WorldWideScience

Sample records for purity germanium detectors

  1. Event timing in high purity germanium coaxial detectors

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-08-01

    The timing of gamma ray radiation in systems using high purity coaxial germanium detectors is analyzed and compared to that of systems using Ge(Li) detectors. The analysis takes into account the effect of the residual impurities on the electric field distribution, and hence on the rate of rise of the electrical pulses delivered to the timing module. Conditions under which the electric field distribution could lead to an improvement in timing performance, are identified. The results of the analysis confirm the experimental results published elsewhere and when compared with those for Ge(Li) detectors, which usually operate under conditions of charge carrier velocity saturation, confirm that high purity germanium detectors need not have inferior timing characteristics. A chart is given to provide a quantitative basis on which the trade off between the radius of the detector and its time resolution may be made

  2. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    International Nuclear Information System (INIS)

    Volynets, Oleksandr

    2012-01-01

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  3. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Volynets, Oleksandr

    2012-07-27

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  4. Characterization of a high-purity germanium detector for small-animal SPECT.

    Science.gov (United States)

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  5. Calibration of Single High Purity Germanium Detector for Whole Body Counter

    International Nuclear Information System (INIS)

    Taha, T.M.; Morsi, T.M.

    2009-01-01

    A new Accuscan II single germanium detector for whole body counter was installed in NRC (Egypt). The current paper concerned on calibration of single high purity germanium detector for whole body counter. Physical parameters affecting on performance of whole body counter such as linearity, minimum detectable activity and source detector distance, SDD were investigated. Counting efficiencies for the detector have been investigated in rear wall, fixed diagnostic position in air. Counting efficiencies for organ compartments such as thyroid, lung, upper and lower gastrointestinal tract have been investigated using transfer phantom in fixed diagnostic and screening positions respectively. The organ compartment efficiencies in screening geometry were higher than that value of diagnostic geometry by a factor of three. The committed dose equivalents of I-131 in thyroid were ranged from 0.073 ± 0.004 to 1.73±0.09 mSv and in lung was 0.02±0.001 mSv

  6. Charge collection performance of a segmented planar high-purity germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom)], E-mail: R.Cooper@liverpool.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Dobson, J. [Rosemere Cancer Centre, Royal Preston Hospital, Preston PR2 9HT (United Kingdom)

    2008-10-01

    High-precision scans of a segmented planar high-purity germanium (HPGe) detector have been performed with a range of finely collimated gamma ray beams allowing the response as a function of gamma ray interaction position to be quantified. This has allowed the development of parametric pulse shape analysis (PSA) techniques and algorithms for the correction of imperfections in performance. In this paper we report on the performance of this detector, designed for use in a positron emission tomography (PET) development system.

  7. TIGRESS highly-segmented high-purity germanium clover detector

    Science.gov (United States)

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  8. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  9. Automation of the Characterization of High Purity Germanium Detectors

    Science.gov (United States)

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  10. Perfomance of a high purity germanium multi-detector telescope for long range particles

    International Nuclear Information System (INIS)

    Riepe, G.; Protic, D.; Suekoesd, C.; Didelez, J.P.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.

    1980-01-01

    A telescope of stacked high purity germanium detectors designed for long range charged particles was tested using medium energy protons. Particle identification and the rejection of the low energy tail could be accomplished on-line allowing the measurement of complex spectra. The efficiency of the detector stack for protons was measured up to 156 MeV incoming energy. The various factors affecting the energy resolution are discussed and their estimated contributions are compared with the experimental results

  11. Bibliographical study on the high-purity germanium radiation detectors used in gamma and X spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain

    1979-03-01

    The germanium or silicon lithium-drifted detectors, Ge(Li) or Si(Li), and high-purity germanium detectors, HP Ge (impurity concentration approximately 10 10 cm -3 ), are the most commonly used at the present time as gamma and X-ray spectrometers. The HP Ge detectors for which room temperature storage is the main characteristic can be obtained with a large volume and a thin window, and are used as the Ge(Li) in γ ray spectrometry or the Si(Li) in X-ray spectrometry. This publication reviews issues from 1974 to 1978 on the state of the art and applications of the HP Ge semiconductor detectors. 101 bibliographical notices with French summaries are presented. An index for authors, documents and periodicals, and subjects is included [fr

  12. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  13. High-purity germanium crystal growing

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10 10 cm - 3 and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers

  14. Comparison of Response Characteristics of High-Purity Germanium Detectors using Analog Versus Digital Processing

    International Nuclear Information System (INIS)

    Luke, S J; Raschke, K

    2004-01-01

    In this article we will discuss some of the results of the response characteristics of High Purity germanium detectors using analog versus digital processing of the signals that are outputted from the detector. The discussion will focus on whether or not there is a significant difference in the response of the detector with digital electronics that it limits the ability of the detection system to get reasonable gamma ray spectrometric results. Particularly, whether or not the performance of the analysis code Pu600 is compromised

  15. Characterisation of two AGATA asymmetric high purity germanium capsules

    International Nuclear Information System (INIS)

    Colosimo, S.J.; Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S.; Lazarus, I.H.; Nolan, P.J.; Simpson, J.; Unsworth, C.

    2015-01-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array

  16. Characterisation of two AGATA asymmetric high purity germanium capsules

    Energy Technology Data Exchange (ETDEWEB)

    Colosimo, S.J., E-mail: sjc@ns.ph.liv.ac.uk [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Unsworth, C. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2015-02-11

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  17. Ultra low energy-ultra low background high purity germanium detectors for studies on dark matter

    International Nuclear Information System (INIS)

    Soma, A.K.; Singh, V.; Singh, L.; Singh, M.K.; Wong, H.T.

    2009-01-01

    Weakly Interacting Massive Particles (WIMP) are the leading DM candidates. Super symmetric particles (SUSY) are one of the leading WIMP candidates. To probe this least explored region Taiwan EXperiments On NeutrinO collaboration is pursuing research and development program by using High Purity Germanium detectors (HPGe). These detectors offer a matured technology to scale up the detectors and achieve sub-keV level threshold i.e. few hundreds of eV, economically. The various detectors developed by the collaboration is shown in the below figure. The current goal of the collaboration is to develop detectors of kg-scale target mass, ∼100 eV threshold and low-background specification for the studies on WIMPs, μ v and neutrino - nucleus coherent scattering

  18. Amorphous germanium as an electron or hole blocking contact on high-purity germanium detectors

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1976-10-01

    Experiments were performed in an attempt to make thin n + contacts on high-purity germanium by the solid phase/sup 1)/ epitaxial regrowth of arsenic doped amorphous germanium. After cleaning the crystal surface with argon sputtering and trying many combinations of layers, it was not found possible to induce recrystallization below 400 0 C. However, it was found that simple thermally evaporated amorphous Ge made fairly good electron or hole blocking contacts. Excellent spectrometers have been made with amorphous Ge replacing the n + contact. As presently produced, the amorphous Ge contact diodes show a large variation in high-voltage leakage current

  19. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  20. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  1. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  2. Pulse shapes and surface effects in segmented germanium detectors

    International Nuclear Information System (INIS)

    Lenz, Daniel

    2010-01-01

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76 Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76 Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  3. The Influence Of Dead Layer Effect On The Characteristics Of The High Purity Germanium P-Type Detector

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    2011-01-01

    The present work aims at reviewing the studies of the influence of dead layer effect on the characteristics of a high purity germanium (HPGe) p-type detector, obtained by the author and his colleagues in the recent years. The object for study was the HPGe GC1518 detector-based gamma spectrometer of the Center for Nuclear Techniques, Ho Chi Minh City. The studying problems were: The modeling of an HPGe detector-based gamma spectrometer with using the MCNP code; the method of determining the thickness of dead layer by experimental measurements of gamma spectra and the calculations using MCNP code; the influence of material parameters and dead layer on detector efficiency; the increase of dead layer thickness over the operating time of the GC1518 detector; the influence of dead layer thickness increase on the decrease of detector efficiency; the dead layer effect for the gamma spectra measured in the GC1518 detector. (author)

  4. Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

    Science.gov (United States)

    Saizu, Mirela Angela

    2016-09-01

    The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV-1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of 241Am, 57Co, 133Ba, 137Cs, 60Co, and 152Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

  5. Zone refining high-purity germanium

    International Nuclear Information System (INIS)

    Hubbard, G.S.; Haller, E.E.; Hansen, W.L.

    1977-10-01

    The effects of various parameters on germanium purification by zone refining have been examined. These parameters include the germanium container and container coatings, ambient gas and other operating conditions. Four methods of refining are presented which reproducibly yield 3.5 kg germanium ingots from which high purity (vertical barN/sub A/ - N/sub D/vertical bar less than or equal to2 x 10 10 cm -3 ) single crystals can be grown. A qualitative model involving binary and ternary complexes of Si, O, B, and Al is shown to account for the behavior of impurities at these low concentrations

  6. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  7. High Purity Germanium Detector as part of Health Canada's Mobile Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stocki, Trevor J.; Bouchard, Claude; Rollings, John; Boudreau, Marc-Oliver; McCutcheon- Wickham, Rory; Bergman, Lauren [Radiation Protection Bureau, Health Canada, AL6302D, 775 Brookfield Road, Ottawa, K1A 0K9 (Canada)

    2014-07-01

    In the event of a nuclear emergency on Canadian soil, Health Canada has designed and equipped two Mobile Nuclear Labs (MNLs) which can be deployed near a radiological accident site to provide radiological measurement capabilities. These measurements would help public authorities to make informed decisions for radiation protection recommendations. One of the MNLs has been outfitted with a High Purity Germanium (HPGe) detector within a lead castle, which can be used for identification as well as quantification of gamma emitting radioisotopes in contaminated soil, water, and other samples. By spring 2014, Health Canada's second MNL will be equipped with a similar detector to increase sample analysis capacity and also provide redundancy if one of the detectors requires maintenance. The Mobile Nuclear Lab (MNL) with the HPGe detector has been successfully deployed in the field for various exercises. One of these field exercises was a dirty bomb scenario where an unknown radioisotope required identification. A second exercise was an inter-comparison between the measurements of spiked soil and water samples, by two field teams and a certified laboratory. A third exercise was the deployment of the MNL as part of a full scale nuclear exercise simulating an emergency at a Canadian nuclear power plant. The lessons learned from these experiences will be discussed. (authors)

  8. Experience from operating germanium detectors in GERDA

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76Ge was set (T-0ν1/2 > 2.1 · 1025 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats.

  9. Surface passivation of high-purity germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.; Edmondson, M.; Lawson, E.M.

    1993-01-01

    The experimental work consists of two parts. The first involves fabrication of hyper-pure germanium gamma ray detectors using standard surface treatment, chemical etchings and containment in a suitable cryostat. Then, after cooling the detectors to 77 K, γ-ray emissions from radioisotopes are resolved, resolution, depletion depth, V R versus I R characteristics and /N A -N D / of the germanium are measured. The second part of the work involves investigation of surface states in an effort to achieve long-term stability of operating characteristics. Several methods are used: plasma hydrogenation, a-Si and a-Ge pinch-off effect and simple oxidation. A-Ge and a-Si thicknesses were measured using Rutherford backscattering techniques; surface states were measured with deep level transient spectroscopy and diode reverse current versus reverse voltage plots. Some scanning electron microscope measurements were used in determining major film contaminants during backscattering of a-Si and a-Ge films. Surface passivation studies revealed unexpected hole trapping defects generated when a-Ge:H film is applied. The a-Si:H films were found to be mechanically strong, no defect traps were found and preliminary results suggest that such films will be good passivants. 14 refs., 2 tabs., 7 figs., 13 ills

  10. Array of germanium detectors for nuclear safeguards

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data-acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through moderns and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with an overall resolution that is between the resolution of the best detector and that of the worst

  11. Characterisation of the SmartPET planar Germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm{sup 3} spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a {gamma}-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  12. Experience from operating germanium detectors in GERDA

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76 Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76 Ge was set (T- 0ν 1/2 > 2.1 · 10 25 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats. (paper)

  13. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  14. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    Science.gov (United States)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  15. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  16. The germanium wall of the GEM detector system GEM Collaboration

    International Nuclear Information System (INIS)

    Betigeri, M.; Biakowski, E.; Bojowald, H.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Igel, S.; Ilieva, J.; Jarczyk, L.; Jochmann, M.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, J.; Lippert, G.; Machner, H.; Magiera, A.; Nann, H.; Pentchev, L.; Plendl, H.S.; Protic, D.; Razen, B.; Rossen, P. von; Roy, B.J.; Siudak, R.; Smyrski, J.; Srikantiah, R.V.; Strzakowski, A.; Tsenov, R.; Zolnierczuk, P.A.; Zwoll, K.

    1999-01-01

    A stack of annular detectors made of high-purity germanium was developed. The detectors are position sensitive with radial structures. The first one ('Quirl') is double-sided position sensitive defining 40,000 pixels, the following three (E1, E2 and E3) have 32 wedges each. The Quirl acts as tracker while the other three act as calorimeter. The stack was successfully operated in meson production reactions close to threshold

  17. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  18. Analysis of the dead layer of a detector of germanium with code ultrapure Monte Carlo SWORD-GEANT; Analisis del dead layer de un detector de germanio ultrapuro con el codigo de Monte Carlo SWORDS-GEANT

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Ortiz, J.; Rodenas, J.; Verdu, G.

    2014-07-01

    In this paper the use of Monte Carlo code SWORD-GEANT is proposed to simulate an ultra pure germanium detector High Purity Germanium detector (HPGe) detector ORTEC specifically GMX40P4, coaxial geometry. (Author)

  19. Trace radioactive measurement in foodstuffs using high purity germanium detector

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Racho, Joseph Michael D.; Castaneda, Soledad S.; Almoneda, Rosalina V.; Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.

    2010-01-01

    Trace radioactivity in food has been seriously considered sources of potential harm after the accidental radioactive releases in the last decades which led to contamination of the food chain. Countermeasures are being used to reduce the radiological health risk to the population and to ensure that public safety and international commitments are met. Investigation of radioactive traces in foods was carried out by gamma-ray spectrometry. The radionuclides being measured were fission products 1 37Cs and 1 34Cs and naturally occurring 4 0Κ. Gamma-ray measurements were performed using a hybrid gamma-ray counting system with coaxial p-type Tennelec High Purity Germanium (HPGe) detector with relative efficiency of 18.4%. Channels were calibrated to energies using a standard check source with 1 37Cs and 6 0Co present. Self-shielding within samples was taken into account by comparing directly with reference standards of similar matrix and geometry. Efficiencies of radionuclides of interests were accounted in calculating the activity concentrations in the samples. Efficiency calibration curve was generated using an in-house validated program called FINDPEAK, a least-square method that fits a polynomial up to sixth-order of equation. Lower Limits of Detection (LLD) obtained for both 1 37Cs and 1 34Cs ranges from 1-6 Bq/Kg depending on the sample matrix. In the last five years, there have been no foodstuffs analyzed exceeded the local and international regulatory limit of 1000Bq/Kg for the summed activities of 1 37Cs and 1 34Cs. (author)

  20. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  1. Sensitive method for the determination of rare earth elements by radioisotope-excited XRF employing a high purity germanium detector in optimized geometry

    International Nuclear Information System (INIS)

    Lal, M.; Joseph, D.; Patra, P.K.; Bajpal, H.N.

    1993-01-01

    A close-coupled side-source geometrical configuration is proposed for obtaining a high detection sensitivity for rare earth elements (57 ≤ Z ≤ 69) by radioisotope-excited energy-dispersive x-ray fluorescence spectrometry. In this configuration a disc source of 241 Am (100 mCi), a high-purity germanium detector and thin samples of rare earth elements on a Mylar backing are employed in an optimized geometry to achieve detection limits in the range 20-50 ng for these elements in a counting time of 1 h. (author)

  2. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  3. Astroparticle physics with a customized low-background broad energy Germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Amman, M.; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fujikawa, Brian; Fuller, Erin S.; Gehman, Victor M.; Giovanetti, G. K.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Hossbach, Todd W.; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Prior, Gersende; Qian, J.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.; Zimmerman, S.

    2011-10-01

    The Majorana Collaboration is building the Majorana Demonstrator, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The Majorana Demonstrator will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c² mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the Majorana Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.

  4. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    International Nuclear Information System (INIS)

    Sandie, W.G.; Nakano, G.H.; Chase, L.F. Jr.; Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.

    1988-01-01

    A balloon borne gamma-ray spectrometer comprising an array of high-purity n-type germanium (HPGe) detectors having geometric area 119 cm 2 , resolution 2.5 keV at 1.0 MeV, surrounded by an active NaI (Tl) collimator and Compton suppressing anticoincidence shield nominally 10 cm thick, was flown from Alice Springs, Northern Territory, Australia, on May 29--30, 1987, 96 days after the observed neutrino pulse. The average column depth of residual atmosphere in the direction of SN 1987A at float altitude was 6.3 g cm-2 during the observation. SN 1987A was within the 22-deg full-width-half-maximum (FWHM) field of view for about 3300 s during May 29.9--30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56)-Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. With 80% of the data analyzed, the 3-sigma upper limit obtained for the 1238-keV line from Co(56) at the instrument resolution (about 3 keV) is 1.3 x 10-3 photons cm-2 s-1

  5. Performance and stability tests of bare high purity germanium detectors in liquid argon for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Barnabe Heider, Marik

    2009-05-27

    GERDA will search for neutrinoless double beta decay of {sup 76}Ge by using a novel approach of bare germanium detectors in liquid argon (LAr). Enriched germanium detectors from the previous Heidelberg-Moscow and IGEX experiments have been reprocessed and will be deployed in GERDA Phase-I. At the center of this thesis project is the study of the performance of bare germanium detectors in cryogenic liquids. Identical detector performance as in vacuum cryostats (2.2 keV FWHM at 1.3 MeV) was achieved in cryogenic liquids with a new low-mass detector assembly and contacts. One major result is the discovery of a radiation induced leakage current (LC) increase when operating bare detectors with standard passivation layers in LAr. Charge collection and build-up on the passivation layer were identified as the origin of the LC increase. It was found that diodes without passivation do not exhibit this feature. Three month-long stable operation in LAr at {proportional_to} 5 pA LC under periodic gamma irradiation demonstrated the suitability of the modi ed detector design. Based on these results, all Phase-I detectors were reprocessed without passivation layer and subsequently successfully characterized in LAr in the GERDA underground Detector Laboratory. The mass loss during the reprocessing was {proportional_to}300 g out of 17.9 kg and the exposure above ground {proportional_to} 5 days. This results in a negligible cosmogenic background increase of {proportional_to} 5.10{sup -4} cts/(keV.kg.y) at {sup 76}Ge Q{sub {beta}}{sub {beta}} for {sup 60}Co and {sup 68}Ge. (orig.)

  6. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  7. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  8. Improving axion detection sensitivity in high purity germanium detector based experiments

    Science.gov (United States)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  9. Germanium field-effect transistor made from a high-purity substrate

    International Nuclear Information System (INIS)

    Hansen, W.L.; Goulding, F.S.; Haller, E.E.

    1978-11-01

    Field effect transistors have been fabricated on high-purity germanium substrates using low-temperature technology. The aim of this work is to preserve the low density of trapping centers in high-quality starting material by low-temperature ( 0 C) processing. The use of germanium promises to eliminate some of the traps which cause generation-recombination noise in silicon field-effect transistors (FET's) at low temperatures. Typically, the transconductance (g/sub m/) in the germanium FET's is 10 mA/V and the gate leakage can be less than 10 -12 A. Present devices exhibit a large 1/f noise component and most of this noise must be eliminated if they are to be competitive with silicon FET's commonly used in high-resolution nuclear spectrometers

  10. Effect of the microstructure on electrical properties of high-purity germanium

    Science.gov (United States)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  11. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution

    CERN Document Server

    Rossi, G; Fajardo, P; Morse, J

    1999-01-01

    We present Monte Carlo computer simulations of the X-ray response of a micro-strip germanium detector over the energy range 30-100 keV. The detector consists of a linear array of lithographically defined 150 mu m wide strips on a high purity monolithic germanium crystal of 6 mm thickness. The simulation code is divided into two parts. We first consider a 10 mu m wide X-ray beam striking the detector surface at normal incidence and compute the interaction processes possible for each photon. Photon scattering and absorption inside the detector crystal are simulated using the EGS4 code with the LSCAT extension for low energies. A history of events is created of the deposited energies which is read by the second part of the code which computes the energy histogram for each detector strip. Appropriate algorithms are introduced to account for lateral charge spreading occurring during charge carrier drift to the detector surface, and Fano and preamplifier electronic noise contributions. Computed spectra for differen...

  12. High-purity germanium detection system for the in vivo measurement of americium and plutonium

    International Nuclear Information System (INIS)

    Tyree, W.H.; Falk, R.B.; Wood, C.B.; Liskey, R.W.

    1976-01-01

    A high-purity germanium (HPGe) array, photon-counting system has been developed for the Rocky Flats Plant Body-Counter Medical Facility. The newly improved system provides exceptional resolutions of low-energy X-ray and gamma-ray spectra associated with the in vivo deposition of plutonium and americium. Described are the operational parameters of the system and some qualitative results illustrating detector performance for the photon emissions produced from the decay of plutonium and americium between energy ranges from 10 to 100 kiloelectron volts. Since large amounts of data are easily generated with the system, data storage, analysis, and computer software developments continue to be an essential ingredient for processing spectral data obtained from the detectors. Absence of quantitative data is intentional. The primary concern of the study was to evaluate the effects of the various physical and electronic operational parameters before adding those related entirely to a human subject

  13. First 10 kg of naked Germanium detectors in liquid nitrogen installed in the GENIUS-Test-Facility

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Chkvorets, O.; Krivosheina, I.V.; Strecker, H.; Tomei, C.

    2003-01-01

    The first four naked high-purity Germanium detectors were installed successfully in liquid nitrogen in the GENIUS-Test-Facility in the GRAN SASSO Underground Laboratory on May 5, 2003. This is the first time ever that this novel technique aiming at extreme background reduction in search for rare decays is going to be tested underground. First operational parameters are presented

  14. Manufacturing P-N junctions in germanium bodies

    International Nuclear Information System (INIS)

    Hall, R.N.

    1980-01-01

    A method of producing p-n junctions in Ge so as to facilitate their use as radiation detectors involves forming a body of high purity p-type germanium, diffusing lithium deep into the body, in the absence of electrolytic processes, to form a junction between n-type and p-type germanium greater than 1 mm depth. (UK)

  15. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  16. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  17. Coaxial nuclear radiation detector with deep junction and radial field gradient

    International Nuclear Information System (INIS)

    Hall, R.N.

    1979-01-01

    Germanium radiation detectors are manufactured by diffusion lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Coaxial germanium detectors comprising deep p-n junctions are produced by the lithium diffusion process

  18. Method for manufacturing nuclear radiation detector with deep diffused junction

    International Nuclear Information System (INIS)

    Hall, R.N.

    1977-01-01

    Germanium radiation detectors are manufactured by diffusing lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 C and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Production of coaxial germanium detectors comprising deep p-n junctions by the lithium diffusion process is described

  19. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  20. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  1. Carbon in high-purity germanium

    International Nuclear Information System (INIS)

    Haller, E.E.; Hansen, W.L.; Luke, P.; McMurray, R.; Jarrett, B.

    1981-10-01

    Using 14 C-spiked pyrolytic graphite-coated quartz crucibles for the growth of nine ultra-pure germanium single crystals, we have determined the carbon content and distribution in these crystals. Using autoradiography, we observe a rapidly decreasing carbon cluster concentration in successively grown crystals. Nuclear radiation detectors made from the crystals measure the betas from the internally decaying 14 C nuclei with close to 100% efficiency. An average value for the total carbon concentration [ 14 C + 12 C] is approx. 2 x 10 14 cm -3 , a value substantially larger than expected from earlier metallurgical studies. Contrary to the most recent measurement, we find the shape of the beta spectrum to agree very well with the statistical shape predicted for allowed transitions

  2. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    International Nuclear Information System (INIS)

    Kroeninger, K.

    2007-01-01

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in 60 Co, 152 Eu and 228 Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  3. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  4. Germanium detector studies in the framework of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan

    2009-05-06

    The GERmanium Detector Array (GERDA) is an ultra-low background experiment under construction at Laboratori Nazionali del Gran Sasso. GERDA will search for {sup 76}Ge neutrinoless double beta decay with an aim for 100-fold reduction in background compared to predecessor experiments. This ambition necessitates innovative design approaches, strict selection of low-radioactivity materials, and novel techniques for active background suppression. The core feature of GERDA is its array of germanium detectors for ionizing radiation, which are enriched in {sup 76}Ge. Germanium detectors are the central theme of this dissertation. The first part describes the implementation, testing, and optimisation of Monte Carlo simulations of germanium spectrometers, intensively involved in the selection of low-radioactivity materials. The simulations are essential for evaluations of the gamma ray measurements. The second part concerns the development and validation of an active background suppression technique based on germanium detector signal shape analysis. This was performed for the first time using a BEGe-type detector, which features a small read-out electrode. As a result of this work, BEGe is now one of the two detector technologies included in research and development for the second phase of the GERDA experiment. A suppression of major GERDA backgrounds is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. The acceptance of {sup 228}Th double escape events, which are analogous to double beta decay, was kept at (89{+-}1)%. (orig.)

  5. Mechanically-cooled germanium detector using two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Takahashi, Koji

    1996-01-01

    In this paper, we present a developed mechanically-cooled germanium gamma-ray detector using Stirling refrigerators. Two Stirling refrigerators having cooling faculty of 1.5W at 80K were used to cool down a germanium detector element to 77K instead of a dewar containing liquid nitrogen. An 145cm 3 (56.0mmf x 59.1 mml) closed-end Ge(I) detector having relative detection efficiency of 29.4% was attached at the refrigerators. The size of the detector was 60cml x 15cmh x 15cmw. The lowest cooling temperature, 70K was obtained after 8 hours operation. The energy resolutions for 1.33MeV gamma-rays and for pulser signals were 2.43keV and 1.84keV at an amplifier shaping time of 2μsec, respectively

  6. Performance of a Small Anode Germanium Well detector

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-01-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types

  7. Performance of a Small Anode Germanium Well detector

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S., E-mail: aderemi.adekola@canberra.com; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-06-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types.

  8. HEROICA: A fast screening facility for the characterization of germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica [Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  9. Segmented Monolithic Germanium Detector Arrays for X-ray Absorption Spectroscopy. Final Report

    International Nuclear Information System (INIS)

    Hull, Ethan L.

    2011-01-01

    The experimental results from the Phase I effort were extremely encouraging. During Phase I PHDs Co. made the first strides toward a new detector technology that could have great impact on synchrotron x-ray absorption (XAS) measurements, and x-ray detector technology in general. Detector hardware that allowed critical demonstration measurements of our technology was designed and fabricated. This new technology allows good charge collection from many pixels on a single side of a multi-element monolithic germanium planar detector. The detector technology provides 'dot-like' collection electrodes having very low capacitance. The detector technology appears to perform as anticipated in the Phase I proposal. In particular, the 7-pixel detector studied showed remarkable properties; making it an interesting example of detector physics. The technology is enabled by the use of amorphous germanium contact technology on germanium planar detectors. Because of the scalability associated with the fabrication of these technologies at PHDs Co., we anticipate being able to supply larger detector systems at significantly lower cost than systems made in the conventional manner.

  10. Program LEPS to addition of gamma spectra from germanium detectors

    International Nuclear Information System (INIS)

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  11. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Liu, Jing

    2009-01-01

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of 76 Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse shape

  12. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  13. Development of revitalisation technique for impaired lithium doped germanium detector

    International Nuclear Information System (INIS)

    Singh, N.S.B.; Rafi Ahmed, A.G.; Balasubramanian, G.R.

    1994-01-01

    Semiconductor detectors play very significant role in photon detection and are important tools in the field of gamma spectroscopy. Lithium doped germanium detectors belong to this category. The development of revitalisation technique for these impaired detectors are discussed in this report

  14. Position resolution simulations for the inverted-coaxial germanium detector, SIGMA

    Science.gov (United States)

    Wright, J. P.; Harkness-Brennan, L. J.; Boston, A. J.; Judson, D. S.; Labiche, M.; Nolan, P. J.; Page, R. D.; Pearce, F.; Radford, D. C.; Simpson, J.; Unsworth, C.

    2018-06-01

    The SIGMA Germanium detector has the potential to revolutionise γ-ray spectroscopy, providing superior energy and position resolving capabilities compared with current large volume state-of-the-art Germanium detectors. The theoretical position resolution of the detector as a function of γ-ray interaction position has been studied using simulated detector signals. A study of the effects of RMS noise at various energies has been presented with the position resolution ranging from 0.33 mm FWHM at Eγ = 1 MeV, to 0.41 mm at Eγ = 150 keV. An additional investigation into the effects pulse alignment have on pulse shape analysis and in turn, position resolution has been performed. The theoretical performance of SIGMA operating in an experimental setting is presented for use as a standalone detector and as part of an ancillary system.

  15. Germanium microstrip detectors with 50 and 100 μm pitch

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Haller, E.E.; Hansen, W.L.; Luke, P.N.

    1984-01-01

    Multi-electrode germanium detectors are being used as an active target for decay path measurements of charmed mesons. The procedure used to fabricate such detectors is described and a brief analysis of their performance is given. (orig.)

  16. Performance of a 6x6 segmented germanium detector for {gamma}-ray tracking

    Energy Technology Data Exchange (ETDEWEB)

    Valiente-Dobon, J.J. E-mail: j.valiente-dobon@surrey.ac.uk; Pearson, C.J.; Regan, P.H.; Sellin, P.J.; Gelletly, W.; Morton, E.; Boston, A.; Descovich, M.; Nolan, P.J.; Simpson, J.; Lazarus, I.; Warner, D

    2003-06-01

    A 36 fold segmented germanium coaxial detector has been supplied by EURISYS MESURES. The outer contact is segmented both radially and longitudinally. The signals from the fast preamplifiers have been digitised by 12 bit, 40 MHz ADCs. In this article we report preliminary results obtained using this detector and their relevance for future germanium {gamma}-ray tracking arrays.

  17. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Irlbeck, Sabine

    2014-01-30

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  18. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    International Nuclear Information System (INIS)

    Irlbeck, Sabine

    2014-01-01

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  19. Timing of gamma rays in coaxial germanium detector systems

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-01-01

    A study is reported on the timing uncertainty in gamma ray coaxial germanium detector systems. The work deals with the zero cross over method which is widely used to reduce the dependence of the instant of timing on the radiation energy absorbed and on the position within the detector at which absorption takes place. It is found that the amplitude risetime compensated (ARC) method gives, under normal conditions, the best resolution at a specific energy. For higher energies, the resolution improves and there is no shift of the mean instant of timing. The method is therefore well suited for wide energy coverage. The parameters involved in implementing an ARC system for optimum performance at a specific energy are identified in terms of the preamplifier noise level and risetime. A trade off can be made between the resolutions at high and at low energies. The time resolution attained is given by means of a series of charts which use normalized dimensionless variables for ready application to any given case. Lithium compensated Ge detectors which normally operate under conditions of velocity saturation of the charge carriers by applying sufficient bias voltage create an electric field in excess of 1 kV/cm throughout the depleted region. High purity Ge detectors where velocity saturation may not be reached within certain parts of the depleted region are studied. Special attention is given to the probability of pulses being incorrectly timed because of their slow rise or small magnitude. Such incorrect timing is energy-dependent and results in a noticeable distortion of the timing spectrum that relates to a wide energy range. Limitations on system parameters to keep the probability of incorrect timing below a specified fraction are given

  20. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  1. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharov, Ivan [GSI, Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino, Turin (Italy); INFN, Torino, Turin (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2013-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro-mechanical device and a new arrangement of the crystals is needed. This poster shows the ongoing development of the germanium detectors. Test measurements of a single crystal prototype with an improved cooling concept are shown. Thermal simulations for a triple crystal detector are presented. Aditionally studies of the optimization of the detector arrangement inside the PANDA barrel spectrometer are shown. Finally the status on digital pulse shape analysis is presented which will be necessary to deal with high counting rates and to recover the high original energy resolution in case of neutron damage.

  2. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  3. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector

    International Nuclear Information System (INIS)

    Han, L.

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs

  4. Charge Spreading and Position Sensitivity in a Segmented Planar Germanium Detector (Preprint)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Gehrels, N; Johnson, W. N; Kurfess, J. D; Phlips, B. P; Tueller, J

    1998-01-01

    The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector...

  5. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    Science.gov (United States)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  6. Liquid-helium scintillation detection with germanium photodiodes

    International Nuclear Information System (INIS)

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  7. Characterization of segmented large volume, high purity germanium detectors

    International Nuclear Information System (INIS)

    Bruyneel, B.

    2006-01-01

    γ-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple γ-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by γ-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics. The results are

  8. Characterization of segmented large volume, high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2006-07-01

    {gamma}-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple {gamma}-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by {gamma}-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics

  9. CDEX-1 1 kg point-contact germanium detector for low mass dark matter searches

    International Nuclear Information System (INIS)

    Kang Kejun; Yue Qian; Wu Yucheng

    2013-01-01

    The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P + electrode and the outside N + electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P + and N + electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments. (authors)

  10. Modeling an array of encapsulated germanium detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A probability model has been presented for understanding the operation of an array of encapsulated germanium detectors generally known as composite detector. The addback mode of operation of a composite detector has been described considering the absorption and scattering of γ-rays. Considering up to triple detector hit events, we have obtained expressions for peak-to-total and peak-to-background ratios of the cluster detector, which consists of seven hexagonal closely packed encapsulated HPGe detectors. Results have been obtained for the miniball detectors comprising of three and four seven hexagonal closely packed encapsulated HPGe detectors. The formalism has been extended to the SPI spectrometer which is a telescope of the INTEGRAL satellite and consists of nineteen hexagonal closely packed encapsulated HPGe detectors. This spectrometer comprises of twelve detector modules surrounding the cluster detector. For comparison, we have considered a spectrometer comprising of nine detector modules surrounding the three detector configuration of miniball detector. In the present formalism, the operation of these sophisticated detectors could be described in terms of six probability amplitudes only. Using experimental data on relative efficiency and fold distribution of cluster detector as input, the fold distribution and the peak-to-total, peak-to-background ratios have been calculated for the SPI spectrometer and other composite detectors at 1332 keV. Remarkable agreement between experimental data and results from the present formalism has been observed for the SPI spectrometer.

  11. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    International Nuclear Information System (INIS)

    Heusser, G.; Weber, M.; Hakenmüller, J.; Laubenstein, M.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H.

    2015-01-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg -1 for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites

  12. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G., E-mail: gerd.heusser@mpi-hd.mpg.de; Weber, M., E-mail: marc.weber@mpi-hd.mpg.de; Hakenmüller, J. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100, Assergi, AQ (Italy); Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany)

    2015-11-09

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  13. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Hakenmueller, J.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-11-15

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut fuer Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤ 100μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites. (orig.)

  14. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.; Kalinowski, Martin B.; Pozzi, Sara A.

    2017-09-27

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  15. Program LEP to addition of gamma spectra from germanium detectors; Programa LEPS para suma de espectros gammas de detectores de germanio

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L

    1986-07-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs.

  16. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  17. Background recognition in Ge detectors by pulse shape analysis

    International Nuclear Information System (INIS)

    Petry, F.; Piepke, A.; Strecker, H.; Klapdor-Kleingrothaus, H.V.; Balysh, A.; Belyaev, S.T.; Demehin, A.; Gurov, A.; Kondratenko, I.; Kotel'nikov, D.; Lebedev, V.I.; Landis, D.; Madden, N.; Pehl, R.H.

    1993-01-01

    A method of event identification that distinguishes single and multiple-site events by determining the number of interactions in a high purity germanium detector is reported. The selectivity of the method has been experimentally verified. (orig.)

  18. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities

  19. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Bradley, A.W.; Chan, Y.D.; Mertens, S.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J.; Hoppe, E.W.; Kouzes, R.T.; LaFerriere, B.D.; Orrell, J.L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Barabash, A.S.; Konovalov, S.I.; Yumatov, V. [National Research Center ' ' Kurchatov Institute' ' Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E.; Galindo-Uribarri, A.; Radford, D.C.; Varner, R.L.; White, B.R.; Yu, C.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Duke University, Department of Physics, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M.; Cuesta, C.; Detwiler, J.A.; Gruszko, J.; Guinn, I.S.; Leon, J.; Robertson, R.G.H. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Caldwell, A.S.; Christofferson, C.D.; Dunagan, C.; Howard, S.; Suriano, A.M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.H.; Elliott, S.R.; Goett, J.; Massarczyk, R.; Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States); Efremenko, Yu. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Ejiri, H. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Finnerty, P.S.; Gilliss, T.; Giovanetti, G.K.; Henning, R.; Howe, M.A.; MacMullin, J.; Meijer, S.J.; O' Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J.E.; Vorren, K.; Xu, W. [Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Green, M.P. [North Carolina State University, Department of Physics, Raleigh, NC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Guiseppe, V.E.; Tedeschi, D.; Wiseman, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Jasinski, B.R. [University of South Dakota, Department of Physics, Vermillion, SD (United States); Keeter, K.J. [Black Hills State University, Department of Physics, Spearfish, SD (United States); Kidd, M.F. [Tennessee Tech University, Cookeville, TN (United States); Martin, R.D. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Romero-Romero, E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Wilkerson, J.F. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2016-11-15

    A search for Pauli-exclusion-principle-violating K{sub α} electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 x 10{sup 30} s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 x 10{sup 30} s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of {sup 76}Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. (orig.)

  20. Active volume studies with depleted and enriched BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Katharina von [Eberhard Karls Universitaet Tuebingen (Germany); Universita degli Studi di Padova, Padua (Italy); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment is currently taking data for the search of the 0νββ decay in {sup 76}Ge. In 2013, 30 newly manufactured Broad Energy Germanium (BEGe) diodes will be deployed which will double the active mass within Gerda. These detectors were fabricated from high-purity germanium enriched in {sup 76}Ge and tested in the HADES underground laboratory, owned by SCK.CEN, in Mol, Belgium. As the BEGes are source and detector at the same time, one crucial parameter is their active volume which directly enters into the evaluation of the half-life. This talk illustrates the dead layer and active volume determination of prototype detectors from depleted germanium as well as the newly produced detectors from enriched material, using gamma spectroscopy methods and comparing experimental results to Monte-Carlo simulations. Recent measurements and their results are presented, and systematic effects are discussed.

  1. High-resolution gamma-ray measurement systems using a compact electro- mechanically cooled detector system and intelligent software

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Neufeld, K.W.

    1995-01-01

    Obtaining high-resolution gamma-ray measurements using high-purity germanium (HPGe) detectors in the field has been of limited practicality due to the need to use and maintain a supply of liquid nitrogen (LN 2 ). This same constraint limits high-resolution gamma measurements in unattended safeguards or treaty Verification applications. We are developing detectors and software to greatly extend the applicability of high-resolution germanium-based measurements for these situations

  2. Strip interpolation in silicon and germanium strip detectors

    International Nuclear Information System (INIS)

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

  3. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bionindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  4. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1983-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  5. Long-wavelength germanium photodetectors by ion implantation

    International Nuclear Information System (INIS)

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  6. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    International Nuclear Information System (INIS)

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N.; Helsby, W. I.

    2016-01-01

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  7. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    Energy Technology Data Exchange (ETDEWEB)

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N. [Diamond Light Source Ltd, Oxfordshire (United Kingdom); Helsby, W. I. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2016-07-27

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  8. A variable temperature cryostat that produces in situ clean-up germanium detector surfaces

    International Nuclear Information System (INIS)

    Pehl, R.H.; Madden, N.W.; Malone, D.F.; Cork, C.P.; Landis, D.A.; Xing, J.S.; Friesel, D.L.

    1988-11-01

    Variable temperature cryostats that can maintain germanium detectors at temperatures from 82 K to about 400 K while the thermal shield surrounding the detectors remains much colder when the detectors are warmed have been developed. Cryostats such as these offer the possibility of cryopumping material from the surface of detectors to the colder thermal shield. The diode characteristics of several detectors have shown very significant improvement following thermal cycles up to about 150 K in these cryostats. Important applications for cryostats having this attribute are many. 4 figs

  9. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  10. Evaluation of Segmented Amorphous-Contact Planar Germanium Detectors for Heavy-Element Research

    Science.gov (United States)

    Jackson, Emily G.

    The challenge of improving our understanding of the very heaviest nuclei is at the forefront of contemporary low-energy nuclear physics. In the last two decades, "in-beam" spectroscopy experiments have advanced from Z=98 to Z=104, Rutherfordium, allowing insights into the dynamics of the fission barrier, high-order deformations, and pairing correlations. However, new detector technologies are needed to advance to even heavier nuclei. This dissertation is aimed at evaluating one promising new technology; large segmented planar germanium wafers for this area of research. The current frontier in gamma-ray spectroscopy involves large-volume (>9 cm thick) coaxial detectors that are position sensitive and employ gamma-ray "tracking". In contrast, the detectors assessed in this dissertation are relatively thin (~1 cm) segmented planar wafers with amorphous-germanium strip contacts that can tolerate extremely high gamma-ray count rates, and can accommodate hostile neutron fluxes. They may be the only path to heavier "in-beam" spectroscopy with production rates below 1 nanobarn. The resiliency of these detectors against neutron-induced damage is examined. Two detectors were deliberately subjected to a non-uniform neutron fluence leading to considerable degradation of performance. The neutrons were produced using the 7Li(p, n)7Be reaction at the UMass Lowell Van-de-Graaff accelerator with a 3.7-MeV proton beam incident on a natural Li target. The energy of the neutrons emitted at zero degrees was 2.0 MeV, close to the mean energy of the fission neutron spectrum, and each detector was exposed to a fluence >3.6 x109 n/cm2. A 3-D software "trap-corrector" gain-matching algorithm considerably restored the overall performance. Other neutron damage mitigation tactics were explored including over biasing the detector and flooding the detector with a high gamma-ray count rate. Various annealing processes to remove neutron damage were investigated. An array of very large diameter

  11. Comparison of experimental and theoretical efficiency of HPGe X-ray detector

    International Nuclear Information System (INIS)

    Mohanty, B.P.; Balouria, P.; Garg, M.L.; Nandi, T.K.; Mittal, V.K.; Govil, I.M.

    2008-01-01

    The low energy high purity germanium (HPGe) detectors are being increasingly used for the quantitative estimation of elements using X-ray spectrometric techniques. The softwares used for quantitative estimation normally evaluate model based efficiency of detector using manufacturer supplied detector physical parameters. The present work shows that the manufacturer supplied detector parameters for low energy HPGe detectors need to be verified by comparing model based efficiency with the experimental ones. This is particularly crucial for detectors with ion implanted P type contacts

  12. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector; Mise au point d`un nouveau type de compteur germanium: le detecteur composite. Utilisation du detecteur TREFLE dans le multidetecteur EUROGAM

    Energy Technology Data Exchange (ETDEWEB)

    Han, L

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs.

  13. Imaging of gamma rays with the WINKLER high-resolution germanium spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, T.R.; Hamilton, T.W.; Hawley, J.D.; Kilner, J.R.; Murphy, M.J.; Nakano, G.H. (Luckheed Palo Alto Research Lab., Palo Alto, CA (US))

    1990-06-01

    The WINKLER spectrometer is a matrix of nine high-purity {ital n}-type germanium detectors developed for astrophysical observations and terrestrial radiation monitoring. The spectrometer has been fitted with a set of modulation collimator grids designed for imaging hard x-ray and gamma-ray sources by the Mertz, Nakano, and Kilner method. This technique employs a pair of gridded collimators in front of each detector with the number of grid bars varying from one to {ital N}, where {ital N} is the number of detectors. When the collimator pairs are rotated through a full 360-degree angular range, the detector signals provide the information for a two-dimensional band-limited Fourier reconstruction of order {ital N}. Tests of the spectrometer with single and multiple point sources as well as continuous source distributions are reported.

  14. The hyperion particle-γ detector array

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.O.; Burke, J.T.; Casperson, R.J.; Ota, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Fisher, S.; Parker, J. [Science, Technology and Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Beausang, C.W. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Dag, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Humby, P. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Department of Physics, University of Surrey, Surrey GU27XH (United Kingdom); Koglin, J. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McCleskey, E.; McIntosh, A.B.; Saastamoinen, A. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Tamashiro, A.S. [Department of Nuclear Science and Engineering, Oregon State University, Corvallis, OR 97331 (United States); Wilson, E. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Wu, T.C. [Department of Physics and Astronomy, University of Utah, Salt Lake City UT 84112-0830 (United States)

    2017-06-01

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. This article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  15. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.

    1991-11-01

    Surface barrier radiation detector made from high purity liquid phase epitaxial gallium arsenide wafers have been operated as X- and γ-ray detectors at various operating temperatures. Low energy isotopes are resolved including 241 Am at 40 deg C. and the higher gamma energies of 235 U at -80 deg C. 15 refs., 1 tab., 6 figs

  16. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of fabricating a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate...

  17. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  18. Bulk and surface event identification in p-type germanium detectors

    Science.gov (United States)

    Yang, L. T.; Li, H. B.; Wong, H. T.; Agartioglu, M.; Chen, J. H.; Jia, L. P.; Jiang, H.; Li, J.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Ma, J. L.; Sevda, B.; Sharma, V.; Singh, L.; Singh, M. K.; Singh, M. K.; Soma, A. K.; Sonay, A.; Yang, S. W.; Wang, L.; Wang, Q.; Yue, Q.; Zhao, W.

    2018-04-01

    The p-type point-contact germanium detectors have been adopted for light dark matter WIMP searches and the studies of low energy neutrino physics. These detectors exhibit anomalous behavior to events located at the surface layer. The previous spectral shape method to identify these surface events from the bulk signals relies on spectral shape assumptions and the use of external calibration sources. We report an improved method in separating them by taking the ratios among different categories of in situ event samples as calibration sources. Data from CDEX-1 and TEXONO experiments are re-examined using the ratio method. Results are shown to be consistent with the spectral shape method.

  19. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  20. Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Birkenbach, B.; Reiter, P. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany)

    2016-03-15

    The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a γ -ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed. (orig.)

  1. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Heng-Ye [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  2. The position response of a large-volume segmented germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Nolan, P.J.; Boston, A.J.; Dobson, J.; Gros, S.; Cresswell, J.R.; Simpson, J.; Lazarus, I.; Regan, P.H.; Valiente-Dobon, J.J.; Sellin, P.; Pearson, C.J.

    2005-01-01

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the γ-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions

  3. The position response of a large-volume segmented germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, M. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom)]. E-mail: mdescovich@lbl.gov; Nolan, P.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Dobson, J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Gros, S. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Regan, P.H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Valiente-Dobon, J.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Pearson, C.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2005-11-21

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the {gamma}-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions.

  4. Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.

    2007-01-01

    Typically, germanium detectors designed to have good sensitivity to low-energy photons and good efficiency at high energies are constructed from n-type crystals with a boron-implanted outer contact. These detectors usually exhibit inferior resolution and peak shape compared to ones made from p-type crystals. To overcome the resolution and peak-shape deficiencies, a new method of construction of a germanium detector element was developed. This has resulted in a gamma-ray detector with high sensitivity to photon energies from 14 keV to 2 MeV, while maintaining good resolution and peak shape over this energy range. Efficiency measurements, done according to the draft IEEE 325-2004 standard, show efficiencies typical of a GMX or n-type detector at low energies. The detectors are of large diameter suitable for counting extended samples such as filter papers. The Gaussian peak shape and good resolution typical of a GEM or p-type are maintained for the high count rates and peak separation needed for activation analysis. (author)

  5. The Future of Low Temperature Germanium as Dark Matter Detectors

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The Weakly Interactive Massive Particles (WIMPs) represent one of the most attractive candidates for the dark matter in the universe. With the combination of experiments attempting to detect WIMP scattering in the laboratory, of searches for their annihilation in the cosmos and of their potential production at the LHC, the next five years promise to be transformative. I will review the role played so far by low temperature germanium detectors in the direct detection of WIMPs. Because of its high signal to noise ratio, the simultaneous measurement of athermal phonons and ionization is so far the only demonstrated approach with zero-background. I will argue that this technology can be extrapolated to a target mass of the order of a tonne at reasonable cost and can keep playing a leading role, complementary to noble liquid technologies. I will describe in particular GEODM, the proposed Germanium Observatory for Dark Matter at the US Deep Underground Science and Engineering Laboratory (DUSEL).

  6. Dual germanium detector system for the routine assay of low level transuranics in soil

    International Nuclear Information System (INIS)

    Crowell, J.M.

    1980-01-01

    As an outgrowth of previous on soil radioassay, we have developed an automated assay system for determining the transuranic radionuclide content of soils, with particular interest in Pu. The system utilizes two commercial planar intrinsic germanium detectors in opposition. The large area of the detectors (2100 mm 2 ) and the thinness of the detector crystals (7 mm) permit sensitive analysis of the L x ray emission region of the transuranics (13 to 21 keV). With counting times of 5 hours, we obtain detection limits of 241 Am

  7. Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector

    International Nuclear Information System (INIS)

    Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.

    2010-01-01

    The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the γ-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the γ rays originated outside the target, the new generation of position sensitive γ-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the γ rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back γ rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.

  8. Background intercomparison with escape-suppressed germanium detectors in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Szuecs, Tamas; Bemmerer, Daniel [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)

    2014-07-01

    A key requirement for underground nuclear astrophysics experiments is the very low background level in germanium detectors underground. The reference for these purposes is the world's so far only underground accelerator laboratory for nuclear astrophysics, LUNA. LUNA is located deep underground in the Gran Sasso laboratory in Italy, shielded from cosmic rays by 1400 m of rock. The background at LUNA was studied in detail using an escape-suppressed Clover-type HPGe detector. Exactly the same detector was subsequently transported to the Felsenkeller underground laboratory in Dresden, shielded by 45 m of rock, and the background was shown to be only a factor of three higher than at LUNA when comparing the escape-suppressed spectra, with interesting consequences for underground nuclear astrophysics. As the next step of a systematic study of the effects of a combination of active and passive shielding on the cosmic ray induced background, this detector is now being brought to the ''Reiche Zeche'' mine in Freiberg/Sachsen, shielded by 150 m of rock. The data from the Freiberg measurement are shown and discussed.

  9. Germanium detectors and natural radioactivity in food

    Energy Technology Data Exchange (ETDEWEB)

    Garbini, Lucia [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GeDet-Collaboration

    2013-07-01

    Potassium is a very important mineral for many physiological processes, like fluid balance, protein synthesis and signal transmission in nerves. Many aliments like raisins, bananas or chocolate contain potassium. Natural potassium contains 0.012% of the radioactive isotope Potassium 40. This isotope decays via β{sup +} decay into a metastable state of Argon 40, which reaches its ground state emitting a gamma of 1460 keV. A commercially produced Germanium detector has been used to measure the energy spectra of different selected food samples. It was calibrated with KCl and potassium contents were extracted. Results verify the high potassium content of commonly recommended food samples. However, the measurement quantitatively differ from the expectations in several cases. One of the most interesting results concerns chocolate bars with different percentages of cacao.

  10. Gamma-ray escape peak characteristics of radiation-damaged reverse-electrode germanium coaxial detectors

    International Nuclear Information System (INIS)

    Pehl, R.H.; Hull, E.L.; Madden, N.W.; Xing Jingshu; Friesel, D.L.

    1996-01-01

    A comparison of the characteristics of full-energy gamma-ray peaks and their corresponding escape peaks when high energy photons interact in radiation damaged reverse-electrode (n-type) germanium coaxial detectors is presented. Coaxial detector geometry is the dominant factor, causing charge collection to be dramatically better for interactions occurring near the outer periphery of the detector as well as increasing of the probability of escape events occurring in this region. It follows that the resolution of escape peaks is better than that of ordinary gamma-ray peaks. This is experimentally verified. A nearly identical but undamaged detector exhibited significant Doppler broadening of single escape peaks. Because double escape events preferentially occur at outer radii, energy shifts of double escape reflect extremely small amounts of charge trapping in undamaged detectors. (orig.)

  11. 18F half-life measurement using a high-purity germanium detector

    International Nuclear Information System (INIS)

    Han, Jubong; Lee, K.B.; Park, T.S.; Lee, J.M.; Oh, P.J.; Lee, S.H.; Kang, Y.S.; Ahn, J.K.

    2012-01-01

    The half-life of 18 F has been measured using HPGe detectors with a 137 Cs reference source. The counting ratio of 511 keV γ-rays from 18 F to 622 keV γ-rays from 137 Cs was fitted for the half-life with a weighted least-square method. Uncertainties due to the systematic effects arising from the measurement of a high activity 18 F source were studied in detail. The half-life of 18 F was found to be (109.72±0.19) min. The result is in a good agreement with the recommended value of (109.728±0.019) min evaluated at the Laborotaire National Henri Becquerel (LNHB). - Highlights: ► The 18 F half-life was measured with a reference source and without it using HPGe detectors. ► We found the systematic effect ‘activity dynamic range effect’ by monitoring the counts of the reference source. ► This activity dynamic range effect was corrected by using the reference source method. ► The 18 F half-life using the reference source method was in a good agreement with the recommended value of LNHB.

  12. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    Science.gov (United States)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  13. Assessment of ambient-temperature, high-resolution detectors for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Ruhter, W.D.; McQuaid, J.H.; Lavietes, A.

    1993-01-01

    High-resolution, gamma- and x-ray spectrometry are used routinely in nuclear safeguards verification measurements of plutonium and uranium in the field. These measurements are now performed with high-purity germanium (HPGe) detectors that require cooling liquid-nitrogen temperatures, thus limiting their utility in field and unattended safeguards measurement applications. Ambient temperature semiconductor detectors may complement HPGe detectors for certain safeguards verification applications. Their potential will be determined by criteria such as their performance, commercial availability, stage of development, and costs. We have conducted as assessment of ambient temperature detectors for safeguards measurement applications with these criteria in mind

  14. A segmented, enriched N-type germanium detector for neutrinoless double beta-decay experiments

    Science.gov (United States)

    Leviner, L. E.; Aalseth, C. E.; Ahmed, M. W.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V. B.; Chan, Y.-D.; Egorov, V. G.; Elliott, S. R.; Gehman, V. M.; Hossbach, T. W.; Kephart, J. D.; Kidd, M. F.; Konovalov, S. I.; Lesko, K. T.; Li, Jingyi; Mei, D.-M.; Mikhailov, S.; Miley, H.; Radford, D. C.; Reeves, J.; Sandukovsky, V. G.; Umatov, V. I.; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A. R.

    2014-01-01

    We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6×2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the MAJORANA collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the MAJORANA resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.

  15. GERDA phase II detectors: Behind the production and characterisation at low background conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maneschg, Werner [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA Collaboration; and others

    2013-08-08

    The low background GERmanium Detector Array (GERDA) at Laboratori Nazionali del Gran Sasso (LNGS) is designed to search for the rare neutrinoless double beta decay (0νββ) in {sup 76}Ge. Bare germanium diodes are operated in liquid argon which is used as coolant, as passive and soon active as well shield against external radiation. Currently, Phase I of the experiment is running using ∼15 kg of co-axial High Purity Germanium diodes. In order to increase the sensitivity of the experiment 30 Broad Energy Germanium (BEGe) diodes will be added within 2013. This presentation reviews the production chain of the new BEGe detectors from isotopic enrichment to diode production and testing. As demonstrated all steps were carefully planned in order to minimize the exposure of the enriched germanium to cosmic radiation. Following this premise, acceptance and characterisation measurement of the newly produced diodes have been performed within the HEROICA project in the Belgian underground laboratory HADES close to the diode manufacturer. The test program and the results from a subset of the recently terminated GERDA Phase II BEGe survey will be presented.

  16. Gamma radiation detectors for safeguards applications

    International Nuclear Information System (INIS)

    Carchon, R.; Moeslinger, M.; Bourva, L.; Bass, C.; Zendel, M.

    2007-01-01

    The IAEA uses extensively a variety of gamma radiation detectors to verify nuclear material. These detectors are part of standardized spectrometry systems: germanium detectors for High-Resolution Gamma Spectrometry (HRGS); Cadmium Zinc Telluride (CZT) detectors for Room Temperature Gamma Spectrometry (RTGS); and NaI(Tl) detectors for Low Resolution Gamma Spectrometry (LRGS). HRGS with high-purity Germanium (HpGe) detectors cooled by liquid nitrogen is widely used in nuclear safeguards to verify the isotopic composition of plutonium or uranium in non-irradiated material. Alternative cooling systems have been evaluated and electrically cooled HpGe detectors show a potential added value, especially for unattended measurements. The spectrometric performance of CZT detectors, their robustness and simplicity are key to the successful verification of irradiated materials. Further development, such as limiting the charge trapping effects in CZT to provide improved sensitivity and energy resolution are discussed. NaI(Tl) detectors have many applications-specifically in hand-held radioisotope identification devices (RID) which are used to detect the presence of radioactive material where a lower resolution is sufficient, as they benefit from a generally higher sensitivity. The Agency is also continuously involved in the review and evaluation of new and emerging technologies in the field of radiation detection such as: Peltier-cooled CdTe detectors; semiconductor detectors operating at room temperature such as HgI 2 and GaAs; and, scintillator detectors using glass fibres or LaBr 3 . A final conclusion, proposing recommendations for future action, is made

  17. Electrical conductivity of high-purity germanium crystals at low temperature

    Science.gov (United States)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  18. Measuring Pu in a glove box using portable NaI and germanium detectors

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1984-01-01

    A NaI crystal or germanium detector inside a portable lead shield can determine the amount of plutonium in a glove box. The number of counts required are defined and the locations outside the box where the detector needs to be positioned are given. The calculated accuracy for measuring the Pu when these locations are used is within +/-30% for most glove boxes. Other factors that may affect this accuracy, such as γ-ray absorption by glove-box materials, self-absorption by Pu, absorption by equipment in the glove box, and the limits of the counting equipment are also discussed

  19. Using New Fission Data with the Multi-detector Analysis System for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jerald Donald

    1998-11-01

    New experiments using an array of high purity germanium detectors and fast liquid scintillation detectors has been performed to observe the radiation emitted from the induced fission of 235U with a beam of thermal neutrons. The experiment was performed at the Argonne National Laboratory Intense Pulsed Neutron Source. Preliminary observations of the data are presented. A nondestructive analysis system for the characterization of DOE spent nuclear fuel based on these new data is presented.

  20. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  1. On the timing properties of germanium detectors: The centroid diagrams of prompt photopeaks and Compton events

    International Nuclear Information System (INIS)

    Penev, I.; Andrejtscheff, W.; Protochristov, Ch.; Zhelev, Zh.

    1987-01-01

    In the applications of the generalized centroid shift method with germanium detectors, the energy dependence of the time centroids of prompt photopeaks (zero-time line) and of Compton background events reveal a peculiar behavior crossing each other at about 100 keV. The effect is plausibly explained as associated with the ratio of γ-quanta causing the photoeffect and Compton scattering, respectively, at the boundaries of the detector. (orig.)

  2. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN).

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Palmer, Belkis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barton, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-01

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.

  3. Ultra-Low Noise Germanium Neutrino Detection system (ULGeN)

    International Nuclear Information System (INIS)

    Cabrera-Palmer, Belkis; Barton, Paul

    2017-01-01

    Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active research field for safeguards and non-proliferation. We describe various efforts to demonstrate the feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering (CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe detectors below 100 eV as well as stringent reduction in other particle backgrounds. Existing state- of-the-art detectors are limited to an electronic noise of 95 eV-FWHM. In this work, we employed an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier- on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the Spallation Neutron Source to select the area with sufficient low background to allow a successful first-time measurement of the CNNS process.

  4. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Science.gov (United States)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  5. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martín, S., E-mail: sergiomr@usal.es; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ{sup 2} test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  6. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    International Nuclear Information System (INIS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-01-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ"2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  7. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Yue Qian; Wong, Henry T

    2012-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.

  8. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  9. Direct measurement of homogeneously distributed radioactive air contamination with germanium detectors

    International Nuclear Information System (INIS)

    Sowa, W.

    1990-01-01

    Air contamination by γ emitting radionuclides was measured with a vertically arranged germanium detector, laterally shielded by a lead ring, and calibration factors and detection limits of a number of fission products determined. The possibility of measuring simultaneously existing air and soil contamination by measurements with and without lead shield is described. The change of detection limit of air contamination is presented for different soil contamination levels by the same radionuclide. Calibration factors are given to determine the dose rate on the ground due to air contamination by different radionuclides. (author)

  10. Melting point of high-purity germanium stable isotopes

    Science.gov (United States)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  11. Using New Fission Data with the Multi-detector Analysis System for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A. V. Ramayya; A.V. Daniel (Joint Institute for Nuclear Research); C. J. Beyer (Vanderbilt Univ.); E. L. Reber; G. M. Ter-Akopian; G.S. Popeko; J. D. Cole; J. H. Hamilton; J. K. Jewell (INEEL); M. W. Drigert; R. Aryaeinejad; Ts.Yu. Oganessian

    1998-11-01

    New experiments using an array of high purity germanium detectors and fast liquid scintillation detectors has been performed to observe the radiation emitted from the induced fission of 235U with a beam of thermal neutrons. The experiment was performed at the Argonne National Laboratory Intense Pulsed Neutron Source. Preliminary observations of the data are presented. A nondestructive analysis system for the characterization of DOE spent nuclear fuel based on these new data is presented.

  12. The influence of anisotropic electron drift velocity on the signal shapes of closed-end HPGe detectors

    CERN Document Server

    Mihailescu, L; Lieder, R M; Brands, H; Jaeger, H

    2000-01-01

    This study is concerned with the anisotropy of the electron drift velocity in germanium crystals at high electric fields and low temperature, and its influence on the charge collection process in n-type, high-purity germanium (HPGe) detectors of closed-end, coaxial geometry. The electron trajectories inside HPGe detectors are simulated using a phenomenological model to calculate the dependence of the drift velocity on the angle between the electric field and the crystal orientation. The resulting induced currents and pulse shapes for a given detector geometry and preamplifier bandwidth are compared to experiment. Experimentally, the dependence of the pulse shapes on the conductivity anisotropy in closed-end HPGe detectors was observed. The experimental data on pulse shapes were obtained by sampling preamplifier signals of an encapsulated, hexaconical EUROBALL detector, which was irradiated by collimated sup 2 sup 2 Na and sup 2 sup 4 sup 1 Am sources. The crystal orientation was measured by neutron reflection...

  13. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    Science.gov (United States)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  14. In-beam measurement of the position resolution of a highly segmented coaxial germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Lee, I.Y.; Fallon, P.; Cromaz, M.; Macchiavelli, A.O.; Radford, D.C.; Vetter, K.; Clark, R.M.; Deleplanque, M.A.; Stephens, F.S.; Ward, D.

    2005-01-01

    The position resolution of a highly segmented coaxial germanium detector was determined by analyzing the 2055keV γ-ray transition of Zr90 excited in a fusion-evaporation reaction. The high velocity of the Zr90 nuclei imparted large Doppler shifts. Digital analysis of the detector signals recovered the energy and position of individual γ-ray interactions. The location of the first interaction in the crystal was used to correct the Doppler energy shift. Comparison of the measured energy resolution with simulations implied a position resolution (root mean square) of 2mm in three-dimensions

  15. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    Science.gov (United States)

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  16. Status report on the International Germanium Experiment

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Avignone, F.T.; Collar, J.I.; Courant, H.; Garcia, E.; Guerard, C.K.; Hensley, W.K.; Kirpichnikov, I.V.; Miley, H.S.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Osetrov, S.B.; Pogosov, V.S.; Pomansky, A.A.; Puimedon, J.; Reeves, J.H.; Ruddick, K.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Smolnikov, A.A.; Starostin, A.S.; Tamanyan, A.G.; Vasiliev, S.I.; Villar, J.A.

    1993-01-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  17. Simulation for photon detection in spectrometric system of high purity (HPGe) using MCNPX code

    International Nuclear Information System (INIS)

    Correa, Guilherme Jorge de Souza

    2013-01-01

    The Brazilian National Commission of Nuclear Energy defines parameters for classification and management of radioactive waste in accordance with the activity of materials. The efficiency of a detection system is crucial to determine the real activity of a radioactive source. When it's possible, the system's calibration should be performed using a standard source. Unfortunately, there are only a few cases that it can be done this way, considering the difficulty of obtaining appropriate standard sources for each type of measurement. So, computer simulations can be performed to assist in calculating of the efficiency of the system and, consequently, also auxiliary the classification of radioactive waste. This study aims to model a high purity germanium (HPGe) detector with MCNPX code, approaching the spectral values computationally obtained of the values experimentally obtained for the photopeak of 137 Cs. The approach will be made through changes in outer dead layer of the germanium crystal modeled. (author)

  18. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  19. Status report on the International Germanium Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brodzinski, R L; Avignone, F.T.; Collar, J I; Courant, H; Garcia, E; Guerard, C K; Hensley, W K; Kirpichnikov, I V; Miley, H S; Morales, A; Morales, J; Nunez-Lagos, R; Osetrov, S B; Pogosov, V S; Pomansky, A A; Puimedon, J; Reeves, J H; Ruddick, K; Saenz, C; Salinas, A; Sarsa, M L; Smolnikov, A A; Starostin, A S; Tamanyan, A G; Vasiliev, S I; Villar, J A [Pacific Northwest Lab., Richland, WA (United States) Univ. of South Carolina, Columbia, SC (United States) Univ. of Minnesota, Minneapolis, MN (United States) Univ. of Zaragoza (Spain) Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation) Inst. for Nuclear Research, Baksan Neutrino Observatory (Russian Federation) Yerevan Physical Inst., Yerevan (Armenia)

    1993-04-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic [sup 7]Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  20. Performance of an AGATA asymmetric detector

    Energy Technology Data Exchange (ETDEWEB)

    Boston, A.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)], E-mail: ajboston@liv.ac.uk; Dimmock, M.R.; Unsworth, C.; Boston, H.C.; Cooper, R.J.; Grint, A.N.; Harkness, L.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Jones, M.; Nolan, P.J.; Oxley, D.C. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Slee, M. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2009-06-01

    High-resolution gamma-ray detectors based on high-purity germanium crystals (HPGe) are one of the key workhorses of experimental nuclear science. The technical development of such detector technology has been dramatic in recent years. Large volume, high-granularity, electrically segmented HPGe detectors have been realised and a methodology to improve position sensitivity using pulse-shape analysis coupled with the novel technique of gamma-ray tracking has been developed. Collaborations have been established in Europe (Advanced GAmma Tracking Array (AGATA)) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383] and the USA (GRETA/GRETINA) [C.W. Beausang, Nucl. Instr. and Meth. B 204 (2003)] to build gamma-ray tracking spectrometers. This paper discusses the performance of the first AGATA asymmetric detector that has been tested at the University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well-defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  1. Characterization and performance of germanium detectors with sub-keV sensitivities for neutrino and dark matter experiments

    International Nuclear Information System (INIS)

    Soma, A.K.; Singh, M.K.; Singh, L.; Kumar, G. Kiran; Lin, F.K.; Du, Q.; Jiang, H.; Liu, S.K.; Ma, J.L.; Sharma, V.; Wang, L.; Wu, Y.C.; Yang, L.T.; Zhao, W.; Agartioglu, M.; Asryan, G.; Chang, Y.Y.; Chen, J.H.; Chuang, Y.C.

    2016-01-01

    Germanium ionization detectors with sensitivities as low as 100 eV_e_e (electron-equivalent energy) open new windows for studies on neutrino and dark matter physics. The relevant physics subjects are summarized. The detectors have to measure physics signals whose amplitude is comparable to that of pedestal electronic noise. To fully exploit this new detector technique, various experimental issues including quenching factors, energy reconstruction and calibration, signal triggering and selection as well as evaluation of their associated efficiencies have to be attended. The efforts and results of a research program to address these challenges are presented.

  2. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  3. Experimental study on the CsI (Tl) crystal anti-compton detector in CDEX

    International Nuclear Information System (INIS)

    Liu Shukui; Yue Qian; Tang Changjian

    2012-01-01

    CDEX (China Dark matter Experiment) Collaboration will carry out direct search for dark matter with Ultra-Low Energy Threshold High Purity germanium (ULE-HPGe) detector at CJPL (China Jinping deep underground Laboratory). Before underground research, some experiments of the CsI (Tl) crystal Anti-Compton detector have been done on the ground, including light guide choice, wrapping material choice, height uniformity of CsI (Tl) crystal, side uniformity of CsI (Tl) crystal and the test results of all the crystals. Through the preliminary work on the ground, we have got some knowledge of the anti-compton detector and prepared for the underground experiment. (authors)

  4. Characterization of the in-flight degradation of the INTEGRAL/SPI detectors

    International Nuclear Information System (INIS)

    Lonjou, V.; Roques, J.P.; Ballmoos, P. von; Jean, P.; Knodlseder, J.; Skinner, G.; Thevenin, A.; Weidenspointner, G.

    2005-01-01

    SPI is a high spectral resolution gamma ray telescope which was launched on 2002 October 17 on-board INTEGRAL (INTErnational Gamma Ray Astrophysics Laboratory). The SPI camera consists of 19 high-purity germanium detectors that cover an energy range of 20 keV-8 MeV with an energy resolution of 2-8 keV FWHM. We describe the methods used for the determination of the effects of radiation damage on the SPI detectors. Degradation rate and recovery by annealing are quantified. Using instrumental background lines due to radioisotopes from natural decay chains and from cosmic ray interactions, we found that the variations of detectors efficiency are low. Finally, the impact of the detector degradation on the energy calibration has been investigated

  5. An Experimental Study of the Accuracy of Compensation in Lithium Drifted Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmsten, B

    1969-10-15

    The nature and magnitude of the space charge existing in the compensated layer of lithium drifted germanium detectors has been studied as a function of drifted depth and of the electric field applied during drift. Experimental values were obtained from the dependence of detector capacitance on applied bias. In most cases there was a linear space charge gradient in the compensated layer. When small electric fields were applied to deep compensated layers, the space charge became constant throughout a large part of the compensated layer. There is some evidence for a strong decrease of mobile carrier recombination lifetime with increasing drifted depth, possibly down to a few microseconds for drifted depths of the order of 7 mm. The experimental results of the investigation are to a large extent in good agreement with theory.

  6. Feasibility study for use of a germanium detector in the LOFT gamma-ray densitometer

    International Nuclear Information System (INIS)

    Swierkowski, S.P.

    1976-01-01

    The primary aim of this study is to predict the performance of a gamma-ray densitometer system using computer modeling techniques. The system consists of a collimated 137 Cs source, a pipe containing a variable amount of water absorber, and a shielded and collimated germanium detector system. The gamma-ray energy spectrum (number of photon counts as a function of energy) has been computed for several sources at the detector. The response for combined sourceconfigurations has been obtained by linear superposition. The signal essentially consists of the counts in an energy window centered on the 137 Cs source at 662 keV that originate from this source. The noise is the background counts in the signal energy window that originate from 16 N scatter radiation and direct and shield tank activation gammas. The detector signal has been computed for 0, 50, and 100 percent water in the pipe

  7. Status report on the International Germanium Experiment

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H.; Avignone, F.T.; Collar, J.I.; Guerard, C.K.; Courant, H.; Ruddick, K.; Kirpichnikov, I.V.; Starostin, A.S.; Osetrov, S.B.; Pomansky, A.A.; Smolnikov, A.A.; Vasiliev, S.I.

    1992-06-01

    Phase II detector fabrication for the International Germanium Experiment is awaiting resolution of technical details observed during Phase I. Measurements of fiducial volume, configuration of the tansistor-reset preamplifier stage, and sources of background are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination in electroformed copper reported. The 2ν double- beta decay half-life of 76 Ge measured with a Phase I detector is in reasonable agreement with previously reported values. No events are observed in the vicinity of the Oν double-beta decay energy

  8. Complete system for portable gamma spectroscopy

    International Nuclear Information System (INIS)

    Fuess, D.A.

    1978-01-01

    The report described a system built around the Computing Gamma Spectrometer (PSA) LEA 74-008. The software primarily supports high-resolution gamma-ray spectroscopy using either a high-purity intrinsic germanium detector (HPGe) or a lithium-drifted germanium detector [Ge(Li)

  9. Limits on uranium and thorium bulk content in GERDA Phase I detectors

    Science.gov (United States)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakemüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-05-01

    Internal contaminations of 238U, 235U and 232Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of 76Ge. The data from GERDA Phase I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for 226Ra, 227Ac and 228Th, the long-lived daughter nuclides of 238U, 235U and 232Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from 226Ra and 228Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment.

  10. Modeling of dislocation dynamics in germanium Czochralski growth

    Science.gov (United States)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  11. Using of germanium detectors in nuclear experiments with photon beams

    International Nuclear Information System (INIS)

    Kapitonov, I.M.; Tutin, I.A.

    1995-01-01

    Full text: The study of atomic nuclei with real photons is very important source of the information about nuclear structure. In such experiments the basic electromagnetic interaction between the photon and the target nuclei is well known. Experiments with photon beams become especially valuable when outcoming particles are also photons. In these cases completely model-independent information on nuclear structure can be extracted. The use of semiconductor Ge-spectrometers with excellent resolution and large sensitive volumes for recording outcoming photons gives us such an additional important advantage as possibility to observe individual closely spaced levels of the final nuclei. In the report an experience of using Ge-detectors in two types of nuclear experiments is described. Both of them - nuclear resonance fluorescence (NRF) and nuclear photodisintegration - are carried out in beams of bremsstrahlung gamma radiation. The central element of the setup recording gamma quanta in these experiments is germanium detector. NRF is unique method for studying low-lying excited nuclear states. The spins of the states can be determined easily from the measured angular distributions of scattered photons. Model independent parity assignments in NRF can be achieved by measuring polarization observables. There are two experimental possibilities: the use of linearly polarized photons (off-axis bremsstrahlung) in the entrance channel and the measurement of the linear polarization of the scattered photons using Compton polarimeters. For both methods several germanium detectors (3-5) must be used simultaneously. Nowadays Compton polarimeter can also be done from single large Ge-crystal by segmenting the outer electrode. Advantages and drawbacks of the methods and background conditions are discussed and requirements to Ge-crystals are formulated. The importance of using a new generation of electron accelerators with continuous wave (cw) beams for NRF-measurements is stressed. The

  12. Impact of detector efficiency and energy resolution on gamma-ray background rejection in mobile spectroscopy and imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy J., E-mail: Timothy.Aucott@SRS.gov [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bandstra, Mark S. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Negut, Victor; Curtis, Joseph C. [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Meyer, Ross E.; Chivers, Daniel H. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Vetter, Kai [University of California, Berkeley, Department of Nuclear Engineering, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States)

    2015-07-21

    The presence of gamma-ray background significantly reduces detection sensitivity when searching for radioactive sources in the field, and the systematic variability in the background will limit the size and energy resolution of systems that can be used effectively. An extensive survey of the background was performed using both sodium iodide and high-purity germanium. By using a bivariate negative binomial model for the measured counts, these measurements can be resampled to simulate the performance of a detector array of arbitrary size and resolution. The response of the system as it moved past a stationary source was modeled for spectroscopic and coded aperture imaging algorithms and used for source injection into the background. The performance of both techniques is shown for various sizes and resolutions, as well as the relative performance for sodium iodide and germanium. It was found that at smaller detector sizes or better energy resolution, spectroscopy has higher detection sensitivity than imaging, while imaging is better suited to larger or poorer resolution detectors.

  13. Evaluations of the commercial spectrometer systems for safeguards applications using the germanium detectors

    International Nuclear Information System (INIS)

    Vo, D.T.

    1998-01-01

    Safeguards applications require the best spectrometer systems with excellent resolution, stability, and throughput. Instruments must perform well in all the situations and environments. Data communication to the computer should be convenient, fast, and reliable. The software should have all the necessary tools and be ease to use. Portable systems should be small in size, lightweight, and have a long battery life. Nine commercially available spectrometer systems are tested with both the planar and coaxial germanium detectors. Considering the performance of the Digital Signal Processors (DSP), digital-based spectroscopy may be the future of gamma-ray spectroscopy

  14. Segmented quasi-coaxial HP-Ge detectors optimized for spatial localization of the events

    International Nuclear Information System (INIS)

    Ripamonti, Giancarlo; Pulici, Paolo; Abbiati, Roberto

    2006-01-01

    A methodology for the design of segmented high purity Germanium detectors is presented. Its motivation follows from the necessity of making it easier to derive fast algorithms for measuring the gamma-detector interaction position. By using our study, detector geometries can be designed, which could allow a first estimate of the interaction coordinate along the carrier drift direction by analyzing the shape of the signal of a single segment. The maximum resolution that can be achieved and the corresponding conditions for the electronics are highlighted: basic unavoidable constraints limit the resolution to around 3 mm, but this first position estimate can be used, at least in principle, as a starting point for more accurate, although computationally heavy, algorithms

  15. Testing the Ge Detectors for the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.

  16. A rotation-symmetric, position-sensitive annular detector for maximum counting rates

    International Nuclear Information System (INIS)

    Igel, S.

    1993-12-01

    The Germanium Wall is a semiconductor detector system containing up to four annular position sensitive ΔE-detectors from high purity germanium (HPGe) planned to complement the BIG KARL spectrometer in COSY experiments. The first diode of the system, the Quirl-detector, has a two dimensional position sensitive structure defined by 200 Archimedes' spirals on each side with opposite orientation. In this way about 40000 pixels are defined. Since each spiral element detects almost the same number of events in an experiment the whole system can be optimized for maximal counting rates. This paper describes a test setup for a first prototype of the Quirl-detector and the results of test measurements with an α-source. The detector current and the electrical separation of the spiral elements were measured. The splitting of signals due to the spread of charge carriers produced by an incident ionizing particle on several adjacent elements was investigated in detail and found to be twice as high as expected from calculations. Its influence on energy and position resolution is discussed. Electronic crosstalk via signal wires and the influence of noise from the magnetic spectrometer has been tested under experimental conditions. Additionally, vacuum feedthroughs based on printed Kapton foils pressed between Viton seals were fabricated and tested successfully concerning their vacuum and thermal properties. (orig.)

  17. Cosmogenically-produced isotopes in natural and enriched high-purity germanium detectors for the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Gilliss, Thomas; MAJORANA DEMONSTRATOR Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR advances toward measurements of the neutrinoless double-beta decay of 76Ge. Detectors employed in the DEMONSTRATOR are subject to cosmogenic spallation during production and processing, resulting in activation of certain long-lived radioisotopes. Activation of these cosmogenic isotopes is mitigated by shielded storage of detectors and through underground operation of the DEMONSTRATOR at the 4850 ft level of the Sanford Underground Research Facility. In this work, we explore the appearance and reduction of cosmogenic contributions to the DEMONSTRATOR background spectrum. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  18. GERDA, a GERmanium Detector Array for the search for neutrinoless ββ decay in 76Ge

    International Nuclear Information System (INIS)

    Pandola, L.; Tomei, C.

    2006-01-01

    The GERDA project, searching for neutrinoless double beta-decay of 76Ge with enriched germanium detectors submerged in a cryogenic bath, has been approved for installation at the Gran Sasso National Laboratory (LNGS), Italy. The GERDA technique is aiming at a dramatic reduction of the background due to radioactive contaminations of the materials surrounding the detectors. This will lead to a sensitivity of about 1026 years on the half-life of neutrinoless double beta decay. Already in the first phase of the experiment, GERDA will be able to investigate with high statistical significance the claimed evidence for neutrinoless double beta decay of 76Ge based on the data of the Heidelberg-Moscow experiment

  19. Characterization system for Germanium detectors dedicated to gamma spectroscopy applied to nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J.; Portella, C.; Saurel, N. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2009-07-01

    CEA-Valduc produces some radioactive waste (mainly alpha emitters). Legislation requires producers to sort their waste by activity and type of isotopes, and to package them in order to forward them to the appropriate reprocessing or storage facility. Our lab LMDE (laboratory for measurements on nuclear wastes and valuation) is in charge of the characterization of the majority of waste produced by CEA-Valduc. Among non-destructive methods to characterize a radioactive object, gamma-spectroscopy is one of the most efficient. We present to this conference the method we use to characterize nuclear waste and the system we developed to characterize our germanium detectors. The goal of this system is to obtain reliable numerical models of our detectors and calculate their efficiency curves. Measurements are necessary to checks models and improve them. These measurements are made on a bench using pinpoint sources ({sup 133}Ba, {sup 152}Eu) from 60 keV to 1500 keV, with distances from 'on contact' to a few meters from the diode and variable angles between the source and the detector axis. We have demonstrated that we are able to obtain efficiency curves

  20. Temperature cycling test of planar hyper-pure germanium radiation detector

    International Nuclear Information System (INIS)

    Sakai, Eiji

    1976-01-01

    If a Ge (Li) detector is left at the normal temperature, generally it does not recover its original performance even when it is cooled again with liquid nitrogen, as Li ions in the compensated i zone precipitate by Li drift and it returns to p type which is the state before drift. One of the devices that overcomes this shortcoming is the p-n junction Ge detector, which required the production of high purity Ge single crystals to obtain the thick depletion layer. The planar or coaxial type detectors were produced using the Ge single crystals with impurity concentration of 10 10 /cm 3 and it was recognized that they showed the gamma detecting characteristic nearly equal to Ge (Li) detectors. They are now commercially available from a few companies. The author carried out the temperature-cycling test of the planar type hyperpure Ge detector sold by Nuclear Radiation Developments, Canada. First, applying liquid nitrogen, the leakage current, static capacity, gamma ray-detecting efficiency and energy resolution were measured. Then it was returned to room temperature. Since then, irregular cycling tests were carried out 15 times. The results didn't show any significant change in the gamma ray-detecting efficiency, energy resolution and static capacity. Though leakage current changed between 9.3 and 33 pA, it does not influence on the energy resolution because of small absolute values. It may be said that it is sufficiently stable in the temperature cycling from room temperature to 77 K. (Wakatsuki, Y.)

  1. Application of the Broad Energy Germanium detector: A technique for elucidating β-decay schemes which involve daughter nuclei with very low energy excited states

    Energy Technology Data Exchange (ETDEWEB)

    Venhart, M., E-mail: martin.venhart@savba.sk [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Wood, J.L. [Department of Physics, Georgia Institute of Technology, Atlanta GA 30332 (United States); Boston, A.J. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Cocolios, T.E. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); KU Leuven, Instituut voor Kern, en Stralingsfysica, B-3001 Leuven (Belgium); Harkness-Brennan, L.J.; Herzberg, R.-D.; Joss, D.T.; Judson, D.S. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Kliman, J.; Matoušek, V. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Motyčák, Š. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, SK-812 19 Bratislava (Slovakia); Page, R.D.; Patel, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Petrík, K.; Sedlák, M.; Veselský, M. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia)

    2017-03-21

    A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of {sup 183}Hg decay. Mass-separated samples of {sup 183}Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of {sup 183}Hg from those due to the daughter decays.

  2. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  3. Using the IEC Standard to Describe Low-Background Detectors-What Can You Expect?

    International Nuclear Information System (INIS)

    Ronald M. Keyser; Sanford Wagner

    1998-01-01

    The new International Electrotechnical Commission (IEC) standard for describing the background makes the specification of the background in a high-purity germanium (HPGe) detector simple, unambiguous, and related to how the detector will be used. Users and manufacturers will finally be speaking the same language on this subject. Because this standard extends the specification of the performance of an HPGe detector, there is little history available for comparison and thus no means of determining a ''good'' value. To develop a history, the background spectrum for 500 low-background HPGe ORTEC detectors were all counted in similar low-background shields. These detectors were in a variety of mechanical cryostat and endcap configurations. The continuum background is a function of energy and detector size/configuration. The peak area for the peak energies listed in the standard is a function of detector size and configuration. The results thus give practical guidance for obtaining the most appropriate low-background detector for a specific measurement problem

  4. Operation of a high-purity silicon diode alpha particle detector at 1.4 K

    International Nuclear Information System (INIS)

    Martoff, C.J.; Kaczanowicz, E.; Neuhauser, B.J.; Lopez, E.; Zhang, Y.; Ziemba, F.P.

    1991-01-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm 2 by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.)

  5. Operation of a high-purity silicon diode alpha particle detector at 1. 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Martoff, C.J.; Kaczanowicz, E. (Temple Univ., Philadelphia, PA (USA)); Neuhauser, B.J.; Lopez, E.; Zhang, Y. (San Francisco State Univ., CA (USA)); Ziemba, F.P. (Quantrad Corp. (USA))

    1991-03-01

    Detection of alpha particles at temperatures as low as 1.4 K was demonstrated using a specially fabricated Si diode. The diode was 475 mm{sup 2} by 0.280 mm thick, fabricated from high-purity silicon with degenerately doped contacts. This is an important step toward development of dual-mode (ionization plus phonon) silicon detectors for low energy radiation. (orig.).

  6. Systematization of efficiency correction for gamma-ray disk sources with semiconductor detectors

    International Nuclear Information System (INIS)

    Chatani, Hiroshi

    1999-01-01

    Full energy peak efficiency correction for disk sources has been systematically studied using the mapping method with two high-purity germanium detectors and two low-energy photon spectrometers. The following are found using only single-line (i.e., no coincidence summing loses) γ-rays: (1) The efficiency distributions on a plane parallel to the entrance window of semiconductor detectors is in perfect accord with Gaussian curves inside the circumference of the cylindrical Ge crystal, however, they deviate from the curves outside the circumference. (2) The width parameters of the Gaussian function fitted to the efficiency distributions have a systematic relationship with γ-ray energy. (3) The mapping method is of practical use and has satisfactory accuracy

  7. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Christopher [XIA LLC, Hayward, CA (United States)

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry

  8. Relative efficiency calculation of a HPGe detector using MCNPX code

    International Nuclear Information System (INIS)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Lopes, Jose M.; Silva, Ademir X.

    2015-01-01

    High-purity germanium detectors (HPGe) are mandatory tools for spectrometry because of their excellent energy resolution. The efficiency of such detectors, quoted in the list of specifications by the manufacturer, frequently refers to the relative full-energy peak efficiency, related to the absolute full-energy peak efficiency of a 7.6 cm x 7.6 cm (diameter x height) NaI(Tl) crystal, based on the 1.33 MeV peak of a 60 Co source positioned 25 cm from the detector. In this study, we used MCNPX code to simulate a HPGe detector (Canberra GC3020), from Real-Time Neutrongraphy Laboratory of UFRJ, to survey the spectrum of a 60 Co source located 25 cm from the detector in order to calculate and confirm the efficiency declared by the manufacturer. Agreement between experimental and simulated data was achieved. The model under development will be used for calculating and comparison purposes with the detector calibration curve from software Genie2000™, also serving as a reference for future studies. (author)

  9. Gamma ray spectrum of Am 241 in a backscattering geometry using a high purity germanium detector

    International Nuclear Information System (INIS)

    Chong Chon Sing; Ibrahim Salih Elyaseery; Ahmad Shukri Mustapa Kamal; Abdul Aziz Tajuddin

    1997-01-01

    In back scattering geometry using an annular Am-241 source and a HPGE detector has been set up to study both the coherent and incoherent scattering of photon emissions of Am-241 from medium-Z and high-Z elements. Besides the coherent and incoherent scattered peaks of the emissions from the source, the gamma ray spectrum from the different target elements obtained using a microcomputer based multichannel analyser showed the presence of several other peaks. These peaks have been identified to arise from the fluorescence of the targets, the fluorescence of the shielding material Pb, and also as fluorescence sum peaks and X-ray escape peaks of the detector material Ge. The spectra are presented for three target elements viz. Mo, Zn and W

  10. Quantitative microanalysis in the analytical electronmicroscope using an HPGe-x ray detector

    International Nuclear Information System (INIS)

    Grogger, W.

    1994-01-01

    Energy dispersive x-ray spectrometry (EDX) is a routine method for determining the chemical composition of a sample in the analytical electronmicroscope. Since some years high purity germanium x-ray detectors (HPGe) are commercially available for use in EDX. This new type of detector offers some advantages over the commonly used Si (Li) detector: better energy resolution, better detector efficiency for high energy lines (> 30 keV) and better stability against exterior influences. For quantitative analysis one needs sensitivity factors (k-factors), which correlate the measured intensity to the concentration of a specific element. These k-factors can be calculated or determined experimentally. For a precise quantitative analysis of light elements measured k-factors are absolutely necessary. In this study k-factors were measured with an HPGe detector using standards. The accuracy of the k-factors was proved using some examples of practical relevance. Additionally some special features of the HPGe detector were examined, which lead to a better understanding of EDX spectrometry using an HPGe detector (escape lines, icing of the detector, artifacts). (author)

  11. Improvements in Applied Gamma-Ray Spectrometry with Germanium Semiconductor Detector

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Hellstroem, S [AB Atomenergi, Nykoeping (Sweden); Dubois, J [Chalmers University of Technology, Goeteborg (Sweden)

    1965-01-15

    A germanium semi-conductor detector has in the present investigation been used in four cases of applied gamma-ray spectrometry. In one case the weak-activity contribution of Cs{sup 134} in Cs{sup 137} standard sources has been determined. The second case concerns the determination of K{sup 42} in samples of biological origin containing strong Na{sup 24} activities. In the third case the Nb{sup 94} and Nb{sup 95} activities from neutron-irradiated niobium foils used in the dosimetry of high neutron fluxes with long exposure times have been completely resolved and it has been possible to determine the ratio of the two activities with a high degree of accuracy. Finally, a Zr{sup 95} - Nb{sup 95} source has been analysed in a similar way with respect to its radiochemical composition. The resolution obtained also made possible a determination of the branching ratio of the two gamma-transitions in Zr{sup 95} and of the energies of the gamma-transitions of both nuclides.

  12. Alpha-event and surface characterisation in segmented true-coaxial HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abt, I.; Garbini, L., E-mail: luciagarbini86@gmail.com.mpg.de; Gooch, C.; Irlbeck, S.; Liu, X.; Palermo, M.; Schulz, O.

    2017-06-21

    A detailed study of alpha interactions on the passivation layer on the end-plate of a true-coaxial high-purity germanium detector is presented. The observation of alpha events on such a surface indicates an unexpectedly thin so-called “effective dead layer” of less than 20 µm thickness. In addition, the influence of the metalisation close to the end-plate on the time evolution of the output pulses is discussed. The results indicate that alpha contamination can result in events which could be mistaken as signals for neutrinoless double beta decay and provide some guidance on how to prevent this.

  13. Optimized high energy resolution in γ-ray spectroscopy with AGATA triple cluster detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Andreas

    2011-06-20

    The AGATA demonstrator consists of five AGATA Triple Cluster (ATC) detectors. Each triple cluster detector contains three asymmetric, 36-fold segmented, encapsulated high purity germanium detectors. The purpose of the demonstrator is to show the feasibility of position-dependent γ-ray detection by means of γ-ray tracking, which is based on pulse shape analysis. The thesis describes the first optimization procedure of the first triple cluster detectors. Here, a high signal quality is mandatory for the energy resolution and the pulse shape analysis. The signal quality was optimized and the energy resolution was improved through the modification of the electronic properties, of the grounding scheme of the detector in particular. The first part of the work was the successful installation of the first four triple cluster detectors at INFN (National Institute of Nuclear Physics) in Legnaro, Italy, in the demonstrator frame prior to the AGATA commissioning experiments and the first physics campaign. The four ATC detectors combine 444 high resolution spectroscopy channels. This number combined with a high density were achieved for the first time for in-beam γ-ray spectroscopy experiments. The high quality of the ATC detectors is characterized by the average energy resolutions achieved for the segments of each crystal in the range of 1.943 and 2.131 keV at a γ-ray energy of 1.33 MeV for the first 12 crystals. The crosstalk level between individual detectors in the ATC is negligible. The crosstalk within one crystal is at a level of 10{sup -3}. In the second part of the work new methods for enhanced energy resolution in highly segmented and position sensitive detectors were developed. The signal-to-noise ratio was improved through averaging of the core and the segment signals, which led to an improvement of the energy resolution of 21% for γ-energies of 60 keV to a FWHM of 870 eV. In combination with crosstalk correction, a clearly improved energy resolution was

  14. Determination of relative efficiency of a detector using Monte Carlo method

    International Nuclear Information System (INIS)

    Medeiros, M.P.C.; Rebello, W.F.; Lopes, J.M.; Silva, A.X.

    2015-01-01

    High-purity germanium detectors (HPGe) are mandatory tools for spectrometry because of their excellent energy resolution. The efficiency of such detectors, quoted in the list of specifications by the manufacturer, frequently refers to the relative full-energy peak efficiency, related to the absolute full-energy peak efficiency of a 7.6 cm x 7.6 cm (diameter x height) NaI(Tl) crystal, based on the 1.33 MeV peak of a 60 Co source positioned 25 cm from the detector. In this study, we used MCNPX code to simulate an HPGe detector (Canberra GC3020), from Real-Time Neutrongraphy Laboratory of UFRJ, to survey the spectrum of a 60 Co source located 25 cm from the detector in order to calculate and confirm the efficiency declared by the manufacturer. Agreement between experimental and simulated data was achieved. The model under development will be used for calculating and comparison purposes with the detector calibration curve from software Genie2000™, also serving as a reference for future studies. (author)

  15. Correction for hole trapping in AGATA detectors using pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [CEA Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette Cedex (France); Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Birkenbach, B.; Eberth, J.; Hess, H.; Pascovici, Gh.; Reiter, P.; Wiens, A. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Bazzacco, D.; Farnea, E.; Michelagnoli, C.; Recchia, F. [INFN, Sezione di Padova, Padova (Italy); Collaboration: for the AGATA Collaboration

    2013-05-15

    Data from the highly segmented High-Purity Germanium (HPGe) detectors of the AGATA spectrometer show that segments are more sensitive to neutron damage than the central core contact. Calculations on the collection efficiency of charge carriers inside the HPGe detector were performed in order to understand this phenomenon. The trapping sensitivity, an expression based on the collection efficiencies for electrons and holes, is put forward to quantify the effect of charge carrier trapping. The sensitivity is evaluated for each position in the detector volume with respect to the different electrodes and the collected charge carrier type. Using the position information obtained by pulse shape analysis from the position-sensitive AGATA detectors, it is possible to correct for the energy deficit employing detector specific sensitivity values. We report on the successful correction of the energy peaks from heavily neutron-damaged AGATA detectors for core and segment electrode signals. The original energy resolution can optimally be recovered up to a certain quantifiable limit of degradation due to statistical fluctuations caused by trapping effects. (orig.)

  16. γ-ray tracking in germanium: the backtracking method

    International Nuclear Information System (INIS)

    Marel, J. van der; Cederwall, B.

    2002-01-01

    In the framework of a European TMR network project the concept for a γ-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of ∼10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered γ-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident γ-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and γ-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry for germanium and in planar geometries for silicon, germanium and CdTe

  17. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lavietes, A.D.; McQuaid, J.H.; Paulus, T.J.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  18. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    International Nuclear Information System (INIS)

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, τ B , and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to τ B and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions

  19. A first principle approach for encapsulated type composite detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A first principle approach is presented for modeling a composite detector consisting of several high-purity germanium detector modules. Without making assumptions, if we consider the full energy peak counts from single and multiple detector module interactions, and the decomposition of background counts to counts corresponding to the escaping γ-rays and counts for γ-rays which could be recovered in addback mode, it is observed that the addback mode of a composite detector could be described in terms of four probability amplitudes only. Expressions for peak-to-total and peak-to-background ratios are obtained. Considering details of the scattering and absorption processes in a composite detector, a formalism is introduced for understanding the probability amplitudes. Detailed investigation has been performed on the effect of shape and size of composite detectors on peak-to-total and peak-to-background ratios. In accordance with isoperimetric inequality for hexagonal shapes, we have discussed about the optimal design of detector layout for extremely large values of detector modules. Using experimental data on relative single crystal efficiency, addback factor and peak-to-total ratio at 1332 keV for cluster detector, the peak-to-total and peak-to-background ratios have been calculated for several composite detectors.

  20. Execution of a cooperative test by means of 'in-situ-gamma spectrometry' using HP-germanium detectors

    International Nuclear Information System (INIS)

    Steger, F.; Lovranich, E.; Urbanich, E.; Streit, S.

    1995-06-01

    A cooperative test was carried out in Salzburg, Austria, in order to determine the activity of Cs-137 and other radio nuclides from the Tschernobyl fallout 1986 and from tests of nuclear weapons in the 1960s. 24 groups from 9 countries of Europe took part. The measurements were performed by means of gamma spectrometry using HP-germanium detectors. Most of the groups had excellent results. The groups became acquainted with each other. The personal contact makes it possible to get information quickly in case of accidents of nuclear power stations in the neighbourhood of Austria

  1. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  2. Measurements of gamma (γ)-emitting radionuclides with a high-purity germanium detector: the methods and reliability of our environmental assessments on the Fukushima 1 Nuclear Power Plant accident.

    Science.gov (United States)

    Mimura, Tetsuro; Mimura, Mari; Komiyama, Chiyo; Miyamoto, Masaaki; Kitamura, Akira

    2014-01-01

    The severe accident of Fukushima 1 Nuclear Power Plant due to the Tohoku Region Pacific Coast Earthquake in 11 March 2011 caused wide contamination and pollution by radionuclides in Fukushima and surrounding prefectures. In the current JPR symposium, a group of plant scientists attempted to examine the impact of the radioactive contamination on wild and cultivated plants. Measurements of gamma (γ) radiation from radionuclides in "Fukushima samples", which we called and collected from natural and agricultural areas in Fukushima prefecture were mostly done with a high-purity Ge detector in the Graduate School of Maritime Sciences, Kobe University. In this technical note, we describe the methods of sample preparation and measurements of radioactivity of the samples and discuss the reliability of our data in regards to the International Atomic Energy Agency (IAEA) Interlaboratory comparisons and proficiency test (IAEA proficiency test).

  3. Study of the performance of HPGe detectors operating in very high magnetic fields

    International Nuclear Information System (INIS)

    Agnello, M.; Botta, E.; Bressani, T.; Bruschi, M.; Bufalino, S.; De Napoli, M.; Feliciello, A.; Fontana, A.; Giacobbe, B.; Lavezzi, L.; Raciti, G.; Rapisarda, E.; Rotondi, A.; Sbarra, C.; Sfienti, C.; Zoccoli, A.

    2009-01-01

    A new generation of high-resolution hypernuclear γ-spectroscopy experiments using high-purity germanium (HPGe) detectors is presently designed for the FINUDA spectrometer at DAΦNE, the Frascati Φ-factory, and for PANDA, the p-p-bar hadron spectrometer at the future FAIR facility. In both spectrometers the HPGe detectors have to be operated in strong magnetic fields. In this paper we report on a series of measurements performed on a HPGe detector inserted in a magnetic field of intensity up to 2.5 T, the highest ever reached for operations with a HPGe, and with different orientations of the detector's axis with respect to field direction. A significant worsening of the energy resolution was found, but with a moderate loss of the efficiency. The most relevant features of the peak shapes, described by bi-Gaussian functions, are parametrized in terms of field intensity and energy: this allows to correct the spectra measured in magnetic field and to recover the energy resolution almost completely.

  4. Measurements on a prototype segmented Clover detector

    CERN Document Server

    Shepherd, S L; Cullen, D M; Appelbe, D E; Simpson, J; Gerl, J; Kaspar, M; Kleinböhl, A; Peter, I; Rejmund, M; Schaffner, H; Schlegel, C; France, G D

    1999-01-01

    The performance of a segmented Clover germanium detector has been measured. The segmented Clover detector is a composite germanium detector, consisting of four individual germanium crystals in the configuration of a four-leaf Clover, housed in a single cryostat. Each crystal is electrically segmented on its outer surface into four quadrants, with separate energy read-outs from nine crystal zones. Signals are also taken from the inner contact of each crystal. This effectively produces a detector with 16 active elements. One of the purposes of this segmentation is to improve the overall spectral resolution when detecting gamma radiation emitted following a nuclear reaction, by minimising Doppler broadening caused by the opening angle subtended by each detector element. Results of the tests with sources and in beam will be presented. The improved granularity of the detector also leads to an improved isolated hit probability compared with an unsegmented Clover detector. (author)

  5. Long-term radiation damage to a spaceborne germanium spectrometer

    CERN Document Server

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  6. Cerebral distribution of 133Xe and blood flow measured with high purity germanium

    International Nuclear Information System (INIS)

    Reich, T.; Rusinek, H.; Youdin, M.; Clagnaz, M.

    1985-01-01

    Distribution of cerebral blood flow was measured with an array of 200 ultra-pure germanium radiation detectors and 133 Xe by inhalation. The array sees the head as a composite of different subvolumes and enables measurement of the concentration history of tracer every 1-10 sec in each subvolume simultaneously. Subvolume mean flows, (fm), and partition coefficients, lambda m, are derived by compartmental analysis of tissue concentration washout curves. Errors from cross talk, scalp radiation, look through, and assumed partition coefficients are eliminated. Average fm adjusted for 40 mm Hg PACO 2 in 14 cortical subvolumes (7 right, 7 left) of four normal 21-24 year old controls ranged from 50 to 60 ml/100 cc tissue/min, and lambda m ranged from 0.97 to 1.14. Average fm and lambda m in white matter was 24 ml/100 cc/min and 1.42 - 1.14 respectively. During CO 2 inhalation, right and left hemispheric fm increased 6.4% and 5.7%/mm Hg respectively, whereas white matter fm increased 2.2% and 3.4% mm Hg respectively. There was no systematic difference between front and back or dominant vs non-dominant sides. Three 73-84 year old controls had reduced fm and CO 2 reactivity in all subvolumes, lambda m was in the same range as in younger controls. Two patients with intracranial cerebrovascular disease showed excellent localization of ischemic subvolumes. One patient with asymptomatic unilateral 98% stenosis of the internal carotid artery had a similar distribution of blood flow in both hemispheres

  7. The GENIUS-Test-Facility and the HDMS Detector in Gran Sasso

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.

    2005-01-01

    The first four naked high purity Germanium detectors (10 kg) were installed successfully in liquid nitrogen in the GENIUS-Test-Facility (GENIUS-TF) in the Gran Sasso Underground Laboratory on May 5, 2003. This is the first time ever that this novel technique aiming at extreme background reduction in search for rare decays is going to be tested underground. First results on the background are presented. The GENIUS-TF experiment, aims to search for the annual modulation of the Dark Matter signal using 40 kg of naked-Ge detectors in liquid nitrogen. It should be able to confirm the DAMA result within two or three years of measuring time. HDMS (Heidelberg Dark Matter Search) is the only experiment worldwide, operating an enriched 73 Ge detector and is looking for spin-dependent WIMP-neutron interactions. Results for the measurement Febr. 2001 - July 2003 are presented. They improve the best existing present limits for low WIMP masses

  8. The GENIUS-Test-Facility and the HDMS Detector in Gran Sasso

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V. [Max-Planck-Institut fuer Kernphysik, P.O. Box 10 39 80, D-69029 Heidelberg (Germany)]. E-mail: H.Klapdor@mpi-hd.mpg.de; Krivosheina, I.V. [Max-Planck-Institut fuer Kernphysik, P.O. Box 10 39 80, D-69029 Heidelberg (Germany)

    2005-08-15

    The first four naked high purity Germanium detectors (10 kg) were installed successfully in liquid nitrogen in the GENIUS-Test-Facility (GENIUS-TF) in the Gran Sasso Underground Laboratory on May 5, 2003. This is the first time ever that this novel technique aiming at extreme background reduction in search for rare decays is going to be tested underground. First results on the background are presented. The GENIUS-TF experiment, aims to search for the annual modulation of the Dark Matter signal using 40 kg of naked-Ge detectors in liquid nitrogen. It should be able to confirm the DAMA result within two or three years of measuring time. HDMS (Heidelberg Dark Matter Search) is the only experiment worldwide, operating an enriched {sup 73}Ge detector and is looking for spin-dependent WIMP-neutron interactions. Results for the measurement Febr. 2001 - July 2003 are presented. They improve the best existing present limits for low WIMP masses.

  9. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  10. Keeping the Background Low: Production and Testing of the GERDA Phase II Detectors

    International Nuclear Information System (INIS)

    Hemmer, Sabine

    2013-06-01

    The Germanium Detector Array (GERDA) experiment at the INFN Laboratori Nazionali del Gran Sasso searches for neutrinoless double beta decay of 76 Ge. The first phase using ∼15 kg of coaxial germanium detectors is ongoing. In a second phase, additional ∼20 kg of newly produced Broad Energy Germanium (BEGe) detectors will be deployed. To limit the generation of cosmogenically induced radioisotopes, the exposure of the germanium to cosmic radiation during the detector production and testing was minimized. An acceptance and characterization campaign of the newly produced detectors was carried out at the HEROICA facility in the HADES underground laboratory in Mol, Belgium. An overview over the complete production process, from isotopic enrichment of the material to the detector testing protocol, is given. (authors)

  11. HPGe detectors timing using pulse shape analysis techniques

    International Nuclear Information System (INIS)

    Crespi, F.C.L.; Vandone, V.; Brambilla, S.; Camera, F.; Million, B.; Riboldi, S.; Wieland, O.

    2010-01-01

    In this work the Pulse Shape Analysis has been used to improve the time resolution of High Purity Germanium (HPGe) detectors. A set of time aligned signals was acquired in a coincidence measurement using a coaxial HPGe and a cerium-doped lanthanum chloride (LaCl 3 :Ce) scintillation detector. The analysis using a Constant Fraction Discriminator (CFD) time output versus the HPGe signal shape shows that time resolution ranges from 2 to 12 ns depending on the slope in the initial part of the signal. An optimization procedure of the CFD parameters gives the same final time resolution (8 ns) as the one achieved after a correction of the CFD output based on the current pulse maximum position. Finally, an algorithm based on Pulse Shape Analysis was applied to the experimental data and a time resolution between 3 and 4 ns was obtained, corresponding to a 50% improvement as compared with that given by standard CFDs.

  12. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  13. The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)

    Science.gov (United States)

    Abgrall, N.; Abramov, A.; Abrosimov, N.; Abt, I.; Agostini, M.; Agartioglu, M.; Ajjaq, A.; Alvis, S. I.; Avignone, F. T.; Bai, X.; Balata, M.; Barabanov, I.; Barabash, A. S.; Barton, P. J.; Baudis, L.; Bezrukov, L.; Bode, T.; Bolozdynya, A.; Borowicz, D.; Boston, A.; Boston, H.; Boyd, S. T. P.; Breier, R.; Brudanin, V.; Brugnera, R.; Busch, M.; Buuck, M.; Caldwell, A.; Caldwell, T. S.; Camellato, T.; Carpenter, M.; Cattadori, C.; Cederkäll, J.; Chan, Y.-D.; Chen, S.; Chernogorov, A.; Christofferson, C. D.; Chu, P.-H.; Cooper, R. J.; Cuesta, C.; Demidova, E. V.; Deng, Z.; Deniz, M.; Detwiler, J. A.; Di Marco, N.; Domula, A.; Du, Q.; Efremenko, Yu.; Egorov, V.; Elliott, S. R.; Fields, D.; Fischer, F.; Galindo-Uribarri, A.; Gangapshev, A.; Garfagnini, A.; Gilliss, T.; Giordano, M.; Giovanetti, G. K.; Gold, M.; Golubev, P.; Gooch, C.; Grabmayr, P.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Gurentsov, V.; Gurov, Y.; Gusev, K.; Hakenmüeller, J.; Harkness-Brennan, L.; Harvey, Z. R.; Haufe, C. R.; Hauertmann, L.; Heglund, D.; Hehn, L.; Heinz, A.; Hiller, R.; Hinton, J.; Hodak, R.; Hofmann, W.; Howard, S.; Howe, M. A.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Janssens, R.; Ješkovský, M.; Jochum, J.; Johansson, H. T.; Judson, D.; Junker, M.; Kaizer, J.; Kang, K.; Kazalov, V.; Kermadic, Y.; Kiessling, F.; Kirsch, A.; Kish, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Konovalov, S. I.; Kontul, I.; Kornoukhov, V. N.; Kraetzschmar, T.; Kröninger, K.; Kumar, A.; Kuzminov, V. V.; Lang, K.; Laubenstein, M.; Lazzaro, A.; Li, Y. L.; Li, Y.-Y.; Li, H. B.; Lin, S. T.; Lindner, M.; Lippi, I.; Liu, S. K.; Liu, X.; Liu, J.; Loomba, D.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Ma, H.; Majorovits, B.; Mamedov, F.; Martin, R. D.; Massarczyk, R.; Matthews, J. A. J.; McFadden, N.; Mei, D.-M.; Mei, H.; Meijer, S. J.; Mengoni, D.; Mertens, S.; Miller, W.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Myslik, J.; Nemchenok, I.; Nilsson, T.; Nolan, P.; O'Shaughnessy, C.; Othman, G.; Panas, K.; Pandola, L.; Papp, L.; Pelczar, K.; Peterson, D.; Pettus, W.; Poon, A. W. P.; Povinec, P. P.; Pullia, A.; Quintana, X. C.; Radford, D. C.; Rager, J.; Ransom, C.; Recchia, F.; Reine, A. L.; Riboldi, S.; Rielage, K.; Rozov, S.; Rouf, N. W.; Rukhadze, E.; Rumyantseva, N.; Saakyan, R.; Sala, E.; Salamida, F.; Sandukovsky, V.; Savard, G.; Schönert, S.; Schütz, A.-K.; Schulz, O.; Schuster, M.; Schwingenheuer, B.; Selivanenko, O.; Sevda, B.; Shanks, B.; Shevchik, E.; Shirchenko, M.; Simkovic, F.; Singh, L.; Singh, V.; Skorokhvatov, M.; Smolek, K.; Smolnikov, A.; Sonay, A.; Spavorova, M.; Stekl, I.; Stukov, D.; Tedeschi, D.; Thompson, J.; Van Wechel, T.; Varner, R. L.; Vasenko, A. A.; Vasilyev, S.; Veresnikova, A.; Vetter, K.; von Sturm, K.; Vorren, K.; Wagner, M.; Wang, G.-J.; Waters, D.; Wei, W.-Z.; Wester, T.; White, B. R.; Wiesinger, C.; Wilkerson, J. F.; Willers, M.; Wiseman, C.; Wojcik, M.; Wong, H. T.; Wyenberg, J.; Xu, W.; Yakushev, E.; Yang, G.; Yu, C.-H.; Yue, Q.; Yumatov, V.; Zeman, J.; Zeng, Z.; Zhitnikov, I.; Zhu, B.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2017-10-01

    The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ˜0.1 count /(FWHM.t.yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.

  14. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  15. Progress in multi-element silicon detectors for synchrotron XRF applications

    International Nuclear Information System (INIS)

    Ludewigt, B.; Rossington, C.; Kipnis, I.; Krieger, B.

    1995-10-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon and high purity germanium detectors for high count rate, low noise synchrotron x-ray fluorescence applications. We have been developing these types of detectors specifically for low noise synchrotron applications, such as extended x-ray absorption fine structure spectroscopy, microprobe x-ray fluorescence and total reflection x-ray fluorescence. The current version of the 192-element detector and integrated circuit preamplifier, cooled to -25 degrees C with a single-stage thermoelectric cooler, achieves an energy resolution of <200 eV full width of half maximum (FWHM) per channel (at 5.9 keV, 2 μs peaking time), and each detector element is designed to handle ∼20 kHz count rate. The detector system will soon be completed to 64 channels using new application specific integrated circuit (ASIC) amplifier chips, new CAMAC (Computer Automated Measurement and Control standard) analog-to-digital converters recently developed at Lawrence Berkeley National Laboratory (LBNL), CAMAC histogramming modules, and Macintosh-based data acquisition software. We report on the characteristics of this detector system, and the work in progress towards the next generation system

  16. Computational studies of BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2013-07-01

    The GERDA experiment searches for the neutrinoless double beta decay within the active volume of germanium detectors. Simulations of the physical processes within such detectors are vital to gain a better understanding of the measurements. The simulation procedure follows three steps: First it calculates the electric potential, next it simulates the electron and hole drift within the germanium crystal and finally it generates a corresponding signal. The GERDA collaboration recently characterized newly produced Broad Energy Germanium Detectors (BEGe) in the HADES underground laboratory in Mol, Belgium. A new pulse shape simulation library was established to examine the results of these measurements. The library has also proven to be a very powerful tool for other applications such as detector optimisation studies. The pulse shape library is based on ADL 3.0 (B. Bruyneel, B. Birkenbach, http://www.ikp.uni-koeln.de/research/agata/download.php) and m3dcr (D. Radford, http://radware.phy.ornl.gov/MJ/m3dcr).

  17. The establishment of bed type germanium-based whole body counters

    International Nuclear Information System (INIS)

    Chen, M.C.; Sun, C.L.; Yeh, W.W.

    1996-01-01

    A coaxial germanium detector was installed in a shadow-shield counter for the in-vivo measurement of γ emitters in the body. It is divided into two subparts, automatic liquid nitrogen transfer system and the Ge-based counting system. The automatic liquid nitrogen transfer system and a complete gamma spectroscopy software package were manufactured by EG and G ORTEC company. Some experiments were finished to get the optimum three setting parameters for how to operate the auto liquid nitrogen transfer system in good conditions. The filling interval should be setting at eight hours, the filling time should be setting at ten minutes, and the pressure of dewar should operate in a range from 14 to 26 PSI. The RMC-II phantom that is designed by Canberra company is used as standard man for all kinds of calibrations. The detector has resolutions that are less than 2.5 keV with an average of 1.87 keV for the 60 Co 1.33-MeV γ-ray peak. The efficiency value of thyroid geometry for four different organs is highest in the phantom. The resolution of the Germanium detector for measuring radioactivity in the body that is better than the sodium iodide detector is used to measure the internal depositions of radionuclide mixtures. So, the advantage of the germanium counter can just compensate the disadvantage of the NaI(TI) detector. The qualitative and quantitative analysis for whole body counting can keep in the best conditions if both whole body counters are operated at the same time for routine measurement purpose in the laboratory

  18. First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"

    Science.gov (United States)

    Janicskó Csáthy, József

    2014-06-01

    The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.

  19. Status and problems of semiconductor detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions

  20. Status and problems of semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions.

  1. Efficiency correction for disk sources using coaxial High-Purity Ge detectors

    International Nuclear Information System (INIS)

    Chatani, Hiroshi.

    1993-03-01

    Efficiency correction factors for disk sources were determined by making use of closed-ended coaxial High-Purity Ge (HPGe) detectors, their relative efficiencies for a 3' 'x3' ' NaI(Tl) with the 1.3 MeV γ-rays were 30 % and 10 %, respectively. Parameters for the correction by mapping method were obtained systematically, using several monoenergetic (i.e. no coincidence summing loses) γ-ray sources produced by irradiation in the Kyoto University Reactor (KUR) core. These were found out that (1) the systematics of the Gaussian fitting parameters, which were calculated using the relative efficiency distributions of HPGe, to the γ-ray energies are recognized, (2) the efficiency distributions deviate from the Gaussian distributions outside of the radii of HPGe. (3) mapping method is a practical use in satisfactory accuracy, as the results in comparison with the disk source measurements. (author)

  2. Determination of uranium enrichment by using gamma-spectrometric methods

    International Nuclear Information System (INIS)

    Kutnyj, D.V.; Telegin, Yu.N.; Odejchuk, N.P.; Mikhailov, V.A.; Tovkanets, V.E.

    2009-01-01

    By using commercial analysis programs MGAU (LLNL, USA) and FRAM (LANL, USA) the summary error of gamma-spectrometric uranium enrichment measurements was investigated. Uranium samples with enrichments of 0,71; 4,46 and 20,1 % were measured. The coaxial high purity germanium detector (type GC) and the planar germanium detector (type LEGe) were used as gamma-radiation detectors. It was shown that experimental equipment and mathematical software available in NSC KIPT allow us to measure uranium enrichment by nondestructive method with accuracy of not worse than 2%.

  3. Detector materials: germanium and silicon

    International Nuclear Information System (INIS)

    Haller, E.E.

    1981-11-01

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented

  4. Electrically-cooled HPGe detector for advanced x-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marian, V.; Clauss, J.; Pirard, B.; Quirin, P.; Flamanc, J.; Lampert, M.O. [CANBERRA France, Parc des Tanneries, 1, chemin de la roseraie, 67380 Lingolsheim (France)

    2015-07-01

    High Purity Germanium (HPGe) detectors are used for high-resolution x- and gamma-ray spectroscopy. For their operation, the necessary cryogenic cooling is performed with liquid nitrogen or with electromechanical coolers. Although mature and industrialized solutions, most of HPGe detectors integrating electrical coolers present a limited spectroscopic performance due to the generated mechanical vibration and electromagnetic interference. This paper describes a novel HPGe detector, specifically designed to address the challenges of ultimate x-ray spectroscopy and imaging applications. Due to the stringent demands associated with nano-scale imaging in synchrotron applications, a custom-designed cryostat was built around a Canberra CP5-Plus electrical cooler featuring extremely low vibration levels and high cooling power. The heat generated by the cryo-cooler itself, as well as the electronics, is evacuated via an original liquid cooling circuit. This architecture can also be used to address high ambient temperature, which does not allow conventional cryo-coolers to work properly. The multichannel detector head can consist of a segmented monolithic HPGe sensor, or several closely packed sensors. Each sensor channel is read out by state-of-the-art pulse-reset preamplifiers in order to achieve excellent energy resolution for count rates in excess of 1 Mcps. The sensitive electronics are located in EMI-proof housings to avoid any interference from other devices on a beam-line. The front-end of the detector is built using selected high-purity materials and alloys to avoid any fluorescence effects. We present a detailed description of the detector design and we report on its performance. A discussion is also given on the use of electrically cooled HPGe detectors for applications requiring ultimate energy resolution, such as synchrotron, medicine or nuclear industry. (authors)

  5. Heavy ion radiative capture. A study of the 12C(12C,γ) reaction using a large germanium detector array

    International Nuclear Information System (INIS)

    Jenkins, D.G.; Lister, C.J.; Carpenter, M.P.

    2002-01-01

    A new technique has been developed to investigate the little-explored phenomenon of heavy ion radiative capture. Employing a state-of-the-art germanium detector array (GAMMASPHERE) in a novel fashion as a sum energy calorimeter it is possible to separate the radiative capture channel from overwhelming competition from particle emission channels with exquisite sensitivity. By studying in detail the decay pathways and the intermediate states populated in the decay, it is possible to learn information relevant to the hypothesis of nuclear molecular states. (author)

  6. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, Robert [Stanford Univ., CA (United States)

    2016-03-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  7. Portable X-Ray, K-Edge Heavy Metal Detector

    International Nuclear Information System (INIS)

    Fricke, V.

    1999-01-01

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available

  8. Resistor-less charge sensitive amplifier for semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pelczar, K., E-mail: krzysztof.pelczar@doctoral.uj.edu.pl; Panas, K.; Zuzel, G.

    2016-11-01

    A new concept of a Charge Sensitive Amplifier without a high-value resistor in the feedback loop is presented. Basic spectroscopic parameters of the amplifier coupled to a coaxial High Purity Germanium detector (HPGe) are discussed. The amplifier signal input is realized with an n-channel J-FET transistor. The feedback capacitor is discharged continuously by the second, forward biased n-channel J-FET, driven by an RC low–pass filter. Both the analog—with a standard spectroscopy amplifier and a multi-channel analyzer—and the digital—by applying a Flash Analog to Digital Converter—signal readouts were tested. The achieved resolution in the analog and the digital readouts was 0.17% and 0.21%, respectively, at the Full Width at Half Maximum of the registered {sup 60}Co 1332.5 keV gamma line.

  9. Off-line data processing and analysis for the GERDA experiment

    International Nuclear Information System (INIS)

    Agostini, M; Pandola, L; Zavarise, P

    2012-01-01

    Gerda is an experiment designed to look for the neutrinoless double beta decay of 76 Ge. The experiment uses an array of high-purity germanium detectors (enriched in 76 Ge) directly immersed in liquid argon. Gerda is presently operating eight enriched coaxial detectors (approximately 15 kg of 76 Ge) and about 25 new custom-made enriched BEGe detectors will be deployed in the next phase (additional 20kg of 76 Ge). The paper describes the Gerda off-line analysis of the high-purity germanium detector data. Firstly we present the signal processing flow, focusing on the digital filters and on the algorithms used. Secondly we discuss the rejection of non-physical events and the data quality monitoring. The analysis is performed completely with the Gerda software framework (Gelatio), designed to support a multi-channel processing and to perform a modular analysis of digital signals.

  10. Utilization of concurrently gathered pulser data for complete spectral validation of gamma-ray spectra from germanium detectors

    International Nuclear Information System (INIS)

    Johnson, L.O.; Killian, E.W.; Helmer, R.G.; Coates, R.A.

    1980-01-01

    Some of the capabilities and limitations of using concurrently gathered pulser data for energy calibration, dead time correction, and pile-up loss correction of gamma ray spectra from germanium detectors have been investigated. This report deals with the pulser, charge injection into the charge sensitive preamplifier, hardware separation of gamma and pulser events, and analysis techniques to improve the accuracy of gamma peak area corrections from pulser data. Data are presented indicating achievable short and long term energy calibration stability of better than .01% and accuracy and rate dependent peak area loss corrections of +-1% up to 50,000 pulses per second (pps) and +-2.5% up to 100,000 pps, energy independent

  11. High bit rate germanium single photon detectors for 1310nm

    Science.gov (United States)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  12. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; O' Shaughnessy, C.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C.; Von Sturm, K. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A.; Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-02-01

    The GERmanium Detector Array (GERDA) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of the experiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)- type were produced. A subgroup of these detectors has already been deployed in GERDA during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of GERDA Phase II. (orig.)

  13. Production, characterization and operation of {sup 76}Ge enriched BEGe detectors in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M. [Physik Department and Excellence Cluster Universe, Technische Universität München, Munich (Germany); Allardt, M. [Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen (Germany); Bakalyarov, A. M. [National Research Centre “Kurchatov Institute”, Moscow (Russian Federation); Balata, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); and others

    2015-02-03

    The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Germanium detectors made of material with an enriched {sup 76}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new {sup 76}Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the {sup 76}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  14. Machine-operated low temperature system for cooling a germanium detector at great depths of the sea

    International Nuclear Information System (INIS)

    Bruederle, F.; Hain, K.; Huebener, J.; Schloss, F.

    1978-07-01

    The report outlines the conceptual design and technical implementation phases of a very reliable low temperature system for long-time cooling of a germanium detector at great depths of the sea. The approach chosen as the solution involves the choise of a proven commercial small-scale refrigeration unit operation by the Gifford-Mc Mahon process, which is modified so as to suit special requirements. Testing for the severe conditions of use is carried out on a jarring table for the critical components and on a rolling test rig for the whole low temperature machine so as to simulate the stresses imposed by ships and high seas. The cooling system designed in this way has demonstrated its full functioning capability in a test conducted at sea. (orig.) 891 HP [de

  15. Using the IEC standard to describe low-background detectors -- What can you expect?

    International Nuclear Information System (INIS)

    Keyser, R.M.; Wagner, S.

    1998-01-01

    Many measurements for environmental levels of the radioactive content require that the gamma-ray detector be low background, that is, free of any radioactive content. This is, of course, not possible, but the radioactivity in the detector must be reduced to as low a value as possible. The description or specification of the background spectrum necessary to achieve the desired results is needed. The new International Electrotechnical Commission (IEC) standard for describing the background makes the specification of the background in a high-purity germanium (HPGe) detector simple, unambiguous, and related to how the detector will be used. Users and manufacturers will finally be speaking the same language on this subject. Because this standard extends the specification of the performance of an HPGe detector, there is little history available for comparison and thus no means of determining a good value. To develop a history, the background spectrum for 500 low-background HPGe ORTEC detectors were all counted in similar low-background shields. These detectors were in a variety of mechanical cryostat and endcap configurations. The continuum background is a function of energy and detector size/configuration. The peak area for the peak energies listed in the standard is a function of detector size and configuration. The results thus give practical guidance for obtaining the most appropriate low-background detector for a specific measurement problem

  16. Gamma-Ray Background Variability in Mobile Detectors

    Science.gov (United States)

    Aucott, Timothy John

    . This is accomplished by making many hours of background measurements with a truck-mounted system, which utilizes high-purity germanium detectors for spectroscopy and sodium iodide detectors for coded aperture imaging. This system also utilizes various peripheral sensors, such as panoramic cameras, laser ranging systems, global positioning systems, and a weather station to provide context for the gamma-ray data. About three hundred hours of data were taken in the San Francisco Bay Area, covering a wide variety of environments that might be encountered in operational scenarios. These measurements were used in a source injection study to evaluate the sensitivity of different algorithms (imaging and spectroscopy) and hardware (sodium iodide and high-purity germanium detectors). These measurements confirm that background distributions in large, mobile detector systems are dominated by systematic, not statistical variations, and both spectroscopy and imaging were found to substantially reduce this variability. Spectroscopy performed better than the coded aperture for the given scintillator array (one square meter of sodium iodide) for a variety of sources and geometries. By modeling the statistical and systematic uncertainties of the background, the data can be sampled to simulate the performance of a detector array of arbitrary size and resolution. With a larger array or lower resolution detectors, however imaging was better able to compensate for background variability.

  17. The Majorana Demonstrator: A search for neutrinoless double-beta decay of germanium-76

    Science.gov (United States)

    Elliott, S. R.; Abgrall, N.; Aguayo, E.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G., II; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Strain, J.; Suriano, A. M.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    2013-12-01

    The Majorana collaboration is searching for neutrinoless double beta decay using 76Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ˜1 count/t-y or lower in the region of the signal. The Majorana collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the Demonstrator, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ˜30 kg will be enriched to 87% in 76Ge. The Demonstrator is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the Demonstrator is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.

  18. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  19. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  20. Monte Carlo modelling of Germanium detectors for the measurement of low energy photons in internal dosimetry: Results of an international comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ros, J.M. [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain)], E-mail: jm.gomezros@ciemat.es; Carlan, L. de [CEA DRT/LIST/DETECS/LNHB/LMD, Bat 534, F-91191 Gif sur Yvette, Cedex (France); IRSN DRPH/SDI/LEDI, BP6, F-92262, Fontenay-aux-Roses, Cedex (France); Franck, D. [IRSN DRPH/SDI/LEDI, BP6, F-92262, Fontenay-aux-Roses, Cedex (France); Gualdrini, G. [ENEA ION-IRP, Via dei Colli 16, I-40136 Bologna (Italy); Lis, M.; Lopez, M.A.; Moraleda, M. [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain); Zankl, M. [GSF - National Research Center for Environment and Health, D-85764 Neuherberg (Germany); Badal, A. [Institut de Tecniques Energetiques, UPC, Diagonal 647, 08028 Barcelona (Spain); Capello, K. [Human Monitoring Laboratory (Canada); Cowan, P. [Serco Assurance, Bld. A32, Winfrith Tech. Centre Winfrith, Dorchester, Dorset DT2 8DH (United Kingdom); Ferrari, P. [ENEA ION-IRP, Via dei Colli 16, I-40136 Bologna (Italy); Heide, B. [Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Henniger, J. [Technical University of Dresden, 01062 Dresden (Germany); Hooley, V. [Serco Assurance, Bld. A32, Winfrith Tech. Centre Winfrith, Dorchester, Dorset DT2 8DH (United Kingdom); Hunt, J. [IRD, Av. Salvador Allende, s/n, Recreio, Rio de Janeiro (Brazil); Kinase, S. [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kramer, G.H. [Human Monitoring Laboratory (Canada); Loehnert, D. [Technical University of Dresden, 01062 Dresden (Germany); Lucas, S. [LARN Laboratory, University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)] (and others)

    2008-02-15

    This communication summarizes the results concerning the Monte Carlo (MC) modelling of Germanium detectors for the measurement of low energy photons arising from the 'International comparison on MC modelling for in vivo measurement of Americium in a knee phantom' organized within the EU Coordination Action CONRAD (Coordinated Network for Radiation Dosimetry) as a joint initiative of EURADOS working groups 6 (computational dosimetry) and 7 (internal dosimetry). MC simulations proved to be an applicable way to obtain the calibration factor that needs to be used for in vivo measurements.

  1. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Hess, H.; Lewandowski, L. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Gernhaeuser, R.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-02-15

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8 {sup circle} and 19.1 {sup circle}, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6 {sup circle} was determined for the same γ-ray energy. (orig.)

  2. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    Science.gov (United States)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  3. Multiagency Urban Search Experiment Detector and Algorithm Test Bed

    Science.gov (United States)

    Nicholson, Andrew D.; Garishvili, Irakli; Peplow, Douglas E.; Archer, Daniel E.; Ray, William R.; Swinney, Mathew W.; Willis, Michael J.; Davidson, Gregory G.; Cleveland, Steven L.; Patton, Bruce W.; Hornback, Donald E.; Peltz, James J.; McLean, M. S. Lance; Plionis, Alexander A.; Quiter, Brian J.; Bandstra, Mark S.

    2017-07-01

    In order to provide benchmark data sets for radiation detector and algorithm development, a particle transport test bed has been created using experimental data as model input and validation. A detailed radiation measurement campaign at the Combined Arms Collective Training Facility in Fort Indiantown Gap, PA (FTIG), USA, provides sample background radiation levels for a variety of materials present at the site (including cinder block, gravel, asphalt, and soil) using long dwell high-purity germanium (HPGe) measurements. In addition, detailed light detection and ranging data and ground-truth measurements inform model geometry. This paper describes the collected data and the application of these data to create background and injected source synthetic data for an arbitrary gamma-ray detection system using particle transport model detector response calculations and statistical sampling. In the methodology presented here, HPGe measurements inform model source terms while detector response calculations are validated via long dwell measurements using 2"×4"×16" NaI(Tl) detectors at a variety of measurement points. A collection of responses, along with sampling methods and interpolation, can be used to create data sets to gauge radiation detector and algorithm (including detection, identification, and localization) performance under a variety of scenarios. Data collected at the FTIG site are available for query, filtering, visualization, and download at muse.lbl.gov.

  4. Atomic ionization of germanium by neutrinos from an ab initio approach

    International Nuclear Information System (INIS)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Huang, Keh-Ning; Liu, C.-P.; Shiao, Hao-Tse; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2014-01-01

    An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.

  5. Comparison of sodium iodide and solid-state detectors for the measurement of lung-stored uranium

    International Nuclear Information System (INIS)

    King, A.; Scott, L.M.; Disney, J.L.

    1978-01-01

    A series of measurement of uranium sources were made, using a solid state detector consisting of 4 high-purity germanium detectors, and compared with measurements made with a single NaI detector. The comparative efficiencies at various energies are shown. As energy increases the differences in efficiencies increase in favour of NaI. A estimate of detection sensitivity gave the limit of error on the net count of a subject with one maximum permissible lung burden as 27 +- 7.2 counts/min for NaI and 3.73 +- 1.04 counts/min for the solid state detector. On a microgram basis the respective limits of error are +- 66 and +- 67 μg. It is concluded that solid state detectors can give 17 times better resolution compared with NaI while maintaining the same detection sensitivity. Sensitivity is related to the scatter of higher energy gammas into a fairly wide energy range. This 17-fold improvement in resolution results in a narrower energy range in which the scattered radiation can fall. Thus gamma analysis with such a system would be less subject to background errors. (author)

  6. Comparison of the NaI-CsI phoswich and a hyperpure germanium array for in vivo detection of the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C D; Goans, R E [Oak Ridge National Lab., TN (USA)

    1981-04-01

    An array of hyperpure germanium detectors has recently been employed at ORNL for the identification and quantification of internally deposited actinides. Its advantages over the phoswich detector - the current state-of-the-art for detection of the actinides - were found to be improved background reduction and superior energy resolution. The germanium system and the currently operating phoswich system are discussed and compared. The improvement in performance of the germanium system over the phoswich system (a factor of 2.5 for /sup 239/Pu and 15.3 for /sup 241/Am) appears to justify the financial investment, particularly when /sup 241/Am is used as an indirect means of detection and measurement of /sup 239/Pu.

  7. Modeling the Efficiency of a Germanium Detector

    Science.gov (United States)

    Hayton, Keith; Prewitt, Michelle; Quarles, C. A.

    2006-10-01

    We are using the Monte Carlo Program PENELOPE and the cylindrical geometry program PENCYL to develop a model of the detector efficiency of a planar Ge detector. The detector is used for x-ray measurements in an ongoing experiment to measure electron bremsstrahlung. While we are mainly interested in the efficiency up to 60 keV, the model ranges from 10.1 keV (below the Ge absorption edge at 11.1 keV) to 800 keV. Measurements of the detector efficiency have been made in a well-defined geometry with calibrated radioactive sources: Co-57, Se-75, Ba-133, Am-241 and Bi-207. The model is compared with the experimental measurements and is expected to provide a better interpolation formula for the detector efficiency than simply using x-ray absorption coefficients for the major constituents of the detector. Using PENELOPE, we will discuss several factors, such as Ge dead layer, surface ice layer and angular divergence of the source, that influence the efficiency of the detector.

  8. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Robles, A.; Drury, O.B.; Friedrich, S.

    2009-01-01

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm 3 Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  9. Estimation of Radiation Risks Due To Ingestion of Water in Ogba ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Secondary data from radiological studies on water resources of Ogba land was obtained and .... pipe leakage has been the major environmental pollutant in the area ... analyzer and coaxial high purity Germanium detector type [Avwiri and ...

  10. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  11. Determination of the dead layer and full-energy peak efficiency of an HPGe detector using the MCNP code and experimental results

    Directory of Open Access Journals (Sweden)

    M Moeinifar

    2017-02-01

    Full Text Available One important factor in using an High Purity Germanium (HPGe detector is its efficiency that highly depends on the geometry and absorption factors, so that when the configuration of source-detector geometry is changed, the detector efficiency must be re-measured. The best way of determining the efficiency of a detector is measuring the efficiency of standard sources. But considering the fact that standard sources are hardly available and it is time consuming to find them, determinig the efficiency by simulation which gives enough efficiency in less time, is important. In this study, the dead layer thickness and the full-energy peak efficiency of an HPGe detector was obtained by Monte Carlo simulation, using MCNPX code. For this, we first measured gamma–ray spectra for different sources placed at various distances from the detector and stored the measured spectra obtained. Then the obtained spectra were simulated under similar conditions in vitro.At first, the whole volume of germanium was regarded as active, and the obtaind spectra from calculation were compared with the corresponding experimental spectra. Comparison of the calculated spectra with the measured spectra showed considerable differences. By making small variations in the dead layer thickness of the detector (about a few hundredths of a millimeter in the simulation program, we tried to remove these differences and in this way a dead layer of 0.57 mm was obtained for the detector. By incorporating this value for the dead layer in the simulating program, the full-energy peak efficiency of the detector was then obtained both by experiment and by simulation, for various sources at various distances from the detector, and both methods showed good agreements. Then, using MCNP code and considering the exact measurement system, one can conclude that the efficiency of an HPGe detector for various source-detector geometries can be calculated with rather good accuracy by simulation method

  12. Special Cryostats for Lithium Compensated Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmsten, B; Rosencrantz, B

    1968-05-15

    In many applications of Ge(Li) detectors an extreme design of the cryostat is desirable. One example is a coincidence or anticoincidence setup where the Ge(Li) detector is surrounded by one or several other detectors, usually Nal(Tl) crystals or plastic scintillators. To be usable in this arrangement the part of the cryostat containing the Ge(Li) detector should have the form of a long hood, with the detector placed at its very end. The diameter of the hood should be as small as detector dimensions permit. Excellent energy resolution and reasonably low liquid nitrogen consumption must be retained. Two cryostats fulfilling these conditions will be described. For the first cryostat emphasis lay on the reduction of the hood diameter to an absolute minimum; for the other incorporation of a device regulating the temperature of the cryostat surface was required. The difficulties encountered will be discussed; they were primarily connected with the necessity of combining minimum temperature loss at the detector position with extreme cryostat compactness and cold finger length. The incorporation of a cooled FET transistor in the cryostat will also be described. The gamma spectrometers using the cryostats gave resolutions down to 2.8 keV FWHM for the 1173 keV gamma line from Co 60 and 1.2 keV FWHM for the 122 keV line from Co 57.

  13. Pulse shape discrimination studies of Phase I Ge-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The GERmanium Detector Array experiment aims to search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge by using isotopically enriched germanium crystals as source and detector simultaneously. The bare semiconductor diodes are operated in liquid argon at cryogenic temperatures in an ultra-low background environment. In addition, Gerda applies different active background reduction techniques, one of which is pulse shape discrimination studies of the current Phase I germanium detectors. The analysis of the signal time structure provides an important tool to distinguish single site events (SSE) of the ββ-decay from multi site events (MSE) of common gamma-ray background or surface events. To investigate the correlation between the signal shape and the interaction position, a new, also to the predominantly deployed closed-ended coaxial HPGe detectors applicable analysis technique has been developed. A summary of the used electronic/detector assembly is given and followed by a discussion of the performed classification procedure by means of accurate pulse shape simulations of 0νββ-like signals. Finally, the obtained results are presented along with an evaluation of the relevance for the Gerda experiment.

  14. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  15. Testing and Characterization of SuperCDMS Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Benjamin [Stanford Univ., CA (United States)

    2014-05-01

    The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al. This thesis is not intended to be read straight through. For those new to CDMS or dark matter searches, the first two chapters are meant to be a gentle introduction for experimentalists. They are by no means exhaustive. The remaining chapters each stand alone, with different audiences.

  16. Monte Carlo studies and optimization for the calibration system of the GERDA experiment

    Science.gov (United States)

    Baudis, L.; Ferella, A. D.; Froborg, F.; Tarka, M.

    2013-11-01

    The GERmanium Detector Array, GERDA, searches for neutrinoless double β decay in 76Ge using bare high-purity germanium detectors submerged in liquid argon. For the calibration of these detectors γ emitting sources have to be lowered from their parking position on the top of the cryostat over more than 5 m down to the germanium crystals. With the help of Monte Carlo simulations, the relevant parameters of the calibration system were determined. It was found that three 228Th sources with an activity of 20 kBq each at two different vertical positions will be necessary to reach sufficient statistics in all detectors in less than 4 h of calibration time. These sources will contribute to the background of the experiment with a total of (1.07±0.04(stat)-0.19+0.13(sys))×10-4 cts/(keV kg yr)) when shielded from below with 6 cm of tantalum in the parking position.

  17. Monte Carlo studies and optimization for the calibration system of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, L. [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Ferella, A.D. [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); INFN Laboratori Nazionali del Gran Sasso, 67010 Assergi (Italy); Froborg, F., E-mail: francis@froborg.de [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Tarka, M. [Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Physics Department, University of Illinois, 1110 West Green Street, Urbana, IL 61801 (United States)

    2013-11-21

    The GERmanium Detector Array, GERDA, searches for neutrinoless double β decay in {sup 76}Ge using bare high-purity germanium detectors submerged in liquid argon. For the calibration of these detectors γ emitting sources have to be lowered from their parking position on the top of the cryostat over more than 5 m down to the germanium crystals. With the help of Monte Carlo simulations, the relevant parameters of the calibration system were determined. It was found that three {sup 228}Th sources with an activity of 20 kBq each at two different vertical positions will be necessary to reach sufficient statistics in all detectors in less than 4 h of calibration time. These sources will contribute to the background of the experiment with a total of (1.07±0.04(stat){sub −0.19}{sup +0.13}(sys))×10{sup −4}cts/(keVkgyr)) when shielded from below with 6 cm of tantalum in the parking position.

  18. A Dark Matter Search with MALBEK

    Science.gov (United States)

    Giovanetti, G. K.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal.

  19. The processing of enriched germanium for the MAJORANA DEMONSTRATOR and R&D for a next generation double-beta decay experiment

    Science.gov (United States)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.

  20. Anomalous scattering factors of some rare earth elements evaluated

    Indian Academy of Sciences (India)

    section data set experimentally determined using high resolution high purity germanium detector in a narrow beam good geometry set-up for these elements in the photon energy range 5 to 1332 keV and reported earlier by the authors. Below 5 keV ...

  1. Maintenence and fabrication of Electronic Equipment

    International Nuclear Information System (INIS)

    Chung, Chong Eun; Moon, Byung Soo; Hong, Suk Boong; Kim, Young Keun; Kim, Jung Bok; Lee, Sang Suk

    2004-12-01

    Development of the SPND Monitor could be the base of development of small signal processing circuits and the technique could be used to develop other precision equipment. The repair technology for high purity germanium(HPGe) detector system could be adapted to other areas where high purity detectors are used such as hospitals, universities etc. The technology of multi-channel ASIC for nuclear radiation detector, which has been imported from abroad, could be adapted to development of radiation equipment for image processing, position of detection, NDT etc., and also the technique will be expected to contribute to increase the use of radiation technology to industrial applications

  2. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  3. Superconductivity of tribolayers formed on germanium by friction between germanium and lead

    Energy Technology Data Exchange (ETDEWEB)

    Dukhovskoi, A.; Karapetyan, S.S.; Morozov, Y.G.; Onishchenko, A.S.; Petinov, V.I.; Ponomarev, A.N.; Silin, A.A.; Stepanov, B.M.; Tal' roze, V.L.

    1978-04-05

    A superconducting state was observed for the first time in tribolayers of germanium produced by friction of germanium with lead at 42 K. The maximum value of T/sub c/ obtained in the experiment was 19 K, which is much higher than T/sub c/ of bulk lead itself or of lead films sputtered on germanium.

  4. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    The Savannah River Technology Center (SRTC) utilizes gamma-ray spectrometry in studying numerous areas of applied interest to the Savannah River Site (SRS). For example, analyses of long-lived gamma-ray-emitting fission products and actinides are required to meet waste characterization, process holdup, environmental restoration, and decontamination and decommissioning efforts. A significant portion of the overall effort centers on measurements of gamma rays having energies below several hundred kilo-electron-volts. To assist these efforts, the SRTC recently acquired a spectrometer system that provides lower natural and Compton scattered background levels while achieving relatively high counting efficiencies for low-energy gamma rays. The combination of high efficiency and low background provides factor-of- 2-to-4 improvements in minimum detectable activities and allows meeting programmatic objectives with shorter measurement times. Numerous Compton-suppression spectrometers have been reported since the concept was first advanced. The spectrometer consists of two high-purity germanium detectors in a telescope configuration surrounded by a background /Compton-suppression sodium iodide detector. The front germanium detector is a 20-mm-thick x 60-mm-diam broad energy spectrometer, and the rear detector is a 40% efficient 61- mm-diam x 60-cm-thick closed-end coaxial spectrometer. The cryostat housing the germanium detectors (a) includes a carbon composite window for transmitting low-energy gamma rays, (b) is in a J-type configuration to mask the germanium detectors from natural activities in the cryo-pumping media, and (c) is fabricated from materials selected for low background. The telescope detector is in the 8.6-cm-inside-diameter annulus of a 22.9- x 22.9-cm sodium iodide detector encased in a 10-cm-thick lead shield. The counting system is located in a basement counting room having ∼60-cm-thick concrete walls. Initial tests show that the low-energy segment of

  5. Determination of soil, sand and ore primordial radionuclide concentrations by full-spectrum analyses of high-purity germanium detector spectra

    International Nuclear Information System (INIS)

    Newman, R.T.; Lindsay, R.; Maphoto, K.P.; Mlwilo, N.A.; Mohanty, A.K.; Roux, D.G.; Meijer, R.J. de; Hlatshwayo, I.N.

    2008-01-01

    The full-spectrum analysis (FSA) method was used to determine primordial activity concentrations (ACs) in soil, sand and ore samples, in conjunction with a HPGe detector. FSA involves the least-squares fitting of sample spectra by linear combinations of 238 U, 232 Th and 40 K standard spectra. The differences between the FSA results and those from traditional windows analyses (using regions-of-interest around selected photopeaks) are less than 10% for all samples except zircon ore, where FSA yielded an unphysical 40 K AC

  6. Low-energy neutrino and dark matter physics with sub-keV

    Indian Academy of Sciences (India)

    The TEXONO-CDEX Collaboration (Taiwan experiment on neutrino–China dark matter experiment) explores high-purity germanium (HPGe) detection technology to develop a sub-keV threshold detector for pursuing studies on low mass weakly interacting massive particles (WIMPs), properties of neutrino and the ...

  7. The {sup 124}Sb activity standardization by gamma spectrometry for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.C.M. de, E-mail: marcandida@yahoo.com.b [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes, Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear (SEMRA/LNMRI/IRD/CNEN), Av. Salvador Allende s/n, Recreio, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Iwahara, A.; Delgado, J.U.; Poledna, R.; Silva, R.L. da [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes, Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear (SEMRA/LNMRI/IRD/CNEN), Av. Salvador Allende s/n, Recreio, Rio de Janeiro, RJ, CEP 22780-160 (Brazil)

    2010-07-21

    This work describes a metrological activity determination of {sup 124}Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. {sup 124}Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. {sup 124}Sb decays by {beta}-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point {sup 124}Sb solid sources were obtained from a {sup 166m}Ho standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of {sup 124}Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% (k=2) were obtained.

  8. Ge Detector Data Classification with Neural Networks

    Science.gov (United States)

    Wilson, Carly; Martin, Ryan; Majorana Collaboration

    2014-09-01

    The Majorana Demonstrator experiment is searching for neutrinoless double beta-decay using p-type point contact PPC germanium detectors at the Sanford Underground Research Facility, in South Dakota. Pulse shape discrimination can be used in PPC detectors to distinguish signal-like events from backgrounds. This research program explored the possibility of building a self-organizing map that takes data collected from germanium detectors and classifies the events as either signal or background. Self organizing maps are a type of neural network that are self-learning and less susceptible to being biased from imperfect training data. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  9. A Trigger-less Acquisition System for the EXILL Large Germanium Detectors Array

    International Nuclear Information System (INIS)

    Mutti, Paolo; Blanc, Aurelian; Jentschel, Michael; Koester, Ulli; Ruiz Martinez, Emilio; Soldner, Torsten; France, Gilles de; Simpson, Gary; Ur, Calin A.; Urban, Waldemar

    2013-06-01

    The combination of the intense cold neutron beam available at the PF1b beam position of the Institute Laue- Langevin (ILL) in Grenoble, together with the high detection efficiency of a large array of high purity Ge detectors (HPGe) has offered a unique opportunity for a set of experiments devoted to nuclear spectroscopy on stable isotopes as well as on exotic nuclei produced in the fission process of uranium and plutonium samples. The emitted γ -rays from neutron capture on stable targets as well as from the decay of fission fragments have been acquired in a trigger-less mode to preserve a maximum of information for further off-line treatment. A dedicated fully digital acquisition system using a combination of a 14-bit 100 MS/s digitizers with a Power PC-based VME single board computer has been developed to ensure data collection and real-time processing capabilities. The present article will describe the experimental setup as well as the specific electronic configuration used during the EXILL campaign of measurements with particular emphasis on the technical achievements as well as on the preliminary results obtained in the various experiments. (authors)

  10. Fission-product yields for thermal-neutron fission of 243Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243 Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243 Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references

  11. Development and installation of the GERDA experiment

    International Nuclear Information System (INIS)

    Smolnikov, A

    2010-01-01

    The progress in the development of the GERDA (GErmanium Detector Array) experiment is presented. The goal of the experiment is the search for neutrinoless double beta decay of 76 Ge with considerable reduction of background in comparison with predecessor experiments. GERDA will operate bare germanium semiconductor detectors (enriched in 76 Ge) submerged in high purity liquid argon supplemented by a water shield. The experimental set up is currently under construction in the underground facility of LNGS, Italy. The results of various R and D efforts and the main steps of the GERDA set up design and installation are given as well as several novel methods for background reduction are described.

  12. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav

    2005-07-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  13. Hard X-ray polarimetry with position sensitve germanium detectors. Studies of the recombination transitions into highly charged ions

    International Nuclear Information System (INIS)

    Tashenov, Stanislav

    2005-01-01

    In this work a first study of the photon polarization for the process of radiative recombination has been performed. This was done at the ESR storage ring at GSI for uranium ions colliding with N2 at various collision energies. For this measurement a high purity Ge Pixel Detector with a 4 x 4 segmentation matrix was applied. The investigation was performed at the Gas-jet target of the ESR. The detector was placed at 60 and 90 observation angles. The sensitivity of the Compton scattering effect to the linear polarization of the X-Ray radiation was employed for the polarization measurement. Detailed investigations of the scattering and geometrical effects inside the detector were performed in order to develop a method to interpret the experimental data and extract the degree of the linear polarization in the hard X-Ray regime with a high precision. A special emphasis was given to the geometry of the detector and it's influence on the measured pixel-to-pixel Compton scattering intensities. The developed method enabled to achieve a precision of the order of 10% with the Pixel Detector which is dominated by the statistical uncertainties. The obtained results show a good agreement with the theoretical values derived from the exact relativistic calculations. For the case of the linear polarization of the K-REC photons, the measured data con rm the theoretical prediction that strong depolarization effects occur for high projectile charges in the forward hemisphere. The latter is in disagreement with the nonrelativistic theory which predicts a 100 % polarization regardless of the emission angle. (orig.)

  14. Large microcalorimeter arrays for high-resolution X- and gamma-rayspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, A.S., E-mail: ahoover@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoteling, N.; Rabin, M.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Ullom, J.N.; Bennett, D.A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Karpius, P.J.; Vo, D.T. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Doriese, W.B.; Hilton, G.C.; Horansky, R.D.; Irwin, K.D.; Kotsubo, V. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Lee, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Vale, L.R. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2011-10-01

    Microcalorimeter detectors provide unprecedented energy resolution for the measurement of X-rays and soft gamma-rays. Energy resolution in the 100 keV region can be up to an order of magnitude better than planar high-purity germanium (HPGe) detectors. The technology is well-suited to analysis of materials with complex spectra presenting closely spaced photopeaks. One application area is the measurement and assay of nuclear materials for safeguards and fuel cycle applications. In this paper, we discuss the operation and performance of a 256-pixel array, and present results of a head-to-head comparison of isotopic determination measurements with high-purity germanium using a plutonium standard. We show that the uncertainty of a single measurement is smaller for the microcalorimeter data compared to the HPGe data when photopeak areas are equal. We identify several key areas where analysis codes can be optimized that will likely lead to improvement in the microcalorimeter performance.

  15. Radiation damage in semiconductor detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced

  16. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  17. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    International Nuclear Information System (INIS)

    Moreno, M.; Delgadillo, N.; Torres, A.; Ambrosio, R.; Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W.

    2013-01-01

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E a ) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ RT ), E a and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E a , TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors

  18. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  19. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  20. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  1. Germanium cryogenic detectors: Alpha surface events rejection capabilities

    International Nuclear Information System (INIS)

    Fiorucci, S.; Broniatowski, A.; Chardin, G.; Censier, B.; Lesquen, A. de; Deschamps, H.; Fesquet, M.; Jin, Y.

    2006-01-01

    Alpha surface events and multiple compton gamma interactions are the two major background components in Ge detectors for double-beta decay investigations. Two different methods have been studied to identify such type of events, using cryogenic Ge detectors developed primarily for dark matter search: (i) combined heat and ionization measurements, and (ii) pulse-shape analysis of the charge collection signals. Both methods show strong separation between electron recoil events and surface alphas. Cryogenic heat-ionization detectors therefore appear able to reject virtually all surface alpha interactions

  2. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    International Nuclear Information System (INIS)

    Burks, M.

    2008-01-01

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field

  3. Simple classical model for Fano statistics in radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)], E-mail: David.Jordan@pnl.gov; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Rene Corrales, L.; Peurrung, Anthony J. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ('bathtub') with a small dipping implement ('shot or whiskey glass'). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the 'Fano effect'). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, 'microscopic' physical models of detector material response to ionizing radiation is discussed.

  4. Calibration curve for germanium spectrometers from solutions calibrated by liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau, A.; Navarro, N.; Rodriguez, L.; Alvarez, A.; Salvador, S.; Diaz, C.

    1996-01-01

    The beta-gamma emitters ''60Co, ''137 Cs, ''131 I, ''210 Pb y ''129 Iare radionuclides for which the calibration by the CIEMAT/NIST method ispossible with uncertainties less than 1%. We prepared, from standardized solutions of these radionuclides, samples in vials of 20 ml. We obtained the calibration curves, efficiency as a function of energy, for two germanium detectors. (Author) 5 refs

  5. Searching Neutrinoless Double Beta Decay with GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; Comellato, T.; D’Andrea, V.; Demidova, E. V.; di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Giordano, M.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hahne, C.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Holl, P.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kermaidic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Sala, E.; Salamida, F.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schweisshelm, B.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zschocke, A.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    An observation of neutrinoless double beta (0νββ) decay would allow to shed light onto the nature of neutrinos. GERDA (GERmanium Detector Array) aims to discover this process in a background-free search using 76Ge. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. Bare, isotopically enriched, high purity germanium detectors are operated in liquid argon. GERDA follows a staged approach. In Phase II 35.6 kg of enriched germanium detectors are operated since December 2015. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allows to reduce the background index to the intended level of 10‑3 cts/(keVṡkgṡyr). No evidence for the 0νββ decay has been found in 23.2 kgṡyr of Phase II data, and together with data from Phase I the up-to-date most stringent half-life limit for this process in 76Ge has been established, at a median sensitivity of 5.8ṡ1025yr the 90% C.L. lower limit is 8.0ṡ1025yr.

  6. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  7. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    International Nuclear Information System (INIS)

    Agostini, M; Pandola, L; Zavarise, P; Volynets, O

    2011-01-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  8. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    Science.gov (United States)

    Agostini, M.; Pandola, L.; Zavarise, P.; Volynets, O.

    2011-08-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  9. Uranium enrichment measurements without calibration using gamma rays above 100 keV

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lanier, Robert G.; Hayden, Catherine F.

    2001-01-01

    Full text: The verification of UF6 shipping cylinders is an important activity in routine safeguards inspections. Current measurement methods using either sodium-iodide or high-purity germanium detectors requires calibrations that are not always appropriate for field measurements, because of changes in geometry or container wall thickness. The introduction of the MGAU code demonstrated the usefulness of intrinsically calibrated measurements for inspections. MGAU uses the 100-keV region of the uranium gamma-ray spectrum. The thick walls of UF6 shipping cylinders preclude the routine use of MGAU for these measurements. We have developed a uranium enrichment measurement method for measurements using high- purity germanium detectors, which do not require calibration and uses uranium gamma rays above 100 keV. The method uses seven gamma rays from U-235 and U-238 to determine their relative detection efficiency intrinsically and with an additional gamma ray from U-234 the relative abundance of these three uranium isotopes. The method uses a function that describes the basic physical processes that predominately determine the relative detection efficiency curve, These are the detector efficiency, the absorption by the cylinder wall, and the self-absorption by the UF6 contents. We will describe this model and its performance on various uranium materials and detector types. (author)

  10. Neutron multiplicity of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)

    1995-10-01

    The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.

  11. Germanium and indium

    Science.gov (United States)

    Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as byproducts, mainly from copper and zinc sulfides.The world’s total production of germanium in 2011 was estimated to be 118 metric tons. This total comprised germanium recovered from zinc concentrates, from fly ash residues from coal burning, and from recycled material. Worldwide, primary germanium was recovered in Canada from zinc concentrates shipped from the United States; in China from zinc residues and coal from multiple sources in China and elsewhere; in Finland from zinc concentrates from the Democratic Republic of the Congo; and in Russia from coal.World production of indium metal was estimated to be about 723 metric tons in 2011; more than one-half of the total was produced in China. Other leading producers included Belgium, Canada, Japan, and the Republic of Korea. These five countries accounted for nearly 95 percent of primary indium production.Deposit types that contain significant amounts of germanium include volcanogenic massive sulfide (VMS) deposits, sedimentary exhalative (SEDEX) deposits, Mississippi Valley-type (MVT) lead-zinc deposits (including Irish-type zinc-lead deposits), Kipushi-type zinc-lead-copper replacement bodies in carbonate rocks, and coal deposits.More than one-half of the byproduct indium in the world is produced in southern China from VMS and SEDEX deposits, and much of the remainder is produced from zinc concentrates from MVT deposits. The Laochang deposit in Yunnan Province, China, and the VMS deposits of the Murchison greenstone belt in Limpopo Province, South Africa, provide excellent examples of indium-enriched deposits. The SEDEX deposits at Bainiuchang, China (located in

  12. A dark matter detector based on the simultaneous measurement of phonons and ionization at 20 mK

    Energy Technology Data Exchange (ETDEWEB)

    Shutt, Thomas Alan [UC, Berkeley

    1993-01-01

    One of the most important issues in astrophysics and cosmology is understanding the nature of dark matter. One possibility is that it is made of weakly interacting subatomic particles created in the big bang, such as the lightest particle in supersymmetry models. These particles should scatter elastically of nuclei in a detector on earth at a rate of ~events/kg/week, and will deposit energies of a few keV. Current attempts to detect these interactions are limited by a radioactive background of photons and beta particles which scatter on electrons. We have developed a novel particle detector to look for dark matter based on the simultaneous measurement of ionization and phonons in a 60 g crystal of high purity germanium at a temperature of 20 mK. Background events can be distinguished by our detector because they produce more ionization per unit phonon energy than dark matter interactions. The phonon energy is measured as a temperature change in the detector by means of neutron transmutation doped germanium thermistors attached to the crystal. The ionization measurement is accomplished by applying a bias to implanted contacts on the faces of the disk. Charge collection differs from the normal situation at 77 K in that no thermally generated free charge exists in the crystal at 20 mK. The collection efficiency is good with an electric field of only ~0.2 V/cm after the charged impurities in the crystal have been neutralized by free charge created by particle interactions from a radioactive source. For fields below this charge collection is poor, and affects the amount of phonon energy measured. We have modeled this in terms of charge trapping. The r.m.s resolution of the detector is 800 eV in phonons and 600 eV in ionization. We have tested the background rejection capability of the detector by exposing it to neutrons from a 251Cf source which scatter elastically on nuclei. The neutrons are distinguished at energies of a few keV, and the current background rejection

  13. Fast digitizing and digital signal processing of detector signals

    International Nuclear Information System (INIS)

    Hannaske, Roland

    2008-01-01

    A fast-digitizer data acquisition system recently installed at the neutron time-of-flight experiment nELBE, which is located at the superconducting electron accelerator ELBE of Forschungszentrum Dresden-Rossendorf, is tested with two different detector types. Preamplifier signals from a high-purity germanium detector are digitized, stored and finally processed. For a precise determination of the energy of the detected radiation, the moving-window deconvolution algorithm is used to compensate the ballistic deficit and different shaping algorithms are applied. The energy resolution is determined in an experiment with γ-rays from a 22 Na source and is compared to the energy resolution achieved with analogously processed signals. On the other hand, signals from the photomultipliers of barium fluoride and plastic scintillation detectors are digitized. These signals have risetimes of a few nanoseconds only. The moment of interaction of the radiation with the detector is determined by methods of digital signal processing. Therefore, different timing algorithms are implemented and tested with data from an experiment at nELBE. The time resolutions achieved with these algorithms are compared to each other as well as to reference values coming from analog signal processing. In addition to these experiments, some properties of the digitizing hardware are measured and a program for the analysis of stored, digitized data is developed. The analysis of the signals shows that the energy resolution achieved with the 10-bit digitizer system used here is not competitive to a 14-bit peak-sensing ADC, although the ballistic deficit can be fully corrected. However, digital methods give better result in sub-ns timing than analog signal processing. (orig.)

  14. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  15. Delayed charge recovery discrimination of passivated surface alpha events in P-type point-contact detectors

    Science.gov (United States)

    Gruszko, J.; Majorana Collaboration

    2017-09-01

    The Majorana Demonstrator searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implications for grand-unification and for explaining the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In the Majorana Demonstrator, events have been observed that are consistent with energy-degraded alphas originating on the passivated surface, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, charges drift through the bulk onto that surface, and then drift along it with greatly reduced mobility. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events in analysis.

  16. Ionization Collection in Detectors of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Arran T.J. [Univ. of California, Berkeley, CA (United States)

    2016-01-01

    Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of “overcharged” D- donor and A+ acceptor impurity states. The thermal

  17. Experimental Search for Solar Axions via Coherent Primakoff Conversion in a Germanium Spectrometer

    CERN Document Server

    Avignone, F T; Brodzinski, R; Collar, J I; Creswick, R J; Di Gregorio, D E; Farach, H A; Gattone, A O; Guérard, C K; Hasenbalg, F; Huck, H; Miley, H S; Morales, A; Morales, J; Nussinov, S; De Solorzano, A O; Reeves, J H; Villar, J; Zioutas, Konstantin

    1998-01-01

    Results are reported of an experimental search for the unique, rapidly varying temporal pattern of solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium detector. This conversion is predicted when axions are incident at a Bragg angle with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of $g_{a\\gamma \\gamma} < 2.7\\cdot 10^{-9}$ GeV$^{-1}$, independent of axion mass up to ~ 1 keV.

  18. Gamma-ray tracking: Characterisation of the AGATA symmetric prototype detectors

    International Nuclear Information System (INIS)

    Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dimmock, M.R.; Nelson, L.; Nolan, P.J.; Rigby, S.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.

    2007-01-01

    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4pi ball of Germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented Germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383. ] and the USA (GRETA/GRETINA) to build gamma-ray tracking spectrometers. This paper discusses the performance of the AGATA (Advanced Gamma Tracking Array) symmetric prototype detectors that have been tested at University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector

  19. Gamma-ray tracking: Characterisation of the AGATA symmetric prototype detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajboston@liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Rigby, S. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)

    2007-08-15

    Each major technical advance in gamma-ray detection devices has resulted in significant new insights into the structure of atomic nuclei. The next major step in gamma-ray spectroscopy involves achieving the goal of a 4pi ball of Germanium detectors by using the technique of gamma-ray energy tracking in electrically segmented Germanium crystals. The resulting spectrometer will have an unparalleled level of detection power for nuclear electromagnetic radiation. Collaborations have been established in Europe (AGATA) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383. ] and the USA (GRETA/GRETINA) to build gamma-ray tracking spectrometers. This paper discusses the performance of the AGATA (Advanced Gamma Tracking Array) symmetric prototype detectors that have been tested at University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  20. Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes

    International Nuclear Information System (INIS)

    Armengaud, E.; Augier, C.; Benoit, A.; Berge, L.; Bluemer, J.; Broniatowski, A.; Brudanin, V.; Censier, B.; Chardin, G.; Chapellier, M.; Charlieux, F.; Coulter, P.; Cox, G.A.; Defay, X.; De Jesus, M.; Dolgorouki, Y.; Domange, J.; Dumoulin, L.

    2011-01-01

    The EDELWEISS-II Collaboration has completed a direct search for WIMP dark matter with an array of ten 400-g cryogenic germanium detectors in operation at the Laboratoire Souterrain de Modane. The combined use of thermal phonon sensors and charge collection electrodes with an interleaved geometry enables the efficient rejection of γ-induced radioactivity as well as near-surface interactions. A total effective exposure of 384 kg d has been achieved, mostly coming from fourteen months of continuous operation. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is 3.0 events. The result is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 4.4x10 -8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints are also set on models where the WIMP-nucleon scattering is inelastic.

  1. Matching Ge detector element geometry to sample size and shape: One does not fit all exclamation point

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.; Sangsingkeow, P.

    1998-01-01

    For 25 yr, coaxial germanium detector performance has been specified using the methods and values specified in Ref. 1. These specifications are the full-width at half-maximum (FWHM), FW.1M, FW.02M, peak-to-Compton ratio, and relative efficiency. All of these measurements are made with a 60 Co source 25 cm from the cryostat endcap and centered on the axis of the detector. These measurements are easy to reproduce, both because they are simple to set up and use a common source. These standard tests have been useful in guiding the user to an appropriate detector choice for the intended measurement. Most users of germanium gamma-ray detectors do not make measurements in this simple geometry. Germanium detector manufacturers have worked over the years to make detectors with better resolution, better peak-to-Compton ratios, and higher efficiency--but all based on measurements using the IEEE standard. Advances in germanium crystal growth techniques have made it relatively easy to provide detector elements of different shapes and sizes. Many of these different shapes and sizes can give better results for a specific application than other shapes and sizes. But, the detector specifications must be changed to correspond to the actual application. Both the expected values and the actual parameters to be specified should be changed. In many cases, detection efficiency, peak shape, and minimum detectable limit for a particular detector/sample combination are valuable specifications of detector performance. For other situations, other parameters are important, such as peak shape as a function of count rate. In this work, different sample geometries were considered. The results show the variation in efficiency with energy for all of these sample and detector geometries. The point source at 25 cm from the endcap measurement allows the results to be compared with the currently given IEEE criteria. The best sample/detector configuration for a specific measurement requires more and

  2. Precipitation of lithium in germanium

    International Nuclear Information System (INIS)

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  3. Fast neutron damage in germanium detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1979-10-01

    The effects of fast neutron radiation damage on the performance of both Ge(Li) and Ge(HP) detectors have been studied during the past decade and will be summarized. A review of the interaction processes leading to the defect structures causing trapping will be made. The neutron energy dependence of observable damage effects will be considered in terms of interaction and defect production cross sections

  4. First results of GERDA Phase II and consistency with background models

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode1, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-01-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in 76Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg·yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for T1/20ν = O≤ft( {{{10}26}} \\right){{ yr}}. To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore 226Ra and 232Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process T1/20ν > 5.3 \\cdot {1025} yr (90% C.L., sensitivity 4.0·1025 yr). First results of GERDA Phase II will be presented.

  5. An ultralow background germanium gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Reeves, R.H.; Brodzinski, R.L.; Hensley, W.K.; Ryge, P.

    1984-01-01

    The monitoring of minimum detectable activity is becoming increasingly important as environmental concerns and regulations require more sensitive measurement of the radioactivity levels in the workplace and the home. In measuring this activity, however, the background becomes one of the limiting factors. Anticoincidence systems utilizing both NaI(T1) and plastic scintillators have proven effective in reducing some components of the background, but radiocontaminants in the various regions of these systems have limited their effectiveness, and their cost is often prohibitive. In order to obtain a genuinely low background detector system, all components must be free of detectable radioactivity, and the cosmic ray produced contribution must be significantly reduced. Current efforts by the authors to measure the double beta decay of Germanium 76 as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma spectrometer with an exceptionally low background. This paper describes the development of this system, outlines the configuration and operation of its preamplifier, linear amplifier, analog-to-digital converter, 4096-channel analyzer, shielding consisting of lead-sandwiched plastic scintillators wrapped in cadmium foil, photomultiplier, and its pulse generator and discriminator, and then discusses how the system can be utilized to significantly reduce the background in high resolution photon spectrometers at only moderate cost

  6. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    International Nuclear Information System (INIS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-01-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr 3 ) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr 3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R 2 =0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible. - Highlights: • An airborne radioactivity monitoring equipment NH-UAV was developed to measure radionuclide after a nuclear accident. • A spectrum correction algorithm was proposed to obtain precise information on the detected radioactivity within a small area. • The spectrum correction method was verified as feasible. • The corresponding spectrum correction coefficients increase first and then stay constant

  7. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ye [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tang, Xiao-Bin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Da [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-10-11

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr{sub 3}) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr{sub 3} detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R{sup 2}=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible. - Highlights: • An airborne radioactivity monitoring equipment NH-UAV was developed to measure radionuclide after a nuclear accident. • A spectrum correction algorithm was proposed to obtain precise information on the detected radioactivity within a small area. • The spectrum correction method was verified as feasible. • The corresponding spectrum correction coefficients increase first and then stay constant.

  8. Investigation about semiconductor gamma ray detector - Evaluation of Ge(Li) detectors life expectation

    International Nuclear Information System (INIS)

    1980-06-01

    A list of germanium lithium gamma ray detectors has been drawn up by a working group after investigations in various laboratories. Authors analyse the historical account of each detector and try to give an answer about some questions as: - detectors life expectation, - deficiencies and death reasons, - influence of detector type and volume. Differents parameters are also collected by the working group for future works (standard geometry, low level measurements, etc.). In the list, the characteristics of 228 detectors, collected between january 1965 and december 1977 are put together. The principal conclusions of the authors are: - with a probability of 95%, half of the detectors is dead before 6.1 years, - the average age of dead population (33% of detectors) is 3.9 years, - resolution and efficiency evolution are good indicators of possible deficiency, - the fiability of vertical cryostat is better than the other systems [fr

  9. An investigation of the performance of a coaxial HPGe detector operating in a magnetic resonance imaging field

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J., E-mail: ljh@ns.ph.liv.ac.u [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J.; Boston, H.C.; Cole, P.; Cresswell, J.R.; Filmer, F.; Jones, M.; Judson, D.S.; Nolan, P.J.; Oxley, D.C.; Sampson, J.A.; Scraggs, D.P.; Slee, M.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Bimson, W.E.; Kemp, G.J. [MARIARC, University of Liverpool, Liverpool L69 3GE (United Kingdom); Groves, J.; Headspith, J.; Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Cooper, R.J. [Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States)

    2011-05-11

    Nuclear medical imaging modalities such as positron emission tomography and single photon emission computed tomography are used to probe physiological functions of the body by detecting gamma rays emitted from biologically targeted radiopharmaceuticals. A system which is capable of simultaneous data acquisition for nuclear medical imaging and magnetic resonance imaging is highly sought after by the medical imaging community. Such a device could provide a more complete medical insight into the functions of the body within a well-defined structural context. However, acquiring simultaneous nuclear/MRI sequences are technically challenging due to the conventional photomultiplier tube readout employed by most existing scintillator detector systems. A promising solution is a nuclear imaging device composed of semiconductor detectors that can be operated with a standard MRI scanner. However, the influence of placing a semiconductor detector such as high purity germanium (HPGe) within or close to the bore of an MRI scanner, where high magnetic fields are present, is not well understood. In this paper, the performance of a HPGe detector operating in a high strength static (B{sub S}) MRI field along with fast switching gradient fields and radiofrequency from the MRI system has been assessed. The influence of the B{sub S} field on the energy resolution of the detector has been investigated for various positions and orientations of the detector within the magnetic field. The results have then been interpreted in terms of the influence of the B{sub S} field on the charge collection properties. MRI images have been acquired with the detector situated at the entrance of the MRI bore to investigate the effects of simultaneous data acquisition on detector performance and MRI imaging.

  10. Background rejection of n+ surface events in GERDA Phase II

    Science.gov (United States)

    Lehnert, Björn

    2016-05-01

    The GERDA experiment searches for neutrinoless double beta (0vββ) decay in 76Ge using an array of high purity germanium (HPGe) detectors immersed in liquid argon (LAr). Phase II of the experiment uses 30 new broad energy germanium (BEGe) detectors with superior pulse shape discrimination capabilities compared to the previously used semi-coaxial detector design. By far the largest background component for BEGe detectors in GERDA are n+-surface events from 42K β decays which are intrinsic in LAr. The β particles with up to 3.5 MeV can traverse the 0.5 to 0.9 mm thick electrode and deposit energy within the region of interest for the 0vββ decay. However, those events have particular pulse shape features allowing for a strong discrimination. The understanding and simulation of this background, showing a reduction by up to a factor 145 with pulse shape discrimination alone, is presented in this work.

  11. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  12. Germanium blocked impurity band far infrared detectors

    International Nuclear Information System (INIS)

    Rossington, C.S.

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the ''Star Wars'' nuclear defense scheme proposed by the Reagan administration

  13. Validation of an efficiency calibration procedure for a coaxial n-type and a well-type HPGe detector used for the measurement of environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Morera-Gómez, Yasser, E-mail: ymore24@gamail.com [Centro de Estudios Ambientales de Cienfuegos, AP 5. Ciudad Nuclear, CP 59350 Cienfuegos (Cuba); Departamento de Química y Edafología, Universidad de Navarra, Irunlarrea No 1, Pamplona 31009, Navarra (Spain); Cartas-Aguila, Héctor A.; Alonso-Hernández, Carlos M.; Nuñez-Duartes, Carlos [Centro de Estudios Ambientales de Cienfuegos, AP 5. Ciudad Nuclear, CP 59350 Cienfuegos (Cuba)

    2016-05-11

    To obtain reliable measurements of the environmental radionuclide activity using HPGe (High Purity Germanium) detectors, the knowledge of the absolute peak efficiency is required. This work presents a practical procedure for efficiency calibration of a coaxial n-type and a well-type HPGe detector using experimental and Monte Carlo simulations methods. The method was performed in an energy range from 40 to 1460 keV and it can be used for both, solid and liquid environmental samples. The calibration was initially verified measuring several reference materials provided by the IAEA (International Atomic Energy Agency). Finally, through the participation in two Proficiency Tests organized by IAEA for the members of the ALMERA network (Analytical Laboratories for the Measurement of Environmental Radioactivity) the validity of the developed procedure was confirmed. The validation also showed that measurement of {sup 226}Ra should be conducted using coaxial n-type HPGe detector in order to minimize the true coincidence summing effect. - Highlights: • An efficiency calibration for a coaxial and a well-type HPGe detector was performed. • The calibration was made using experimental and Monte Carlo simulations methods. • The procedure was verified measuring several reference materials provided by IAEA. • Calibrations were validated through the participation in 2 ALMERA Proficiency Tests.

  14. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  15. New hydrogen donors in germanium

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.

    2003-01-01

    The electrophysical properties of the n-type conductivity germanium, irradiated through protons, is studied by the volt-farad method. It is shown that the heat treatment of the implanted germanium at the temperature of 200-300 deg C leads to formation of the fast-diffusing second-rate donors. It is established that the diffusion coefficient of the identified donors coincides with the diffusion coefficient of the atomic hydrogen with an account of the capture on the traps. The conclusion is made, that the atomic hydrogen is the second-rate donor center in germanium [ru

  16. Dual photon absorptiometer utilizing a HpGe detector and microprocessor controller

    International Nuclear Information System (INIS)

    Ellis, K.J.; Vartsky, D.; Pearlstein, T.B.; Alberi, J.L.; Cohn, S.H.

    1978-01-01

    The analysis of bone mineral content (BMC) using a single energy-photon beam assumes that there are only two materials present, bone mineral and a uniform soft tissue component. Uncertainty in the value of BMC increases with different adipose tissue components in the transmitted beam. These errors, however, are reduced by the dual energy technique. Also, extension to additional energies further identifies the separate constituents of the soft tissue component. A multi-energy bone scanning apparatus with data acquisition and analysis capability sufficient to perform multi-energy analysis of bone mineral content was designed and developed. The present work reports on the development of device operated in the dual energy mode. The high purity germanium (HpGe) detector is an integral component of the scanner. Errors in BMC due to multiple small angle scatters are reduced due to the excellent energy resolution of the detector (530 eV at 60 keV). Also, the need to filter the source or additional collimation on the detector is eliminated. A new dual source holder was designed using 200 mCi 125 I and 100 mCi 241 Am. The active areas of the two source capsules are aligned on a common axis. The congruence of the dual source was verified by measuring the collimator response function. This new holder design insures that the same tissue mass simultaneously attenuates both sources. The controller portion of the microprocessor allows for variation in total scan length, step size, and counting time per step. These options allow for multiple measurements without changes in the detector, source, or collimator. The system has been successfully used to determine the BMC content of different bones

  17. Characteristic Performance Evaluation of a new SAGe Well Detector for Small and Large Sample Geometries

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Jaederstroem, H.; Mueller, W.F.; Yocum, K.M.; Carmichael, K.

    2015-01-01

    Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. The detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm 3 . The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable

  18. Characteristic Performance Evaluation of a new SAGe Well Detector for Small and Large Sample Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Jaederstroem, H.; Mueller, W.F.; Yocum, K.M.; Carmichael, K. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT 06450 (United States)

    2015-07-01

    Environmental scientific research requires a detector that has sensitivity low enough to reveal the presence of any contaminant in the sample at a reasonable counting time. Canberra developed the germanium detector geometry called Small Anode Germanium (SAGe) Well detector, which is now available commercially. The SAGe Well detector is a new type of low capacitance germanium well detector manufactured using small anode technology capable of advancing many environmental scientific research applications. The performance of this detector has been evaluated for a range of sample sizes and geometries counted inside the well, and on the end cap of the detector. The detector has energy resolution performance similar to semi-planar detectors, and offers significant improvement over the existing coaxial and Well detectors. Energy resolution performance of 750 eV Full Width at Half Maximum (FWHM) at 122 keV γ-ray energy and resolution of 2.0 - 2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed for detector volumes up to 425 cm{sup 3}. The SAGe Well detector offers an optional 28 mm well diameter with the same energy resolution as the standard 16 mm well. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. The detector is compatible with electric coolers without any sacrifice in performance and supports the Canberra Mathematical efficiency calibration method (In situ Object Calibration Software or ISOCS, and Laboratory Source-less Calibration Software or LABSOCS). In addition, the SAGe Well detector supports true coincidence summing available in the ISOCS/LABSOCS framework. The improved resolution performance greatly enhances detection sensitivity of this new detector for a range of sample sizes and geometries counted inside the well. This results in lower minimum detectable

  19. Comparison of different thin layer detection techniques to determine the radiochemical purity of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hammermaier, A.; Reich, E.; Boegl, W.

    1985-01-01

    Ten radiopharmaceuticals frequently used in clinical treatment were examined as to their radiochemical purity by paper and thin layer chromatography or electrophoresis, respectively. It is known that radiochemical impurities may result in an unnecessary exposure of the patients to be examined. Other than determining the radiochemical purity of several radiopharmaceuticals, a comparison of the different measuring methods of distributing activity on radiochromatograms or electropherograms is intended by this study. For this, the activity distribution in the developed radiochromatograms was assessed by four different measuring methods (TLC-linear analyzer, TLC-scanner with NaI(Tl) detector, TLC-scanner with gas flow counter and NaI(Tl) well-typ counter). As shown by the above analysis, only the TLC-linear analyzer and the NaI(Tl) well-typ counter (measurement of chromatograms or electropherograms cut into strips) are generally suitable methods for determining the radiochemical purity of radiochemicals, the TLC-scanner with gas flow counter is usable in most cases, while TLC-scanner with NaI(Tl) detector is yielding unsatisfactory results. (orig.) [de

  20. Study and characterization of porous germanium for radiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Akkari, E.; Benachour, Z.; Touayar, O.; Benbrahim, J. [Activites de Recherche, Metrologie des Rayonnements, Institut National des Sciences Appliquees et de Technologie, INSAT, Tunis (Tunisia); Aouida, S.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes de l' Energie, LaNSE, Centre de Recherche et des Technologies de l' Energie, CRTEn, Hammam-Lif (Tunisia)

    2009-07-15

    The aim of this article is to study and realize a new detector based on a porous germanium (pGe) photodiode to be used as a standard for radiometric measurement in the wavelength region between 800 nm and 1700 nm. We present the development and characterization of a porous structure realized on a single-crystal substrate of p-type germanium (Ga doped) and of crystallographic orientation (100). The obtained structure allows, on the one hand, to trap the incident radiation, and on the other hand, to minimize the fluctuations of the front-face reflection coefficient of the photodiode. The first studies thus made show that it is possible to optimize, respectively, the electrical current density and the electrochemical operation time necessary for obtaining exploitable porous structures. The obtained results show that for 50 mA/cm{sup 2} and 5 min as operational parameters, we obtain a textured aspect of the porous samples that present a pyramidal form. The reflectivity study of the front surface shows a constant value of around 38% in a spectral range between 800 nm and 1700 nm approximately. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material

    Science.gov (United States)

    Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard

    2018-01-01

    High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.

  2. The Majorana Low-noise Low-background Front-end Electronics

    Science.gov (United States)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low- background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the MAJORANA DEMONSTRATOR. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.

  3. Resolution, efficiency and stability of HPGe detector operating in a magnetic field at various gamma-ray energies

    International Nuclear Information System (INIS)

    Szymanska, K.; Achenbach, P.; Agnello, M.; Botta, E.; Bracco, A.; Bressani, T.; Camera, F.; Cederwall, B.; Feliciello, A.; Ferro, F.; Gerl, J.; Iazzi, F.; Kavatsyuk, M.; Kojouharov, I.; Pochodzalla, J.; Raciti, G.; Saito, T.R.; Sanchez Lorente, A.; Tegner, P.-E.; Wieland, O.

    2008-01-01

    The use of High Purity Germanium detectors (HPGe) has been planned in some future experiments of hadronic physics. The crystals will be located close to large spectrometers where the magnetic fringing field will not be negligible and their performances might change. Moreover high precision is required in these experiments. The contribution of magnetic field presence and long term measurements is unique. In this paper the results of systematic measurements of the resolution, stability and efficiency of a crystal operating inside a magnetic field of 0.8 T, using radioactive sources in the energy range from 0.08 to 1.33 MeV, are reported. The measurements have been repeated during several months in order to test if any permanent damage occurred. The resolution at 1.117 and 1.332 MeV gamma-rays from a 60 Co source has been measured at different magnetic fields in the range of 0-0.8 T and the results are compared with the previous data

  4. The Gerda Phase II detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Schwingenheuer, Bernhard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    Phase II of the Gerda (Germanium Detector Array) experiment will continue the search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Prerequisites for Phase II are an increased target mass and a reduced background index of < 10 {sup -3} cts/(keV.kg.yr). Major hardware upgrades to achieve these requirements are scheduled for 2013. They include the deployment of a new radio pure low mass detector assembly. The structural properties of available radio-pure materials and reduction of mass necessitate a change of the electrical contacting used to bias and read-out the detectors. The detector assembly design and the favored contacting solution are presented.

  5. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  6. Decontamination of the activation product based on a legal revision of the cyclotron vault room on the non-self-shield compact medical cyclotron

    International Nuclear Information System (INIS)

    Komiya, Isao; Umezu, Yoshiyuki; Fujibuchi, Toshiou; Nakamura, Kazumasa; Baba, Shingo; Honda, Hiroshi

    2016-01-01

    The non-self-shield compact medical cyclotron and the cyclotron vault room were in operation for 27 years. They have now been decommissioned. We efficiently implemented a technique to identify an activation product in the cyclotron vault room. Firstly, the distribution of radioactive concentrations in the concrete of the cyclotron vault room was estimated by calculation from the record of the cyclotron operation. Secondly, the comparison of calculated results with an actual measurement was performed using a NaI scintillation survey meter and a high-purity germanium detector. The calculated values were overestimated as compared to the values measured using the Nal scintillation survey meter and the high-purity germanium detector. However, it could limit the decontamination area. By simulating the activation range, we were able to minimize the concrete core sampling. Finally, the appropriate range of radioactivated area in the cyclotron vault room was decontaminated based on the results of the calculation. After decontamination, the radioactive concentration was below the detection limit value in all areas inside the cyclotron vault room. By these procedures, the decommissioning process of the cyclotron vault room was more efficiently performed. (author)

  7. Mesostructured metal germanium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  8. Whole body counting of {sup 137}Cs nine years after Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Ragan, P; Labbam, A [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    The detector responses to photons (primary and scattered, as well) escaped from phantom of standard men has been calculated by Monte Carlo method. The high-purity germanium detector (of relative efficiency 61.7 %) was located at distance of 2 cm from the surface of supine phantom opposite to the small intestine. The response matrix has been calculated for homogeneously distributed {sup 137}Cs and {sup 40}K in phantom of standard man and for radon progeny concentrated in lungs.(J.K.) 2 figs., 1 ref.

  9. Coincidence gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Markovic, Nikola; Roos, Per; Nielsen, Sven Poul

    2017-01-01

    Gamma-ray spectrometry with high-purity germanium (HPGe) detectors is often the technique of choice in an environmental radioactivity laboratory. When measuring environmental samples associated activities are usually low so an important parameter that describes the performance of the spectrometer...... for a nuclide of interest is the minimum detectable activity (MDA). There are many ways for lowering the MDAs in gamma spectrometry. Recently, developments of fast and compact digital acquisition systems have led to growing number of multiple HPGe detector spectrometers. In these applications all detected...

  10. First test results of the digital data acquisition at the HORUS spectrometer

    International Nuclear Information System (INIS)

    Hennig, Andreas; Elvers, Michael; Endres, Janis; Fransen, Christoph; Mayer, Jan; Netterdon, Lars; Pascovici, Gheorghe; Pickstone, Simon Glynn; Scholz, Philipp; Warr, Nigel; Weinert, Michael; Zilges, Andreas

    2013-06-01

    The HORUS spectrometer at the 10 MV Tandem accelerator at the Institute for Nuclear Physics in Cologne consists of 14 high-purity germanium γ -ray detectors. To extend the experimental opportunities, the new silicon-detector array SONIC was designed, housing eight ΔE-E sandwich silicon detectors for charged-particle spectroscopy. In order to efficiently process all 30 detector signals, the analog data acquisition was replaced by a digital one using the commercially available DGF- 4C modules from the company XIA. The new data acquisition system was tested in various off-beam measurements and two in-beam experiments, focusing on energy and timing resolution. (authors)

  11. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  12. Recoil detector test for the day-one experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Institute of Modern Physics, CAS, 730000 Lanzhou (China); Forschungszentrum Juelich, 52425 Juelich (Germany); Xu, Huagen; Ritman, James [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2013-07-01

    The proposed day-one experiment at HESR is a dedicated measurement of antiproton-proton elastic scattering. The aim of the day-one experiment is to determine the elastic differential parameters (total cross section σ{sub T}, the ratio of real to imaginary part of the forward scattering amplitude ρ, and the slope parameter B) by measuring a large range of 4-momentum transfer squared t (0.0008-0.1 GeV{sup 2}). The conceptual design of the day-one experiment is to measure the elastic scattered antiproton and recoil proton, by a tracking detector in the small polar angle range and by an energy detector near 90 , respectively. The recoil arm covers a maximum polar angle range from 71 to 90 and consists of two silicon strip detectors (76.8(length) x 50.0(width) x 1.0(thickness) mm{sup 3}) and two germanium detectors (80.4(length) x 50.0(width) x 5.0 (11.0) (thickness) mm{sup 3}). All detectors are single sided structure with 1.2 mm pitch. The silicon detectors will be used to detect recoil protons with energy up to about 12 MeV and the germanium detectors will be used to detect protons with energy from 12 MeV to 60 MeV. At present, one recoil arm is being constructed and the test for the detectors with radioactive sources is on-going. Preliminary test results indicate that all detectors are operational and work properly. The latest test results of these detectors are presented.

  13. Qualitative Elemental Analyses of a Meteorite Sample Found in Turkey by Photo-activation Analysis Method

    International Nuclear Information System (INIS)

    Ertugay, C; Boztosun, I; Ozmen, S F; Dapo, H

    2015-01-01

    In this paper, a meteorite sample provided from TÜBITAK National Observatory found in Turkey has been investigated by using a clinical linear accelerator that has endpoint energy of 18 MeV, and a high purity Germanium detector for qualitative elemental analysis within photo-activation analysis method. 21 nuclei ranging from 24Na to 149Nd have been identified in the meteorite sample. (paper)

  14. Incomplete charge collection in an HPGe double-sided strip detector

    International Nuclear Information System (INIS)

    Hayward, Jason; Wehe, David

    2008-01-01

    For gamma-ray detection, high-purity germanium (HPGe) has long been the standard for energy resolution, and double-sided strip detectors (DSSDs) offer the possibility of sub-millimeter position resolution. Our HPGe DSSD is 81 mm in diameter, 11-mm thick, and has 3-mm strip pitch with a gap width of 500 μm. In this work, we focus on characterizing just the interactions that occur between collecting strips. Simulation and measurement results for our HPGe DSSD show that the gap between strips is the most position-sensitive region. But, spectra collected from events that occur in and near the gaps are complicated by: (1) incomplete charge-carrier collection, or charge loss; (2) signal variance introduced by charge-carrier cloud size, orientation, and lateral spreading; and (3) the difficulty of distinguishing single interactions from multiple close interactions. Using tightly, collimated beams of monoenergetic gamma rays, the measured energy spectra at the gap center show that incomplete charge collection is significant in our detector at 356 and 662 keV, resulting in degradation of the photopeak efficiency. Additionally, close interactions are identifiable in the spectra. Thus, close interactions must be identified on an event-by-event basis in order to precisely identify gap interaction position or make charge-loss corrections at these energies. Furthermore, spectral differences are observed between anode and cathode gaps, and a possible reason for this asymmetry is proposed

  15. Performance of thallium bromide semiconductor detectors produced by repeated Bridgman method

    International Nuclear Information System (INIS)

    Santos, Robinson Alves dos; Costa, Fabio Eduardo da; Martins, Joao Francisco Trencher; Hamada, Margarida M.

    2009-01-01

    TlBr crystals have been grown by the Repeated Bridgman method from commercial TlBr materials and characterized to be used as radiation detectors. We have shown that the Repeated Bridgman is effective to reduce the concentration of impurities in TlBr. It was observed that detectors fabricated from higher purity crystal exhibit significant improvement in performance compared to those produced from low purity crystals. However, problems still exist in TlBr detectors, due to the low charge carrier collection efficiency, which is probably caused by additional impurities or defects incorporated during crystal growth and detector fabrication processes. (author)

  16. SiGe Intersubband Detectors for Terahertz Communication and Sensing

    National Research Council Canada - National Science Library

    Kolodzey, James

    2003-01-01

    We report on the design and fabrication of THz detectors based on silicon germanium nanostructures grown by MBE to obtain intersubband transitions in the energy range from 4.1 meV to 4.1 meV (1 to 10 THz...

  17. gamma-ray tracking in germanium the backtracking method

    CERN Document Server

    Marel, J V D

    2002-01-01

    In the framework of a European TMR network project the concept for a gamma-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of approx 10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered gamma-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident gamma-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and gamma-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry ...

  18. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  19. Using lattice tools and unfolding methods for hpge detector efficiency simulation with the Monte Carlo code MCNP5

    International Nuclear Information System (INIS)

    Querol, A.; Gallardo, S.; Ródenas, J.; Verdú, G.

    2015-01-01

    In environmental radioactivity measurements, High Purity Germanium (HPGe) detectors are commonly used due to their excellent resolution. Efficiency calibration of detectors is essential to determine activity of radionuclides. The Monte Carlo method has been proved to be a powerful tool to complement efficiency calculations. In aged detectors, efficiency is partially deteriorated due to the dead layer increasing and consequently, the active volume decreasing. The characterization of the radiation transport in the dead layer is essential for a realistic HPGe simulation. In this work, the MCNP5 code is used to calculate the detector efficiency. The F4MESH tally is used to determine the photon and electron fluence in the dead layer and the active volume. The energy deposited in the Ge has been analyzed using the ⁎F8 tally. The F8 tally is used to obtain spectra and to calculate the detector efficiency. When the photon fluence and the energy deposition in the crystal are known, some unfolding methods can be used to estimate the activity of a given source. In this way, the efficiency is obtained and serves to verify the value obtained by other methods. - Highlights: • The MCNP5 code is used to estimate the dead layer thickness of an HPGe detector. • The F4MESH tally is applied to verify where interactions occur into the Ge crystal. • PHD and the energy deposited are obtained with F8 and ⁎F8 tallies, respectively. • An average dead layer between 70 and 80 µm is obtained for the HPGe studied. • The efficiency is calculated applying the TSVD method to the response matrix.

  20. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    International Nuclear Information System (INIS)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-01-01

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for α, β and γ emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for γ and α/β monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in α/β liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure 241 Am produced from 241 Pu by β decay. Because 241 Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., 137 Cs)

  1. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Science.gov (United States)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  2. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Directory of Open Access Journals (Sweden)

    Meeyoung Jeong

    2014-12-01

    Full Text Available Odyssey, one of the NASA’s Mars exploration program and SELENE (Kaguya, a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  3. The effect of incremental gamma-ray doses and incremental neutron fluences upon the performance of self-biased sup 1 sup 0 B-coated high-purity epitaxial GaAs thermal neutron detectors

    CERN Document Server

    Gersch, H K; Simpson, P A

    2002-01-01

    High-purity epitaxial GaAs sup 1 sup 0 B-coated thermal neutron detectors advantageously operate at room temperature without externally applied voltage. Sample detectors were systematically irradiated at fixed grid locations near the core of a 2 MW research reactor to determine their operational neutron dose threshold. Reactor pool locations were assigned so that fast and thermal neutron fluxes to the devices were similar. Neutron fluences ranged between 10 sup 1 sup 1 and 10 sup 1 sup 4 n/cm sup 2. GaAs detectors were exposed to exponential fluences of base ten. Ten detector designs were irradiated and studied, differentiated between p-i-n diodes and Schottky barrier diodes. The irradiated sup 1 sup 0 B-coated detectors were tested for neutron detection sensitivity in a thermalized neutron beam. Little damage was observed for detectors irradiated at neutron fluences of 10 sup 1 sup 2 n/cm sup 2 and below, but signals noticeably degraded at fluences of 10 sup 1 sup 3 n/cm sup 2. Catastrophic damage was appare...

  4. Ultra-low background and environmental measurements at Laboratorio Subterráneo de Canfranc (LSC).

    Science.gov (United States)

    Bandac, I; Borjabad, S; Ianni, A; Nuñez-Lagos, R; Pérez, C; Rodríguez, S; Villar, J A

    2017-08-01

    To support the construction of experiments at the Laboratorio Subterráneo de Canfranc (LSC) in Spain, an Ultra-Low Background Service (ULBS) and a Copper Electroforming Service (CES) were created. The measurement technique employed at the ULBS is gamma spectroscopy with high purity germanium (HPGe) detectors. A new anti-radon system is being implemented. The main goal of CES is to obtain high-purity copper pieces. A new electroforming set-up inside LSC underground clean room is planned. Radon and environmental measurements at the LSC are presented. The ULBS and CES are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Benefit-cost analysis of OHER research

    International Nuclear Information System (INIS)

    Nesse, R.J.

    1988-01-01

    This research was undertaken to estimate societal benefits and costs of selected past research performed for OHER. Three case studies of representative OHER and DOE research were performed. One of these, the acid rain case study, included research conducted in another office in DOE. The other two cases were the OHER marine research program and the OHER project that developed high-purity germanium used in radiation detectors. The acid rain case study looked at research benefits and costs of furnace sorbent injection and duct injection, technologies that might reduce acid deposition precursors. Both appeared to show benefits in excess of costs. They examined in detail one of the marine research program's accomplishments, the increase in environmental information used by the Outer Continental Shelf leasing program to manage bidding for off-shore oil drilling. The results of an econometric model showed that, environmentally, marine research supported by OHER is unequivocally linked to government and industry leasing decisions. Finally, the germanium case study indicated that benefits of germanium radiation detectors were significant

  6. Development of gallium arsenide gamma spectrometric detector

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kuru, I.

    1975-03-01

    GaAs semiconductor material has been considered to be a suitable material for gamma-ray spectrometer operating at room temperature since it has a wid-band gap, larger than that of silicon and germanium. The basic objective of this work is to develop a GaAs gamma-ray spectrometric detector which could be used for gamma spectrometric measurement of uranium and plutonium in nuclear fuel safeguards. Liquid phase epitaxial techniques using iron (Fe) as dopant have been developed in making high purity GaAs crystals suitable for gamma-ray spectrometer operating at room temperature. Concentration of Fe in the epitaxial crystal was controlled by initial growth temperature. The best quality epitaxial crystal was obtained under the following conditions: starting temperature is about 800degC, the proportion of Fe to Ga solvent is 1 to 300. Carrier concentration of epitaxial crystals grown distributed in the ranges of 10 12 cm -3 to 10 14 cm -3 at room temperature. The thickness of the crystals ranged from 38 μm to 120 μm. Au-GaAs surface barrier detector was made of epitaxial crystal. Some of the detector were encapsulated in a can with a 50 μm Be window by welding a can to the detector holder. The detector with high energy resolution and good charge collecting characteristics was selected by alpha spectrometry at room temperature. Energy resolution of the detector for gamma-rays up to about 200 keV was very good at room temperature operation. The best energy resolutions taken with a GaAs detector were 3 keV (fwhm) and 3.8 keV for 241 Am 59.6 keV and 57 Co 122 keV, respectively, at room temperature. In order to study the applicability of the detector for nuclear safeguards, the measurements of 235 U gamma-ray spectrum have been carried out at room temperature. It was clarified that the gamma-ray spectrum of enriched U sample could be measured in high resolution with GaAs detector at room temperature, and that the content of 235 U in enriched U sources could be determined by

  7. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high gamma-energies

    OpenAIRE

    Kshetri, Ritesh

    2012-01-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid.,...

  8. 2015 In-Situ Gamma-Ray Assay of the West Cell Line in the 235-F Plutonium Fuel Form Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Aucott, T. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    In November and December 2015, scientists from SRNL took a series of in-situ gamma-ray measurements through the windows in front of Cells 6-9 on the west line of the PuFF facility using a shielded, 120% high-purity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Where possible, the distribution of the Pu-238 in the cells was determined using the Germanium Gamma-ray Imager (GeGI). This distribution was then fed into the MCNP model to quantify the Pu-238 in each cell. Data analysis was performed using three gamma rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells.

  9. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  10. Purity and adulterant analysis of crack seizures in Brazil.

    Science.gov (United States)

    Fukushima, André R; Carvalho, Virginia M; Carvalho, Débora G; Diaz, Ernesto; Bustillos, Jose Oscar William Vega; Spinosa, Helenice de S; Chasin, Alice A M

    2014-10-01

    Cocaine represents a serious problem to society. Smoked cocaine is very addictive and it is frequently associated with violence and health issues. Knowledge of the purity and adulterants present in seized cocaine, as well as variations in drug characteristics are useful to identify drug source and estimate health impact. No data are available regarding smoked cocaine composition in most countries, and the smoked form is increasing in the Brazilian market. The purpose of the present study is to contribute to the current knowledge on the status of crack cocaine seized samples on the illicit market by the police of São Paulo. Thus, 404 samples obtained from street seizures conducted by the police were examined. The specimens were macroscopically characterized by color, form, odor, purity, and adulterant type, as well as smoke composition. Samples were screened for cocaine using modified Scott test and thin-layer chromatographic (TLC) technique. Analyses of purity and adulterants were performed with gas chromatography equipped with flame ionization detector (GC-FID). Additionally, smoke composition was analyzed by GC-mass spectrometry (MS), after samples burning. Samples showed different colors and forms, the majority of which is yellow (74.0%) or white (20.0%). Samples free of adulterants represented 76.3% of the total. Mean purity of the analyzed drug was 71.3%. Crack cocaine presented no correlations between macroscopic characteristics and purity. Smoke analysis showed compounds found also in the degradation of diesel and gasoline. Therefore, the drug marketed as crack cocaine in São Paulo has similar characteristics to coca paste. High purity can represent a greater risk of dependency and smoke compounds are possibly worsening drug health impact. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Conditioning the gamma spectrometer for activity measurement at very high background

    OpenAIRE

    Yan, Weihua; Zhang, Liguo; Zhang, Zhao; Xiao, Zhigang

    2013-01-01

    The application of a high purity germanium (HPGe) gamma spectrometer in determining the fuel element burnup in a future reactor is studied. The HPGe detector is exposed by a Co60 source with varying irradiation rate from 10 kcps to 150 kcps to simulate the input counting rate in real reactor environment. A Cs137 and a Eu152 source are positioned at given distances to generate certain event rate in the detector with the former being proposed as a labeling nuclide to measure the burnup of fuel ...

  12. The development of a Compton lung densitometer

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs.

  13. The development of a Compton lung densitometer

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs

  14. High-gain bipolar detector on float-zone silicon

    Science.gov (United States)

    Han, D. J.; Batignani, G.; Del Guerra, A.; Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Giorgi, M.; Forti, F.

    2003-10-01

    Since the float-zone (FZ) silicon has lower contaminations and longer minority-carrier lifetime than those in Czochralski silicon and other semiconductor materials, it has potential advantages to fabricate bipolar detectors on the high-purity FZ silicon substrate to achieve a high gain at ultra-low-signal levels. The authors present preliminary experimental results on a bipolar detector fabricated on an unusual high-purity FZ silicon substrate. A backside gettering layer of phosphorus-doped polysilicon was employed to preserve the long carrier lifetime of the high-purity FZ silicon. The device has been investigated in the detection of a continuous flux of X-ray and infrared light. The bipolar detector with a circular emitter of 2 mm diameter has demonstrated high gains up to 3820 for 22 keV X-ray from a 1 mCi Cd radioactive source (the X-ray photon flux, received by the detector is estimated to be ˜7.77×10 4/s). High gain up to 4400 for 0.17 nW light with a wavelength of 0.83 μm has been observed for the same device.

  15. High-gain bipolar detector on float-zone silicon

    International Nuclear Information System (INIS)

    Han, D.J.; Batignani, G.; Guerra, A.D.A. Del; Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Giorgi, M.; Forti, F.

    2003-01-01

    Since the float-zone (FZ) silicon has lower contaminations and longer minority-carrier lifetime than those in Czochralski silicon and other semiconductor materials, it has potential advantages to fabricate bipolar detectors on the high-purity FZ silicon substrate to achieve a high gain at ultra-low-signal levels. The authors present preliminary experimental results on a bipolar detector fabricated on an unusual high-purity FZ silicon substrate. A backside gettering layer of phosphorus-doped polysilicon was employed to preserve the long carrier lifetime of the high-purity FZ silicon. The device has been investigated in the detection of a continuous flux of X-ray and infrared light. The bipolar detector with a circular emitter of 2 mm diameter has demonstrated high gains up to 3820 for 22 keV X-ray from a 1 mCi Cd radioactive source (the X-ray photon flux, received by the detector is estimated to be ∼7.77x10 4 /s). High gain up to 4400 for 0.17 nW light with a wavelength of 0.83 μm has been observed for the same device

  16. Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths.

    Science.gov (United States)

    Balram, Krishna C; Audet, Ross M; Miller, David A B

    2013-04-22

    We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

  17. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  18. Orthogonal strip HPGe planar SmartPET detectors in Compton configuration

    International Nuclear Information System (INIS)

    Boston, H.C.; Gillam, J.; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G.; Hall, C.J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.

    2007-01-01

    The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information

  19. Orthogonal strip HPGe planar SmartPET detectors in Compton configuration

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool, L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Gillam, J. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia); Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool, L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [STFC Daresbury Laboratory, Warrington, WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-10-01

    The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.

  20. Evaluation of real-time digital pulse shapers with various HPGe and silicon radiation detectors

    International Nuclear Information System (INIS)

    Menaa, N.; D'Agostino, P.; Zakrzewski, B.; Jordanov, V.T.

    2011-01-01

    Real-time digital pulse shaping techniques allow synthesis of pulse shapes that have been difficult to realize using the traditional analog methods. Using real-time digital shapers, triangular/trapezoidal filters can be synthesized in real time. These filters exhibit digital control on the rise time, fall time, and flat-top of the trapezoidal shape. Thus, the trapezoidal shape can be adjusted for optimum performance at different distributions of the series and parallel noise. The trapezoidal weighting function (WF) represents the optimum time-limited pulse shape when only parallel and series noises are present in the detector system. In the presence of 1/F noise, the optimum WF changes depending on the 1/F noise contribution. In this paper, we report on the results of the evaluation of new filter types for processing signals from CANBERRA high purity germanium (HPGe) and passivated, implanted, planar silicon (PIPS) detectors. The objective of the evaluation is to determine improvements in performance over the current trapezoidal (digital) filter. The evaluation is performed using a customized CANBERRA digital signal processing unit that is fitted with new FPGA designs and any required firmware modifications to support operation of the new filters. The evaluated filters include the Cusp, one-over-F (1/F), and pseudo-Gaussian filters. The results are compared with the CANBERRA trapezoidal shaper.

  1. Results of substitution of the Nal by a Ge detector in a simple shadow shield whole body counter

    International Nuclear Information System (INIS)

    Sahre, P.; Schoenmuth, T.; Thieme, K.

    1997-01-01

    Since 1976 a whole body counter (WBC) has been used at the Rossendorf Research Centre for measuring the internal contamination of workers. The WBC with the Germanium detector is given schematically and visually. The WBC is a shadow shield type with a tilted chair having only one detector. Table 1 contains the parameters of the WBC. It can be seen that the WBC is a simple counter. Therefore, taking into account the experiences of McCurdy, a lot of improvements were expected form the simple substitution of a HP Germanium detector for a NaI (TI) detector, i.e. despite a decrease in the sensitive detection volume, an enhancement of all quantifiable results (e.g. lower limit of detection and time for analysis of the spectrum) and above all the reliability and automation of nuclide identification were expected. (orig./SR)

  2. Results of substitution of the Nal by a Ge detector in a simple shadow shield whole body counter

    Energy Technology Data Exchange (ETDEWEB)

    Sahre, P.; Schoenmuth, T. [Nuclear Engineering and Analytics Inc. Rossendorf, Dresden (Germany); Thieme, K. [Amersham Buchler Ltd. und Co., Braunschweig (Germany)

    1997-12-01

    Since 1976 a whole body counter (WBC) has been used at the Rossendorf Research Centre for measuring the internal contamination of workers. The WBC with the Germanium detector is given schematically and visually. The WBC is a shadow shield type with a tilted chair having only one detector. Table 1 contains the parameters of the WBC. It can be seen that the WBC is a simple counter. Therefore, taking into account the experiences of McCurdy, a lot of improvements were expected form the simple substitution of a HP Germanium detector for a NaI (TI) detector, i.e. despite a decrease in the sensitive detection volume, an enhancement of all quantifiable results (e.g. lower limit of detection and time for analysis of the spectrum) and above all the reliability and automation of nuclide identification were expected. (orig./SR)

  3. The metrological activity determination of 238 U and 230 Th by gamma spectrometry to industrial fuel-cycle application

    International Nuclear Information System (INIS)

    Almeida M, M.C. de; Delgado, J.U.; Poledna, R.

    2006-01-01

    efficiency curves, a high purity planar germanium detector, GL2020R, Canberra and a high purity coaxial germanium detector, GEM50P4, proper for gamma-ray energy measurements. (Author)

  4. The metrological activity determination of {sup 238} U and {sup 230} Th by gamma spectrometry to industrial fuel-cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Almeida M, M.C. de; Delgado, J.U.; Poledna, R. [Instituto de Radioprotecao e Dosimetria- IRD/SEMRA, CNEN, Av. Salvador Allende s/n, Recreio, CEP 22780-160, Rio de Janeiro (Brazil)]. e-mail: marcandida@yahoo.com.br

    2006-07-01

    {sup 230} Th, in solution (5 ml flask), were performed using efficiency curves, a high purity planar germanium detector, GL2020R, Canberra and a high purity coaxial germanium detector, GEM50P4, proper for gamma-ray energy measurements. (Author)

  5. Experimental Characterization of Space Charge in IZIP Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, T; /UC, Berkeley; Pyle, M.; /Stanford U.; Mirabolfathi, N.; Serfass, B.; /UC, Berkeley; Kamaev, O.; /Queen' s U., Kingston; Hertel, S.; Leman, S.W.; /MIT; Brink, P.; /SLAC; Cabrera, B.; /Stanford U.; Sadoulet, B.; /UC, Berkeley

    2012-06-12

    Interleaved ionization electrode geometries offer the possibility of efficient rejection of near-surface events. The CDMS collaboration has recently implemented this interleaved approach for the charge and phonon readout for our germanium detectors. During a recent engineering run, the detectors were found to lose ionization stability quickly. This paper summarizes studies done in order to determine the underlying cause of the instability, as well as possible running modes that maintain stability without unacceptable loss of livetime. Additionally, results are shown for the new version IZIP mask which attempts to improve the overall stability of the detectors.

  6. Recoil distance method lifetime measurements of the 2⁺₁ excited states in ⁸⁴Kr and ⁹⁴Sr

    OpenAIRE

    Chester, Aaron Stuart

    2017-01-01

    Intense re-accelerated beams delivered by the Isotope Separator and Accelerator (ISAC-II) facility at TRIUMF, Canada’s national laboratory for particle and nuclear physics, permit access to nuclear structure information for a wide range of radionuclides via in-beam γ-ray spectroscopy with the TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS), a high-efficiency and Compton-suppressed segmented high-purity germanium (HPGe) detector array. Electromagnetic transition rates measured v...

  7. Simulated minimum detectable activity concentration (MDAC) for a real-time UAV airborne radioactivity monitoring system with HPGe and LaBr_3 detectors

    International Nuclear Information System (INIS)

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-01-01

    An automatic real-time UAV airborne radioactivity monitoring system with high-purity germanium (HPGe) and lanthanum bromide (LaBr_3) detectors (NH-UAV) was developed to precisely obtain small-scope nuclide information in major nuclear accidents. The specific minimum detectable activity concentration (MDAC) calculation method for NH-UAV in the atmospheric environment was deduced in this study for a priori evaluation and quantification of the suitability of NH-UAV in the Fukushima nuclear accident, where the MDAC values of this new equipment were calculated based on Monte Carlo simulation. The effects of radioactive source term size and activity concentration on the MDAC values were analyzed to assess the detection performance of NH-UAV in more realistic environments. Finally, the MDAC values were calculated at different shielding thicknesses of the HPGe detector to improve the detection capabilities of the HPGe detector, and the relationship between the MDAC and the acquisition time of the system was deduced. The MDAC calculation method and data results in this study may be used as a reference for in-situ radioactivity measurement of NH-UAV. - Highlights: • A real-time UAV airborne radioactivity monitoring system (NH-UAV) was developed. • The efficiency calculations and MDAC values are given. • NH-UAV is able to monitor major nuclear accidents, such as the Fukushima accident. • The source term size can influence the detection sensitivity of the system. • The HPGe detector possesses measurement thresholds on activity concentration.

  8. INTEGRAL: In flight behavior of ISGRI and SPI

    International Nuclear Information System (INIS)

    Lebrun, F.; Roques, J.-P.; Sauvageon, A.; Terrier, R.; Laurent, P.; Limousin, O.; Lugiez, F.; Claret, A.

    2005-01-01

    The payload of INTEGRAL, the space gamma-ray observatory launched in October 2002, features two gamma-ray telescopes that take advantage of the semiconductor technologies. The spectrometer SPI, is equipped with 19 high-purity germanium detectors cooled at 85 K. We will report on the SPI in-flight background, performance, the detector evolution and the annealings performed every 6 months. The INTEGRAL Soft Gamma-Ray Imager (ISGRI) is the low-energy camera of the IBIS telescope. It is the first large camera equipped with CdTe detectors. We will present some system aspects, in particular the noisy pixel handling and will report on its in-flight background, performance and their evolution

  9. TH-CD-201-02: A Monte Carlo Investigation of a Novel Detector Arrangement for the Energy Spectrum Measurement of a 6MV Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, S; Bartol, L; Culberson, W; DeWerd, L [School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)

    2016-06-15

    Purpose: Direct measurement of the energy spectrum of a 6MV linear accelerator has not been successful due to the high fluence rate, high energy nature of these photon beams. Previous work used a Compton Scattering (CS) spectrometry setup with a shielded spectrometer for spectrum measurements. Despite substantial lead shielding, excessive pulse pile-up was seen. MCNP6 transport code was used to investigate the feasibility and effectiveness of performing measurements using a novel detector setup. Methods: Simulations were performed with a shielded high-purity germanium (HPGe) semiconductor detector placed in the accelerator vault’s maze, with a 2 cm diameter collimator through a 92 cm thick concrete wall. The detector was positioned 660 cm from a scattering rod (placed at isocenter) at an angle of 45° relative to the central axis. This setup was compared with the shielded detector positioned in the room, 200 cm from the scattering rod at the same CS angle. Simulations were used to determine fluence contributions from three sources: (1) CS photons traveling through the collimator aperture, the intended signal, (2) CS scatter photons penetrating the detector shield, and (3) room-scattered photons penetrating the detector shield. Variance reduction techniques including weight windows, DXTRAN spheres, forced collisions, and energy cutoffs were used. Results: Simulations showed that the number of pulses per starting particle from an F8 detector tally for the intended signal decreased by a factor of 10{sup 2} when moving the detector out of the vault. This reduction in signal was amplified for the unwanted scatter signal which decreased by up to a factor of 10{sup 9}. Conclusion: This work used MCNP6 to show that using a vault wall to shield unwanted scatter and increasing isocenter-to-detector distance reduces unwanted fluence to the detector. This study aimed to provide motivation for future experimental work using the proposed setup.

  10. HEROICA: a test facility for the characterization of BEGe detectors for the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstein, Raphael [Eberhard Karls Universitaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda experiment is designed to search for neutrinoless double beta (0νββ) decay of {sup 76}Ge. It uses bare, enriched Germanium diodes that are operated in liquid argon. Currently, Phase I is running at Laboratori Nazionali del Gran Sasso in Italy. For Phase II, ∝20 kg of Broad Energy Germanium (BEGe) detectors enriched in {sup 76}Ge at 86% level will be additionally deployed. These detectors allow for advanced pulse shape discrimination techniques, to suppress the background, which will be necessary to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the Region of Interest. The HEROICA project aims for acceptance tests and the characterization of the BEGe detectors. In this talk, the infrastructure of the Belgian HADES underground test facility, as well as the full test protocol for the characterization campaign of the enrBEGe detectors, is described. This test protocol includes the determination of important detector parameters, such as energy resolution, depletion voltage, dead-layer thickness and uniformity, active volume, as well as pulse shape discrimination parameters.

  11. Upgrades for GERDA Phase II

    Science.gov (United States)

    Heisel, Mark

    2014-09-01

    The Germanium Detector Array (GERDA) experiment is searching for the neutrinoless double beta decay (0 νββ) of 76Ge. It is a process that violates lepton number conservation and is predicted to occur in extensions of the standard model of particle physics. GERDA is located underground in the Gran Sasso National Laboratory (LNGS), Italy. An array of bare high-purity germanium detectors enriched in 76Ge is operated in a cryostat with 64 m3 of liquid argon supplemented by a 3 m thick shield of water. The experiment aims at exploring the 0 νββ decay up to a half life of 2 .1026 yr in two phases: Phase I of the experiment has been concluded last year. No signal is observed and the so far best limit is derived for the half life of the 0 νββ decay of 76Ge, T1/20ν GERDA) experiment is searching for the neutrinoless double beta decay (0 νββ) of 76Ge. It is a process that violates lepton number conservation and is predicted to occur in extensions of the standard model of particle physics. GERDA is located underground in the Gran Sasso National Laboratory (LNGS), Italy. An array of bare high-purity germanium detectors enriched in 76Ge is operated in a cryostat with 64 m3 of liquid argon supplemented by a 3 m thick shield of water. The experiment aims at exploring the 0 νββ decay up to a half life of 2 .1026 yr in two phases: Phase I of the experiment has been concluded last year. No signal is observed and the so far best limit is derived for the half life of the 0 νββ decay of 76Ge, T1/20 ν GERDA Collaboration.

  12. Position sensitivity of the proposed segmented germanium detectors for the DESPEC project

    International Nuclear Information System (INIS)

    Khaplanov, A.; Tashenov, S.; Cederwall, B.

    2009-01-01

    The DESPEC HPGe array is a part of the NuSTAR project at FAIR, Germany. It is aimed at the spectroscopy of the stopped decaying exotic nuclei. Segmented γ-ray tracking detectors are proposed for this array in order to maximize detection efficiency and background suppression when searching for very rare events. Two types of detector modules-stacks of three 16-fold segmented planar crystals and 12- and 16-fold segmented clover detectors-have been investigated and compared from the point of view of the achievable position resolution using pulse shape analysis (PSA). To this end, detector signals from realistic γ-ray interactions have been calculated. These signals were treated by PSA in order to reconstruct the photon interaction locations. Comparing the initial interaction locations to the reconstructed ones, it was found that the double-sided strip planar detector yielded position reconstruction errors at least a factor 2 lower than the other detectors considered.

  13. Gain limits of a Thick GEM in high-purity Ne, Ar and Xe

    CERN Document Server

    Miyamoto, J; Peskov, V

    2010-01-01

    The dependence of the avalanche charge gain in Thick Gas Electron Multipliers (THGEM) on the purity of Ne, Ar and Xe filling gases was investigated. The gain, measured with alpha-particles in standard conditions (atmospheric pressure, room temperature), was found to considerably drop in gases purified by non-evaporable getters. On the other hand, small N2 admixtures to noble gases resulted in high reachable gains. The results are of general relevance in the operation of gas-avalanche detectors in noble gases, particularly that of two-phase cryogenic detectors for rare events.

  14. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high γ-energies

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.

  15. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high γ-energies

    Science.gov (United States)

    Kshetri, R.

    2012-12-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.

  16. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  17. Smooth germanium nanowires prepared by a hydrothermal deposition process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  18. Spectrometry of X-ray beams using Cadmium and Zinc Teluride detector

    International Nuclear Information System (INIS)

    Becker, Paulo Henriques Bastos

    1997-06-01

    Determination of X-ray spectra to be utilized for medical diagnostics is a complementary process to the development of procedures to be applied to the quality control of radiodiagnostics X-ray equipment. Until some years ago, that was only possible using Germanium or Silicon detectors. Both have an excellent resolution in this energy range, but present also some restrictions as there are high costs and the necessity of operating them at temperature of liquid Nitrogen, which is not always available at the measurement's place. Room temperature detectors like Cadmium Telluride and Mercury Iodine don't have these restrictions. They, however, have a lower resolution and incomplete collection of the charges produced by their interaction with radiation. With technological advance of crystal growth in general and new techniques like cooling the crystal with a Peltier cell and rise time discrimination circuits, today Cadmium Telluride detectors show a resolution very close to that from Germanium detectors. This work relates to the routine use of Cadmium and Zinc Telluride detectors for measuring X-ray spectra in loco of diagnostic X-ray units. It characterizes the properties of a commercially available detector and offers a model for stripping the measured pulse height distribution. It was also developed a collimator to allow the direct measurement of the beam. The model developed and the constructed set-up were applied to two X-ray tubes and the achieved spectra compared with some spectra available from the literature. (author)

  19. Performance of the clover detector considering the effects of pair production

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    Gamma rays having sufficient energy to produce positron-electron pairs in a detector generate three peaks in the energy spectrum, corresponding to the full gamma-ray energy, and this gamma-ray energy minus 511 and 1022 keV because of the single and double escape of the 511 keV annihilation quanta. The escape peaks are frequently used to extend the precision of energy calibration, simply by providing additional spectral peaks at well-known energies. At energies around 6 MeV, the pair production process dominates over other gamma interaction processes in germanium. It has been observed that the intensity of the single and double escape peaks (SEP and DEP) for gamma-rays around these energies increases rapidly. This results in a difficulty to correctly identify new gamma-rays, which is crucial for precision gamma-ray spectroscopy that involves mostly the use of tapered cylindrical germanium detectors

  20. Synthesis and evaluation of germanium organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials having applications such as electronics areas or biomarkers has affected the synthesis of new compounds based on germanium. This element has had two common oxidation states, +4 and +2, of them, +2 oxidation state has been the least studied and more reactive. Additionally, compounds of germanium (II) have had similarities with carbenes regarding the chemical acid-base Lewis. The preparation of compounds of germanium (II) with ligands β-decimations has enabled stabilization of new chemical functionalities and, simultaneously, provided interesting thermal properties to develop new preparation methodologies of materials with novel properties. The preparation of amides germanium(II) L'Ge(NHPh) [1, L' = {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 }], L'Ge(4-NHPy) [2] L'Ge(2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC(CMeN-2,6- i Pr 2 C 6 H 3 ) 2 }]; the structural chemical composition were determined using techniques such as nuclear magnetic resonance ( 1 H, 13 C), other techniques are treated: elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermal gravimetric analysis (TGA). The TGA has showed that 4-1 have experimented a thermal decomposition; therefore, these compounds could be considered as potential starting materials for obtaining germanium nitride (GeN x ). Certainly, the availability of nitrogen coordinating atoms in the chemical composition in 2-4 have been interesting because it could act as ligands in reactions with transition metal complexes. That way, information could be obtained at the molecular level for some reactions and interactions that in surface chemistry have used similar link sites, for example, chemical functionalization of silicon and germanium substrates. The synthesis and structural characterization of germanium chloride compound(II) L''GeCl [5, L'' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 ], which could be used later for the

  1. Characterization of BEGe detectors in the HADES underground laboratory

    Science.gov (United States)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope 76Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼ 25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼ 500 m water equivalent) in Mol, Belgium.

  2. Characterization of BEGe detectors in the HADES underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica, E-mail: Erica.ANDREOTTI@ec.europa.eu [Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium)

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope {sup 76}Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼500m water equivalent) in Mol, Belgium.

  3. A novel FPGA-based bunch purity monitor system at the APS storage ring

    International Nuclear Information System (INIS)

    Norum, W.E.

    2008-01-01

    Bunch purity is an important source quality factor for the magnetic resonance experiments at the Advanced Photon Source. Conventional bunch-purity monitors utilizing time-to-amplitude converters are subject to dead time. We present a novel design based on a single field- programmable gate array (FPGA) that continuously processes pulses at the full speed of the detector and front-end electronics. The FPGA provides 7778 single-channel analyzers (six per rf bucket). The starting time and width of each single-channel analyzer window can be set to a resolution of 178 ps. A detector pulse arriving inside the window of a single-channel analyzer is recorded in an associated 32-bit counter. The analyzer makes no contribution to the system dead time. Two channels for each rf bucket count pulses originating from the electrons in the bucket. The other four channels on the early and late side of the bucket provide estimates of the background. A single-chip microcontroller attached to the FPGA acts as an EPICS IOC to make the information in the FPGA available to the EPICS clients.

  4. Facility for the measurement of proton polarization in the range 50-70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sakaguchi, H; Sakamoto, H; Ogawa, H; Cynshi, O; Kobayashi, S [Kyoto Univ. (Japan). Dept. of Physics; Kato, S [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies; Matsuoka, N; Hatanaka, K; Noro, T [Osaka Univ., Toyonaka (Japan). Research Center for Nuclear Physics

    1983-07-01

    A proton polarimetry facility based on silicon analyzers combined with high-purity germanium detectors is described. The scattering efficiency is 1.5 x 10/sup -5/ at 60 MeV with an effective analyzing power of 0.71 and the energy resolution is about 300 keV fwhm. The facility has succeeded in measuring the depolarization in p-/sup 13/C elastic scattering separated clearly from inelastic events. In order to use a silicon detector as an analyzer target, measurements of cross sections and analyzing powers have been performed at proton energies of 65, 60, 55, 50 and 45 MeV.

  5. 65Zn and 133Ba standardizing by photon-photon coincidence counting

    International Nuclear Information System (INIS)

    Loureiro, Jamir S.; Cruz, Paulo A.L. da; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.

    2017-01-01

    The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65 Zn and 133 Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65 Zn and 0.48 % for 133 Ba samples. (author)

  6. 65Zn and 133Ba standardizing by photon-photon coincidence counting

    Science.gov (United States)

    Loureiro, Jamir S.; da Cruz, Paulo A. L.; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.

    2018-03-01

    The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65Zn and 133Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65Zn and 0.48 % for 133Ba samples.

  7. Automated robotic workcell for waste characterization

    International Nuclear Information System (INIS)

    Dougan, A.D.; Gustaveson, D.K.; Alvarez, R.A.; Holliday, M.

    1993-01-01

    The authors have successfully demonstrated an automated multisensor-based robotic workcell for hazardous waste characterization. The robot within this workcell uses feedback from radiation sensors, a metal detector, object profile scanners, and a 2D vision system to automatically segregate objects based on their measured properties. The multisensor information is used to make segregation decisions of waste items and to facilitate the grasping of objects with a robotic arm. The authors used both sodium iodide and high purity germanium detectors as a two-step process to maximize throughput. For metal identification and discrimination, the authors are investigating the use of neutron interrogation techniques

  8. First Results with TIGRESS and Accelerated Radioactive Ion Beams from ISAC: Coulomb Excitation of 20,21,29Na

    Science.gov (United States)

    Schumaker, M. A.; Hurst, A. M.; Svensson, C. E.; Wu, C. Y.; Becker, J. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Stoyer, M. A.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Barton, C. J.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Colosimo, S. J.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Djongolov, M.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Gray-Jones, C.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Kulp, W. D.; Lisetskiy, A. F.; Lee, G.; Lloyd, S.; Maharaj, R.; Martin, J.-P.; Millar, B. A.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Oxley, D. C.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Rigby, S. V.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Sumithrarachchi, C. S.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.

    2009-03-01

    The TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) is a state-of-the-art γ-ray spectrometer being constructed at the ISAC-II radioactive ion beam facility at TRIUMF. TIGRESS will be comprised of twelve 32-fold segmented high-purity germanium (HPGe) clover-type γ-ray detectors, with BGO/CsI(Tl) Compton-suppression shields, and is currently operational at ISAC-II in an early-implementation configuration of six detectors. Results have been obtained for the first experiments performed using TIGRESS, which examined the A = 20, 21, and 29 isotopes of Na by Coulomb excitation.

  9. Charged-particle induced radiation damage of a HPGe gamma-ray detector during spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Larry G. [Computer Sciences Corporation, Science Programs, Lanham, MD 20706 (United States); Starr, Richard [The Catholic University of America, Department of Physics, Washington, DC 20064 (United States); Brueckner, Johannes [Max-Planck-Institut fuer Chemie, Mainz (Germany); Boynton, William V. [University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ 85721 (United States); Bailey, S.H. [University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ 85721 (United States); Trombka, J.I. [NASA Goddard Space Flight Center, Code 691, Greenbelt, MD 20771 (United States)

    1999-02-11

    The Mars Observer spacecraft was launched on September 26, 1992 with a planned arrival at Mars after an 11-month cruise. Among the scientific instruments carried on the spacecraft was a Gamma-Ray Spectrometer (GRS) experiment to measure the composition of Mars. The GRS used a passively cooled high-purity germanium detector for measurements in the 0.2-10 MeV region. The sensor was a closed-end co-axial detector, 5.5 cm diameter by 5.5 cm long, and had an efficiency along its axis of 28% at 1332 keV relative to a standard NaI(Tl) detector. The sensor was surrounded by a thin (0.5 cm) plastic charged-particle shield. This was the first planetary mission to use a cooled Ge detector. It was expected that the long duration in space of three years would cause an increase in the energy resolution of the detector due to radiation damage and could affect the expected science return of the GRS. Shortly before arrival, on August 21, 1993, contact was lost with the spacecraft following the pressurization of the propellent tank for the orbital-insertion rocket motor. During much of the cruise to Mars, the GRS was actively collecting background data. The instrument provided over 1200 h of data collection during periods of both quiescent sun and solar flares. From the charged particle interactions in the shield, the total number of cosmic ray hits on the detector could be determined. The average cosmic ray flux at the MO GRS was about 2.5 cm{sup -2} s{sup -1}. The estimated fluence of charged particles during cruise was about 10{sup 8} particles cm{sup -2} with 31% of these occurring during a single solar proton event of approximately 10 days duration. During cruise, the detector energy resolution determined from a background gamma-ray at 1312 keV degraded from 2.4 keV full-width at half-maximum shortly after launch to 6.4 keV 11 months later. This result agrees well with measurements from ground-based accelerator irradiations (at 1.5 GeV) on a similar size detector.

  10. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  11. Assessing the benefits of OHER (Office of Health and Environmental Research) research: Three case studies

    Energy Technology Data Exchange (ETDEWEB)

    Nesse, R.J.; Callaway, J.M.; Englin, J.E.; Klan, M.S.; Nicholls, A.K.; Serot, D.E.

    1987-09-01

    This research was undertaken to estimate the societal benefits and costs of selected past research performed for the Office of Health and Environmental Research (OHER) of the US Department of Energy (DOE). Three case studies of representative OHER and DOE research were performed. One of these, the acid rain case study, includes research conducted elsewhere in DOE. The other two cases were the OHER marine research program and the development of high-purity germanium that is used in radiation detectors. The acid rain case study looked at the research benefits and costs of furnace sorbent injection and duct injection, technologies that might reduce acid deposition precursors. Both appear to show benefits in excess of costs. We examined in detail one of the OHER marine research program's accomplishments - the increase in environmental information used by the Outer Continental Shelf leasing program to manage bidding for off-shore oil drilling. The results of an econometric model show that environmental information of the type supported by OHER is unequivocally linked to government and industry leasing decisions. The germanium case study indicated that the benefits of germanium radiation detectors were significant.

  12. Germanium soup

    Science.gov (United States)

    Palmer, Troy A.; Alexay, Christopher C.

    2006-05-01

    This paper addresses the variety and impact of dispersive model variations for infrared materials and, in particular, the level to which certain optical designs are affected by this potential variation in germanium. This work offers a method for anticipating and/or minimizing the pitfalls such potential model variations may have on a candidate optical design.

  13. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  14. Method of beryllium implantation in germanium substrate

    International Nuclear Information System (INIS)

    Kagawa, S.; Baba, Y.; Kaneda, T.; Shirai, T.

    1983-01-01

    A semiconductor device is disclosed, as well as a method for manufacturing it in which ions of beryllium are implanted into a germanium substrate to form a layer containing p-type impurity material. There after the substrate is heated at a temperature in the range of 400 0 C. to 700 0 C. to diffuse the beryllium ions into the substrate so that the concentration of beryllium at the surface of the impurity layer is in the order of 10 17 cm- 3 or more. In one embodiment, a p-type channel stopper is formed locally in a p-type germanium substrate and an n-type active layer is formed in a region surrounded by, and isolated from, the channel stopper region. In another embodiment, a relatively shallow p-type active layer is formed at one part of an n-type germanium substrate and p-type guard ring regions are formed surrounding, and partly overlapping said p-type active layer. In a further embodiment, a p-type island region is formed at one part of an n-type germanium substrate, and an n-type region is formed within said p-type region. In these embodiments, the p-type channel stopper region, p-type guard ring regions and the p-type island region are all formed by implanting ions of beryllium into the germanium substrate

  15. A Monte Carlo study for the shielding of γ backgrounds induced by radionuclides for CDEX

    International Nuclear Information System (INIS)

    Li Lei; Tang Changjian; Yue Qian; Cheng Jianping; Kang Kejun; Li Jianmin; Li Jin; Li Yulan; Li Yuanjing; Ma Hao; Xue Tao; Zeng Zhi; Wong, H.T.

    2011-01-01

    The CDEX (China Dark matter EXperiment) Collaboration will carry out a direct search for WIMPs (Weakly Interacting Massive Particles) using an Ultra-Low Energy Threshold High Purity Germanium (ULE-HPGe) detector at the CJPL (China JinPing deep underground Laboratory). A complex shielding system was designed to reduce backgrounds and a detailed GEANT4 Monte Carlo simulation was performed to study the achievable reduction of γ rays induced by radionuclides and neutron backgrounds by D(γ,n)p reaction. Furthermore, the upper level of allowed radio purity of shielding materials was estimated under the constraint of the expected goal. Compared with the radio purity reported by other low-background rare-event experiments, it indicates that the shielding used in the CDEX can be made out of materials with obtainable radiopurity. (authors)

  16. 235U enrichment determination on UF6 cylinders with CZT detectors

    Science.gov (United States)

    Berndt, Reinhard; Mortreau, Patricia

    2018-04-01

    Measurements of uranium enrichment in UF6 transit cylinders are an important nuclear safeguards verification task, which is performed using a non-destructive assay method, the traditional enrichment meter, which involves measuring the count rate of the 186 keV gamma ray. This provides a direct measure of the 235U enrichment. Measurements are typically performed using either high-resolution detectors (Germanium) with e-cooling and battery operation, or portable devices equipped with low resolution detectors (NaI). Despite good results being achieved when measuring Low Enriched Uranium in 30B type cylinders and natural uranium in 48Y type containers using both detector systems, there are situations, which preclude the use of one or both of these systems. The focus of this work is to address some of the recognized limitations in relation to the current use of the above detector systems by considering the feasibility of an inspection instrument for 235U enrichment measurements on UF6 cylinders using the compact and light Cadmium Zinc Telluride (CZT) detectors. In the present work, test measurements were carried out, under field conditions and on full-size objects, with different CZT detectors, in particular for situations where existing systems cannot be used e.g. for stacks of 48Y type containers with depleted uranium. The main result of this study shows that the CZT detectors, actually a cluster of four μCZT1500 micro spectrometers provide as good results as the germanium detector in the ORTEC Micro-trans SPEC HPGe Portable spectrometer, and most importantly in particular for natural and depleted uranium in 48Y cylinders.

  17. Germanium-overcoated niobium Dayem bridges

    International Nuclear Information System (INIS)

    Holdeman, L.B.; Peters, P.N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at 4.2 K (T/sub c/-T=2.6 K), at least 20 steps could be counted. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature

  18. Development results of portable gamma-radiation HPGe spectrometer with electric cooling for field applications

    International Nuclear Information System (INIS)

    Kondrat'ev, V.; Loshevich, E.; Pchelintsev, A.; Sokolov, A.; Gostilo, V.

    2015-01-01

    The paper presents development results of a portable spectrometer based on high purity germanium (HPGe spectrometer) with Stirling electric cooler for field applications. The spectrometer cryostat allows installation of HPGe coaxial detectors with efficiency up to 40% and planar detectors with sensitive area up to 3000 mm2. The detector cooling time is not more than 8 hours. Despite the mechanical vibrations due to electric cooler operation, the obtained energy resolution of the spectrometer with coaxial detector of 10% efficiency was less than 1,0 and 2,0 keV by energies 122 and 1332 keV accordingly. Miniature processor device (Android) allows control for all operation modes of the spectrometer, provides self diagnostics, initial procession, indication and spectra accumulation

  19. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    International Nuclear Information System (INIS)

    Ogburn, Reuben Walter IV

    2008-01-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have analyzed all data from the two runs together in a single

  20. Search for neutrinoless double beta decay of Ge-76 with the GERmanium Detector Array '' GERDA ''

    International Nuclear Information System (INIS)

    Brugnera, R.

    2009-01-01

    The study of neutrinoless double beta decay (DBD) is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of neutrinoless DBD would not only establish the Majorana nature of the neutrino but also represent a determination of its effective mass if the nuclear matrix element is given. So far, the most sensitive results have been obtained with Ge-76, and the group of Klapdor-Kleingrothaus has made a claim of discovery. Future experiments have to reduce radioactive backgrounds to increase the sensitivity. '' GERDA '' is a new double beta-decay experiment which is currently under construction in the INFN Gran Sasso National Laboratory, Italy. It is implementing a new shielding concept by operating bare Ge diodes - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of '' GERDA '' is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments, increasing the sensitive mass and reaching exposure of 100 kg yr. It be will discuss design, physics reach, and status of construction of '' GERDA '', and present results from various R efforts including long term stability of bare Ge diodes in cryogenic liquids, material screening, cryostat performance, detector segmentation, cryogenic precision electronics, safety aspects, and Monte Carlo simulations. (author)

  1. Gas lantern mantle: a low activity alpha particle source

    International Nuclear Information System (INIS)

    Mukherjee, B.; Manzoor, S.

    1991-01-01

    Commercially available gas lantern mantles contain a substantial amount of radioactive ThO 2 . Gas lantern mantles purchased from a Sydney camping shop were incinerated, deposited as a thin layer on a aluminium planchette, and the emitted alpha spectrum was measured with a silicon surfacer barrier detector. The specific activity of the samples was estimated by high resolution gamma spectroscopy using a high purity germanium detector as well as CR-39 solid state nuclear track detectors. The micro-morphology of the incinerated powder was analysed by scanning electron microscopy. The depth dose and LET distribution of alpha particles in soft tissue were calculated from the energy spectrum. 12 refs., 2 tabs., 5 figs

  2. The ACCUSCAN-II vertical scanning germanium whole body counter

    International Nuclear Information System (INIS)

    Bronson, F.L.

    1987-01-01

    The ACCUSCAN-II is manufactured by Canberra Industries, and represents a new generation of WBC systems. One or two Germanium detectors are used for precise nuclide identification. The detectors scan the total body and can accurately quantify radioactive material anywhere in the body. The shield is a full 4'' thick steel or 2'' lead and weighs about 9000 lbs. The subject can be counted standing for full body scans, or seated for longer counting times of limited portions of the body. Optional electronics also generate a count rate vs. body position profile, as an aid to interpretation of the dose implications of the count. Typical LLD's are 5 - 10 nCi for a 5 minute total body count and 0.5 - 0.7 nCi for a 5 minute long screening count. The system is available in several flavors. The manual version is an inexpensive system intended for universities, hospitals and small industrial facilities. The automatic system includes a MicroVAX-II computer and runs ABACOS0-II Body Burden Software, and is ideal for facilities with large numbers of people to count and where automated analysis of the data is desirable

  3. A dual-PIXE tomography setup for reconstruction of Germanium in ICF target

    Science.gov (United States)

    Guo, N.; Lu, H. Y.; Wang, Q.; Meng, J.; Gao, D. Z.; Zhang, Y. J.; Liang, X. X.; Zhang, W.; Li, J.; Ma, X. J.; Shen, H.

    2017-08-01

    Inertial Confinement Fusion (ICF) is one type of fusion energy research which could initiate nuclear fusion reactions through heating and compressing thermonuclear fuel. Compared to a pure plastic target, Germanium doping into the CH ablator layer by Glow Discharge Polymer (GDP) technique can increase the ablation velocity and the standoff distance between the ablation front and laser-deposition region. During target fabrication process, quantitative doping of Ge should be accurately controlled. Particle Induced X-ray Emission Tomography (PIXE-T) can make not only quantification of the concentration, but also reconstruction of the spatial distribution of doped element. The Si (Li) detector for PIXE tomography technique had a disadvantage of low counting rate. To make up this deficiency, another detector of Si (Li) with the same configuration positioned at the opposite side with the same detective angle 135° have been implemented. Simultaneously acquired elemental maps of Ge obtained using two detectors may be different because of the X-ray absorption along the X-ray exit route in the target. In this paper, the X-ray detection efficiency is drastically improved by this dual-PIXE tomography system.

  4. Neutrinoless double beta decay in Gerda

    Science.gov (United States)

    Grabmayr, Peter; Gerda Collaboration

    2015-10-01

    The Germanium Detector Array (Gerda) experiment searches for the neutrinoless double beta decay in 76Ge. This lepton number violating process is predicted by extensions of the standard model. Gerda follows a staged approach by increasing mass and lowering the background level from phase to phase. Gerda is setup at the Gran Sasso underground laboratory of INFN, Italy. An array of high-purity germanium detectors is lowered directly in liquid argon for shielding and cooling. Further background reduction is achieved by an instrumented water buffer. In Phase I an exposure of 21.6 kg yr was collected at a background level of 10-2 cts/(keV kg yr). The lower limit on the half-life of 76Ge > 2 . 1 .1025 yr (90% C.L.) has been published. Further analyses search for decay into excited states or the accompanied Majoron decay. Presently, Phase II is in preparation which intends to reach a background level of 10-3 cts/(keV kg yr) and to increase the exposure to 100 kg yr. About 20 kg of novel thick-window BEGe (Broad Energy Germanium) detectors will be added and the liquid argon will be instrumented. The status of Phase II preparation and results from the commissioning runs will be presented as well as some further results from Phase I.

  5. Reduction of radioactive backgrounds in electroformed copper for ultra-sensitive radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, E.W., E-mail: eric.hoppe@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Aalseth, C.E.; Farmer, O.T.; Hossbach, T.W.; Liezers, M.; Miley, H.S.; Overman, N.R. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Reeves, J.H. [Reeves and Son LLC, 10 Albert Ave., Richland, WA 99352 (United States)

    2014-11-11

    Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These materials are also important for use in high-purity germanium spectrometers used in screening materials for radiopurity. The next-generation science applications require materials with radiopurity levels at or below 1 μBq/kg {sup 232}Th and {sup 238}U. Yet radiometric analysis lacks sensitivity below ∼10 μBq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the first time guided by an ICP-MS based assay method that can measure {sup 232}Th and {sup 238}U near the desired purity levels. An assay of electroformed copper at a μBq/kg level has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed.

  6. Study and validation of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces: application to a mission to the planet Mercury

    International Nuclear Information System (INIS)

    Pirard, B.

    2006-12-01

    This work deals with the design of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces and was performed in the frame of a mission scenario to explore the planet Mercury. The research studies consisted first in characterizing the detection performances of a gamma-ray spectrometer using a high-purity germanium crystal cooled actively at cryogenic temperatures. The high energy resolution of the detector allows an accurate measurement of the chemical composition for the main elements from oxygen to uranium. Thereafter the studies dealt with the critical issues addressed for the use of such a detector onboard a mission to the inner solar system. The radiation damage caused by solar protons in germanium crystals was investigated by experimental and numerical means. It has been shown that the detector resolution begins getting damaged for proton fluences over 5*10 8 p/cm 2 . An annealing session where the crystal is heated up to 80 C degrees for a 4-day period allows the detector to get back a sufficient resolution. Annealing over 100 C degrees gives back the detector its initial resolution. Finally, a numerical thermal model of the instrument as well as some tests on a thermal mockup were performed to validate the thermal design of the instrument

  7. Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, M.; Radchenko, V.; Roesch, F.; Jennewein, M. [Mainz Univ. (Germany). Inst. of Nuclear Chemsistry; Filosofov, D. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Nuclear Problems; Hauser, H.; Eisenhut, M. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Radiopharmaceutical Chemistry

    2010-07-01

    Radioarsenic labelled radiopharmaceuticals could add special features to molecular imaging with positron emission tomography (PET). For example the long physical half-lives of {sup 72}As (T{sub 1/2}=26 h) and {sup 74}As (T{sub 1/2}=17.8 d) in conjunction with their high positron branching rates of 88% and 29%, respectively, allow the investigation of slow physiological or metabolical processes, like the enrichment and biodistribution of monoclonal antibodies in tumour tissue or the characterization of stem cell trafficking. A method for separation and purification of no-carrier-added (nca) arsenic from irradiated metallic germanium targets based on distillation and anion exchange is developed. It finally converts the arsenic into an {sup *}As(III) synthon in PBS buffer and pH 7 suitable for labelling of proteins via As-S bond formations. The method delivers radioarsenic in high purity with separation factors of 10{sup 6} from germanium and an overall yield from target to labelling synthon of > 40%. In a proof-of-principle experiment, the monoclonal antibody Bevacizumab, directed against the human VEGF receptor, was labelled with a radiochemical yield > 90% within 1 h at room temperature with nca {sup 72/74/77}As. (orig.)

  8. Aluminum as a source of background in low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Majorovits, B., E-mail: bela@mppmu.mpg.de [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Abt, I. [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, S.S.17/bis, km 18 plus 910, I-67100 Assergi (Italy); Volynets, O. [MPI fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2011-08-11

    Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10{sup -5} counts/(kg y keV) in the region of interest around the Q-value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of {sup 22}Na, {sup 26}Al, {sup 226}Ra and {sup 228}Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.

  9. The germination of germanium

    Science.gov (United States)

    Burdette, Shawn C.; Thornton, Brett F.

    2018-02-01

    Shawn C. Burdette and Brett F. Thornton explore how germanium developed from a missing element in Mendeleev's periodic table to an enabler for the information age, while retaining a nomenclature oddity.

  10. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  11. Structure of compensating centers in neutron irradiated n-type germanium

    International Nuclear Information System (INIS)

    Erchak, D.P.; Kosobutskij, V.S.; Stel'makh, V.F.

    1989-01-01

    Structural model of one of the main compensating defects of Ge-M1, Ge-M5, Ge-M6 in neutron irradiated (10 18 -10 20 cm -2 ) germanium, strongly alloyed (2x10 18 -3x10 19 cm -3 ) with antimony, phosphorus and arsenic respectively, is suggested. The above mentioned compensating centers are paramagnetic in a positive charge state and represent a vacancy, two nearby germanium atoms of which are replaced with two atoms of corresponding fine donor impurity. It is mainly contributed (63%- for Ge-M5 centers, 56% - for Ge-M6 centers) by orbitals of two germanium atoms neighbouring the vacancy. The angle of the bonds of each of two mentioned germanium atoms with its three neighbours and orientation of maximum electron density of hybride orbital, binding both germanium atoms, is approximately by 5 deg greater the tetrahedral one

  12. Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium

    International Nuclear Information System (INIS)

    Brotzmann, Sergej; Bracht, Hartmut

    2008-01-01

    Diffusion experiments of phosphorus (P), arsenic (As), and antimony (Sb) in high purity germanium (Ge) were performed at temperatures between 600 and 920 deg. C. Secondary ion mass spectrometry and spreading resistance profiling were applied to determine the concentration profiles of the chemically and electrically active dopants. Intrinsic and extrinsic doping conditions result in a complementary error function and box-shaped diffusion profiles, respectively. These profiles demonstrate enhanced dopant diffusion under extrinsic doping. Accurate modeling of dopant diffusion is achieved on the basis of the vacancy mechanism taking into account singly negatively charged dopant-vacancy pairs and doubly negatively charged vacancies. The activation enthalpy and pre-exponential factor for dopant diffusion under intrinsic condition were determined to 2.85 eV and 9.1 cm 2 s -1 for P, 2.71 eV and 32 cm 2 s -1 for As, and 2.55 eV and 16.7 cm 2 s -1 for Sb. With increasing atomic size of the dopants the activation enthalpy decreases. This is attributed to differences in the binding energy of the dopant-vacancy pairs

  13. Assessment of applicability of portable HPGe detector with in situ object counting system based on performance evaluation of thyroid radiobioassays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Seok; Kwon, Tae Eun; Pak, Min Jung; Park, Se Young; Ha, Wi Ho; Jin, Young Woo [National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2017-06-15

    Different cases exist in the measurement of thyroid radiobioassays owing to the individual characteristics of the subjects, especially the potential variation in the counting efficiency. An In situ Object Counting System (ISOCS) was developed to perform an efficiency calibration based on the Monte Carlo calculation, as an alternative to conventional calibration methods. The purpose of this study is to evaluate the applicability of ISOCS to thyroid radiobioassays by comparison with a conventional thyroid monitoring system. The efficiency calibration of a portable high-purity germanium (HPGe) detector was performed using ISOCS software. In contrast, the conventional efficiency calibration, which needed a radioactive material, was applied to a scintillator-based thyroid monitor. Four radioiodine samples that contained 125I and 131I in both aqueous solution and gel forms were measured to evaluate radioactivity in the thyroid. ANSI/HPS N13.30 performance criteria, which included the relative bias, relative precision, and root-mean-squared error, were applied to evaluate the performance of the measurement system. The portable HPGe detector could measure both radioiodines with ISOCS but the thyroid monitor could not measure 125I because of the limited energy resolution of the NaI(Tl) scintillator. The 131I results from both detectors agreed to within 5% with the certified results. Moreover, the 125I results from the portable HPGe detector agreed to within 10% with the certified results. All measurement results complied with the ANSI/HPS N13.30 performance criteria. The results of the intercomparison program indicated the feasibility of applying ISOCS software to direct thyroid radiobioassays. The portable HPGe detector with ISOCS software can provide the convenience of efficiency calibration and higher energy resolution for identifying photopeaks, compared with a conventional thyroid monitor with a NaI(Tl) scintillator. The application of ISOCS software in a radiation

  14. Study of new germanium bolometers with interleaved concentric electrodes for non-baryonic cold dark matter direct detection in the Edelweiss-II experiment

    International Nuclear Information System (INIS)

    Domange, J.

    2011-09-01

    EDELWEISS is a direct non-baryonic cold dark matter detection experiment in the form of weakly interacting massive particles (also known as WIMPs), which currently constitute the most popular candidates to account for the missing mass in the Universe. To this purpose, EDELWEISS uses germanium bolometers at cryogenic temperature (20 mK approximately) in the Underground Laboratory of Modane (LSM) at the French-Italian border. Since 2008, a new type of detector is operated, equipped with concentric electrodes to optimize the rejection of surface events (coplanar-grid detectors). This thesis work is divided into several research orientations. First, we carried out measurements concerning charge collection in the crystals. The velocity laws of the carriers (electrons and holes) have been determined in germanium at 20 mK in the orientation, and a complete study of charge sharing has been done, including an evaluation of the transport anisotropy and of the straggling of the carriers. These results lead to a better understanding of the inner properties of the EDELWEISS detectors. Then, studies relating to the improvement of the performances were carried out. In particular, we have optimized the space-charge cancellation procedure in the crystals and improved the passive rejection of surface events (β). The fiducial volume of the detectors has been evaluated using two X-ray lines from cosmically activated radionuclides: 68 Ge and 65 Zn. Finally, an exhaustive study of the low energy spectra has been carried out, which makes it possible to develop a systematic analysis method for the search of low-mass WIMPs in EDELWEISS. (author)

  15. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  16. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  17. Alpha particle response study of polycrstalline diamond radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Topkar, Anita [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2016-05-23

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  18. Silver-compensated germanium center in α-quartz

    International Nuclear Information System (INIS)

    Laman, F.C.; Weil, J.A.

    1977-01-01

    A synthetic germanium-doped crystal of α-quartz was subjected to an electro-diffusion process (ca. 600 V/cm, 625 0 K), in which Ag + ions were introduced along the crystal's optic axis (c). A 9800 MHz electron paramagnetic resonance spectrum at room temperature, taken after room temperature X-irradiation, revealed the presence of a silver-compensated germanium center Asub(Ge-Ag) with large, almost isotropic 107 Ag and 109 Ag hyperfine splittings. Measurement of the spin-Hamiltonian discloses that a suitable model for the observed center utilizes germanium, substituted for silicon, with the accompanying silver interstitial in a nearby c-axis channel, and with electronic structure in which an appreciable admixture Ge 4+ - Ag 0 to Ge 3+ - Ag + exists. Estimates of the unpaired electron orbital are presented. (author)

  19. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  20. CALDER: High-sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Casali, N.; Bellini, F.; Cardani, L.

    2017-01-01

    The current bolometric experiments searching for rare processes such as neutrinoless double-beta decay or dark matter interaction demand for cryogenic light detectors with high sensitivity, large active area and excellent scalability and radio-purity in order to reduce their background budget. The CALDER project aims to develop such kind of light detectors implementing phonon-mediated Kinetic Inductance Detectors (KIDs). The goal for this project is the realization of a 5 × 5 cm"2 light detector working between 10 and 100mK with a baseline resolution RMS below 20 eV. In this work the characteristics and the performances of the prototype detectors developed in the first project phase will be shown.

  1. {sup 65}Zn and {sup 133}Ba standardizing by photon-photon coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Jamir S.; Cruz, Paulo A.L. da; Iwahara, Akira; Delgado, José U., E-mail: palcruz@ird.gov.br [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of {sup 65}Zn and {sup 133}Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for {sup 65}Zn and 0.48 % for {sup 133}Ba samples. (author)

  2. Progress towards a semiconductor Compton camera for prompt gamma imaging during proton beam therapy for range and dose verification

    Science.gov (United States)

    Gutierrez, A.; Baker, C.; Boston, H.; Chung, S.; Judson, D. S.; Kacperek, A.; Le Crom, B.; Moss, R.; Royle, G.; Speller, R.; Boston, A. J.

    2018-01-01

    The main objective of this work is to test a new semiconductor Compton camera for prompt gamma imaging. Our device is composed of three active layers: a Si(Li) detector as a scatterer and two high purity Germanium detectors as absorbers of high-energy gamma rays. We performed Monte Carlo simulations using the Geant4 toolkit to characterise the expected gamma field during proton beam therapy and have made experimental measurements of the gamma spectrum with a 60 MeV passive scattering beam irradiating a phantom. In this proceeding, we describe the status of the Compton camera and present the first preliminary measurements with radioactive sources and their corresponding reconstructed images.

  3. Disgust and the moralization of purity.

    Science.gov (United States)

    Horberg, E J; Oveis, Christopher; Keltner, Dacher; Cohen, Adam B

    2009-12-01

    Guided by appraisal-based models of the influence of emotion upon judgment, we propose that disgust moralizes--that is, amplifies the moral significance of--protecting the purity of the body and soul. Three studies documented that state and trait disgust, but not other negative emotions, moralize the purity moral domain but not the moral domains of justice or harm/care. In Study 1, integral feelings of disgust, but not integral anger, predicted stronger moral condemnation of behaviors violating purity. In Study 2, experimentally induced disgust, compared with induced sadness, increased condemnation of behaviors violating purity and increased approval of behaviors upholding purity. In Study 3, trait disgust, but not trait anger or trait fear, predicted stronger condemnation of purity violations and greater approval of behaviors upholding purity. We found that, confirming the domain specificity of the disgust-purity association, disgust was unrelated to moral judgments about justice (Studies 1 and 2) or harm/care (Study 3). Finally, across studies, individuals of lower socioeconomic status (SES) were more likely than individuals of higher SES to moralize purity but not justice or harm/care.

  4. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  5. The application of factor analysis for whole body gamma spectra work up

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, P; Fueloep, M [Inst. of Preventive and Clinical Medicine, 83301 Bratislava (Slovakia). Dept. of Radiation Hygiene; Krnac, S [Slovak Technical Univ., 81219 Bratislava (Slovakia). Dept. of Nuclear Physics and Technology

    1996-12-31

    The results of whole body (WB) counting with small high purity germanium detector were presented. The scaling confirmation factor analysis (SCFA) method based on factorization of the response operator is very sensitive and for this application suitable method how to decrease limits of detection. The minimal detectable activity (MDA, for counting time of person 7200 s, background 58600 s and 99% confidence level) of detector usually used in our laboratory for WB counting (relative efficiency 61.8%) 18.5 Bq and MDA for the SCFA method for small detector 17.9 are very close. The use of SCFA method improves the sensitivity (MDA) by factor of 4.1 and the small detector is comparable in sensitivity with the larger one (J.K). 4 tabs., 5 figs., 3 refs.

  6. Mesostructured germanium with cubic pore symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Armatas, G S; Kanatzidis, M G [Michigan State Univ., Michigan (United States), Dept. of Chemistry

    2006-11-15

    Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic meso structured germanium, MSU-Ge-l, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48. Although Ge is a high-meltin covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge{sup 4-} atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt meso structured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying la3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap. (author)

  7. A small diameter, flexible, all attitude, self-contained germanium spectrometer. Operator's manual

    International Nuclear Information System (INIS)

    Bordzindki, R.L.; Lepel, E.A.; Reeves, J.H.; Kohli, R.

    1997-05-01

    The end of the Cold War has brought about tremendous changes in the nuclear complex of the Department of Energy. One of the many changes has been the shutdown or decommissioning of many facilities that performed nuclear work. One of the steps in the process of decommissioning a facility involves the decontamination or removal of drain lines or pipes that may have carried radioactive materials at one time. The removal of all these pipes and drain lines to a nuclear disposal facility could be quite costly. It was suggested by Pacific Northwest National Laboratory (PNNL) that a germanium spectrometer could be built that could fit through straight pipes with a diameter as small as 5.08 cm (2 inches) and pass through curved pipes with a diameter as small as 7.6 cm (3 inches) such as that of a 3-inch p-trap in a drain line. The germanium spectrometer could then be used to simultaneously determine all gamma-ray emitting radionuclides in or surrounding the pipe. By showing the absence of any gamma-ray emitting radionuclides, the pipes could then be reused in place or disposed of as non-radioactive material, thus saving significantly in disposal costs. A germanium spectrometer system has been designed by PNNL and fabricated by Princeton Gamma Tech (PGT) that consists of three segments, each 4.84 cm in diameter and about 10 cm in length. Flexible stainless steel bellows were used to connect the segments. Segment 1 is a small liquid nitrogen reservoir. The reservoir is filled with a sponge-like material which enables the detector to be used in any orientation. A Stirling cycle refrigerator is under development which can replace the liquid nitrogen reservoir to provide continuous cooling and operation

  8. Germanium junction detectors. Theoretical and practical factors governing their use in radiation spectrometry

    International Nuclear Information System (INIS)

    Hors, M.; Philis, C.

    1967-01-01

    Semi-conductor detectors have recently greatly increased the possibilities available to nuclear spectroscopists for the study of α, β and γ radiations. Their use in radio-chemistry has encouraged us to study their principle, their mechanism and also the conditions under which they can be used. The first part, which is theoretical, consists of a summary of what should be known concerning the best use of junction detectors, in particular Ge (Li) detectors. The second part, which is experimental, summarizes the laboratory work carried out over a period of one year on Ge (Li) detectors. Stress is laid on the possibilities presented by the use of these detectors as photo-electric spectrometers, and also on the precautions required. Amongst the numerous results presented, the resolution of 2.52 keV obtained for the γ radiation of 145.5 keV for 141 Ce may be particularly noted. (authors) [fr

  9. A gamma-ray tracking detector for molecular imaging

    International Nuclear Information System (INIS)

    Hall, C.J.; Lewis, R.A.; Helsby, W.I.; Nolan, P.; Boston, A.

    2003-01-01

    A design for a gamma-ray detector for molecular imaging is presented. The system is based on solid-state strip detector technology. The advantages of position sensitivity coupled with fine spectral resolution are exploited to produce a tracking detector for use with a variety of isotopes in nuclear medicine. Current design concepts employ both silicon and germanium layers to provide an energy range from 60 keV to >1 MeV. This allows a reference X-ray image to be collected simultaneously with the gamma-ray image providing accurate anatomical registration. The tracking ability of the gamma-ray detector allows ambiguities in the data set to be resolved which would otherwise cause events to be rejected in standard non-tracking system. Efficiency improvements that high solid angle coverage and the use of a higher proportion of events make time resolved imaging and multi-isotope work possible. A modular detector system, designed for viewing small animals has been accepted for funding

  10. Realization of the low background neutrino detector Double Chooz. From the development of a high-purity liquid and gas handling concept to first neutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Pfahler, Patrick

    2012-12-17

    Neutrino physics is one of the most vivid fields in particle physics. Within this field, neutrino oscillations are of special interest as they allow to determine driving oscillation parameters, which are collected as mixing angles in the leptonic mixing matrix. The exact knowledge of these parameters is the main key for the investigation of new physics beyond the currently known Standard Model of particle physics. The Double Chooz experiment is one of three reactor disappearance experiments currently taking data, which recently succeeded to discover a non-zero value for the last neutrino mixing angle {Theta}{sub 13}. As successor of the CHOOZ experiment, Double Chooz will use two detectors with improved design, each of them now composed of four concentrically nested detector vessels each filled with different detector liquid. The integrity of this multi-layered structure and the quality of the used detector liquids are essential for the success of the experiment. Within this frame, the here presented work describes the production of two detector liquids, the filling and handling of the Double Chooz far detector and the installation of all necessary hardware components therefore. In order to meet the strict requirements existing for the detector liquids, all components were individually selected in an extensive material selection process at TUM, which compared samples from different companies for their key properties: density, transparency, light yield and radio purity. Based on these measurements, the composition of muon veto scintillator and buffer liquid were determined. For the production of the detector liquids, a simple surface building close to the far detector site was upgraded into a large-scale storage and mixing facility, which allowed to separately, mix, handle and store 90 m{sup 3} of muon veto scintillator and 110 m{sup 3} of buffer liquid. For the muon veto scintillator, a master-solution composed of 4800 l LAB, 180 kg PPO and 1.8 kg of bis/MSB was

  11. Realization of the low background neutrino detector Double Chooz. From the development of a high-purity liquid and gas handling concept to first neutrino data

    International Nuclear Information System (INIS)

    Pfahler, Patrick

    2012-01-01

    Neutrino physics is one of the most vivid fields in particle physics. Within this field, neutrino oscillations are of special interest as they allow to determine driving oscillation parameters, which are collected as mixing angles in the leptonic mixing matrix. The exact knowledge of these parameters is the main key for the investigation of new physics beyond the currently known Standard Model of particle physics. The Double Chooz experiment is one of three reactor disappearance experiments currently taking data, which recently succeeded to discover a non-zero value for the last neutrino mixing angle Θ 13 . As successor of the CHOOZ experiment, Double Chooz will use two detectors with improved design, each of them now composed of four concentrically nested detector vessels each filled with different detector liquid. The integrity of this multi-layered structure and the quality of the used detector liquids are essential for the success of the experiment. Within this frame, the here presented work describes the production of two detector liquids, the filling and handling of the Double Chooz far detector and the installation of all necessary hardware components therefore. In order to meet the strict requirements existing for the detector liquids, all components were individually selected in an extensive material selection process at TUM, which compared samples from different companies for their key properties: density, transparency, light yield and radio purity. Based on these measurements, the composition of muon veto scintillator and buffer liquid were determined. For the production of the detector liquids, a simple surface building close to the far detector site was upgraded into a large-scale storage and mixing facility, which allowed to separately, mix, handle and store 90 m 3 of muon veto scintillator and 110 m 3 of buffer liquid. For the muon veto scintillator, a master-solution composed of 4800 l LAB, 180 kg PPO and 1.8 kg of bis/MSB was produced and

  12. Measurement of β-decay end point energy with planar HPGe detector

    Science.gov (United States)

    Bhattacharjee, T.; Pandit, Deepak; Das, S. K.; Chowdhury, A.; Das, P.; Banerjee, D.; Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S. R.

    2014-12-01

    The β - γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in 106Rh →106Pd. The end point energies corresponding to three weak branches in 106Rh →106Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  13. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  14. The Gerda search for neutrinoless double beta decay

    Science.gov (United States)

    O'Shaughnessy, Christopher; Gerda Collaboration

    2013-10-01

    The Germanium Detector Array (Gerda) is a search for the neutrinoless double beta decay of 76Ge. High Purity Germanium (HPGe) detectors enriched in the isotope-76 are operated bare in liquid argon (LAr). LAr is used for both cooling of the HPGe diodes to their operating temperatures and for shielding from external radiation sources. From the measurements of the first phase that began data taking on 1 Nov. 2011 it is expected to have a sensitivity on the level of T1/2>2E25 yr at a 90% CL after 15 kġyr. The goal of this phase will be to probe the claim of an observation by part of the Heidelberg-Moscow collaboration. Efforts will then focus on increasing the sensitivity of the experiment by deploying additional enriched detectors that are in an advanced stage of production and by reducing the background index further by making use of pulse shape discrimination techniques as well as an active LAr veto. While the 0νββ region of interest continues to remain blinded, here the status of Phase-I data taking is presented along with the work towards improving the experimental sensitivity.

  15. Liquid argon as active shielding and coolant for bare germanium detectors. A novel background suppression method for the GERDA 0νββ experiment

    International Nuclear Information System (INIS)

    Peiffer, J.P.

    2007-01-01

    Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the StandardModel and the absolute values of the neutrino masses. The neutrinoless double beta (0νββ) decay, which can be investigated using 76 Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0νββ decay in the Heidelberg-Moscow (HdM) 76 Ge experiment by a part of the HdM collaboration. The new 76 Ge experiment Gerda aims to check this claim within one year with 15 kg.y of statistics in Phase I at a background level of ≤10 -2 events/(kg.keV.y) and to go to higher sensitivity with 100 kg.y of statistics in Phase II at a background level of ≤10 -3 events/(kg.keV.y). In Gerda bare germanium semiconductor detectors (enriched in 76 Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced 60 Co is expected to be ∝2.5.10 -3 events/(kg.keV.y). LAr scintillates in UV (λ=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for 60 Co and a factor 17 for 232 Th around Q ββ = 2039 keV. This suppression will further increase for a one ton active volume (factor O(100) for 232 Th and 60 Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength shifter/reflector combination for the light detection has been developed, leading to a photo electron (pe) yield of as much as

  16. Liquid argon as active shielding and coolant for bare germanium detectors. A novel background suppression method for the GERDA 0{nu}{beta}{beta} experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peiffer, J.P.

    2007-07-25

    Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the StandardModel and the absolute values of the neutrino masses. The neutrinoless double beta (0{nu}{beta}{beta}) decay, which can be investigated using {sup 76}Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0{nu}{beta}{beta} decay in the Heidelberg-Moscow (HdM) {sup 76}Ge experiment by a part of the HdM collaboration. The new {sup 76}Ge experiment Gerda aims to check this claim within one year with 15 kg.y of statistics in Phase I at a background level of {<=}10{sup -2} events/(kg.keV.y) and to go to higher sensitivity with 100 kg.y of statistics in Phase II at a background level of {<=}10{sup -3} events/(kg.keV.y). In Gerda bare germanium semiconductor detectors (enriched in {sup 76}Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced {sup 60}Co is expected to be {proportional_to}2.5.10{sup -3} events/(kg.keV.y). LAr scintillates in UV ({lambda}=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for {sup 60}Co and a factor 17 for {sup 232}Th around Q{sub {beta}}{sub {beta}} = 2039 keV. This suppression will further increase for a one ton active volume (factor O(100) for {sup 232}Th and {sup 60}Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength

  17. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  18. Effects of electronically neutral impurities on muonium in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Crowe, K.M.; Haller, E.E.; Rosenblum, S.S.; Brewer, J.H.

    1983-04-01

    Low-temperature measurements of muonium parameters in various germanium crystals have been performed. We have measured crystals with different levels of neutral impurities, with and without dislocations, and with different annealing histories. The most striking result is the apparent trapping of Mu by silicon impurities in germanium

  19. Analytical product study of germanium-containing medicine by different ICP-MS applications

    NARCIS (Netherlands)

    Krystek, Petra; Ritsema, Rob

    2004-01-01

    For several years organo-germanium containing medicine has been used for special treatments of e.g. cancer and AIDS. The active substances contain germanium as beta-carboxyethylgermanium sesquioxide ((GeCH2CH 2COO-H)2O3/"Ge-132"), spirogermanium, germanium-lactate-citrate or unspecified forms. For

  20. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Christopher Sean [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  1. Detector for atomic particles and ionizing radiations

    International Nuclear Information System (INIS)

    Mallet, Georges; Ythier, Christian.

    1976-01-01

    The aim of this invention is to provide improved detectors of atomic particles and of ionising radiations, having maximum sensitivity, by virtually suppressing all absorption of the radiation scattered by the main detector, so that these detectors are particularly suitable for fitting to anti-Compton spectrometers. Reference is particularly made to detectors of the Ge(Li) type, lithium compensated germanium, which are the most used. It is however made clear that this choice is not restrictive and that this invention not only applies to all known types of detectors and particularly to scintillator detectors, for instance to detectors such as NaI (Tl), composed of a monocrystal of a thallium activated alkaline halogenide, but also to gas, ionisation chamber and luminescent chamber type detectors and in general to all the known devices that convert the energy of particles into electric signals. Owing to the fact that the walls of the enclosure containing the main detector are composed, in the part around this detector, of an auxiliary detector, the latter detects virtually all the radiations scattered by the main detector. It does so without any loss due to the absorption of these radiations (a) by the metal walls of the enclosure usually containing the main detector and (b) by the walls of the auxiliary detector casing. It results from this that the detectors of the invention enable coincidence or anti-coincidence spectrometers with a very high performance to be made [fr

  2. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  3. GERDA: Recent results and future plans

    Science.gov (United States)

    Lehnert, Björn

    2014-04-01

    The GERmanium Detector Array (GERDA) is an experiment designed to investigate the neutrinoless double beta decay (0 νββ) in 76Ge. An array of high purity germanium detectors isotopically enriched to 87% of 76Ge is operated within 64 m3 of liquid argon (LAr) at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment aims to explore the 0 νββ half-life up to 1.4×1026 yr with a collected exposure of 100 kg yr separated into two physics phases. The data taking of Phase I started in November 2011 and finished in May 2013 with 21.6 kg yr of exposure and a background index (BI) of 2×10-2cts/(kg yr keV) around the Q-value of 2039 keV before pulse shape cuts. Phase II of the experiment is being prepared with additional 30 Broad Energy Germanium (BEGe) detectors and an instrumentation of the LAr, aiming at a BI reduction by a factor of 10 w.r. to Phase I. This paper will present the GERDA setup and the latest results of the experiment including a new measurement of the 2 νββ spectrum of 76Ge and the decomposition of the background spectrum. The 0 νββ analysis, finished in the meanwhile, will be briefly mentioned. Furthermore, the major improvements planned for Phase II will be discussed.

  4. GERDA: Recent results and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Björn, E-mail: bjoernlehnert@gmail.com

    2014-04-01

    The GERmanium Detector Array (GERDA) is an experiment designed to investigate the neutrinoless double beta decay (0νββ) in {sup 76}Ge. An array of high purity germanium detectors isotopically enriched to 87% of {sup 76}Ge is operated within 64 m{sup 3} of liquid argon (LAr) at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment aims to explore the 0νββ half-life up to 1.4×10{sup 26} yr with a collected exposure of 100 kg yr separated into two physics phases. The data taking of Phase I started in November 2011 and finished in May 2013 with 21.6 kg yr of exposure and a background index (BI) of 2×10{sup −2}cts/(kg yr keV) around the Q-value of 2039 keV before pulse shape cuts. Phase II of the experiment is being prepared with additional 30 Broad Energy Germanium (BEGe) detectors and an instrumentation of the LAr, aiming at a BI reduction by a factor of 10 w.r. to Phase I. This paper will present the GERDA setup and the latest results of the experiment including a new measurement of the 2νββ spectrum of {sup 76}Ge and the decomposition of the background spectrum. The 0νββ analysis, finished in the meanwhile, will be briefly mentioned. Furthermore, the major improvements planned for Phase II will be discussed.

  5. Charge Division Readout of a Two-Dimensional Germanium Strip Detector

    National Research Council Canada - National Science Library

    Kroeger, R. A; Inderhees, S. E; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Gehrels, N

    1993-01-01

    .... The four data channels are stored as an event list for subsequent processing. We form a response map over the detector surface in order to locate the position of each interaction with the spatial resolution of the strip pitch, in our case 9 mm...

  6. Elemental analysis of some herbal plants used in the treatment of cardiovascular diseases by NAA and AAS

    International Nuclear Information System (INIS)

    Rajurkar, N.S.; Damame, M.M.

    1997-01-01

    Elemental analysis of some herbal plants used in the ayurveda for curing of cardiovascular diseases has been performed using the techniques of neutron activation analysis and atomic absorption spectroscopy. The concentration of elements Mn, Na, K and Cl has been estimated by NAA using a 252 Cf neutron source and a high purity germanium detector coupled to a multichannel analyzer, while the elements, Ca, Cr, Co, Cu, Fe, Pb, Zn, Ni, Cd and Hg were analysed by ASS using a Perkin Elmer 3100 instrument. (author)

  7. BEGe detectors in GERDA Phase I - performance, physics analysis and surface events

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    The Phase I of the Gerda experiment, which has concluded its data taking in Summer 2013, was based on coaxial HPGe detectors already used for IGEX and HdM experiments. In the upcoming Phase II customized Broad Energy Germanium (BEGe) detectors will provide the major contribution to the total exposure. The first set of BEGe detectors has been deployed in Gerda since June 2012. The data collected in Phase I show the performance achieved in terms of spectroscopy and pulse shape discrimination. In particular the strongest background source, the {sup 42}K beta decay from the liquid argon surrounding the detectors, has been effectively rejected. The signals due to beta decay on the detector surface are indeed characterized by a longer charge collection time. This talk focuses on this key feature of the BEGe-PSD.

  8. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    Science.gov (United States)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  9. A simple semi-empirical way of accounting for the contribution of pair production process to the efficiency of Ge detectors

    International Nuclear Information System (INIS)

    Sudarshan, M.; Singh, R.

    1991-01-01

    By considering the data for a 38cm 3 Ge(Li) detector from E γ = 319.80 to 2598.80 keV, and for a 68 cm 3 HPGe detector from E γ = 223.430 to 3253.610 keV, it has been demonstrated that the contribution of the pair production process to the full energy peak efficiency (FEPE) of germanium detectors can be quite adequately accounted for in a semi-empirical way. (author)

  10. A liquid-nitrogen monitor for lithium-drifted germanium detectors

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1977-11-01

    An instrument has been developed that makes use of a load cell to monitor the liquid nitrogen in the Dewar flask of a lithium-drifted germaniun detector. The contents are recorded on a chart recorder, and an alarm is sounded when the previously set content has been reached. A signal switches off the high-voltage power supply 30 minutes after the alarm is triggered. The calibration of the load-cell monitor is described in an appendix [af

  11. Measurement of β-decay end point energy with planar HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, T., E-mail: btumpa@vecc.gov.in [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Pandit, Deepak [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Das, S.K. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Chowdhury, A.; Das, P. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Banerjee, D. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S.R. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India)

    2014-12-11

    The β–γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in {sup 106}Rh→{sup 106}Pd. The end point energies corresponding to three weak branches in {sup 106}Rh→{sup 106}Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  12. Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    Science.gov (United States)

    Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.

    2017-05-01

    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

  13. Neutron Transmission of Germanium Poly- and Monocrystals

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The measured total neutron cross-sections of germanium poly- and mono-crystals were analyzed using an additive formula. The formula takes into account the germanium crystalline structure and its physical parameters. Computer programs have developed in order to provide the required analyses. The calculated values of the total cross-section of polycrystalline germanium in the neutron wavelength range from 0.001 up to 0.7 nm were fitted to the measured ones at ETRR-1. From the fitting the main constants of the additive formula were determined. The experimental data measured at ETRR-1 of the total cross-section of high quality Ge single crystal at 4400 K, room, and liquid nitrogen temperatures, in the wavelength range between 0.028 nm and 0.64 nm, were also compared with the calculated values using the formula having the same constants. An overall agreement is noticed between the formula fits and experimental data. A feasibility study is done for the use of germanium in poly-crystalline form, as cold neutron filter, and in mono-crystalline one as an efficient filter for thermal neutrons. The filtering efficiency of Ge single crystal is detailed in terms of its isotopic abundance, crystal thickness, mosaic spread, and temperature. It can be concluded that the 7.5 cm thick 76 Ge single crystal (0.10 FWHM mosaic spread) cooled at liquid nitrogen temperature is an efficient thermal neutron filter.

  14. First low WIMP mass results in EDELWEISS III experiment

    Energy Technology Data Exchange (ETDEWEB)

    Scorza, Silvia [Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Postfach 3640, Karlsruhe (Germany); Collaboration: EDELWEISS-Collaboration

    2016-07-01

    The EDELWEISS-III collaboration is operating an experiment for the direct detection of Weakly Interacting Massive Particle (WIMPs) dark matter in the low radioactivity environment of the Modane Underground Laboratory. It consists of twenty-four advanced high purity germanium detectors operating at 18 mK in a dilution refrigerator in order to identify rare nuclear recoils induced by elastic scattering of WIMPs from our Galactic halo. The current EDELWEISS-III program, including improvements of the background, data-acquisition and the configuration is detailed. Sources of background along with the rejection techniques are discussed. Detector performances and a first low WIMP mass analysis of data acquired in a long-term campaign are presented as well.

  15. A balloon-borne solid state cosmic X-ray detector

    International Nuclear Information System (INIS)

    Proctor, R.; Pietsch, W.; Reppin, C.

    1982-01-01

    On 9th May 1980 a MPI/AIT hard X-ray balloon payload successfully observed numerous cosmic X-ray sources. The payload consisted of a 2400 cm 2 Phoswich detector and a 114 cm 2 solid state detector. The solid state detector is described in this report. It consists of six intrinsic germanium planar crystals in a vacuum cryostat cooled by liquid nitrogen. The detector operates in the hard X-ray energy range of 20-150 keV and had in-flight a mean energy resolution of 2.75 keV at 60 keV. A hexagonal molybdenum collimator defined the field of view as approximately 4 0 fwhm. A CsI(Na) and plastic active shield and passive shielding provided background rejection. Mean background values of 1.3 X 10 -3 counts/(sec x cm 2 x keV) at 60 keV were obtained. (orig.)

  16. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    Science.gov (United States)

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  17. Properties of SiC semiconductor detector of fast neutrons investigated using MCNPX code

    International Nuclear Information System (INIS)

    Sedlakova, K.; Sagatova, A.; Necas, V.; Zatko, B.

    2013-01-01

    The potential of silicon carbide (SiC) for use in semiconductor nuclear radiation detectors has been long recognized. The wide bandgap of SiC (3.25 eV for 4H-SiC polytype) compared to that for more conventionally used semiconductors, such as silicon (1.12 eV) and germanium (0.67 eV), makes SiC an attractive semiconductor for use in high dose rate and high ionization nuclear environments. The present work focused on the simulation of particle transport in SiC detectors of fast neutrons using statistical analysis of Monte Carlo radiation transport code MCNPX. Its possibilities in detector design and optimization are presented.(authors)

  18. Pulse shape analysis for germanium detectors used in DM searches

    International Nuclear Information System (INIS)

    Sagdeev, I.R.; Drukier, A.K.; Welsh, D.J.; Klimenko, A.A.; Osetrov, S.B.; Smolnikov, A.A.

    1994-01-01

    Progress in Ge detector technology has resulted in ultralow backgrounds of less than 0.3 countskeV -1 kg -1 d -1 at energies between 6 and 9keV and from 12 to 20keV. Between 4 and 6keV it is less than 2 countskeV -1 kg -1 d -1 . Coupled with good energy resolution, 0.4keV FWHM at 10keV, this allows searches for DM particles with m≥qslant8GeV/c 2 .Electromagnetic interference (EMI) and acoustical pick-up are the main sources of background in the best Ge detectors. A PC-based on-line pulse shape analysis system is presented which permits rejection of large fraction of the EMI/acoustical background. The hardware uses a low cost, commercially available digital storage oscilloscope (DSO). The software consists of about 40000 lines of code in Pascal and assembly language. We tested this system using a low radioactive background Ge-system at the Baksan observatory. For low energy events (<100keV) this system permits improvement in the background by about 20-30%. ((orig.))

  19. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  20. Calibration comparative results for X - and gamma ray spectrometry with HPGe and BEGe detectors for a radon reference chamber

    International Nuclear Information System (INIS)

    Zoran, Maria; Paul, Annette; Arnold, Dirk

    2002-01-01

    Inhaled decay products of 222 Rn are the dominant components of the natural radiation exposure being responsible for about 30% of the whole human radioactive exposure. Field instruments for 222 Rn and his progeny monitoring are calibrated in 'radon climate rooms', where it is possible to vary and monitor 222 Rn and the indoor air parameters ( temperature, humidity, ventilation rate, aerosol concentration). German radon reference chamber used was developed and installed at the Physikalisch-Technische Bundesanstalt in order to serve as a metrological standard for radon and his progeny calibration of active and passive, indoor and outdoor radon monitoring devices in air climate. The basic parts of experimental setup for this γ and X -ray spectrometry analysis consists of a γ-X ray source in a lead shield/collimator, the detectors, the electronics necessary for pulse-height analysis (PHA) to obtain energy spectra. For calibrating system with 226 Ra standard sources (multienergy X ray and gamma emitters), two germanium detectors HPGe (12.5 nominal efficiency) and BEGe (22.5 nominal efficiency) were used. Germanium detectors are semiconductor diodes having a P-I-N structure in which the Intrinsic (I) region is sensitive to ionizing radiation, particularly X-rays and gamma rays. The BEGe is designed with an electrode structure that enhances low energy resolution and is fabricated from selected germanium having an impurity profile that improves charge collection (thus resolution and peak shape) at high energies which is really important in analysis of the complex spectra for uranium and finally for 226 Ra. MAESTRO MCA software and GNUPLOT program were used for spectra acquisition and spectra analysis, respectively . The main aim of this paper was to do a comparatively analysis of the detector performances for this radon chamber spectrometric chain. The calibration data analysis includes energy calibrations for both detection systems as well as comparative X and gamma

  1. Lattice site and thermal stability of transition metals in germanium

    CERN Document Server

    Augustyns, Valérie; Pereira, Lino

    Although the first transistor was based on germanium, current chip technology mainly uses silicon due to its larger abundance, a lower price and higher quality silicon-oxide. However, a very important goal in microelectronics is to obtain faster integrated circuits. The advantages of germanium compared to silicon (e.g. a higher mobility of the charge carriers) motivates further research on germanium based materials. Semiconductor doping (e.g. introducing impurities into silicon and germanium in order to alter - and control - their properties) can be done by ion implantation or by in situ doping, whereby the host material is doped during growth. This thesis focuses on introducing dopants by ion implantation. The implantation as well as the subsequent measurements were performed in ISOLDE (CERN) using the emission channeling technique. Although ion implantation generates undesired defects in the host material (e.g. vacancies), such damage can be reduced by performing the implantation at an elevated temperature....

  2. In situ lake pollutant survey using prompt-gamma probe

    International Nuclear Information System (INIS)

    Jiunnhsing Chao; Chien Chung

    1991-01-01

    An aluminium-made neutron-gamma probe, consisting of a 1.5 μg 252 Cf neutron source and a high purity germanium detector, was mounted on a mobile floating platform to survey chlorine pollutant concentration in lake water in situ. Laboratory tests for determining the probe operating depth and in situ field trials of a polluted lake were conducted; evaluation of radiation exposure to workers on board was carried out. The polluted chlorine concentration in lake water was found to be 86 ppm, with minimal radiation exposure for the operating crew on board. (author)

  3. Active background suppression with the liquid argon scintillation veto of GERDA Phase II

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-09-01

    The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ˜10-3 cts/(keV·ky·yr) has been confirmed.

  4. Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Tardocchi, M.; Schooneveld, E.M.; Senesi, R.

    2006-01-01

    This paper reports the characterization of the different components of the γ background in epithermal neutron scattering experiments at pulsed neutron sources. The measurements were performed on the VESUVIO spectrometer at ISIS spallation neutron source. These measurements, carried out with a high purity germanium detector, aim to provide detailed information for the investigation of the effect of the γ energy discrimination on the signal-to-background ratio. It is shown that the γ background is produced by different sources that can be identified with their relative time structure and relative weight

  5. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    Directory of Open Access Journals (Sweden)

    Göbel Kathrin

    2017-01-01

    Full Text Available We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n. The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  6. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    Science.gov (United States)

    Göbel, Kathrin; Beinrucker, Clemens; Erbacher, Philipp; Fiebiger, Stefan; Fonseca, Micaela; Heftrich, Michael; Heftrich, Tanja; Käppeler, Franz; Krása, Antonin; Lederer-Woods, Claudia; Plag, Ralf; Plompen, Arjan; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Weigand, Mario

    2017-09-01

    We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  7. Half-life of Xe120

    Science.gov (United States)

    Phillips, A. A.; Andreoiu, C.; Ball, G. C.; Bandyopadhyay, D.; Behr, J. A.; Chupp, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hayden, M. E.; Hyland, B.; Nuss-Warren, S. R.; Pearson, M. R.; Schumaker, M. A.; Smith, M. B.; Svensson, C. E.; Tardiff, E. R.; Valiente-Dobón, J. J.; Warner, T.

    2006-08-01

    We have measured the half-life of Xe120 using a high-purity germanium (HPGe) detector to monitor the 176, 178, and 762 keV γ rays from Xe120 β+ decay. The result, 46±0.6 min, differs significantly from the value 40±1 min reported by Andersson [Ark. Fys. 28, 37 (1964)]. We have also measured the half-lives of Cs120 and I120 to be 60±0.7 s and 82.1±0.6 min, respectively, both of which are consistent with previous measurements.

  8. Thermal neutron activation analysis of different varieties of mustard and sunflower seeds

    International Nuclear Information System (INIS)

    Rajurkar, N.S.; Bhamare, C.S.

    1991-01-01

    Neutron activation analysis (NAA) technique has been used for the estimation of Mn, Na and K in different varietes of oil seeds of mustard and sunflower in India. The samples were irradiated in a 252 Cf source with neutron flux of ∼10 9 n s -1 and the analysis was done using a multichannel analyzer (MCA) coupled to high purity germanium (HPGe) detector. Different varieties of seeds are found to have different concentrations of tracer elements when compared among themselves. (author) 5 refs.; 1 fig.; 1 tab

  9. Measurement of activation yields for platinum group elements using Bremsstrahlung radiation with end-point energies in the range 11-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tickner, James, E-mail: james.tickner@csiro.a [CSIRO Process Science and Engineering, PMB 5, Menai, NSW 2234 (Australia); Bencardino, Raffaele; Roach, Greg [CSIRO Process Science and Engineering, PMB 5, Menai, NSW 2234 (Australia)

    2010-01-15

    Activation yields have been measured for (gamma,n) reactions of the elements Ru, Rh, Pd, Ir and Pt. Metallic foils of natural isotopic composition were irradiated using Bremsstrahlung radiation produced from an electron linear accelerator operated with electron beam energies in the range 11-14 MeV. Activation products, including both unstable ground states and metastates were measured using a high-purity germanium detector. Cross-sections were estimated from the yield data by assuming a simple two-parameter model for the shape of the cross-section with energy.

  10. Measurement of activation yields for platinum group elements using Bremsstrahlung radiation with end-point energies in the range 11-14 MeV

    International Nuclear Information System (INIS)

    Tickner, James; Bencardino, Raffaele; Roach, Greg

    2010-01-01

    Activation yields have been measured for (γ,n) reactions of the elements Ru, Rh, Pd, Ir and Pt. Metallic foils of natural isotopic composition were irradiated using Bremsstrahlung radiation produced from an electron linear accelerator operated with electron beam energies in the range 11-14 MeV. Activation products, including both unstable ground states and metastates were measured using a high-purity germanium detector. Cross-sections were estimated from the yield data by assuming a simple two-parameter model for the shape of the cross-section with energy.

  11. Characterisation of a compton suppressed clover detector for high energy gamma rays (5 MeV ≤ E ≤ 11 MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Goswami, A.; Ray, S.; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.; Sinha, Mandira; Ray, Maitreyee

    2004-01-01

    The Clover detectors in their add back mode have been seen to be excellent tools for detecting high energy gamma rays (≥ 2 MeV). Recently studies were carried out on the characteristics of a Compton suppressed Clover germanium detector up to 5 MeV using a radioactive 66 Ga (T 1/2 =9.41 h) source for the first time

  12. Purity Assessment of Organic Reference Materials with a Mass Balance Method: A Case Study of Endosulfan-II

    International Nuclear Information System (INIS)

    Kim, Seunghyun; Lee, Joonhee; Ahn, Seonghee; Song, Youngsin; Kim, Dongkyun; Kim, Byungjoo

    2013-01-01

    A mass balance method established in this laboratory was applied to determine the purity of an endosulfan-II pure substance. Gas chromatography-flame ionization detector (GC-FID) was used to measure organic impurities. Total of 10 structurally related organic impurities were detected by GC-FID in the material. Water content was determined to be 0.187% by Karl-Fischer (K-F) coulometry with an oven-drying method. Nonvolatile residual impurities was not detected by Thermal gravimetric analysis (TGA) within the detection limit of 0.04% (0.7 μg in absolute amount). Residual solvents within the substance were determined to be 0.007% in the Endosulfan-II pure substance by running GC-FID after dissolving it with two solvents. The purity of the endosulfan-II was finally assigned to be (99.17 ± 0.14)%. Details of the mass balance method including interpretation and evaluating uncertainties of results from each individual methods and the finally assayed purity were also described

  13. Investigations towards an improved Marinelli beaker for gamma detectors

    International Nuclear Information System (INIS)

    Hemingway, J.D.

    1986-01-01

    A spherical container of the Marinelli type was constructed. The efficiency of counting using this on a germanium detector was compared to the effectiveness of the other geometrical arrangements as a function of energy. The sphere show the best relative efficiency. It is suggested that the large increases in efficiency which earlier work had implied were available by simply optimizing the dimensions of the conventional Marinelli beaker are unlikely to be attainable. (author)

  14. Source term estimation based on in-situ gamma spectrometry using a high purity germanium detector

    International Nuclear Information System (INIS)

    Pauly, J.; Rojas-Palma, C.; Sohier, A.

    1997-06-01

    An alternative method to reconstruct the source term of a nuclear accident is proposed. The technique discussed here involves the use of in-situ gamma spectrometry. The validation of the applied methodology has been possible through the monitoring of routine releases of Ar-41 originating at a Belgian site from an air cooled graphite research reactor. This technique provides a quick nuclide specific decomposition of the source term and therefore will be have an enormous potential if implemented in nuclear emergency preparedness and radiological assessments of nuclear accidents during the early phase

  15. A novel iterative energy calibration method for composite germanium detectors

    International Nuclear Information System (INIS)

    Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S.

    2004-01-01

    An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam γ-ray spectroscopy experiment is presented

  16. A novel iterative energy calibration method for composite germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S. E-mail: ssg@alpha.iuc.res.in

    2004-07-01

    An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam {gamma}-ray spectroscopy experiment is presented.

  17. The Majorana Demonstrator for 0νββ: Current Status and Future Plans

    Energy Technology Data Exchange (ETDEWEB)

    Green, Matthew P. [ORNL; Avignone, F. T. [University of South Carolina/Oak Ridge National Laboratory (ORNL); Bertrand, Jr, Fred E [ORNL; Galindo-Uribarri, Alfredo [ORNL; Radford, David C [ORNL; Romero-Romero, Elisa [ORNL; Varner, Jr, Robert L [ORNL; White, Brandon R [ORNL; Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL; Yu, Chang-Hong [ORNL

    2015-01-01

    The Majorana Demonstrator will search for neutrinoless-double-beta decay (0νββ) in 76Ge, while establishing the feasibility of a future tonne-scale germanium-based 0νββ experiment, and performing searches for new physics beyond the Standard Model. The experiment, currently under construction at the Sanford Underground Research Facility in Lead, SD, will consist of a pair of modular high-purity germanium detector arrays housed inside of a compact copper, lead, and polyethylene shield. Through a combination of strict materials qualifications and assay, low-background design, and powerful background rejection techniques, the Demonstrator aims to achieve a background rate in the 0νββ region of interest (ROI) of no more than 3cnts/(ROI-t-y). The current status of the Demonstrator is discussed, as are plans for its completion.

  18. Optical properties of Germanium nanoparticles synthesized by pulsed laser ablation in acetone

    Directory of Open Access Journals (Sweden)

    Saikiran eVadavalli

    2014-10-01

    Full Text Available Germanium (Ge nanoparticles (NPs are synthesized by means of pulsed laser ablation of bulk germanium target immersed in acetone with ns laser pulses at different pulse energies. The fabricated NPs are characterized by employing different techniques such as UV-visible absorption spectroscopy, photoluminescence, micro-Raman spectroscopy, transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM. The mean size of the Ge NPs is found to vary from few nm to 40 nm with the increase in laser pulse energy. Shift in the position of the absorption spectra is observed and also the photoluminescence peak shift is observed due to quantum confinement effects. High resolution TEM combined with micro-Raman spectroscopy confirms the crystalline nature of the generated germanium nanoparticles. The formation of various sizes of germanium NPs at different laser pulse energies is evident from the asymmetry in the Raman spectra and the shift in its peak position towards the lower wavenumber side. The FESEM micrographs confirm the formation of germanium micro/nanostructures at the laser ablated position of the bulk germanium. In particular, the measured NP sizes from the micro-Raman phonon quantum confinement model are found in good agreement with TEM measurements of Ge NPs.

  19. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  20. Hydrogen high pressure proportional drift detector

    International Nuclear Information System (INIS)

    Arefiev, A.; Balaev, A.

    1983-01-01

    The design and operation performances of a proportional drift detector PDD are described. High sensitivity of the applied PAD makes it possible to detect the neutron-proton elastic scattering in the energy range of recoil protons as low as 1 keV. The PDD is filled with hydrogen up to the pressure at 40 bars. High purity of the gas is maintained by a continuously operating purification system. The detector has been operating for several years in a neutron beam at the North Area of the CERN SPS

  1. Investigation of the operational quality of germanium gamma detectors. Estimation of Ge:Li detector survival rates

    International Nuclear Information System (INIS)

    Zerbib, J.-C.

    1980-01-01

    A working group has produced tables of information on gamma semiconductor Ge detectors: Ge(Li) or intrinsic Ge. The information was obtained as a result of enquirres addressed to various laboratories, and concerns 228-sources in France and Belgium [fr

  2. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, Serkan; Yildiz, Nihat

    2012-01-01

    The gamma-ray tracking technique is a highly efficient detection method in experimental nuclear structure physics. On the basis of this method, two gamma-ray tracking arrays, AGATA in Europe and GRETA in the USA, are currently being tested. The interactions of neutrons in these detectors lead to an unwanted background in the gamma-ray spectra. Thus, the interaction points of neutrons in these detectors have to be determined in the gamma-ray tracking process in order to improve photo-peak efficiencies and peak-to-total ratios of the gamma-ray peaks. In this paper, the recoil energy distributions of germanium nuclei due to inelastic scatterings of 1–5 MeV neutrons were first obtained by simulation experiments. Secondly, as a novel approach, for these highly nonlinear detector responses of recoiling germanium nuclei, consistent empirical physical formulas (EPFs) were constructed by appropriate feedforward neural networks (LFNNs). The LFNN-EPFs are of explicit mathematical functional form. Therefore, the LFNN-EPFs can be used to derive further physical functions which could be potentially relevant for the determination of neutron interactions in gamma-ray tracking process.

  3. Technology CAD for germanium CMOS circuit

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)]. E-mail: ars.iitkgp@gmail.com; Maiti, C.K. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)

    2006-12-15

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f {sub T} of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted.

  4. Technology CAD for germanium CMOS circuit

    International Nuclear Information System (INIS)

    Saha, A.R.; Maiti, C.K.

    2006-01-01

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f T of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted

  5. Compton scatter in germanium and its effect on imaging with gamma-ray position-sensitive detectors

    International Nuclear Information System (INIS)

    Sherman, I.S.; Strauss, M.G.; Brenner, R.

    1978-01-01

    The spatial spread due to Compton scatter in Ge was measured to study the reduction in image contrast and signal-to-noise ratio (S/N) resulting from erroneous readout in Ge position-sensitive detectors. The step response revealing this spread was obtained by scanning with a 122 keV γ-ray beam across a boundary of two sectors of a slotted coaxial Ge(Li) detector that is 40 mm diameter by 22 mm long. The derived line-spread function at 140 keV (/sup 99m/Tc) exhibits much shorter but thicker tails than those due to scatter in tissue as observed with a NaI detector through 5.5 cm of scattering material. Convolutions of rectangular profiles of voids with the Ge(Li) line-spread function show marked deterioration in contrast for voids less than 10 mm across, which in turn results in even greater deterioration of the S/N. As a result, the contrast for voids in Ge images is only 20 to 30 percent higher than that in NaI and the S/N is only comparable for equal detector areas. The degradation in image contrast due to scatter in Ge detectors can be greatly reduced by either using thin detectors (approximately 5 mm), where scatter virtually does not exist, or by using thicker detectors and rejecting scatter electronically. To reduce the effects of scatter on the S/N as well as on contrast, the erroneous position readouts must actually be corrected. A more realizable approach to achieving the ultimate potential of Ge detectors may be a scanning array of discrete detectors (not position sensitive) in which readout is not affected by scatter

  6. Standardization of I-125 solution by extrapolation of an efficiency wave obtained by coincidence X-(X-γ) counting method

    International Nuclear Information System (INIS)

    Iwahara, A.

    1989-01-01

    The activity concentration of 125 I was determined by X-(X-α) coincidence counting method and efficiency extrapolation curve. The measurement system consists of 2 thin NaI(T1) scintillation detectors which are horizontally movable on a track. The efficiency curve is obtained by symmetricaly changing the distance between the source and the detectors and the activity is determined by applying a linear efficiency extrapolation curve. All sum-coincidence events are included between 10 and 100 KeV window counting and the main source of uncertainty is coming from poor counting statistic around zero efficiency. The consistence of results with other methods shows that this technique can be applied to photon cascade emitters and are not discriminating by the detectors. It has been also determined the 35,5 KeV gamma-ray emission probability of 125 I by using a Gamma-X type high purity germanium detector. (author) [pt

  7. Coexistence in even-even nuclei with emphasis on the germanium isotopes

    International Nuclear Information System (INIS)

    Carchidi, M.A.V.

    1985-01-01

    No simple model to date can explain in a self-consistent way the results of direct transfer data and BE2 electromagnetic rates in the germanium isotopes. The simplest models use a two-state interaction for describing the ground state and first excited O + state. In all cases, these models can account for some of the data, but they are in drastic conflict with other experimental measurements. In this thesis, it is shown that a two-state model can consistently account for two-neutron and alpha transfer O + 2 /g.s. cross-section ratio data in the germanium region (ie. zinc, germanium, and selenium), proton occupation number data in the ground states of the even stable zinc, germanium, and selenium isotopes, and BE2 transition rates in isotopes of germanium and zinc. In addition the author can account for most of the one-neutron and two-neutron transfer O + 2 /g.s. and (9/2 + 2 )/(9/2 + 1 ) cross-section ratio data in the odd-mass germanium isotopes. In this generalized two-state model (called Rerg1), the author makes as few assumptions as possible about the nature of the basis states; rather the author allows the experimental data to dictate the properties of the basis-state overlaps. In this sense, the author has learned much about the basis states and has a useful tool for constructing them. The author also shows that the Rerg1 model can quantitatively account for all two-neutron O + 2 /g.s. cross-section ratio data in all even-even nuclei from calcium to uranium

  8. The ICARUS T600 Liquid Argon Detector Operation in the Underground Gran Sasso Laboratory

    CERN Document Server

    Vignoli, C

    2014-01-01

    The ICARUS T600 Module is the largest liquid argon detector (760 t LAr mass) ever realized to study neutrino oscill ations and matter stability in the deep underground Gran Sasso Laboratory. One of t he key elements for the detector performance is the liquid argon purity: residual electronegative compounds in argon have to be kept as low as 0.1 part s per billion all over the detector run. The T600 Module design was finalized by the ICARUS Collaboration after years of R&D studies that brought to the viable and scalable industrial solutions necessary for sized experiments with severe safety prescriptions for the underground operation . We present the T600 Module successful commissioning and the 3-years efficient, stable and continuous operation with extraordinary LAr purity, high performance and zero dead time data taking . This result demonstrates for the first time the feasibility of activation and long-term run in safe conditions of sized cryogenic detectors even in a confined underground location and r...

  9. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    Science.gov (United States)

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  10. Determination of Proper Peaking Time for Ultra Lege detector at Medium Energies

    International Nuclear Information System (INIS)

    Karabidak, S. M.

    2008-01-01

    Reducing count losses and pile-up pulse effects in quantitative and qualitative analysis is necessary for accuracy of analysis. Therefore, the optimum peaking time for particular detector systems is important. For this purpose, pure Se and Zn elements were excited by 59.5 keV γ-rays from a 50 mCi 241 A m annular radioactive source in this study. The characteristic x-rays emitted from pure Se and Zn elements were detected by using an ultra low energy Ge (Ultra-LEGe) detector connecting Tennelec TC 244 spectroscopy amplifier at different peaking time modes. Overall pulse widths were determined by HM 203-7 oscilloscope connecting amplifier. The proper peaking time for ultra low energy germanium detector (Ultra-LEGe) is determined about 4 μs

  11. Thermal conductivity of high purity vanadium

    International Nuclear Information System (INIS)

    Jung, W.D.

    1975-01-01

    The thermal conductivity, Seebeck coefficient, and electrical resistivity of four high-purity vanadium samples were measured over the temperature range 5 to 300 0 K. The highest purity sample had a resistance ratio (rho 273 /rho 4 . 2 ) of 1524. The highest purity sample had a thermal conductivity maximum of 920 W/mK at 9 0 K and had a thermal conductivity of 35 W/mK at room temperature. At low temperatures, the thermal resistivity was limited by the scattering of electrons by impurities and phonons. The thermal resistivity of vanadium departed from Matthiessen's rule at low temperatures. The electrical resistivity and Seebeck coefficient of high purity vanadium showed no anomalous behavior above 130 0 K. The intrinsic electrical resistivity at low temperatures was due primarily to interband scattering of electrons. The Seebeck coefficient was positive from 10 to 240 0 K and had a maximum which was dependent upon sample purity

  12. Results of monte Carlo calibrations of a low energy germanium detector

    International Nuclear Information System (INIS)

    Brettner-Messler, R.; Brettner-Messler, R.; Maringer, F.J.

    2006-01-01

    Normally, measurements of the peak efficiency of a gamma ray detector are performed with calibrated samples which are prepared to match the measured ones in all important characteristics like its volume, chemical composition and density. Another way to determine the peak efficiency is to calculate it with special monte Carlo programs. In principle the program 'Pencyl' from the source code 'P.E.N.E.L.O.P.E. 2003' can be used for peak efficiency calibration of a cylinder symmetric detector however exact data for the geometries and the materials is needed. The interpretation of the simulation results is not clear but we found a way to convert the data into values which can be compared to our measurement results. It is possible to find other simulation parameters which perform the same or better results. Further improvements can be expected by longer simulation times and more simulations in the questionable ranges of densities and filling heights. (N.C.)

  13. On the accuracy of gamma spectrometric isotope ratio measurements of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ramebäck, H., E-mail: henrik.ramebeck@foi.se [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Göteborg (Sweden); Lagerkvist, P.; Holmgren, S.; Jonsson, S.; Sandström, B.; Tovedal, A. [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Vesterlund, A. [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Göteborg (Sweden); Vidmar, T. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Kastlander, J. [Swedish Defence Research Agency, FOI, Defence and Security, Systems and Technology, SE-164 90 Stockholm (Sweden)

    2016-04-11

    The isotopic composition of uranium was measured using high resolution gamma spectrometry. Two acid solutions and two samples in the form of UO{sub 2} pellets were measured. The measurements were done in close geometries, i.e. directly on the endcap of the high purity germanium detector (HPGe). Applying no corrections for count losses due to true coincidence summing (TCS) resulted in up to about 40% deviation in the abundance of {sup 235}U from the results obtained with mass spectrometry. However, after correction for TCS, excellent agreement was achieved between the results obtained using two different measurement methods, or a certified value. Moreover, after corrections, the fitted relative response curves correlated excellently with simulated responses, for the different geometries, of the HPGe detector.

  14. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes

    International Nuclear Information System (INIS)

    Weisshaar, D.; Bazin, D.; Bender, P.C.; Campbell, C.M.; Recchia, F.; Bader, V.; Baugher, T.; Belarge, J.; Carpenter, M.P.; Crawford, H.L.; Cromaz, M.; Elman, B.; Fallon, P.; Forney, A.; Gade, A.

    2017-01-01

    The γ-ray tracking array GRETINA was coupled to the S800 magnetic spectrometer for spectroscopy with fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory on the campus of Michigan State University. We describe the technical details of this powerful setup and report on GRETINA's performance achieved with source and in-beam measurements. The γ-ray multiplicity encountered in experiments with fast beams is usually low, allowing for a simplified and efficient treatment of the data in the γ-ray analysis in terms of Doppler reconstruction and spectral quality. The results reported in this work were obtained from GRETINA consisting of 8 detector modules hosting four high-purity germanium crystals each. Currently, GRETINA consists of 10 detector modules.

  15. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Weisshaar, D., E-mail: weisshaar@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Bender, P.C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Campbell, C.M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Recchia, F. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bader, V.; Baugher, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Belarge, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Carpenter, M.P. [Argonne National Laboratory, Argonne, IL 60439 (United States); Crawford, H.L.; Cromaz, M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Elman, B. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Fallon, P. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Forney, A. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States); Gade, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); and others

    2017-03-01

    The γ-ray tracking array GRETINA was coupled to the S800 magnetic spectrometer for spectroscopy with fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory on the campus of Michigan State University. We describe the technical details of this powerful setup and report on GRETINA's performance achieved with source and in-beam measurements. The γ-ray multiplicity encountered in experiments with fast beams is usually low, allowing for a simplified and efficient treatment of the data in the γ-ray analysis in terms of Doppler reconstruction and spectral quality. The results reported in this work were obtained from GRETINA consisting of 8 detector modules hosting four high-purity germanium crystals each. Currently, GRETINA consists of 10 detector modules.

  16. The exposure of the Greek population to natural gamma radiation of terrestrial origin

    International Nuclear Information System (INIS)

    Probonas, M.; Kritidis, P.

    1993-01-01

    The terrestrial natural radioactivity is a significant source of exposure of the population to ionising radiations. To evaluate the external doses received by the Greek population due to this source, soil samples from all Greek provinces have been collected and analysed using two high resolution gamma spectroscopy devices with germanium detectors of high purity (HPGe detectors). The concentrations of 238 U, 226 Ra, 228 Ra, 228 Th and 40 K show significant variations, which correlate with the chemical consistency of soils from region to region. A theoretical evaluation of the dose equivalent rates due to the external natural gamma radiation of terrestrial origin has been made. The mean value does not differ greatly from the average dose rates in other countries of the world. (Author)

  17. Mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source

    Science.gov (United States)

    Ménesguen, Y.; Lépy, M.-C.

    2010-08-01

    This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.

  18. Effect of SiO2 coating in bolometric Ge light detectors for rare event searches

    International Nuclear Information System (INIS)

    Beeman, J.W.; Gentils, A.; Giuliani, A.; Mancuso, M.; Pessina, G.; Plantevin, O.; Rusconi, C.

    2013-01-01

    In germanium-based light detectors for scintillating bolometers, a SiO 2 anti-reflective coating is often applied on the side of the germanium wafer exposed to light with the aim to improve its light collection efficiency. In this paper, we report about a measurement, performed in the temperature range 25–35 mK, of the light-collection increase obtained thanks to this method, which resulted to be of the order of 20%. The procedure followed has been carefully selected in order to minimize systematic effects. The employed light sources have the same spectral features (peaking at ∼630nm wavelength) that will characterize future neutrinoless double beta decay experiments on the isotope 82 Se and based on ZnSe crystals, such as LUCIFER. The coupling between source and light detector reproduces the configuration used in scintillating bolometers. The present measurement clarifies the role of SiO 2 coating and describes a method and a set-up that can be extended to the study of other types of coatings and luminescent materials

  19. Effect of SiO2 coating in bolometric Ge light detectors for rare event searches

    Science.gov (United States)

    Beeman, J. W.; Gentils, A.; Giuliani, A.; Mancuso, M.; Pessina, G.; Plantevin, O.; Rusconi, C.

    2013-05-01

    In germanium-based light detectors for scintillating bolometers, a SiO2 anti-reflective coating is often applied on the side of the germanium wafer exposed to light with the aim to improve its light collection efficiency. In this paper, we report about a measurement, performed in the temperature range 25-35 mK, of the light-collection increase obtained thanks to this method, which resulted to be of the order of 20%. The procedure followed has been carefully selected in order to minimize systematic effects. The employed light sources have the same spectral features (peaking at ˜630 nm wavelength) that will characterize future neutrinoless double beta decay experiments on the isotope 82Se and based on ZnSe crystals, such as LUCIFER. The coupling between source and light detector reproduces the configuration used in scintillating bolometers. The present measurement clarifies the role of SiO2 coating and describes a method and a set-up that can be extended to the study of other types of coatings and luminescent materials.

  20. Radiation Templates of Spent Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Vanier, Peter

    2018-05-07

    BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, but baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.