WorldWideScience

Sample records for purkinje cell model

  1. Purkinje Cell Signaling Deficits in Animal Models of Ataxia

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2018-04-01

    Full Text Available Purkinje cell (PC dysfunction or degeneration is the most frequent finding in animal models with ataxic symptoms. Mutations affecting intrinsic membrane properties can lead to ataxia by altering the firing rate of PCs or their firing pattern. However, the relationship between specific firing alterations and motor symptoms is not yet clear, and in some cases PC dysfunction precedes the onset of ataxic signs. Moreover, a great variety of ionic and synaptic mechanisms can affect PC signaling, resulting in different features of motor dysfunction. Mutations affecting Na+ channels (NaV1.1, NaV1.6, NaVβ4, Fgf14 or Rer1 reduce the firing rate of PCs, mainly via an impairment of the Na+ resurgent current. Mutations that reduce Kv3 currents limit the firing rate frequency range. Mutations of Kv1 channels act mainly on inhibitory interneurons, generating excessive GABAergic signaling onto PCs, resulting in episodic ataxia. Kv4.3 mutations are responsible for a complex syndrome with several neurologic dysfunctions including ataxia. Mutations of either Cav or BK channels have similar consequences, consisting in a disruption of the firing pattern of PCs, with loss of precision, leading to ataxia. Another category of pathogenic mechanisms of ataxia regards alterations of synaptic signals arriving at the PC. At the parallel fiber (PF-PC synapse, mutations of glutamate delta-2 (GluD2 or its ligand Crbl1 are responsible for the loss of synaptic contacts, abolishment of long-term depression (LTD and motor deficits. At the same synapse, a correct function of metabotropic glutamate receptor 1 (mGlu1 receptors is necessary to avoid ataxia. Failure of climbing fiber (CF maturation and establishment of PC mono-innervation occurs in a great number of mutant mice, including mGlu1 and its transduction pathway, GluD2, semaphorins and their receptors. All these models have in common the alteration of PC output signals, due to a variety of mechanisms affecting incoming

  2. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.

    Directory of Open Access Journals (Sweden)

    Anatoly Buchin

    2016-08-01

    Full Text Available Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR. While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing.

  3. Increased protein kinase C gamma activity induces Purkinje cell pathology in a mouse model of spinocerebellar ataxia 14.

    Science.gov (United States)

    Ji, Jingmin; Hassler, Melanie L; Shimobayashi, Etsuko; Paka, Nagendher; Streit, Raphael; Kapfhammer, Josef P

    2014-10-01

    Spinocerebellar ataxias (SCAs) are hereditary diseases leading to Purkinje cell degeneration and cerebellar dysfunction. Most forms of SCA are caused by expansion of CAG repeats similar to other polyglutamine disorders such as Huntington's disease. In contrast, in the autosomal dominant SCA-14 the disease is caused by mutations in the protein kinase C gamma (PKCγ) gene which is a well characterized signaling molecule in cerebellar Purkinje cells. The study of SCA-14, therefore, offers the unique opportunity to reveal the molecular and pathological mechanism eventually leading to Purkinje cell dysfunction and degeneration. We have created a mouse model of SCA-14 in which PKCγ protein with a mutation found in SCA-14 is specifically expressed in cerebellar Purkinje cells. We find that in mice expressing the mutated PKCγ protein the morphology of Purkinje cells in cerebellar slice cultures is drastically altered and mimics closely the morphology seen after pharmacological PKC activation. Similar morphological abnormalities were seen in localized areas of the cerebellum of juvenile transgenic mice in vivo. In adult transgenic mice there is evidence for some localized loss of Purkinje cells but there is no overall cerebellar atrophy. Transgenic mice show a mild cerebellar ataxia revealed by testing on the rotarod and on the walking beam. Our findings provide evidence for both an increased PKCγ activity in Purkinje cells in vivo and for pathological changes typical for cerebellar disease thus linking the increased and dysregulated activity of PKCγ tightly to the development of cerebellar disease in SCA-14 and possibly also in other forms of SCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Simple Mathematical Model Inspired by the Purkinje Cells: From Delayed Travelling Waves to Fractional Diffusion.

    Science.gov (United States)

    Dipierro, Serena; Valdinoci, Enrico

    2018-07-01

    Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.

  5. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  6. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  8. Downregulation of the Glial GLT1 Glutamate Transporter and Purkinje Cell Dysfunction in a Mouse Model of Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Géraldine Sicot

    2017-06-01

    Full Text Available Brain function is compromised in myotonic dystrophy type 1 (DM1, but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with abnormal Purkinje cell firing and fine motor incoordination in DM1 mice. A global proteomics approach revealed downregulation of the GLT1 glutamate transporter in DM1 mice and human patients, which we found to be the result of MBNL1 inactivation. GLT1 downregulation in DM1 astrocytes increases glutamate neurotoxicity and is detrimental to neurons. Finally, we demonstrated that the upregulation of GLT1 corrected Purkinje cell firing and motor incoordination in DM1 mice. Our findings show that glial defects are critical in DM1 brain pathophysiology and open promising therapeutic perspectives through the modulation of glutamate levels.

  9. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease.

    Directory of Open Access Journals (Sweden)

    Chan Chung

    2016-05-01

    Full Text Available Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1, promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.

  10. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  11. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  12. A note on the definition and the development of cerebellar purkinje cell zones

    NARCIS (Netherlands)

    J. Voogd (Jan)

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  13. A Note on the Definition and the Development of Cerebellar Purkinje Cell Zones

    OpenAIRE

    Voogd, J.

    2012-01-01

    textabstractThe definition of Purkinje cell zones by their white matter comprtments, their physiological properties, and their molecular identity and the birthdate of their Purkinje cells will be reviewed.

  14. Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers.

    Science.gov (United States)

    Nayak, Alok Ranjan; Panfilov, A V; Pandit, Rahul

    2017-02-01

    We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.

  15. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2016-11-01

    Full Text Available The parallel fiber-Purkinje cell synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fibers activity generates fast postsynaptic currents via AMPA receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression and long-term potentiation have been widely described for the parallel fiber-Purkinje cell synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The parallel fiber-Purkinje cell synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline, and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the parallel fiber-Purkinje cell synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, parallel fiber-Purkinje cell synapse dysfunctions have been identified in several murine models of spinocerebellar ataxia (SCA types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27, while in others the mGlu1 pathway is affected (SCA1, 3, 5. Interestingly, the parallel fiber-Purkinje cell synapse has been shown to be hyper-functional in a mutant mouse model of autism

  16. Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST.

    Science.gov (United States)

    Perkins, Emma M; Suminaite, Daumante; Clarkson, Yvonne L; Lee, Sin Kwan; Lyndon, Alastair R; Rothstein, Jeffrey D; Wyllie, David J A; Tanaka, Kohichi; Jackson, Mandy

    2016-10-15

    Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.

  17. Transient developmental Purkinje cell axonal torpedoes in healthy and ataxic mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Lovisa Ljungberg

    2016-11-01

    Full Text Available Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wildtype and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11. This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occured largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6, and found elevated disease

  18. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  19. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum.

    Science.gov (United States)

    Verheijen, Bert M; Gentier, Romina J G; Hermes, Denise J H P; van Leeuwen, Fred W; Hopkins, David A

    2017-06-01

    The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B +1 (UBB +1 ), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB +1 -expressing transgenic mice display widespread labeling for UBB +1 in brain and exhibit behavioral deficits. Here, we show that UBB +1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB +1 -expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.

  20. Structural study of Purkinje cell axonal torpedoes in essential tremor.

    Science.gov (United States)

    Louis, Elan D; Yi, Hong; Erickson-Davis, Cordelia; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2009-02-06

    Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Formalin-fixed cerebellar cortical tissue from four prospectively collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from three ET brains, torpedoes were assessed using electron microscopy. Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10-12nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study.

  1. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  2. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  3. The volume of Purkinje cells decreases in the cerebellum of acrylamide-intoxicated rats, but no cells are lost

    DEFF Research Database (Denmark)

    Larsen, Jytte Overgaard; Tandrup, T; Braendgaard, H

    1994-01-01

    The effects of acrylamide intoxication on the numbers of granule and Purkinje cells and the volume of Purkinje cell perikarya have been evaluated with stereological methods. The analysis was carried out in the cerebella of rats that had received a dose of 33.3 mg/kg acrylamide, twice a week, for 7.......5 weeks. The total numbers of cerebellar granule and Purkinje cells were estimated using the optical fractionator and the mean volume of the Purkinje cell perikarya was estimated with the vertical rotator technique. The volumes of the molecular layer, the granular cell layer and the white matter were...... estimated using the Cavalieri principle. The mean weight of the cerebellum of the intoxicated rats was 7% lower than that of the control rats (2P = 0.001). The numbers of the Purkinje cells and granule cells were the same in both groups, but the mean volume of the perikarya of the Purkinje cells...

  4. Regularity, variability and bi-stability in the activity of cerebellar purkinje cells.

    Science.gov (United States)

    Rokni, Dan; Tal, Zohar; Byk, Hananel; Yarom, Yosef

    2009-01-01

    Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state), and a quiescent hyperpolarized state (down state). A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  5. Regularity, variabilty and bi-stability in the activity of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Dan Rokni

    2009-11-01

    Full Text Available Recent studies have demonstrated that the membrane potential of Purkinje cells is bi-stable and that this phenomenon underlies bi-modal simple spike firing. Membrane potential alternates between a depolarized state, that is associated with spontaneous simple spike firing (up state, and a quiescent hyperpolarized state (down state. A controversy has emerged regarding the relevance of bi-stability to the awake animal, yet recordings made from behaving cat Purkinje cells have demonstrated that at least 50% of the cells exhibit bi-modal firing. The robustness of the phenomenon in-vitro or in anaesthetized systems on the one hand, and the controversy regarding its expression in behaving animals on the other hand suggest that state transitions are under neuronal control. Indeed, we have recently demonstrated that synaptic inputs can induce transitions between the states and suggested that the role of granule cell input is to control the states of Purkinje cells rather than increase or decrease firing rate gradually. We have also shown that the state of a Purkinje cell does not only affect its firing but also the waveform of climbing fiber-driven complex spikes and the associated calcium influx. These findings call for a reconsideration of the role of Purkinje cells in cerebellar function. In this manuscript we review the recent findings on Purkinje cell bi-stability and add some analyses of its effect on the regularity and variability of Purkinje cell activity.

  6. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models

    OpenAIRE

    Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2011-01-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO)...

  7. Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal x irradiation

    International Nuclear Information System (INIS)

    Woodward, D.J.; Hoffer, B.J.; Altman, J.

    1974-01-01

    Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x irradiation applied during the first two weeks of postnatal life. Purkinje neurons in these rats, studied when adults, exhibited sustained spiking activity in Halothane anesthetized preparations. Mean firing rates were 35 to 40/sec, no different from normal. Spontaneous bursts presumed to be generated by climbing fiber synaptic activity differed from normal by often consisting of full sized spikes rather than characteristic inactivation responses. Intracellularly observed correlates of bursts consisted of epsp's of several discretely different amplitudes appearing independently in time. Stimulation of white matter revealed evidence for, a) graded synaptic excitation of Purkinje cells indicating more than one converging excitatory synapse, and b) inhibitory actions on Purkinje cells either through a few remaining inhibitory interneurons or through Purkinje cell recurrent collaterals. Iontophoretic drug application studies showed normal chemosensitivity of the Purkinje cell membrane, i.e., excitation by flutamate and inhibition by gamma-amino butyric acid, serotonin, norepinephrine, and 3'5' cyclic AMP. These studies indicate considerable autonomy of Purkinje cell ontogenesis in the absence of normal interneuronal input. A unique synaptic relation only rarely found in normal cerebellum is the innervation of single Purkinje cells by more than one climbing fiber. (U.S.)

  8. Systematic Regional Variations in Purkinje Cell Spiking Patterns

    Science.gov (United States)

    Xiao, Jianqiang; Cerminara, Nadia L.; Kotsurovskyy, Yuriy; Aoki, Hanako; Burroughs, Amelia; Wise, Andrew K.; Luo, Yuanjun; Marshall, Sarah P.; Sugihara, Izumi; Apps, Richard; Lang, Eric J.

    2014-01-01

    In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z−) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z− PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z− and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions. PMID:25144311

  9. Systematic regional variations in Purkinje cell spiking patterns.

    Directory of Open Access Journals (Sweden)

    Jianqiang Xiao

    Full Text Available In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+ and negative (Z- bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z- PCs, respectively. In both datasets significant differences in simple spike (SS activity were observed between cortical regions. Specifically, Z- and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions.

  10. Red sorrel (Hibiscus Sabdariffa) prevents the ethanol-induced deficits of Purkinje cells in the cerebellum.

    Science.gov (United States)

    Suryanti, S; Partadiredja, G; Atthobari, J

    2015-01-01

    The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).

  11. A new approach for determining phase response curves reveals that Purkinje cells can act as perfect integrators.

    Directory of Open Access Journals (Sweden)

    Elena Phoka

    2010-04-01

    Full Text Available Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs. PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.

  12. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.

    Science.gov (United States)

    Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L

    2017-01-01

    Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition

  13. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.

    Science.gov (United States)

    Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J

    2015-01-21

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.

  14. Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Grasselli

    2016-03-01

    Full Text Available The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2−/− mice and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity—by altering the Purkinje cell output—may be crucial to cerebellar information storage and learning.

  15. Apoptosis of Purkinje and granular cells of the cerebellum following chronic ethanol intake.

    Science.gov (United States)

    Oliveira, Suelen A; Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz Aparecida; Lizarte Neto, Fermino Sanches; Novais, Paulo Cezar; Tirapelli, Luiz Fernando; Oishi, Jorge Camargo; Takase, Luiz Fernando; Stefanini, Maira Aparecida; Martinez, Marcelo; Martinez, Francisco Eduardo

    2014-12-01

    Ethanol alters motricity, learning, cognition, and cellular metabolism in the cerebellum. We evaluated the effect of ethanol on apoptosis in Golgi, Purkinje, and granule cells of the cerebellum in adult rats. There were two groups of 20 rats: a control group that did not consume ethanol and an experimental group of UChA rats that consumed ethanol at 10% (cerebellum of adult UChA rats.

  16. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    Science.gov (United States)

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  17. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A novel approach to non-biased systematic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum.

    Science.gov (United States)

    Agashiwala, Rajiv M; Louis, Elan D; Hof, Patrick R; Perl, Daniel P

    2008-10-21

    Non-biased systematic sampling using the principles of stereology provides accurate quantitative estimates of objects within neuroanatomic structures. However, the basic principles of stereology are not optimally suited for counting objects that selectively exist within a limited but complex and convoluted portion of the sample, such as occurs when counting cerebellar Purkinje cells. In an effort to quantify Purkinje cells in association with certain neurodegenerative disorders, we developed a new method for stereologic sampling of the cerebellar cortex, involving calculating the volume of the cerebellar tissues, identifying and isolating the Purkinje cell layer and using this information to extrapolate non-biased systematic sampling data to estimate the total number of Purkinje cells in the tissues. Using this approach, we counted Purkinje cells in the right cerebella of four human male control specimens, aged 41, 67, 70 and 84 years, and estimated the total Purkinje cell number for the four entire cerebella to be 27.03, 19.74, 20.44 and 22.03 million cells, respectively. The precision of the method is seen when comparing the density of the cells within the tissue: 266,274, 173,166, 167,603 and 183,575 cells/cm3, respectively. Prior literature documents Purkinje cell counts ranging from 14.8 to 30.5 million cells. These data demonstrate the accuracy of our approach. Our novel approach, which offers an improvement over previous methodologies, is of value for quantitative work of this nature. This approach could be applied to morphometric studies of other similarly complex tissues as well.

  19. The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia.

    Directory of Open Access Journals (Sweden)

    Matthieu M Vermeren

    Full Text Available Phospholipase D2 (PLD2 is an enzyme that produces phosphatidic acid (PA, a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction.

  20. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishikawa

    Full Text Available The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs. There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum.

  1. Sensorimotor-correlated discharge recorded from ensembles of cerebellar Purkinje cells varies across the estrous cycle of the rat.

    Science.gov (United States)

    Smith, S S

    1995-09-01

    1. In the present study, locomotor-correlated activity of cerebellar Purkinje cells, recorded using arrays of microwires chronically implanted in adult female rats, was examined across estrous-cycle-associated fluctuations in endogenous sex steroids. Ongoing studies from this laboratory have shown that systemic and local administration of the sex steroid 17 beta-estradiol (E2) augments excitatory responses of cerebellar Purkinje cells to iontophoretically applied glutamate, recorded in vivo from anesthetized female rats. In addition, this steroid potentiated discharge correlated with limb movement. For the present study, extracellular single-unit activity was recorded from as many as 5-11 Purkinje cells simultaneously during treadmill locomotion paradigms. Motor modulation of activity was recorded across three to five consecutive estrous cycles from behaviorally identified cohorts of neurons to test the hypothesis that fluctuations in endogenous sex steroids alter motor modulation of Purkinje cell discharge. 2. Locomotor-associated discharge correlated with treadmill locomotion was increased by a mean of 47% on proestrus, when E2 levels are elevated, relative to diestrus 1. These changes in discharge rate during treadmill locomotion were of significantly greater magnitude than corresponding cyclic alterations in discharge during stationary periods. 3. Correlations with the circadian cycle were also significant, because peak levels of locomotor-associated discharge on the night of behavioral estrus, following elevations in circulating E2, were on average 67% greater than corresponding discharge recorded during the light (proestrus). 4. Alterations in the step cycle were also observed across the estrous cycle: significant decreases in the duration of the flexion phase (by 265 ms, P estrus compared with diestrus. 5. When recorded on estrus, Purkinje cell discharge correlated with the stance or flexion phase of the step cycle was greater in magnitude and preceded the

  2. TACTILE STIMULATION EVOKES LONG-LASTING POTENTIATION OF PURKINJE CELL DISCHARGE IN VIVO

    Directory of Open Access Journals (Sweden)

    Ramakrishnan eKanchipuram

    2016-02-01

    Full Text Available In the cerebellar network, a precise relationship between plasticity and neuronal discharge has been predicted. However, the potential generation of persistent changes in PC spike discharge as a consequence of plasticity following natural stimulation patterns has not been clearly determined. Here we show that facial tactile stimuli organized in theta-patterns can induce stereotyped NMDA and GABA-A receptor-dependent changes in Purkinje cell (PCs and molecular layer interneuron (MLIs firing: invariably, all PCs showed a long-lasting increase (spike-related potentiation or SR-P and MLIs a long-lasting decrease (spike-related suppression or SR-S in baseline activity and spike response probability. These observations suggests that natural sensory stimulation engages multiple long-term plastic changes that are distributed along the mossy fiber – parallel fiber pathway and operate synergistically to potentiate spike generation in PCs. In contrast, theta-pattern electrical stimulation of PFs indistinctly induced SR-P and SR-S both in PCs and MLIs, suggesting that natural sensory stimulation preordinates plasticity upstream of the PF-PC synapse. All these effects occurred in the absence of complex spike changes, supporting the theoretical prediction that Purkinje cell activity is potentiated when the mossy fiber - parallel fiber system is activated in the absence of conjunctive climbing fiber activity.

  3. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  4. Dose response relationship of disturbed migration of Purkinje cells in the cerebellum due to X-irradiation

    International Nuclear Information System (INIS)

    Darmanto, W.; Inouye, Minoru; Hayasaka, Shizu; Takagishi, Yoshiko; Aolad, H.; Murata, Yoshiharu

    1998-01-01

    Pregnant rats were exposed to 2.0, 2.25 or 2.5 Gy X-irradiation on gestation day 21. Pups were sacrificed 12 hr after exposure, and on postnatal day 5 (P5), P7 and P9. Their cerebella were observed immunohistochemically using anti-inositol 1,4,5 triphosphate (IP3) receptor antibody to identify Purkinje cells. These cells were disturbed to migrate and remained in the internal granular layer and white matter of the cerebellum. They had short dendrites, and some showed an abnormal direction of dendrites in rats exposed to 2.25 or 2.5 Gy. Alignment of Purkinje cells was also disturbed when examined either on P5, P7 or P9 especially by doses of 2.25 and 2.5 Gy. There was a relationship between X-ray doses and the number of cells piling up in the Purkinje cell layer of the cerebellum. The dose-response relationship with the number of ectopic Purkinje cells was noted in the anterior lobes of the cerebellum. (author)

  5. Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures.

    Science.gov (United States)

    Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.

  6. Prophylactic role of melatonin against radiation induced damage in mouse cerebellum with special reference to Purkinje cells

    Energy Technology Data Exchange (ETDEWEB)

    Sisodia, Rashmi; Kumari, Seema; Verma, Rajesh Kumar; Bhatia, A L [Neurobiology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004 (India)

    2006-06-15

    Melatonin, a hormone with a proven antioxidative efficacy, crosses all morphophysiological barriers, including the blood-brain barrier, and distributes throughout the cell. The present study is an attempt to investigate the prophylactic influence of a chronic low level of melatonin against an acute radiation induced oxidative stress in the cerebellum of Swiss albino mice, with special reference to Purkinje cells. After 15 days of treatment the mice were sacrificed at various intervals from 1 to 30 days. Biochemical parameters included lipid peroxidation (LPO) and glutathione (GSH) levels as the endpoints. The quantitative study included alterations in number and volume of Purkinje cells. Swiss albino mice were orally administered a very low dose of melatonin (0.25 mg/mouse/day) for 15 consecutive days before single exposure to 4 Gy gamma radiation. Melatonin checked the augmented levels of LPO, by approximately 55%, by day 30 day post-exposure. Radiation induced depleted levels of GSH could be raised by 68.9% by day 30 post-exposure. Radiation exposure resulted in a reduction of the volume of Purkinje cells and their total number. The administration of melatonin significantly protected against the radiation induced decreases in Purkinje cell volume and number. Results indicate the antioxidative properties of melatonin resulting in its prophylactic property against radiation induced biochemical and cellular alterations in the cerebellum. The findings support the idea that melatonin may be used as an anti-irradiation drug due to its potent free radical scavenging and antioxidative efficacy.

  7. The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Science.gov (United States)

    Forrest, Michael D.; Wall, Mark J.; Press, Daniel A.; Feng, Jianfeng

    2012-01-01

    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells. PMID:23284664

  8. Inositol Hexakisphosphate Kinase-3 Regulates the Morphology and Synapse Formation of Cerebellar Purkinje Cells via Spectrin/Adducin

    Science.gov (United States)

    Fu, Chenglai; Xu, Jing; Li, Ruo-Jing; Crawford, Joshua A.; Khan, A. Basit; Ma, Ting Martin; Cha, Jiyoung Y.; Snowman, Adele M.; Pletnikov, Mikhail V.

    2015-01-01

    The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function. PMID:26245967

  9. The effect of the timing of prenatal exposure to x-irradiation on Purkinje cell numbers in rat cerebellum

    International Nuclear Information System (INIS)

    Miki, T.; Satriotomo, I.; Matsumoto, Y.; Kuma, H.; Takeuchi, Y.; Gu

    2003-01-01

    Full text: Prenatal exposure of the developing brain to X-irradiation is known to cause various deleterious consequences. We have examined the effects of prenatal X-irradiation on the development of the cerebellum. Wistar rats were exposed to 1.5 Gy X-irradiation either on the 14, 15 or 16th day of gestation (E14, E15, E16). Sham-irradiated animals were used as controls. At seven postnatal weeks of age, male rats were deeply anesthetized and killed by intracardiac perfusion with 2.5 % glutaraldehyde in 0.1 M phosphate buffer. The unbiased stereological procedure known as the fractionator method was used to estimate the total number of Purkinje cells in the cerebellum. Body and cerebellar weights from E14 and E15, but not E16 irradiated rats showed significant deficits compared to control animals. Rats irradiated on E16 and control rats had about 285,100 - 304,800 Purkinje cells in the cerebellum. There was no significant difference between these values. However, E14 and E15 irradiated animals had about 117,500 and 196,300 Purkinje cells, respectively. These estimates were significantly different from those observed in both control and E16 irradiated rats. Given that the phase of division of Purkinje cell progenitors is mainly between E14-E15 and the phase of differentiation and migration is between E16-E20, it is concluded that the vulnerable period of the Purkinje cells to X-irradiation closely overlaps the phase of division of progenitors

  10. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element

    International Nuclear Information System (INIS)

    Arsenio Nunes, M.L.; Sotelo, C.; Wehrle, R.

    1988-01-01

    The organization of the spinocerebellar projection was analysed by the anterograde axonal WGA-HRP (horseradish peroxidase-wheat germ agglutinin conjugate) tracing method in three different types of agranular cerebellar cortex either induced experimentally by X-irradiation or occurring spontaneously in weaver (wv/wv) and staggerer (sg/sg) mutant mice. The results of this study show that in the X-irradiated rat and weaver mouse, in both of which the granule cells are directly affected and die early in development, the spinal axons reproduce, with few differences, the normal spinocerebellar pattern. Conversely, in staggerer mouse, in which the Purkinje cells are intrinsically affected and granule neurons do not seem to be primarily perturbed by the staggerer gene action, the spinocerebellar organization is severely modified. These findings appear somewhat paradoxical because if granule cells, the synaptic targets of mossy spinocerebellar fibers, were necessary for the organization of spinocerebellar projection, the staggerer cerebellum would exhibit a much more normal projectional map than the weaver and the X-irradiated cerebella. It is, therefore, obvious that granule cells, and even specific synaptogenesis, are not essential for the establishment of the normal spinocerebellar topography. On the other hand, the fact that the Purkinje cells are primarily affected in the unique agranular cortex in which the spinocerebellar organization is severely modified suggests that these neurons could be the main element in the organization of the spinocerebellar projection map. This hypothesis is discussed in correlation with already-reported findings on the zonation of the cerebellar cortex by biochemically different clusters of Purkinje cells

  11. Signals and Circuits in the Purkinje Neuron

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2011-09-01

    Full Text Available Purkinje neurons in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from Electrical Engineering, particularly signal processing and digital/analog circuits. By viewing the Purkinje neuron as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today’s integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the Purkinje neuron and define 3 unique frequency ranges associated with the cells’ output. Comparing the Purkinje neuron to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the Purkinje neuron can act as a multivibrator circuit.

  12. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Directory of Open Access Journals (Sweden)

    Fabrice Ango

    2008-04-01

    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  13. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  14. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  15. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.

    Science.gov (United States)

    Alviña, Karina; Sawtell, Nathaniel B

    2014-07-15

    Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results. Copyright © 2014 the American Physiological Society.

  16. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    Science.gov (United States)

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing Fiber Network

    Directory of Open Access Journals (Sweden)

    Jean-Marc Good

    2017-11-01

    Full Text Available Neural circuits undergo massive refinements during postnatal development. In the developing cerebellum, the climbing fiber (CF to Purkinje cell (PC network is drastically reshaped by eliminating early-formed redundant CF to PC synapses. To investigate the impact of CF network refinement on PC population activity during postnatal development, we monitored spontaneous CF responses in neighboring PCs and the activity of populations of nearby CF terminals using in vivo two-photon calcium imaging. Population activity is highly synchronized in newborn mice, and the degree of synchrony gradually declines during the first postnatal week in PCs and, to a lesser extent, in CF terminals. Knockout mice lacking P/Q-type voltage-gated calcium channel or glutamate receptor δ2, in which CF network refinement is severely impaired, exhibit an abnormally high level of synchrony in PC population activity. These results suggest that CF network refinement is a structural basis for developmental desynchronization and maturation of PC population activity.

  18. Differential association of GABAB receptors with their effector ion channels in Purkinje cells.

    Science.gov (United States)

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo

    2018-04-01

    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  19. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases

    Science.gov (United States)

    Lin, Chi-Ying; Wang, Jie; Sims, Peter A.; Pan, Ming-Kai; Liou, Jyun-you; Lee, Danielle; Tate, William J.; Kelly, Geoffrey C.; Louis, Elan D.; Faust, Phyllis L.

    2017-01-01

    Changes in climbing fiber-Purkinje cell (CF-PC) synaptic connections have been found in the essential tremor (ET) cerebellum, and these changes are correlated with tremor severity. Whether these postmortem changes are specific to ET remains to be investigated. We assessed CF-PC synaptic pathology in the postmortem cerebellum across a range of degenerative movement disorders [10 Parkinson’s disease (PD) cases, 10 multiple system atrophy (MSA) cases, 10 spinocerebellar ataxia type 1 (SCA1) cases, and 20 ET cases] and 25 controls. We observed differences in terms of CF pathological features across these disorders. Specifically, PD cases and ET cases both had more CFs extending into the parallel fiber (PF) territory, but ET cases had more complex branching and increased length of CFs in the PF territory along with decreased CF synaptic density compared to PD cases. MSA cases and SCA1 cases had the most severely reduced CF synaptic density and a marked paucity of CFs extending into the PF territory. Furthermore, CFs in a subset of MSA cases formed collateral branches parallel to the PC layer, a feature not seen in other diagnostic groups. Using unsupervised cluster analysis, the cases and controls could all be categorized into four clusters based on the CF pathology and features of PC pathology, including counts of PCs and their axonal torpedoes. ET cases and PD cases co-segregated into two clusters, whereas SCA1 cases and MSA cases formed another cluster, separate from the control cluster. Interestingly, the presence of resting tremor seemed to be the clinical feature that separated the cases into the two ET-PD clusters. In conclusion, our study demonstrates that these degenerative movement disorders seem to differ with respect to the pattern of CF synaptic pathology they exhibit. It remains to be determined how these differences contribute to the clinical presentations of these diseases. PMID:27704282

  20. Plasticity of Cerebellar Purkinje Cells in Behavioral Training of Body Balance Control

    Directory of Open Access Journals (Sweden)

    Ray X. Lee

    2015-08-01

    Full Text Available Neural responses to sensory inputs caused by self-generated movements (reafference and external passive stimulation (exafference differ in various brain regions. The ability to differentiate such sensory information can lead to movement execution with better accuracy. However, how sensory responses are adjusted in regard to this distinguishability during motor learning is still poorly understood. The cerebellum has been hypothesized to analyze the functional significance of sensory information during motor learning, and is thought to be a key region of reafference computation in the vestibular system. In this study, we investigated Purkinje cell (PC spike trains as cerebellar cortical output when rats learned to balance on a suspended dowel. Rats progressively reduced the amplitude of body swing and made fewer foot slips during a 5-min balancing task. Both PC simple (SSs; 17 of 26 and complex spikes (CSs; 7 of 12 were found to code initially on the angle of the heads with respect to a fixed reference. Using periods with comparable degrees of movement, we found that such SS coding of information in most PCs (10 of 17 decreased rapidly during balance learning. In response to unexpected perturbations and under anesthesia, SS coding capability of these PCs recovered. By plotting SS and CS firing frequencies over 15-s time windows in double-logarithmic plots, a negative correlation between SS and CS was found in awake, but not anesthetized, rats. PCs with prominent SS coding attenuation during motor learning showed weaker SS-CS correlation. Hence, we demonstrate that neural plasticity for filtering out sensory reafference from active motion occurs in the cerebellar cortex in rats during balance learning. SS-CS interaction may contribute to this rapid plasticity as a form of receptive field plasticity in the cerebellar cortex between two receptive maps of sensory inputs from the external world and of efference copies from the will center for

  1. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  2. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    Higuera, Gustavo A; Iaffaldano, Grazia; Bedar, Meiwand; Shpak, Guy; Broersen, Robin; Munshi, Shashini T; Dupont, Catherine; Gribnau, Joost; de Vrij, Femke M S; Kushner, Steven A; De Zeeuw, Chris I

    2017-01-01

    The directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it has not

  3. An expandable embryonic stem cell-derived Purkinje neuron progenitor population that exhibits in vivo maturation in the adult mouse cerebellum

    NARCIS (Netherlands)

    G.A. Higuera (Gustavo A.); Iaffaldano, G. (Grazia); Bedar, M. (Meiwand); G. Shpak (Guy); R. Broersen (Robin); S.T. Munshi (Shashini T.); Dupont, C. (Catherine); J.H. Gribnau (Joost); F.M.S. Vrij (Femke); S.A. Kushner (Steven); C.I. de Zeeuw (Chris)

    2017-01-01

    textabstractThe directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it

  4. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  5. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    Science.gov (United States)

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  6. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    International Nuclear Information System (INIS)

    Crepel, F.; Delhaye-Bouchaud, N.; Dupont, J.L.; Sotelo, C.

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields. (author)

  7. Dendritic and axonic fields of Purkinje cells in developing and X-irradiated rat cerebellum. A comparative study using intracellular staining with horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Crepel, F; Delhaye-Bouchaud, N; Dupont, J L [Paris-5 Univ., 75 (France); Sotelo, C [Hopital Foch, 92 - Suresnes (France). Centre Medico-Chirurgical

    1980-01-01

    Intracellular staining of cerebellar Purkinje cells with horseradish peroxidase was achieved in normal developing rats (8-13 days old), in normal adult rats and in adult rats in which the cerebellum had been degranulated by X-ray treatment. The mono- and multiple innervation of Purkinje cells by climbing fibres was electrophysiologically determined and correlated with their dendritic pattern and axonal field. In immature rats, considerable variations in dendritic arborization were observed between cells at the same age, according to their position in the vermis. In adult X-irradiated animals, a large variety of dendritic shapes was found, confirming previous anatomical data, but no obvious correlation was found between the morphology of the dendrites of Purkinje cells and their synaptic investment by climbing fibres. As regards the axonal field, the adult branching pattern of recurrent axon collaterals was almost established by postnatal day 8, except for some cells which exhibited richer recurrent collaterals. On the other hand, in X-irradiated animals, profuse plexuses were the rule and they originated either from one collateral stem, or from several collaterals, also independently of the number of afferent climbing fibres. The existence of these enlarged recurrent collateral plexuses can be explained by the persistence of an immature stage, and certainly also by the collateral sprouting following the largely impaired innervation of the terminal field during development. These results emphasize the role of the cellular interactions that occur during Purkinje cell growth in the formation of both its axonal and dendritic fields.

  8. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.

    Science.gov (United States)

    Raghavan, Ramanujan T; Lisberger, Stephen G

    2017-08-01

    We recorded the responses of Purkinje cells in the oculomotor vermis during smooth pursuit and saccadic eye movements. Our goal was to characterize the responses in the vermis using approaches that would allow direct comparisons with responses of Purkinje cells in another cerebellar area for pursuit, the floccular complex. Simple-spike firing of vermis Purkinje cells is direction selective during both pursuit and saccades, but the preferred directions are sufficiently independent so that downstream circuits could decode signals to drive pursuit and saccades separately. Complex spikes also were direction selective during pursuit, and almost all Purkinje cells showed a peak in the probability of complex spikes during the initiation of pursuit in at least one direction. Unlike the floccular complex, the preferred directions for simple spikes and complex spikes were not opposite. The kinematics of smooth eye movement described the simple-spike responses of vermis Purkinje cells well. Sensitivities were similar to those in the floccular complex for eye position and considerably lower for eye velocity and acceleration. The kinematic relations were quite different for saccades vs. pursuit, supporting the idea that the contributions from the vermis to each kind of movement could contribute independently in downstream areas. Finally, neither the complex-spike nor the simple-spike responses of vermis Purkinje cells were appropriate to support direction learning in pursuit. Complex spikes were not triggered reliably by an instructive change in target direction; simple-spike responses showed very small amounts of learning. We conclude that the vermis plays a different role in pursuit eye movements compared with the floccular complex. NEW & NOTEWORTHY The midline oculomotor cerebellum plays a different role in smooth pursuit eye movements compared with the lateral, floccular complex and appears to be much less involved in direction learning in pursuit. The output from the

  9. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    Science.gov (United States)

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  10. Antioxidant supplementation upregulates calbindin expression in cerebellar Purkinje cells of rat pups subjected to post natal exposure to sodium arsenite.

    Science.gov (United States)

    Dhar, Pushpa; Kaushal, Parul; Kumar, Pavan

    2018-07-01

    Optimal cytoplasmic calcium (Ca 2+ ) levels have been associated with adequate cell functioning and neuronal survival. Altered intracellular Ca 2+ levels following impaired Ca 2+ homeostasis could induce neuronal degeneration or even cell death. There are reports of arsenite induced oxidative stress and the associated disturbances in intracellular calcium homeostasis. The present study focused on determining the strategies that would modulate tissue redox status and calcium binding protein (CaBP) (Calbindin D28k-CB) expression affected adversely by sodium arsenite (NaAsO 2 ) exposure (postnatal) of rat pups. NaAsO 2 alone or along with antioxidants (AOXs) (alpha lipoic acid or curcumin) was administered by intraperitoneal (i.p.) route from postnatal day (PND) 1-21 (covering rapid brain growth period - RBGP) to experimental groups and animals receiving sterile water by the same route served as the controls. At the end of the experimental period, the animals were subjected to euthanasia and the cerebellar tissue obtained therefrom was processed for immunohistochemical localization and western blot analysis of CB protein. CB was diffusely expressed in cell body as well as dendritic processes of Purkinje cells (PCs) along the PC Layer (PCL) in all cerebellar folia of the control and the experimental animals. The multilayered pattern of CB +ve cells along with their downregulated expression and low packing density was significantly evident in the arsenic (iAs) alone exposed group as against the controls and AOX supplemented groups. The observations are suggestive of AOX induced restoration of CaBP expression in rat cerebellum following early postnatal exposure to NaAsO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Selective loss of Purkinje cells in a patient with anti-gliadin-antibody-positive autoimmune cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Hasegawa Akira

    2011-02-01

    Full Text Available Abstract The patient was an 84-year-old woman who had the onset of truncal ataxia at age 77 and a history of Basedow's disease. Her ataxic gait gradually deteriorated. She could not walk without support at age 81 and she was admitted to our hospital at age 83. Gaze-evoked nystagmus and dysarthria were observed. Mild ataxia was observed in all limbs. Her deep tendon reflex and sense of position were normal. IgA anti-gliadin antibody, IgG anti-gliadin antibody, anti-SS-A/Ro antibody, anti-SS-B/La antibody and anti-TPO antibody were positive. A conventional brain MRI did not show obvious cerebellar atrophy. However, MRI voxel based morphometry (VBM and SPECT-eZIS revealed cortical cerebellar atrophy and reduced cerebellar blood flow. IVIg treatment was performed and was moderately effective. After her death at age 85, the patient was autopsied. Neuropathological findings were as follows: selective loss of Purkinje cells; no apparent degenerative change in the efferent pathways, such as the dentate nuclei or vestibular nuclei; no prominent inflammatory reaction. From these findings, we diagnosed this case as autoimmune cerebellar atrophy associated with gluten ataxia. All 3 autopsies previously reported on gluten ataxia have noted infiltration of inflammatory cells in the cerebellum. In this case, we postulated that the infiltration of inflammatory cells was not found because the patient's condition was based on humoral immunity. The clinical conditions of gluten ataxia have not yet been properly elucidated, but are expected to be revealed as the number of autopsied cases increases.

  12. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  13. Transferences of Purkinje systems

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2011-12-01

    Full Text Available The transferences of heterocentric astigmatic Purkinje systems are special: submatrices B and C, that is, the disjugacy and the divergence of the system, are symmetric and submatrix D (the divarication is the transpose of submatrix A (the dilation.  It is the primary purpose of this paper to provide a proof.  The paper also derives other relationships among the fundamental properties and compact expressions for the transference and optical axis locator of a Purkinje system. (S Afr Optom 2011 70(2 57-60

  14. The ducky2J mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression

    Science.gov (United States)

    Donato, Roberta; Page, Karen M.; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A.; Dolphin, Annette C.

    2006-01-01

    The mouse mutant ducky and its allele ducky2J represent a model for absence epilepsy characterized by spike-wave seizures, and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α2δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α2δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a two base-pair deletion in the coding region and a complete loss of α2δ-2 protein. Here we show that du2J/du2J mice have a 30% reduction in somatic calcium current, and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C du2J/du2J PCs show no spontaneous intrinsic activity. Du2J/du2J mice also have alterations in the cerebellar expression of several genes related to PC function. At P21 there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du2J/+ mice have a marked reduction in α2δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du2J/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α2δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α2δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma. PMID:17135419

  15. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression.

    Science.gov (United States)

    Donato, Roberta; Page, Karen M; Koch, Dietlind; Nieto-Rostro, Manuela; Foucault, Isabelle; Davies, Anthony; Wilkinson, Tonia; Rees, Michele; Edwards, Frances A; Dolphin, Annette C

    2006-11-29

    The mouse mutant ducky and its allele ducky(2J) represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the alpha2delta-2 calcium channel subunit. Of relevance to the ataxic phenotype, alpha2delta-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2(du2J) mutation results in a 2 bp deletion in the coding region and a complete loss of alpha2delta-2 protein. Here we show that du(2J)/du(2J) mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22 degrees C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34 degrees C, du(2J)/du(2J) PCs show no spontaneous intrinsic activity. Du(2J)/du(2J) mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du(2J)/+ mice have a marked reduction in alpha2delta-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tyrosine hydroxylase gene expression. However, du(2J)/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in alpha2delta-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of alpha2delta-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma.

  16. Acute and long-term Purkinje cell loss following a single ethanol binge during the early third trimester equivalent in the rat.

    Science.gov (United States)

    Idrus, Nirelia M; Napper, Ruth M A

    2012-08-01

    In the rat, binge-like ethanol (EtOH) exposure during the early neonatal period (a developmental period equivalent to the human third trimester) can result in a permanent deficit of cerebellar Purkinje cells (Pcells). However, the consequences of a moderate binge alcohol exposure on a single day during this postnatal period have not been established. This is an issue of importance as many pregnant women binge drink periodically at social drinking levels. This study aimed to identify both the acute and long-term effects of exposure to a single alcohol binge that achieved a mean peak blood EtOH concentration of approximately 250 mg/dl during early postnatal life using a rat model of fetal alcohol spectrum disorders. Acute apoptotic Pcell death 10 hours after a moderate dose binge EtOH exposure from postnatal days (PDs) 0 to 10 was assessed using active caspase-3 immunolabeling. Acute Pcell apoptosis was quantified in cerebellar vermal lobules I-X using the physical disector method. Long-term effects were assessed at PD 60 using stereological methods to determine total Pcell numbers in the vermis, lobule III, and lobule IX, following a moderate dose binge EtOH exposure at PDs 0, 2, or 4. Acute apoptosis was induced by EtOH on PDs 1 to 8 in a time and lobular-dependent manner. For EtOH exposure on PD 2, significant long-term Pcell loss occurred in lobule III. EtOH exposure on PD 4 resulted in significant long-term Pcell loss throughout the entire vermis. These results indicate that a single, early EtOH episode of moderate dose can create significant and permanent Pcell loss in the developing cerebellum. Copyright © 2012 by the Research Society on Alcoholism.

  17. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2011-02-01

    Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders. Copyright © 2010 by the Research Society on Alcoholism.

  18. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  19. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  20. Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment.

    Science.gov (United States)

    Whitney, Elizabeth R; Kemper, Thomas L; Rosene, Douglas L; Bauman, Margaret L; Blatt, Gene J

    2008-02-15

    In a study of human Purkinje cell (PC) number, a striking mismatch between the number of PCs observed with the Nissl stain and the number of PCs immunopositive for calbindin-D28k (CB) was identified in 2 of the 10 brains examined. In the remaining eight brains this mismatch was not observed. Further, in these eight brains, analysis of CB immunostained sections counterstained with the Nissl stain revealed that more than 99% Nissl stained PCs were also immunopositive for CB. In contrast, in the two discordant brains, only 10-20% of CB immunopositive PCs were also identified with the Nissl stain. Although this finding was unexpected, a historical survey of the literature revealed that Spielmeyer [Spielmeyer W. Histopathologie des nervensystems. Julius Springer: Berlin; 1922. p. 56-79] described human cases with PCs that lacked the expected Nissl staining intensity, an important historical finding and critical issue when studying postmortem human brains. The reason for this failure in Nissl staining is not entirely clear, but it may result from premortem circumstances since it is not accounted for by postmortem delay or processing variables. Regardless of the exact cause, these observations suggest that Nissl staining may not be a reliable marker for PCs and that CB is an excellent alternative marker.

  1. The Secreted Protein C1QL1 and Its Receptor BAI3 Control the Synaptic Connectivity of Excitatory Inputs Converging on Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Séverine M. Sigoillot

    2015-02-01

    Full Text Available Precise patterns of connectivity are established by different types of afferents on a given target neuron, leading to well-defined and non-overlapping synaptic territories. What regulates the specific characteristics of each type of synapse, in terms of number, morphology, and subcellular localization, remains to be understood. Here, we show that the signaling pathway formed by the secreted complement C1Q-related protein C1QL1 and its receptor, the adhesion-GPCR brain angiogenesis inhibitor 3 (BAI3, controls the stereotyped pattern of connectivity established by excitatory afferents on cerebellar Purkinje cells. The BAI3 receptor modulates synaptogenesis of both parallel fiber and climbing fiber afferents. The restricted and timely expression of its ligand C1QL1 in inferior olivary neurons ensures the establishment of the proper synaptic territory for climbing fibers. Given the broad expression of C1QL and BAI proteins in the developing mouse brain, our study reveals a general mechanism contributing to the formation of a functional brain.

  2. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model.

    Science.gov (United States)

    Tabereaux, Paul B; Walcott, Greg P; Rogers, Jack M; Kim, Jong; Dosdall, Derek J; Robertson, Peter G; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E

    2007-09-04

    The roles of Purkinje fibers (PFs) and focal wave fronts, if any, in the maintenance of ventricular fibrillation (VF) are unknown. If PFs are involved in VF maintenance, it should be possible to map wave fronts propagating from PFs into the working ventricular myocardium during VF. If wave fronts ever arise focally during VF, it should be possible to map them appearing de novo. Six canine hearts were isolated, and the left main coronary artery was cannulated and perfused. The left ventricular cavity was exposed, which allowed direct endocardial mapping of the anterior papillary muscle insertion. Nonperfused VF was induced, and 6 segments of data, each 5 seconds long, were analyzed during 10 minutes of VF. During 36 segments of data that were analyzed, 1018 PF or focal wave fronts of activation were identified. In 534 wave fronts, activation was mapped propagating from working ventricular myocardium to PF. In 142 wave fronts, activation was mapped propagating from PF to working ventricular myocardium. In 342 wave fronts, activation was mapped arising focally. More than 1 of these 3 patterns could occur in the same wave front. PFs are highly active throughout the first 10 minutes of VF. In addition to retrograde propagation from the working ventricular myocardium to PFs, antegrade propagation occurs from PFs to working ventricular myocardium, which suggests PFs are important in VF maintenance. Prior plunge needle recordings in dogs indicate activation propagates from the endocardium toward the epicardium after 1 minute of VF, which suggests that focal sites on the endocardium may represent foci and not breakthrough. If so, in addition to reentry, abnormal automaticity or triggered activity may also occur during VF.

  3. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    Science.gov (United States)

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  4. Reminiscing about Jan Evangelista Purkinje: a pioneer of modern experimental physiology.

    Science.gov (United States)

    Cavero, Icilio; Guillon, Jean-Michel; Holzgrefe, Henry H

    2017-12-01

    This article reminisces about the life and key scientific achievements of Jan Evangelista Purkinje (1787-1869), a versatile 19th century Czech pioneer of modern experimental physiology. In 1804, after completing senior high school, Purkinje joined the Piarist monk order, but, after a 3-yr novitiate, he gave up the religious calling "to deal more freely with science." In 1818, he earned a Medical Doctor degree from Prague University by defending a dissertation on intraocular phenomena observed in oneself. In 1823, Purkinje became a Physiology and Pathology professor at the Prussian Medical University in Breslau, where he innovated the traditional teaching methods of physiology. Purkinje's contributions to physiology were manifold: accurate descriptions of various visual phenomena (e.g., Purkinje-Sanson images, Purkinje phenomenon), discovery of the terminal network of the cardiac conduction system (Purkinje fibers), identification of cerebellar neuronal bodies (Purkinje cells), formulation of the vertigo law (Purkinje's law), discovery of criteria to classify human fingerprints, etc. In 1850, Purkinje accepted and held until his death the Physiology chair at Prague Medical Faculty. During this period, he succeeded in introducing the Czech idiom (in addition to long-established German and Latin) as a Medical Faculty teaching language. Additionally, as a zealous Czech patriot, he actively contributed to the naissance and consolidation of a national Czech identity conscience. Purkinje was a trend-setting scientist who, throughout his career, worked to pave the way for the renovation of physiology from a speculative discipline, ancilla of anatomy, into a factual, autonomous science committed to the discovery of mechanisms governing in-life functions. Copyright © 2017 the American Physiological Society.

  5. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  6. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-12-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.

  7. Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses

    Science.gov (United States)

    Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik

    2015-01-01

    Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it. PMID:26630202

  8. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  9. Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.

    Science.gov (United States)

    De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia

    2017-10-01

    Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Intraocular lens alignment from purkinje and Scheimpflug imaging.

    Science.gov (United States)

    Rosales, Patricia; De Castro, Alberto; Jiménez-Alfaro, Ignacio; Marcos, Susana

    2010-11-01

    The improved designs of intraocular lenses (IOLs) implanted during cataract surgery demand understanding of the possible effects of lens misalignment on optical performance. In this review, we describe the implementation, set-up and validation of two methods to measure in vivo tilt and decentration of IOLs, one based on Purkinje imaging and the other on Scheimpflug imaging. The Purkinje system images the reflections of an oblique collimated light source on the anterior cornea and anterior and posterior IOL surfaces and relies on the well supported assumption of the linearity of the Purkinje images with respect to IOL tilt and decentration. Scheimpflug imaging requires geometrical distortion correction and image processing techniques to retrieve the pupillary axis, IOL axis and pupil centre from the three-dimensional anterior segment image of the eye. Validation of the techniques using a physical eye model indicates that IOL tilt is estimated within an accuracy of 0.261 degree and decentration within 0.161 mm. Measurements on patients implanted with aspheric IOLs indicate that IOL tilt and decentration tend to be mirror symmetric between left and right eyes. The average tilt was 1.54 degrees and the average decentration was 0.21 mm. Simulated aberration patterns using custom models of the patients eyes, built using anatomical data of the anterior cornea and foveal position, the IOL geometry and the measured IOL tilt and decentration predict the experimental wave aberrations measured using laser ray tracing aberrometry on the same eyes. This reveals a relatively minor contribution of IOL tilt and decentration on the higher-order aberrations of the normal pseudophakic eye.

  11. Oligodendrocyte ablation affects the coordinated interaction between granule and Purkinje neurons during cerebellum development

    International Nuclear Information System (INIS)

    Collin, Ludovic; Doretto, Sandrine; Malerba, Monica; Ruat, Martial; Borrelli, Emiliana

    2007-01-01

    Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program

  12. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.

    Science.gov (United States)

    Khaliq, Zayd M; Raman, Indira M

    2005-01-12

    In cerebellar Purkinje neurons, the reliability of propagation of high-frequency simple spikes and spikelets of complex spikes is likely to regulate inhibition of Purkinje target neurons. To test the extent to which a one-to-one correspondence exists between somatic and axonal spikes, we made dual somatic and axonal recordings from Purkinje neurons in mouse cerebellar slices. Somatic action potentials were recorded with a whole-cell pipette, and the corresponding axonal signals were recorded extracellularly with a loose-patch pipette. Propagation of spontaneous and evoked simple spikes was highly reliable. At somatic firing rates of approximately 200 spikes/sec, 375 Hz during somatic hyperpolarizations that silenced spontaneous firing to approximately 150 Hz during spontaneous activity. The probability of propagation of individual spikelets could be described quantitatively as a saturating function of spikelet amplitude, rate of rise, or preceding interspike interval. The results suggest that ion channels of Purkinje axons are adapted to produce extremely short refractory periods and that brief bursts of forward-propagating action potentials generated by complex spikes may contribute transiently to inhibition of postsynaptic neurons.

  13. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    Science.gov (United States)

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio

    2016-03-01

    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  14. Developmental disorders of the brain can be caused by PCBs; low doses of hydroxy-PCBs disrupt thyroid hormone-dependent dendrite formation from Purkinje neurons in culture

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Y; Kimura-Kuroda, J [Tokyo Metropol. Inst. for Neuroscience, Tokyo (Japan); Nagata, I [CREST/ JST, Tokyo (Japan)

    2004-09-15

    Exposure to some environmental chemicals during the perinatal period causes developmental disorders of the brain. Cognitive impairment and hyperactivity in infants were reported in Taiwan, known as Yu-cheng incidents caused by the accidental contamination of polychlorinated biphenyls (PCBs). Together with recent experimental data, Kuroda proposes a hypothesis that spatio-temporal disruptions of developing neuronal circuits by PCB exposure can cause the comobidity of learning disorders (LD), attention deficit hyperactivity disorder (ADHD) and autsm with the co-exposure to other environmental chemicals. PCBs and hydroxylated PCBs (OH-PCBs) have similar chemical structures to thyroid hormones (TH), thyroxine (T4) and triiodothyronine (T3). TH deficiency in the perinatal period causes cretinism children with severe cognitive and mental retardation. In primate model, Rice demonstrates that postnatal exposure to PCBs can dramatically influence later behavioral function. Epidemiological studies also indicate the possible developmental neurotoxicity of PCBs accumulated in human bodies. However, the precise underlying mechanisms and which types of PCB or OH-PCB with such effects have yet to be elucidated. It is important to establish a simple, reproducible, and sensitive in vitro assay for determining the effects of PCBs and OH-PCBs on the development of the central nervous system. Recently Iwasaki et al. established a reporter assay system and disclosed that low doses of PCBs potentially interfere TH-dependent gene expressions. This is the first demonstration that PCBs and OH-PCBs directly affect TH-receptor (TR)-mediated gene expressions crucial to the brain development, through unique mechanism. We also have demonstrated TH-dependent development of Purkinje neurons in vitro using a serum-free chemically defined medium. The degree of dendritic development of Purkinje cells is TH dose-dependent and exhibits high sensitivity in the pM order. Therefore, in the present study

  15. Absence of Rapid Propagation through the Purkinje Network as a Potential Cause of Line Block in the Human Heart with Left Bundle Branch Block.

    Science.gov (United States)

    Okada, Jun-Ichi; Washio, Takumi; Nakagawa, Machiko; Watanabe, Masahiro; Kadooka, Yoshimasa; Kariya, Taro; Yamashita, Hiroshi; Yamada, Yoko; Momomura, Shin-Ichi; Nagai, Ryozo; Hisada, Toshiaki; Sugiura, Seiryo

    2018-01-01

    Background: Cardiac resynchronization therapy is an effective device therapy for heart failure patients with conduction block. However, a problem with this invasive technique is the nearly 30% of non-responders. A number of studies have reported a functional line of block of cardiac excitation propagation in responders. However, this can only be detected using non-contact endocardial mapping. Further, although the line of block is considered a sign of responders to therapy, the mechanism remains unclear. Methods: Herein, we created two patient-specific heart models with conduction block and simulated the propagation of excitation based on a cellmodel of electrophysiology. In one model with a relatively narrow QRS width (176 ms), we modeled the Purkinje network using a thin endocardial layer with rapid conduction. To reproduce a wider QRS complex (200 ms) in the second model, we eliminated the Purkinje network, and we simulated the endocardial mapping by solving the inverse problem according to the actual mapping system. Results: We successfully observed the line of block using non-contact mapping in the model without the rapid propagation of excitation through the Purkinje network, although the excitation in the wall propagated smoothly. This model of slow conduction also reproduced the characteristic properties of the line of block, including dense isochronal lines and fractionated local electrocardiograms. Further, simulation of ventricular pacing from the lateral wall shifted the location of the line of block. By contrast, in the model with the Purkinje network, propagation of excitation in the endocardial map faithfully followed the actual propagation in the wall, without showing the line of block. Finally, switching the mode of propagation between the two models completely reversed these findings. Conclusions: Our simulation data suggest that the absence of rapid propagation of excitation through the Purkinje network is the major cause of the functional line

  16. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    Science.gov (United States)

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  17. [Hering, Vintschgau and the problem of Purkinje's succession].

    Science.gov (United States)

    Sablik, K

    1989-01-01

    The problem of Jan Evangelista Purkinje's succession will be presented according to the results of archival research. The Ministery of Cult and Education in Vienna, and especially Karl Rokitansky, who was the adviser for medical education, in 1867 created a new professorship and Institute for Physiology, beside Purkinje and his Institute. Maximilian Vintschgau was to assist the world-famous 80 years old Purkinje but was not permitted to teach the whole field of physiology and to examine students. The fact that the professors of the Prague Medical Faculty in 1868 started to remove the restrictions for Vintschgau with the argument of academic freedom and in 1869 tried to keep the second institute for the future, is not yet mentioned in the literature. Discussions about the problems of the Czech language and its use in physiological lectures were scarcely mentioned by the Ministery: if one day there should be a Czech-speaking lecturer, the problem would be solved. Unfortunately Purkinje had no genuine pupil in Prague, and after his death, Vintschgau was provisional director of the Institute for half a year. In this situation Rokitansky decided that there should only be one institute for physiology in Prague. The Medical Faculty wanted to have Hermann Helmholtz to succeed Purkinje, but Helmholtz refused to come. Ewald Hering, who was nominated in the second place by the Faculty, accepted the call. Vintschgau had only rank four, third was Conrad Eckhard from Giessen. The Ministery in Vienna, however, made a special decision: The Medical Faculty of Innsbruck was founded in 1869, and there was not professor for physiology at the beginning of 1870. The candidates of the Insbruck Medical Faculty were neglected in favour of Vintschgau, who was considered to be a trustworthy Austrian patriot. Hering and Vintschgau became professors on March 6, 1870, and Hering started his work in Prague in a new institute in the "Wenzelsbad".

  18. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.

    Science.gov (United States)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-05-21

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysiology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells' synapse guided by climbing fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally testable predictions. Copyright © 2014 the authors 0270-6474/14/347203-13$15.00/0.

  19. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  20. Radiobilogical cell survival models

    International Nuclear Information System (INIS)

    Zackrisson, B.

    1992-01-01

    A central issue in clinical radiobiological research is the prediction of responses to different radiation qualities. The choice of cell survival and dose-response model greatly influences the results. In this context the relationship between theory and model is emphasized. Generally, the interpretations of experimental data depend on the model. Cell survival models are systematized with respect to their relations to radiobiological theories of cell kill. The growing knowlegde of biological, physical, and chemical mechanisms is reflected in the formulation of new models. The present overview shows that recent modelling has been more oriented towards the stochastic fluctuations connected to radiation energy deposition. This implies that the traditional cell surivival models ought to be complemented by models of stochastic energy deposition processes and repair processes at the intracellular level. (orig.)

  1. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  2. Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia.

    Science.gov (United States)

    Sawada, Yusuke; Konno, Ayumu; Nagaoka, Jun; Hirai, Hirokazu

    2016-06-13

    Neuron-specific enolase (NSE) is a glycolytic isoenzyme found in mature neurons and cells of neuronal origin. Injecting adeno-associated virus serotype 9 (AAV9) vectors carrying the NSE promoter into the cerebellar cortex is likely to cause the specific transduction of neuronal cells, such as Purkinje cells (PCs) and interneurons, but not Bergmann glia (BG). However, we found BG-predominant transduction without PC transduction along a traumatic needle tract for viral injection. The enhancement of neuroinflammation by the co-application of lipopolysaccharide (LPS) with AAV9 significantly expanded the BG-predominant area concurrently with the potentiated microglial activation. The BG-predominant transduction was gradually replaced by the PC-predominant transduction as the neuroinflammation dissipated. Experiments using glioma cell cultures revealed significant activation of the NSE promoter due to glucose deprivation, suggesting that intracellularly stored glycogen is metabolized through the glycolytic pathway for energy. Activation of the glycolytic enzyme promoter in BG concurrently with inactivation in PC may have pathophysiological significance for the production of lactate in activated BG and the utilization of lactate, which is provided by the BG-PC lactate shuttle, as a primary energy resource in injured PCs.

  3. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Sreenivasa R Sankavaram

    Full Text Available It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss.In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei.Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis, we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord.This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord

  4. His-Purkinje system-related incessant ventricular tachycardia arising from the left coronary cusp

    Directory of Open Access Journals (Sweden)

    Eiji Sato, MD

    2014-08-01

    Full Text Available We describe the case of a 23-year-old woman who had His-Purkinje system-related incessant ventricular tachycardia with a narrow QRS configuration. The ventricular tachycardia was ablated successfully in the left coronary cusp where the earliest endocardial activation had been recorded. We hypothesize that a remnant of the subaortic conducting tissue was the source of the ventricular arrhythmias.

  5. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  6. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron

    NARCIS (Netherlands)

    J. Luthman (Johannes); F.E. Hoebeek (Freek); R. Maex (Reinoud); N. Davey (Neil); R. Adams (Rod); C.I. de Zeeuw (Chris); V. Steuber (Volker)

    2011-01-01

    textabstractNeurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is

  7. Stochastic models of cell motility

    DEFF Research Database (Denmark)

    Gradinaru, Cristian

    2012-01-01

    Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...

  8. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  9. Physical models of cell motility

    CERN Document Server

    2016-01-01

    This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force ...

  10. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  11. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    Science.gov (United States)

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. [Computer-assisted measurement of ocular misalignment in infants and young children using the digital Purkinje reflection pattern procedure].

    Science.gov (United States)

    Barry, J C; Effert, R; Kaupp, A; Kleine, M; Reim, M

    1994-02-01

    A digital image recording and processing system is presented that allows a quick diagnosis of microstrabismus in non-cooperative children. It is thus particularly suited for screening purposes. The Purkinje Reflection Pattern Evaluation (RPE) method is used: three small flashes are used to produce the desired Purkinje images. Two horizontal rows of the three 1st Purkinje images (anterior corneal reflections) and of the three 4th Purkinje images (posterior crystalline lens reflections) stemming from the three light sources form the characteristic Purkinje image reflection pattern. Each eye's position is calculated from the shift between the upper and lower rows of reflections by means of two simple formulae. From the angles obtained in binocular fixation and monocular fixation the manifest angle of strabismus corresponding to the angle measured in the simultaneous prism-and-cover test is computed. The measurement is performed at a fixation distance of 50 cm under natural viewing conditions. To obtain a picture one only has to get the child's attention for a short moment. The primary position is triggered with the fixation light, which is operated by a switch. The digital image recording is done with a hand-held device comprising two miniaturized video cameras, three photo flashes and a fixation light that is operated manually. An IBM-compatible PC equipped with a hard disk and two frame grabbers was adapted for the storage and processing of the pictures. The pictures are evaluated interactively in a few minutes on the workstation's monitor immediately after the measurement. To this end specially designed menu-driven software was implemented. Examples of the measuring procedure and clinical results in infants with microtropic highlight the potential of the system as a screening apparatus and for the exact measurement of small and large squint angles. Usually even 1-year-old children can cooperate well enough to get good-quality pictures in binocular fixation. The new

  13. In silico characterization of cell-cell interactions using a cellular automata model of cell culture.

    Science.gov (United States)

    Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun

    2017-07-14

    Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.

  14. Role of the Purkinje-Muscle Junction on the Ventricular Repolarization Heterogeneity in the Healthy and Ischemic Ovine Ventricular Myocardium

    Directory of Open Access Journals (Sweden)

    Marine E. Martinez

    2018-06-01

    Full Text Available Alteration of action potential duration (APD heterogeneity contributes to arrhythmogenesis. Purkinje-muscle junctions (PMJs present differential electrophysiological properties including longer APD. The goal of this study was to determine if Purkinje-related or myocardial focal activation modulates ventricular repolarization differentially in healthy and ischemic myocardium. Simultaneous epicardial (EPI and endocardial (ENDO optical mapping was performed on sheep left ventricular (LV wedges with intact free-running Purkinje network (N = 7. Preparations were paced on either ENDO or EPI surfaces, or the free-running Purkinje fibers (PFs, mimicking normal activation. EPI and ENDO APDs were assessed for each pacing configuration, before and after (7 min of the onset of no-flow ischemia. Experiments were supported by simulations. In control conditions, maximal APD was found at endocardial PMJ sites. We observed a significant transmural APD gradient for PF pacing with PMJ APD = 347 ± 41 ms and EPI APD = 273 ± 36 ms (p < 0.001. A similar transmural gradient was observed when pacing ENDO (49 ± 31 ms; p = 0.005. However, the gradient was reduced when pacing EPI (37 ± 20 ms; p = 0.005. Global dispersion of repolarization was the most pronounced for EPI pacing. In ischemia, both ENDO and EPI APD were reduced (p = 0.005 and the transmural APD gradient (109 ± 55 ms was increased when pacing ENDO compared to control condition or when pacing EPI (p < 0.05. APD maxima remained localized at functional PMJs during ischemia. Local repolarization dispersion was significantly higher at the PMJ than at other sites. The results were consistent with simulations. We found that the activation sequence modulates repolarization heterogeneity in the ischemic sheep LV. PMJs remain active following ischemia and exert significant influence on local repolarization patterns.

  15. Cerebellar Circuit Mechanisms Which Accompany Coordinated Limb Trajectory Patterns in the Rat: Use of a Model of Spontaneous Changes

    National Research Council Canada - National Science Library

    Smith, Sherry

    1997-01-01

    ...) and its target, Purkinje cells in the paravermal cerebellum. In many cases, simultaneous recordings were carried out from as many as 48 neurons in both areas during tredmill locomotion tasks used to evaluate concomitant sensorimotor performance...

  16. Modeling the Shapes of Cells

    Science.gov (United States)

    Garimella, Umadevi I.; Robertson, Belinda M.

    2015-01-01

    A solid understanding of the structure and function of cells can help establish the foundation for learning advanced concepts in the biological sciences. The concept of the cell is introduced in middle school life science courses and is continued at the undergraduate level in college (NRC 2012; Reece et al. 2014). Cells are introduced to students…

  17. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum.

    Science.gov (United States)

    Schweighofer, N; Spoelstra, J; Arbib, M A; Kawato, M

    1998-01-01

    The cerebellum is essential for the control of multijoint movements; when the cerebellum is lesioned, the performance error is more than the summed errors produced by single joints. In the companion paper (Schweighofer et al., 1998), a functional anatomical model for visually guided arm movement was proposed. The model comprised a basic feedforward/feedback controller with realistic transmission delays and was connected to a two-link, six-muscle, planar arm. In the present study, we examined the role of the cerebellum in reaching movements by embedding a novel, detailed cerebellar neural network in this functional control model. We could derive realistic cerebellar inputs and the role of the cerebellum in learning to control the arm was assessed. This cerebellar network learned the part of the inverse dynamics of the arm not provided by the basic feedforward/feedback controller. Despite realistically low inferior olive firing rates and noisy mossy fibre inputs, the model could reduce the error between intended and planned movements. The responses of the different cell groups were comparable to those of biological cell groups. In particular, the modelled Purkinje cells exhibited directional tuning after learning and the parallel fibres, due to their length, provide Purkinje cells with the input required for this coordination task. The inferior olive responses contained two different components; the earlier response, locked to movement onset, was always present and the later response disappeared after learning. These results support the theory that the cerebellum is involved in motor learning.

  18. Simplified fuel cell system model identification

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France); Hankache, W. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France)]|[Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France); Hissel, D. [Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France)

    2006-07-01

    This paper discussed a simplified physical fuel cell model used to study fuel cell and supercap energy applications for vehicles. Anode, cathode, membrane, and electrode elements of the cell were modelled. A quasi-static Amphlett model was used to predict voltage responses of the fuel cell as a function of the current, temperature, and partial pressures of the reactive gases. The potential of each cell was multiplied by the number of cells in order to model a fuel cell stack. The model was used to describe the main phenomena associated with current voltage behaviour. Data were then compared with data from laboratory tests conducted on a 20 cell stack subjected to a current and time profile developed using speed data from a vehicle operating in an urban environment. The validated model was used to develop iterative optimization algorithms for an energy management strategy that linked 3 voltage sources with fuel cell parameters. It was concluded that classic state and dynamic measurements using a simple least square algorithm can be used to identify the most important parameters for optimal fuel cell operation. 9 refs., 1 tab., 6 figs.

  19. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse

    NARCIS (Netherlands)

    A. Belmeguenai (Amor); P. Botta (Paolo); J.T. Weber (John); M. Carta (Mario); M.M. de Ruiter (Martijn); C.I. de Zeeuw (Chris); C.F. Valenzuela (Fernando); C.R.W. Hansel (Christian)

    2008-01-01

    textabstractAcute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the

  20. Impact of Afferent Inputs on Purkinje Cell Spiking Patterns and Motor Coordination

    NARCIS (Netherlands)

    A.M. Badura (Aleksandra)

    2011-01-01

    textabstractThe brain is what makes us human. Feelings, memories, complex social interactions, language and movement – all of it originates in the brain. On average, the human brain contains approximately 50–100 billion neurons that communicate with each other through the vast network of 100 –

  1. Modelling collective cell migration of neural crest.

    Science.gov (United States)

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Extinction models for cancer stem cell therapy

    Science.gov (United States)

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  3. Retinal Cell Degeneration in Animal Models

    Directory of Open Access Journals (Sweden)

    Masayuki Niwa

    2016-01-01

    Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.

  4. On a poroviscoelastic model for cell crawling

    KAUST Repository

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2014-01-01

    -convected Maxwell model and demonstrate that even the simplest of two-phase, viscoelastic models displays features relevant to cell motility. We also show care must be exercised in choosing parameters for such models as a poor choice can lead to an ill-posed problem

  5. A hybrid mammalian cell cycle model

    Directory of Open Access Journals (Sweden)

    Vincent Noël

    2013-08-01

    Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.

  6. On a poroviscoelastic model for cell crawling

    KAUST Repository

    Kimpton, L. S.

    2014-02-08

    In this paper a minimal, one-dimensional, two-phase, viscoelastic, reactive, flow model for a crawling cell is presented. Two-phase models are used with a variety of constitutive assumptions in the literature to model cell motility. We use an upper-convected Maxwell model and demonstrate that even the simplest of two-phase, viscoelastic models displays features relevant to cell motility. We also show care must be exercised in choosing parameters for such models as a poor choice can lead to an ill-posed problem. A stability analysis reveals that the initially stationary, spatially uniform strip of cytoplasm starts to crawl in response to a perturbation which breaks the symmetry of the network volume fraction or network stress. We also demonstrate numerically that there is a steady travelling-wave solution in which the crawling velocity has a bell-shaped dependence on adhesion strength, in agreement with biological observation.

  7. A MODEL FOR POSTRADIATION STEM CELL KINETICS,

    Science.gov (United States)

    In polycythemic rats observed for 17 days postradiation (300 R, 250 KVP X-rays) it was noted that stem cell release diminished to 8 percent of the...correlate these findings with a kinetic model of erythropoiesis. It was suggested that the initial depression in stem cell release might be due to cellular

  8. Glucose transport machinery reconstituted in cell models.

    Science.gov (United States)

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it.

  9. Modeling collective cell migration in geometric confinement

    Science.gov (United States)

    Tarle, Victoria; Gauquelin, Estelle; Vedula, S. R. K.; D'Alessandro, Joseph; Lim, C. T.; Ladoux, Benoit; Gov, Nir S.

    2017-06-01

    Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops ‘fingers’, which we have recently modeled using a proposed feedback between the curvature of the monolayer’s leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.

  10. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  11. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    is an important aspect of cell modelling. ... 1Supercomputer Education and Research Centreand 2Bioinformatics Centre, Indian Institute ... Important aspects in each panel are listed. ... subsumption relationship, in which the child term is a more.

  12. Mathematical modeling of solid oxide fuel cells

    Science.gov (United States)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  13. Mathematical modeling of a thermovoltaic cell

    Science.gov (United States)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  14. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2014-11-01

    Full Text Available Angelman syndrome is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3am-/p+ Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of Angelman syndrome, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type mice is missing in Ube3am-/p+ mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3am-/p+ mice. The control exerted by the cerebellum on the excitation vs inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike–timing dependent plasticity (STDP of the pyramidal neurons are discussed in the context of the present hypothesis.

  15. Radiobiological modelling with MarCell software

    International Nuclear Information System (INIS)

    Hasan, J.S.; Jones, T.D.

    1996-01-01

    Jones introduced a bone marrow radiation cell kinetics model with great potential for application in the fields of health physics, radiation research, and medicine. However, until recently, only the model developers have been able to apply it because of the complex array of biological and physical assignments needed for evaluation of a particular radiation exposure protocol. The purpose of this article is to illustrate the use of MarCell (MARrow CELL Kinetics) software for MS-DOS, a user-friendly computer implementation of that mathematical model that allows almost anyone with an elementary knowledge of radiation physics and/or medical procedures to apply the model. A hands-on demonstration of the software will be given by guiding the user through evaluation of a medical total body irradiation protocol and a nuclear fallout scenario. A brief overview of the software is given in the Appendix

  16. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  17. Cell-Oriented Modeling of Angiogenesis

    Directory of Open Access Journals (Sweden)

    Diego Guidolin

    2011-01-01

    Full Text Available Due to its significant involvement in various physiological and pathological conditions, angiogenesis (the development of new blood vessels from an existing vasculature represents an important area of the actual biological research and a field in which mathematical modeling proved particularly useful in supporting the experimental work. In this paper, we focus on a specific modeling strategy, known as “cell-centered” approach. This type of mathematical models work at a “mesoscopic scale,” assuming the cell as the natural level of abstraction for computational modeling of development. They treat cells phenomenologically, considering their essential behaviors to study how tissue structure and organization emerge from the collective dynamics of multiple cells. The main contributions of the cell-oriented approach to the study of the angiogenic process will be described. From one side, they have generated “basic science understanding” about the process of capillary assembly during development, growth, and pathology. On the other side, models were also developed supporting “applied biomedical research” for the purpose of identifying new therapeutic targets and clinically relevant approaches for either inhibiting or stimulating angiogenesis.

  18. Cell-oriented modeling of angiogenesis.

    Science.gov (United States)

    Guidolin, Diego; Rebuffat, Piera; Albertin, Giovanna

    2011-01-01

    Due to its significant involvement in various physiological and pathological conditions, angiogenesis (the development of new blood vessels from an existing vasculature) represents an important area of the actual biological research and a field in which mathematical modeling proved particularly useful in supporting the experimental work. In this paper, we focus on a specific modeling strategy, known as "cell-centered" approach. This type of mathematical models work at a "mesoscopic scale," assuming the cell as the natural level of abstraction for computational modeling of development. They treat cells phenomenologically, considering their essential behaviors to study how tissue structure and organization emerge from the collective dynamics of multiple cells. The main contributions of the cell-oriented approach to the study of the angiogenic process will be described. From one side, they have generated "basic science understanding" about the process of capillary assembly during development, growth, and pathology. On the other side, models were also developed supporting "applied biomedical research" for the purpose of identifying new therapeutic targets and clinically relevant approaches for either inhibiting or stimulating angiogenesis.

  19. A minimal physical model for crawling cells

    Science.gov (United States)

    Tiribocchi, Adriano; Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.

    Cell motility in higher organisms (eukaryotes) is fundamental to biological functions such as wound healing or immune response, and is also implicated in diseases such as cancer. For cells crawling on solid surfaces, considerable insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. We present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

  20. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S; Wang, Y; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ?entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  1. A robot conditioned reflex system modeled after the cerebellum.

    Science.gov (United States)

    Albus, J. S.

    1972-01-01

    Reduction of a theory of cerebellar function to computer software for the control of a mechanical manipulator. This reduction is achieved by considering the cerebellum, along with the higher-level brain centers which control it, as a type of finite-state machine with input entering the cerebellum via mossy fibers from the periphery and output from the cerebellum occurring via Purkinje cells. It is hypothesized that the cerebellum learns by an error-correction system similar to Perceptron training algorithms. An electromechanical model of the cerebellum is then developed for the control of a mechanical arm. The problem of modeling the granular layer which selects the set of parallel fibers which are active at any instant of time is considered, and a relevance matrix is constructed to model the relative degree of influence which mossy fibers from the various joints have on the sets of granule cells unique to each joint.

  2. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  3. A bistable model of cell polarity.

    Directory of Open Access Journals (Sweden)

    Matteo Semplice

    Full Text Available Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.

  4. Voronoi cell patterns: Theoretical model and applications

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  5. Modeling human infertility with pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Di Chen

    2017-05-01

    Full Text Available Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility.

  6. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    Science.gov (United States)

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  7. Repair-misrepair model of cell survival

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.

    1980-01-01

    During the last three years a new model, the repair-misrepair model (RMR) has been proposed, to interpret radiobiological experiments with heavy ions. In using the RMR model it became apparent that some of its features are suitable for handling the effects produced by a variety of environmental agents in addition to ionizing radiation. Two separate sequences of events are assumed to take place in an irradiated cell. The first sequence begins with an initial energy transfer consisting of ionizations and excitations, culminating via fast secondary physical and chemical processes in established macromolecular lesions in essential cell structures. The second sequence contains the responses of the cell to the lesions and consists of the processes of recognition and molecular repair. In normal cells there exists one repair process or at most a few enzymatic repair processes for each essential macromolecular lesion. The enzymatic repair processes may last for hours and minutes, and can be separated in time from the initial physicochemical and later genetic phases

  8. Modelling fuel cell performance using artificial intelligence

    Science.gov (United States)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  9. Modelling fuel cell performance using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ogaji, S.O.T.; Singh, R.; Pilidis, P.; Diacakis, M. [Power Propulsion and Aerospace Engineering Department, Centre for Diagnostics and Life Cycle Costs, Cranfield University (United Kingdom)

    2006-03-09

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed. (author)

  10. Radiobiological analyse based on cell cluster models

    International Nuclear Information System (INIS)

    Lin Hui; Jing Jia; Meng Damin; Xu Yuanying; Xu Liangfeng

    2010-01-01

    The influence of cell cluster dimension on EUD and TCP for targeted radionuclide therapy was studied using the radiobiological method. The radiobiological features of tumor with activity-lack in core were evaluated and analyzed by associating EUD, TCP and SF.The results show that EUD will increase with the increase of tumor dimension under the activity homogeneous distribution. If the extra-cellular activity was taken into consideration, the EUD will increase 47%. Under the activity-lack in tumor center and the requirement of TCP=0.90, the α cross-fire influence of 211 At could make up the maximum(48 μm)3 activity-lack for Nucleus source, but(72 μm)3 for Cytoplasm, Cell Surface, Cell and Voxel sources. In clinic,the physician could prefer the suggested dose of Cell Surface source in case of the future of local tumor control for under-dose. Generally TCP could well exhibit the effect difference between under-dose and due-dose, but not between due-dose and over-dose, which makes TCP more suitable for the therapy plan choice. EUD could well exhibit the difference between different models and activity distributions,which makes it more suitable for the research work. When the user uses EUD to study the influence of activity inhomogeneous distribution, one should keep the consistency of the configuration and volume of the former and the latter models. (authors)

  11. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  12. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  13. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs.

    Science.gov (United States)

    Dosdall, Derek J; Tabereaux, Paul B; Kim, Jong J; Walcott, Gregory P; Rogers, Jack M; Killingsworth, Cheryl R; Huang, Jian; Robertson, Peter G; Smith, William M; Ideker, Raymond E

    2008-08-01

    Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.

  14. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum.

    Science.gov (United States)

    Delbaere, Joke; Van Herck, Stijn L J; Bourgeois, Nele M A; Vancamp, Pieter; Yang, Shuo; Wingate, Richard J T; Darras, Veerle M

    2016-12-01

    The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T 3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T 3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may

  15. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Lim, Kenji Rowel Q; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin'ichi; Yokota, Toshifumi

    2017-04-18

    Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMD J ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMD J dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMD J dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.

  16. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    Science.gov (United States)

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  17. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  18. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  19. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  20. Jordan cells of periodic loop models

    International Nuclear Information System (INIS)

    Morin-Duchesne, Alexi; Saint-Aubin, Yvan

    2013-01-01

    Jordan cells in transfer matrices of finite lattice models are a signature of the logarithmic character of the conformal field theories that appear in their thermodynamical limit. The transfer matrix of periodic loop models, T N , is an element of the periodic Temperley–Lieb algebra EPTL N (β,α), where N is the number of sites on a section of the cylinder, and β = −q − q −1 = 2cos λ and α the weights of contractible and non-contractible loops. The thermodynamic limit of T N is believed to describe a conformal field theory of central charge c = 1 − 6λ 2 /(π(λ − π)). The abstract element T N acts naturally on (a sum of) spaces V-tilde N d , similar to those upon which the standard modules of the (classical) Temperley–Lieb algebra act. These spaces known as sectors are labeled by the numbers of defects d and depend on a twist parameter v that keeps track of the winding of defects around the cylinder. Criteria are given for non-trivial Jordan cells of T N both between sectors with distinct defect numbers and within a given sector. (paper)

  1. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  2. Modeling Emerging Solar Cell Materials and Devices

    Science.gov (United States)

    Thongprong, Non

    Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving

  3. A dynamical model for plant cell wall architecture formation.

    NARCIS (Netherlands)

    Mulder, B.M.; Emons, A.M.C.

    2001-01-01

    We discuss a dynamical mathematical model to explain cell wall architecture in plant cells. The highly regular textures observed in cell walls reflect the spatial organisation of the cellulose microfibrils (CMFs), the most important structural component of cell walls. Based on a geometrical theory

  4. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...

  5. Modelling solar cells with thermal phenomena taken into account

    International Nuclear Information System (INIS)

    Górecki, K; Górecki, P; Paduch, K

    2014-01-01

    The paper is devoted to modelling properties of solar cells. The authors' electrothermal model of such cells is described. This model takes into account the influence of temperature on its characteristics. Some results of calculations and measurements of selected solar cells are presented and discussed. The good agreement between the results of calculations and measurements was obtained, which proves the correctness of the elaborated model.

  6. Cell sources for in vitro human liver cell culture models

    Science.gov (United States)

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  7. Human Lipoproteins at Model Cell Membranes

    DEFF Research Database (Denmark)

    Browning, K L; Lind, T K; Maric, S

    2017-01-01

    High and low density lipoproteins (HDL and LDL) are thought to play vital roles in the onset and development of atherosclerosis; the biggest killer in the western world. Key issues of initial lipoprotein (LP) interactions at cellular membranes need to be addressed including LP deposition and lipid...... exchange. Here we present a protocol for monitoring the in situ kinetics of lipoprotein deposition and lipid exchange/removal at model cellular membranes using the non-invasive, surface sensitive methods of neutron reflection and quartz crystal microbalance with dissipation. For neutron reflection, lipid...... support the notion of HDL acting as the 'good' cholesterol, removing lipid material from lipid-loaded cells, whereas LDL acts as the 'bad' cholesterol, depositing lipid material into the vascular wall....

  8. Computer support for physiological cell modelling using an ontology on cell physiology.

    Science.gov (United States)

    Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda

    2006-01-01

    The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.

  9. Modelling spatio-temporal interactions within the cell

    Indian Academy of Sciences (India)

    Prakash

    Cell signalling pathways make up the regulatory systems of mammalian cells. ... This organization makes it possible to study the signalling networks in a modelling ..... energy transfer (FRET) and fluorescence recovery after photobleaching ...

  10. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  11. A new level set model for cell image segmentation

    Science.gov (United States)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  12. Action potential conduction between a ventricular cell model and an isolated ventricular cell

    NARCIS (Netherlands)

    Wilders, R.; Kumar, R.; Joyner, R. W.; Jongsma, H. J.; Verheijck, E. E.; Golod, D.; van Ginneken, A. C.; Goolsby, W. N.

    1996-01-01

    We used the Luo and Rudy (LR) mathematical model of the guinea pig ventricular cell coupled to experimentally recorded guinea pig ventricular cells to investigate the effects of geometrical asymmetry on action potential propagation. The overall correspondence of the LR cell model with the recorded

  13. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  14. Comparative modeling of InP solar cell structures

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1991-01-01

    The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed.

  15. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  16. The mathematical cell model reconstructed from interference microscopy data

    Science.gov (United States)

    Rogotnev, A. A.; Nikitiuk, A. S.; Naimark, O. B.; Nebogatikov, V. O.; Grishko, V. V.

    2017-09-01

    The mathematical model of cell dynamics is developed to link the dynamics of the phase cell thickness with the signs of the oncological pathology. The measurements of irregular oscillations of cancer cells phase thickness were made with laser interference microscope MIM-340 in order to substantiate this model. These data related to the dynamics of phase thickness for different cross-sections of cells (nuclei, nucleolus, and cytoplasm) allow the reconstruction of the attractor of dynamic system. The attractor can be associated with specific types of collective modes of phase thickness responsible for the normal and cancerous cell dynamics. Specific type of evolution operator was determined using an algorithm of designing of the mathematical cell model and temporal phase thickness data for cancerous and normal cells. Qualitative correspondence of attractor types to the cell states was analyzed in terms of morphological signs associated with maximum value of mean square irregular oscillations of phase thickness dynamics.

  17. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  18. Stem Cell Models: A Guide to Understand and Mitigate Aging?

    Science.gov (United States)

    Brunauer, Regina; Alavez, Silvestre; Kennedy, Brian K

    2017-01-01

    Aging is studied either on a systemic level using life span and health span of animal models, or on the cellular level using replicative life span of yeast or mammalian cells. While useful in identifying general and conserved pathways of aging, both approaches provide only limited information about cell-type specific causes and mechanisms of aging. Stem cells are the regenerative units of multicellular life, and stem cell aging might be a major cause for organismal aging. Using the examples of hematopoietic stem cell aging and human pluripotent stem cell models, we propose that stem cell models of aging are valuable for studying tissue-specific causes and mechanisms of aging and can provide unique insights into the mammalian aging process that may be inaccessible in simple model organisms. © 2016 S. Karger AG, Basel.

  19. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  20. The role of sex steroid hormones in Purkinje cell death in the staggerer mutant during aging and development

    NARCIS (Netherlands)

    Janmaat, Sonja

    2007-01-01

    The comprehension of neuronal degeneration during aging has become one of the major objectives in Neuroscience during the last decades. This thesis will focus on both endocrine and neural senescence since they overlap during the aging process and are mechanistically intertwined. This thesis is

  1. Landolphia owariensis Attenuates Alcohol-induced Cerebellar Neurodegeneration: Significance of Neurofilament Protein Alteration in the Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Oyinbo Charles A.

    2016-12-01

    Full Text Available Background: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action.

  2. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  3. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  4. Numerical modelling of CIGS/CdS solar cell

    Science.gov (United States)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2018-05-01

    In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.

  5. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    Science.gov (United States)

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  6. Electrical equivalent model of intermediate band solar cell using ...

    Indian Academy of Sciences (India)

    presents a structure of IBSC based on ZnTe:O. The proposed model uses irradiance and temperature as ... of solar cells. They are based on different processes and properties such as photon recycling, ... The MATLAB interface was used .... ioral model of an arbitrary solar cell to amend the PSPICE simulation performance.

  7. A novel xenograft model of cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn; Kopp, Katharina; Ralfkiaer, Elisabeth

    2010-01-01

    Cutaneous T-cell lymphomas (CTCLs) are characterized by accumulation of malignant T cells in the skin. Early disease resembles benign skin disorders but during disease progression cutaneous tumors develop, and eventually the malignant T cells can spread to lymph nodes and internal organs. However...... and lymphatic tumors, originated from the transplanted malignant T cells. In conclusion, we describe a novel mouse model of tumor stage CTCL for future studies of disease dissemination and preclinical evaluations of new therapeutic strategies....

  8. Modelling of tandem cell temperature coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper discusses the temperature dependence of the basic solar-cell operating parameters for a GaInP/GaAs series-connected two-terminal tandem cell. The effects of series resistance and of different incident solar spectra are also discussed.

  9. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  10. Chimeric animal models in human stem cell biology.

    Science.gov (United States)

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  11. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  12. Modeling human neurological disorders with induced pluripotent stem cells.

    Science.gov (United States)

    Imaizumi, Yoichi; Okano, Hideyuki

    2014-05-01

    Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained

  13. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  14. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  15. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  16. Running and rotating: modelling the dynamics of migrating cell clusters

    Science.gov (United States)

    Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay

    Collective motion of cells is a common occurrence in many biological systems, including tissue development and repair, and tumor formation. Recent experiments have shown cells form clusters in a chemical gradient, which display three different phases of motion: translational, rotational, and random. We present a model for cell clusters based loosely on other models seen in the literature that involves a Vicsek-like alignment as well as physical collisions and adhesions between cells. With this model we show that a mechanism for driving rotational motion in this kind of system is an increased motility of rim cells. Further, we examine the details of the relationship between rim and core cells, and find that the phases of the cluster as a whole are correlated with the creation and annihilation of topological defects in the tangential component of the velocity field.

  17. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  18. An Improved Model of Nonuniform Coleochaete Cell Division.

    Science.gov (United States)

    Wang, Yuandi; Cong, Jinyu

    2016-08-01

    Cell division is a key biological process in which cells divide forming new daughter cells. In the present study, we investigate continuously how a Coleochaete cell divides by introducing a modified differential equation model in parametric equation form. We discuss both the influence of "dead" cells and the effects of various end-points on the formation of the new cells' boundaries. We find that the boundary condition on the free end-point is different from that on the fixed end-point; the former has a direction perpendicular to the surface. It is also shown that the outer boundaries of new cells are arc-shaped. The numerical experiments and theoretical analyses for this model to construct the outer boundary are given.

  19. Harmaline Tremor: Underlying Mechanisms in a Potential Animal Model of Essential Tremor

    Directory of Open Access Journals (Sweden)

    Adrian Handforth

    2012-09-01

    Full Text Available Background: Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor.Methods: Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans.Results: Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel.Discussion: Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials.

  20. Simulations of living cell origins using a cellular automata model.

    Science.gov (United States)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  1. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  2. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  3. Thermal modelling of an AMTEC recirculating cell

    International Nuclear Information System (INIS)

    Suitor, J.W.; Williams, R.M.; Underwood, M.L.; Ryan, M.A.; Jeffries-Nakamura, B.; O'Connor, D.

    1992-01-01

    A modeling program was developed to determine the impact of various design parameters on the operation of an AMTEC system. Temperature profiles generated by the modeling program were compared to actual experimental data to verify the model accuracy. The model was then extended to predict the impact of device design on operational performance. The effect of heat loss form the liquid sodium supply end was studied for this paper

  4. Agent-Based Computational Modeling of Cell Culture ...

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  5. An efficient descriptor model for designing materials for solar cells

    Science.gov (United States)

    Alharbi, Fahhad H.; Rashkeev, Sergey N.; El-Mellouhi, Fedwa; Lüthi, Hans P.; Tabet, Nouar; Kais, Sabre

    2015-11-01

    An efficient descriptor model for fast screening of potential materials for solar cell applications is presented. It works for both excitonic and non-excitonic solar cells materials, and in addition to the energy gap it includes the absorption spectrum (α(E)) of the material. The charge transport properties of the explored materials are modelled using the characteristic diffusion length (Ld) determined for the respective family of compounds. The presented model surpasses the widely used Scharber model developed for bulk heterojunction solar cells. Using published experimental data, we show that the presented model is more accurate in predicting the achievable efficiencies. To model both excitonic and non-excitonic systems, two different sets of parameters are used to account for the different modes of operation. The analysis of the presented descriptor model clearly shows the benefit of including α(E) and Ld in view of improved screening results.

  6. THP-1 cell line: an in vitro cell model for immune modulation approach.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  7. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  8. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    Science.gov (United States)

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  9. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  10. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  11. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Fangel, Jonatan Ulrik; Mikkelsen, Maria Dalgaard

    2015-01-01

    organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion...... have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying......The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise...

  12. Behavioral Analysis and Rescue of a Novel Cerebellar Mouse Model of Tuberous Sclerosis Complex

    Science.gov (United States)

    2012-05-01

    including: Purkinje cell loss, general cerebellar hypoplasia, vermal hypoplasia and hyperplasia, reduced gray matter, GABA dysfunction, and decreased...Lond B Biol Sci. 287, 167-201. Cappon, D., 1953. Clinical manifestations of autism and schizophrenia in childhood. Can Med Assoc J. 69, 44-9. Chan

  13. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  14. UML as a cell and biochemistry modeling language.

    Science.gov (United States)

    Webb, Ken; White, Tony

    2005-06-01

    The systems biology community is building increasingly complex models and simulations of cells and other biological entities, and are beginning to look at alternatives to traditional representations such as those provided by ordinary differential equations (ODE). The lessons learned over the years by the software development community in designing and building increasingly complex telecommunication and other commercial real-time reactive systems, can be advantageously applied to the problems of modeling in the biology domain. Making use of the object-oriented (OO) paradigm, the unified modeling language (UML) and Real-Time Object-Oriented Modeling (ROOM) visual formalisms, and the Rational Rose RealTime (RRT) visual modeling tool, we describe a multi-step process we have used to construct top-down models of cells and cell aggregates. The simple example model described in this paper includes membranes with lipid bilayers, multiple compartments including a variable number of mitochondria, substrate molecules, enzymes with reaction rules, and metabolic pathways. We demonstrate the relevance of abstraction, reuse, objects, classes, component and inheritance hierarchies, multiplicity, visual modeling, and other current software development best practices. We show how it is possible to start with a direct diagrammatic representation of a biological structure such as a cell, using terminology familiar to biologists, and by following a process of gradually adding more and more detail, arrive at a system with structure and behavior of arbitrary complexity that can run and be observed on a computer. We discuss our CellAK (Cell Assembly Kit) approach in terms of features found in SBML, CellML, E-CELL, Gepasi, Jarnac, StochSim, Virtual Cell, and membrane computing systems.

  15. Numerical simulation model of multijunction solar cell

    NARCIS (Netherlands)

    Babar, M.; Al-Ammar, E.A.; Malik, N.H.

    2012-01-01

    Multi-junction solar cells play an important and significant role in the Concentrated Photovoltaic (CPV) Systems. Recent developments in Concentrated Photovoltaic concerning high power production and cost effective- ness along with better efficiency are due to the advancements in multi-junction

  16. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  17. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  18. Birthdating studies reshape models for pituitary gland cell specification.

    Science.gov (United States)

    Davis, Shannon W; Mortensen, Amanda H; Camper, Sally A

    2011-04-15

    The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model

    Directory of Open Access Journals (Sweden)

    G De Santis

    2011-10-01

    Full Text Available A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.

  20. Modeling of Complex Life Cycle Prediction Based on Cell Division

    Directory of Open Access Journals (Sweden)

    Fucheng Zhang

    2017-01-01

    Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.

  1. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    2007-07-06

    Jul 6, 2007 ... The different issues that have been addressed are ontologies, feature description and model building. The framework describes dotted representations and tree data structures to integrate diverse pieces of data and parametric models enabling size, shape and location descriptions. The framework serves ...

  2. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing

    Directory of Open Access Journals (Sweden)

    Felix Barber

    2017-11-01

    Full Text Available Organisms across all domains of life regulate the size of their cells. However, the means by which this is done is poorly understood. We study two abstracted “molecular” models for size regulation: inhibitor dilution and initiator accumulation. We apply the models to two settings: bacteria like Escherichia coli, that grow fully before they set a division plane and divide into two equally sized cells, and cells that form a bud early in the cell division cycle, confine new growth to that bud, and divide at the connection between that bud and the mother cell, like the budding yeast Saccharomyces cerevisiae. In budding cells, delaying cell division until buds reach the same size as their mother leads to very weak size control, with average cell size and standard deviation of cell size increasing over time and saturating up to 100-fold higher than those values for cells that divide when the bud is still substantially smaller than its mother. In budding yeast, both inhibitor dilution or initiator accumulation models are consistent with the observation that the daughters of diploid cells add a constant volume before they divide. This “adder” behavior has also been observed in bacteria. We find that in bacteria an inhibitor dilution model produces adder correlations that are not robust to noise in the timing of DNA replication initiation or in the timing from initiation of DNA replication to cell division (the C+D period. In contrast, in bacteria an initiator accumulation model yields robust adder correlations in the regime where noise in the timing of DNA replication initiation is much greater than noise in the C + D period, as reported previously (Ho and Amir, 2015. In bacteria, division into two equally sized cells does not broaden the size distribution.

  3. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  4. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  5. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas

    2014-03-26

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  6. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas; Behzad, H.; Archer, John A.C.; Bajic, Vladimir B.; Gojobori, Takashi

    2014-01-01

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  7. Modeling universal dynamics of cell spreading on elastic substrates.

    Science.gov (United States)

    Fan, Houfu; Li, Shaofan

    2015-11-01

    A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.

  8. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    International Nuclear Information System (INIS)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-01-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings. (paper)

  9. A quantitative and dynamic model for plant stem cell regulation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  10. Random Walk Model for Cell-To-Cell Misalignments in Accelerator Structures

    International Nuclear Information System (INIS)

    Stupakov, Gennady

    2000-01-01

    Due to manufacturing and construction errors, cells in accelerator structures can be misaligned relative to each other. As a consequence, the beam generates a transverse wakefield even when it passes through the structure on axis. The most important effect is the long-range transverse wakefield that deflects the bunches and causes growth of the bunch train projected emittance. In this paper, the effect of the cell-to-cell misalignments is evaluated using a random walk model that assumes that each cell is shifted by a random step relative to the previous one. The model is compared with measurements of a few accelerator structures

  11. Theoretical cell alteration model in the context of carcinogenesis

    International Nuclear Information System (INIS)

    Walsh, P.J.

    1976-01-01

    A model incorporating cell survival and alteration is used to discuss the general nature of cellular response to a toxic agent. Cell division and repair are discussed as regards their influence on dose-response relationships to bone-seeking radionuclides. The application of the model in its present form to specific biologic end points depends on the assumption that such end points are the result of some initial alteration

  12. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  13. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  14. PEM fuel cell model suitable for energy optimization purposes

    International Nuclear Information System (INIS)

    Caux, S.; Hankache, W.; Fadel, M.; Hissel, D.

    2010-01-01

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms.

  15. PEM fuel cell model suitable for energy optimization purposes

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Hankache, W.; Fadel, M. [LAPLACE/CODIASE: UMR CNRS 5213, Universite de Toulouse - INPT, UPS, - ENSEEIHT: 2 rue Camichel BP7122, 31071 Toulouse (France); CNRS, LAPLACE, F-31071 Toulouse (France); Hissel, D. [FEMTO-ST ENISYS/FCLAB, UMR CNRS 6174, University of Franche-Comte, Rue Thierry Mieg, 90010 Belfort (France)

    2010-02-15

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms. (author)

  16. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  17. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory. There are two technologies for the microfluidic biochips: droplet-based and flow-based. In this paper we are interested in flow-based microfluidic biochips, where the liquid flows continuously through pre......-defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  18. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.

    Directory of Open Access Journals (Sweden)

    John C Williams

    Full Text Available Channelrhodospin-2 (ChR2, a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1 accurate inward rectification in the current-voltage response across irradiances; 2 empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation; and 3 accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10 were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and

  19. Incorporating pushing in exclusion-process models of cell migration.

    Science.gov (United States)

    Yates, Christian A; Parker, Andrew; Baker, Ruth E

    2015-05-01

    The macroscale movement behavior of a wide range of isolated migrating cells has been well characterized experimentally. Recently, attention has turned to understanding the behavior of cells in crowded environments. In such scenarios it is possible for cells to interact, inducing neighboring cells to move in order to make room for their own movements or progeny. Although the behavior of interacting cells has been modeled extensively through volume-exclusion processes, few models, thus far, have explicitly accounted for the ability of cells to actively displace each other in order to create space for themselves. In this work we consider both on- and off-lattice volume-exclusion position-jump processes in which cells are explicitly allowed to induce movements in their near neighbors in order to create space for themselves to move or proliferate into. We refer to this behavior as pushing. From these simple individual-level representations we derive continuum partial differential equations for the average occupancy of the domain. We find that, for limited amounts of pushing, comparison between the averaged individual-level simulations and the population-level model is nearly as good as in the scenario without pushing. Interestingly, we find that, in the on-lattice case, the diffusion coefficient of the population-level model is increased by pushing, whereas, for the particular off-lattice model that we investigate, the diffusion coefficient is reduced. We conclude, therefore, that it is important to consider carefully the appropriate individual-level model to use when representing complex cell-cell interactions such as pushing.

  20. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line

    International Nuclear Information System (INIS)

    Imai, Misa; Muraki, Miho; Takamatsu, Kiyoshi; Saito, Hidekazu; Seiki, Motoharu; Takahashi, Yuji

    2008-01-01

    Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo

  1. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    Science.gov (United States)

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  2. THE PROGRAMED CELL DEATH REGULATORS OF ISOLATED MODEL SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. V. Vatlitsov

    2016-06-01

    Full Text Available The technology evolution creates the prerequisites for the emergence of new informational concept and approaches to the formation of a fundamentally new principles of biological objects understanding. The aim was to study the activators of the programmed cell death in an isolated system model. Cell culture aging parameters were performed on flow cytometer. It had formed the theory that the changes in the concentrations of metal ions and increase their extracellular concentration had formed a negative gradient into the cells.regulation of cell death. It was shown that the metals ions concentrations.

  3. A flexible multipurpose model for normal and transient cell kinetics

    International Nuclear Information System (INIS)

    Toivonen, Harri.

    1979-07-01

    The internal hypothetical compartments within the different phases of the cell cycle have been adopted as the basis of models dealing with various specific problems in cell kinetics. This approach was found to be of more general validity, extending from expanding cell populations to complex maturation processes. The differential equations describing the system were solved with an effective, commercially available library subroutine. Special attention was devoted to analysis of transient and feedback kinetics of cell populations encountered in diverse environmental and exposure conditions, for instance in cases of wounding and radiation damage. (author)

  4. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  5. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  6. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    Science.gov (United States)

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Recent developments in the modeling of molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Wilemski, G.

    1984-01-01

    Modeling of porous electrodes and overall performance of molten carbonate fuel cells is reviewed. Aspects needing improvement are discussed. Some preliminary results on internal methane reforming cells are presented. Successful modeling of molten carbonate fuel cells has been carried out at two levels. The first concerns the prediction of overall cell performance and performance decay, i.e., the calculation of current-voltage curves and their decay rates for various cell operating conditions. The second involves the determination of individual porous electrode performance, i.e., how the electrode overpotential is affected by pore structure, gas composition, degree of electrolyte fill, etc. Both levels are treated mechanistically, as opposed to empirically, using fundamental mathematical descriptions of the relevant physical and chemical phenomena, in order to provide quantitative predictive capability

  8. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  9. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  10. An oscillating dynamic model of collective cells in a monolayer

    Science.gov (United States)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  11. Genome engineering of stem cell organoids for disease modeling.

    Science.gov (United States)

    Sun, Yingmin; Ding, Qiurong

    2017-05-01

    Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.

  12. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  13. Odor supported place cell model and goal navigation in rodents

    DEFF Research Database (Denmark)

    Kulvicius, Tomas; Tamosiunaite, Minija; Ainge, James

    2008-01-01

    Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self......-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self......-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self...

  14. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  15. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice

    NARCIS (Netherlands)

    Clopath, Claudia; Badura, Aleksandra; De Zeeuw, Chris I; Brunel, Nicolas

    2014-01-01

    Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised

  16. Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells

    Science.gov (United States)

    Chowdhury, Ahrar Ahmed

    Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our

  17. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  18. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  19. Empirical membrane lifetime model for heavy duty fuel cell systems

    Science.gov (United States)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  20. A simplified model for dynamics of cell rolling and cell-surface adhesion

    International Nuclear Information System (INIS)

    Cimrák, Ivan

    2015-01-01

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells

  1. The Alpha Stem Cell Clinic: a model for evaluating and delivering stem cell-based therapies.

    Science.gov (United States)

    Trounson, Alan; DeWitt, Natalie D; Feigal, Ellen G

    2012-01-01

    Cellular therapies require the careful preparation, expansion, characterization, and delivery of cells in a clinical environment. There are major challenges associated with the delivery of cell therapies and high costs that will limit the companies available to fully evaluate their merit in clinical trials, and will handicap their application at the present financial environment. Cells will be manufactured in good manufacturing practice or near-equivalent facilities with prerequisite safety practices in place, and cell delivery systems will be specialized and require well-trained medical and nursing staff, technicians or nurses trained to handle cells once delivered, patient counselors, as well as statisticians and database managers who will oversee the monitoring of patients in relatively long-term follow-up studies. The model proposed for Alpha Stem Cell Clinics will initially use the capacities and infrastructure that exist in the most advanced tertiary medical clinics for delivery of established bone marrow stem cell therapies. As the research evolves, they will incorporate improved procedures and cell preparations. This model enables commercialization of medical devices, reagents, and other products required for cell therapies. A carefully constructed cell therapy clinical infrastructure with the requisite scientific, technical, and medical expertise and operational efficiencies will have the capabilities to address three fundamental and critical functions: 1) fostering clinical trials; 2) evaluating and establishing safe and effective therapies, and 3) developing and maintaining the delivery of therapies approved by the Food and Drug Administration, or other regulatory agencies.

  2. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  3. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    Science.gov (United States)

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    Science.gov (United States)

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.

  5. A probabilistic cell model in background corrected image sequences for single cell analysis

    Directory of Open Access Journals (Sweden)

    Fieguth Paul

    2010-10-01

    Full Text Available Abstract Background Methods of manual cell localization and outlining are so onerous that automated tracking methods would seem mandatory for handling huge image sequences, nevertheless manual tracking is, astonishingly, still widely practiced in areas such as cell biology which are outside the influence of most image processing research. The goal of our research is to address this gap by developing automated methods of cell tracking, localization, and segmentation. Since even an optimal frame-to-frame association method cannot compensate and recover from poor detection, it is clear that the quality of cell tracking depends on the quality of cell detection within each frame. Methods Cell detection performs poorly where the background is not uniform and includes temporal illumination variations, spatial non-uniformities, and stationary objects such as well boundaries (which confine the cells under study. To improve cell detection, the signal to noise ratio of the input image can be increased via accurate background estimation. In this paper we investigate background estimation, for the purpose of cell detection. We propose a cell model and a method for background estimation, driven by the proposed cell model, such that well structure can be identified, and explicitly rejected, when estimating the background. Results The resulting background-removed images have fewer artifacts and allow cells to be localized and detected more reliably. The experimental results generated by applying the proposed method to different Hematopoietic Stem Cell (HSC image sequences are quite promising. Conclusion The understanding of cell behavior relies on precise information about the temporal dynamics and spatial distribution of cells. Such information may play a key role in disease research and regenerative medicine, so automated methods for observation and measurement of cells from microscopic images are in high demand. The proposed method in this paper is capable

  6. Modeling Kidney Disease with iPS Cells

    Science.gov (United States)

    Freedman, Benjamin S.

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and ‘disease in a dish’ laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field. PMID:26740740

  7. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    Science.gov (United States)

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  8. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  9. Garcinia kola seeds may prevent cognitive and motor dysfunctions in a type 1 diabetes mellitus rat model partly by mitigating neuroinflammation.

    Science.gov (United States)

    Seke Etet, Paul F; Farahna, Mohammed; Satti, Gwiria M H; Bushara, Yahia M; El-Tahir, Ahmed; Hamza, Muaawia A; Osman, Sayed Y; Dibia, Ambrose C; Vecchio, Lorella

    2017-04-15

    Background We reported recently that extracts of seeds of Garcinia kola, a plant with established hypoglycemic properties, prevented the loss of inflammation-sensible neuronal populations like Purkinje cells in a rat model of type 1 diabetes mellitus (T1DM). Here, we assessed G. kola extract ability to prevent the early cognitive and motor dysfunctions observed in this model. Methods Rats made diabetic by single injection of streptozotocin were treated daily with either vehicle solution (diabetic control group), insulin, or G. kola extract from the first to the 6th week post-injection. Then, cognitive and motor functions were assessed using holeboard and vertical pole behavioral tests, and animals were sacrificed. Brains were dissected out, cut, and processed for Nissl staining and immunohistochemistry. Results Hyperglycemia (209.26 %), body weight loss (-12.37 %), and T1DM-like cognitive and motor dysfunctions revealed behavioral tests in diabetic control animals were not observed in insulin and extract-treated animals. Similar, expressions of inflammation markers tumor necrosis factor (TNF), iba1 (CD68), and Glial fibrillary acidic protein (GFAP), as well as decreases of neuronal density in regions involved in cognitive and motor functions (-49.56 % motor cortex, -33.24 % medial septal nucleus, -41.8 % /-37.34 % cerebellar Purkinje /granular cell layers) were observed in diabetic controls but not in animals treated with insulin or G. kola. Conclusions Our results indicate that T1DM-like functional alterations are mediated, at least partly, by neuroinflammation and neuronal loss in this model. The prevention of the development of such alterations by early treatment with G. kola confirms the neuroprotective properties of the plant and warrant further mechanistic studies, considering the potential for human disease.

  10. Bioengineered Liver Models for Drug Testing and Cell Differentiation Studies

    Directory of Open Access Journals (Sweden)

    Gregory H. Underhill

    2018-01-01

    Full Text Available In vitro models of the human liver are important for the following: (1 mitigating the risk of drug-induced liver injury to human beings, (2 modeling human liver diseases, (3 elucidating the role of single and combinatorial microenvironmental cues on liver cell function, and (4 enabling cell-based therapies in the clinic. Methods to isolate and culture primary human hepatocytes (PHHs, the gold standard for building human liver models, were developed several decades ago; however, PHHs show a precipitous decline in phenotypic functions in 2-dimensional extracellular matrix–coated conventional culture formats, which does not allow chronic treatment with drugs and other stimuli. The development of several engineering tools, such as cellular microarrays, protein micropatterning, microfluidics, biomaterial scaffolds, and bioprinting, now allow precise control over the cellular microenvironment for enhancing the function of both PHHs and induced pluripotent stem cell–derived human hepatocyte-like cells; long-term (4+ weeks stabilization of hepatocellular function typically requires co-cultivation with liver-derived or non–liver-derived nonparenchymal cell types. In addition, the recent development of liver organoid culture systems can provide a strategy for the enhanced expansion of therapeutically relevant cell types. Here, we discuss advances in engineering approaches for constructing in vitro human liver models that have utility in drug screening and for determining microenvironmental determinants of liver cell differentiation/function. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues that need to be addressed. Overall, bioengineered liver models have significantly advanced our understanding of liver function and injury, which will prove useful for drug development and ultimately cell-based therapies.

  11. A mathematical model of calcium dynamics in HSY cells.

    Directory of Open Access Journals (Sweden)

    Jung Min Han

    2017-02-01

    Full Text Available Saliva is an essential part of activities such as speaking, masticating and swallowing. Enzymes in salivary fluid protect teeth and gums from infectious diseases, and also initiate the digestion process. Intracellular calcium (Ca2+ plays a critical role in saliva secretion and regulation. Experimental measurements of Ca2+ and inositol trisphosphate (IP3 concentrations in HSY cells, a human salivary duct cell line, show that when the cells are stimulated with adenosine triphosphate (ATP or carbachol (CCh, they exhibit coupled oscillations with Ca2+ spike peaks preceding IP3 spike peaks. Based on these data, we construct a mathematical model of coupled Ca2+ and IP3 oscillations in HSY cells and perform model simulations of three different experimental settings to forecast Ca2+ responses. The model predicts that when Ca2+ influx from the extracellular space is removed, oscillations gradually slow down until they stop. The model simulation of applying a pulse of IP3 predicts that photolysis of caged IP3 causes a transient increase in the frequency of the Ca2+ oscillations. Lastly, when Ca2+-dependent activation of PLC is inhibited, we see an increase in the oscillation frequency and a decrease in the amplitude. These model predictions are confirmed by experimental data. We conclude that, although concentrations of Ca2+ and IP3 oscillate, Ca2+ oscillations in HSY cells are the result of modulation of the IP3 receptor by intracellular Ca2+, and that the period is modulated by the accompanying IP3 oscillations.

  12. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    Science.gov (United States)

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  13. Multiway modeling and analysis in stem cell systems biology

    Directory of Open Access Journals (Sweden)

    Vandenberg Scott L

    2008-07-01

    Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a

  14. Computational model for squamous cells characterization during cervical smear cytology

    Directory of Open Access Journals (Sweden)

    Víctor Eduardo Martínez Abaunza

    2005-07-01

    Full Text Available The main goal of the work done by the Biomedical Engineering Research Group (GIIB, and the Structural, Functional and Clinical Pathology Research Group of the Industrial University of Santander (UIS, with Autonomous University of Bucaramanga (UNAB, was to construct a computational model allowing squamous cells characterization of cervical smear cytology to classify them as being either normal or abnormal cells. Slides containing the cell samples were colleted by the pathologist and the images were digitalized by a video-camera coupled to a microscope and connected to a frame acquisition device. Three thresholding algorithms were used, in image segmentation, allowing cell nuclei detection; manual thresholding was used when these algorithms failed to detect cytoplasm. Cell texture was described by the distribution of histogram in each color level, and the borders using Fourier descriptors. The results of the first phase are presented, implementing them in classifying and identifying normal cells. Later stages will involve characterizing each cells stage initially classified as presenting some reactive change or due to infection, to distinguish the reactive cells of intraepithelial lesion cells. Key words: image processing, mathematical morphology, cervical smear cytology, dysplasia, cancer of cervix.

  15. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...

  16. Using Stem Cells to Model Diseases of the Outer Retina

    Directory of Open Access Journals (Sweden)

    Camille Yvon

    2015-01-01

    Full Text Available Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE. It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP, Usher syndrome (USH, Leber congenital amaurosis (LCA, gyrate atrophy (GA, juvenile neuronal ceroid lipofuscinosis (NCL, Best vitelliform macular dystrophy (BVMD and age related macular degeneration (AMD.

  17. Using Stem Cells to Model Diseases of the Outer Retina.

    Science.gov (United States)

    Yvon, Camille; Ramsden, Conor M; Lane, Amelia; Powner, Michael B; da Cruz, Lyndon; Coffey, Peter J; Carr, Amanda-Jayne F

    2015-01-01

    Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).

  18. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    Science.gov (United States)

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  19. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    International Nuclear Information System (INIS)

    Gross, Emilie; Quillet-Mary, Anne; Ysebaert, Loic; Laurent, Guy; Fournie, Jean-Jacques

    2011-01-01

    The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity

  20. Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Fournie

    2011-03-01

    Full Text Available The concept of cancer stem cells has revolutionized our current vision of cancer development and was validated in solid tumors and cancers of the primitive hematopoietic compartment. Proof of the principle is still lacking, however, in malignancies of differentiated B-cells. We review here the current literature, which nevertheless suggests hierarchical organizations of the tumor clone for mostly incurable B-cell cancers such as multiple myeloma, lymphomas and B-chronic lymphocytic leukemia. We propose two models accounting for cancer stem cells in these contexts: a “top-to-bottom” clonal hierarchy from memory B-cells and a “bottom-to-top” model of clonal reprogramming. Selection pressure on the growing tumor can drive such reprogramming and increase its genetic diversity.

  1. Мodification of Mechanical Limbal Stem Cell Deficiency Model

    Directory of Open Access Journals (Sweden)

    A. V. Bezushko

    2018-01-01

    Full Text Available Introduction. Ocular surface diseases related with limbal epithelial stem cells dysfunction were united in term “limbal stem cell  deficiency” (LSCD. For experimental study of the regenerative processes and evaluation of the success of new LSCD treatingmethods LSCD model is required. Various LSCD models were proposed in the experiment to study: mechanical, thermal, chemical,medicamental. The main lack of these models were the relative high cost and complexity of execution. The mechanical model allows forthe guaranteed removal of tissues containing LESCs, and therefore seems to be the most acceptable. We offered a modification of themechanical LSCD model in rabbits. Purpose to create a standardized modification of the mechanical limbal stem cell deficiency modelin the experiment. Material and methods. The experimental study was performed in 10 mature Chinchilla rabbits (20 eyes with anaverage weight 2.5–3.5 kg. With the local anesthesia, after a 40-second application of the filter paper impregnated with 20% ethanol,the corneal epithelium was removed. With microsurgical diamond blade we metered limb portion of 4 mm width, 0.2 mm deep, andit was removed along the 360° rim. Results. On the 30th day we discovered corneal opacity and neovascularization with conjunctivalpannus extending to the optical zone of the cornea. Histological examination revealed tissue edema, inflammatory infiltration, andnewly formed vessels. In some places, thinning of epithelium to one row of flattened cells was observed. The Bowman membrane wasdeformed and practically not detected. Histological examination and impression cytology confirmed the presence of goblet cells in thecorneal epithelium. Conclusions. Our modification of the mechanical limbal stem cell deficiency model is devoid of the main lacks ofprevious models, such as the high cost and complexity of execution, provides intraoperative limbal tissue resection depth control andexcludes the possibility of the

  2. Modeling photocurrent transients in organic solar cells

    International Nuclear Information System (INIS)

    Hwang, I; Greenham, N C

    2008-01-01

    We investigate the transient photocurrents of organic photovoltaic devices in response to a sharp turn-on of illumination, by numerical modeling of the drift-diffusion equations. We show that the photocurrent turn-on dynamics are determined not only by the transport dynamics of free charges, but also by the time required for the population of geminate charge pairs to reach its steady-state value. The dissociation probability of a geminate charge pair is found to be a key parameter in determining the device performance, not only by controlling the efficiency at low intensities, but also in determining the fate of charge pairs formed by bimolecular recombination at high intensities. Bimolecular recombination is shown to reduce the turn-on time at high intensities, since the typical distance traveled by a charge pair is reduced.

  3. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...

  4. Peltier cells as temperature control elements: Experimental characterization and modeling

    International Nuclear Information System (INIS)

    Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio

    2014-01-01

    The use of Peltier cells to realize compact and precise temperature controlled devices is under continuous extension in recent years. In order to support the design of temperature control systems, a simplified modeling of heat transfer dynamics for thermoelectric devices is presented. By following a macroscopic approach, the heat flux removed at the cold side of Peltier cell can be expressed as Q . c =γ(T c −T c eq ), where γ is a coefficient dependent on the electric current, T c and T c eq are the actual and steady state cold side temperature, respectively. On the other hand, a microscopic modeling approach was pursued via finite element analysis software packages. To validate the models, an experimental apparatus was designed and build-up, consisting in a sample vial with the surfaces in direct contact with Peltier cells. Both modeling approaches led to reliable prediction of transient and steady state sample temperature. -- Highlights: • Simplified modeling of heat transfer dynamics in Peltier cells. • Coupled macroscopic and microscopic approach. • Experimental apparatus: temperature control of a sample vial. • Both modeling approaches predict accurately the transient and steady state sample temperature

  5. Stem cell models of polyglutamine diseases and their use in cell-based therapies

    Directory of Open Access Journals (Sweden)

    Evangelia eSiska

    2015-07-01

    Full Text Available Polyglutamine diseases are fatal neurological disorders that affect the central nervous system. They are caused by mutations in disease genes that contain CAG trinucleotide expansions in their coding regions. These mutations are translated into expanded glutamine chains in pathological proteins. Mutant proteins induce cytotoxicity, form intranuclear aggregates and cause neuronal cell death in specific brain regions. At the moment there is no cure for these diseases and only symptomatic treatments are available. Here, we discuss novel therapeutic approaches that aim in neuronal cell replacement using induced pluripotent or adult stem cells. Additionally, we present the beneficial effect of genetically engineered mesenchymal stem cells and their use as disease models or RNAi/gene delivery vehicles. In combination with their paracrine and cell-trophic properties, such cells may prove useful for the development of novel therapies against polyglutamine diseases.

  6. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  7. Model for cadmium transport and distribution in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, T.L.; Turner, J.E.; Williams, M.W.; Cook, J.S.; Hsie, A.W.

    1982-01-01

    A compartmental model is developed to study the transport and distribution of cadmium in Chinese hamster ovary (CHO) cells. Of central importance to the model is the role played by sequestering components which bind free Cd/sup 2 +/ ions. The most important of these is a low-molecular-weight protein, metallothionein, which is produced by the cells in response to an increase in the cellular concentration of Cd/sup 2 +/. Monte Carlo techniques are used to generate a stochastic model based on existing experimental data describing the intracellular transport of cadmium between different compartments. This approach provides an alternative to the usual numerical solution of differential-delay equations that arise in deterministic models. Our model suggests subcellular structures which may be responsible for the accumulation of cadmium and, hence, could account for cadmium detoxification. 4 figures, 1 table.

  8. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells.

    Science.gov (United States)

    LaMarca, Elizabeth A; Powell, Samuel K; Akbarian, Schahram; Brennand, Kristen J

    2018-01-01

    Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.

  9. Modeling and Simulation of the Direct Methanol Fuel Cell

    Science.gov (United States)

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  10. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  11. New paradigms for metabolic modeling of human cells

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    review recent work on reconstruction of GEMs for human cell/tissue types and cancer, and the use of GEMs for identification of metabolic changes occurring in response to disease development. We further discuss how GEMs can be used for the development of efficient therapeutic strategies. Finally......, challenges in integration of cell/tissue models for simulation of whole body functions as well as integration of GEMs with other biological networks for generating complete cell/tissue models are presented.......Abnormalities in cellular functions are associated with the progression of human diseases, often resulting in metabolic reprogramming. GEnome-scale metabolic Models (GEMs) have enabled studying global metabolic reprogramming in connection with disease development in a systematic manner. Here we...

  12. Artificial cell mimics as simplified models for the study of cell biology.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  13. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  14. Basics elements for modelling the dynamics of cell migration in cell culture

    International Nuclear Information System (INIS)

    FarIas, Ro; Vidal, Cs; Rapacioli, M; Flores, V

    2007-01-01

    This paper introduces some basic elements for modelling the dynamics of cell migration activity over a bi-dimensional substratum. A square matrix, representing the substratum, is implemented in order to generate virtual cells with an initial random uniform distribution, with the ability to freely move within the matrix and to interact with each others by mean of adhesive forces. Two different conditions were examined: A) cells can freely move and after contacting with another cell they both completely inhibit their migration; B) cells that come into contact have the ability to rotate respect to each other without losing their contacts and retaining the ability to move together but at a slower rate, being the decrease in the rate of movement proportional to the number of contacting cells. The dynamics of the migration process in these two conditions was evaluated by recording the evolution of several parameters as a function of time. Minor modifications in some parameters (mobility, intensity of cell-cell and cell-substratum adhesiveness) significantly change the dynamics and the final result of the virtual migrating cells

  15. Wires in the soup: quantitative models of cell signaling

    Science.gov (United States)

    Cheong, Raymond; Levchenko, Andre

    2014-01-01

    Living cells are capable of extracting information from their environments and mounting appropriate responses to a variety of associated challenges. The underlying signal transduction networks enabling this can be quite complex, necessitating for their unraveling by sophisticated computational modeling coupled with precise experimentation. Although we are still at the beginning of this process, some recent examples of integrative analysis of cell signaling are very encouraging. This review highlights the case of the NF-κB pathway in order to illustrate how a quantitative model of a signaling pathway can be gradually constructed through continuous experimental validation, and what lessons one might learn from such exercises. PMID:18291655

  16. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  17. Sickle cell vaso-occlusion in an animal model

    International Nuclear Information System (INIS)

    Kurantsin-Mills, J.; Jacobs, H.M.; Lessin, L.S.

    1987-01-01

    Sickle cell disease is clinically characterized with vaso-occlusive painful crisis which is pleomorphic in terms of frequency of occurrence. The intracellular polymerization of deoxygenated hemoglobin S increases the internal viscosity of the sickle cells exponentially, concurrent with binding of hemoglobin S to the membrane and discocyte-drepanocyte transformation. As a result, the red cells in sickle cell disease are heterogenous with cells of varying density and mean corpuscular hemoglobin concentration which alter the rheological features of the blood in the microcirculation. The cellular, physiological, biochemical and rheological factors that contribute to the vaso-occlusive events are not completely understood. Nonetheless, recent clinical studies have demonstrated that a certain fraction of the dense cells disappear during sickle cell painful crisis. In an attempt to elucidate some of the cellular and rheological factors involved in the initiation of vaso-occlusion, the authors have employed intravital videomicroscopy and radionuclide imaging of indium-III labeled sickle cells to determine the dynamics and sites of vaso-occlusion using the rat exchanged-transfused with sickle (HbSS) erythrocytes as a model

  18. Stochastic modeling of oligodendrocyte generation in cell culture: model validation with time-lapse data

    Directory of Open Access Journals (Sweden)

    Noble Mark

    2006-05-01

    Full Text Available Abstract Background The purpose of this paper is two-fold. The first objective is to validate the assumptions behind a stochastic model developed earlier by these authors to describe oligodendrocyte generation in cell culture. The second is to generate time-lapse data that may help biomathematicians to build stochastic models of cell proliferation and differentiation under other experimental scenarios. Results Using time-lapse video recording it is possible to follow the individual evolutions of different cells within each clone. This experimental technique is very laborious and cannot replace model-based quantitative inference from clonal data. However, it is unrivalled in validating the structure of a stochastic model intended to describe cell proliferation and differentiation at the clonal level. In this paper, such data are reported and analyzed for oligodendrocyte precursor cells cultured in vitro. Conclusion The results strongly support the validity of the most basic assumptions underpinning the previously proposed model of oligodendrocyte development in cell culture. However, there are some discrepancies; the most important is that the contribution of progenitor cell death to cell kinetics in this experimental system has been underestimated.

  19. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  20. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  1. Parameter resolution in two models for cell survival after radiation

    International Nuclear Information System (INIS)

    Di Cera, E.; Andreasi Bassi, F.; Arcovito, G.

    1989-01-01

    The resolvability of model parameters for the linear-quadratic and the repair-misrepair models for cell survival after radiation has been studied by Monte Carlo simulations as a function of the number of experimental data points collected in a given dose range and the experimental error. Statistical analysis of the results reveals the range of experimental conditions under which the model parameters can be resolved with sufficient accuracy, and points out some differences in the operational aspects of the two models. (orig.)

  2. Modelling real solar cell using PSCAD/MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Sergio; Silva, Marco; Fernandes, Filipe; Vale, Zita [Polytechnic of Porto (Portugal). GECAD - Knowledge Engineering and Decision Support Research Center

    2012-07-01

    This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design - including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model. (orig.)

  3. Comparison of Perturbed Pathways in Two Different Cell Models for Parkinson's Disease with Structural Equation Model.

    Science.gov (United States)

    Pepe, Daniele; Do, Jin Hwan

    2015-12-16

    Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.

  4. Triple co-culture cell model as an in vitro model for oral particulate vaccine systems

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; De Rossi, C.; Lehr, C-M.

    ; this was not observed with ovalbumin and blank solution. An example of the results is shown in Figure 2 for IL-17A. An established co-culture of Caco-2, THP-1 and MUTZ-3 cells showed promise as an in vitro model for testing of oral vaccine formulations. Mobility of co-culture immune cells as well as cytokine production......A triple co-culture cell model of Caco-2 cells, dendritic cells and macrophages (Figure 1) has previously been developed for studying intestinal permeability in a state of inflammation [1],[2]. The aim of this study was to investigate the applicability of this cell model for testing...... the model antigen ovalbumin was spray dried to obtain a particulate vaccine model system for testing in the cell model. The precursors were shown to form cubosomes when dispersed in aqueous medium, and was therefore used as the vaccine formulation for testing on the co-cultures. After 11 days, the TEER...

  5. Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia.

    Directory of Open Access Journals (Sweden)

    Martin Hoffmann

    Full Text Available Therapeutic application of mesenchymal stem cells (MSC requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The 'tool box' of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.

  6. Automated Physico-Chemical Cell Model Development through Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  7. Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult x-irradiated rats and weaver and reeler mutant mice

    International Nuclear Information System (INIS)

    Shojaeian, H.; Delhaye-Bouchaud, N.; Mariani, J.

    1985-01-01

    Cell death in the developing rat inferior olive precedes the regression of the polyneuronal innervation of Purkinje cells by olivary axons (i.e., climbing fibers), suggesting that the involution of the redundant olivocerebellar contacts is caused by a withdrawal of supernumerary axonal collaterals rather than by degeneration of the parent cell. However, a subsequent apparent increase of the olivary population occurs, which could eventually mask a residual presynaptic cell death taking place at the same time. Therefore, cell counts were performed in the inferior olive of adult rodents in which the multiple innervation of Purkinje cells by olivary axons is maintained, with the idea that if cell death plays a role in the regression of supernumerary climbing fibers, the number of olivary cells should be higher in these animals than in their controls. The results show that the size of the cell population in the inferior olive of weaver and reeler mutant mice and rats degranulated by early postnatal x-irradiation does not differ significantly from that of their controls. Similarly, the distribution of the cells in the four main olivary subnuclei is not modified in weaver mice and x-irradiated rats. The present data further support the assumption that the regression of the polyneuronal innervation of Purkinje cells occurs independently of cell death in the presynaptic population

  8. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  9. Bayesian parameter estimation for stochastic models of biological cell migration

    Science.gov (United States)

    Dieterich, Peter; Preuss, Roland

    2013-08-01

    Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.

  10. Cell physiology based pharmacodynamic modeling of antimicrobial drug combinations

    OpenAIRE

    Hethey, Christoph Philipp

    2017-01-01

    Mathematical models of bacterial growth have been successfully applied to study the relationship between antibiotic drug exposure and the antibacterial effect. Since these models typically lack a representation of cellular processes and cell physiology, the mechanistic integration of drug action is not possible on the cellular level. The cellular mechanisms of drug action, however, are particularly relevant for the prediction, analysis and understanding of interactions between antibiotics. In...

  11. Artificial Neural Network Based Model of Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Messaouda Azzouzi

    2017-03-01

    Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results. 

  12. The curvature calculation mechanism based on simple cell model.

    Science.gov (United States)

    Yu, Haiyang; Fan, Xingyu; Song, Aiqi

    2017-07-20

    A conclusion has not yet been reached on how exactly the human visual system detects curvature. This paper demonstrates how orientation-selective simple cells can be used to construct curvature-detecting neural units. Through fixed arrangements, multiple plurality cells were constructed to simulate curvature cells with a proportional output to their curvature. In addition, this paper offers a solution to the problem of narrow detection range under fixed resolution by selecting an output value under multiple resolution. Curvature cells can be treated as concrete models of an end-stopped mechanism, and they can be used to further understand "curvature-selective" characteristics and to explain basic psychophysical findings and perceptual phenomena in current studies.

  13. Theories and models on the biological of cells in space

    Science.gov (United States)

    Todd, P.; Klaus, D. M.

    1996-01-01

    A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in may cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in symposium on 'Theories and Models on the Biology of Cells in Space' are dedicated to the subject of the plausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/sq s and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.

  14. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    Directory of Open Access Journals (Sweden)

    Yuan Xie

    2015-10-01

    Full Text Available Glioblastoma (GBM is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs. To meet the present shortage of relevant GBM cell (GC lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  15. Experimental Characterization and Modeling of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk

    fundamental knowledge of the transport and electrochemical processes of PEM fuel cells and to provide methods for obtaining high quality data for PEM fuel cell simulation model validation. In this thesis three different areas of experimental characterization techniques was investigated, they include: Stack...... for obtaining very detailed data of the manifold flow. Moreover, the tools complement each other well, as high quality validation data can be obtained from PIV measurements to verify CFD models. AC Impedance Spectroscopy was used to thoroughly characterize a HTPEM single cell. The measurement method...... was furthermore transferred onto a Labview platform, which signiffcantly improves the exibility and lowers the cost of using this method. This technique is expected to bea very important future tool, used both for material characterization, celldiagnostic, system optimization and as a control input parameter...

  16. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  17. Pluripotent stem cells: An in vitro model for nanotoxicity assessments.

    Science.gov (United States)

    Handral, Harish K; Tong, Huei Jinn; Islam, Intekhab; Sriram, Gopu; Rosa, Vinicus; Cao, Tong

    2016-10-01

    The advent of technology has led to an established range of engineered nanoparticles that are used in diverse applications, such as cell-cell interactions, cell-material interactions, medical therapies and the target modulation of cellular processes. The exponential increase in the utilization of nanomaterials and the growing number of associated criticisms has highlighted the potential risks of nanomaterials to human health and the ecosystem. The existing in vivo and in vitro platforms show limitations, with fluctuations being observed in the results of toxicity assessments. Pluripotent stem cells (PSCs) are viable source of cells that are capable of developing into specialized cells of the human body. PSCs can be efficiently used to screen new biomaterials/drugs and are potential candidates for studying impairments of biophysical morphology at both the cellular and tissue levels during interactions with nanomaterials and for diagnosing toxicity. Three-dimensional in vitro models obtained using PSC-derived cells would provide a realistic, patient-specific platform for toxicity assessments and in drug screening applications. The current review focuses on PSCs as an alternative in vitro platform for assessing the hazardous effects of nanomaterials on health systems and highlights the importance of PSC-derived in vitro platforms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Modeling single cell antibody excretion on a biosensor

    NARCIS (Netherlands)

    Stojanovic, Ivan; Baumgartner, W.; van der Velden, T.J.G.; Terstappen, Leonardus Wendelinus Mathias Marie; Schasfoort, Richardus B.M.

    2016-01-01

    We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed

  19. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  20. Stem Cells as In Vitro Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Patricia L. Martínez-Morales

    2012-01-01

    Full Text Available Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating PD. The ability to generate induced pluripotent stem cells (iPSCs from PD patients and a refined capacity to differentiate these iPSCs into DA neurons, the relevant disease cell type, promises a new paradigm in drug development that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSC that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSC can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling PD “in a dish” and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets, and enhance the probability of clinical success of new drugs.

  1. Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia.

    Science.gov (United States)

    Gonçalves, Nélio; Simões, Ana T; Prediger, Rui D; Hirai, Hirokazu; Cunha, Rodrigo A; Pereira de Almeida, Luís

    2017-03-01

    Machado-Joseph disease (MJD) is a neurodegenerative spinocerebellar ataxia (SCA) associated with an expanded polyglutamine tract within ataxin-3 for which there is currently no available therapy. We previously showed that caffeine, a nonselective adenosine receptor antagonist, delays the appearance of striatal damage resulting from expression of full-length mutant ataxin-3. Here we investigated the ability of caffeine to alleviate behavioral deficits and cerebellar neuropathology in transgenic mice with a severe ataxia resulting from expression of a truncated fragment of polyglutamine-expanded ataxin-3 in Purkinje cells. Control and transgenic c57Bl6 mice expressing in the mouse cerebella a truncated form of human ataxin-3 with 69 glutamine repeats were allowed to freely drink water or caffeinated water (1g/L). Treatments began at 7 weeks of age, when motor and ataxic phenotype emerges in MJD mice, and lasted up to 20 weeks. Mice were tested in a panel of locomotor behavioral paradigms, namely rotarod, beam balance and walking, pole, and water maze cued-platform version tests, and then sacrificed for cerebellar histology. Caffeine consumption attenuated the progressive loss of general and fine-tuned motor function, balance, and grip strength, in parallel with preservation of cerebellar morphology through decreasing the loss of Purkinje neurons and the thinning of the molecular layer in different folia. Caffeine also rescued the putative striatal-dependent executive and cognitive deficiencies in MJD mice. Our findings provide the first in vivo demonstration that caffeine intake alleviates behavioral disabilities in a severely impaired animal model of SCA. Ann Neurol 2017;81:407-418. © 2016 American Neurological Association.

  2. Models for Microbial Fuel Cells: A critical review

    Science.gov (United States)

    Xia, Chengshuo; Zhang, Daxing; Pedrycz, Witold; Zhu, Yingmin; Guo, Yongxian

    2018-01-01

    Microbial fuel cells (MFCs) have been widely viewed as one of the most promising alternative sources of renewable energy. A recognition of needs of efficient development methods based on multidisciplinary research becomes crucial for the optimization of MFCs. Modeling of MFCs is an effective way for not only gaining a thorough understanding of the effects of operation conditions on the performance of power generation but also becomes of essential interest to the successful implementation of MFCs. The MFC models encompass the underlying reaction process and limiting factors of the MFC. The models come in various forms, such as the mathematical equations or the equivalent circuits. Different modeling focuses and approaches of the MFC have emerged. In this study, we present a state of the art of MFCs modeling; the past modeling methods are reviewed as well. Models and modeling methods are elaborated on based on the classification provided by Mechanism-based models and Application-based models. Mechanisms, advantages, drawbacks, and application fields of different models are illustrated as well. We exhibit a complete and comprehensive exposition of the different models for MFCs and offer further guidance to promote the performance of MFCs.

  3. In vitro activation of retinal cells: estimating location of stimulated cell by using a mathematical model

    Science.gov (United States)

    Ziv, Ofer R.; Rizzo, Joseph F., III; Jensen, Ralph J.

    2005-03-01

    Activation of neurons at different depths within the retina and at various eccentricities from the stimulating electrode will presumably influence the visual percepts created by a retinal prosthesis. With an electrical prosthesis, neurons will be activated in relation to the stimulating charge that impacts their cell membranes. The common model used to predict charge density is Coulomb's law, also known as the square law. We propose a modified model that can be used to predict neuronal depth that takes into account: (1) finite dimensions related to the position and size of the stimulating and return electrodes and (2) two-dimensional displacements of neurons with respect to the electrodes, two factors that are not considered in the square law model. We tested our model by using in vitro physiological threshold data that we had obtained previously for eight OFF-center brisk-transient rabbit retinal ganglion cells. For our most spatially dense threshold data (25 µm increments up to 100 µm from the cell body), our model estimated the depth of one RGC to be 76 ± 76 µm versus 87 ± 62 µm (median: SD) for the square law model, respectively. This difference was not statistically significant. For the seven other RGCs for which we had obtained threshold data up to 800 µm from the cell body, the estimate of the RGC depth (using data obtained along the X axis) was 96 ± 74 versus 20 ± 20 µm for the square law and our modified model, respectively. Although this difference was not statistically significant (Student t-test: p = 0.12), our model provided median values much closer to the estimated depth of these RGCs (Gt25 µm). This more realistic estimate of cell depth predicted by our model is not unexpected in this latter data set because of the more spatially distributed threshold data points that were evaluated. Our model has theoretical advantages over the traditional square law model under certain conditions, especially when considering neurons that are

  4. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts.

    Science.gov (United States)

    Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei

    2013-09-01

    Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell

  5. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  6. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  7. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  8. Experimental Human Cell and Tissue Models of Pemphigus

    Science.gov (United States)

    van der Wier, Gerda; Pas, Hendri H.; Jonkman, Marcel F.

    2010-01-01

    Pemphigus is a chronic mucocutaneous autoimmune bullous disease that is characterized by loss of cell-cell contact in skin and/or mucous membranes. Past research has successfully identified desmosomes as immunological targets and has demonstrated that acantholysis is initiated through direct binding of IgG. The exact mechanisms of acantholysis, however, are still missing. Experimental model systems have contributed considerably to today's knowledge and are still a favourite tool of research. In this paper we will describe to what extent human cell and tissue models represent the in vivo situation, for example, organ cultures of human skin, keratinocyte cultures, and human skin grafted on mice and, furthermore, how suitable they are to study the pathogenesis of pemphigus. Organ cultures closely mimic the architecture of the epidermis but are less suitable to answer posed biochemical questions. Cultured keratinocyte monolayers are convenient in this respect, but their desmosomal make-up in terms of adhesion molecules does not exactly reflect the in vivo situation. Reconstituted skin is a relatively new model that approaches organ culture. In models of human skin grafted on mice, acantholysis can be studied in actual human skin but now with all the advantages of an animal model. PMID:20585596

  9. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  10. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    Science.gov (United States)

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Paroxysmal atrioventricular block: Electrophysiological mechanism of phase 4 conduction block in the His-Purkinje system: A comparison with phase 3 block.

    Science.gov (United States)

    Shenasa, Mohammad; Josephson, Mark E; Wit, Andrew L

    2017-11-01

    Paroxysmal atrioventricular (A-V) block is relatively rare, and due to its transient nature, it is often under recognized. It is often triggered by atrial, junctional, or ventricular premature beats, and occurs in the presence of a diseased His-Purkinje system (HPS). Here, we present a 45-year-old white male who was admitted for observation due to recurrent syncope and near-syncope, who had paroxysmal A-V block. The likely cellular electrophysiological mechanisms(s) of paroxysmal A-V block and its differential diagnosis and management are discussed. Continuous electrocardiographic monitoring was done while the patient was in the cardiac unit. Multiple episodes of paroxysmal A-V block were documented in this case. All episodes were initiated and terminated with atrial/junctional premature beats. The patient underwent permanent pacemaker implantation and has remained asymptomatic since then. Paroxysmal A-V block is rare and often causes syncope or near-syncope. Permanent pacemaker implantation is indicated according to the current guidelines. Paroxysmal A-V block occurs in the setting of diseased HPS and is bradycardia-dependent. The detailed electrophysiological mechanisms, which involve phase 4 diastolic depolarization, and differential diagnosis are discussed. © 2017 Wiley Periodicals, Inc.

  12. Cancer Modeling: From Optimal Cell Renewal to Immunotherapy

    Science.gov (United States)

    Alvarado Alvarado, Cesar Leonardo

    Cancer is a disease caused by mutations in normal cells. According to the National Cancer Institute, in 2016, an estimated 1.6 million people were diagnosed and approximately 0.5 million people died from the disease in the United States. There are many factors that shape cancer at the cellular and organismal level, including genetic, immunological, and environmental components. In this thesis, we show how mathematical modeling can be used to provide insight into some of the key mechanisms underlying cancer dynamics. First, we use mathematical modeling to investigate optimal homeostatic cell renewal in tissues such as the small intestine with an emphasis on division patterns and tissue architecture. We find that the division patterns that delay the accumulation of mutations are strictly associated with the population sizes of the tissue. In particular, patterns with long chains of differentiation delay the time to observe a second-hit mutant, which is important given that for many cancers two mutations are enough to initiate a tumor. We also investigated homeostatic cell renewal under a selective pressure and find that hierarchically organized tissues act as suppressors of selection; we find that an architecture with a small number of stem cells and larger pools of transit amplifying cells and mature differentiated cells, together with long chains of differentiation, form a robust evolutionary strategy to delay the time to observe a second-hit mutant when mutations acquire a fitness advantage or disadvantage. We also formulate a model of the immune response to cancer in the presence of costimulatory and inhibitory signals. We demonstrate that the coordination of such signals is crucial to initiate an effective immune response, and while immunotherapy has become a promising cancer treatment over the past decade, these results offer some explanations for why it can fail.

  13. Evolving cell models for systems and synthetic biology.

    Science.gov (United States)

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  14. Perspectives for computational modeling of cell replacement for neurological disorders

    Directory of Open Access Journals (Sweden)

    James B Aimone

    2013-11-01

    Full Text Available Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons can impact circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.

  15. Modeling population dynamics of mitochondria in mammalian cells

    Science.gov (United States)

    Kornick, Kellianne; Das, Moumita

    Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.

  16. Local stem cell depletion model for radiation myelitis

    International Nuclear Information System (INIS)

    Yaes, R.J.; Kalend, A.

    1988-01-01

    We propose a model for normal tissue damage based on the assumption that adult mammalian stem cells have limited mobility and, consequently, for each organ, there is a maximum volume (the critical volume, Vc), that can be repopulated and repaired by a single surviving stem cell. This concept is applied to a simple, 1-dimensional model of the spinal cord, where the critical volume is a slice of thickness, t, assumed to be small compared to lengths of spinal cord usually irradiated clinically. The probability of myelitis is explicitly obtained as a function of the dose, dose per fraction, length of cord irradiated, slice thickness, number of stem cells per slice and parameters alpha and beta of the stem cell survival curve. The complication probability is expressed as a triple negative exponential function of dose analogous to the double negative exponential function for tumor control, resulting in a steep dose-response curve with short tails in both the high dose and low dose regions. We show that the model predictions are compatible with the experimental data for radiation myelitis in the rat. We discuss how this concept can be applied to other organs such as skin and to organs composed of structurally and functionally distinct subunits, such as the kidney

  17. A quality risk management model approach for cell therapy manufacturing.

    Science.gov (United States)

    Lopez, Fabio; Di Bartolo, Chiara; Piazza, Tommaso; Passannanti, Antonino; Gerlach, Jörg C; Gridelli, Bruno; Triolo, Fabio

    2010-12-01

    International regulatory authorities view risk management as an essential production need for the development of innovative, somatic cell-based therapies in regenerative medicine. The available risk management guidelines, however, provide little guidance on specific risk analysis approaches and procedures applicable in clinical cell therapy manufacturing. This raises a number of problems. Cell manufacturing is a poorly automated process, prone to operator-introduced variations, and affected by heterogeneity of the processed organs/tissues and lot-dependent variability of reagent (e.g., collagenase) efficiency. In this study, the principal challenges faced in a cell-based product manufacturing context (i.e., high dependence on human intervention and absence of reference standards for acceptable risk levels) are identified and addressed, and a risk management model approach applicable to manufacturing of cells for clinical use is described for the first time. The use of the heuristic and pseudo-quantitative failure mode and effect analysis/failure mode and critical effect analysis risk analysis technique associated with direct estimation of severity, occurrence, and detection is, in this specific context, as effective as, but more efficient than, the analytic hierarchy process. Moreover, a severity/occurrence matrix and Pareto analysis can be successfully adopted to identify priority failure modes on which to act to mitigate risks. The application of this approach to clinical cell therapy manufacturing in regenerative medicine is also discussed. © 2010 Society for Risk Analysis.

  18. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  19. Giant Glial Cell: New Insight Through Mechanism-Based Modeling

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Brazhe, Nadezda

    2008-01-01

    The paper describes a detailed mechanism-based model of a tripartite synapse consisting of P- and R-neurons together with a giant glial cell in the ganglia of the medical leech (Hirudo medicinalis), which is a useful object for experimental studies in situ. We describe the two main pathways...... of the glial cell activation: (1) via IP3 production and Ca2+ release from the endoplasmic reticulum and (2) via increase of the extracellular potassium concentration, glia depolarization, and opening of voltage-dependent Ca2+ channels. We suggest that the second pathway is the more significant...

  20. Photon absorption models in nanostructured semiconductor solar cells and devices

    CERN Document Server

    Luque, Antonio

    2015-01-01

    This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools w

  1. A probabilistic model for cell population phenotyping using HCS data.

    Directory of Open Access Journals (Sweden)

    Edouard Pauwels

    Full Text Available High Content Screening (HCS platforms allow screening living cells under a wide range of experimental conditions and give access to a whole panel of cellular responses to a specific treatment. The outcome is a series of cell population images. Within these images, the heterogeneity of cellular response to the same treatment leads to a whole range of observed values for the recorded cellular features. Consequently, it is difficult to compare and interpret experiments. Moreover, the definition of phenotypic classes at a cell population level remains an open question, although this would ease experiments analyses. In the present work, we tackle these two questions. The input of the method is a series of cell population images for which segmentation and cellular phenotype classification has already been performed. We propose a probabilistic model to represent and later compare cell populations. The model is able to fully exploit the HCS-specific information: "dependence structure of population descriptors" and "within-population variability". The experiments we carried out illustrate how our model accounts for this specific information, as well as the fact that the model benefits from considering them. We underline that these features allow richer HCS data analysis than simpler methods based on single cellular feature values averaged over each well. We validate an HCS data analysis method based on control experiments. It accounts for HCS specificities that were not taken into account by previous methods but have a sound biological meaning. Biological validation of previously unknown outputs of the method constitutes a future line of work.

  2. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  3. MarCell trademark software for modeling bone marrow radiation cell kinetics

    International Nuclear Information System (INIS)

    Hasan, J.S.; Jones, T.D.; Morris, M.D.

    1997-01-01

    Differential equations were used to model cellular injury, repair, and compensatory proliferation in the irradiated bone marrow. Recently, that model was implemented as MarCell trademark, a user-friendly MS-DOS computer program that allows users from a variety of technical disciplines to evaluate complex radiation exposure. The software allows menu selections for different sources of ionizing radiation. Choices for cell lineages include progenitor, stroma, and malignant, and the available species include mouse, rat, dog, sheep, swine, burro, and man. An attractive feature is that any protracted irradiation can be compared with an equivalent prompt dose (EPD) in terms of cell kinetics for either the source used or for a reference such as 250 kVp x rays or 60 Co. EPD is used to mean a dose rate for which no meaningful biological recovery occurs during the period of irradiation. For human as species, output from MarCell trademark includes: risk of 30-day mortality; risk of whole-body cancer and leukemia based either on radiation-induced cytopenia or compensatory cell proliferation; cell survival and repopulation plots as functions of time or dose; and 4-week recovery following treatment. copyright 1997 American Association of Physicists in Medicine

  4. Good Cell Culture Practice for stem cells and stem-cell-derived models.

    Science.gov (United States)

    Pamies, David; Bal-Price, Anna; Simeonov, Anton; Tagle, Danilo; Allen, Dave; Gerhold, David; Yin, Dezhong; Pistollato, Francesca; Inutsuka, Takashi; Sullivan, Kristie; Stacey, Glyn; Salem, Harry; Leist, Marcel; Daneshian, Mardas; Vemuri, Mohan C; McFarland, Richard; Coecke, Sandra; Fitzpatrick, Suzanne C; Lakshmipathy, Uma; Mack, Amanda; Wang, Wen Bo; Yamazaki, Daiju; Sekino, Yuko; Kanda, Yasunari; Smirnova, Lena; Hartung, Thomas

    2017-01-01

    The first guidance on Good Cell Culture Practice (GCCP) dates back to 2005. This document expands this to include aspects of quality assurance for in vitro cell culture focusing on the increasingly diverse cell types and culture formats used in research, product development, testing and manufacture of biotechnology products and cell-based medicines. It provides a set of basic principles of best practice that can be used in training new personnel, reviewing and improving local procedures, and helping to assure standard practices and conditions for the comparison of data between laboratories and experimentation performed at different times. This includes recommendations for the documentation and reporting of culture conditions. It is intended as guidance to facilitate the generation of reliable data from cell culture systems, and is not intended to conflict with local or higher level legislation or regulatory requirements. It may not be possible to meet all recommendations in this guidance for practical, legal or other reasons. However, when it is necessary to divert from the principles of GCCP, the risk of decreasing the quality of work and the safety of laboratory staff should be addressed and any conclusions or alternative approaches justified. This workshop report is considered a first step toward a revised GCCP 2.0.

  5. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  6. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine.

    Science.gov (United States)

    Rathod, Reena; Surendran, Harshini; Battu, Rajani; Desai, Jogin; Pal, Rajarshi

    2018-02-12

    Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Computer modeling describes gravity-related adaptation in cell cultures.

    Science.gov (United States)

    Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny

    2009-12-16

    Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.

  8. Modeling plasma behavior in a plasma electrode Pockels cell

    International Nuclear Information System (INIS)

    Boley, C.D.; Rhodes, M.A.

    1999-01-01

    The authors present three interrelated models of plasma behavior in a plasma electrode Pockels cell (PEPC). In a PEPC, plasma discharges are formed on both sides of a thin, large-aperture electro-optic crystal (typically KDP). The plasmas act as optically transparent, highly conductive electrodes, allowing uniform application of a longitudinal field to induce birefringence in the crystal. First, they model the plasma in the thin direction, perpendicular to the crystal, via a one-dimensional fluid model. This yields the electron temperature and the density and velocity profiles in this direction as functions of the neutral pressure, the plasma channel width, and the discharge current density. Next, they model the temporal response of the crystal to the charging process, combining a circuit model with a model of the sheath which forms near the crystal boundary. This model gives the time-dependent voltage drop across the sheath as a function of electron density at the sheath entrance. Finally, they develop a two-dimensional MHD model of the planar plasma, in order to calculate the response of the plasma to magnetic fields. They show how the plasma uniformity is affected by the design of the current return, by the longitudinal field from the cathode magnetron, and by fields from other sources. This model also gives the plasma sensitivity to the boundary potential at which the top and bottom of the discharge are held. They validate these models by showing how they explain observations in three large Pockels cells built at Lawrence Livermore National Laboratory

  9. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth A. LaMarca

    2018-04-01

    Full Text Available Human-induced pluripotent stem cells (hiPSCs have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional “mini-brains” and clustered, regularly interspersed short palindromic repeats (CRISPR-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson’s disease, and consider the future of this groundbreaking research.

  10. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...... of the fusion protein and/or suppression of the aggregate formation in both cell types. In the NT2 cells the antisense effect was dependent on the way of administration of the oligo. Conclusions The PS-antisense oligo is effective in downregulation of mutant huntingtin, and the reduction of aggregate formation...... is a sensitive biological marker. The findings suggest that antisense knockdown of huntingtin could be a useful strategy for treatment of HD, and could also be suitable for studies of the normal and pathological function of huntingtin in different cellular model systems....

  11. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  12. Dynamical analysis of uterine cell electrical activity model.

    Science.gov (United States)

    Rihana, S; Santos, J; Mondie, S; Marque, C

    2006-01-01

    The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.

  13. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  14. Models for cell survival with low LET radiation

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1975-01-01

    A model for cell survival under low LET irradiation was developed in which the cell is considered to have N 0 -independent sensitive sites, each of which can exist in either an undamaged state (state A) or one of two damaged states. Radiation can change the sensitive sites from the undamaged state to either of two damaged states. The first damaged state (state B) can either be repaired or be promoted on the second damaged state (state C), which is irreparable. The promotion from the first damaged state to the second can occur due to any of the following: (1) further radiation damage, (2) an abortive attempt to repair the site, or (3) the arrival at a part of the cell cycle where the damage is ''fixed.'' Subject to the further assumptions that radiation damage can occur either indirectly (i.e., through radiation products) or due to direct interaction, and that repair of the first damaged state is a one-step process, expressions can be derived for P(N/sub A/, N/sub B/,t) = probability that after time t a cell will have N/sub A/ sites in state A and N/sub B/ in state B. The problem of determining P(N/sub A/, N/sub B/, t) is formulated for arbitrary time dependences of the radiation field and of all rate coefficients. A large family of cell-survival models can be described by interpreting the sensitive sites in different ways and by making different choices of rate coefficients and of the combinations of numbers of sites in different states that will lead to cell death. (U.S.)

  15. Programmatic access to logical models in the Cell Collective modeling environment via a REST API.

    Science.gov (United States)

    Kowal, Bryan M; Schreier, Travis R; Dauer, Joseph T; Helikar, Tomáš

    2016-01-01

    Cell Collective (www.cellcollective.org) is a web-based interactive environment for constructing, simulating and analyzing logical models of biological systems. Herein, we present a Web service to access models, annotations, and simulation data in the Cell Collective platform through the Representational State Transfer (REST) Application Programming Interface (API). The REST API provides a convenient method for obtaining Cell Collective data through almost any programming language. To ensure easy processing of the retrieved data, the request output from the API is available in a standard JSON format. The Cell Collective REST API is freely available at http://thecellcollective.org/tccapi. All public models in Cell Collective are available through the REST API. For users interested in creating and accessing their own models through the REST API first need to create an account in Cell Collective (http://thecellcollective.org). thelikar2@unl.edu. Technical user documentation: https://goo.gl/U52GWo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.

    Directory of Open Access Journals (Sweden)

    Artémis Llamosi

    2016-02-01

    Full Text Available Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation. Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.

  17. Electro-optical modeling of bulk heterojunction solar cells

    Science.gov (United States)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  18. Modelling of robotic work cells using agent based-approach

    Science.gov (United States)

    Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.

    2016-08-01

    In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.

  19. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  20. Bifurcation structure of a model of bursting pancreatic cells

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Lading, B.; Yanchuk, S.

    2001-01-01

    One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic P-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other. The transit......One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic P-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other....... The transition from this structure to the so-called period-adding structure is found to involve a subcritical period-doubling bifurcation and the emergence of type-III intermittency. The period-adding transition itself is not smooth but consists of a saddle-node bifurcation in which (n + 1)-spike bursting...

  1. Delineating the regulation of energy homeostasis using hypothalamic cell models.

    Science.gov (United States)

    Wellhauser, Leigh; Gojska, Nicole M; Belsham, Denise D

    2015-01-01

    Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  3. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  4. Stem cells in skin regeneration: biomaterials and computational models

    Directory of Open Access Journals (Sweden)

    Daniele eTartarini

    2016-01-01

    Full Text Available The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles, has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells have been proposed for the treatment of these wounds, thanks to the ability of stem cells to self-renew and specifically differentiate in response to the target bimolecular environment. Here we discuss how advanced biomedical devices can be developed by combining stem cells with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bio-constructs, reducing the need of expensive, time-consuming and ethically controversial animal experimentation.

  5. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modelling and analysis of solar cell efficiency distributions

    Science.gov (United States)

    Wasmer, Sven; Greulich, Johannes

    2017-08-01

    We present an approach to model the distribution of solar cell efficiencies achieved in production lines based on numerical simulations, metamodeling and Monte Carlo simulations. We validate our methodology using the example of an industrial feasible p-type multicrystalline silicon “passivated emitter and rear cell” process. Applying the metamodel, we investigate the impact of each input parameter on the distribution of cell efficiencies in a variance-based sensitivity analysis, identifying the parameters and processes that need to be improved and controlled most accurately. We show that if these could be optimized, the mean cell efficiencies of our examined cell process would increase from 17.62% ± 0.41% to 18.48% ± 0.09%. As the method relies on advanced characterization and simulation techniques, we furthermore introduce a simplification that enhances applicability by only requiring two common measurements of finished cells. The presented approaches can be especially helpful for ramping-up production, but can also be applied to enhance established manufacturing.

  7. Modeling of InGaSb thermophotovoltaic cells and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zierak, M.; Borrego, J.M.; Bhat, I.; Gutmann, R.J. [Rensselaer Polytechnic Inst., Troy, NY (United States); Charache, G. [Lockheed Martin, Inc., Schenectady, NY (United States)

    1997-05-01

    A closed form computer program has been developed for the simulation and optimization of In{sub x}Ga{sub 1{minus}x}Sb thermophotovoltaic cells operating at room temperature. The program includes material parameter models of the energy bandgap, optical absorption constant, electron and hole mobility, intrinsic carrier concentration and index of refraction for any composition of GaInSb alloys.

  8. A cell-based model system links chromothripsis with hyperploidy

    DEFF Research Database (Denmark)

    Mardin, Balca R; Drainas, Alexandros P; Waszak, Sebastian M

    2015-01-01

    A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis h...... in hyperploid cells. Analysis of primary medulloblastoma cancer genomes verified the link between hyperploidy and chromothripsis in vivo. CAST provides the foundation for mechanistic dissection of complex DNA rearrangement processes....

  9. Comparison Of Liver Cell Models Using The Basel Phenotyping Cocktail

    Directory of Open Access Journals (Sweden)

    Benjamin Berger

    2016-11-01

    Full Text Available Currently used hepatocyte cell systems for in vitro assessment of drug metabolism include hepatoma cell lines and primary human hepatocyte (PHH cultures. We investigated the suit-ability of the validated in vivo Basel phenotyping cocktail (caffeine [CYP1A2], efavirenz [CYP2B6], losartan [CYP2C9], omeprazole [CYP2C19], metoprolol [CYP2D6], midazolam [CYP3A4] in vitro and characterized four hepatocyte cell systems (HepG2 cells, HepaRG cells, and primary cryopreserved human hepatocytes in 2-dimensional [2D] culture or in 3D-spheroid co-culture regarding basal metabolism and CYP inducibility. Under non-induced conditions, all CYP activities could be determined in 3D-PHH, CYP2B6, CYP2C19, CYP2D6 and CYP3A4 in 2D-PHH and HepaRG, and CYP2C19 and CYP3A4 in HepG2 cells. The highest non-induced CYP activities were observed in 3D-PHH and HepaRG cells. mRNA expression was at least 4-fold higher for all CYPs in 3D-PHH compared to the other cell systems. After treatment with 20µM rifampicin, mRNA increased 3 to 50-fold for all CYPs except CYP1A2 and 2D6 for HepaRG and 3D-PHH, 4-fold (CYP2B6 and 17-fold (CYP3A4 for 2D-PHH and 4-fold (CYP3A4 for HepG2. In 3D-PHH at least a 2-fold in-crease in CYP activity was observed for all inducible CYP isoforms while CYP1A2 and CYP2C9 activity did not increase in 2D-PHH and HepaRG. CYP inducibility assessed in vivo using the same phenotyping probes was also best reflected by the 3D-PHH model.Our studies show that 3D-PHH and (with some limitations HepaRG are suitable cell systems for assessing drug metabolism and CYP induction in vitro. HepG2 cells are less suited to as-sess CYP induction of the 2C and 3A family. The Basel phenotyping cocktail is suitable for the assessment of CYP activity and induction also in vitro.

  10. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    Science.gov (United States)

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  11. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  12. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  13. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  14. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Science.gov (United States)

    2015-03-03

    based whole-cell models of E. coli [6]. Conversely , highly abstracted kinetic frameworks, such as the cybernetic framework, represented a paradigm shift...metabolic objective function has been the optimization of biomass formation [18], although other metabolic objectives have also been estimated [19...experimental data. Toward these questions, we explored five hypothetical cell-free networks. Each network shared the same enzymatic connectivity, but

  15. Mathematical modeling of a zinc/bromine flow cell and a lithium/thionyl chloride primary cell

    Energy Technology Data Exchange (ETDEWEB)

    Evans, T.I.

    1988-01-01

    Three mathematical models are presented, one for the secondary zinc/bromine flow cell and two for the lithium/thionyl chloride primary cell. The objectives in this modeling work are to aid in understanding the physical phenomena affecting cell performance, determine methods of improving cell performance and safety, and reduce the experimental efforts needed to develop these electrochemical systems. The zinc/bromine cell model is the first such model to include a porous layer on the bromine electrode and to predict discharge behavior. The model is used to solve simultaneously the component material balances and the electroneutrality condition for the unknowns, species concentrations and the solution potential. Two models are presented for the lithium/thionyl chloride cell. The first model is a detailed one-dimensional model which is used to solve simultaneously the component material balances, Ohm's law relations, and current balance. The independent design criteria are identified from the model development. The second model presented here is a two-dimensional thermal model for the spirally would configuration of the lithium/thionyl chloride cell. This is the first model to address the effects of the spiral geometry on heat transfer in the cell.

  16. iPS cells to model CDKL5-related disorders.

    Science.gov (United States)

    Amenduni, Mariangela; De Filippis, Roberta; Cheung, Aaron Y L; Disciglio, Vittoria; Epistolato, Maria Carmela; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hayek, Youssef; Renieri, Alessandra; Ellis, James; Meloni, Ilaria

    2011-12-01

    Rett syndrome (RTT) is a progressive neurologic disorder representing one of the most common causes of mental retardation in females. To date mutations in three genes have been associated with this condition. Classic RTT is caused by mutations in the MECP2 gene, whereas variants can be due to mutations in either MECP2 or FOXG1 or CDKL5. Mutations in CDKL5 have been identified both in females with the early onset seizure variant of RTT and in males with X-linked epileptic encephalopathy. CDKL5 is a kinase protein highly expressed in neurons, but its exact function inside the cell is unknown. To address this issue we established a human cellular model for CDKL5-related disease using the recently developed technology of induced pluripotent stem cells (iPSCs). iPSCs can be expanded indefinitely and differentiated in vitro into many different cell types, including neurons. These features make them the ideal tool to study disease mechanisms directly on the primarily affected neuronal cells. We derived iPSCs from fibroblasts of one female with p.Q347X and one male with p.T288I mutation, affected by early onset seizure variant and X-linked epileptic encephalopathy, respectively. We demonstrated that female CDKL5-mutated iPSCs maintain X-chromosome inactivation and clones express either the mutant CDKL5 allele or the wild-type allele that serve as an ideal experimental control. Array CGH indicates normal isogenic molecular karyotypes without detection of de novo CNVs in the CDKL5-mutated iPSCs. Furthermore, the iPS cells can be differentiated into neurons and are thus suitable to model disease pathogenesis in vitro.

  17. Imaging proteolytic activity in live cells and animal models.

    Directory of Open Access Journals (Sweden)

    Stefanie Galbán

    Full Text Available In addition to their degradative role in protein turnover, proteases play a key role as positive or negative regulators of signal transduction pathways and therefore their dysregulation contributes to many disease states. Regulatory roles of proteases include their hormone-like role in triggering G protein-coupled signaling (Protease-Activated-Receptors; their role in shedding of ligands such as EGF, Notch and Fas; and their role in signaling events that lead to apoptotic cell death. Dysregulated activation of apoptosis by the caspase family of proteases has been linked to diseases such as cancer, autoimmunity and inflammation. In an effort to better understand the role of proteases in health and disease, a luciferase biosensor is described which can quantitatively report proteolytic activity in live cells and mouse models. The biosensor, hereafter referred to as GloSensor Caspase 3/7 has a robust signal to noise (50-100 fold and dynamic range such that it can be used to screen for pharmacologically active compounds in high throughput campaigns as well as to study cell signaling in rare cell populations such as isolated cancer stem cells. The biosensor can also be used in the context of genetically engineered mouse models of human disease wherein conditional expression using the Cre/loxP technology can be implemented to investigate the role of a specific protease in living subjects. While the regulation of apoptosis by caspase's was used as an example in these studies, biosensors to study additional proteases involved in the regulation of normal and pathological cellular processes can be designed using the concepts presented herein.

  18. Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

    Science.gov (United States)

    Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui

    2018-05-01

    We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

  19. Models for high cell density bioreactors must consider biomass volume fraction: Cell recycle example.

    Science.gov (United States)

    Monbouquette, H G

    1987-06-01

    Intrinsic models, which take into account biomass volume fraction, must be formulated for adequate simulation of high-biomass-density fermentations with cell recycle. Through comparison of corresponding intrinsic and non-intrinsic models in dimensionless form, constraints for non-intrinsic model usage in terms of biokinetic and fermenter operating parameters can be identified a priori. Analysis of a simple product-inhibition model indicates that the non-intrinsic approach is suitable only when the attainable biomass volume fraction in the fermentation broth is less than about 0.10. Inappropriate application of a non-intrinsic model can lead to gross errors in calculated substrate and product concentrations, substrate conversion, and volumetric productivity.

  20. Models for high cell density bioreactors must consider biomass volume fraction: cell recycle example

    Energy Technology Data Exchange (ETDEWEB)

    Monbouquette, H.G.

    1987-06-01

    Intrinsic models, which take into account biomass volume fraction, must be formulated for adequate simulation of high-biomass-density fermentations with cell recycle. Through comparison of corresponding intrinsic and non-intrinsic models in dimensionless form, constraints for non-intrinsic model usage in terms of biokinetic and fermenter operating parameters can be identified a priori. Analysis of a simple product-inhibition model indicates that the non-intrinsic approach is suitable only when the attainable biomass volume fraction in the fermentation broth is less than about 0.10. Inappropriate application of a non-intrinsic model can lead to gross errors in calculated substrate and product concentrations, substrate conversion, and volumetric productivity. (Refs. 14).

  1. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  2. Experimental investigation and mathematical modeling of triode PEM fuel cells

    International Nuclear Information System (INIS)

    Martino, E.; Koilias, G.; Athanasiou, M.; Katsaounis, A.; Dimakopoulos, Y.; Tsamopoulos, J.; Vayenas, C.G.

    2017-01-01

    Highlights: •The triode fuel cell operation was tested using novel comb-type electrode designs. •Triode operation enhances the PEMFC power output by up to 500%. •Power output enhancement exceeds auxiliary power by up to 20%. •Good agreement with mathematical model based on the laws of Kirchhoff. •Proton fluxes in the membrane found via solution of the Nernst Planck equation -- Abstract: The triode operation of humidified PEM fuel cells has been investigated both with pure H 2 and with CO poisoned H 2 feed over commercial Vulcan supported Pt(30%)-Ru(15%) anodes. It was found that triode operation, which involves the use of a third, auxiliary, electrode, leads to up to 400% power output increase with the same CO poisoned H 2 gas feed. At low current densities, the power increase is accompanied by an increase in overall thermodynamic efficiency. A mathematical model, based on Kirchhoff’s laws, has been developed which is in reasonably good agreement with the experimental results. In order to gain some additional insight into the mechanism of triode operation, the model has been also extended to describe the potential distribution inside the Nafion membrane via the numerical solution of the Nernst-Planck equation. Both model and experiment have shown the critical role of minimizing the auxiliary-anode or auxiliary-cathode resistance, and this has led to improved comb-shaped anode or cathode electrode geometries.

  3. Impacts of the IBM Cell Processor to Support Climate Models

    Science.gov (United States)

    Zhou, Shujia; Duffy, Daniel; Clune, Tom; Suarez, Max; Williams, Samuel; Halem, Milt

    2008-01-01

    NASA is interested in the performance and cost benefits for adapting its applications to the IBM Cell processor. However, its 256KB local memory per SPE and the new communication mechanism, make it very challenging to port an application. We selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics (approximately 50% computational time), (2) has a high computational load relative to transferring data from and to main memory, (3) performs independent calculations across multiple columns. We converted the baseline code (single-precision, Fortran) to C and ported it with manually SIMDizing 4 independent columns and found that a Cell with 8 SPEs can process 2274 columns per second. Compared with the baseline results, the Cell is approximately 5.2X, approximately 8.2X, approximately 15.1X faster than a core on Intel Woodcrest, Dempsey, and Itanium2, respectively. We believe this dramatic performance improvement makes a hybrid cluster with Cell and traditional nodes competitive.

  4. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Science.gov (United States)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  5. Mathematical modeling of electrical activity of uterine muscle cells.

    Science.gov (United States)

    Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine

    2009-06-01

    The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.

  6. Endometrial Stromal Cells and Immune Cell Populations Within Lymph Nodes in a Nonhuman Primate Model of Endometriosis

    Science.gov (United States)

    Fazleabas, A. T.; Braundmeier, A. G.; Markham, R.; Fraser, I. S.; Berbic, M.

    2011-01-01

    Mounting evidence suggests that immunological responses may be altered in endometriosis. The baboon (Papio anubis) is generally considered the best model of endometriosis pathogenesis. The objective of the current study was to investigate for the first time immunological changes within uterine and peritoneal draining lymph nodes in a nonhuman primate baboon model of endometriosis. Paraffin-embedded femoral lymph nodes were obtained from 22 normally cycling female baboons (induced endometriosis n = 11; control n = 11). Immunohistochemical staining was performed with antibodies for endometrial stromal cells, T cells, immature and mature dendritic cells, and B cells. Lymph nodes were evaluated using an automated cellular imaging system. Endometrial stromal cells were significantly increased in lymph nodes from animals with induced endometriosis, compared to control animals (P = .033). In animals with induced endometriosis, some lymph node immune cell populations including T cells, dendritic cells and B cells were increased, suggesting an efficient early response or peritoneal drainage. PMID:21617251

  7. Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation.

    Science.gov (United States)

    Boas, Sonja E M; Merks, Roeland M H

    2014-03-06

    A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell-cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types.

  8. Modeling TSC and LAM Using Patient Derived Induced Pluripotent Stem Cells

    Science.gov (United States)

    2016-10-01

    drug screens . We have now made TSC2 deficient human cells using patient induced pluripotent stem cells (iPSCs...Therapeutics.” Canadian Association of Research in Regenerative Medicine (CARRM), Ottawa, ON, CANADA March 7, 2015 • “ Stem cell approaches to model human... Stem cell approaches to model human development and disease.” Australian Regenerative Medicine Institute, Melbourne, Victoria, AUSTRALIA November

  9. A mathematical model for eph/ephrin-directed segregation of intermingled cells.

    Directory of Open Access Journals (Sweden)

    Rotem Aharon

    Full Text Available Eph receptors, the largest family of receptor tyrosine kinases, control cell-cell adhesion/de-adhesion, cell morphology and cell positioning through interaction with cell surface ephrin ligands. Bi-directional signalling from the Eph and ephrin complexes on interacting cells have a significant role in controlling normal tissue development and oncogenic tissue patterning. Eph-mediated tissue patterning is based on the fine-tuned balance of adhesion and de-adhesion reactions between distinct Eph- and ephrin-expressing cell populations, and adhesion within like populations (expressing either Eph or ephrin. Here we develop a stochastic, Lagrangian model that is based on Eph/ephrin biology: incorporating independent Brownian motion to describe cell movement and a deterministic term (the drift term to represent repulsive and adhesive interactions between neighbouring cells. Comparison between the experimental and computer simulated Eph/ephrin cell patterning events shows that the model recapitulates the dynamics of cell-cell segregation and cell cluster formation. Moreover, by modulating the term for Eph/ephrin-mediated repulsion, the model can be tuned to match the actual behaviour of cells with different levels of Eph expression or activity. Together the results of our experiments and modelling suggest that the complexity of Eph/ephrin signalling mechanisms that control cell-cell interactions can be described well by a mathematical model with a single term balancing adhesion and de-adhesion between interacting cells. This model allows reliable prediction of Eph/ephrin-dependent control of cell patterning behaviour.

  10. The Stem Cell Club: a model for unrelated stem cell donor recruitment.

    Science.gov (United States)

    Fingrut, Warren; Parmar, Simran; Cuperfain, Ari; Rikhraj, Kiran; Charman, Erin; Ptak, Emilie; Kahlon, Manjot; Graham, Alice; Luong, Susan; Wang, Yongjun George; Yu, Janice; Arora, Neha; Suppiah, Roopa; Li, Edward W; Lee, Anna; Welsh, Christopher; Benzaquen, Menachem; Thatcher, Alicia; Baharmand, Iman; Ladd, Aedan; Petraszko, Tanya; Allan, David; Messner, Hans

    2017-12-01

    Patients with blood, immune, or metabolic diseases may require a stem cell transplant as part of their treatment. However, 70% of patients do not have a suitable human leukocyte antigen match in their family, and need an unrelated donor. Individuals can register as potential donors at stem cell drives, where they provide consent and a tissue sample for human leukocyte antigen typing. The ideal donors are young, male, and from a diversity of ethnic backgrounds. However, in Canada, non-Caucasian males ages 17 to 35 years represent only 8.8% of listed donors. The Stem Cell Club is a non-profit organization founded in 2011 in Canada that aims to augment recruitment of the most needed donors. The initiative published a recruitment toolkit online (www.stemcellclub.ca). Currently, there are 12 chapters at universities across Canada. To date, the Stem Cell Club has recruited 6585 potential registrants, representing 1.63% of donors on Canada's donor-database. Of the recruited registrants, 58.3% were male; 60.3% of males self-reported as non-Caucasian, and 78.5% were ages 17 to 25 years. From 2015 to 2016, the initiative recruited 13.7% of all ethnically diverse males ages 17 to 35 years listed in Canada's donor database. Data from this initiative demonstrate sustainability and performance on key indicators of stem cell drive quality. The Stem Cell Club has developed a capacity to recruit 2600 donors annually, with the majority being males with a high degree of ethnic diversity. The initiative enhances the quality of Canada's unrelated donor-database, improving the chances that patients in need of an unrelated donor will find a match for transplant. The Stem Cell Club is a model relevant to recruitment organizations around the world. © 2017 AABB.

  11. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model

    DEFF Research Database (Denmark)

    Jespersen, Henrik; Lindberg, Mattias F; Donia, Marco

    2017-01-01

    Immune checkpoint inhibitors and adoptive cell transfer (ACT) of autologous tumor-infiltrating T cells have shown durable responses in patients with melanoma. To study ACT and immunotherapies in a humanized model, we have developed PDXv2.0 - a melanoma PDX model where tumor cells and tumor...

  12. Supervised learning methods in modeling of CD4+ T cell heterogeneity

    OpenAIRE

    Lu, Pinyi; Abedi, Vida; Mei, Yongguo; Hontecillas, Raquel; Hoops, Stefan; Carbo, Adria; Bassaganya-Riera, Josep

    2015-01-01

    Background Modeling of the immune system – a highly non-linear and complex system – requires practical and efficient data analytic approaches. The immune system is composed of heterogeneous cell populations and hundreds of cell types, such as neutrophils, eosinophils, macrophages, dendritic cells, T cells, and B cells. Each cell type is highly diverse and can be further differentiated into subsets with unique and overlapping functions. For example, CD4+ T cells can be differentiated into T...

  13. Model of Oxygen and Glucose Deprivation in PC12 Cells and Detection of HSP70 Protein

    Science.gov (United States)

    He, Jinting; Yang, Le; Shao, Yankun

    2018-01-01

    Objective: PC12 cell was used to set up a ischemia model by OGD and detected HSP70 protein. Methods: Use of PC12 cells induced by NGF stimulation into nerve cells, oxygen and glucose deprivation to build the nerve cells of oxygen and glucose deprivation model; using Western blot analysis of PC12 cells into neuron-like cells and oxygen-glucose deprivation model established. Results: The application of a final concentration of 50 ng / ml of NGF in DMEM complete mediumPC12 cells showed a typical neuronal morphology with the increase in cell culture time. NGF culture time showed a positive correlation, the establishment of oxygen and glucose deprivation (OGD) training environment, the OGD after nerve element appears different degrees of damage, OGD can effectively induce the expression of HSP70. Conclusion: PC12 cell transformed into cells by NGF; the cell model of OGD was established.

  14. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR.

  15. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-07

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    International Nuclear Information System (INIS)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung

    2014-01-01

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR

  17. Modeling cell elongation during germ band retraction: cell autonomy versus applied anisotropic stress

    International Nuclear Information System (INIS)

    Lynch, Holley E; Shane Hutson, M; Veldhuis, Jim; Wayne Brodland, G

    2014-01-01

    The morphogenetic process of germ band retraction in Drosophila embryos involves coordinated movements of two epithelial tissues—germ band and amnioserosa. The germ band shortens along its rostral–caudal or head-to-tail axis, widens along its perpendicular dorsal-ventral axis, and uncurls from an initial ‘U’ shape. The amnioserosa mechanically assists this process by pulling on the crook of the U-shaped germ band. The amnioserosa may also provide biochemical signals that drive germ band cells to change shape in a mechanically autonomous fashion. Here, we use a finite-element model to investigate how these two contributions reshape the germ band. We do so by modeling the response to laser-induced wounds in each of the germ band’s spatially distinct segments (T1–T3, A1–A9) during the middle of retraction when segments T1–A3 form the ventral arm of the ‘U’, A4–A7 form its crook, and A8–A9 complete the dorsal arm. We explore these responses under a range of externally applied stresses and internal anisotropy of cell edge tensions—akin to a planar cell polarity that can drive elongation of cells in a direction parallel to the minimum edge tension—and identify regions of parameter space (edge-tension anisotropy versus stress anisotropy) that best match previous experiments for each germ band segment. All but three germ band segments are best fit when the applied stress anisotropy and the edge-tension anisotropy work against one another—i.e., when the isolated effects would elongate cells in perpendicular directions. Segments in the crook of the germ band (A4–A7) have cells that elongate in the direction of maximum external stress, i.e., external stress anisotropy is dominant. In most other segments, the dominant factor is internal edge-tension anisotropy. These results are consistent with models in which the amnioserosa pulls on the crook of the germ band to mechanically assist retraction. In addition, they suggest a mechanical cue for

  18. Increased mast cell numbers in a calcaneal tendon overuse model.

    Science.gov (United States)

    Pingel, J; Wienecke, J; Kongsgaard, M; Behzad, H; Abraham, T; Langberg, H; Scott, A

    2013-12-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats were divided in two groups: running group (n = 12); sedentary control group (n = 12). The running-group was exposed to the HIUR exercise protocol for 7 weeks. The calcaneal tendons of both hind limbs were dissected. The right tendon was used for histologic analysis using Bonar score, immunohistochemistry, and second harmonic generation microscopy (SHGM). The left tendon was used for quantitative polymerase chain reaction (qPCR) analysis. An increased tendon cell density in the runners were observed compared to the controls (P = 0.05). Further, the intensity of immunostaining of protein kinase B, P = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further that these changes are associated with an increased mast cell density. © 2013 The Authors. Scand J Med Sci Sports published by John Wiley & Sons Ltd.

  19. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  20. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  1. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein; Nunes, Maria Eugenia S.

    2011-01-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  2. An effective medium model versus a network model for nano-structured solar cells

    International Nuclear Information System (INIS)

    Minnaert, B.; Grasso, C.; Burgelman, M.

    2006-01-01

    In this paper, two methods are compared to model the I-V curves of nano-structured solar cells. These cells consist of an interpenetrating network of an n-type transparent semiconductor oxide (e.g. TiO 2 ) and a p-type semiconductor absorber (e.g. CdTe, CuInS 2 ), deposited on TCO covered glass. The methods are also applicable when a dye and an electrolyte replace the p-semiconductor, and even to organic bulk heterojunction cells. A network model (NM) with resistors and diodes has been published by us before. Another method which has been proposed in the literature is an effective medium model (EMM). In this model, the whole p-n nano-structure is represented by one single effective semiconductor layer, which then is fed into a standard solar cell device simulator, e.g. SCAPS. In this work, it is shown that the NM and the EMM can describe the same physical structure, when they are set up properly. As an illustration, some problems are described both by EMM and NM, and the results are compared. The EMM in this work confirms the results obtained earlier with a simplified NM (constant R n , R p ): when illuminating the n-side, the structure is tolerant to R n but not to R p ; the interpenetrating geometry is disadvantageous for V oc . (authors)

  3. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Sëma

    2015-05-14

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  4. Embryo quality predictive models based on cumulus cells gene expression

    Directory of Open Access Journals (Sweden)

    Devjak R

    2016-06-01

    Full Text Available Since the introduction of in vitro fertilization (IVF in clinical practice of infertility treatment, the indicators for high quality embryos were investigated. Cumulus cells (CC have a specific gene expression profile according to the developmental potential of the oocyte they are surrounding, and therefore, specific gene expression could be used as a biomarker. The aim of our study was to combine more than one biomarker to observe improvement in prediction value of embryo development. In this study, 58 CC samples from 17 IVF patients were analyzed. This study was approved by the Republic of Slovenia National Medical Ethics Committee. Gene expression analysis [quantitative real time polymerase chain reaction (qPCR] for five genes, analyzed according to embryo quality level, was performed. Two prediction models were tested for embryo quality prediction: a binary logistic and a decision tree model. As the main outcome, gene expression levels for five genes were taken and the area under the curve (AUC for two prediction models were calculated. Among tested genes, AMHR2 and LIF showed significant expression difference between high quality and low quality embryos. These two genes were used for the construction of two prediction models: the binary logistic model yielded an AUC of 0.72 ± 0.08 and the decision tree model yielded an AUC of 0.73 ± 0.03. Two different prediction models yielded similar predictive power to differentiate high and low quality embryos. In terms of eventual clinical decision making, the decision tree model resulted in easy-to-interpret rules that are highly applicable in clinical practice.

  5. Modeling nanostructure-enhanced light trapping in organic solar cells

    DEFF Research Database (Denmark)

    Adam, Jost

    A promising approach for improving the power conversion efficiencies of organic solar cells (OSCs) is by incorporating nanostructures in their thin film architecture to improve the light absorption in the device’s active polymer layers. Here, we present a modelling framework for the prediction...... of optical and plasmonic field enhancement by nanostructures in (or close to) the active layers and electrodes in OSCs. We incorporate finite-difference time-domain (FDTD) calculations alongside semi- analytical approaches, as the rigorous coupled-wave analysis (RCWA) and mode-coupling theory. Our simulation...

  6. An experimental electronic model for a neuronal cell

    International Nuclear Information System (INIS)

    Campos-Cantón, I; Martel-Gallegos, G; Rangel-López, A; Vertiz-Hérnandez, A; Zarazúa, S

    2014-01-01

    Over the last two decades, the study of information transmission in living beings has acquired great relevance, because it regulates and conducts the functioning of all of the organs in the body. In information transmission pathways, the neuron plays an important role in that it receives, transmits, and processes electrical signals from different parts of the human body; these signals are transmitted as electrical impulses called action potentials, and they transmit information from one neuron to another. In this work, and with the aim of developing experiments for teaching biological processes, we implemented an electronic circuit of the neuron cell device and its mathematical model based on piecewise linear functions. (paper)

  7. Dielectric spectroscopy platform to measure MCF10A epithelial cell aggregation as a model for spheroidal cell cluster analysis.

    Science.gov (United States)

    Heileman, K L; Tabrizian, M

    2017-05-02

    3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.

  8. Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN, the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05. The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011. The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05, demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN.

  9. Models of chromatin spatial organisation in the cell nucleus

    Science.gov (United States)

    Nicodemi, Mario

    2014-03-01

    In the cell nucleus chromosomes have a complex architecture serving vital functional purposes. Recent experiments have started unveiling the interaction map of DNA sites genome-wide, revealing different levels of organisation at different scales. The principles, though, which orchestrate such a complex 3D structure remain still mysterious. I will overview the scenario emerging from some classical polymer physics models of the general aspect of chromatin spatial organisation. The available experimental data, which can be rationalised in a single framework, support a picture where chromatin is a complex mixture of differently folded regions, self-organised across spatial scales according to basic physical mechanisms. I will also discuss applications to specific DNA loci, e.g. the HoxB locus, where models informed with biological details, and tested against targeted experiments, can help identifying the determinants of folding.

  10. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  11. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.

    Science.gov (United States)

    Chung, C A; Lin, Tze-Hung; Chen, Shih-Di; Huang, Hsing-I

    2010-01-21

    Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.

  12. A 3D Monte Carlo model of radiation affecting cells, and its application to neuronal cells and GCR irradiation

    Science.gov (United States)

    Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.

    A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.

  13. A minimal rupture cascade model for living cell plasticity

    Science.gov (United States)

    Polizzi, Stefano; Laperrousaz, Bastien; Perez-Reche, Francisco J.; Nicolini, Franck E.; Maguer Satta, Véronique; Arneodo, Alain; Argoul, Françoise

    2018-05-01

    Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34+ cells isolated from healthy and leukemic bone marrows in the highly nonlinear elasto-plastic regime, by poking their perinuclear region with a sharp AFM cantilever tip. We use the wavelet transform mathematical microscope to identify singular events in the force-indentation curves induced by local rupture events in the cytoskeleton (CSK). We distinguish two types of rupture events, brittle failures likely corresponding to irreversible ruptures in a stiff and highly cross-linked CSK and ductile failures resulting from dynamic cross-linker unbindings during plastic deformation without loss of CSK integrity. We propose a stochastic multiplicative cascade model of mechanical ruptures that reproduces quantitatively the experimental distributions of the energy released during these events, and provides some mathematical and mechanistic understanding of the robustness of the log-normal statistics observed in both brittle and ductile situations. We also show that brittle failures are relatively more prominent in leukemia than in healthy cells suggesting their greater fragility.

  14. Structural model of radiation effects in living cells

    International Nuclear Information System (INIS)

    Neyman, J.; Puri, P.S.

    1976-01-01

    The chance mechanism of cell damage and of repair in the course of irradiation involves two details familiar to biologists that thus far seem to have been overlooked in mathematical treatment. One of these details is that, generally, the passage of a single ''primary'' radiation particle generates a ''cluster'' of secondaries which can produce ''hits'' that damage the living cell. With high linear energy transfer, each cluster contains very many secondary particles. With low linear energy transfer, the number of secondaries per cluster is generally small. The second overlooked detail of the chance mechanism is concerned with what may be called the time scales of radiation damage and of the subsequent repair. The generation of a cluster of secondary particles and the possible hits occur so rapidly that, for all practical purposes, they may be considered as occurring instantly. On the other hand, the subsequent changes in the damaged cells appear to require measurable amounts of time. The constructed stochastic model embodies these details, the clustering of secondary particles and the time scale difference. The results explain certain details of observed phenomena

  15. Increased mast cell numbers in a calcaneal tendon overuse model

    DEFF Research Database (Denmark)

    Pingel, Jessica; Wienecke, Jacob; Kongsgaard Madsen, Mads

    2013-01-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats...... = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density...... (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further...

  16. Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model

    OpenAIRE

    T. H. Lee; J. H. Park; S. M. Lee; S. C. Lee

    2010-01-01

    In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of ...

  17. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease.

    Science.gov (United States)

    Xie, Hong-rong; Hu, Lin-sen; Li, Guo-yi

    2010-04-20

    To evaluate the human neuroblastoma SH-SY5Y cell line as an in vitro model of dopaminergic (DAergic) neurons for Parkinson's disease (PD) research and to determine the effect of differentiation on this cell model. The data of this review were selected from the original reports and reviews related to SH-SY5Y cells published in Chinese and foreign journals (Pubmed 1973 to 2009). After searching the literature, 60 articles were selected to address this review. The SH-SY5Y cell line has become a popular cell model for PD research because this cell line posses many characteristics of DAergic neurons. For example, these cells express tyrosine hydroxylase and dopamine-beta-hydroxylase, as well as the dopamine transporter. Moreover, this cell line can be differentiated into a functionally mature neuronal phenotype in the presence of various agents. Upon differentiation, SH-SY5Y cells stop proliferating and a constant cell number is subsequently maintained. However, different differentiating agents induce different neuronal phenotypes and biochemical changes. For example, retinoic acid induces differentiation toward a cholinergic neuronal phenotype and increases the susceptibility of SH-SY5Y cells to neurotoxins and neuroprotective agents, whereas treatment with retinoic acid followed by phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in a DAergic neuronal phenotype and decreases the susceptibility of cells to neurotoxins and neuroprotective agents. Some differentiating agents also alter kinetics of 1-methyl-4-phenyl-pyridinium (MPP(+)) uptake, making SH-SY5Y cells more similar to primary mesencephalic neurons. Differentiated and undifferentiated SH-SY5Y cells have been widely used as a cell model of DAergic neurons for PD research. Some differentiating agents afford SH-SY5Y cells with more potential for studying neurotoxicity and neuroprotection and are thus more relevant to experimental PD research.

  18. Models and simulations for the Danish cell project. Running PowerFactory with OPC and cell controller

    Energy Technology Data Exchange (ETDEWEB)

    Martensen, Nis; Troester, Eckehard [energynautics GmbH, Langen (Germany); Lund, Per [Energinet.dk, Fredericia (Denmark); Holland, Rod [Spirae Inc., Fort Collins, CO (United States)

    2009-07-01

    In emergency situations, the Cell Controller disconnects a distribution grid from the high-voltage network and controls the cell's island operation. The controller thus activates the existing local generation plants to improve the security of supply. The Cell Controller can operate the Cell as a Virtual Power Plant during normal grid-connected operation, thereby implementing an exemplary Smart Grid. Modeling and simulation work is presented. (orig.)

  19. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death

    International Nuclear Information System (INIS)

    Gago-Arias, Araceli; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Aguiar, Pablo; Pardo-Montero, Juan

    2016-01-01

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models. (paper)

  20. Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    CERN Document Server

    Baianu, I C

    2004-01-01

    A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.

  1. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    Science.gov (United States)

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  2. A helium venting model for a SSC half cell

    International Nuclear Information System (INIS)

    Carcagno, R.H.; McAshan, M.S.; Schiesser, W.E.

    1991-01-01

    When a Superconducting Super Collider (SSC) dipole magnet quenches, the quench protection system will intentionally quench other magnets in the half cell. The result is that the stored energy of all of these quenched magnets will be absorbed equally among them. These simultaneous quenches produce heat, which diffuses from the magnet coils to the main helium (He) coolant channels and thereby eventually causes an increase in the He pressure. When the quench is detected, vent valves open to minimize the He pressure increase and thus prevent damage to the magnets. The performance of the He venting system has been modeled and simulated to establish whether the venting will take place as required. The model consists of partial differential equation energy balances written radially for the magnet coils, collar, and yoke; and ordinary differential equations of energy and mass balance written for the He in the magnets and relief header. The basic algorithm is the numerical method of lines, with finite difference approximation of the spatial derivatives, and time integration by LSODES. Simulation results are presented for an SSC half cell of the Accelerator Systems String Test (ASST) facility. The results are also compared with recent string quench measurements performed at the Fermilab String Test Facility

  3. Electrochemo-hydrodynamics modeling approach for a uranium electrowinning cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.R.; Paek, S.; Ahn, D.H., E-mail: krkim1@kaeri.re.kr, E-mail: swpaek@kaeri.re.kr, E-mail: dhahn2@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, J.Y.; Hwang, I.S., E-mail: d486916@snu.ac.kr, E-mail: hisline@snu.ac.kr [Department of Nuclear Engineering, Seoul National University (Korea, Republic of)

    2011-07-01

    This study demonstrated a simulation based on fully coupling of electrochemical kinetics with 3- dimensional transport of ionic species in a flowing molten-salt electrolyte through a simplified channel cell of uranium electro winner. Dependences of ionic electro-transport on the velocity of stationary electrolyte flow were studied using a coupling approach of electrochemical reaction model. The present model was implemented in a commercially available computational fluid dynamics (CFD) platform, Ansys-CFX, using its customization ability via user defined functions. The main parameters characterizing the effect of the turbulent flow of an electrolyte between two planar electrodes were demonstrated by means of CFD-based multiphysics simulation approach. Simulation was carried out for the case of uranium electrowinning characteristics in a stream of molten salt electrolyte. This approach was taken into account the concentration profile at the electrode surface, to represent the variation of the diffusion limited current density as a function of the flow characteristics and of applied current density. It was able to predict conventional current voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variable, such as flow field, species concentrations, potential, and current distributions throughout the current driven cell. (author)

  4. Cell and small animal models for phenotypic drug discovery

    Directory of Open Access Journals (Sweden)

    Szabo M

    2017-06-01

    Full Text Available Mihaly Szabo,1 Sara Svensson Akusjärvi,1 Ankur Saxena,1 Jianping Liu,2 Gayathri Chandrasekar,1 Satish S Kitambi1 1Department of Microbiology Tumor, and Cell Biology, 2Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden Abstract: The phenotype-based drug discovery (PDD approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery. Keywords: phenotype, screening, PDD, discovery, zebrafish, drug

  5. Electrochemo-hydrodynamics modeling approach for a uranium electrowinning cell

    International Nuclear Information System (INIS)

    Kim, K.R.; Paek, S.; Ahn, D.H.; Park, J.Y.; Hwang, I.S.

    2011-01-01

    This study demonstrated a simulation based on fully coupling of electrochemical kinetics with 3- dimensional transport of ionic species in a flowing molten-salt electrolyte through a simplified channel cell of uranium electro winner. Dependences of ionic electro-transport on the velocity of stationary electrolyte flow were studied using a coupling approach of electrochemical reaction model. The present model was implemented in a commercially available computational fluid dynamics (CFD) platform, Ansys-CFX, using its customization ability via user defined functions. The main parameters characterizing the effect of the turbulent flow of an electrolyte between two planar electrodes were demonstrated by means of CFD-based multiphysics simulation approach. Simulation was carried out for the case of uranium electrowinning characteristics in a stream of molten salt electrolyte. This approach was taken into account the concentration profile at the electrode surface, to represent the variation of the diffusion limited current density as a function of the flow characteristics and of applied current density. It was able to predict conventional current voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variable, such as flow field, species concentrations, potential, and current distributions throughout the current driven cell. (author)

  6. Large-scale modeling of rain fields from a rain cell deterministic model

    Science.gov (United States)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  7. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    Science.gov (United States)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  8. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  9. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Joachim Almquist

    Full Text Available The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient

  10. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  11. A molecular prognostic model predicts esophageal squamous cell carcinoma prognosis.

    Directory of Open Access Journals (Sweden)

    Hui-Hui Cao

    Full Text Available Esophageal squamous cell carcinoma (ESCC has the highest mortality rates in China. The 5-year survival rate of ESCC remains dismal despite improvements in treatments such as surgical resection and adjuvant chemoradiation, and current clinical staging approaches are limited in their ability to effectively stratify patients for treatment options. The aim of the present study, therefore, was to develop an immunohistochemistry-based prognostic model to improve clinical risk assessment for patients with ESCC.We developed a molecular prognostic model based on the combined expression of axis of epidermal growth factor receptor (EGFR, phosphorylated Specificity protein 1 (p-Sp1, and Fascin proteins. The presence of this prognostic model and associated clinical outcomes were analyzed for 130 formalin-fixed, paraffin-embedded esophageal curative resection specimens (generation dataset and validated using an independent cohort of 185 specimens (validation dataset.The expression of these three genes at the protein level was used to build a molecular prognostic model that was highly predictive of ESCC survival in both generation and validation datasets (P = 0.001. Regression analysis showed that this molecular prognostic model was strongly and independently predictive of overall survival (hazard ratio = 2.358 [95% CI, 1.391-3.996], P = 0.001 in generation dataset; hazard ratio = 1.990 [95% CI, 1.256-3.154], P = 0.003 in validation dataset. Furthermore, the predictive ability of these 3 biomarkers in combination was more robust than that of each individual biomarker.This technically simple immunohistochemistry-based molecular model accurately predicts ESCC patient survival and thus could serve as a complement to current clinical risk stratification approaches.

  12. Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells

    Science.gov (United States)

    Spivey, Benjamin James

    2011-07-01

    Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.

  13. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  14. Systems Modelling and the Development of Coherent Understanding of Cell Biology

    Science.gov (United States)

    Verhoeff, Roald P.; Waarlo, Arend Jan; Boersma, Kerst Th.

    2008-01-01

    This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper-secondary education introducing "systems modelling" as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free-living cells, a general two-dimensional model of…

  15. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  16. Plasticity of cell migration: a multiscale tuning model.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Wolf, K. van der

    2010-01-01

    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or

  17. WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions.

    Science.gov (United States)

    Karr, Jonathan R; Phillips, Nolan C; Covert, Markus W

    2014-01-01

    Mechanistic 'whole-cell' models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. http://www.wholecellsimdb.org SOURCE CODE REPOSITORY: URL: http://github.com/CovertLab/WholeCellSimDB. © The Author(s) 2014. Published by Oxford University Press.

  18. Triple co-culture cell model as an in vitro model for oral particulate vaccine systems

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; De Rossi, C.; Lehr, C.-M.

    the immunostimulatory ability of particulate vaccine formulations designed for oral delivery. Levels of cytokine production in response to vaccine administration were measured following particulate vaccine administration, as an indication of dendritic cell and macrophage activation. Precursors of cubosomes containing......; this was not observed with ovalbumin and blank solution. An example of the results is shown in Figure 2 for IL-17A. An established co-culture of Caco-2, THP-1 and MUTZ-3 cells showed promise as an in vitro model for testing of oral vaccine formulations. Mobility of co-culture immune cells as well as cytokine production...... with particle formulations. This was not the case when incubating with ovalbumin solution or blank. The ELISA screening assay showed production of a wide range of cytokines following culture incubation with cubosomes (with and without ovalbumin) and LPS solutions, indicative of a stimulatory effect...

  19. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  20. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao

    2017-06-01

    Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.

  1. Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell

    International Nuclear Information System (INIS)

    Amedi, Hamid Reza; Bazooyar, Bahamin; Pishvaie, Mahmoud Reza

    2015-01-01

    In this paper, a 3-dimensional mathematical model for one cell of an anode-supported SOFC (solid oxide fuel cells) is presented. The model is derived from the partial differential equations representing the conservation laws of ionic and electronic charges, mass, energy, and momentum. The model is implemented to fully characterize the steady state operation of the cell with countercurrent flow pattern of fuel and air. The model is also used for the comparison of countercurrent with concurrent flow patterns in terms of thermal stress (temperature distribution) and quality of operation (current density). Results reveal that the steady-state cell performance curve and output of simulations qualitatively match experimental data of the literature. Results also demonstrate that countercurrent flow pattern leads to an even distribution of temperature, more uniform current density along the cell and thus is more enduring and superior to the concurrent flow pattern. Afterward, the thorough 3-dimensional model is used for state estimation instead of a real cell. To estimate states, the model is simplified and changed to a 1-dimensional model along flow streams. This simplified model includes uncertainty (because of simplifying assumptions of the model), noise, and disturbance (because of measurements). The behaviors of extended and ensemble Kalman filter as an observer are evaluated in terms of estimating the states and filtering the noises. Results demonstrate that, like extended Kalman filter, ensemble Kalman filter properly estimates the states with 20 sets. - Highlights: • A 3-dimensional model for one cell of SOFC (solid oxide fuel cells) is presented. • Higher voltages and thermal stress in countercurrent than concurrent flow pattern. • State estimation of the cell is examined by ensemble and extended Kalman filters. • Ensemble with 20 sets is as good as extended Kalman filter.

  2. A comparative study of approaches to direct methanol fuel cells modelling

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Engenharia, Tecnologia e Inovacao, Paco do Lumiar, 22,1649-038 (Portugal)

    2007-03-15

    Fuel cell modelling has received much attention over the past decade in an attempt to better understand the phenomena occurring within the cell. Mathematical models and simulation are needed as tools for design optimization of fuel cells, stacks and fuel cell power systems. Analytical, semi-empirical and mechanistic models for direct methanol fuel cells (DMFC) are reviewed. Effective models were until now developed describing the fundamental electrochemical and transport phenomena taking place in the cell. More research is required to develop models that can account for the two-phase flows occurring in the anode and cathode of the DMFC. The merits and demerits of the models are presented. Selected models of different categories are implemented and discussed. Finally, one of the selected simplified models is proposed as a computer-aided tool for real-time system level DMFC calculations. (author)

  3. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  4. Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model

    International Nuclear Information System (INIS)

    Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif

    2013-01-01

    Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy

  5. Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes

    Science.gov (United States)

    Ishimoto, Yukitaka; Morishita, Yoshihiro

    2014-11-01

    In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, and the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and the curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them in the vertex model. Thus, a model with the curvatures is constructed, and its algorithm for simulation is provided. The possible extensions and applications of this model are also discussed.

  6. Osteoprogenitor cell therapy in an equine fracture model.

    Science.gov (United States)

    McDuffee, Laurie A; Pack, LeeAnn; Lores, Marcos; Wright, Glenda M; Esparza-Gonzalez, Blanca; Masaoud, Elmabrok

    2012-10-01

    To compare the efficacy of osteoprogenitors in fibrin glue to fibrin glue alone in bone healing of surgically induced ostectomies of the fourth metacarpal bones in an equine model. Experimental. Adult horses (n = 10). Segmental ostectomies of the 4th metacarpal bone (MC4) were performed bilaterally in 10 horses. There was 1 treatment and 1 control limb in each horse. Bone defects were randomly injected with either fibrin glue and osteoprogenitor cells or fibrin glue alone. Radiography was performed every week until the study endpoint at 12 weeks. After euthanasia, bone healing was evaluated using radiography and histology. Analysis of radiographic data was conducted using a linear-mixed model. Analysis of histologic data was conducted using a general linear model. Statistical significance was set at P bone healing revealed no significant difference between treatment and control limbs. Radiographic scoring results also showed that the treatment effect was not significant. Histologic analysis was consistent with radiographic analysis showing no significant difference between the area of bone present in treatment and control limbs. Injection of periosteal-derived osteoprogenitors in a fibrin glue carrier into surgically created ostectomies of MC4 does not accelerate bone healing when compared with fibrin glue alone. © Copyright 2012 by The American College of Veterinary Surgeons.

  7. Construction of cell model of silenced Ku80 and the radiobiology change of HeLa cell

    International Nuclear Information System (INIS)

    Zhuang Liang; Yu Shiying; Huang Xiaoyuan; Xiong Huihua; Xiong Hua; Li Xiaolan; Leng Yan

    2007-01-01

    Objective: To construct the cell model of Ku80 with expression inhibited by siRNA and to explore the role of Ku80 in radiobiology. Methods: Ku80-siRNA expression plasmids were constructed and HeLa cells were transfected with these plasmids by lipofectamine. Western blotting was used to measure the expression of Ku80. After irradiation with 6 MV X ray, cells were collected and analyzed by flow cytometry for apoptosis and cell cycle at 24, 48 and 72 h; The radiobiology parameters of four cell lines were acquired by clone formation array. Results: Three stable transfected cell clones were obtained, and the inhibition rates of Ku80 protein expression of two positive clones were 89.3% and 96.4%; The apoptosis rates of HeLa cells Ku80 inhibited were higher than control cells at 48 and 72 after X ray irradiation (P 0.05). HeLa cells of silenced Ku80 had lower SF 2 and D 0 than control cells, and their SER (sensitization enhancement ratio) based on D 10 were 1.315 and 1.365, respectively. Conclusions: The HeLa cell models with Ku80 expression suppressed were successfully established; the inhibition of Ku80 by siRNA could enhance the radiosensitivity of HeLa cells. (authors)

  8. Metabotyping of docosahexaenoic acid - treated Alzheimer's disease cell model.

    Directory of Open Access Journals (Sweden)

    Priti Bahety

    Full Text Available BACKGROUND: Despite the significant amount of work being carried out to investigate the therapeutic potential of docosahexaenoic acid (DHA in Alzheimer's disease (AD, the mechanism by which DHA affects amyloid-β precursor protein (AβPP-induced metabolic changes has not been studied. OBJECTIVE: To elucidate the metabolic phenotypes (metabotypes associated with DHA therapy via metabonomic profiling of an AD cell model using gas chromatography time-of-flight mass spectrometry (GC/TOFMS. METHODS: The lysate and supernatant samples of CHO-wt and CHO-AβPP695 cells treated with DHA and vehicle control were collected and prepared for GC/TOFMS metabonomics profiling. The metabolic profiles were analyzed by multivariate data analysis techniques using SIMCA-P+ software. RESULTS: Both principal component analysis and subsequent partial least squares discriminant analysis revealed distinct metabolites associated with the DHA-treated and control groups. A list of statistically significant marker metabolites that characterized the metabotypes associated with DHA treatment was further identified. Increased levels of succinic acid, citric acid, malic acid and glycine and decreased levels of zymosterol, cholestadiene and arachidonic acid correlated with DHA treatment effect. DHA levels were also found to be increased upon treatment. CONCLUSION: Our study shows that DHA plays a role in mitigating AβPP-induced impairment in energy metabolism and inflammation by acting on tricarboxylic acid cycle, cholesterol biosynthesis pathway and fatty acid metabolism. The perturbations of these metabolic pathways by DHA in CHO-wt and CHO-AβPP695 cells shed further mechanistic insights on its neuroprotective actions.

  9. Modeling PSA Problems - II: A Cell-to-Cell Transport Theory Approach

    International Nuclear Information System (INIS)

    Labeau, P.E.; Izquierdo, J.M.

    2005-01-01

    In the first paper of this series, we presented an extension of the classical theory of dynamic reliability in which the actual occurrence of an event causing a change in the system dynamics is possibly delayed. The concept of stimulus activation, which triggers the realization of an event after a distributed time delay, was introduced. This gives a new understanding of competing events in the sequence delineation process.In the context of the level-2 probabilistic safety analysis (PSA), the information on stimulus activation mainly consists of regions of the process variables space where the activation can occur with a given probability. The evolution equations of the extended theory of probabilistic dynamics are therefore particularized to a transport process between discrete cells defined in phase-space on this basis. Doing so, an integrated and coherent approach to level-2 PSA problems is propounded. This amounts to including the stimulus concept and the associated stochastic delays discussed in the first paper in the frame of a cell-to-cell transport process.In addition, this discrete model provides a theoretical basis for the definition of appropriate numerical schemes for integrated level-2 PSA applications

  10. A Two-Phenotype Model of Immune Evasion by Cancer Cells

    NARCIS (Netherlands)

    Bayer, Péter; Brown, Joel; Stankova, Katerina

    2017-01-01

    We propose a model with two types of cancer cells differentiated by their defense mechanisms against the immune system. ``Selfish'' cancer cells develop defense mechanisms that benefit the individual cell, whereas ``cooperative'' cells deploy countermeasures that increase the chance of survival of

  11. Induced Pluripotent Stem Cell Therapies for Degenerative Disease of the Outer Retina: Disease Modeling and Cell Replacement.

    Science.gov (United States)

    Di Foggia, Valentina; Makwana, Priyanka; Ali, Robin R; Sowden, Jane C

    2016-06-01

    Stem cell therapies are being explored as potential treatments for retinal disease. How to replace neurons in a degenerated retina presents a continued challenge for the regenerative medicine field that, if achieved, could restore sight. The major issues are: (i) the source and availability of donor cells for transplantation; (ii) the differentiation of stem cells into the required retinal cells; and (iii) the delivery, integration, functionality, and survival of new cells in the host neural network. This review considers the use of induced pluripotent stem cells (iPSC), currently under intense investigation, as a platform for cell transplantation therapy. Moreover, patient-specific iPSC are being developed for autologous cell transplantation and as a tool for modeling specific retinal diseases, testing gene therapies, and drug screening.

  12. In vivo modelling of normal and pathological human T-cell development

    NARCIS (Netherlands)

    Wiekmeijer, A.S.

    2016-01-01

    This thesis describes novel insights in human T-cell development by transplanting human HSPCs in severe immunodeficient NSG mice. First, an in vivo model was optimized to allow engraftment of hematopoietic stem cells derived from human bone marrow. This model was used to study aberrant human T-cell

  13. cellPACK: a virtual mesoscope to model and visualize structural systems biology.

    Science.gov (United States)

    Johnson, Graham T; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S; Sanner, Michel F; Olson, Arthur J

    2015-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.

  14. Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models

    Directory of Open Access Journals (Sweden)

    Kung PJ

    2014-10-01

    Full Text Available Pin-Jui Kung,1,* Yu-Chen Tao,1,* Ho-Chiang Hsu,1 Wan-Ling Chen,1 Te-Hsien Lin,1 Donala Janreddy,2 Ching-Fa Yao,2 Kuo-Hsuan Chang,3 Jung-Yaw Lin,1 Ming-Tsan Su,1 Chung-Hsin Wu,1 Guey-Jen Lee-Chen,1 Hsiu-Mei Hsieh-Li1 1Department of Life Science, 2Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan; 3Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan *These authors contributed equally to this work Abstract: In spinocerebellar ataxia type 17 (SCA17, the expansion of a translated CAG repeat in the TATA box binding protein (TBP gene results in a long polyglutamine (polyQ tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment. Keywords: spinocerebellar ataxia type 17, TATA box binding protein, polyQ aggregation, indole and derivative, therapeutics

  15. Minority carrier blockade in MIND model solar cells

    International Nuclear Information System (INIS)

    Ley, M.; Kuznicki, Z.T.; Ballutaud, D.

    2003-01-01

    A continuous amorphized a-Si nanostructure with sharp a-Si/c-Si heterointerfaces is inserted in a c-Si wafer by medium-energy P ion implantation followed by a thermal treatment at 500 deg. C. New photovoltaic phenomena in the mesoscopically transformed material are expected and were presented recently. The simulation of the band structure taking into account the differences between the two Si phases of the MIND (multi-interface novel device) model solar cell indicates the presence of a high barrier blocking the minority carriers, which are photogenerated in the bulk superficial region of the wafer. Consequently, the collection efficiency (i.e. collected carriers versus penetrating photons) is deteriorated in UV. Collection efficiency and EBIC measurements were used to give a theoretical and experimental analysis of the causes and the consequences of such a deterioration on the photocurrent

  16. Biomechanics of cells and tissues experiments, models and simulations

    CERN Document Server

    2013-01-01

    The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation.   Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and philosophical approaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimicking the function of living systems. The contributions presented in this book are current research highlights of six challenging an...

  17. Models of dynamic extraction of lipid tethers from cell membranes

    International Nuclear Information System (INIS)

    Nowak, Sarah A; Chou, Tom

    2010-01-01

    When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers

  18. Bifurcation structure of a model of bursting pancreatic cells

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Lading, B.; Yanchuk, S.

    2001-01-01

    . The transition from this structure to the so-called period-adding structure is found to involve a subcritical period-doubling bifurcation and the emergence of type-III intermittency. The period-adding transition itself is not smooth but consists of a saddle-node bifurcation in which (n + 1)-spike bursting...... behavior is born, slightly overlapping with a subcritical period-doubling bifurcation in which n-spike bursting behavior loses its stability.......One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic P-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other...

  19. Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models

    Directory of Open Access Journals (Sweden)

    Werner Van Geit

    2007-11-01

    Full Text Available The increase in available computational power and the higher quality of experimental recordings have turned the tuning of neuron model parameters into a problem that can be solved by automatic global optimization algorithms. Neurofitter is a software tool that interfaces existing neural simulation software and sophisticated optimization algorithms with a new way to compute the error measure. This error measure represents how well a given parameter set is able to reproduce the experimental data. It is based on the phase-plane trajectory density method, which is insensitive to small phase differences between model and data. Neurofitter enables the effortless combination of many different time-dependent data traces into the error measure, allowing the neuroscientist to focus on what are the seminal properties of the model. We show results obtained by applying Neurofitter to a simple single compartmental model and a complex multi-compartmental Purkinje cell (PC model. These examples show that the method is able to solve a variety of tuning problems and demonstrate details of its practical application.

  20. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Marco L Davila

    Full Text Available Although many adults with B cell acute lymphoblastic leukemia (B-ALL are induced into remission, most will relapse, underscoring the dire need for novel therapies for this disease. We developed murine CD19-specific chimeric antigen receptors (CARs and an immunocompetent mouse model of B-ALL that recapitulates the disease at genetic, cellular, and pathologic levels. Mouse T cells transduced with an all-murine CD3ζ/CD28-based CAR that is equivalent to the one being used in our clinical trials, eradicate B-ALL in mice and mediate long-term B cell aplasias. In this model, we find that increasing conditioning chemotherapy increases tumor eradication, B cell aplasia, and CAR-modified T cell persistence. Quantification of recipient B lineage cells allowed us to estimate an in vivo effector to endogenous target ratio for B cell aplasia maintenance. In mice exhibiting a dramatic B cell reduction we identified a small population of progenitor B cells in the bone marrow that may serve as a reservoir for long-term CAR-modified T cell stimulation. Lastly, we determine that infusion of CD8+ CAR-modified T cells alone is sufficient to maintain long-term B cell eradication. The mouse model we report here should prove valuable for investigating CAR-based and other therapies for adult B-ALL.

  1. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  2. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  3. Radiation damage, repopulation and cell recovery analysis of in vitro tumour cell megacolony culture data using a non-Poissonian cell repopulation TCP model

    International Nuclear Information System (INIS)

    Stavrev, P; Weldon, M; Warkentin, B; Stavreva, N; Fallone, B G

    2005-01-01

    The effects of radiation damage, tumour repopulation and cell sublethal damage repair and the possibility of extracting information about the model parameters describing them are investigated in this work. Previously published data on two different cultured cell lines were analysed with the help of a tumour control probability (TCP) model that describes tumour cell dynamics properly. Different versions of a TCP model representing the cases of full or partial cell recovery between fractions of radiation, accompanied by repopulation or no repopulation were used to fit the data and were ranked according to statistical criteria. The data analysis shows the importance of the linear-quadratic mechanism of cell damage for the description of the in vitro cell dynamics. In a previous work where in vivo data were analysed, the employment of the single hit model of cell kill and cell repopulation produced the best fit, while ignoring the quadratic term of cell damage in the current analysis leads to poor fits. It is also concluded that more experiments using different fractionation regimes producing diverse data are needed to help model analysis and better ranking of the models

  4. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    Science.gov (United States)

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  5. Modelling cell division and endoreduplication in tomato fruit pericarp

    NARCIS (Netherlands)

    Apri, M.; Kromdijk, J.; Visser, de P.H.B.; Gee, de M.; Molenaar, J.

    2014-01-01

    In many developing plant tissues and organs, differentiating cells switch from the classical cell cycle to an alternative partial cycle. This partial cycle bypasses mitosis and allows for multiple rounds of genome duplication without cell division, giving rise to cells with high ploidy numbers. This

  6. An in vitro co-culture model of esophageal cells identifies ascorbic acid as a modulator of cell competition

    Directory of Open Access Journals (Sweden)

    Gardiner Kristin L

    2011-10-01

    Full Text Available Abstract Background The evolutionary dynamics between interacting heterogeneous cell types are fundamental properties of neoplastic progression but can be difficult to measure and quantify. Cancers are heterogeneous mixtures of mutant clones but the direct effect of interactions between these clones is rarely documented. The implicit goal of most preventive interventions is to bias competition in favor of normal cells over neoplastic cells. However, this is rarely explicitly tested. Here we have developed a cell culture competition model to allow for direct observation of the effect of chemopreventive or therapeutic agents on two interacting cell types. We have examined competition between normal and Barrett's esophagus cell lines, in the hopes of identifying a system that could screen for potential chemopreventive agents. Methods One fluorescently-labeled normal squamous esophageal cell line (EPC2-hTERT was grown in competition with one of four Barrett's esophagus cell lines (CP-A, CP-B, CP-C, CP-D under varying conditions and the outcome of competition measured over 14 days by flow cytometry. Results We demonstrate that ascorbic acid (vitamin C can help squamous cells outcompete Barrett's cells in this system. We are also able to show that ascorbic acid's boost to the relative fitness of squamous cells was increased in most cases by mimicking the pH conditions of gastrointestinal reflux in the lower esophagus. Conclusions This model is able to integrate differential fitness effects on various cell types, allowing us to simultaneously capture effects on interacting cell types without having to perform separate experiments. This model system may be used to screen for new classes of cancer prevention agents designed to modulate the competition between normal and neoplastic cells.

  7. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.

    Directory of Open Access Journals (Sweden)

    David P Stonko

    Full Text Available Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this mo