as chromatolysis, vacuolization and hyperchromatosis) were observed in the flight groups. However, these changes are reversible and were also found in some neurons in the control groups. In addition, as the vestibular cerebellum is an evolutionarily stable structure, thick-toed geckos may be a useful model for space flight studies on the vertebrate cerebellum. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Garcinia kola seeds may prevent cognitive and motor dysfunctions in a type 1 diabetes mellitus rat model partly by mitigating neuroinflammation.

    Science.gov (United States)

    Seke Etet, Paul F; Farahna, Mohammed; Satti, Gwiria M H; Bushara, Yahia M; El-Tahir, Ahmed; Hamza, Muaawia A; Osman, Sayed Y; Dibia, Ambrose C; Vecchio, Lorella

    2017-04-15

    Background We reported recently that extracts of seeds of Garcinia kola, a plant with established hypoglycemic properties, prevented the loss of inflammation-sensible neuronal populations like Purkinje cells in a rat model of type 1 diabetes mellitus (T1DM). Here, we assessed G. kola extract ability to prevent the early cognitive and motor dysfunctions observed in this model. Methods Rats made diabetic by single injection of streptozotocin were treated daily with either vehicle solution (diabetic control group), insulin, or G. kola extract from the first to the 6th week post-injection. Then, cognitive and motor functions were assessed using holeboard and vertical pole behavioral tests, and animals were sacrificed. Brains were dissected out, cut, and processed for Nissl staining and immunohistochemistry. Results Hyperglycemia (209.26 %), body weight loss (-12.37 %), and T1DM-like cognitive and motor dysfunctions revealed behavioral tests in diabetic control animals were not observed in insulin and extract-treated animals. Similar, expressions of inflammation markers tumor necrosis factor (TNF), iba1 (CD68), and Glial fibrillary acidic protein (GFAP), as well as decreases of neuronal density in regions involved in cognitive and motor functions (-49.56 % motor cortex, -33.24 % medial septal nucleus, -41.8 % /-37.34 % cerebellar Purkinje /granular cell layers) were observed in diabetic controls but not in animals treated with insulin or G. kola. Conclusions Our results indicate that T1DM-like functional alterations are mediated, at least partly, by neuroinflammation and neuronal loss in this model. The prevention of the development of such alterations by early treatment with G. kola confirms the neuroprotective properties of the plant and warrant further mechanistic studies, considering the potential for human disease.

  14. A hereditary spastic paraplegia mouse model supports a role of ZFYVE26/SPASTIZIN for the endolysosomal system.

    Directory of Open Access Journals (Sweden)

    Mukhran Khundadze

    Full Text Available Hereditary spastic paraplegias (HSPs are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5 complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.

  15. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  16. Neurosis of acquired helplessness and role of hypoxia in the formation of this disorder in rats.

    Science.gov (United States)

    Vvedenskaya, O Yu; Avrushchenko, M A; Bol'shakova, T D; Khitrov, N K; Moroz, V V

    2003-04-01

    Acquisition of instrumental defense response with pain reinforcement uncertainty (25% reinforcement) induced the development of acquired helplessness in 50% rats. Acquired helplessness is characterized by the absence of responses to conditioned (light) and unconditioned stimuli (pain), minor response of plasma corticosterone to learning, gas markers of circulatory cerebral hypoxia (Delta A/V pO2 carotid artery/jugular vein), low sensitivity to severe hypobaric conditions, and high resistance of Purkinje cells in the cerebellum. Piracetam improved learning and prevented the development of acquired helplessness. Local changes in cerebral blood flow and energy deficit in neurons responsible for emotional stress during acquired helplessness impair adaptive capacity, but reduce energy consumption and protect neuronal structures.

  17. Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro.

    Science.gov (United States)

    Frederickson, Christopher J; Suh, Sang W; Koh, Jae-Young; Cha, Yoo K; Thompson, Richard B; LaBuda, Christopher J; Balaji, Rengarajan V; Cuajungco, Math P

    2002-12-01

    The membrane-impermeable chelator CaEDTA was introduced extracellularly among neurons in vivo and in vitro for the purpose of chelating extracellular Zn(2+). Unexpectedly, this treatment caused histochemically reactive Zn(2+) in intracellular compartments to drop rapidly. The same general result was seen with intravesicular Zn(2+), which fell after CaEDTA infusion into the lateral ventricle of the brain, with perikaryal Zn(2+) in Purkinje neurons (in vivo) and with cortical neurons (in vitro). These findings suggest either that the volume of zinc ion efflux and reuptake is higher than previously suspected or that EDTA can enter cells and vesicles. Caution is therefore warranted in attempting to manipulate extracellular or intracellular Zn(2+) selectively.

  18. Construction of a cardiac conduction system subject to extracellular stimulation.

    Science.gov (United States)

    Clements, Clyde; Vigmond, Edward

    2005-01-01

    Proper electrical excitation of the heart is dependent on the specialized conduction system that coordinates the electrical activity from the atria to the ventricles. This paper describes the construction of a conduction system as a branching network of Purkinje fibers on the endocardial surface. Endocardial surfaces were extracted from an FEM model of the ventricles and transformed to 2D. A Purkinje network was drawn on top and the inverse transform performed. The underlying mathematics utilized one dimensional cubic Hermite finite elements. Compared to linear elements, the cubic Hermite solution was found to have a much smaller RMS error. Furthermore, this method has the advantage of enforcing current conservation at bifurcation and unification points, and allows for discrete coupling resistances.

  19. Landolphia owariensis Attenuates Alcohol-induced Cerebellar Neurodegeneration: Significance of Neurofilament Protein Alteration in the Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Oyinbo Charles A.

    2016-12-01

    Full Text Available Background: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action.

  20. Human neuronal stargazin-like proteins, γ2, γ3 and γ4; an investigation of their specific localization in human brain and their influence on CaV2.1 voltage-dependent calcium channels expressed in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dolphin Annette C

    2003-09-01

    Full Text Available Abstract Background Stargazin (γ2 and the closely related γ3, and γ4 transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC γ subunits and transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA receptor regulatory proteins (TARPs. In this investigation, we examined the distribution patterns of the stargazin-like proteins γ2, γ3, and γ4 in the human central nervous system (CNS. In addition, we investigated whether human γ2 or γ4 could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes. Results The mRNA encoding human γ2 is highly expressed in cerebellum, cerebral cortex, hippocampus and thalamus, whereas γ3 is abundant in cerebral cortex and amygdala and γ4 in the basal ganglia. Immunohistochemical analysis of the cerebellum determined that both γ2 and γ4 are present in the molecular layer, particularly in Purkinje cell bodies and dendrites, but have an inverse expression pattern to one another in the dentate cerebellar nucleus. They are also detected in the interneurons of the granule cell layer though only γ2 is clearly detected in granule cells. The hippocampus stains for γ2 and γ4 throughout the layers of the every CA region and the dentate gyrus, whilst γ3 appears to be localized particularly to the pyramidal and granule cell bodies. When co-expressed in Xenopus oocytes with a CaV2.1/β4 VDCC complex, either in the absence or presence of an α2δ2 subunit, neither γ2 nor γ4 significantly modulated the VDCC peak current amplitude, voltage-dependence of activation or voltage-dependence of steady-state inactivation. Conclusion The human γ2, γ3 and γ4 stargazin-like proteins are detected only in the CNS and display differential distributions among brain regions and several cell types in found in the cerebellum and hippocampus. These distribution patterns closely resemble those

  1. Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions.

    Directory of Open Access Journals (Sweden)

    Jennifer R Plourde

    Full Text Available Highly pathogenic avian influenza A (HPAI, subtype H5N1, remains an emergent threat to the human population. While respiratory disease is a hallmark of influenza infection, H5N1 has a high incidence of neurological sequelae in many animal species and sporadically in humans. We elucidate the temporal/spatial infection of H5N1 in the brain of ferrets following a low dose, intranasal infection of two HPAI strains of varying neurovirulence and lethality. A/Vietnam/1203/2004 (VN1203 induced mortality in 100% of infected ferrets while A/Hong Kong/483/1997 (HK483 induced lethality in only 20% of ferrets, with death occurring significantly later following infection. Neurological signs were prominent in VN1203 infection, but not HK483, with seizures observed three days post challenge and torticollis or paresis at later time points. VN1203 and HK483 replication kinetics were similar in primary differentiated ferret nasal turbinate cells, and similar viral titers were measured in the nasal turbinates of infected ferrets. Pulmonary viral titers were not different between strains and pathological findings in the lungs were similar in severity. VN1203 replicated to high titers in the olfactory bulb, cerebral cortex, and brain stem; whereas HK483 was not recovered in these tissues. VN1203 was identified adjacent to and within the olfactory nerve tract, and multifocal infection was observed throughout the frontal cortex and cerebrum. VN1203 was also detected throughout the cerebellum, specifically in Purkinje cells and regions that coordinate voluntary movements. These findings suggest the increased lethality of VN1203 in ferrets is due to increased replication in brain regions important in higher order function and explains the neurological signs observed during H5N1 neurovirulence.

  2. Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum.

    Directory of Open Access Journals (Sweden)

    Verena Pfeiffer

    Full Text Available This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12 but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.

  3. A robot conditioned reflex system modeled after the cerebellum.

    Science.gov (United States)

    Albus, J. S.

    1972-01-01

    Reduction of a theory of cerebellar function to computer software for the control of a mechanical manipulator. This reduction is achieved by considering the cerebellum, along with the higher-level brain centers which control it, as a type of finite-state machine with input entering the cerebellum via mossy fibers from the periphery and output from the cerebellum occurring via Purkinje cells. It is hypothesized that the cerebellum learns by an error-correction system similar to Perceptron training algorithms. An electromechanical model of the cerebellum is then developed for the control of a mechanical arm. The problem of modeling the granular layer which selects the set of parallel fibers which are active at any instant of time is considered, and a relevance matrix is constructed to model the relative degree of influence which mossy fibers from the various joints have on the sets of granule cells unique to each joint.

  4. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...... are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum...

  5. Cerebellar malformations in prenatally x-irradiated rats: quantitative analysis and detailed description

    International Nuclear Information System (INIS)

    Inouye, M.

    1979-01-01

    Pregnant WKA/HoK rats were exposed to 100 R or 200 R x-irradiation on one of gestation days 16 through 21. Offspring were killed at 60 days of age and the cerebellum was examined. The cerebellum of animals exposed to 200 R was slightly reduced in weight but not in width. The observed reduction in the dorsoventral length of the cerebellum was more evident when the x-irradiation was early in gestation. The anterior portions of hemispheres were situated anterior to the culmen in every 200 R group. Histologically, ectopic Purkinje cells in the granule cell layer and white matter appeared following x-irradiation on day 20 or 21, but they were not found following earlier treatment. In the cerebellum of animals exposed to 100 R the reduction in size was mild and the folial abnormalities were rare, but the number of sublobules decreased

  6. Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs.

    Science.gov (United States)

    Pratakpiriya, Watanyoo; Ping Teh, Angeline Ping; Radtanakatikanon, Araya; Pirarat, Nopadon; Thi Lan, Nguyen; Takeda, Makoto; Techangamsuwan, Somporn; Yamaguchi, Ryoji

    2017-03-23

    Canine distemper virus (CDV) exhibits lymphotropic, epitheliotropic, and neurotropic nature, and causes a severe systemic infection in susceptible animals. Initially, signaling lymphocyte activation molecule (SLAM) expressed on immune cells has been identified as a crucial cellular receptor for CDV. Currently, nectin-4 expressed in epithelia has been shown to be another receptor for CDV. Our previous study demonstrated that neurons express nectin-4 and are infected with CDV. In this study, we investigated the distribution pattern of nectin-4 in various cell types in the canine central nervous system and showed its relation to CDV infection to further clarify the pathology of disease. Histopathological, immunohistochemical and immunofluorescent analyses were done using formalin-fixed paraffin-embedded tissues of CDV-infected dogs. Dual staining of nectin-4 and CDV antigen or nectin-4 and brain cell markers was performed. Nectin-4 was detected in ependymal cells, epithelia of choroid plexus, meningeal cells, neurons, granular cells, and Purkinje's cells. CDV antigens were detected in these nectin-4-positive cells, further suggesting contribution of nectin-4 for the CDV neurovirulence. On the other hand, astrocytes did not express nectin-4, although they were frequently infected with CDV. Since astrocytes are negative for SLAM expression, they must express an unidentified CDV receptor, which also contributes to CDV neurovirulence.

  7. A Rare Syndrome of Deletion in 2 Siblings

    Directory of Open Access Journals (Sweden)

    Aravindhan Veerapandiyan MBBS

    2017-08-01

    Full Text Available The Glutamate receptor, ionotropic, delta 2 gene codes for an ionotropic glutamate delta-2 receptor, which is selectively expressed in cerebellar Purkinje cells, and facilitates cerebellar synapse organization and transmission. The phenotype associated with the deletion of Glutamate receptor, ionotropic, delta 2 gene in humans was initially defined in 2013. In this case report, the authors describe 2 brothers who presented with developmental delay, tonic upward gaze, nystagmus, oculomotor apraxia, hypotonia, hyperreflexia, and ataxia. They were found to have a homozygous intragenic deletion within the Glutamate receptor, ionotropic, delta 2 gene at exon 2. Our patients serve as an addition to the literature of previously reported children with this rare clinical syndrome associated with Glutamate receptor, ionotropic, delta 2 deletion.

  8. Autoradiographic imaging of phosphoinositide turnover in the brain

    International Nuclear Information System (INIS)

    Hwang, P.M.; Bredt, D.S.; Snyder, S.H.

    1990-01-01

    With [ 3 H]cytidine as a precursor, phosphoinositide turnover can be localized in brain slices by selective autoradiography of the product [ 3 H]cytidine diphosphate diacylglycerol, which is membrane-bound. In the cerebellum, glutamatergic stimulation elicits an increase of phosphoinositide turnover only in Purkinje cells and the molecular layer. In the hippocampus, both glutamatergic and muscarinic cholinergic stimulation increase phosphoinositide turnover, but with distinct localizations. Cholinergic stimulation affects CA1, CA3, CA4, and subiculum, whereas glutamatergic effects are restricted to the subiculum and CA3. Imaging phosphoinositide turnover in brain slices, which are amenable to electrophysiologic studies, will permit a dynamic localized analysis of regulation of this second messenger in response to synaptic stimulation of specific neuronal pathways

  9. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling

    Science.gov (United States)

    Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.

    2015-01-01

    Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382

  10. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    Science.gov (United States)

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  11. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo.

    Directory of Open Access Journals (Sweden)

    Wolfgang Kruse

    Full Text Available The firing patterns of cerebellar Purkinje cells (PCs, as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs, climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2 expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.

  12. Energy metabolism of synaptosomes from different neuronal systems of rat cerebellum during aging: a functional proteomic characterization.

    Science.gov (United States)

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-01-01

    Functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated. The results show that "large" and "small" synaptosomes possess specific and independent metabolic features. This study represents a reliable model to study in vivo (1) the physiopathological molecular mechanisms of some brain diseases dependent on energy metabolism, (2) the responsiveness to noxious stimuli, and (3) the effects of drugs, discriminating their action sites at subcellular level on specific neuronal pathways.

  13. Medline Plus

    Full Text Available ... the cardiac conduction system are the SA node, AV node, bundle of His, bundle branches, and Purkinje ... contract. From there, the signal travels to the AV node, through the bundle of His, down the ...

  14. Stochasticity in Ca2+ increase in spines enables robust and sensitive information coding.

    Directory of Open Access Journals (Sweden)

    Takuya Koumura

    Full Text Available A dendritic spine is a very small structure (∼0.1 µm3 of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.

  15. Lhermitte-Duclos disease with neurofibrillary tangles in heterotopic cerebral grey matter

    Directory of Open Access Journals (Sweden)

    Daniel Rusiecki

    2016-06-01

    Full Text Available Lhermitte-Duclos disease (LDD, a disorder first described by French physicians Lhermitte and Duclos in 1920 [25], is a benign, slow growing dysplastic gangliocytoma of the cerebellum, characterized by replacement of the granule cell layer by abnormal granule and Purkinje like cells. The most frequent presenting signs and symptoms are megalocephaly, increased intracranial pressure, nausea, hydrocephalus, ataxia, gait abnormalities, and intermittent headaches, all of which are attributed to the mass effect [6,11,25]. Many cases are associated with a mutation in the phosphatase and tensin homolog or PTEN gene which is also involved in numerous otherwise unrelated central nervous system abnormalities, namely Cowden syndrome [1,6,11], autism spectrum disorder [18], cerebral cortical dysplasia [11,30] and Bannayan-Riley-Ruvalcaba syndrome [30]. The presence of cortical heterotopia has been reported in a small number of LDD cases [3,5,17,32]. We describe a unique case of LDD with cerebral cortical heterotopic grey matter containing neurofibrillary tangles.

  16. First report of cerebellar abiotrophy in an Arabian foal from Argentina

    Directory of Open Access Journals (Sweden)

    S.A. Sadaba

    2016-12-01

    Full Text Available Evidence of cerebellar abiotrophy (CA was found in a six-month-old Arabian filly with signs of incoordination, head tremor, wobbling, loss of balance and falling over, consistent with a cerebellar lesion. Normal hematology profile blood test and cerebrospinal fluid analysis excluded infectious encephalitis, and serological testing for Sarcocystis neurona was negative. The filly was euthanized. Postmortem X-ray radiography of the cervical cephalic region identified not abnormalities, discounting spinal trauma. The histopathological analysis of serial transverse cerebellar sections by electron microscopy revealed morphological characteristics of apoptotic cells with pyknotic nuclei and degenerate mitochondria, cytoplasmic condensation and areas with absence of Purkinje cells, matching with CA histopathological characteristics. The indirect DNA test for CA was positive in the filly, and DNA test confirmed the CA carrier state in the parents and the recessive inheritance of the disease. To our knowledge this is the first report of a CA case in Argentina.

  17. Autoradiographic localization of binding sites for (/sup 3/H). gamma. -aminobutyrate, (/sup 3/H) muscimol, (+) (/sup 3/H) bicuculline methiodide and (/sup 3/H) flunitrazepam in cultures of rat cerebellum and spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Hoesli, E; Hoesli, L [Basel Univ. (Switzerland); Moehler, H; Richards, J G [Hoffmann-La Roche (F.) and Co., Basel (Switzerland)

    1980-01-01

    Cultures of rat cerebellum and spinal cord were used to visualize sites for (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol, (/sup 3/H)bicuculline methiodide and (/sup 3/H) flunitrazepam by autoradiography. In cerebellar cultures, many large neurons (presumably Purkinje cells) and interneurons were labelled. In spinal cord cultures, these compounds were mainly bound to small and medium-sized neurons, whereas the majority of large neurons were unlabelled. No binding sites for these radioligands were found on glial cells. Binding of (/sup 3/H)..gamma..-aminobutyrate, (/sup 3/H)muscimol and (/sup 3/H)bicuculline methiodide was markedly reduced or inhibited by adding unlabelled ..gamma..-aminobutyrate, muscimol and bicuculline (10/sup -3/M) respectively to the incubation medium. Addition of a thienobenzazepine markedly reduced binding with (/sup 3/H)flunitrazepam. It is concluded that tissues cultures are an excellent tool to visualize the cellular localization of binding sites for neurotransmitters and drugs using autoradiography.

  18. Age-related changes of monoaminooxidases in rat cerebellar cortex

    Directory of Open Access Journals (Sweden)

    FM Tranquilli Leali

    2009-06-01

    Full Text Available Age-related changes of the monoaminoxidases, evaluated by enzymatic staining, quantitative analysis of images, biochemical assay and statistical analysis of data were studied in cerebellar cortex of young (3-month-old and aged (26- month-old male Sprague-Dawley rats. The enzymatic staining shows the presence of monoamino-oxidases within the molecular and granular layers as well as within the Purkinje neurons of the cerebellum of young and aged animals. In molecular layer, and in Purkinje neurons the levels of monoaminooxidases were strongly increased in old rats. The granular layer showed, on the contrary, an age-dependent loss of enzymatic staining. These morphological findings were confirmed by biochemical results. The possibility that age-related changes in monoaminooxidase levels may be due to impaired energy production mechanisms and/or represent the consequence of reduced energetic needs is discussed.

  19. β-Catenin is critical for cerebellar foliation and lamination.

    Directory of Open Access Journals (Sweden)

    Jing Wen

    Full Text Available The cerebellum has a conserved foliation pattern and a well-organized layered structure. The process of foliation and lamination begins around birth. β-catenin is a downstream molecule of Wnt signaling pathway, which plays a critical role in tissue organization. Lack of β-catenin at early embryonic stages leads to either prenatal or neonatal death, therefore it has been difficult to resolve its role in cerebellar foliation and lamination. Here we used GFAP-Cre to ablate β-catenin in neuronal cells of the cerebellum after embryonic day 12.5, and found an unexpected role of β-catenin in determination of the foliation pattern. In the mutant mice, the positions of fissure formation were changed, and the meninges were improperly incorporated into fissures. At later stages, some lobules were formed by Purkinje cells remaining in deep regions of the cerebellum and the laminar structure was dramatically altered. Our results suggest that β-catenin is critical for cerebellar foliation and lamination. We also found a non cell-autonomous role of β-catenin in some developmental properties of major cerebellar cell types during specific stages.

  20. Immunohistochemical detection of metalloproteinase-9 (MMP-9, anti-oxidant like 1 protein (AOP-1 and synaptosomal-associated protein (SNAP-25 in the cerebella of dogs naturally infected with spontaneous canine distemper

    Directory of Open Access Journals (Sweden)

    Tereza C. Cardoso

    2011-04-01

    Full Text Available In most viral infections of the central nervous system (CNS, the integrity of brain extracelluar matrix (ECM, oxidative stress and dysfunction in neuronal transmission may contribute to the observed pathology. The purpose of this study was to investigate the role of these factors in demyelinating canine distemper virus (CDV infections. Regardless of ECM integrity, the expression of metalloproteinase-9 (MMP-9 was visualized in microglial-like cells, whereas the expression of anti-oxidant like-1 (AOP-1 and synaptosomal associated protein (SNAP-25 was frequently detected in Purkinje cells (r2 = 0.989; p < 0.05, regardless of whether the lesions were classified as acute or chronic. Increased numbers of immunolabeled microglia-like cells and reactive gliosis were observed in advanced cases of demyelinating CDV, suggesting that the expression of AOP-1 and SNAP-25 is correlated with the ultimate death of affected cells. Our findings bring a new perspective to understanding the role of the AOP-1, MMP-9 and SNAP-25 proteins in mediating chronic leukoencephalitis caused by CDV. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 1, pp. 41–48

  1. Gene transfer to the cerebellum.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2010-12-01

    There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.

  2. The radio frequency catheter ablation of inter-fascicular reentrant tachycardia: new insights into the electrophysiological and anatomical characteristics

    NARCIS (Netherlands)

    Okishige, Kaoru; Sakurada, Harumizu; Mizusawa, Yuka; Yamauchi, Yasuteru; Fukamizu, Seiji; Aoyagi, Hideshi; Okano, Yoshifumi; Azegami, Koji; Sasano, Tetsuo; Hirao, Kenzo

    2014-01-01

    Macro-reentrant ventricular tachycardias (VT) utilizing the bundle branches and Purkinje fibers have been reported as verapamil sensitive VT (idiopathic left VT), bundle branch reentrant VT (BBRT) and inter-fascicular reentrant tachycardia (inter-fascicular VT). However, diagnostic confusion exists

  3. Climbing fibers predict movement kinematics and performance errors.

    Science.gov (United States)

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each

  4. 4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia.

    Directory of Open Access Journals (Sweden)

    John S Stahl

    Full Text Available The potassium channel antagonist 4-aminopyridine (4-AP improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP's ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel, 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR and vision-enhanced vestibulo-ocular reflex (VVOR, and the optokinetic reflex (OKR about yaw and roll axes. Because tottering's deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further

  5. Role of Scoparia dulcis linn on noise-induced nitric oxide synthase (NOS) expression and neurotransmitter assessment on motor function in Wistar albino rats.

    Science.gov (United States)

    Wankhar, Wankupar; Srinivasan, Sakthivel; Sundareswaran, Loganathan; Wankhar, Dapkupar; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-02-01

    Noise pollution is one of the most widespread and fast growing environmental and occupational menaces in the modern era. Exposure to noise above 100dB is not adaptable through the brain homeostatic mechanism. Yet, the detrimental effects of noise have often been ignored. Developing reliable animal models to understand the neurobiology of noise stress and advance our research in the field of medicine to impede this growing stressor is needed. In this study experimental animals were divided into four groups, (i) Control and (ii) S. dulcis extract (200mg/kgbw) treated control group. (iii) To mimic the influence of noise, animals in this group were exposed to noise stress (100dB/4h/day) for 15days and finally, (iv) Noise exposed treated with S. dulcis extract (200mg/kgbw) group. Rota-rod and narrow beam performance results showed impaired motor co-ordination in noise exposed group on both 1st and 15th day when compared to controls. This impaired motor function on exposure to noise could be attributed to the altered norepinephrine, dopamine and serotonin levels in both the striatum and cerebellum. Moreover, the motor impaired associated changes could also be attributed to upregulated nNOS and iNOS protein expression in the cerebellum resulting in increased nitric oxide radical production. This increased reactive free radicals species can initiate lipid peroxidation mediated changes in the cerebellar Purkinje cells, which is responsible for initiating inhibitory motor response and ultimately leading to impaired motor co-ordination. Treatment with S. dulcis extract (200mg/kgbw) could control motor impairment and regulate neurotransmitter level as that of control groups when compared to noise exposed group. One key aspect of therapeutic efficacy of the plant could have resulted due to attenuated lipid peroxidation mediated damages on the cerebellar Purkinje cells thereby regulating motor impairment. Thus, targeting the antioxidant and free radicals scavenging properties of

  6. Novel medical image enhancement algorithms

    Science.gov (United States)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  7. Giant axonal neuropathy-like disease in an Alexandrine parrot (Psittacula eupatria).

    Science.gov (United States)

    Stent, Andrew; Gosbell, Matthew; Tatarczuch, Liliana; Summers, Brian A

    2015-09-01

    A chronic progressive neurological condition in an Alexandrine parrot (Psittacula eupatria) was manifest as intention tremors, incoordination, and seizure activity. Histology revealed large eosinophilic bodies throughout the central nervous system, and electron microscopy demonstrated that these bodies were greatly expanded axons distended by short filamentous structures that aggregated to form long strands. The presence of periodic acid-Schiff-positive material within the neuronal bodies of Purkinje cells and ganglionic neurons is another distinctive feature of this disease. The histological features of this case display some features consistent with giant axonal neuropathy as reported in humans and dogs. Based on investigation of the lineage in this case, an underlying inherited defect is suspected, but some additional factor appears to have altered the specific disease presentation in this bird. © 2015 The Author(s).

  8. Prenatal effects of trichlorfon on the guinea pig brain

    International Nuclear Information System (INIS)

    Berge, G.N.; Nafstad, I.; Fonnum, F.

    1986-01-01

    The organophosphorus compound trichlorfon, dimethyl (2,2,2-trichloro-1-hydroxyethyl) phosphonate, was administered by stomach tube (100 mg/kg) to pregnant guinea pigs at two different stages of gestation (days 36, 37, 38 and 51, 52, 53). The pups developed locomotory disturbances, and post mortem examination revealed significantly decreased weights of the total brain and the cerebellum, as compared to controls. There was also a significant weight reduction particularly of the medulla oblongata, but also of the hippocampus, the thalamus, and the colliculi. Histological examination of the cerebellum revealed reduction of the external granular layer and the molecular layer, and regional absence of Purkinje cells. The activities of the neutrotransmitter enzymes choline acetyltransferase (ChAT), and glutamate decarboxylase (GAD) in cerebellum were reduced as compared to the control values. (orig.)

  9. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    , appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION......Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone...... for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride...

  10. 75 FR 8889 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2010-02-26

    ..., or (ii) Serious or irreversible-- (I) Reproductive dysfunctions, (II) Neurological disorders, (III...., Gross, E.A., Dorman, D.C., ``Olfactory neuron loss in adult male CD rats following subchronic inhalation...., ``Chronic exposure to low concentrations of hydrogen sulfide produces abnormal growth in developing Purkinje...

  11. Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Weimer, Jill M; Benedict, Jared W; Getty, Amanda L; Pontikis, Charlie C; Lim, Ming J; Cooper, Jonathan D; Pearce, David A

    2009-04-17

    Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a neurodegenerative disease resulting from a mutation in CLN3, which presents clinically with visual deterioration, seizures, motor impairments, cognitive decline, hallucinations, loss of circadian rhythm, and premature death in the late-twenties to early-thirties. Using a Cln3 null (Cln3(-/-)) mouse, we report here several deficits in the cerebellum in the absence of Cln3, including cell loss and early onset motor deficits. Surprisingly, early onset glial activation and selective neuronal loss within the mature fastigial pathway of the deep cerebellar nuclei (DCN), a region critical for balance and coordination, are seen in many regions of the Cln3(-/-) cerebellum. Additionally, there is a loss of Purkinje cells (PC) in regions of robust Bergmann glia activation in Cln3(-/-) mice and human JNCL post-mortem cerebellum. Moreover, the Cln3(-/-) cerebellum had a mis-regulation in granule cell proliferation and maintenance of PC dendritic arborization and spine density. Overall, this study defines a novel multi-faceted, early-onset cerebellar disruption in the Cln3 null brain, including glial activation, cell loss, and aberrant cell proliferation and differentiation. These early alterations in the maturation of the cerebellum could underlie some of the motor deficits and pathological changes seen in JNCL patients.

  12. Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia.

    Science.gov (United States)

    Gonçalves, Nélio; Simões, Ana T; Prediger, Rui D; Hirai, Hirokazu; Cunha, Rodrigo A; Pereira de Almeida, Luís

    2017-03-01

    Machado-Joseph disease (MJD) is a neurodegenerative spinocerebellar ataxia (SCA) associated with an expanded polyglutamine tract within ataxin-3 for which there is currently no available therapy. We previously showed that caffeine, a nonselective adenosine receptor antagonist, delays the appearance of striatal damage resulting from expression of full-length mutant ataxin-3. Here we investigated the ability of caffeine to alleviate behavioral deficits and cerebellar neuropathology in transgenic mice with a severe ataxia resulting from expression of a truncated fragment of polyglutamine-expanded ataxin-3 in Purkinje cells. Control and transgenic c57Bl6 mice expressing in the mouse cerebella a truncated form of human ataxin-3 with 69 glutamine repeats were allowed to freely drink water or caffeinated water (1g/L). Treatments began at 7 weeks of age, when motor and ataxic phenotype emerges in MJD mice, and lasted up to 20 weeks. Mice were tested in a panel of locomotor behavioral paradigms, namely rotarod, beam balance and walking, pole, and water maze cued-platform version tests, and then sacrificed for cerebellar histology. Caffeine consumption attenuated the progressive loss of general and fine-tuned motor function, balance, and grip strength, in parallel with preservation of cerebellar morphology through decreasing the loss of Purkinje neurons and the thinning of the molecular layer in different folia. Caffeine also rescued the putative striatal-dependent executive and cognitive deficiencies in MJD mice. Our findings provide the first in vivo demonstration that caffeine intake alleviates behavioral disabilities in a severely impaired animal model of SCA. Ann Neurol 2017;81:407-418. © 2016 American Neurological Association.

  13. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway.

    Science.gov (United States)

    Halbach, Melanie Vanessa; Gispert, Suzana; Stehning, Tanja; Damrath, Ewa; Walter, Michael; Auburger, Georg

    2017-02-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.

  14. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  15. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  16. Effects of halothane on the conduction system of the heart in humans

    NARCIS (Netherlands)

    Scheffer, G. J.; Jonges, R.; Holley, H. S.; Grimbergen, C. A.; Ros, H. H.; Peper, A.; Booij, L. H.

    1989-01-01

    The effects of 2.0 MAC halothane on atrioventricular conduction times in humans were studied. A real-time recording system for the detection of surface His-Purkinje potentials based on signal averaging techniques was used. Recordings were made in 23 patients before and after the administration of

  17. The role of sex steroid hormones in Purkinje cell death in the staggerer mutant during aging and development

    NARCIS (Netherlands)

    Janmaat, Sonja

    2007-01-01

    The comprehension of neuronal degeneration during aging has become one of the major objectives in Neuroscience during the last decades. This thesis will focus on both endocrine and neural senescence since they overlap during the aging process and are mechanistically intertwined. This thesis is

  18. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  19. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    Science.gov (United States)

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  20. Molecular layer interneurons of the cerebellum: developmental and morphological aspects.

    Science.gov (United States)

    Sotelo, Constantino

    2015-10-01

    During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs' precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.

  1. Role of Neurotrophins in Mediating the Effect of Altered Gravity on the Developing Rat Cerebellum.

    Science.gov (United States)

    Sajdel-Sulkowska, Elizabeth

    We previously reported that perinatal exposure to hypergravity resulted in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. However, the increase in oxidative stress markers was not uniformly observed in males and females. In the present study we explored the possibility that exposure to hypergravity may result in altered level of neurotrophins, which have been recognized as mediators of both neurodegenerative and neuroprotective mechanisms in the central nervous system. An elevation of neurotrophin-3 (NT-3) has been observed in animal models of hypoxia. To test this hypothesis we compared cerebellar levels of NT-3 between stationary control (SC) and rat neonates exposed perinatally to 1.65 G on a 24-ft centrifuge. The levels of NT-3 were determined by specific ELISA. Preliminary data suggests a 123

  2. Evaluation of Morphological Plasticity in the Cerebella of Basketball Players with MRI

    Science.gov (United States)

    Park, In Sung; Han, Jong Woo; Lee, Kea Joo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah

    2006-01-01

    Cerebellum is a key structure involved in motor learning and coordination. In animal models, motor skill learning increased the volume of molecular layer and the number of synapses on Purkinje cells in the cerebellar cortex. The aim of this study is to investigate whether the analogous change of cerebellar volume occurs in human population who learn specialized motor skills and practice them intensively for a long time. Magnetic resonance image (MRI)-based cerebellar volumetry was performed in basketball players and matched controls with V-works image software. Total brain volume, absolute and relative cerebellar volumes were compared between two groups. There was no significant group difference in the total brain volume, the absolute and the relative cerebellar volume. Thus we could not detect structural change in the cerebellum of this athlete group in the macroscopic level. PMID:16614526

  3. [From Purkinje's pharmacologic observations to molecular drug interactions].

    Science.gov (United States)

    Kvĕtina, J

    1998-11-01

    The 650th anniversary of the foundation of Charles University (7 April 1348) in Prague has initiated a number of historical surveys of the subjects which has been taught at the University for a longer period of time. The disciplines connected with pharmacotherapy were being developed in an empirical conception at the University from the second half of the 14th century but the beginnings of experimental drug research date as late as the mid-19th century. The present survey of the history of "the sciences of medicaments" therefore attempts to outline in short entries the developmental stages of pharmaceutical and pharmacological investigations in the territory of Bohemia and Moravia in about recent 150 years. The arrangement of data is chronological; in the part covering the second half of the 20th century the research of a predominantly exploratory character (universities and academic institutions and their representatives) and research aimed primarily to innovate medicaments (research institutions of pharmaceutical industry and clinical pharmacology and some of their representatives) are treated separately.

  4. Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning.

    Science.gov (United States)

    Kuroda, S; Yamamoto, K; Miyamoto, H; Doya, K; Kawat, M

    2001-03-01

    Mean firing rates (MFRs), with analogue values, have thus far been used as information carriers of neurons in most brain theories of learning. However, the neurons transmit the signal by spikes, which are discrete events. The climbing fibers (CFs), which are known to be essential for cerebellar motor learning, fire at the ultra-low firing rates (around 1 Hz), and it is not yet understood theoretically how high-frequency information can be conveyed and how learning of smooth and fast movements can be achieved. Here we address whether cerebellar learning can be achieved by CF spikes instead of conventional MFR in an eye movement task, such as the ocular following response (OFR), and an arm movement task. There are two major afferents into cerebellar Purkinje cells: parallel fiber (PF) and CF, and the synaptic weights between PFs and Purkinje cells have been shown to be modulated by the stimulation of both types of fiber. The modulation of the synaptic weights is regulated by the cerebellar synaptic plasticity. In this study we simulated cerebellar learning using CF signals as spikes instead of conventional MFR. To generate the spikes we used the following four spike generation models: (1) a Poisson model in which the spike interval probability follows a Poisson distribution, (2) a gamma model in which the spike interval probability follows the gamma distribution, (3) a max model in which a spike is generated when a synaptic input reaches maximum, and (4) a threshold model in which a spike is generated when the input crosses a certain small threshold. We found that, in an OFR task with a constant visual velocity, learning was successful with stochastic models, such as Poisson and gamma models, but not in the deterministic models, such as max and threshold models. In an OFR with a stepwise velocity change and an arm movement task, learning could be achieved only in the Poisson model. In addition, for efficient cerebellar learning, the distribution of CF spike

  5. Properties of bilateral spinocerebellar activation of cerebellar cortical neurons

    Directory of Open Access Journals (Sweden)

    Pontus eGeborek

    2014-10-01

    Full Text Available We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT and the dorsal spinocerebellar tract (DSCT, respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF and the ipsilateral LF (iLF at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e. that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.

  6. Origin, lineage and function of cerebellar glia.

    Science.gov (United States)

    Buffo, Annalisa; Rossi, Ferdinando

    2013-10-01

    The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models

    OpenAIRE

    Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2011-01-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO)...

  8. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  9. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    Science.gov (United States)

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  10. Evaluation and statistical judgement of neural responses to sinusoidal stimulation in cases with superimposed drift and noise.

    Science.gov (United States)

    Jastreboff, P W

    1979-06-01

    Time histograms of neural responses evoked by sinuosidal stimulation often contain a slow drifting and an irregular noise which disturb Fourier analysis of these responses. Section 2 of this paper evaluates the extent to which a linear drift influences the Fourier analysis, and develops a combined Fourier and linear regression analysis for detecting and correcting for such a linear drift. Usefulness of this correcting method is demonstrated for the time histograms of actual eye movements and Purkinje cell discharges evoked by sinusoidal rotation of rabbits in the horizontal plane. In Sect. 3, the analysis of variance is adopted for estimating the probability of the random occurrence of the response curve extracted by Fourier analysis from noise. This method proved to be useful for avoiding false judgements as to whether the response curve was meaningful, particularly when the response was small relative to the contaminating noise.

  11. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  12. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  13. Morfologia da junção atrioventricular em Iguana iguana (Reptilia-Iguanidae

    Directory of Open Access Journals (Sweden)

    Sonia Regina Jurado

    2006-06-01

    Full Text Available The atrioventricular junctional area (AVJA, including atrioventricular (AV node and bundle was investigated in seven hearts of common or green iguana (Iguana iguana using the light microscopy. Adult animals, both sexes, were captured in the Pantanal, Brazil. All hearts were fixed in buffered formaldehyde 10% (pH 7.2 for 24 hours, embedded in paraplast according to routine methods, and serially cut at 5 µm thickness. In the Iguana iguana, the AVJA consists of a mass of the fibers intermingled with variable amount of connective tissue and blood vessels surrounded by adjacent myocardium and the attachment of the right atrioventricular valve in the fibrous skeleton. By light microscopy, conducting cells of the AV node and bundle can be distinguished from working cells by their much smaller size, paler staining reaction and the presence of a sheath of connective tissue. The AV node and bundle and its branches were found to constitute a continuous tract. Histochemically, we found elastic fibers between cells of the conduction, mainly in the AV node. The PAS method reveals absence of glycogen in specialized cells. The fibrous skeleton, mainly the right trigone, showed a well-developed chondroid tissue, made by hyaline like cartilage (binucleated condrocytes included in the big lacunas and extracellular matrix with fibrillar collagen. In conclusion, the nodal and Purkinje cells in heart iguana presented poorly morphological differentiation comparing mammals and birds, however the skeleton fibrous has a different cartilage kind.

  14. Fluoride toxicity and status of serum thyroid hormones, brain histopathology, and learning memory in rats: a multigenerational assessment.

    Science.gov (United States)

    Basha, Piler Mahaboob; Rai, Puja; Begum, Shabana

    2011-12-01

    High-fluoride (100 and 200 ppm) water was administered to rats orally to study the fluoride-induced changes on the thyroid hormone status, the histopathology of discrete brain regions, the acetylcholine esterase activity, and the learning and memory abilities in multigeneration rats. Significant decrease in the serum-free thyroxine (FT4) and free triiodothyronine (FT3) levels and decrease in acetylcholine esterase activity in fluoride-treated group were observed. Presence of eosinophilic Purkinje cells, degenerating neurons, decreased granular cells, and vacuolations were noted in discrete brain regions of the fluoride-treated group. In the T-maze experiments, the fluoride-treated group showed poor acquisition and retention and higher latency when compared with the control. The alterations were more profound in the third generation when compared with the first- and second-generation fluoride-treated group. Changes in the thyroid hormone levels in the present study might have imbalanced the oxidant/antioxidant system, which further led to a reduction in learning memory ability. Hence, presence of generational or cumulative effects of fluoride on the development of the offspring when it is ingested continuously through multiple generations is evident from the present study.

  15. Perturbations in the antioxidant metabolism during Newcastle disease virus (NDV) infection in chicken. Protective role of vitamin E

    Science.gov (United States)

    Subbaiah, Kadiam C. Venkata; Raniprameela, D.; Visweswari, Gopalareddygari; Rajendra, Wudayagiri; Lokanatha, Valluru

    2011-12-01

    The aim of the present study was to investigate the effect of vitamin E on pro/anti-oxidant status in the liver, brain and heart of Newcastle disease virus (NDV) infected chickens. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione- S-transferase (GST) and the levels of reduced glutathione and malonaldehyde were estimated in selected tissues of uninfected, NDV-infected and NDV + vit. E-treated chickens. A significant increase in MDA levels in brain and liver ( p neuronal necrosis and degeneration of Purkinje cells were observed in brain and moderate infiltration of inflammatory cells was observed in heart. However such histological alterations were not observed in NDV + vit. E-treated animals. The results of the present study, thus demonstrated that antioxidant defense mechanism is impaired after the induction of NDV, suggesting its critical role in cellular injury in brain and liver. Further, the results also suggest that vitamin E treatment will ameliorate the antioxidant status in the infected animals. The findings could be beneficial to understand the role of oxidative stress in the pathogenesis of NDV and therapeutic interventions of antioxidants.

  16. Effect of clebopride, antidopaminergic gastrointestinal prokinetics, on cardiac repolarization.

    Science.gov (United States)

    Kim, Ki-Suk; Shin, Won-Ho; Park, Sang-joon; Kim, Eun-Joo

    2007-01-01

    The inhibition of the potassium current I(Kr) and QT prolongation has been known to be associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. In this study, the authors investigated the cardiac electrophysiological effects of clebopride, a class of antidopaminergic gastrointestinal prokinetic, that has been reported to prolong the QT interval by using the conventional microelectrode recording techniques in isolated rabbit Purkinje fiber and whole-cell patch clamp techniques in human ether-à-go-go-related gene (hERG)-stably transfected Chinese hamster ovarian (CHO) cells. Clebopride at 10 microM significantly decreased the Vmax of phase 0 depolarization (p Clebopride was found to have no effect on sodium channel currents. When these results were compared with Cmax (1.02 nM) of clinical dosage (1 mg, [p.o.]), it can be suggested that clebopride is safe at the clinical dosage of 1 mg from the electrophysiological aspect. These findings indicate that clebopride, an antidopaminergic gastrointestinal prokinetic drug, may provide a sufficient "safety factor" in terms of the electrophysiological threshold concentration. But, in a supratherapeutic concentration that might possibly be encountered during overdose or impaired metabolism, clebopride may have torsadogenic potency.

  17. Neurologic function during developmental and adult stages in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Strazielle, C; Lalonde, R

    2012-01-01

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex, hippocampus, and neocortex were compared to non-ataxic controls on the SHIRPA primary screening battery on postnatal days 8, 15, and 22, as well as in the adult period. Dab1(scm) mutants were distinguished from non-ataxic controls as early as postnatal day 8 based on body tremor, gait anomalies, and body weight. On postnatal day 15, motor coordination deficits were evident on horizontal bar and inclined or vertical grid tests in association with a weaker grip strength. Likewise, mutants were distinguished from controls on drop righting and hindpaw clasping tests. Further differences were detected on postnatal day 22 in the form of fewer visual placing, touch escape, trunk curl, freezing, and vocalization responses, as well as squares traversed in the open-field. Evaluation at the adult age demonstrated similar impairments, indicative of permanent motor alterations. Neuronal metabolic activity was estimated by cytochrome oxidase histochemistry on cerebellar sections. Cerebellar cortical layers and efferent deep nuclei of Dab1(scm) mice appeared hypometabolic relative to non-ataxic mice despite normal metabolism in both regular and ectopic Purkinje cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Localization of Reversion-Induced LIM Protein (RIL) in the Rat Central Nervous System

    International Nuclear Information System (INIS)

    Iida, Yuko; Matsuzaki, Toshiyuki; Morishima, Tetsuro; Sasano, Hiroshi; Asai, Kiyofumi; Sobue, Kazuya; Takata, Kuniaki

    2009-01-01

    Reversion-induced LIM protein (RIL) is a member of the ALP (actinin-associated LIM protein) subfamily of the PDZ/LIM protein family. RIL serves as an adaptor protein and seems to regulate cytoskeletons. Immunoblotting suggested that RIL is concentrated in the astrocytes in the central nervous system. We then examined the expression and localization of RIL in the rat central nervous system and compared it with that of water channel aquaporin 4 (AQP4). RIL was concentrated in the cells of ependyma lining the ventricles in the brain and the central canal in the spinal cord. In most parts of the central nervous system, RIL was expressed in the astrocytes that expressed AQP4. Double-labeling studies showed that RIL was concentrated in the cytoplasm of astrocytes where glial fibrillary acidic protein was enriched as well as in the AQP4-enriched regions such as the endfeet or glia limitans. RIL was also present in some neurons such as Purkinje cells in the cerebellum and some neurons in the brain stem. Differential expression of RIL suggests that it may be involved in the regulation of the central nervous system

  19. Retrograde Signaling from Progranulin to Sort1 Counteracts Synapse Elimination in the Developing Cerebellum.

    Science.gov (United States)

    Uesaka, Naofumi; Abe, Manabu; Konno, Kohtarou; Yamazaki, Maya; Sakoori, Kazuto; Watanabe, Takaki; Kao, Tzu-Huei; Mikuni, Takayasu; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu

    2018-02-21

    Elimination of redundant synapses formed early in development and strengthening of necessary connections are crucial for shaping functional neural circuits. Purkinje cells (PCs) in the neonatal cerebellum are innervated by multiple climbing fibers (CFs) with similar strengths. A single CF is strengthened whereas the other CFs are eliminated in each PC during postnatal development. The underlying mechanisms, particularly for the strengthening of single CFs, are poorly understood. Here we report that progranulin, a multi-functional growth factor implicated in the pathogenesis of frontotemporal dementia, strengthens developing CF synaptic inputs and counteracts their elimination from postnatal day 11 to 16. Progranulin derived from PCs acts retrogradely onto its putative receptor Sort1 on CFs. This effect is independent of semaphorin 3A, another retrograde signaling molecule that counteracts CF synapse elimination. We propose that progranulin-Sort1 signaling strengthens and maintains developing CF inputs, and may contribute to selection of single "winner" CFs that survive synapse elimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Immunohistochemical Mapping of TRK-Fused Gene Products in the Rat Brainstem

    International Nuclear Information System (INIS)

    Takeuchi, Shigeko; Masuda, Chiaki; Maebayashi, Hisae; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It was since reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. As shown in the accompanying paper, we produced an antibody to rat TFG and used it to localize TFG to selected neurons in specific regions. In the present study, we mapped the TFG-positive neurons in the brainstem, cerebellum, and spinal cord of rats. In the brainstem, neurons intensely positive for TFG were distributed in the raphe nuclei, the gigantocellular reticular nucleus, the reticulotegmental nucleus of the pons, and some cranial nerve nuclei such as the trigeminal nuclei, the vestibulocochlear nuclei, and the dorsal motor nucleus of the vagus. Purkinje cells in the cerebellum and motor neurons in the spinal anterior horn were also positive for TFG. These results provide fundamental data for studying the functions of TFG in the brain

  1. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  2. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    Science.gov (United States)

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control.

    Science.gov (United States)

    Kawato, Mitsuo; Kuroda, Shinya; Schweighofer, Nicolas

    2011-10-01

    The biophysical models of spike-timing-dependent plasticity have explored dynamics with molecular basis for such computational concepts as coincidence detection, synaptic eligibility trace, and Hebbian learning. They overall support different learning algorithms in different brain areas, especially supervised learning in the cerebellum. Because a single spine is physically very small, chemical reactions at it are essentially stochastic, and thus sensitivity-longevity dilemma exists in the synaptic memory. Here, the cascade of excitable and bistable dynamics is proposed to overcome this difficulty. All kinds of learning algorithms in different brain regions confront with difficult generalization problems. For resolution of this issue, the control of the degrees-of-freedom can be realized by changing synchronicity of neural firing. Especially, for cerebellar supervised learning, the triangle closed-loop circuit consisting of Purkinje cells, the inferior olive nucleus, and the cerebellar nucleus is proposed as a circuit to optimally control synchronous firing and degrees-of-freedom in learning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary.

    Science.gov (United States)

    Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor

    2017-12-01

    A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease.

  5. Long-range eye tracking: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jayaweera, S.K.; Lu, Shin-yee

    1994-08-24

    The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.

  6. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Asaph Zylbertal

    2017-09-01

    Full Text Available Changes in intracellular Na+ concentration ([Na+]i are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.

  7. MeCP2 Expression and Promoter Methylation of Cyclin D1 Gene Are Associated with Cyclin D1 Expression in Developing Rat Epididymal Duct

    International Nuclear Information System (INIS)

    Darwanto, Agus; Kitazawa, Riko; Mori, Kiyoshi; Kondo, Takeshi; Kitazawa, Sohei

    2008-01-01

    Hypermethylation-dependent silencing of the gene is achieved by recruiting methyl-CpG binding proteins (MeCPs). Among the MeCPs, MeCP2 is the most abundantly and ubiquitously expressed in various types of cells. We first screened the distribution and expression pattern of MeCP2 in adult and developing rat tissues and found strong MeCP2 expression, albeit rather ubiquitously among normal tissues, in ganglion cells and intestinal epithelium in the small intestine, in Purkinje cells and neurons in the brain, in spermatogonia and in epithelial cells in the epididymal duct of the testis. We then assessed the expression and the methylation pattern of the promoter region of cyclin D1 by immunohistochemistry and sodium bisulfite mapping, and found that cyclin D1 expression in the epididymal duct decreased rapidly during rat development: strong in newborn rats and very weak or almost negative in 7-day-old rats. Mirroring the decrease of cyclin D1 expression, methylated cytosine at both CpG and non-CpG loci in the cyclin D1 promoter was frequently observed in the epididymal duct of 7-day-old rats but not in that of newborn rats. Interestingly, MeCP2 expression also increased concomitant with the increase of methylation. Cyclin D1 expression in the epididymal duct may be efficiently regulated by the epigenetic mechanism of the cooperative increase of MeCP2 expression and promoter methylation

  8. Secretin and autism: a basic morphological study about the distribution of secretin in the nervous system.

    Science.gov (United States)

    Köves, Katalin; Kausz, Mária; Reser, Diana; Illyés, György; Takács, József; Heinzlmann, Andrea; Gyenge, Eszter; Horváth, Károly

    2004-12-15

    For the first time, the relationship between secretin and autism has been demonstrated by one of us. Intravenous administration of secretin in autistic children caused a fivefold higher pancreaticobiliary fluid secretion than in healthy ones and, at least in some of the patients, better mental functions were reported after the secretin test. Because the precise localization of secretin in the brain is still not completely known, the abovementioned observation led us to map secretin immunoreactivity in the nervous system of several mammalian species. In the present work, the distribution of secretin immunoreactivity in cat and human nervous systems was compared with that of rats using an immunohistochemical approach. Secretin immunoreactivity was observed in the following brain structures of both humans and in colchicine-treated rats: (1) Purkinje cells in the cerebellar cortex; (2) central cerebellar nuclei; (3) pyramidal cells in the motor cortex; and (4) primary sensory neurons. Additionally, secretin immnoreactive cells were observed in the human hippocampus and amygdala and in third-order sensory neurons of the rat auditory system. In cats, secretin was only observed in the spinal ganglia. Our findings support the view that secretin is not only a gastrointestinal peptide but that it is also a neuropeptide. Its presence or the lack of its presence may have a role in the development of behavioral disorders.

  9. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.

    Science.gov (United States)

    Jakoby, Patrick; Schmidt, Elke; Ruminot, Iván; Gutiérrez, Robin; Barros, L Felipe; Deitmer, Joachim W

    2014-01-01

    Glucose is the most important energy substrate for the brain, and its cellular distribution is a subject of great current interest. We have employed fluorescent glucose probes, the 2-deoxy-D-glucose derivates 6- and 2-([N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose) (2-NBDG), to measure transport and metabolism of glucose in acute slices of mouse hippocampus and cerebellum. In the hippocampus, 6-NBDG, which is not metabolized and hence indicates glucose transport, was taken up faster in astrocyte-rich layers (Stratum radiatum [S.r.], Stratum oriens [S.o.]) than in pyramidal cells. Metabolizable 2-NBDG showed larger signals in S.r. and S.o. than in Stratum pyramidale, suggesting faster glucose utilization rate in the astrocyte versus the neuronal compartment. Similarly, we found higher uptake and temperature-sensitive metabolism of 2-NBDG in Bergmann glia when compared with adjacent Purkinje neurons of cerebellar slices. A comparison between 6-NBDG transport and glucose transport in cultured cells using a fluorescence resonance energy transfer nanosensor showed that relative to glucose, 6-NBDG is transported better by neurons than by astrocytes. These results indicate that the preferential transport and metabolism of glucose by glial cells versus neurons proposed for the hippocampus and cerebellum by ourselves (in vitro) and for the barrel cortex by Chuquet et al. (in vivo) is more pronounced than anticipated.

  10. Shp2-Dependent ERK Signaling Is Essential for Induction of Bergmann Glia and Foliation of the Cerebellum

    Science.gov (United States)

    Li, Kairong; Leung, Alan W.; Guo, Qiuxia; Yang, Wentian

    2014-01-01

    Folding of the cortex and the persistence of radial glia (RG)-like cells called Bergmann glia (BG) are hallmarks of the mammalian cerebellum. Similar to basal RG in the embryonic neocortex, BG maintain only basal processes and continuously express neural stem cell markers. Past studies had focused on the function of BG in granule cell migration and how granule cell progenitors (GCP) regulate cerebellar foliation. The molecular control of BG generation and its role in cerebellar foliation are less understood. Here, we have analyzed the function of the protein tyrosine phosphatase Shp2 in mice by deleting its gene Ptpn11 in the entire cerebellum or selectively in the GCP lineage. Deleting Ptpn11 in the entire cerebellum by En1-cre blocks transformation of RG into BG but preserves other major cerebellar cell types. In the absence of BG, inward invagination of GCP persists but is uncoupled from the folding of the Purkinje cell layer and the basement membrane, leading to disorganized lamination and an absence of cerebellar folia. In contrast, removing Ptpn11 in the GCP lineage by Atoh1-cre has no effect on cerebellar development, indicating that Shp2 is not cell autonomously required in GCP. Furthermore, we demonstrate that Ptpn11 interacts with Fgf8 and is essential for ERK activation in RG and nascent BG. Finally, expressing constitutively active MEK1 rescues BG formation and cerebellar foliation in Shp2-deficient cerebella. Our results demonstrate an essential role of Shp2 in BG specification via fibroblast growth factor/extracellular signal-regulated protein kinase signaling, and reveal a crucial function of BG in organizing cerebellar foliation. PMID:24431450

  11. Cerebellum developmental challenges: From morphology to molecular issues

    Directory of Open Access Journals (Sweden)

    Andrei Cosma

    2017-06-01

    Full Text Available Introduction: It is known that, throughout the development of the nervous system, the cellular migratory routes are an important part of its expansion; therefore, the cerebellum is ‘sprinkled’ with cellular changes during its growth. The aim of this study was to analyse the morphological features of the cerebellum cells in all the layers, during its development. Material and methods: We examined 14 cases of human cerebellum, ranging between 1 to 12 months by histopathology and immunohistochemistry. Results: Haematoxylin and eosin staining method confirmed the age-linked migration of the cells from the external granular layer into the internal granular layer. Moreover, immunohistochemical evaluation using PROX1 and NFAP showed positivity for the Purkinje cells. However, these cells exposed negativity on NSE stained specimens. On the other hand, the transience of the EGL was analyzed using OCT3/4, which showed the migration of the EGL cells through the molecular layer to the IGL. Also, GFAP and NFAP proved to be a useful tool for the identification of the climbing fibres and the variation of their density connected the age of the patient. Conclusions: The human cerebellum undergoes different morphological and molecular changes throughout its evolution during embryogenesis. The markers used in our study have proved to present a differential, stage-dependant reactivity and appeared as useful tools for the identification of different cerebellar structures. Our study is a challenging attempt to understand the basics of cerebellar development at a morphological and molecular level and may bring new perspectives for a better approach of cerebellar associated pathologies.

  12. CEREBELLUM DEVELOPMENTAL CHALLENGES: FROM MORPHOLOGY TO MOLECULAR ISSUES

    Directory of Open Access Journals (Sweden)

    Andrei Cosma ¹

    2017-10-01

    Full Text Available INTRODUCTION: It is known that, throughout the development of the nervous system, the cellular migratory routes are an important part of its expansion; therefore, the cerebellum is ‘sprinkled’ with cellular changes during its growth. The aim of this study was to analyse the morphological features of the cerebellum cells in all the layers, during its development. MATERIAL AND METHODS: We examined 14 cases of human cerebellum, ranging between 1 month to 12 years by histopathology and immunohistochemistry. RESULTS: Haematoxylin and eosin staining method confirmed the age-linked migration of the cells from the external granular layer into the internal granular layer. Moreover, immunohistochemical evaluation using PROX1 and NFAP showed positivity for the Purkinje cells. However, these cells exposed negativity on NSE stained specimens. On the other hand, the transience of the EGL was analysed using OCT3/4, which showed the migration of the EGL cells through the molecular layer to the IGL. Also, GFAP and NFAP proved to be a useful tool for the identification of the climbing fibres and the variation of their density connected the age of the patient. CONCLUSIONS: The human cerebellum undergoes different morphological and molecular changes throughout its evolution during embryogenesis. The markers used in our study have proved to present a differential, stage-dependant reactivity and appeared as useful tools for the identification of different cerebellar structures. Our study is a challenging attempt to understand the basics of cerebellar development at a morphological and molecular level and may bring new perspectives for a better approach of cerebellar associated pathologies.

  13. Autism Spectrum Disorders and Neuropathology of the Cerebellum

    Directory of Open Access Journals (Sweden)

    David R Hampson

    2015-11-01

    Full Text Available The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.

  14. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  15. Autism spectrum disorders and neuropathology of the cerebellum.

    Science.gov (United States)

    Hampson, David R; Blatt, Gene J

    2015-01-01

    The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.

  16. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    Science.gov (United States)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  17. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  18. Reducing GBA2 Activity Ameliorates Neuropathology in Niemann-Pick Type C Mice.

    Directory of Open Access Journals (Sweden)

    André R A Marques

    Full Text Available The enzyme glucocerebrosidase (GBA hydrolyses glucosylceramide (GlcCer in lysosomes. Markedly reduced GBA activity is associated with severe manifestations of Gaucher disease including neurological involvement. Mutations in the GBA gene have recently also been identified as major genetic risk factor for Parkinsonism. Disturbed metabolism of GlcCer may therefore play a role in neuropathology. Besides lysosomal GBA, cells also contain a non-lysosomal glucosylceramidase (GBA2. Given that the two β-glucosidases share substrates, we speculated that over-activity of GBA2 during severe GBA impairment might influence neuropathology. This hypothesis was studied in Niemann-Pick type C (Npc1-/- mice showing secondary deficiency in GBA in various tissues. Here we report that GBA2 activity is indeed increased in the brain of Npc1-/- mice. We found that GBA2 is particularly abundant in Purkinje cells (PCs, one of the most affected neuronal populations in NPC disease. Inhibiting GBA2 in Npc1-/- mice with a brain-permeable low nanomolar inhibitor significantly improved motor coordination and extended lifespan in the absence of correction in cholesterol and ganglioside abnormalities. This trend was recapitulated, although not to full extent, by introducing a genetic loss of GBA2 in Npc1-/- mice. Our findings point to GBA2 activity as therapeutic target in NPC.

  19. Sonic Hedgehog Signaling Drives Mitochondrial Fragmentation by Suppressing Mitofusins in Cerebellar Granule Neuron Precursors and Medulloblastoma.

    Science.gov (United States)

    Malhotra, Anshu; Dey, Abhinav; Prasad, Niyathi; Kenney, Anna Marie

    2016-01-01

    Sonic hedgehog (Shh) signaling is closely coupled with bioenergetics of medulloblastoma, the most common malignant pediatric brain tumor. Shh-associated medulloblastoma arises from cerebellar granule neuron precursors (CGNP), a neural progenitor whose developmental expansion requires signaling by Shh, a ligand secreted by the neighboring Purkinje neurons. Previous observations show that Shh signaling inhibits fatty acid oxidation although driving increased fatty acid synthesis. Proliferating CGNPs and mouse Shh medulloblastomas feature high levels of glycolytic enzymes in vivo and in vitro. Because both of these metabolic processes are closely linked to mitochondrial bioenergetics, the role of Shh signaling in mitochondrial biogenesis was investigated. This report uncovers a surprising decrease in mitochondrial membrane potential (MMP) and overall ATP production in CGNPs exposed to Shh, consistent with increased glycolysis resulting in high intracellular acidity, leading to mitochondrial fragmentation. Ultrastructural examination of mitochondria revealed a spherical shape in Shh-treated cells, in contrast to the elongated appearance in vehicle-treated postmitotic cells. Expression of mitofusin 1 and 2 was reduced in these cells, although their ectopic expression restored the MMP to the nonproliferating state and the morphology to a fused, interconnected state. Mouse Shh medulloblastoma cells featured drastically impaired mitochondrial morphology, restoration of which by ectopic mitofusin expression was also associated with a decrease in the expression of Cyclin D2 protein, a marker for proliferation. This report exposes a novel role for Shh in regulating mitochondrial dynamics and rescue of the metabolic profile of tumor cells to that of nontransformed, nonproliferating cells and represents a potential avenue for development of medulloblastoma therapeutics. ©2015 American Association for Cancer Research.

  20. Embryonic cerebellar neurons accumulate [3H-gamma-aminobutyric acid: visualization of developing gamma-aminobutyric acid-utilizing neurons in vitro and in vivo

    International Nuclear Information System (INIS)

    Hatten, M.E.; Francois, A.M.; Napolitano, E.; Roffler-Tarlov, S.

    1984-01-01

    gamma-Aminobutyric acid (GABA) is the proposed neurotransmitter for four types of cerebellar neurons-Purkinje, Golgi, basket, and stellate neurons. With this investigation we have begun studies to establish when these neurons acquire their neurotransmitter ''identification''. Autoradiographic studies of both cultured embryonic (embryonic day 13) cerebellar cells and of intact embryonic cerebellum (embryonic day 13) were conducted with tritiated GABA. Two to 5% of the embryonic cerebellar cells accumulated [ 3 H]GABA in vitro. By morphological and immunocytochemical criteria, labeled cells were large neurons with either a thick, apical process, a multipolar shape, or were bipolar with longer processes. The identification of cells which accumulated [ 3 H]GABA as neuronal precursors was supported by the differential sensitivity to drugs that preferentially inhibit accumulation of [ 3 H]GABA by neurons and glia. The results of the in vitro experiments were confirmed and extended with in vivo experiments. When intact cerebellar tissue was removed at embryonic day 13, stripped of meninges and choroid plexus, exposed to low concentrations of [ 3 H]GABA, and processed for light microscopic autoradiography, heavily labeled cells were seen in the middle of the cerebellar anlage. Labeled cells were not seen in the ventricular zone of proliferating neuroblasts lining the fourth ventricle or in the external granular layer emerging at the lateral aspect of the pial surface. The accumulation of [ 3 H]GABA by these cells also showed the pharmacological characteristics of uptake by neurons. This study shows that among migrating, immature forms of the larger neurons of the embryonic cerebellum, there is a select group which accumulates [ 3 H]GABA and other classes of cells which do not. These results indicate very early acquisition of transmitter expression by cerebellar neurons, far in advance of their final positioning and establishment of synapses

  1. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.

    Science.gov (United States)

    Lenz, Alexander; Anderson, Sean R; Pipe, A G; Melhuish, Chris; Dean, Paul; Porrill, John

    2009-12-01

    In this paper, a model of cerebellar function is implemented and evaluated in the control of a robot eye actuated by pneumatic artificial muscles. The investigated control problem is stabilization of the visual image in response to disturbances. This is analogous to the vestibuloocular reflex (VOR) in humans. The cerebellar model is structurally based on the adaptive filter, and the learning rule is computationally analogous to least-mean squares, where parameter adaptation at the parallel fiber/Purkinje cell synapse is driven by the correlation of the sensory error signal (carried by the climbing fiber) and the motor command signal. Convergence of the algorithm is first analyzed in simulation on a model of the robot and then tested online in both one and two degrees of freedom. The results show that this model of neural function successfully works on a real-world problem, providing empirical evidence for validating: 1) the generic cerebellar learning algorithm; 2) the function of the cerebellum in the VOR; and 3) the signal transmission between functional neural components of the VOR.

  2. Switching On Depression and Potentiation in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Andrew R. Gallimore

    2018-01-01

    Full Text Available Long-term depression (LTD and long-term potentiation (LTP in the cerebellum are important for motor learning. However, the signaling mechanisms controlling whether LTD or LTP is induced in response to synaptic stimulation remain obscure. Using a unified model of LTD and LTP at the cerebellar parallel fiber-Purkinje cell (PF-PC synapse, we delineate the coordinated pre- and postsynaptic signaling that determines the direction of plasticity. We show that LTP is the default response to PF stimulation above a well-defined frequency threshold. However, if the calcium signal surpasses the threshold for CaMKII activation, then an ultrasensitive “on switch” activates an extracellular signal-regulated kinase (ERK-based positive feedback loop that triggers LTD instead. This postsynaptic feedback loop is sustained by another, trans-synaptic, feedback loop that maintains nitric oxide production throughout LTD induction. When full depression is achieved, an automatic “off switch” inactivates the feedback loops, returning the network to its basal state and demarcating the end of the early phase of LTD.

  3. Conformational Plasticity in the Transsynaptic Neurexin-Cerebellin-Glutamate Receptor Adhesion Complex

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shouqiang; Seven, Alpay B.; Wang, Jing; Skiniotis, Georgios; Özkan, Engin (UC); (Michigan)

    2016-12-01

    Synaptic specificity is a defining property of neural networks. In the cerebellum, synapses between parallel fiber neurons and Purkinje cells are specified by the simultaneous interactions of secreted protein cerebellin with pre-synaptic neurexin and post-synaptic delta-type glutamate receptors (GluD). Here, we determined the crystal structures of the trimeric C1q-like domain of rat cerebellin-1, and the first complete ectodomain of a GluD, rat GluD2. Cerebellin binds to the LNS6 domain of α- and β-neurexin-1 through a high-affinity interaction that involves its highly flexible N-terminal domain. In contrast, we show that the interaction of cerebellin with isolated GluD2 ectodomain is low affinity, which is not simply an outcome of lost avidity when compared with binding with a tetrameric full-length receptor. Rather, high-affinity capture of cerebellin by post-synaptic terminals is likely controlled by long-distance regulation within this transsynaptic complex. Altogether, our results suggest unusual conformational flexibility within all components of the complex.

  4. Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models

    Directory of Open Access Journals (Sweden)

    Werner Van Geit

    2007-11-01

    Full Text Available The increase in available computational power and the higher quality of experimental recordings have turned the tuning of neuron model parameters into a problem that can be solved by automatic global optimization algorithms. Neurofitter is a software tool that interfaces existing neural simulation software and sophisticated optimization algorithms with a new way to compute the error measure. This error measure represents how well a given parameter set is able to reproduce the experimental data. It is based on the phase-plane trajectory density method, which is insensitive to small phase differences between model and data. Neurofitter enables the effortless combination of many different time-dependent data traces into the error measure, allowing the neuroscientist to focus on what are the seminal properties of the model. We show results obtained by applying Neurofitter to a simple single compartmental model and a complex multi-compartmental Purkinje cell (PC model. These examples show that the method is able to solve a variety of tuning problems and demonstrate details of its practical application.

  5. A role for cerebellum in the hereditary dystonia DYT1

    Science.gov (United States)

    Fremont, Rachel; Tewari, Ambika; Angueyra, Chantal; Khodakhah, Kamran

    2017-01-01

    DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down in select brain regions of adult mice using shRNAs. TorsinA knockdown in the cerebellum, but not in the basal ganglia, was sufficient to induce dystonia. In agreement with a potential developmental compensation for loss of torsinA in rodents, torsinA knockdown in the immature cerebellum failed to produce dystonia. Abnormal motor symptoms in knockdown animals were associated with irregular cerebellar output caused by changes in the intrinsic activity of both Purkinje cells and neurons of the deep cerebellar nuclei. These data identify the cerebellum as the main site of dysfunction in DYT1, and offer new therapeutic targets. DOI: http://dx.doi.org/10.7554/eLife.22775.001 PMID:28198698

  6. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  7. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity.

    Science.gov (United States)

    Stefely, Jonathan A; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G; Kemmerer, Zachary A; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E; Ulbrich, Arne; Hutchins, Paul D; Wilkerson, Emily M; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S; Guo, Xiao; Freiberger, Elyse C; Reutenauer, Laurence; Jochem, Adam; Chergova, Maya; Johnson, Isabel E; Lohman, Danielle C; Rush, Matthew J P; Kwiecien, Nicholas W; Singh, Pankaj K; Schlagowski, Anna I; Floyd, Brendan J; Forsman, Ulrika; Sindelar, Pavel J; Westphall, Michael S; Pierrel, Fabien; Zoll, Joffrey; Dal Peraro, Matteo; Kannan, Natarajan; Bingman, Craig A; Coon, Joshua J; Isope, Philippe; Puccio, Hélène; Pagliarini, David J

    2016-08-18

    The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Pathology of natural infections by H5N1 highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans.

    Science.gov (United States)

    Teifke, J P; Klopfleisch, R; Globig, A; Starick, E; Hoffmann, B; Wolf, P U; Beer, M; Mettenleiter, T C; Harder, T C

    2007-03-01

    Mortality in wild aquatic birds due to infection with highly pathogenic avian influenza viruses (HPAIV) is a rare event. During the recent outbreak of highly pathogenic avian influenza in Germany, mortality due to H5N1 HPAIV was observed among mute and whooper swans as part of a rapid spread of this virus. In contrast to earlier reports, swans appeared to be highly susceptible and represented the mainly affected species. We report gross and histopathology and distribution of influenza virus antigen in mute and whooper swans that died after natural infection with H5N1 HPAIV. At necropsy, the most reliable lesions were multifocal hemorrhagic necrosis in the pancreas, pulmonary congestion and edema, and subepicardial hemorrhages. Major histologic lesions were acute pancreatic necrosis, multifocal necrotizing hepatitis, and lymphoplasmacytic encephalitis with neuronal necrosis. Adrenals displayed consistently scattered cortical and medullary necrosis. In spleen and Peyer's patches, mild lymphocyte necrosis was present. Immunohistochemical demonstration of HPAIV nucleoprotein in pancreas, adrenals, liver, and brain was strongly consistent with histologic lesions. In the brain, a large number of neurons and glial cells, especially Purkinje cells, showed immunostaining. Occasionally, ependymal cells of the spinal cord were also positive. In the lungs, influenza virus antigen was identified in a few endothelial cells but not within pneumocytes. The infection of the central nervous system supports the view that the neurotropism of H5N1 HPAIV leads to nervous disturbances with loss of orientation. More investigations are necessary to clarify the mechanisms of the final circulatory failure, lung edema, and rapid death of the swans.

  9. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms

    Directory of Open Access Journals (Sweden)

    Ketty eLeto

    2012-02-01

    Full Text Available The variety of neuronal phenotypes that populate the cerebellum derives from progenitors that proliferate in two germinal neuroepithelia: the ventricular zone generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Progenitors of the ventricular zone produce GABAergic projection neurons (Purkinje cells and nucleo-olivary neurons at the onset of cerebellar neurogenesis. Later on, however, these progenitors migrate into the prospective white matter, where they continue to divide up to postnatal development and generate different categories of inhibitory interneurons, according to precise spatio-temporal schedules. Projection neurons derive from discrete progenitor pools located in distinct microdomains of the ventricular zone, whereas interneurons originate from a single population of precursors, distinguished by the expression of the transcription factor Pax-2. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the prospective white matter. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the postnatal cerebellum are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. On the other hand, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.

  10. Synaptic inputs compete during rapid formation of the calyx of Held: a new model system for neural development.

    Science.gov (United States)

    Holcomb, Paul S; Hoffpauir, Brian K; Hoyson, Mitchell C; Jackson, Dakota R; Deerinck, Thomas J; Marrs, Glenn S; Dehoff, Marlin; Wu, Jonathan; Ellisman, Mark H; Spirou, George A

    2013-08-07

    Hallmark features of neural circuit development include early exuberant innervation followed by competition and pruning to mature innervation topography. Several neural systems, including the neuromuscular junction and climbing fiber innervation of Purkinje cells, are models to study neural development in part because they establish a recognizable endpoint of monoinnervation of their targets and because the presynaptic terminals are large and easily monitored. We demonstrate here that calyx of Held (CH) innervation of its target, which forms a key element of auditory brainstem binaural circuitry, exhibits all of these characteristics. To investigate CH development, we made the first application of serial block-face scanning electron microscopy to neural development with fine temporal resolution and thereby accomplished the first time series for 3D ultrastructural analysis of neural circuit formation. This approach revealed a growth spurt of added apposed surface area (ASA)>200 μm2/d centered on a single age at postnatal day 3 in mice and an initial rapid phase of growth and competition that resolved to monoinnervation in two-thirds of cells within 3 d. This rapid growth occurred in parallel with an increase in action potential threshold, which may mediate selection of the strongest input as the winning competitor. ASAs of competing inputs were segregated on the cell body surface. These data suggest mechanisms to select "winning" inputs by regional reinforcement of postsynaptic membrane to mediate size and strength of competing synaptic inputs.

  11. Roles of Fukutin, the Gene Responsible for Fukuyama-Type Congenital Muscular Dystrophy, in Neurons: Possible Involvement in Synaptic Function and Neuronal Migration

    International Nuclear Information System (INIS)

    Hiroi, Atsuko; Yamamoto, Tomoko; Shibata, Noriyuki; Osawa, Makiko; Kobayashi, Makio

    2011-01-01

    Fukutin is a gene responsible for Fukuyama-type congenital muscular dystrophy (FCMD), accompanying ocular and brain malformations represented by cobblestone lissencephaly. Fukutin is related to basement membrane formation via the glycosylation of α-dystoglycan (α-DG), and astrocytes play a crucial role in the pathogenesis of the brain lesion. On the other hand, its precise function in neurons is unknown. In this experiment, the roles of fukutin in mature and immature neurons were examined using brains from control subjects and FCMD patients and cultured neuronal cell lines. In quantitative PCR, the expression level of fukutin looked different depending on the region of the brain examined. A similar tendency in DG expression appears to indicate a relation between fukutin and α-DG in mature neurons. An increase of DG mRNA and core α-DG in the FCMD cerebrum also supports the relation. In immunohistochemistry, dot-like positive reactions for VIA4-1, one of the antibodies detecting the glycosylated α-DG, in Purkinje cells suggest that fukutin is related to at least a post-synaptic function via the glycosylation of α-DG. As for immature neurons, VIA4-1 was predominantly positive in cells before and during migration with expression of fukutin, which suggest a participation of fukutin in neuronal migration via the glycosylation of α-DG. Moreover, fukutin may prevent neuronal differentiation, because its expression was significantly lower in the adult cerebrum and in differentiated cultured cells. A knockdown of fukutin was considered to induce differentiation in cultured cells. Fukutin seems to be necessary to keep migrating neurons immature during migration, and also to support migration via α-DG

  12. Effects of Ethanol on the Cerebellum: Advances and Prospects.

    Science.gov (United States)

    Luo, Jia

    2015-08-01

    Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.

  13. An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex

    Directory of Open Access Journals (Sweden)

    Bernd eKuhn

    2012-07-01

    Full Text Available Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN led to high levels of expression (50-100 µM in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs (≤10 μM, yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA, a second rAAV containing the bidirectional TET promoter (Ptetbi could drive strong D3cpv expression in PCs (10-300 µM, enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging.

  14. Regulation of cell cycle progression by cell-cell and cell-matrix forces

    NARCIS (Netherlands)

    Uroz, Marina; Wistorf, Sabrina; Serra-Picamal, Xavier; Conte, Vito; Sales-Pardo, Marta; Roca-Cusachs, Pere; Guimerà, Roger; Trepat, Xavier

    2018-01-01

    It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces 1-12 . However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression

  15. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out

    OpenAIRE

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-01-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional ...

  16. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Katharine L. Dobson

    2015-01-01

    Full Text Available In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.

  17. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cell Adhesions: Actin-Based Modules that Mediate Cell-Extracellular Matrix and Cell-Cell Interactions

    Science.gov (United States)

    Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.

    2018-01-01

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638

  19. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease

    Directory of Open Access Journals (Sweden)

    Heike Wolf

    2016-09-01

    Full Text Available Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1 was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6-GlcNAc(β1-N-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS. On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis.

  20. Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice.

    Science.gov (United States)

    Starbuck, John M; Dutka, Tara; Ratliff, Tabetha S; Reeves, Roger H; Richtsmeier, Joan T

    2014-08-01

    Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16)1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional micro-computed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. © 2014 Wiley Periodicals, Inc.

  1. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  2. Increased susceptibility of dystrophin-deficient brain to mild hypoxia

    International Nuclear Information System (INIS)

    Wallis, T.; Rae, C.; Bubb, W.A.; Head, S.I.

    2002-01-01

    Full text: Duchenne muscular dystrophy is an X-linked disorder resulting from total absence of the 427 kDa protein dystrophin. Dystrophin is normally expressed in the brain mainly in a neuronal subpopulation: cortical pyramidal cells, hippocampal CA1 neurons and cerebellar Purkinje cells. One suggested role for dystrophin is in colocalising mitochondrial creatine kinase with ADP translocase and ATP synthase in mitochondria. Brain tissue slices in the murine model of Duchenne dystrophy, the mdx mouse, have been shown to be more sensitive to hypoxia than control. In this work, we used 13 C NMR to monitor the metabolic response of mdx cortical brain tissue slices to normoxia (95%O 2 /5% CO 2 ) and mild hypoxia (95%air/5% CO 2 ). Under normoxic conditions, mdx cortical slices displayed increased net flux through the Krebs cycle and glutamate/glutamine cycle, consistent with the proposed GABA A lesion which results in decreased inhibitory input. By contrast, mild hypoxia resulted in a significant increase in the total pool size of lactate and decreased net flux of 13 C from [3- 13 C]pyruvate into glutamate C4, GABA C2 and Ala C2, as well as decreased anaplerotic activity as measured by the ratio of Asp C2: Asp C3 label. Mild hypoxia has a significantly greater effect on brain oxidative metabolism in mdx mice, than in control

  3. 仮性近視自己治療訓練システムの基礎研究

    OpenAIRE

    高根, 優子; 小野寺, 一; 福本, 一朗

    1999-01-01

    The aim of this study is to develop a self-treatment system for pseudo-myopia by biofeedback technique without any side effects. This system may be applied to accommodation training, which is closely related to the changes in the thickness of eye-lens. Therefore we adopted the lens thickness of patients as the biofeedback information. We have proposed a new measuring technique by Purkinje-Sanson images (PS method) to estimate the lens thickness on real time. The measuring system is composed o...

  4. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    Science.gov (United States)

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Understanding the Role of TSC1/2 in Cerebellar Purkinje Neurons

    Science.gov (United States)

    2017-09-01

    Grants Officer whenever there are significant changes in the project or its direction. If not previously reported in writing , provide the following...MSC 9537 Bethesda, MD 20892-9537 Contracting/Grants Officer: Vicky R Haines Email : vhaines@mail.nih.gov Phone: 301-496-1365 09/01/2016 - 08/31...Princeton, New Jersey 08540 Contracting/Grant Officer: Joan New (Grants Manager) Ph: 609-228-7313 ; Email : jnew@autismspeaks.org 01/01/2017 - 12/31/2018

  6. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  7. Cerebellar pathology in childhood-onset vs. adult-onset essential tremor.

    Science.gov (United States)

    Louis, Elan D; Kuo, Sheng-Han; Tate, William J; Kelly, Geoffrey C; Faust, Phyllis L

    2017-10-17

    Although the incidence of ET increases with advancing age, the disease may begin at any age, including childhood. The question arises as to whether childhood-onset ET cases manifest the same sets of pathological changes in the cerebellum as those whose onset is during adult life. We quantified a broad range of postmortem features (Purkinje cell [PC] counts, PC axonal torpedoes, a host of associated axonal changes [PC axonal recurrent collateral count, PC thickened axonal profile count, PC axonal branching count], heterotopic PCs, and basket cell rating) in 60 ET cases (11 childhood-onset and 49 adult-onset) and 30 controls. Compared to controls, childhood-onset ET cases had lower PC counts, higher torpedo counts, higher heterotopic PC counts, higher basket cell plexus rating, and marginally higher PC axonal recurrent collateral counts. The median PC thickened axonal profile count and median PC axonal branching count were two to five times higher in childhood-onset ET than controls, but the differences did not reach statistical significance. Childhood-onset and adult-onset ET had similar PC counts, torpedo counts, heterotopic PC counts, basket cell plexus rating, PC axonal recurrent collateral counts, PC thickened axonal profile count and PC axonal branching count. In conclusion, we found that childhood-onset and adult-onset ET shared similar pathological changes in the cerebellum. The data suggest that pathological changes we have observed in the cerebellum in ET are a part of the pathophysiological cascade of events in both forms of the disease and that both groups seem to reach the same pathological endpoints at a similar age of death. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  9. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  10. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms.

    Science.gov (United States)

    Feyerabend, Thorsten B; Terszowski, Grzegorz; Tietz, Annette; Blum, Carmen; Luche, Hervé; Gossler, Achim; Gale, Nicholas W; Radtke, Freddy; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2009-01-16

    Notch1 signaling is required for T cell development and has been implicated in fate decisions in the thymus. We showed that Notch1 deletion in progenitor T cells (pro-T cells) revealed their latent developmental potential toward becoming conventional and plasmacytoid dendritic cells. In addition, Notch1 deletion in pro-T cells resulted in large numbers of thymic B cells, previously explained by T-to-B cell fate conversion. Single-cell genotyping showed, however, that the majority of these thymic B cells arose from Notch1-sufficient cells by a cell-extrinsic pathway. Fate switching nevertheless exists for a subset of thymic B cells originating from Notch1-deleted pro-T cells. Chimeric mice lacking the Notch ligand delta-like 4 (Dll4) in thymus epithelium revealed an essential role for Dll4 in T cell development. Thus, Notch1-Dll4 signaling fortifies T cell commitment by suppressing non-T cell lineage potential in pro-T cells, and normal Notch1-driven T cell development repels excessive B cells in the thymus.

  11. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  12. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  13. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.

    Science.gov (United States)

    Shamloo, Amir

    2014-09-01

    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.

  14. Information processing in the hemisphere of the cerebellar cortex for control of wrist movement

    Science.gov (United States)

    Tomatsu, Saeka; Ishikawa, Takahiro; Tsunoda, Yoshiaki; Lee, Jongho; Hoffman, Donna S.

    2015-01-01

    A region of cerebellar lobules V and VI makes strong loop connections with the primary motor (M1) and premotor (PM) cortical areas and is assumed to play essential roles in limb motor control. To examine its functional role, we compared the activities of its input, intermediate, and output elements, i.e., mossy fibers (MFs), Golgi cells (GoCs), and Purkinje cells (PCs), in three monkeys performing wrist movements in two different forearm postures. The results revealed distinct steps of information processing. First, MF activities displayed temporal and directional properties that were remarkably similar to those of M1/PM neurons, suggesting that MFs relay near copies of outputs from these motor areas. Second, all GoCs had a stereotyped pattern of activity independent of movement direction or forearm posture. Instead, GoC activity resembled an average of all MF activities. Therefore, inhibitory GoCs appear to provide a filtering function that passes only prominently modulated MF inputs to granule cells. Third, PCs displayed highly complex spatiotemporal patterns of activity, with coordinate frames distinct from those of MF inputs and directional tuning that changed abruptly before movement onset. The complexity of PC activities may reflect rapidly changing properties of the peripheral motor apparatus during movement. Overall, the cerebellar cortex appears to transform a representation of outputs from M1/PM into different movement representations in a posture-dependent manner and could work as part of a forward model that predicts the state of the peripheral motor apparatus. PMID:26467515

  15. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2010-05-01

    Full Text Available The way the cerebellar granular layer transforms incoming mossy fiber signals into new spike patterns to be related to Purkinje cells is not yet clear. Here, a realistic computational model of the granular layer was developed and used to address four main functional hypotheses: center-surround organization, time-windowing, high-pass filtering in responses to spike bursts and coherent oscillations in response to diffuse random activity. The model network was activated using patterns inspired by those recorded in vivo. Burst stimulation of a small mossy fiber bundle resulted in granule cell bursts delimited in time (time windowing and space (center-surround by network inhibition. This burst-burst transmission showed marked frequency-dependence configuring a high-pass filter with cut-off frequency around 100 Hz. The contrast between center and surround properties was regulated by the excitatory-inhibitory balance. The stronger excitation made the center more responsive to 10-50 Hz input frequencies and enhanced the granule cell output (with spike occurring earlier and with higher frequency and number compared to the surround. Finally, over a certain level of mossy fiber background activity, the circuit generated coherent oscillations in the theta-frequency band. All these processes were fine-tuned by NMDA and GABA-A receptor activation and neurotransmitter vesicle cycling in the cerebellar glomeruli. This model shows that available knowledge on cellular mechanisms is sufficient to unify the main functional hypotheses on the cerebellum granular layer and suggests that this network can behave as an adaptable spatio-temporal filter coordinated by theta-frequency oscillations.

  16. Quantification of 5-hydroxytryptamine[sub 1A] receptors in the cerebellum of normal and x-irradiated rats during postnatal development

    Energy Technology Data Exchange (ETDEWEB)

    Matthiessen, L; Daval, G; Bailly, Y [Pierre et Marie Curie Univ., Paris (France). Centre National de la Recherche Scientifique, UA; Gozlan, H; Hamon, M; Verge, D [INSERM, Paris (France). Lab. de Neurobiologie Cellulaire et Fonctionnelle

    1992-11-01

    5-Hydroxytryptamine[sub 1A] receptors were studied in rats during the first postnatal month in the normal cerebellum and in the granule cell-deprived cerebellum produced by X-irradiation at postnatal day 5. Quantitative autoradiographic studies on sagittal sections of cerebellar vermis, using [[sup 125]1]BH-8-MeO-N-PAT as radioligand or specific anti-receptor antibodies, revealed that 5-hydroxytryptamine[sub 1A] receptors existed in the molecular/Purkinje cell layer but at variable density from one lobule to another. Thus, in both normal and X-irradiated rats, the posterior lobules were more heavily labelled than the anterior ones, and the density of 5-hydroxytryptamine[sub 1A] sites decreased progressively in all the cerebellar folia down to hardly detectable levels at postnatal day 21. However, the intensity of labelling remained higher at postnatal day 8 and postnatal day 12 in X-irradiated rats than in age-paired controls. Measurements of [[sup 3]H]8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] specific binding to membranes from whole cerebellum confirmed that the density of 5-hydroxytryptamine[sub 1A] sites per mg membrane protein (B[sub max]) was higher in X-irradiated animals than in age-paired controls. However, on a ''per cerebellum'' basis, no significant difference could be detected between the total number of 5-hydroxytryptamine[sub 1A] sites, which progressively increased in both control and X-irradiated animals during the first postnatal month. These results therefore show that 5-hydroxytryptamine[sub 1A] receptors are not located on developing granule cells. (author).

  17. Quantification of 5-hydroxytryptamine1A receptors in the cerebellum of normal and x-irradiated rats during postnatal development

    International Nuclear Information System (INIS)

    Matthiessen, L.; Daval, G.; Bailly, Y.; Gozlan, H.; Hamon, M.; Verge, D.

    1992-01-01

    5-Hydroxytryptamine 1A receptors were studied in rats during the first postnatal month in the normal cerebellum and in the granule cell-deprived cerebellum produced by X-irradiation at postnatal day 5. Quantitative autoradiographic studies on sagittal sections of cerebellar vermis, using [ 125 1]BH-8-MeO-N-PAT as radioligand or specific anti-receptor antibodies, revealed that 5-hydroxytryptamine 1A receptors existed in the molecular/Purkinje cell layer but at variable density from one lobule to another. Thus, in both normal and X-irradiated rats, the posterior lobules were more heavily labelled than the anterior ones, and the density of 5-hydroxytryptamine 1A sites decreased progressively in all the cerebellar folia down to hardly detectable levels at postnatal day 21. However, the intensity of labelling remained higher at postnatal day 8 and postnatal day 12 in X-irradiated rats than in age-paired controls. Measurements of [ 3 H]8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] specific binding to membranes from whole cerebellum confirmed that the density of 5-hydroxytryptamine 1A sites per mg membrane protein (B max ) was higher in X-irradiated animals than in age-paired controls. However, on a ''per cerebellum'' basis, no significant difference could be detected between the total number of 5-hydroxytryptamine 1A sites, which progressively increased in both control and X-irradiated animals during the first postnatal month. These results therefore show that 5-hydroxytryptamine 1A receptors are not located on developing granule cells. (author)

  18. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  19. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  20. Assessment of anti-arrhythmic activity of antipsychotic drugs in an animal model

    DEFF Research Database (Denmark)

    Mow, Tomas; Frederiksen, Kristen; Thomsen, Morten B.

    2015-01-01

    limited experimental information exists about the effects of α1-adrenergic receptor activity of antipsychotic drugs in pro-arrhythmic models, we have decided to investigate this. In this study we show that four antipsychotic drugs all have high affinity for α1-adrenergic receptor (sertindole>risperidone>haloperidol......>olanzapine) and all block IKr (sertindole>haloperidol>risperidone>olanzapine). In canine Purkinje fibres, α1-adrenergic stimulation prolonged action potential duration; however, the stimulation does not cause afterdepolarizations, even in the presence of dofetilide-induced delayed repolarization. We showed...

  1. Nonsustained Repetitive Upper Septal Idiopathic Fascicular Left Ventricular Tachycardia: Rare Type of VT

    Directory of Open Access Journals (Sweden)

    Gokhan Aksan

    2016-05-01

    Full Text Available Upper septal fascicular ventricular tachycardia is a very rare form of idiopathic fascicular ventricular tachycardia. Upper septal fascicular tachycardia uses the posterior fascicle as the anterograde limb and the septal fascicle as the retrograde limb. When evaluating the electrocardiography for this form of tachycardia, the presence of narrow QRS morphology and normal axis may be misinterpreted as supraventricular tachycardia. Here, we report a very rare subtype of fascicular tachycardia that originates more proximally in the His-Purkinje system at the base of the heart.

  2. The Effect of Spaceflight on the Ultrastructure of the Cerebellum

    Science.gov (United States)

    Holstein, Gay R.; Martinelli, Giorgio P.

    2003-01-01

    ground control animals. The specific changes include the formation of lamellar bodies, profoundly enlarged Purkinje cell mitochondria, the presence of inter-neuronal cellular protrusions in the molecular layer, and signs of degeneration in the distal dendrites of the Purkinje cells. Since these morphologic signs are not apparent in the control animals, they are not likely to be due to caging or tissue processing effects. The particular nature of the structural alterations in the nodulus, most notably the formation of lamellar bodies and the presence of degeneration, further suggests that excitotoxicity (damaging overstimulation of neurons) may play a role in the short-term neural response to spaceflight. These findings suggest a structural basis for the neuronal and synaptic plasticity accompanying the central nervous system response to altered gravity and help identify the cellular bases underlying the vestibular abnormalities experienced by astronauts during periods of adaptation and re-adaptation to different gravitational forces. Also, since the short- and long-term changes in neural structure occurring during such periods of adaptation resemble the neuronal alterations that occur in some neurologic disorders such as stroke, these findings may offer guidance in the development of strategies for rehabilitation and treatment of such disorders.

  3. Logarithmic distributions prove that intrinsic learning is Hebbian [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    2017-10-01

    Full Text Available In this paper, we present data for the lognormal distributions of spike rates, synaptic weights and intrinsic excitability (gain for neurons in various brain areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum, midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically lognormal, distributions for rates, weights and gains in all brain areas examined. The difference between strongly recurrent and feed-forward connectivity (cortex vs. striatum and cerebellum, neurotransmitter (GABA (striatum or glutamate (cortex or the level of activation (low in cortex, high in Purkinje cells and midbrain nuclei turns out to be irrelevant for this feature. Logarithmic scale distribution of weights and gains appears to be a general, functional property in all cases analyzed. We then created a generic neural model to investigate adaptive learning rules that create and maintain lognormal distributions. We conclusively demonstrate that not only weights, but also intrinsic gains, need to have strong Hebbian learning in order to produce and maintain the experimentally attested distributions. This provides a solution to the long-standing question about the type of plasticity exhibited by intrinsic excitability.

  4. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    Science.gov (United States)

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  5. Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi

    Science.gov (United States)

    Sillitoe, Roy V; Künzle, Heinz; Hawkes, Richard

    2003-01-01

    The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of zebrin II/aldolase C. The cerebellar cortex of rodents, for example, is organized into four transverse zones: anterior, central, posterior and nodular. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. Zonal boundaries appear to be independent of cerebellar lobulation. To explore this model further, and to broaden our understanding of the evolution of cerebellar patterning, zebrin II expression has been studied in the cerebellum of the Madagascan hedgehog tenrec (Echinops telfairi), a basal insectivore with a lissiform cerebellum with only five lobules. Zebrin II expression in the tenrec reveals an array of four transverse zones as in rodents, two with homogeneous zebrin II expression, two further subdivided into stripes, that closely resembles the expression pattern described in other mammals. We conclude that a zone-and-stripe organization may be a common feature of the mammalian cerebellar vermis and hemispheres, and that zonal boundaries and cerebellar lobules and fissures form independently. PMID:14529046

  6. The Effect of Gallic Acid on Histopathologic Evaluation of Cerebellum in Valproic Acid-Induced Autism Animal Models

    Directory of Open Access Journals (Sweden)

    Parvin Samimi

    2016-06-01

    Full Text Available Autism spectrum disorder (ASD is counted as a worldwide public health problem. The possible causes of ASD are reactive oxygen species and free radicals. So, this study is aimed to evaluate the effects of Gallic acid, as an effective antioxidant, on histopathologic disorder of the cerebellum in valproic acid-induced autism animal models. 30 pregnant female rats were randomly divided into 5 groups, including: control, autism (or VAP and experimental 1, 2 and 3. Using a gavage needle, Gallic acid administered orally until about2 months of age. After the end of the treatment period, the rats were anesthetized with ether and their cerebellar tissues were removed for histopathologic studies. A significant decrease in the number of Purkinje and granular cells was observed in this study in VAP group compared to the control group (P≤0.05. A trend toward improvement was observed in the groups received 100 and 200 mg/kg of Gallic acid (P≤0.05. The results of this research revealed that Gallic acid reduces the side effects caused by valproic acid on cerebellar tissue of autistic rats. So, it should be considered for therapeutic goals.

  7. Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats.

    Science.gov (United States)

    Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto

    2018-03-01

    The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.

  8. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  9. Bickerstaff's encephalitis and Miller Fisher syndrome associated with voltage-gated potassium channel and novel anti-neuronal antibodies.

    Science.gov (United States)

    Tüzün, E; Kürtüncü, M; Lang, B; Içöz, S; Akman-Demir, G; Eraksoy, M; Vincent, A

    2010-10-01

    GQ1b antibody (GQ1b-Ab) is detected in approximately two-thirds of sera of patients with Bickerstaffs encephalitis (BE). Whilst some of the remaining patients have antibodies to other gangliosides, many patients with BE are reported to be seronegative. Voltage-gated potassium channel antibody (VGKC-Ab) at high titer was detected during the diagnostic work-up of one patient with BE. Sera of an additional patient with BE and nine patients with Miller Fisher syndrome (MF) (all GQ1b-Ab positive) were investigated for VGKC-Ab and other anti-neuronal antibodies by radioimmunoprecipitation using 125I-dendrotoxin-VGKC and immunohistochemistry, respectively. Two patients with MF exhibited moderate titer VGKC-Abs. Regardless of positivity for VGKC or GQ1b antibodies, serum IgG of all patients with BE and MF reacted with the molecular layer and Purkinje cells of the cerebellum in a distinctive pattern. Voltage-gated potassium channel antibodies might be involved in some cases of BE or MF. The common staining pattern despite different antibody results suggests that there might be other, as yet unidentified, antibodies associated with BE and MF.

  10. Physiological properties of afferents to the rat cerebellum during normal development and after postnatal x irradiation

    International Nuclear Information System (INIS)

    Puro, D.G.

    1975-01-01

    The consequences of an altered cerebellar cortical development on afferent transmission and terminal organization were analyzed in adult rats which had received x irradiation to the cerebellum postnatally. Rats, anesthetized with 0.5 percent halothane, were studied in various ages from day 3 to adult. The ascending mossy and climbing fiber systems were activated by electrical stimulation of the limbs with needle electrodes. Stimulation of the motor cortex activated the descending climbing fiber pathways. Extracellular responses from cerebellar Purkinje cells were observed on an oscilloscope as poststimulus time histograms were constructed ''on-line''. Conclusions and assertions include: (1) Synaptogenesis between incoming afferent fibers and target neurons takes place early in cerebellar cortical development. (2) Mossy fiber transmission is mature before the bulk of cerebellar synaptogenesis occurs. (3) The ascending and descending components of the climbing fiber system mature, with respect to latency, in synchrony. (4) The terminal synaptic organization has little effect on the development of transmission characteristics in these afferent systems. (5) One possible mechanism by which an adult neural structure can have an abnormal synaptic organization is to maintain immature synaptic relationships due to the neonatal loss of interneurons

  11. Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Bauer, K.D.

    1989-01-01

    Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: (1) cell volume; (2) cell cycle position; and (3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings (1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and (2) demonstrate EC subpopulations in culture

  12. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  13. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  14. Catheter ablation as a treatment of atrioventricular block.

    Science.gov (United States)

    Tuohy, Stephen; Saliba, Walid; Pai, Manjunath; Tchou, Patrick

    2018-01-01

    Symptomatic second-degree atrioventricular (AV) block is typically treated by implantation of a pacemaker. An otherwise healthy AV conduction system can nevertheless develop AV block due to interference from junctional extrasystoles. When present with a high burden, these can produce debilitating symptoms from AV block despite an underlying normal AV node and His-Purkinje system properties. The purpose of this study was to describe a catheter ablation approach for alleviating symptomatic AV block due to a ventricular nodal pathway interfering with AV conduction. Common clinical monitoring techniques such as Holter and event recorders were used. Standard electrophysiological study techniques using multipolar recording and ablation catheters were utilized during procedures. A 55-year-old woman presented with highly symptomatic, high-burden second-degree AV block due to concealed and manifest junctional premature beats. Electrophysiological characteristics indicated interference of AV conduction due to a concealed ventricular nodal pathway as the cause of the AV block. The patient's AV nodal and His-Purkinje system conduction characteristics were otherwise normal. Radiofrequency catheter ablation of the pathway was successful in restoring normal AV conduction and eliminating her clinical symptoms. Pathways inserting into the AV junction can interfere with AV conduction. When present at a high burden, this type of AV block can be highly symptomatic. Catheter ablation techniques can be used to alleviate this type of AV block and restore normal AV conduction. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-01-01

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  16. In silico characterization of cell-cell interactions using a cellular automata model of cell culture.

    Science.gov (United States)

    Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun

    2017-07-14

    Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.

  17. Host cell reactivation in mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Benane, S.G.; Stafford, J.E.

    1976-01-01

    The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promoted photereactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7 to 0.8 for ovary cells and 0.5 to 0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more effecient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survival curves of herpes virus in Potoroo cells indicated a high level of 'dark' host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (lambda>600 nm) and human cells with normal repair and with cells deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreactivating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps. (author)

  18. Local cell metrics: a novel method for analysis of cell-cell interactions

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chiang

    2009-10-01

    Full Text Available Abstract Background The regulation of many cell functions is inherently linked to cell-cell contact interactions. However, effects of contact interactions among adherent cells can be difficult to detect with global summary statistics due to the localized nature and noise inherent to cell-cell interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a limitation in the analysis of large sets of cell image data, including traditional and combinatorial or high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed local cell metrics (LCMs, which addresses this shortcoming. Results The new LCM method is demonstrated via a study of contact inhibition of proliferation of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative, probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved. We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-conditional probability functions, suggesting their use for data mining and classification. Conclusion LCMs are successful in robust detection of cell contact inhibition in situations where conventional global statistics fail to do so. The noise due to the random features of cell behavior was suppressed significantly as a result of the focus on local distances, providing sensitive detection of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and confocal microscopy. This approach may prove useful in interpreting culture and histological data in fields where cell-cell interactions play a critical

  19. Local cell metrics: a novel method for analysis of cell-cell interactions.

    Science.gov (United States)

    Su, Jing; Zapata, Pedro J; Chen, Chien-Chiang; Meredith, J Carson

    2009-10-23

    The regulation of many cell functions is inherently linked to cell-cell contact interactions. However, effects of contact interactions among adherent cells can be difficult to detect with global summary statistics due to the localized nature and noise inherent to cell-cell interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a limitation in the analysis of large sets of cell image data, including traditional and combinatorial or high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed local cell metrics (LCMs), which addresses this shortcoming. The new LCM method is demonstrated via a study of contact inhibition of proliferation of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative, probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved. We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-conditional probability functions, suggesting their use for data mining and classification. LCMs are successful in robust detection of cell contact inhibition in situations where conventional global statistics fail to do so. The noise due to the random features of cell behavior was suppressed significantly as a result of the focus on local distances, providing sensitive detection of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and confocal microscopy. This approach may prove useful in interpreting culture and histological data in fields where cell-cell interactions play a critical role in determining cell fate, e.g., cancer, developmental

  20. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  1. NKT Cell Responses to B Cell Lymphoma.

    Science.gov (United States)

    Li, Junxin; Sun, Wenji; Subrahmanyam, Priyanka B; Page, Carly; Younger, Kenisha M; Tiper, Irina V; Frieman, Matthew; Kimball, Amy S; Webb, Tonya J

    2014-06-01

    Natural killer T (NKT) cells are a unique subset of CD1d-restricted T lymphocytes that express characteristics of both T cells and natural killer cells. NKT cells mediate tumor immune-surveillance; however, NKT cells are numerically reduced and functionally impaired in lymphoma patients. Many hematologic malignancies express CD1d molecules and co-stimulatory proteins needed to induce anti-tumor immunity by NKT cells, yet most tumors are poorly immunogenic. In this study, we sought to investigate NKT cell responses to B cell lymphoma. In the presence of exogenous antigen, both mouse and human NKT cell lines produce cytokines following stimulation by B cell lymphoma lines. NKT cell populations were examined ex vivo in mouse models of spontaneous B cell lymphoma, and it was found that during early stages, NKT cell responses were enhanced in lymphoma-bearing animals compared to disease-free animals. In contrast, in lymphoma-bearing animals with splenomegaly and lymphadenopathy, NKT cells were functionally impaired. In a mouse model of blastoid variant mantle cell lymphoma, treatment of tumor-bearing mice with a potent NKT cell agonist, α-galactosylceramide (α-GalCer), resulted in a significant decrease in disease pathology. Ex vivo studies demonstrated that NKT cells from α-GalCer treated mice produced IFN-γ following α-GalCer restimulation, unlike NKT cells from vehicle-control treated mice. These data demonstrate an important role for NKT cells in the immune response to an aggressive hematologic malignancy like mantle cell lymphoma.

  2. Automated Cell-Cutting for Cell Cloning

    Science.gov (United States)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  3. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Low Doses of Curcuma longa Modulates Cell Migration and Cell-Cell Adhesion.

    Science.gov (United States)

    de Campos, Paloma Santos; Matte, Bibiana Franzen; Diel, Leonardo Francisco; Jesus, Luciano Henrique; Bernardi, Lisiane; Alves, Alessandro Menna; Rados, Pantelis Varvaki; Lamers, Marcelo Lazzaron

    2017-09-01

    Cell invasion and metastasis are involved in clinical failures in cancer treatment, and both events require the acquisition of a migratory behavior by tumor cells. Curcumin is a promising natural product with anti-proliferative activity, but its effects on cell migration are still unclear. We evaluated the effects of curcumin on the proliferation, apoptosis, migration, and cell-cell adhesion of keratinocyte, oral squamous cell carcinoma (OSCC), and fibroblast cell lines, as well as in a xenograft model of OSCC. Curcumin (2 μM) decreased cell proliferation in cell lines with mesenchymal characteristics, while cell death was detected only at 50 μM. We observed that highly migratory cells showed a decrease on migration speed and directionality when treated with 2 or 5 μM of curcumin (50% and 40%, respectively, p curcumin dose dependently decreased cell-cell adhesion, especially on tumor-derived spheroids. Also, in a xenograft model with patient-derived OSCC cells, the administration of curcumin decreased tumor growth and aggressiveness when compared with untreated tumors, indicating the potential antitumor effect in oral cancer. These results suggest that lower doses of curcumin can influence several steps involved in tumorigenesis, including migration properties, suggesting a possible use in cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  6. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    International Nuclear Information System (INIS)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D.

    1991-01-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05

  7. Pathological significance and prognostic roles of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios in clear cell renal cell carcinoma.

    Science.gov (United States)

    Nakanishi, Hiromi; Miyata, Yasuyoshi; Mochizuki, Yasushi; Yasuda, Takuji; Nakamura, Yuichiro; Araki, Kyohei; Sagara, Yuji; Matsuo, Tomohiro; Ohba, Kojiro; Sakai, Hideki

    2018-05-19

    The immune system is closely associated with malignant behavior in renal cell carcinoma (RCC). Therefore, understanding the pathological roles of immune cells in tumor stroma is essential to discuss the pathological characteristics of RCC. In this study, the clinical significance of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios were investigated in patients with clear cell RCC. The densities of CD57+, CD68+, and mast cells were evaluated by immunohistochemical techniques in 179 patients. Proliferation index (PI), apoptotic index (AI), and microvessel density (MVD) were evaluated by using anti-Ki-67, anti-cleaved caspase-3, and anti-CD31 antibodies, respectively. The density of CD57+ cell was negatively correlated with grade, pT stage, and metastasis, although densities of CD68+ cell and mast cell were positively correlated. Ratios of CD68+ cell/CD57+ cell and mast cell/CD57+ cell were significantly correlated with grade, pT stage, and metastasis. Survival analyses showed that the CD68+ cell/CD57+ cell ratio was a significant predictor for cause-specific survival by multi-variate analyses (hazard ratio=1.41, 95% confidential interval=1.03-1.93, P=.031), and was significantly correlated with PI, AI, and MVD (r=.47; P <. 001, r=-.31, P<.001, and r=.40, P<.001, respectively). In conclusion, CD57+ cell, CD68+ cell, and mast cell played important roles in malignancy in clear cell RCC. The CD68+ cell/CD57+ cell ratio was strongly correlated with pathological features and prognosis in these patients because this ratio reflected the status of cancer cell proliferation, apoptosis, and angiogenesis. Copyright © 2018. Published by Elsevier Inc.

  8. Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4

    DEFF Research Database (Denmark)

    Pakideeri Karat, Sandeep Gopal; Multhaupt, Hinke A B; Pocock, Roger

    2017-01-01

    Cell-extracellular matrix (ECM) and cell-cell junctions that employ microfilaments are sites of tension. They are important for tissue repair, morphogenetic movements and can be emblematic of matrix contraction in fibrotic disease and the stroma of solid tumors. One cell surface receptor, syndecan...... calcium. While it is known that cell-ECM and cell-cell junctions may be linked, possible roles for syndecans in this process are not understood. Here we show that wild type primary fibroblasts and those lacking syndecan-4 utilize different cadherins in their adherens junctions and that tension is a major...... factor in this differential response. This corresponds to the reduced ability of fibroblasts lacking syndecan-4 to exert tension on the ECM and we now show that this may extend to reduced tension in cell-cell adhesion....

  9. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    Science.gov (United States)

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  10. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  11. Dissecting engineered cell types and enhancing cell fate conversion via CellNet

    Science.gov (United States)

    Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.

    2014-01-01

    SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792

  12. cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics

    Science.gov (United States)

    Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.

    2017-06-01

    Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.

  13. Single cell time-lapse analysis reveals that podoplanin enhances cell survival and colony formation capacity of squamous cell carcinoma cells.

    Science.gov (United States)

    Miyashita, Tomoyuki; Higuchi, Youichi; Kojima, Motohiro; Ochiai, Atsushi; Ishii, Genichiro

    2017-01-06

    Tumor initiating cells (TICs) are characterized by high clonal expansion capacity. We previously reported that podoplanin is a TIC-specific marker for the human squamous cell carcinoma cell line A431. The aim of this study is to explore the molecular mechanism underlying the high clonal expansion potential of podoplanin-positive A431cells using Fucci imaging. Single podoplanin-positive cells created large colonies at a significantly higher frequency than single podoplanin-negative cells, whereas no difference was observed between the two types of cells with respect to cell cycle status. Conversely, the cell death ratio of progenies derived from podoplanin-positive single cell was significantly lower than that of cells derived from podoplanin-negative cells. Single A431 cells, whose podoplanin expression was suppressed by RNA interference, exhibited increased cell death ratios and decreased frequency of large colony forming. Moreover, the frequency of large colony forming decreased significantly when podoplanin-positive single cells was treated with a ROCK (Rho-associated coiled-coil kinase) inhibitor, whereas no difference was observed in single podoplanin-negative cells. Our current study cleared that high clonal expansion capacity of podoplanin-positive TICs populations was the result of reduced cell death by podoplanin-mediated signaling. Therefore, podoplanin activity may be a therapeutic target in the treatment of squamous cell carcinomas.

  14. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    Science.gov (United States)

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  15. The cerebellum: a new key structure in the navigation system

    Directory of Open Access Journals (Sweden)

    Christelle eRochefort

    2013-03-01

    Full Text Available Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar Long Term Depression (LTD at parallel fiber-Purkinje cell synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks - including spatial navigation - was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e. place cells and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: 1 transform the reference frame of vestibular signals and 2 distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation.

  16. A tubulin alpha 8 mouse knockout model indicates a likely role in spermatogenesis but not in brain development.

    Directory of Open Access Journals (Sweden)

    Christine P Diggle

    Full Text Available Tubulin alpha 8 (Tuba8 is the most divergent member of the highly conserved alpha tubulin family, and uniquely lacks two key post-translational modification sites. It is abundantly expressed in testis and muscle, with lower levels in the brain. We previously identified homozygous hypomorphic TUBA8 mutations in human subjects with a polymicrogyria (PMG syndrome, suggesting its involvement in development of the cerebral cortex. We have now generated and characterized a Tuba8 knockout mouse model. Homozygous mice were confirmed to lack Tuba8 protein in the testis, but did not display PMG and appeared to be neurologically normal. In response to this finding, we re-analyzed the human PMG subjects using whole exome sequencing. This resulted in identification of an additional homozygous loss-of-function mutation in SNAP29, suggesting that SNAP29 deficiency, rather than TUBA8 deficiency, may underlie most or all of the neurodevelopmental anomalies in these subjects. Nonetheless, in the mouse brain, Tuba8 specifically localised to the cerebellar Purkinje cells, suggesting that the human mutations may affect or modify motor control. In the testis, Tuba8 localisation was cell-type specific. It was restricted to spermiogenesis with a strong acrosomal localization that was gradually replaced by cytoplasmic distribution and was absent from spermatozoa. Although the knockout mice were fertile, the localisation pattern indicated that Tuba8 may have a role in spermatid development during spermatogenesis, rather than as a component of the mature microtubule-rich flagellum itself.

  17. The emotional cerebellum.

    Science.gov (United States)

    Strata, Piergiorgio

    2015-10-01

    Great attention has been given so far to cerebellar control of posture and of skilled movements despite the well-demonstrated interconnections between the cerebellum and the autonomic nervous system. Here is a review of the link between these two structures and a report on the recently acquired evidence for its involvement in the world of emotions. In rodents, the reversible inactivation of the vermis during the consolidation or the reconsolidation period hampers the retention of the fear memory trace. In this region, there is a long-term potentiation of both the excitatory synapses between the parallel fibres and the Purkinje cells and of the feed-forward inhibition mediated by molecular layer interneurons. This concomitant potentiation ensures the temporal fidelity of the system. Additional contacts between mossy fibre terminals and Golgi cells provide morphological evidence of the potentiation of another feed-forward inhibition in the granular layer. Imaging experiments show that also in humans the cerebellum is activated during mental recall of emotional personal episodes and during learning of a conditioned or unconditioned association involving emotions. The vermis participates in fear learning and memory mechanisms related to the expression of autonomic and motor responses of emotions. In humans, the cerebellar hemispheres are also involved at a higher emotional level. The importance of these findings is evident when considering the cerebellar malfunctioning in psychiatric diseases like autism and schizophrenia which are characterized behaviourally by emotion processing impairments.

  18. Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Kuang-Lin Lin

    2014-06-01

    Full Text Available Status epilepticus in childhood is more common, with a different range of causes and a lower risk of death, than convulsive status epilepticus in adults. Acute central nervous system infections appear to be markers for morbidity and mortality. Nevertheless, central nervous infection is usually presumed in these conditions. Many aspects of the pathogenesis of acute encephalitis and acute febrile encephalopathy with status epilepticus have been clarified in the past decade. The pathogenesis is divided into direct pathogens invasion or immune-mediated mechanisms. Over the past few decades, the number of antineuronal antibodies to ion channels, receptors, and other synaptic proteins described in association with central nervous system disorders has increased dramatically, especially their role in pediatric encephalitis and status epilepticus. These antineuronal antibodies are divided according to the location of their respective antigens: (1 intracellular antigens, including glutamic acid decarboxylase and classical onconeural antigens such as Hu (antineuronal nuclear antibody 1, ANNA1, Ma2, Yo (Purkinje cell autoantibody, PCA1, Ri (antineuronal nuclear antibody 2, ANNA2, CV2/CRMP5, and amphiphysin; and (2 cell membrane ion channels or surface antigens including voltage-gated potassium channel receptor, N-methyl-d-aspartate receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, γ-aminobutyric acid(B receptor, leucine-rich glioma-inactivated protein 1, and contactin-associated protein-like 2. Identifying the mechanism of the disease may have important therapeutic implications.

  19. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    Science.gov (United States)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  20. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    Science.gov (United States)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  1. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S; Wang, Y; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ?entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  2. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons.

    Science.gov (United States)

    Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio

    2014-04-02

    In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.

  3. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    Science.gov (United States)

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  4. Temporal integration and 1/f power scaling in a circuit model of cerebellar interneurons.

    Science.gov (United States)

    Maex, Reinoud; Gutkin, Boris

    2017-07-01

    Inhibitory interneurons interconnected via electrical and chemical (GABA A receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/ f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory. NEW & NOTEWORTHY The most common function attributed to inhibitory interneurons is feedforward control of principal neurons. In many brain regions, however, the interneurons are densely interconnected via both chemical and electrical synapses but the function of this coupling is largely unknown. Based on large-scale simulations of an interneuron circuit of cerebellar cortex, we

  5. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    NARCIS (Netherlands)

    Guo, Ming; Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its

  6. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  7. Hybrid cell adhesive material for instant dielectrophoretic cell trapping and long-term cell function assessment.

    Science.gov (United States)

    Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael

    2011-08-16

    Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.

  8. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  9. Cell patterning without chemical surface modification: Cell cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel

    Science.gov (United States)

    Chen, C. Y.; Barron, J. A.; Ringeisen, B. R.

    2006-10-01

    Cell printing offers the unique ability to directly deposit one or multiple cell types directly onto a surface without the need to chemically pre-treat the surface with lithographic methods. We utilize biological laser printing (BioLP ™) to form patterns of bovine aortic endothelial cells (BAECs) onto a homogeneous cell adherent hydrogel surface. These normal cells are shown to retain near-100% viability post-printing. In order to determine whether BAECs encountered shear and/or heat stress during printing, immunocytochemical staining experiments were performed to detect potential expression of heat shock proteins (HSP) by the deposited cells. Printed BAECs expressed HSP at levels similar to negative control cells, indicating that the BioLP process does not expose cells to damaging levels of stress. However, HSP expression was slightly higher at the highest laser energy studied, suggesting more stress was present under these extreme conditions. Printed BAECs also showed preferential asymmetric growth and migration towards each other and away from the originally printed pattern, demonstrating a retained ability for the cells to communicate post-printing.

  10. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    Science.gov (United States)

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  12. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  13. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  14. Gastric stem cells and gastric cancer stem cells

    OpenAIRE

    Han, Myoung-Eun; Oh, Sae-Ock

    2013-01-01

    The gastric epithelium is continuously regenerated by gastric stem cells, which give rise to various kinds of daughter cells, including parietal cells, chief cells, surface mucous cells, mucous neck cells, and enteroendocrine cells. The self-renewal and differentiation of gastric stem cells need delicate regulation to maintain the normal physiology of the stomach. Recently, it was hypothesized that cancer stem cells drive the cancer growth and metastasis. In contrast to conventional clonal ev...

  15. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  16. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage

    DEFF Research Database (Denmark)

    Li, Shaohua; Bordoy, Randi; Stanchi, Fabio

    2005-01-01

    PINCH1 is composed of 5 LIM domains, binds integrin-linked kinase (ILK) and locates to integrin-mediated adhesion sites. In order to investigate PINCH1 function we generated mice and embryonic stem (ES) cell-derived embryoid bodies (EBs) lacking the PINCH1 gene. Similar to mice lacking beta1...... integrin or Ilk, loss of PINCH1 arrested development at the peri-implantation stage. In contrast to beta1 integrin or Ilk mutants, however, disruption of the PINCH1 gene produced implantation chambers with visible cell clumps even at embryonic day 9.5. In order to define the phenotype leading to the peri...... not observed in beta1 integrin- or ILK-deficient mice or EBs, included abnormal cell-cell adhesion of endoderm and epiblast as well as the presence of apoptotic cells in the endodermal cell layer. Although ILK and PINCH1 were shown to be involved in the phosphorylation of serine-473 of PKB/Akt, immunostaining...

  17. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.

    Science.gov (United States)

    Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V

    2018-02-01

    Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.

  18. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  19. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    Science.gov (United States)

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  20. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  1. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration.

    Science.gov (United States)

    Omotoso, Gabriel Olaiya; Gbadamosi, Ismail Temitayo; Olajide, Olayemi Joseph; Dada-Habeeb, Shakirat Opeyemi; Arogundade, Tolulope Timothy; Yawson, Emmanuel Olusola

    2018-03-01

    Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Regional characterization of energy metabolism in the brain of normal and MPTP-intoxicated mice using new markers of glucose and phosphate transport

    Directory of Open Access Journals (Sweden)

    Touhami Jawida

    2010-12-01

    Full Text Available Abstract The gibbon ape leukemia virus (GALV, the amphotropic murine leukemia virus (AMLV and the human T-cell leukemia virus (HTLV are retroviruses that specifically bind nutrient transporters with their envelope glycoproteins (Env when entering host cells. Here, we used tagged ligands derived from GALV, AMLV, and HTLV Env to monitor the distribution of their cognate receptors, the inorganic phosphate transporters PiT1 and PiT2, and the glucose transporter GLUT1, respectively, in basal conditions and after acute energy deficiency. For this purpose, we monitored changes in the distribution of PiT1, PiT2 and GLUT1 in the cerebellum, the frontal cortex, the corpus callosum, the striatum and the substantia nigra (SN of C57/BL6 mice after administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridinium (MPTP, a mitochondrial complex I inhibitor which induces neuronal degeneration in the striato-nigral network. The PiT1 ligand stained oligodendrocytes in the corpus callosum and showed a reticular pattern in the SN. The PiT2 ligand stained particularly the cerebellar Purkinje cells, while GLUT1 labelling was mainly observed throughout the cortex, basal ganglia and cerebellar gray matter. Interestingly, unlike GLUT1 and PiT2 distributions which did not appear to be modified by MPTP intoxication, PiT1 immunostaining seemed to be more extended in the SN. The plausible reasons for this change following acute energy stress are discussed. These new ligands therefore constitute new metabolic markers which should help to unravel cellular adaptations to a wide variety of normal and pathologic conditions and to determine the role of specific nutrient transporters in tissue homeostasis.

  3. Cell biology of mesangial cells: the third cell that maintains the glomerular capillary.

    Science.gov (United States)

    Kurihara, Hidetake; Sakai, Tatsuo

    2017-03-01

    The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.

  4. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  5. Cell sheet technology and cell patterning for biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo (Japan)

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized. (topical review)

  6. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    Science.gov (United States)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  7. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  8. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  10. Intrinsic Plasma Cell Differentiation Defects in B Cell Expansion with NF-κB and T Cell Anergy Patient B Cells

    Directory of Open Access Journals (Sweden)

    Swadhinya Arjunaraja

    2017-08-01

    Full Text Available B cell Expansion with NF-κB and T cell Anergy (BENTA disease is a novel B cell lymphoproliferative disorder caused by germline, gain-of-function mutations in the lymphocyte scaffolding protein CARD11, which drives constitutive NF-κB signaling. Despite dramatic polyclonal expansion of naive and immature B cells, BENTA patients also present with signs of primary immunodeficiency, including markedly reduced percentages of class-switched/memory B cells and poor humoral responses to certain vaccines. Using purified naive B cells from our BENTA patient cohort, here we show that BENTA B cells exhibit intrinsic defects in B cell differentiation. Despite a profound in vitro survival advantage relative to normal donor B cells, BENTA patient B cells were severely impaired in their ability to differentiate into short-lived IgDloCD38hi plasmablasts or CD138+ long-lived plasma cells in response to various stimuli. These defects corresponded with diminished IgG antibody production and correlated with poor induction of specific genes required for plasma cell commitment. These findings provide important mechanistic clues that help explain both B cell lymphocytosis and humoral immunodeficiency in BENTA disease.

  11. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells.

    Science.gov (United States)

    Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián

    2016-01-01

    Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV ) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.

  12. Lung cells support osteosarcoma cell migration and survival.

    Science.gov (United States)

    Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard

    2017-01-25

    Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline

  13. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  15. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact

    Directory of Open Access Journals (Sweden)

    Hidehiko Takigawa

    2017-05-01

    Full Text Available We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow–derived mesenchymal stem cells (MSCs migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT–related genes such as fibronectin (FN, SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.

  16. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Diego Sanchez-Martinez

    2016-10-01

    Full Text Available Mutational status of TP53 together with expression of wild type (wt IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs the most effective stimulus to activate NK cells. Here we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell activating receptors (NKG2D and NCRs and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.□

  17. Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Davis Paul

    2006-12-01

    Full Text Available Abstract Background Mucosal squamous cell carcinoma of the head and neck is a disease of high mortality and morbidity. Interactions between the squamous cell carcinoma and the host's local immunity, and how the latter contributes to the biological behavior of the tumor are unclear. In vivo studies have demonstrated sequential mast cell infiltration and degranulation during squamous cell carcinogenesis. The degree of mast cell activation correlates closely with distinct phases of hyperkeratosis, dysplasia, carcinoma in-situ and invasive carcinoma. However, the role of mast cells in carcinogenesis is unclear. Aim This study explores the effects of mast cells on the proliferation and gene expression profile of mucosal squamous cell carcinoma using human mast cell line (HMC-1 and human glossal squamous cell carcinoma cell line (SCC25. Methods HMC-1 and SCC25 were co-cultured in a two-compartment chamber, separated by a polycarbonate membrane. HMC-1 was stimulated to degranulate with calcium ionophore A23187. The experiments were done in quadruplicate. Negative controls were established where SCC25 were cultured alone without HMC-1. At 12, 24, 48 and 72 hours, proliferation and viability of SCC25 were assessed with MTT colorimetric assay. cDNA microarray was employed to study differential gene expression between co-cultured and control SCC25. Results HMC-1/SCC25 co-culture resulted in suppression of growth rate for SCC-25 (34% compared with 110% for the control by 72 hours, p Conclusion We show that mast cells have a direct inhibitory effect on the proliferation of mucosal squamous cell carcinoma in vitro by dysregulating key genes in apoptosis and cell cycle control.

  18. Plant cell wall polysaccharide analysis during cell elongation

    DEFF Research Database (Denmark)

    Guo, Xiaoyuan

    Plant cell walls are complex structures whose composition and architecture are important to various cellular activities. Plant cell elongation requires a high level of rearrangement of the cell wall polymers to enable cell expansion. However, the cell wall polysaccharides dynamics during plant cell...... elongation is poorly understood. This PhD project aims to elucidate the cell wall compositional and structural change during cell elongation by using Comprehensive Microarray Polymer Profiling (CoMPP), microscopic techniques and molecular modifications of cell wall polysaccharide. Developing cotton fibre......, pea and Arabidopsis thaliana were selected as research models to investigate different types of cell elongation, developmental elongation and tropism elongation. A set of comprehensive analysis covering 4 cotton species and 11 time points suggests that non-cellulosic polysaccharides contribute...

  19. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    International Nuclear Information System (INIS)

    Shao, Chunlin; Folkard, Melvyn; Held, Kathryn D; Prise, Kevin M

    2008-01-01

    Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. The observation of bystander responses in breast tumour cells may offer new potential targets for radiation

  20. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    Science.gov (United States)

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago; Kulesa, Paul M.

    2013-06-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.

  1. Hilar mossy cell circuitry controlling dentate granule cell excitability

    Directory of Open Access Journals (Sweden)

    Seiichiro eJinde

    2013-02-01

    Full Text Available Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability – the dormant basket cell and the irritable mossy cell hypotheses. The dormant basket cell hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The irritable mossy cell hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.

  2. Cell Biochips

    Science.gov (United States)

    Pioufle, B. Le; Picollet-D'Hahan, N.

    A cell biochip is a microsystem, equipped with electronic and microfluidic functions, designed to manipulate or analyse living cells. The first publications in this emerging area of research appeared toward the end of the 1980s. In 1989 Washizu described a biochip designed to fuse two cells by electropermeabilisation of the cytoplasmic membrane [1]. Research centers have devised a whole range of cell chip structures, for simultaneous or sequential analysis of single cells, cell groups, or cell tissues reconstituted on the chip. The cells are arranged in a square array on a parallel cell chip for parallel analysis, while they are examined and processed one by one in a microchannel in the case of a series cell chip. In contrast to these biochips for high-throughput analysis of a large number of cells, single-cell chips focus on the analysis of a single isolated cell. As in DNA microarrays, where a large number of oligonucleotides are ordered in a matrix array, parallel cell chips order living cells in a similar way. At each point of the array, the cells can be isolated, provided that the cell type allows this, e.g., blood cells, or cultivated in groups (most adhesion cells can only survive in groups). The aim is to allow massively parallel analysis or processing. Le Pioufle et al. describe a microdevice for the culture of single cells or small groups of cells in a micropit array [2]. Each pit is equipped to stimulate the cell or group of cells either electrically or fluidically. Among the applications envisaged are gene transfer, cell sorting, and screening in pharmacology. A complementary approach, combining the DNA microarray and cell biochip ideas, has been put forward by Bailey et al. [3]. Genes previously arrayed on the chip transfect the cultured cells on the substrate depending on their position in the array (see Fig. 19.1). This way of achieving differential lipofection on a chip was then taken up again by Yoshikawa et al. [4] with primary cells, more

  3. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  4. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Kato, Kazunori; Nohara, Shigeo; Iwanuma, Yoshimi; Kajiyama, Yoshiaki

    2013-01-01

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression

  5. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.

    Science.gov (United States)

    Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija

    2017-05-25

    Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.

  6. Canine hereditary ataxia in old english sheepdogs and gordon setters is associated with a defect in the autophagy gene encoding RAB24.

    Directory of Open Access Journals (Sweden)

    Caryline Agler

    2014-02-01

    Full Text Available Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.

  7. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    Science.gov (United States)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  8. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    Science.gov (United States)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  9. Can resting B cells present antigen to T cells

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  10. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    Science.gov (United States)

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Science.gov (United States)

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression. © 2011 John Wiley & Sons A/S.

  12. Role of Cell-Cell bond for the viability and the function of vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    M. Mura

    2010-01-01

    Full Text Available Vascular smooth muscle cell (VSMC viability and homeostasis is regulated by cell-matrix and cell-cell contact: disruption of these interactions are responsible of a switch from a mature to a high proliferative phenotype. VSMCs migration, rate of growth and apoptosis, and the extent of their extracellular matrix (ECM deposition can be also modulated by proatherogenic peptides. Among them, ATII induces the transactivation of IGF I R, which, together with the binding protein IGFBP3, represents a determinant of cell survival, growth and proliferation. Aim of our in vitro study was to verify the role of elective cell-cell bond in moulating the response to ATII. Thus, we evaluated viability, proliferation, IGFIR, IGFBP3 expression and the long term survival and production of ECM in a provisional tissue. A7r5 cell-line was used in adherent cultures or incubated in agarose-coated culture plates to inhibit cell-matrix interactions. Cells, treated or not with ATII 100 nM, were evaluated for apoptosis rate, cell cycle, IGFIR and IGFBP3 protei expression. Fibrin provisional tissue was developed polymerizing a fibrin solution. cantaining A7r5 cells with thrombin. Histological stainings for ECM components were performed on sections of prvisional tissue. An exclusive cell-cell contact resulted to monolayer cell cultures. ATII did not affect the cell survival in both culture conditions, but promoted a 10% decrease in "S" phase and an increases IGFIR expression only in adherent cells. while suspended cell aggregates were resistant to ATII administration; IGFBP3 was reduced both in ATII treated adherent cells and in floating clustered cells, irrespective of the treatmentn. VSMC conditioning in agarose-coated plates before seeding in fibrin provisional matrix reduced, but not abolished, the cell ability to colonize the clot and to produce ECM. This study demonstrates that the elective cell-cell contact induces a quiescent status in cells lacking of cell

  13. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  14. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  15. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  16. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics.

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  17. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  18. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  19. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  20. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Rachel [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Roberts, Claudia [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Waterboer, Tim [Infection and Cancer Program, DKFZ (German Cancer Research Centre), 69120 Heidelberg (Germany); Steele, Jane [Human Biomaterials Resource Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Marsden, Jerry [University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Steven, Neil M., E-mail: n.m.steven@bham.ac.uk [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Blackbourn, David J., E-mail: n.m.steven@bham.ac.uk [Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)

    2014-05-06

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus.

  1. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Wheat, Rachel; Roberts, Claudia; Waterboer, Tim; Steele, Jane; Marsden, Jerry; Steven, Neil M.; Blackbourn, David J.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus

  2. Skeletal Muscle Cell Induction from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yusaku Kodaka

    2017-01-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD. Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.

  3. Cell-cell transmission of VSV-G pseudotyped lentivector particles.

    Directory of Open Access Journals (Sweden)

    Amy M Skinner

    Full Text Available Many replicating viruses, including HIV-1 and HTLV-1, are efficiently transmitted from the cell surface of actively infected cells upon contact with bystander cells. In a previous study, we reported the prolonged cell surface retention of VSV-G replication-deficient pseudotyped lentivector prior to endocytic entry. However, the competing kinetics of cell surface versus dissociation, neutralization or direct transfer to other cells have received comparatively little attention. Here we demonstrate that the relative efficiency of cell-cell surface transmission can outpace "cell-free" transduction at limiting vector input. This coincides with the prolonged half-life of cell bound vector but occurs, unlike HTLV-1, without evidence for particle aggregation. These studies suggest that cell-surface attachment stabilizes particles and alters neutralization kinetics. Our experiments provide novel insight into the underexplored cell-cell transmission of pseudotyped particles.

  4. Chromosome aberrations and cell survival in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Tremp, J.

    1981-01-01

    A possible correlation between chromosome aberrations and reduced proliferation capacity or cell death was investigated. Synchronized Chinese hamster fibroblast cells were irradiated with 300 rad of x rays in early G 1 . Despite synchronization the cells reached the subsequent mitosis at different times. The frequency of chromosome aberrations was determined in the postirradiation division at 2-h intervals. The highest frequency occurred in cells with a first cell cycle of medium length. The colony-forming ability of mitotic cells was measured in parallel samples by following the progress of individual mitoses. The proportion of cells forming macrocolonies decreased with increasing cell cycle length, and the number of non-colony-forming cells increased. Irrespective of various first cell cycle lengths and different frequencies of chromosome aberrations, the number of cells forming microcolonies remained constant. A correlation was found between the absence of chromosome aberrations and the ability of cells to form macrocolonies. However, cells with a long first cell cycle formed fewer macrocolonies than expected

  5. The role of Rap1 in cell-cell junction formation

    NARCIS (Netherlands)

    Kooistra, M.R.H.

    2008-01-01

    Both epithelial and endothelial cells form cell-cell junctions at the cell-cell contacts to maintain tissue integrity. Proper regulation of cell-cell junctions is required for the organisation of the tissue and to prevent leakage of blood vessels. In endothelial cells, the cell-cell junctions are

  6. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8+ T-cell tolerance.

    Science.gov (United States)

    Mollov, J L; Lucas, C L; Haspot, F; Gaspar, J Kurtz C; Guzman, A; Sykes, M

    2010-03-01

    Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance.

  7. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  8. Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.

    Science.gov (United States)

    Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V

    2018-02-27

    Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.

  9. Parallel and convergent processing in grid cell, head-direction cell, boundary cell, and place cell networks.

    Science.gov (United States)

    Brandon, Mark P; Koenig, Julie; Leutgeb, Stefan

    2014-03-01

    The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type-the place cell. We therefore suggest that parallel information processing in different classes of cells-as is typically observed at lower levels of sensory processing-continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207-219. doi: 10.1002/wcs.1272 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2013 John Wiley & Sons, Ltd.

  10. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Kwak

    2016-01-01

    Full Text Available Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC. In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin. Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.

  11. Two subpopulations of stem cells for T cell lineage

    International Nuclear Information System (INIS)

    Katsura, Y.; Amagai, T.; Kina, T.; Sado, T.; Nishikawa, S.

    1985-01-01

    An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells

  12. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  13. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  14. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hensel Nancy

    2005-04-01

    Full Text Available Abstract In vitro stimulation of CD34+ cells with IL-2 induces NK cell differentiation. In order to define the stages of NK cell development, which influence their generation from CD34 cells, we cultured G-CSF mobilized peripheral blood CD34+ cells in the presence of stem cell factor and IL-2. After three weeks culture we found a diversity of CD56+ subsets which possessed granzyme A, but lacked the cytotoxic apparatus required for classical NK-like cytotoxicity. However, these CD56+ cells had the unusual property of inhibiting proliferation of K562 and P815 cell lines in a cell-contact dependent fashion.

  15. Pluripotent stem cells and reprogrammed cells in farm animals.

    Science.gov (United States)

    Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner

    2011-08-01

    Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

  16. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  17. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  18. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  19. Selection of radioresistant cells by vitamin A deficiency in a small cell lung cancer cell line

    International Nuclear Information System (INIS)

    Terasaki, Takeo; Shimosato, Yukio; Wada, Makio; Yokota, Jun; Terada, Masaaki

    1990-01-01

    Radiation sensitivity of a human small cell lung cancer cell line, Lu-134-B cells, cultured in serum-supplemented medium and of cells transferred to and cultured in delipidized serum-supplemented (vitamin A-deficient) medium was studied. The cells cultured in serum-supplemented medium showed the phenotype of classic small cell lung cancer sensitive to radiation, while cells transferred to delipidized serum-supplemented medium showed partial squamous cell differentiation and became resistant to radiation. These results suggest that some small cell lung cancer cells in vitro change their morphology and radiosensitivity depending on the culture conditions. The change in radiosensitivity was reproducible, and was not reversible by culture of the radioresistant cells in delipidized serum-supplemented medium with addition of retinoic acid (vitamin A-sufficient medium) for two months, although squamous cells disappeared. Acquisition of radioresistancy was considered to occur as the result of clonal selective growth in delipidized medium of a minor cell population in the original cell culture, based on a study of chromosome number. It was also found that there was no association of myc-family oncogenes with the changes of radiosensitivity in this cell line. (author)

  20. Mast-Cell-Derived TNF Amplifies CD8+ Dendritic Cell Functionality and CD8+ T Cell Priming

    Directory of Open Access Journals (Sweden)

    Jan Dudeck

    2015-10-01

    Full Text Available Mast cells are critical promoters of adaptive immunity in the contact hypersensitivity model, but the mechanism of allergen sensitization is poorly understood. Using Mcpt5-CreTNFFL/FL mice, we show here that the absence of TNF exclusively in mast cells impaired the expansion of CD8+ T cells upon sensitization and the T-cell-driven adaptive immune response to elicitation. T cells primed in the absence of mast cell TNF exhibited a diminished efficiency to transfer sensitization to naive recipients. Specifically, mast cell TNF promotes CD8+ dendritic cell (DC maturation and migration to draining lymph nodes. The peripherally released mast cell TNF further critically boosts the CD8+ T-cell-priming efficiency of CD8+ DCs, thereby linking mast cell effects on T cells to DC modulation. Collectively, our findings identify the distinct potential of mast cell TNF to amplify CD8+ DC functionality and CD8+ T-cell-dominated adaptive immunity, which may be of great importance for immunotherapy and vaccination approaches.