WorldWideScience

Sample records for purinergic receptor function

  1. Rapid resensitization of purinergic receptor function in human platelets.

    Science.gov (United States)

    Mundell, S J; Barton, J F; Mayo-Martin, M B; Hardy, A R; Poole, A W

    2008-08-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), the P2Y(1) and P2Y(12) purinergic receptors. Recently, we demonstrated that both receptors desensitize and internalize in human platelets by differential kinase-dependent mechanisms. To demonstrate whether responses to P2Y(1) and P2Y(12) purinergic receptors resensitize in human platelets and determine the role of receptor traffic in this process. These studies were undertaken either in human platelets or in cells stably expressing epitope-tagged P2Y(1) and P2Y(12) purinergic receptor constructs. In this study we show for the first time that responses to both of these receptors can rapidly resensitize following agonist-dependent desensitization in human platelets. Further, we show that in human platelets or in 1321N1 cells stably expressing receptor constructs, the disruption of receptor internalization, dephosphorylation or subsequent receptor recycling is sufficient to block resensitization of purinergic receptor responses. We also show that, in platelets, internalization of both these receptors is dependent upon dynamin, and that this process is required for resensitization of responses. This study is therefore the first to show that both P2Y(1) and P2Y(12) receptor activities are rapidly and reversibly modulated in human platelets, and it reveals that the underlying mechanism requires receptor trafficking as an essential part of this process.

  2. Attenuated purinergic receptor function in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Thaning, Pia; Bune, Laurids T.; Hellsten, Ylva

    2010-01-01

    Objective: Extra cellular nucleotides and nucleosides are involved in regulation of skeletal muscle blood flow. Diabetes induces cardiovascular dysregulation but the extent to which the vasodilatatory capacity of nucleotides and nucleosides are affected in type 2 diabetes is unknown. The present...... study investigated: 1) the vasodilatatory effect of ATP, UTP, and adenosine (ADO) and 2) the expression and distribution of P2Y(2) and P2X(1) receptors in skeletal muscles of diabetic subjects. Research Design and Methods: In 10 diabetic patients and 10 age-matched controls, leg blood flow (LBF......-DM (1.5). The distribution and mRNA-expression of receptors were similar in the two groups. Conclusions: The vasodilatatory effect of the purinergic system is severely reduced in type 2 diabetic patients. The potency of nucleotides varies with the following rank order: UTP>ATP>>>ADO. This is not due...

  3. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  4. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  5. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  6. Purinergic receptors in the endocrine and exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, I

    2008-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly......, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors...

  7. Functional expression of ionotropic purinergic receptors on mouse taste bud cells.

    Science.gov (United States)

    Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2007-10-15

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 microm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca(2+) imaging showed that similarly applied 1 mum ATP, 30 microm BzATP (a P2X(7) agonist), or 1 microm 2MeSATP (a P2Y(1) and P2Y(11) agonist) increased intracellular Ca(2+) concentration, but 100 microm UTP (a P2Y(2) and P2Y(4) agonist) and alpha,beta-meATP (a P2X agonist except for P2X(2), P2X(4) and P2X(7)) did not. RT-PCR suggested the expression of P2X(2), P2X(4), P2X(7), P2Y(1), P2Y(13) and P2Y(14) among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X(2). The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 microm PPADS (a non-selective P2 blocker) and 1 microm KN-62 (a P2X(7) blocker). These results showed for the first time the functional expression of P2X(2) and P2X(7) on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed.

  8. Purinergic receptors in the endocrine and exocrine pancreas.

    Science.gov (United States)

    Novak, I

    2008-09-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.

  9. Molecular dissection of purinergic P2X receptor channels

    Czech Academy of Sciences Publication Activity Database

    Stojilkovic, S. S.; Tomič, M.; He, M. L.; Yan, Z.; Koshimizu, T.; Zemková, Hana

    2005-01-01

    Roč. 1048, - (2005), s. 116-130 ISSN 0077-8923 Institutional research plan: CEZ:AV0Z50110509 Keywords : ATP * purinergic receptors * deactivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.971, year: 2005

  10. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Ágatha Oliveira-Giacomelli

    2018-04-01

    Full Text Available Since proving adenosine triphosphate (ATP functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD, motor neuron diseases (MND, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington's Disease (HD, restless leg syndrome (RLS, and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.

  11. Role of purinergic receptor polymorphisms in human bone

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn J L; Agrawal, Ankita

    2011-01-01

    Osteoporosis is a multifactorial disease with a strong genetic component. Variations in a number of genes have been shown to associate with bone turnover and risk of osteoporosis. P2 purinergic receptors are proteins that have ATP or other nucleotides as their natural ligands. Various P2Y and P2X...

  12. Signaling by purinergic receptors and channels in the pituitary gland

    Czech Academy of Sciences Publication Activity Database

    Stojilkovic, S. S.; He, M. L.; Koshimizu, T.; Balík, A.; Zemková, Hana

    2010-01-01

    Roč. 314, č. 2 (2010), s. 184-191 ISSN 0303-7207 R&D Projects: GA ČR(CZ) GA305/07/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : purinergic receptors * ATP * anterior pituitary Subject RIV: ED - Physiology Impact factor: 4.119, year: 2010

  13. Gene-by-environment effect of house dust mite on purinergic receptor P2Y12 (P2RY12) and lung function in children with asthma.

    Science.gov (United States)

    Bunyavanich, S; Boyce, J A; Raby, B A; Weiss, S T

    2012-02-01

    Distinct receptors likely exist for leukotriene (LT)E(4), a potent mediator of airway inflammation. Purinergic receptor P2Y12 is needed for LTE(4)-induced airways inflammation, and P2Y12 antagonism attenuates house dust mite-induced pulmonary eosinophilia in mice. Although experimental data support a role for P2Y12 in airway inflammation, its role in human asthma has never been studied. To test for association between variants in the P2Y12 gene (P2RY12) and lung function in human subjects with asthma, and to examine for gene-by-environment interaction with house dust mite exposure. Nineteen single nucleotide polymorphisms (SNPs) in P2RY12 were genotyped in 422 children with asthma and their parents (n = 1266). Using family based methods, we tested for associations between these SNPs and five lung function measures. We performed haplotype association analyses and tested for gene-by-environment interactions using house dust mite exposure. We used the false discovery rate to account for multiple comparisons. Five SNPs in P2RY12 were associated with multiple lung function measures (P-values 0.006–0.025). Haplotypes in P2RY12 were also associated with lung function (P-values 0.0055–0.046). House dust mite exposure modulated associations between P2RY12 and lung function, with minor allele homozygotes exposed to house dust mite demonstrating worse lung function than those unexposed (significant interaction P-values 0.0028–0.040). The P2RY12 variants were associated with lung function in a large family-based asthma cohort. House dust mite exposure caused significant gene-by-environment effects. Our findings add the first human evidence to experimental data supporting a role for P2Y12 in lung function. P2Y12 could represent a novel target for asthma treatment.

  14. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  15. The role of purinergic receptors in stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Constanze Kaebisch

    2015-01-01

    Full Text Available A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.

  16. Purinergic receptors have different effects in rat exocrine pancreas. Calcium signals monitored by fura-2 using confocal microscopy

    DEFF Research Database (Denmark)

    Novak, Ivana; Nitschke, Roland; Amstrup, Jan

    2002-01-01

    Pancreatic ducts have several types of purinergic P2 receptors, however, nothing is known about P2 receptors in acini. The aim was to establish whether acini express functional P2 receptors coupled to intracellular Ca2+ signals and to measure the signals ratiometrically in a confocal laser scanning...

  17. P2X4: A fast and sensitive purinergic receptor

    Directory of Open Access Journals (Sweden)

    Jaanus Suurväli

    2017-10-01

    Full Text Available Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations, about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly

  18. Regulation of adult neural progenitor cell functions by purinergic signaling.

    Science.gov (United States)

    Tang, Yong; Illes, Peter

    2017-02-01

    Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.

  19. Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors

    DEFF Research Database (Denmark)

    Wang, Jing; Novak, Ivana

    2013-01-01

    OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, puriner...... transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, adenosine, and purinergic P2 receptors; and this human model has a good potential for studies of physiology and pathophysiology of pancreatic duct ion transport....

  20. The Role of Purinergic Receptors in Cancer-Induced Bone Pain

    Directory of Open Access Journals (Sweden)

    Sarah Falk

    2012-01-01

    Full Text Available Cancer-induced bone pain severely compromises the quality of life of many patients suffering from bone metastasis, as current therapies leave some patients with inadequate pain relief. The recent development of specific animal models has increased the understanding of the molecular and cellular mechanisms underlying cancer-induced bone pain including the involvement of ATP and the purinergic receptors in the progression of the pain state. In nociception, ATP acts as an extracellular messenger to transmit sensory information both at the peripheral site of tissue damage and in the spinal cord. Several of the purinergic receptors have been shown to be important for the development and maintenance of neuropathic and inflammatory pain, and studies have demonstrated the importance of both peripheral and central mechanisms. We here provide an overview of the current literature on the role of purinergic receptors in cancer-induced bone pain with emphasis on some of the difficulties related to studying this complex pain state.

  1. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  2. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  3. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  4. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  5. Purinergic signalling in the musculoskeletal system.

    Science.gov (United States)

    Burnstock, Geoffrey; Arnett, Timothy R; Orriss, Isabel R

    2013-12-01

    It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.

  6. Purinergic P2Y12 Receptor Activation in Eosinophils and the Schistosomal Host Response.

    Science.gov (United States)

    Muniz, Valdirene S; Baptista-Dos-Reis, Renata; Benjamim, Claudia F; Mata-Santos, Hilton A; Pyrrho, Alexandre S; Strauch, Marcelo A; Melo, Paulo A; Vicentino, Amanda R R; Silva-Paiva, Juliana; Bandeira-Melo, Christianne; Weller, Peter F; Figueiredo, Rodrigo T; Neves, Josiane S

    2015-01-01

    Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5'-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.

  7. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen

    2005-01-01

    and unidirectional Cl- fluxes decreased significantly. The results suggest that nucleotides released to the airway surface liquid exert an autocrine regulation of epithelial NaCl absorption mainly by inhibiting the amiloride-sensitive epithelial Na+ channel (ENaC) and paracellular anion conductance via a P2Y......We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions...

  8. Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium

    Directory of Open Access Journals (Sweden)

    Scofield Margaret A

    2005-11-01

    Full Text Available Abstract Background It was previously shown that K+ secretion by strial marginal cell epithelium is under the control of G-protein coupled receptors of the P2Y family in the apical membrane. Receptor activation by uracil nucleotides (P2Y2, P2Y4 or P2Y6 leads to a decrease in the electrogenic K+ secretion. The present study was conducted to determine the subtype of the functional purinergic receptor in gerbil stria vascularis, to test if receptor activation leads to elevation of intracellular [Ca2+] and to test if the response to these receptors undergoes desensitization. Results The transepithelial short circuit current (Isc represents electrogenic K+ secretion and was found to be decreased by uridine 5'-triphosphate (UTP, adenosine 5'-triphosphate (ATP and diadenosine tetraphosphate (Ap4A but not uridine 5'-diphosphate (UDP at the apical membrane of marginal cells of the gerbil stria vascularis. The potencies of these agonists were consistent with rodent P2Y4 and P2Y2 but not P2Y6 receptors. Activation caused a biphasic increase in intracellular [Ca2+] that could be partially blocked by 2-aminoethoxy-diphenyl borate (2-APB, an inhibitor of the IP3 receptor and store-operated channels. Suramin (100 μM did not inhibit the effect of UTP (1 μM. The ineffectiveness of suramin at the concentration used was consistent with P2Y4 but not P2Y2. Transcripts for both P2Y2 and P2Y4 were found in the stria vascularis. Sustained exposure to ATP or UTP for 15 min caused a depression of Isc that appeared to have two components but with apparently no chronic desensitization. Conclusion The results support the conclusion that regulation of K+ secretion across strial marginal cell epithelium occurs by P2Y4 receptors at the apical membrane. The apparent lack of desensitization of the response is consistent with two processes: a rapid-onset phosphorylation of KCNE1 channel subunit and a slower-onset of regulation by depletion of plasma membrane PIP2.

  9. Interaction of GABAA receptors with purinergic P2X2 receptors

    International Nuclear Information System (INIS)

    Shrivastava, A.

    2010-01-01

    GABA A Rs in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X 2 Rs are also expressed in spinal cord neurons and are known to cross-talk with GABA A Rs. Here we investigated a possible 'dynamic' interaction between GABA A Rs and P2X 2 Rs using co-immunoprecipitation and FRET studies in HEK cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X 2 Rs forms a transient complex with GABA A Rs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface. P2X 2 Rs and GABA A Rs are then co-inserted into the cell membrane and are primarily located extra-synaptically. Furthermore, agonist induced activation of P2X 2 Rs results in disassembly of the receptor complex and destabilization of GABA A Rs whereas P2X 2 Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2XRs with other receptors could be used for specific targeting to the neuronal membrane, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABA A Rs.(author) (author) [de

  10. Purinergic signalling in epithelial ion transport

    DEFF Research Database (Denmark)

    Novak, Ivana

    2011-01-01

    , including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems......-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging....

  11. The effect of purinergic P2 receptor blockade on skeletal muscle exercise hyperemia in miniature swine

    DEFF Research Database (Denmark)

    Mortensen, Stefan Peter; McAllister, R M; Yang, H T

    2014-01-01

    PURPOSE: ATP could play an important role in skeletal muscle blood flow regulation by inducing vasodilation via purinergic P2 receptors. This study investigated the role of P2 receptors in exercise hyperemia in miniature swine. METHODS: We measured regional blood flow with radiolabeled......-microsphere technique and systemic hemodynamics before and after arterial infusion of the P2 receptor antagonist reactive blue 2 during treadmill exercise (5.2 km/h, ~60 % VO2max) and arterial ATP infusion in female Yucatan miniature swine (~29 kg). RESULTS: Mean blood flow during exercise from the 16 sampled skeletal...... muscle tissues was 138 ± 18 mL/min/100 g (mean ± SEM), and it was reduced in 11 (~25 %) of the 16 sampled skeletal muscles after RB2 was infused. RB2 also lowered diaphragm blood flow and kidney blood flow, whereas lung tissue blood flow was increased (all P

  12. The purinergic P2X7 ion channel receptor — a ‘repair’ receptor in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2018-01-01

    A strong skeleton relies on adaptation to varying physical demands and on maintenance of the bone tissue in order to avoid accumulation of micro-damage. In bone, the purinergic P2X7 ion channel receptor is expressed on both cells of the stromal lineage such as the bone forming osteoblasts...... and the mechano-sensing osteocytes and on cells belonging to the immune-related monocyte–macrophage lineage, the bone resorbing osteoclasts. Recent studies have demonstrated that the receptor plays important roles in the anabolic responses to mechanical loading on bone and, together with the pannexin1 hemi......-channel, in the process of initiating bone remodeling in response to micro-damage. Thus, the receptor is crucial in skeletal mechano-transduction and in the continuous repair process. However, under pathophysiological conditions such as diabetes with high glucose concentrations or glucocorticoid-treatment the receptor...

  13. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model.

    Science.gov (United States)

    Mendiola-Precoma, Jesus; Padilla, Karla; Rodríguez-Cruz, Alfredo; Berumen, Laura C; Miledi, Ricardo; García-Alcocer, Guadalupe

    2017-01-01

    Dementia caused by Alzheimer's disease (AD) is mainly characterized by accumulation in the brain of extra- and intraneuronal amyloid-β (Aβ) and tau proteins, respectively, which selectively affect specific regions, particularly the neocortex and the hippocampus. Sporadic AD is mainly caused by an increase in apolipoprotein E, a component of chylomicrons, which are cholesterol transporters in the brain. Recent studies have shown that high lipid levels, especially cholesterol, are linked to AD. Adenosine is an atypical neurotransmitter that regulates a wide range of physiological functions by activating four P1 receptors (A1, A2A, A2B, and A3) and P2 purinergic receptors that are G protein-coupled. A1 receptors are involved in the inhibition of neurotransmitter release, which could be related to AD. The aim of the present work was to study the effects of a lard-enriched diet (LED) on cognitive and memory processes in adult rats (6 months of age) as well as the effect of theobromine on these processes. The results indicated that the fat-enriched diet resulted in a long-term deterioration in cognitive and memory functions. Increased levels of Aβ protein and IL-1β were also observed in the rats fed with a high-cholesterol diet, which were used to validate the AD animal model. In addition, the results of qPCR and immunohistochemistry indicated a decrease in gene expression and distribution of A1 purinegic receptor, respectively, in the hippocampus of LED-fed rats. Interestingly, theobromine, at both concentrations tested, restored A1 receptor levels and improved cognitive functions and Aβ levels for a dose of 30 mg/L drinking water.

  14. Roles of purinergic P2X receptors as pacemaking channels and modulators of calcium-mobilizing pathway in pituitary gonadotrophs

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Balík, Aleš; Jiang, Y.; Kretschmannová, K.; Stojilkovic, S. S.

    2006-01-01

    Roč. 20, č. 6 (2006), s. 1423-1436 ISSN 0888-8809 R&D Projects: GA AV ČR(CZ) IAA5011408; GA AV ČR(CZ) IAA5011103; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : purinergic receptors * electrical activity * pituitary Subject RIV: FH - Neurology Impact factor: 4.967, year: 2006

  15. The roles of P2Y2 purinergic receptors in osteoblasts and mechanotransduction.

    Directory of Open Access Journals (Sweden)

    Yanghui Xing

    Full Text Available We previously demonstrated, using osteoblastic MC3T3-E1 cells, that P2Y2 purinergic receptors are involved in osteoblast mechanotransduction. In this study, our objective was to further investigate, using a knockout mouse model, the roles of P2Y2 receptors in bone mechanobiology. We first examined bone structure with micro-CT and measured bone mechanical properties with three point bending experiments in both wild type mice and P2Y2 knockout mice. We found that bones from P2Y2 knockout mice have significantly decreased bone volume, bone thickness, bone stiffness and bone ultimate breaking force at 17 week old age. In order to elucidate the mechanisms by which P2Y2 receptors contribute to bone biology, we examined differentiation and mineralization of bone marrow cells from wild type and P2Y2 knockout mice. We found that P2Y2 receptor deficiency reduces the differentiation and mineralization of bone marrow cells. Next, we compared the response of primary osteoblasts, from both wild type and P2Y2 knockout mice, to ATP and mechanical stimulation (oscillatory fluid flow, and found that osteoblasts from wild type mice have a stronger response, in terms of ERK1/2 phosphorylation, to both ATP and fluid flow, relative to P2Y2 knockout mice. However, we did not detect any difference in ATP release in response to fluid flow between wild type and P2Y2 knock out osteoblasts. Our findings suggest that P2Y2 receptors play important roles in bone marrow cell differentiation and mineralization as well as in bone cell mechanotransduction, leading to an osteopenic phenotype in P2Y2 knockout mice.

  16. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors.

    Science.gov (United States)

    Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  17. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2 and glutamatergic receptors.

    Directory of Open Access Journals (Sweden)

    Duane J Oswald

    Full Text Available Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2 receptors resulting in mobilization of a Ca(2+ wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+ wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+ mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+ mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+ waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  18. mGluR1 receptors contribute to non-purinergic slow excitatory transmission to submucosal VIP neurons of guinea-pig ileum

    Directory of Open Access Journals (Sweden)

    Jaime Pei Pei Foong

    2009-05-01

    Full Text Available Vasoactive intestinal peptide (VIP immunoreactive secretomotor neurons in the submucous plexus are involved in mediating bacterial toxin-induced hypersecretion leading to diarrhoea. VIP neurons become hyperexcitable after the mucosa is exposed to cholera toxin, which suggests that the manipulation of the excitability of these neurons may be therapeutic. This study used standard intracellular recording methods to systematically characterize slow excitatory postsynaptic potentials (EPSPs evoked in submucosal VIP neurons by different stimulus regimes (1, 3 and 15 pulse 30 Hz stimulation, together with their associated input resistances and pharmacology. All slow EPSPs were associated with a significant increase in input resistance compared to baseline values. Slow EPSPs evoked by a single stimulus were confirmed to be purinergic, however, slow EPSPs evoked by 15 pulse trains were non-purinergic and those evoked by 3 pulse trains were mixed. NK1 or NK3 receptor antagonists did not affect slow EPSPs. The group I mGluR receptor antagonist, PHCCC reduced the amplitude of purinergic and non-purinergic slow EPSPs. Blocking mGluR1 receptors depressed the overall response to 3 and 15 pulse trains, but this effect was inconsistent, while blockade of mGluR5 receptors had no effect on the non-purinergic slow EPSPs. Thus, although other receptors are almost certainly involved, our data indicate that there are at least two pharmacologically distinct types of slow EPSPs in the VIP secretomotor neurons: one mediated by P2Y receptors and the other in part by mGluR1 receptors.

  19. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2010-12-01

    Full Text Available Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP, an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1R. At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3-dependent Ca(2+ release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.

  20. Comparison of P2 purinergic receptors of aortic endothelial cells with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response.

    Science.gov (United States)

    Allsup, D J; Boarder, M R

    1990-07-01

    Vascular endothelial cells from different parts of the circulation are known to show different functional responses, presumably corresponding to physiological roles. Previous studies have shown that ATP acts on P2 purinergic receptors of endothelial cells of major blood vessels, stimulating the formation of inositol phosphates. Here we have compared the action of ATP and congeners acting on endothelial cells of bovine thoracic aorta with cells derived from the microvasculature of bovine adrenal medulla. With measurement of total inositol phosphates, cells from the aorta showed a rank order of agonist potency of 2-methylthio-ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP greater than ATP greater than beta, gamma-imido-ATP greater than beta, gamma-methylene-ATP, consistent with action at receptors of the P2Y subtype. However, with adrenal cells the rank order of potency was ATP gamma S greater than ATP greater than beta, gamma-imido-ATP greater than ADP greater than beta, gamma-methylene-ATP = 2-methylthio-ATP. This profile is not consistent with either P2X or P2Y receptors. When the nature of this inositol phosphate response was analyzed with anion exchange chromatography, it was found that the aortic cells showed an inositol trisphosphate stimulation that peaked within a few seconds and rapidly declined, whereas the response of the adrenal medulla cells continued to rise through 5 min. Analysis of isomers of inositol phosphates revealed a different pattern of metabolism between the two cell types, which may account for the different time course of response. With adrenal cells, ATP at low micromolar concentrations caused a dose-dependent increase in levels of cyclic AMP and had a greater than additive effect on cyclic AMP levels when combined with submaximal stimulation by prostaglandin E2. These results suggest the presence of a P2Y receptor on aortic endothelial cells, with an 'atypical' purinocepter, i.e., neither P2X nor P2Y

  1. Purinergic Signalling: Therapeutic Developments

    Directory of Open Access Journals (Sweden)

    Geoffrey Burnstock

    2017-09-01

    Full Text Available Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.

  2. Purinergic signalling in the pancreas in health and disease

    DEFF Research Database (Denmark)

    Burnstock, G; Novak, I

    2012-01-01

    Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the histor......Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After...... the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory...... systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming...

  3. The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation.

    Science.gov (United States)

    Solini, Anna; Menini, Stefano; Rossi, Chiara; Ricci, Carlo; Santini, Eleonora; Blasetti Fantauzzi, Claudia; Iacobini, Carla; Pugliese, Giuseppe

    2013-11-01

    Renal disease associated with type 2 diabetes and the metabolic syndrome is characterized by a distinct inflammatory phenotype. The purinergic 2X7 receptor (P2X7 R) and the nucleotide-binding and oligomerization domain-like receptor containing a pyrin domain 3 (NLRP3) inflammasome have been separately shown to play a role in two models of non-metabolic chronic kidney disease. Moreover, the NLRP3 inflammasome has been implicated in chronic low-grade sterile inflammation characterizing metabolic disorders, though the mechanism(s) involved in inflammasome activation under these conditions are still unknown. We investigated the role of P2X7 R (through activation of the NLRP3 inflammasome) in renal inflammation and injury induced by a high-fat diet, an established model of the metabolic syndrome. On a high-fat diet, mice lacking P2X7 R developed attenuated renal functional and structural alterations as well as reduced inflammation, fibrosis, and oxidative/carbonyl stress, as compared with wild-type animals, in the absence of significant differences in metabolic parameters. This was associated with blunted up-regulation of the NLRP3 inflammasome components NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase 1, pro-interleukin (IL)-1β, and pro-IL-18, as well as reduced inflammasome activation, as evidenced by decreased formation of mature caspase 1, whereas mature IL-1β and IL-18 were not detected. Up-regulated expression of NLRP3 and pro-caspase 1, post-translational processing of pro-caspase-1, and release of IL-18 in response to lipopolysaccharide + 2'(3')-O-(4-benzoylbenzoyl)ATP were attenuated by P2X7 R silencing in cultured mouse podocytes. Protein and mRNA expression of P2X7 R, NLRP3, and ASC were also increased in kidneys from subjects with type 2 diabetes and the metabolic syndrome, showing histologically documented renal disease. These data provide evidence of a major role for the purinergic system, at

  4. Purinergic 2X receptors play a role in evoking the exercise pressor reflex in rats with peripheral artery insufficiency.

    Science.gov (United States)

    Stone, Audrey J; Yamauchi, Katsuya; Kaufman, Marc P

    2014-02-01

    Purinergic 2X (P2X) receptors on the endings of thin fiber afferents have been shown to play a role in evoking the exercise pressor reflex in cats. In this study, we attempted to extend this finding to decerebrated, unanesthetized rats whose femoral arteries were either freely perfused or were ligated 72 h before the start of the experiment. We first established that our dose of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2X receptor antagonist, attenuated the pressor response to α,β-methylene ATP (10 μg/kg), a P2X receptor agonist. We then compared the exercise pressor reflex before and after infusing PPADS into the arterial supply of the hindlimb muscles that were statically contracted. In rats with freely perfused femoral arteries, the peak pressor responses to contraction were not significantly attenuated by PPADS (before PPADS: 19 ± 2 mmHg, 13 min after PPADS: 17 ± 2 mmHg, and 25 min after PPADS: 17 ± 3 mmHg). Likewise, the cardioaccelerator and renal sympathetic nerve responses were not significantly attenuated. In contrast, we found that in rats whose femoral arteries were ligated PPADS significantly attenuated the peak pressor responses to contraction (before PPADS: 37 ± 5 mmHg, 13 min after PPADS: 27 ± 6 mmHg, and 25 min after PPADS: 25 ± 5 mmHg; P reflex in rats whose femoral arteries were ligated but play only a minimal role in evoking the reflex in rats whose femoral arteries were freely perfused.

  5. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  6. Purinergic Signaling Pathways in Endocrine System

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  7. [Trigeminal purinergic P2X4 receptor involved in experimental occlusal interference-induced hyperalgesia in rat masseter muscle].

    Science.gov (United States)

    Xu, Xiaoxiang; Cao, Ye; Ding, Tingting; Fu, Kaiyuan; Xie, Qiufei

    2016-03-01

    To explore the expression of purinergic p2X4 receptor (P2X4R) in trigeminal ganglion of rats after occlusal interference. Investigation of peripheral receptor mechanism of occlusal interference-induced masticatory muscle pain will aid the development of drug intervention against this condition. Experimental occlusal interference was established by application of 0.4 mm metal crown to the upper right first molar of male Sprague-Dawley rats. Real-time PCR assay was used to investigate P2X4R mRNA level in trigeminal ganglion in rats with occlusal interference for 3, 7, 10 and 14 days and in control rats without occlusal interference (n=5 in each). Retrograde labelling combining immunofluorescence was performed to evaluate the percentage of P2X4R-positive cells in masseter afferent neurons (n=5 in each group). Graded concentrations of P2XR antagonist TNP-ATP (0.1, 10, 125, 250, 500 μmol/L) or saline (n=5 in each group) was administrated in right masseter and the mechanical sensitivity of bilateral masseters was measured before occlusal interference application, before the injection, and 30 min as well as 60 min after the injection. Compared with control rats (P2X4R mRNA: right side: 1.00±0.26, left side: 0.94± 0.21; percentage of P2X4R-positive masseter afferents: right side: [64.3±6.3]%, left side: [67.7±5.8]%), the level of P2X4R mRNA in bilateral trigeminal ganglia (right side: 5.98±3.56; left side: 5.06±2.88) of rats with occlusal interference for 7 days up-regulated (Pocclusal interference-induced masseter hyperalgesia.

  8. Purinergic control of inflammation and thrombosis: Role of P2X1 receptors

    Directory of Open Access Journals (Sweden)

    Cécile Oury

    2015-01-01

    Full Text Available Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/− mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/− mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation.

  9. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    pancreatic duct cell lines PANC-1 and CFPAC-1. Expression of P2 receptors was examined using RT-PCR and immunocytochemistry. Both cell lines, and also Capan-1 cells, express RNA transcripts for the following receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14 and P2X1, P2X2, P2X4, P2X5, P2X6 and P2X7. Using Fura-2...... and single-cell imaging we tested effects of various nucleotide analogues on intracellular Ca(2+) signals in PANC-1 and CFPAC-1 cells. The cell lines responded to all nucleotides with the following efficiency: UTP >or= ATP = ATPgammaS > BzATP. ATP, UTP and ATPgammaS elicited oscillatory responses. Bz...

  10. Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity

    Directory of Open Access Journals (Sweden)

    Sessle Barry J

    2010-09-01

    Full Text Available Abstract Background To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK phosphorylation in trigeminal spinal subnucleus caudalis (Vc, trigeminal spinal subnucleus interpolaris (Vi, upper cervical spinal cord (C1/C2 and paratrigeminal nucleus (Pa5 neurons were analyzed in rats. Results Genioglossus (GG muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS application (p 1, P2X3 and, P2X2/3 antagonist. A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p Conclusions The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.

  11. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

    Science.gov (United States)

    Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo

    2010-01-01

    Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855

  12. Heavy metals modulate the activity of the purinergic P2X4 receptor

    International Nuclear Information System (INIS)

    Coddou, Claudio; Lorca, Ramon A.; Acuna-Castillo, Claudio; Grauso, Marta; Rassendren, Francois; Huidobro-Toro, J.Pablo

    2005-01-01

    To further characterize the nature of the regulatory metal-binding sites of the rat P2X 4 receptor, several transition heavy metals were tested to examine their ability to mimic the facilitator action of zinc or the inhibitory action of copper. cDNA coding for the rat P2X 4 receptor was injected into Xenopus laevis oocytes; the two-electrode voltage-clamp technique was used to measure and quantify the ATP-evoked currents in the absence or presence of the metals. Cadmium facilitated the ATP-gated currents in a reversible and voltage-independent manner; maximal potentiation occurred within less than 1 min. Cadmium displaced leftward, in a concentration-dependent manner, the ATP concentration-response curve. In contrast, mercury reduced the ATP-gated currents in a reversible, time, and concentration manner. Maximal inhibition occurred after about 5 min of metal application. Cobalt also augmented the ATP-evoked currents, but its action was long lasting and did not reverse even after 45 min of metal washout. Other metals such as lead, nickel, manganese, silver, or gallium did not significantly alter the ATP-gated currents. The co-application of cadmium plus zinc or mercury plus copper caused additive effects. Mutation of H140 by alanine (H140A) augmented both the cadmium-induced facilitation and the mercury-induced inhibition. In contrast, the H241A mutant showed characteristics indistinguishable from the wild type. The H286A mutant showed a normal cadmium-induced potentiation, but an increased mercury inhibition. Out of the metals examined, only cadmium mimicked closely the action of zinc, evidencing commonalities. While mercury mimicked the action of copper, both metals apparently interact at distinct metal-binding sites. The present findings allow us to infer that heavy metals modulate the P2X 4 receptor by acting in at least three separate metal-binding sites

  13. Bone turnover is altered in transgenic rats overexpressing the P2Y2 purinergic receptor

    DEFF Research Database (Denmark)

    Ellegaard, Maria; Agca, Cansu; Petersen, Solveig

    2017-01-01

    overexpression on bone status and bone cell function using a transgenic rat. Three-month-old female transgenic Sprague Dawley rats overexpressing P2Y2R (P2Y2R-Tg) showed higher bone strength of the femoral neck. Histomorphometry showed increase in resorptive surfaces and reduction in mineralizing surfaces. Both...

  14. Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg

    DEFF Research Database (Denmark)

    Mortensen, S P; Nyberg, Michael; Winding, K

    2012-01-01

    Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis and exer......Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis...... and exercise hyperaemia in the leg and whether ATP signalling is altered by ageing and physical activity. Leg haemodynamics, interstitial [ATP] and P2Y(2) receptor content was determined in eight young (23 ± 1 years), eight lifelong sedentary elderly (66 ± 2 years) and eight lifelong active elderly (62 ± 2...

  15. Effects of Saw Palmetto Extract on Urodynamic Parameters, Bladder Muscarinic and Purinergic Receptors and Urinary Cytokines in Rats with Cyclophosphamide-Induced Cystitis.

    Science.gov (United States)

    Nasrin, Sweety; Masuda, Eiji; Kugaya, Haruna; Osano, Ayaka; Ito, Yoshihiko; Yamada, Shizuo

    2014-01-01

    To clarify the effect of saw palmetto extract (SPE), a phytotherapeutic agent, on urodynamic parameters, bladder muscarinic and purinergic receptors, and urinary cytokines in rats with cystitis induced by cyclophosphamide (CYP). Saw palmetto extract (60 mg/kg per day) was administered orally twice a day for 7 days to rats. The urodynamic parameters in CYP (150 mg/kg i.p.)-treated rats were monitored by a cystometric method under anesthesia. The muscarinic and purinergic receptors in the bladder and submaxillary gland were measured by radioreceptor assays using [N-methyl-(3) H] scopolamine chloride([(3) H]NMS) and αβ-methylene-ATP [2,8-(3) H] tetrasodium salt ([(3) H]αβ-MeATP), respectively. Urinary cytokines (interleukin-1β [IL-1β], IL-6 and L-17) were measured with enzyme linked immunosorbent assay kits. Micturition interval and micturition volume were significantly decreased and the frequency of micturition and basal pressure were significantly increased in the CYP-treated rats compared with sham-operated rats. Orally administered SPE significantly increased the micturition interval and micturition volume and decreased the frequency of micturition and basal pressure. The maximal number of sites (Bmax ) for the specific binding of [(3) H]NMS and [(3) H]αβ-MeATP was significantly decreased in the bladder. The decrease in receptors was attenuated by repeated treatment with SPE. An elevation in urinary cytokine (IL-1β and IL-17) levels were seen, and this increase was effectively suppressed by SPE treatment. Saw palmetto extract attenuates the alteration of urodynamic parameters, pharmacologically relevant receptors, and urinary cytokines in CYP-treated rats. Therefore, SPE may be a potential therapeutic agent for improving the clinical symptoms of cystitis. © 2013 Wiley Publishing Asia Pty Ltd.

  16. Purinergic signaling during Porphyromonas gingivalis infection

    Directory of Open Access Journals (Sweden)

    Cássio Luiz Coutinho Almeida-da-Silva

    2016-08-01

    Full Text Available Despite recent advances unraveling mechanisms of host–pathogen interactions in innate immunity, the participation of purinergic signaling in infection-driven inflammation remains an emerging research field with many unanswered questions. As one of the most-studied oral pathogens, Porphyromonas gingivalis is considered as a keystone pathogen with a central role in development of periodontal disease. This pathogen needs to evade immune-mediated defense mechanisms and tolerate inflammation in order to survive in the host. In this review, we summarize evidence showing that purinergic signaling modulates P. gingivalis survival and cellular immune responses, and discuss the role played by inflammasome activation and cell death during P. gingivalis infection. Keywords: Purinergic receptors, Innate immunity, Porphyromonas gingivalis, P2X7 receptor, Oral microbes, Inflammasome

  17. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration*

    Science.gov (United States)

    Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B.; van der Hoorn, Frans A.

    2016-01-01

    The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. PMID:27226580

  18. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    International Nuclear Information System (INIS)

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-01

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells

  19. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mistafa, Oras; Hoegberg, Johan [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden); Stenius, Ulla [Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm (Sweden)

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  20. Neuropharmacology of purinergic receptors in human submucous plexus: Involvement of P2X₁, P2X₂, P2X₃ channels, P2Y and A₃ metabotropic receptors in neurotransmission.

    Science.gov (United States)

    Liñán-Rico, A; Wunderlich, J E; Enneking, J T; Tso, D R; Grants, I; Williams, K C; Otey, A; Michel, K; Schemann, M; Needleman, B; Harzman, A; Christofi, F L

    2015-08-01

    The role of purinergic signaling in human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. LSCM-Fluo-4/(Ca(2+))-imaging of postsynaptic Ca(2+) transients (PSCaTs) was used as a reporter of synaptic transmission evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons (identified by HuC/D-immunoreactivity) in 235 ganglia from 107 patients; P2XR-immunoreactivity was evaluated in 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging tested effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines: Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50 = 25 µM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50 = 111 nM) in neurons without stimulatory ADPbS responses (EC50 = 960 nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca(2+) transients or Ca(2+) oscillations (ATP,EC50 = 400 mM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20 nM) or high (5 µM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-immunoreactivity follow the order P2X2 > P2X1 > P2X3; P2X1 + P2X2 and P2X3 + P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7, P2Y1,2,12-14R. Purines are critical regulators of neurotransmission in human ENS. Purinergic signaling involves P2X1, P2X2, P2X3 channels, P2X1 + P2X2 co-localization and inhibitory P2Y or A3 receptors. These are

  1. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  2. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    .05) and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP induced leg hyperemia or systemic variables. Real time PCR analysis of the mRNA content from the vastus lateralus muscle of 8...... subjects showed the highest expression of P2Y2 receptors of the 10 investigated P2 receptor subtypes. Immunohistochemistry showed that P2Y2 receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P2X1 receptors were located in the endothelium and the sacrolemma....... Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP induced vasodilation in human skeletal muscle. The localization of the P2Y2 and P2X1 receptors suggest that these receptors may mediate ATP induced vasodilation in skeletal muscle. Key words: Skeletal Muscle...

  3. Deficiency of the Purinergic Receptor 2X7 Attenuates Nonalcoholic Steatohepatitis Induced by High-Fat Diet: Possible Role of the NLRP3 Inflammasome

    Directory of Open Access Journals (Sweden)

    Claudia Blasetti Fantauzzi

    2017-01-01

    Full Text Available Molecular mechanisms driving transition from simple steatosis to nonalcoholic steatohepatitis (NASH, a critical step in the progression of nonalcoholic fatty liver disease (NAFLD to cirrhosis, are poorly defined. This study aimed at investigating the role of the purinergic receptor 2X7 (PR2X7, through the NLRP3 inflammasome, in the development of NASH. To this end, mice knockout for the Pr2x7 gene (Pr2x7−/− and coeval wild-type (WT mice were fed a high-fat diet (HFD or normal-fat diet for 16 weeks. NAFLD grade and stage were lower in Pr2x7−/− than WT mice, and only 1/7 Pr2x7−/− animals showed evidence of NASH, as compared with 4/7 WT mice. Molecular markers of inflammation, oxidative stress, and fibrosis were markedly increased in WT-HFD mice, whereas no or significantly reduced increments were detected in Pr2x7−/− animals, which showed also decreased modulation of genes of lipid metabolism. Deletion of Pr2x7 gene was associated with blunted or abolished activation of NLRP3 inflammasome and expression of its components, which were induced in liver sinusoidal endothelial cells challenged with appropriate stimuli. These data show that Pr2x7 gene deletion protects mice from HFD-induced NASH, possibly through blunted activation of NLRP3 inflammasome, suggesting that PR2X7 and NLRP3 may represent novel therapeutic targets.

  4. Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel

    Directory of Open Access Journals (Sweden)

    Milos B. Rokic

    2018-04-01

    Full Text Available P2X2 receptors (P2X2R exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating.

  5. Neuropharmacology of Purinergic Receptors in Human Submucous Plexus: Involvement of P2X1, P2X2, P2X3 Channels, P2Y and A3 Metabotropic Receptors in Neurotransmission

    Science.gov (United States)

    Liñán-Rico, A.; Wunderlich, JE.; Enneking, JT.; Tso, DR.; Grants, I.; Williams, KC.; Otey, A.; Michel, K.; Schemann, M.; Needleman, B.; Harzman, A.; Christofi, FL.

    2015-01-01

    Rationale The role of purinergic signaling in the human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. Experimental Approach LSCM-Fluo-4-(Ca2+)-imaging of postsynaptic Ca2+ transients (PSCaTs) was used as a reporter of neural activity. Synaptic transmission was evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons from 234 separate ganglia 107 patients; immunochemical labeling for P2XRs of neurons in ganglia from 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging was used to test effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Results Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines. Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50=25μM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50=111nM) in neurons without stimulatory ADPβS responses (EC50=960nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca2+ transients or Ca2+ oscillations (EC50=400μM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20nM) or high (5μM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-ir follow the order P2X2>P2X1≫P2X3; P2X1+ P2X2 and P2X3+P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7,P2Y1,2,12-14R. Responsive neurons were also identified by HuC/D-ir. Conclusions Purines are critical regulators of neurotransmission in the human enteric nervous system. Purinergic signaling involves

  6. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    Directory of Open Access Journals (Sweden)

    Giulia Magni

    2014-01-01

    Full Text Available It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.

  7. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  8. Purinergic signalling: from discovery to current developments.

    Science.gov (United States)

    Burnstock, Geoffrey

    2014-01-01

    This lecture is about the history of the purinergic signalling concept. It begins with reference to the paper by Paton & Vane published in 1963, which identified non-cholinergic relaxation in response to vagal nerve stimulation in several species, although they suggested that it might be due to sympathetic adrenergic nerves in the vagal nerve trunk. Using the sucrose gap technique for simultaneous mechanical and electrical recordings in smooth muscle (developed while in Feldberg's department in the National Institute for Medical Research) of the guinea-pig taenia coli preparation (learned when working in Edith Bülbring's smooth muscle laboratory in Oxford Pharmacology), we showed that the hyperpolarizations recorded in the presence of antagonists to the classical autonomic neurotransmitters, acetylcholine and noradrenaline, were inhibitory junction potentials in response to non-adrenergic, non-cholinergic neurotransmission, mediated by intrinsic enteric nerves controlled by vagal and sacral parasympathetic nerves. We then showed that ATP satisfied the criteria needed to identify a neurotransmitter released by these nerves. Subsequently, it was shown that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. The receptors for purines and pyrimidines were cloned and characterized in the early 1990 s, and immunostaining showed that most non-neuronal cells as well as nerve cells expressed these receptors. The physiology and pathophysiology of purinergic signalling is discussed.

  9. Adjustments in cholinergic, adrenergic and purinergic control of cardiovascular function in snapping turtle embryos (Chelydra serpentina) incubated in chronic hypoxia.

    Science.gov (United States)

    Eme, John; Rhen, Turk; Crossley, Dane A

    2014-10-01

    Adenosine is an endogenous nucleoside that acts via G-protein coupled receptors. In vertebrates, arterial or venous adenosine injection causes a rapid and large bradycardia through atrioventricular node block, a response mediated by adenosine receptors that inhibit adenylate cyclase and decrease cyclic AMP concentration. Chronic developmental hypoxia has been shown to alter cardioregulatory mechanisms in reptile embryos, but adenosine's role in mediating these responses is not known. We incubated snapping turtle embryos under chronic normoxic (N21; 21 % O2) or chronic hypoxic conditions (H10; 10 % O2) beginning at 20 % of embryonic incubation. H10 embryos at 90 % of incubation were hypotensive relative to N21 embryos in both normoxic and hypoxic conditions. Hypoxia caused a hypotensive bradycardia in both N21 and H10 embryos during the initial 30 min of exposure; however, f H and P m both trended towards increasing during the subsequent 30 min, and H10 embryos were tachycardic relative to N21 embryos in hypoxia. Following serial ≥1 h exposure to normoxic and hypoxic conditions, a single injection of adenosine (1 mg kg(-1)) was given. N21 and H10 embryos responded to adenosine injection with a rapid and large hypotensive bradycardia in both normoxia and hypoxia. Gene expression for adenosine receptors were quantified in cardiac tissue, and Adora1 mRNA was the predominant receptor subtype with transcript levels 30-82-fold higher than Adora2A or Adora2B. At 70 % of incubation, H10 embryos had lower Adora1 and Adora2B expression compared to N21 embryos. Expression of Adora1 and Adora2B decreased in N21 embryos during development and did not differ from H10 embryos at 90 % of incubation. Similar to previous results in normoxia, H10 embryos in hypoxia were chronically tachycardic compared to N21 embryos before and after complete cholinergic and adrenergic blockade. Chronic hypoxia altered the development of normal cholinergic and adrenergic tone, as well as

  10. A critical look at the function of the P2Y11 receptor

    DEFF Research Database (Denmark)

    Dreisig, Karin; Kornum, Birgitte Rahbek

    2016-01-01

    The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermor...

  11. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne

    2015-01-01

    BACKGROUND: In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic...

  12. Purinergic Signaling in Mast Cell Degranulation and Asthma

    Directory of Open Access Journals (Sweden)

    Zhan-Guo Gao

    2017-12-01

    Full Text Available Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.

  13. Purinergic signalling and diabetes

    DEFF Research Database (Denmark)

    Burnstock, Geoffrey; Novak, Ivana

    2013-01-01

    , and common and divergent roles of receptors for nucleotides and nucleosides in different organ systems will be given. This integrated picture will aid our understanding of the challenges of the potential and currently used drugs targeted to specific organ/cells or disorders associated with diabetes.......The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes...... type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling...

  14. Nanobody-Based Biologics for Modulating Purinergic Signaling in Inflammation and Immunity

    Directory of Open Access Journals (Sweden)

    Stephan Menzel

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP and nicotinamide adenine dinucleotide (NAD+ are released as danger signals from cells during infection and sterile inflammation. In the extracellular compartment ATP is converted by CD39, CD73, and other ecto-enzymes into metabolites that modulate the activity of T cells and macrophages. While ATP mediates pro-inflammatory signals via P2X7 and other P2 receptors, adenosine triggers anti-inflammatory signaling via the adenosine 2a receptor (Adora2a and other P1 receptors. The latter also plays a role in maintaining an immunosuppressive tumor microenvironment. NAD+ is converted by CD38, CD203 and other ecto-enzymes to the Ca2+ mobilizing messengers cyclic ADP-ribose and ADP-ribose, and to adenosine. Recent findings on the roles of CD38, CD39, CD73, CD203, P2X7, and Adora2a in inflammation and immunity underscore the potential of these proteins as drug targets. However, available small molecule inhibitors often lack specificity and mediate unwanted off-target toxicity. Nanobodies – single domain antibodies derived from heavy chain antibodies that naturally occur in camelids – display a propensity to bind functional epitopes not accessible to conventional antibodies. Like conventional antibodies, nanobodies and nanobody-based biologics are highly specific and have well-understood, tunable in vivo pharmacodynamics with little if any toxicity. Nanobodies thus represent attractive alternatives to small molecule inhibitors for modulating purinergic signaling in inflammation and immunity. Here we review recent progress made in developing nanobodies against key targets of purinergic signaling.

  15. Nanobody-Based Biologics for Modulating Purinergic Signaling in Inflammation and Immunity.

    Science.gov (United States)

    Menzel, Stephan; Schwarz, Nicole; Haag, Friedrich; Koch-Nolte, Friedrich

    2018-01-01

    Adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD + ) are released as danger signals from cells during infection and sterile inflammation. In the extracellular compartment ATP is converted by CD39, CD73, and other ecto-enzymes into metabolites that modulate the activity of T cells and macrophages. While ATP mediates pro-inflammatory signals via P2X7 and other P2 receptors, adenosine triggers anti-inflammatory signaling via the adenosine 2a receptor (Adora2a) and other P1 receptors. The latter also plays a role in maintaining an immunosuppressive tumor microenvironment. NAD + is converted by CD38, CD203 and other ecto-enzymes to the Ca 2+ mobilizing messengers cyclic ADP-ribose and ADP-ribose, and to adenosine. Recent findings on the roles of CD38, CD39, CD73, CD203, P2X7, and Adora2a in inflammation and immunity underscore the potential of these proteins as drug targets. However, available small molecule inhibitors often lack specificity and mediate unwanted off-target toxicity. Nanobodies - single domain antibodies derived from heavy chain antibodies that naturally occur in camelids - display a propensity to bind functional epitopes not accessible to conventional antibodies. Like conventional antibodies, nanobodies and nanobody-based biologics are highly specific and have well-understood, tunable in vivo pharmacodynamics with little if any toxicity. Nanobodies thus represent attractive alternatives to small molecule inhibitors for modulating purinergic signaling in inflammation and immunity. Here we review recent progress made in developing nanobodies against key targets of purinergic signaling.

  16. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Science.gov (United States)

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  17. Dual Gating Mechanism and Function of P2X7 Receptor Channels

    Czech Academy of Sciences Publication Activity Database

    Khadra, A.; Tomic, M.; Yan, Z.; Zemková, Hana; Sherman, A.; Stojilkovic, S. S.

    2013-01-01

    Roč. 104, č. 12 (2013), s. 2612-2621 ISSN 0006-3495 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : purinergic P2X7 receptors * ATP-gated channels * BzATP * dilation * Markov -state model Subject RIV: ED - Physiology Impact factor: 3.832, year: 2013

  18. Effects of ionizing radiation on purinergic signaling modulation in rat brain nerve cells

    International Nuclear Information System (INIS)

    Stanojevic, I.; Milosevic, M.; Drakulic, D.; Horvat, A.; Stanojevic, I.)

    2007-01-01

    Purinergic signaling is composed of three modulatory components: a) source of extracellular nucleotides, b) specific receptor expression for these transmitter molecules and c) ectonucleotidase selection that dictate cell response gradually degradation extracellular nucleotides to nucleosides. ATP acts as a fast excitatory transmitter in the CNS. Postsynaptic actions of ATP are mediated by an extended family of purinergic, P2X receptors, widely expressed throughout the CNS. NTPDases hydrolyse extracellular ATP and ADP to AMP and are responsive for purinergfic termination. To investigate if ionizing irradiation could modulate CNS purinergic signalization we monitored activity of NTPDases and abundance of P2X7 receptor in synaptic plasma membranes after whole-body acute irradiation using low (0,5Gy) or therapeutic (2Gy) doses, 1h i 72h after irradiating juvenile (15-day old) and adult (90-day old) rats. Acute irradiation modulate purinergic system components investigated at the different ways in the rat development brain SPM and in the adult brain dependent of dose and time after irradiation [sr

  19. Important roles of P2Y receptors in the inflammation and cancer of digestive system

    OpenAIRE

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-01-01

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of dig...

  20. P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells.

    NARCIS (Netherlands)

    Constantinescu, P.; Wang, B.; Kovacevic, K.; Jalilian, I.; Bosman, G.J.C.G.M.; Wiley, J.S.; Sluyter, R.

    2010-01-01

    Extracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR,

  1. Purinergic signaling to terminate TLR responses in macrophages

    Directory of Open Access Journals (Sweden)

    Kajal eHamidzadeh

    2016-03-01

    Full Text Available Macrophages undergo profound physiological alterations when they encounter pathogen associated molecular patterns (PAMPs. These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active down-regulation of innate responses induced by the very PAMPs that initiated them. Here we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the down-regulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages, and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.

  2. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration.

    Science.gov (United States)

    Glaser, Talita; Cappellari, Angélica Regina; Pillat, Micheli Mainardi; Iser, Isabele Cristiana; Wink, Márcia Rosângela; Battastini, Ana Maria Oliveira; Ulrich, Henning

    2012-09-01

    Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.

  3. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  4. Evaluation of Purinergic Mechanism for the Treatment of Voiding Dysfunction: A Study in Conscious Spinal Cord-injured Rats

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Lu

    2007-10-01

    Conclusion: These results indicate that purinergic mechanisms, presumably involving P2X3 or P2X2/3 receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.

  5. Functional relevance of aromatic residues in the first transmembrane domain of P2X receptors

    Czech Academy of Sciences Publication Activity Database

    Jindřichová, Marie; Vávra, Vojtěch; Obšil, Tomáš; Stojilkovic, S. S.; Zemková, Hana

    2009-01-01

    Roč. 109, č. 3 (2009), s. 923-934 ISSN 0022-3042 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA5011408; GA AV ČR(CZ) IAA500110702; GA AV ČR(CZ) IAA500110910 Institutional research plan: CEZ:AV0Z50110509 Keywords : purinergic receptors * gating * transmembrane domain Subject RIV: FH - Neuro logy Impact factor: 3.999, year: 2009

  6. Mediator-dependent Nuclear Receptor Functions

    Science.gov (United States)

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  7. Purinergic responses of chondrogenic stem cells to dynamic loading

    Directory of Open Access Journals (Sweden)

    Gađanski Ivana

    2013-01-01

    Full Text Available In habitually loaded tissues, dynamic loading can trigger ATP (adenosine 5’- triphosphate release to extracellular environment, and result in calcium signaling via ATP binding to purine P2 receptors1. In the current study we have compared purinergic responses (ATP release of two types of cells: bovine chondrocytes (bCHs and human mesenchymal stem cells (hMSC that were encapsulated in agarose and subjected to dynamic loading. Both cell types were cultured under chondrogenic conditions, and their responses to loading were evaluated by ATP release assay in combination with connexin (Cx-sensitive fluorescent dye (Lucifer Yellow - LY and a Cx-hemichannel blocker (Flufenamic acid - FFA. In response to dynamic loading, chondrogenic hMSCs released significantly higher amounts of ATP (5-fold in comparison to the bCHs early in culture (day 2. Triggering of LY uptake in the bCHs and hMSCs by dynamic loading implies opening of the Cx-hemichannels. However, the number of LY-positive cells in hMSC-constructs was 2.5-fold lower compared to the loaded bCH-constructs, suggesting utilization of additional mechanisms of ATP release. Cx-reactive sites were detected in both bCHs and hMSCs-constructs. FFA application led to reduced ATP release both in bCHs and hMSCs, which confirms the involvement of connexin hemichannels, with more prominent effects in bCHs than in hMSCs, further implying the existence of additional mechanism of ATP release in chondrogenic hMSCs. Taken together, these results indicate stronger purinergic response to dynamic loading of chondrogenic hMSCs than primary chondrocytes, by activation of connexin hemichannels and additional mechanisms of ATP release. [Projekat Ministrastva nauke Republike Srbije, ON174028 i br. III41007

  8. Señales purinérgicas Purinergic signals

    Directory of Open Access Journals (Sweden)

    Eduardo R Lazarowski

    2009-04-01

    Full Text Available En la última década se ha aportado clara evidencia de que tanto nucleósidos como nucleótidos de adenina y uridina pueden funcionar como factores de señalización extracelular. Su acción es mediada por dos tipos principales de receptores de superficie denominados purinérgicos. Los receptores P1 se activan por adenosina, y son todos metabotrópicos, mientras que los receptores de nucleótidos (ATP, ADP, UTP y UDP y nucleótidos-azúcares (UDP-glucosa y UDP-galactosa pueden ser metabotrópicos (P2Y o ionotrópicos (P2X. La importancia y complejidad de este sistema de señalización se evidencia por la diversidad de mecanismos de liberación de nucleótidos al medio extracelular y por la distribución ubicua de varios grupos de ectonucleotidasas capaces de catalizar la degradación y conversión de nucleótidos. Hasta el momento se han descrito y clonado una veintena de estos receptores que modulan una variedad de respuestas, como el impulso nervioso, la respuesta inflamatoria, la secreción de insulina, la regulación del tono vascular y la percepción del dolor. En la presente revisión se describen las características estructurales y farmacológicas de los receptores purinérgicos y se analiza la interacción dinámica entre estos receptores, los nucleósidos y nucleótidos, y las ectonucleotidasas, con especial atención a la dinámica de la agregación plaquetaria, la respuesta inmune y la hidratación de las mucosas respiratorias.In the last decade evidence accumulated that nucleosides and nucleotides of both uridine and adenine can act as extracellular signaling factors. Their action is mediated by two main types of surface receptors commonly known as purinergic. P1 receptors are metabotropic and activated by adenosine, whereas receptors for nucleotides (ATP, ADP, UTP and UDP and nucleotide-sugars (UDP-glucose and UDP-galactose can be either metabotropic (P2Y or ionotropic (P2X. The importance and complexity of this signaling system

  9. Conformational regulation of urokinase receptor function

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Jacobsen, Benedikte; Kriegbaum, Mette C

    2011-01-01

    PA per se into the hydrophobic ligand binding cavity of uPAR that modulates the function of this receptor. Based on these data, we now propose a model in which the inherent interdomain mobility in uPAR plays a major role in modulating its function. Particularly one uPAR conformation, which is stabilized...

  10. Functional reconstitution of the glycine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr. (Universidad Autonoma de Madrid (Spain))

    1989-07-25

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of ({sup 3}H)strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.

  11. Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis.

    Science.gov (United States)

    Frasson, Amanda Piccoli; De Carli, Geraldo Attilio; Bonan, Carla Denise; Tasca, Tiana

    2012-03-01

    Trichomonas vaginalis is a parasite from the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. The neutrophil infiltration has been considered to be primarily responsible for cytological changes observed at infection site, and the chemoattractants can play an important role in this leukocytic recruitment. Nitric oxide (NO) is one of the most widespread mediator compounds, and it is implicated in modulation of immunological mechanisms. Extracellular nucleotides and nucleosides are signaling molecules involved in several processes, including immune responses and control of leukocyte trafficking. Ectonucleoside triphosphate diphosphohydrolase members, ecto-5'-nucleotidase, and adenosine deaminase (ectoADA) have been characterized in T. vaginalis. Herein, we investigated the effects of purinergic system on NO production by neutrophils stimulated with T. vaginalis. The trophozoites were able to induce a high NO synthesis by neutrophils through iNOS pathway. The extracellular nucleotides ATP, ADP, and ATPγS (a non-hydrolyzable ATP analog) showed no significant change in NO secretion. In contrast, adenosine and its degradation product, inosine, promoted a low production of the compound. The immunosuppressive effect of adenosine upon NO release by neutrophils occurred due to adenosine A(2A) receptor activation. The ecto-5'-nucleotidase activity displayed by T. vaginalis was shown to be important in adenosine generation, indicating the efficiency of purinergic cascade. Our data suggest the influence of purinergic signaling, specifically adenosinergic system, on NO production by neutrophils in T. vaginalis infection, contributing to the immunological aspects of disease.

  12. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  13. Purinergic signaling triggers endfoot high-amplitude Ca2+ signals and causes inversion of neurovascular coupling after subarachnoid hemorrhage.

    Science.gov (United States)

    Pappas, Anthony C; Koide, Masayo; Wellman, George C

    2016-11-01

    Neurovascular coupling supports brain metabolism by matching focal increases in neuronal activity with local arteriolar dilation. Previously, we demonstrated that an emergence of spontaneous endfoot high-amplitude Ca 2+ signals (eHACSs) caused a pathologic shift in neurovascular coupling from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage model animals. Extracellular purine nucleotides (e.g., ATP) can trigger astrocyte Ca 2+ oscillations and may be elevated following subarachnoid hemorrhage. Here, the role of purinergic signaling in subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling was examined by imaging parenchymal arteriolar diameter and astrocyte Ca 2+ signals in rat brain slices using two-photon fluorescent and infrared-differential interference contrast microscopy. We report that broad-spectrum inhibition of purinergic (P2) receptors using suramin blocked eHACSs and restored vasodilatory neurovascular coupling after subarachnoid hemorrhage. Importantly, eHACSs were also abolished using a cocktail of inhibitors targeting G q -coupled P2Y receptors. Further, activation of P2Y receptors in brain slices from un-operated animals triggered high-amplitude Ca 2+ events resembling eHACSs and disrupted neurovascular coupling. Neither tetrodotoxin nor bafilomycin A1 affected eHACSs suggesting that purine nucleotides are not released by ongoing neurotransmission and/or vesicular release after subarachnoid hemorrhage. These results indicate that purinergic signaling via P2Y receptors contributes to subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling. © The Author(s) 2016.

  14. Multiple Roles of the Extracellular Vestibule Amino Acid Residues in the Function of the Rat P2X4 Receptor

    Czech Academy of Sciences Publication Activity Database

    Rokic, Milos Boro; Stojilkovic, S. S.; Vávra, Vojtěch; Kuzyk, Pavlo; Tvrdoňová, Vendula; Zemková, Hana

    2013-01-01

    Roč. 8, č. 3 (2013), e59411 E-ISSN 1932-6203 R&D Projects: GA AV ČR(CZ) IAA500110910; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : ATP * purinergic P2X receptor channels * transmembrane domain * extracellular vestibule * gating * ivermectin Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  15. Functional Validation of Heteromeric Kainate Receptor Models.

    Science.gov (United States)

    Paramo, Teresa; Brown, Patricia M G E; Musgaard, Maria; Bowie, Derek; Biggin, Philip C

    2017-11-21

    Kainate receptors require the presence of external ions for gating. Most work thus far has been performed on homomeric GluK2 but, in vivo, kainate receptors are likely heterotetramers. Agonists bind to the ligand-binding domain (LBD) which is arranged as a dimer of dimers as exemplified in homomeric structures, but no high-resolution structure currently exists of heteromeric kainate receptors. In a full-length heterotetramer, the LBDs could potentially be arranged either as a GluK2 homomer alongside a GluK5 homomer or as two GluK2/K5 heterodimers. We have constructed models of the LBD dimers based on the GluK2 LBD crystal structures and investigated their stability with molecular dynamics simulations. We have then used the models to make predictions about the functional behavior of the full-length GluK2/K5 receptor, which we confirmed via electrophysiological recordings. A key prediction and observation is that lithium ions bind to the dimer interface of GluK2/K5 heteromers and slow their desensitization. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Kupffer cell complement receptor clearance function and host defense.

    Science.gov (United States)

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  17. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  18. Compartmentalization of B-cell antigen receptor functions

    NARCIS (Netherlands)

    Lankester, A. C.; van Lier, R. A.

    1996-01-01

    Receptor tyrosine kinases (RTK), like the PDGF-receptor, translate information from the extracellular environment into cytoplasmic signals that regulate a spectrum of cellular functions. RTK molecules consist of ligand binding extracellular domains, cytoplasmic kinase domains and tyrosine

  19. P2X7 receptor regulates osteoclast function and bone loss in a mouse model of osteoporosis

    DEFF Research Database (Denmark)

    Wang, Ning; Agrawal, Ankita; Jørgensen, Niklas Rye

    2018-01-01

    Post-menopausal osteoporosis is a condition that affects millions worldwide and places a huge socio-economic burden on society. Previous research has shown an association of loss of function SNPs in the gene for the purinergic receptor P2X7R with low bone mineral density, increased rates of bone...... loss and vertebral fractures in post-menopausal women. In this study we use a mouse model of oestrogen deficiency-induced bone loss and the BALB/cJ P2X7R-/- to show that absence of the P2X7R resulted in increased bone loss. Osteoclast precursors were isolated from both BALB/cJ P2X7R-/- and BALB/cJ P2X7......R+/+ mice and then cultured in vitro to form mature resorbing osteoclasts. The BALB/cJ P2X7R-/- derived precursors generated slightly more osteoclasts but with a significant reduction in the amount of resorption per osteoclast. Furthermore, when using modified culture conditions osteoclast activity...

  20. Functionally heterogenous ryanodine receptors in avian cerebellum.

    Science.gov (United States)

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  1. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  2. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  3. Paracrine effect of carbon monoxide - astrocytes promote neuroprotection through purinergic signaling in mice.

    Science.gov (United States)

    Queiroga, Cláudia S F; Alves, Raquel M A; Conde, Sílvia V; Alves, Paula M; Vieira, Helena L A

    2016-08-15

    The neuroprotective role of carbon monoxide (CO) has been studied in a cell-autonomous mode. Herein, a new concept is disclosed - CO affects astrocyte-neuron communication in a paracrine manner to promote neuroprotection. Neuronal survival was assessed when co-cultured with astrocytes that had been pre-treated or not with CO. The CO-pre-treated astrocytes reduced neuronal cell death, and the cellular mechanisms were investigated, focusing on purinergic signaling. CO modulates astrocytic metabolism and extracellular ATP content in the co-culture medium. Moreover, several antagonists of P1 adenosine and P2 ATP receptors partially reverted CO-induced neuroprotection through astrocytes. Likewise, knocking down expression of the neuronal P1 adenosine receptor A2A-R (encoded by Adora2a) reverted the neuroprotective effects of CO-exposed astrocytes. The neuroprotection of CO-treated astrocytes also decreased following prevention of ATP or adenosine release from astrocytic cells and inhibition of extracellular ATP metabolism into adenosine. Finally, the neuronal downstream event involves TrkB (also known as NTRK2) receptors and BDNF. Pharmacological and genetic inhibition of TrkB receptors reverts neuroprotection triggered by CO-treated astrocytes. Furthermore, the neuronal ratio of BDNF to pro-BDNF increased in the presence of CO-treated astrocytes and decreased whenever A2A-R expression was silenced. In summary, CO prevents neuronal cell death in a paracrine manner by targeting astrocytic metabolism through purinergic signaling. © 2016. Published by The Company of Biologists Ltd.

  4. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen Yong

    2012-02-01

    Full Text Available Abstract Background The purinergic P2X3 receptor (P2X3R expressed in the dorsal root ganglion (DRG sensory neuron and the P2X7 receptor (P2X7R expressed in the surrounding satellite glial cell (SGC are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.

  5. The role of purinergic signalling in exocrine pancreas

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund

    ATP is a fundamentally important molecule in intracellular processes, especially recognised as the molecular source of energy. ATP is however also released as a signal from most cell types, and extracellular signalling by ATP goes under the common name purinergic signalling and it includes releas...

  6. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  7. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling.

    Science.gov (United States)

    Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R

    2017-03-28

    Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of

  8. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor

    DEFF Research Database (Denmark)

    Sivertsen, B; Holliday, N; Madsen, A N

    2013-01-01

    UNLABELLED: The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism...... and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several...... review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G-protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have...

  9. Emerging functions for neuropeptide Y5 receptors

    NARCIS (Netherlands)

    Bischoff, A.; Michel, M. C.

    1999-01-01

    The Y5 subtype of neuropeptide Y (NPY) receptors has raised considerable interest as a mediator of NPY-stimulated food intake, but with the advent of recent data, this hypothesis has come into question. Moreover, Y5 receptor-selective drugs might not be specific for food intake because additional

  10. NMDA receptor function during senescence: implication on cognitive performance

    Directory of Open Access Journals (Sweden)

    Ashok eKumar

    2015-12-01

    Full Text Available N-methyl-D-aspartate (NMDA receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function.

  11. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  12. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  13. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    Science.gov (United States)

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  14. Purinergic transmission and transglial signaling between neuron somata in the dorsal root ganglion.

    Science.gov (United States)

    Rozanski, Gabriela M; Li, Qi; Kim, Hyunhee; Stanley, Elise F

    2013-02-01

    Most dorsal root ganglion neuronal somata (NS) are isolated from their neighbours by a satellite glial cell (SGC) sheath. However, some NS are associated in pairs, separated solely by the membrane septum of a common SGC to form a neuron-glial cell-neuron (NGlN) trimer. We reported that stimulation of one NS evokes a delayed, noisy and long-duration inward current in both itself and its passive partner that was blocked by suramin, a general purinergic antagonist. Here we test the hypothesis that NGlN transmission involves purinergic activation of the SGC. Stimulation of the NS triggered a sustained current noise in the SGC. Block of transmission through the NGlN by reactive blue 2 or thapsigargin, a Ca(2+) store-depletion agent, implicated a Ca(2+) store discharge-linked P2Y receptor. P2Y2 was identified by simulation of the NGlN-like transmission by puffing UTP onto the SGC and by immunocytochemical localization to the SGC membrane septum. Block of the UTP effect by BAPTA, an intracellular Ca(2+) scavenger, supported the involvement of SGC Ca(2+) stores in the signaling pathway. We infer that transmission through the NGlN trimer involves secretion of ATP from the NS and triggering of SGC Ca(2+) store discharge via P2Y2 receptors. Presumably, cytoplasmic Ca(2+) elevation leads to the release of an as-yet unidentified second transmitter from the glial cell to complete transmission. Thus, the two NS of the NGlN trimer communicate via a 'sandwich synapse' transglial pathway, a novel signaling mechanism that may contribute to information transfer in other regions of the nervous system. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  16. Palmitoylation as a Functional Regulator of Neurotransmitter Receptors

    Directory of Open Access Journals (Sweden)

    Vladimir S. Naumenko

    2018-01-01

    Full Text Available The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs and ligand-gated ion channels (LICs. From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.

  17. P2X7 receptor regulates osteoclast function and bone loss in a mouse model of osteoporosis.

    Science.gov (United States)

    Wang, Ning; Agrawal, Ankita; Jørgensen, Niklas Rye; Gartland, Alison

    2018-02-22

    Post-menopausal osteoporosis is a condition that affects millions worldwide and places a huge socio-economic burden on society. Previous research has shown an association of loss of function SNPs in the gene for the purinergic receptor P2X7R with low bone mineral density, increased rates of bone loss and vertebral fractures in post-menopausal women. In this study we use a mouse model of oestrogen deficiency-induced bone loss and the BALB/cJ P2X7R -/- to show that absence of the P2X7R resulted in increased bone loss. Osteoclast precursors were isolated from both BALB/cJ P2X7R -/- and BALB/cJ P2X7R +/+ mice and then cultured in vitro to form mature resorbing osteoclasts. The BALB/cJ P2X7R -/- derived precursors generated slightly more osteoclasts but with a significant reduction in the amount of resorption per osteoclast. Furthermore, when using modified culture conditions osteoclast activity was additionally increased in the absence of the P2X7R suggest that P2X7R may regulate the lifespan and activity of osteoclasts. Finally using mechanical loading as an anabolic stimulus for bone formation, we demonstrated that the increased oestrogen-deficient bone loss could be rescued, even in the absence of P2X7R. This study paves the way for clinical intervention for women with post-menopausal osteoporosis and P2XR7 loss of function polymorphisms.

  18. Melatonin membrane receptors in peripheral tissues: Distribution and functions

    Science.gov (United States)

    Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.

    2012-01-01

    Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784

  19. Trichomoniasis immunity and the involvement of the purinergic signaling

    Directory of Open Access Journals (Sweden)

    Camila Braz Menezes

    2016-08-01

    Full Text Available Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies. Keywords: Trichomoniasis, Innate immune response, Adaptive immune response, Evasion mechanisms, Purinergic signaling

  20. Progesterone Receptor Scaffolding Function in Breast Cancer

    Science.gov (United States)

    2012-10-01

    leiomyoma cells in response to RU486 revealed little overlap [101]. PR-A and PR-B are most often co-expressed in the same tissues, and cells that... leiomyoma cells. PLoS One 7 (2012) e29021. [102]P.A. Mote, S. Bartow, N. Tran, C.L. Clarke, Loss of co-ordinate expression of progesterone receptors

  1. Steroid receptors and their ligands: Effects on male gamete functions

    International Nuclear Information System (INIS)

    Aquila, Saveria; De Amicis, Francesca

    2014-01-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  2. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  3. Hepatic macrophage complement receptor clearance function following injury.

    Science.gov (United States)

    Cuddy, B G; Loegering, D J; Blumenstock, F A; Shah, D M

    1986-03-01

    Previous work has demonstrated that in vivo hepatic macrophage complement receptor clearance function is depressed following thermal injury. The present study was carried out to determine if complement receptor function depression is associated with other states of depressed host defense. Hepatic complement receptor clearance function was determined from the hepatic uptake of rat erythrocytes coated with antierythrocyte IgM (EIgM) in rats. Receptor function was determined following cannulation of a carotid artery, laparotomy plus enterotomy, hemorrhagic shock, trauma, thermal injury, acute bacteremia, acute endotoxemia, and injection of erythrocyte stroma, gelatinized lipid emulsion, or colloidal carbon. Hepatic uptake of EIgM was depressed following each of these experimental interventions except arterial cannulation. This effect was shown not to be due to a decrease in hepatic blood flow or depletion of complement and was therefore due to a depression in hepatic macrophage complement receptor clearance function. Thus, impairment of hepatic macrophage complement receptor function is associated with several states of depressed host defense.

  4. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Czech, M.P.

    1985-01-01

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  5. Evaluation of purinergic mechanism for the treatment of voiding dysfunction: a study in conscious spinal cord-injured rats.

    Science.gov (United States)

    Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S

    2007-10-01

    To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p spinal cord injury in rats.

  6. Purinergic mechanosensory transduction and visceral pain

    Directory of Open Access Journals (Sweden)

    Burnstock Geoffrey

    2009-11-01

    Full Text Available Abstract In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  7. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  8. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS.

    Science.gov (United States)

    Leonhardt, Julia; Villela, Daniel C; Teichmann, Anke; Münter, Lisa-Marie; Mayer, Magnus C; Mardahl, Maibritt; Kirsch, Sebastian; Namsolleck, Pawel; Lucht, Kristin; Benz, Verena; Alenina, Natalia; Daniell, Nicholas; Horiuchi, Masatsugu; Iwai, Masaru; Multhaup, Gerhard; Schülein, Ralf; Bader, Michael; Santos, Robson A; Unger, Thomas; Steckelings, Ulrike Muscha

    2017-06-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other. © 2017 American Heart Association, Inc.

  9. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases.

    Science.gov (United States)

    Calebiro, Davide; Godbole, Amod

    2018-04-01

    G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of numerous hormones and neurotransmitters. The nearly 1000 GPCRs encoded by the human genome regulate virtually all physiological functions and are implicated in the pathogenesis of prevalent human diseases such as thyroid disorders, hypertension or Parkinson's disease. As a result, 30-50% of all currently prescribed drugs are targeting these receptors. Once activated, GPCRs induce signals at the cell surface. This is often followed by internalization, a process that results in the transfer of receptors from the plasma membrane to membranes of the endosomal compartment. Internalization was initially thought to be mainly implicated in signal desensitization, a mechanism of adaptation to prolonged receptor stimulation. However, several unexpected functions have subsequently emerged. Most notably, accumulating evidence indicates that internalization can induce prolonged receptor signaling on intracellular membranes, which is apparently required for at least some biological effects of hormones like TSH, LH and adrenaline. These findings reveal an even stronger connection between receptor internalization and signaling than previously thought. Whereas new studies are just beginning to reveal an important physiological role for GPCR signaling after internalization and ways to exploit it for therapeutic purposes, future investigations will be required to explore its involvement in human disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury.

    Science.gov (United States)

    Hasan, Djo; Blankman, Paul; Nieman, Gary F

    2017-09-01

    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.

  11. Novel Functional Properties of Drosophila CNS Glutamate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L.

    2016-12-01

    Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.

  12. Molecular mechanisms of androgen receptor functions

    NARCIS (Netherlands)

    K. Steketee (Karine)

    2007-01-01

    textabstractThe androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostate and in the

  13. Scavenger Receptor Structure and Function in Health and Disease

    Directory of Open Access Journals (Sweden)

    Izma Abdul Zani

    2015-05-01

    Full Text Available Scavenger receptors (SRs are a ‘superfamily’ of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL, though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.

  14. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    bilayer via structural characterizations of TMD representatives. To enable structural studies of these domains, an organic-extraction based strategy for efficient production of isotope-labeled TMDs with or without short intrinsically disordered regions was developed. This strategy successfully provided...... of these challenging domains. Supplemented by a review of the current collection of TMD structures from single-pass transmembrane receptors, the thesis as a whole provides important insights on the structure and function in the membrane as well as highlight the open questions to be addressed in the years to come.......Class I cytokine receptors are involved in important biological functions of both physiological and pathological nature in mammals. However, the molecular details of the cross-membrane signal transduction through these receptors remain obscure. One of the major reasons for this is the lack...

  15. Muscarinic acetylcholine receptor subtypes: localization and structure/function

    DEFF Research Database (Denmark)

    Brann, M R; Ellis, J; Jørgensen, H

    1993-01-01

    Based on the sequence of the five cloned muscarinic receptor subtypes (m1-m5), subtype selective antibody and cDNA probes have been prepared. Use of these probes has demonstrated that each of the five subtypes has a markedly distinct distribution within the brain and among peripheral tissues...... are described, as well as the implied structures of these functional domains....

  16. Bioorthogonal fluorescent labeling of functional G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Tian, He; Naganathan, Saranga; Kazmi, Manija A

    2014-01-01

    Novel methods are required for site-specific, quantitative fluorescent labeling of G-protein-coupled receptors (GPCRs) and other difficult-to-express membrane proteins. Ideally, fluorescent probes should perturb the native structure and function as little as possible. We evaluated bioorthogonal...

  17. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    Science.gov (United States)

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  18. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  19. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    Science.gov (United States)

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  20. Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality.

    Science.gov (United States)

    Metzger, Michael W; Walser, Sandra M; Dedic, Nina; Aprile-Garcia, Fernando; Jakubcakova, Vladimira; Adamczyk, Marek; Webb, Katharine J; Uhr, Manfred; Refojo, Damian; Schmidt, Mathias V; Friess, Elisabeth; Steiger, Axel; Kimura, Mayumi; Chen, Alon; Holsboer, Florian; Arzt, Eduardo; Wurst, Wolfgang; Deussing, Jan M

    2017-11-29

    A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders. SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders. Copyright © 2017 the authors 0270-6474/17/3711688-13$15.00/0.

  1. PTP1B regulates Eph receptor function and trafficking

    OpenAIRE

    Nievergall, Eva; Janes, Peter W.; Stegmayer, Carolin; Vail, Mary E.; Haj, Fawaz G.; Teng, Shyh Wei; Neel, Benjamin G.; Bastiaens, Philippe I.; Lackmann, Martin

    2010-01-01

    Eph receptors orchestrate cell positioning during normal and oncogenic development. Their function is spatially and temporally controlled by protein tyrosine phosphatases (PTPs), but the underlying mechanisms are unclear and the identity of most regulatory PTPs are unknown. We demonstrate here that PTP1B governs signaling and biological activity of EphA3. Changes in PTP1B expression significantly affect duration and amplitude of EphA3 phosphorylation and biological function, whereas confocal ...

  2. Identification of functional VEGF receptors on human platelets.

    Science.gov (United States)

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  3. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  4. Scavenger Receptor CD163 and Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Gabriela Onofre

    2009-01-01

    Full Text Available CD163 is a member of scavenger receptor super family class B of the first subgroup. It is mapped to the region p13 on chromosome 12. Five different isoforms of CD163 have been described, which differ in the structure of their cytoplasmic domains and putative phosporylation sites. This scavenger receptor is selectively expressed on cells of monocytes and macrophages lineage exclusively. CD163 immunological function is essentially homeostatic. It also has other functions because participates in adhesion to endothelial cells, in tolerance induction and tissues regeneration. Other very important function of CD163 is the clearance of hemoglobin in its cell-free form and participation in anti-inflammation in its soluble form, exhibiting cytokine-like functions. We review the biological functions of CD163 which have been discovered until now. It seems apparent from this review that CD163 scavenger receptor can be used as biomarker in different diseases and as a valuable diagnostic parameter for prognosis of many diseases especially inflammatory disorders and sepsis.

  5. Expression and function of the human estrogen receptor in yeast

    International Nuclear Information System (INIS)

    White, J.H.; Metzger, D.; Chambon, P.

    1988-01-01

    Gene expression in eukaryotes is regulated at many levels. Moreover, there is increasing evidence that the basic control mechanisms of transcription initiation have been conserved across the range of eukaryotes from yeast to man. In vertebrates, the nuclear receptors, whose activity is dependent on the binding of specific ligands, stimulate transcription by interacting with specific cis-acting sequences and display all of the hallmarks of inducible enhancer factors. Alignment of their amino acid sequences indicates that they are composed of a series of conserved domains. The domain structure of the human estrogen receptor (hER) is typical of receptor proteins. Region C, containing two putative zinc fingers, comprises the DNA-binding domain responsible for specific recognition of estrogen response elements (ERE). Region E contains the hormone-binding domain and domain(s) responsible for transcription activation. A mutant of the hER, called HE15, which lacks the hormone-binding domain, binds DNA in vivo and in vitro but activates transcription only poorly in a constitutive manner in vivo in HeLa cells. A series of studies have demonstrated that the hormone- and DNA-binding domains of the nuclear receptors function independently. Chimeric proteins consisting of the DNA-binding domain of yeast GAL4 coupled to the hormone-binding domains of either the hER or glucocorticoid receptor element (GRE) will stimulate transcription in HeLa cells when bound to a UAS. Taken together, these results demonstrate that the hER and other nuclear receptors, as well as GAL4 and GCN4 proteins of yeast, consist of discrete and separable DNA-binding and transcription-activation functions. To investigate these striking parallels further, the authors have expressed the hER in the yeast Saccharomyces cerevisiae and have analyzed its hormone- and DNA-binding properties in vitro and its ability to stimulate transcription in vivo

  6. mGlu5 Receptor Functional Interactions and Addiction

    Directory of Open Access Journals (Sweden)

    Robyn eBrown

    2012-05-01

    Full Text Available The idea of ‘receptor mosaics’ suggests that proteins can form complex and dynamic networks, with respect to time and protein make up, which has the potential to make significant contributions to the diversity and specificity of GPCR signalling, particularly in neuropharmacology, where a few key receptors have been implicated in multiple neurological and psychiatric disorders such as addiction. Metabotropic glutamate type 5 receptors (mGlu5 have been shown to heterodimerise and form complexes with other GPCRs including adenosine A2A and dopamine D2 receptors. mGlu5-containing complexes are found in the striatum, a region of the brain known to be critical for mediating the rewarding and incentive motivational properties of drugs of abuse. Indeed, initial studies indicate a role for mGlu5-containing complexes in rewarding and conditioned effects of drugs, as well as drug-seeking behaviour. This is consistent with the substantial influence that mGlu5 complexes appear to have on striatal function, regulating both GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-containing complexes represent a novel way in which to minimize the off-target effects and therefore provide us with an exciting therapeutic avenue for drug discovery efforts. Indeed, the therapeutic targeting of receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a ‘pathological state’ has the potential to dramatically reduce detrimental side effects that may otherwise impair vital brain function.

  7. Defensive and pathological functions of the gastrointestinal NK3 receptor.

    Science.gov (United States)

    Sanger, Gareth J; Tuladhar, Bishwa R; Bueno, Lionel; Furness, John B

    2006-10-01

    In general, normal gut functions are unaffected by selective NK(3) receptor antagonists such as talnetant (SB-223412), osanetant (SR 142901) or SB-235375. However, NK(3) receptors may mediate certain defensive or pathological intestinal processes. The precise mechanisms, by which this role is achieved, are not fully understood. In summary, intense stimulation of the intrinsic primary afferent neurones (IPANs) of the enteric nervous system is thought to release tachykinins from these neurones, to induce slow excitation (slow EPSPs) of connecting IPANs. This is hypothesised to cause hypersensitivity and disrupt intestinal motility, at least partly explaining why NK(3) receptor antagonism can reduce the level of disruption caused by supramaximal distension pressures in vitro. Tachykinin release from IPANs may also increase C-fibre sensitivity, directly or indirectly. Thus, NK(3) receptor antagonists can inhibit nociception associated with intestinal distension, in normal animals or after pre-sensitisation by restraint stress. Importantly, such inhibition has been found with SB-235375, a peripherally restricted antagonist. SB-235375 can also reduce a visceromotor response to brief colorectal distension without affecting similar responses to skin pinch, providing additional evidence for intestinal-specific activity. NK(3) receptor biology is, therefore, revealing a novel pathway by which disruptions in intestinal motility and nociception can be induced.

  8. Functional role of cannabinoid receptors in urinary bladder

    Directory of Open Access Journals (Sweden)

    Pradeep Tyagi

    2010-01-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa (marijuana, and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical applications. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to the general cannabinoid pharmacology. In recent years, studies on the functional role of cannabinoid receptors in bladder have been motivated by the therapeutic effects of cannabinoids on voiding dysfunction in multiple sclerosis patients. In this review, we shall summarize the literature on the expression of cannabinoid receptors in urinary bladder and the peripheral influence of locally and systemically administered cannabinoids in the bladder. The ongoing search for cannabinoid-based therapeutic strategies devoid of psychotropic effects can be complemented with local delivery into bladder by the intravesical route. A greater understanding of the role of the peripheral CB 1 and CB 2 receptor system in lower urinary tract is necessary to allow the development of new treatment for pelvic disorders.

  9. Lack of a Functioning P2X7 Receptor Leads to Increased Susceptibility to Toxoplasmic Ileitis.

    Directory of Open Access Journals (Sweden)

    Catherine M Miller

    Full Text Available Oral infection of C57BL/6J mice with the protozoan parasite Toxoplasma gondii leads to a lethal inflammatory ileitis.Mice lacking the purinergic receptor P2X7R are acutely susceptible to toxoplasmic ileitis, losing significantly more weight than C57BL/6J mice and exhibiting much greater intestinal inflammatory pathology in response to infection with only 10 cysts of T. gondii. This susceptibility is not dependent on the ability of P2X7R-deficient mice to control the parasite, which they accomplish just as efficiently as C57BL/6J mice. Rather, susceptibility is associated with elevated ileal concentrations of pro-inflammatory cytokines, reactive nitrogen intermediates and altered regulation of elements of NFκB activation in P2X7R-deficient mice.Our data support the thesis that P2X7R, a well-documented activator of pro-inflammatory cytokine production, also plays an important role in the regulation of intestinal inflammation.

  10. Identification of Functionally Important Residues of the Rat P2X4 Receptor by Alanine Scanning Mutagenesis of the Dorsal Fin and Left Flipper Domains

    Czech Academy of Sciences Publication Activity Database

    Tvrdoňová, Vendula; Rokic, Milos Boro; Stojilkovic, S. S.; Zemková, Hana

    2014-01-01

    Roč. 9, č. 11 (2014), e112902 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0025 Grant - others:Univerzita Karlova(CZ) 3446/11 Institutional support: RVO:67985823 Keywords : purinergic receptor * P2X * ATP * binding pocket * gating * signal transmission * partial agonists Subject RIV: ED - Physiology Impact factor: 3.234, year: 2014

  11. Functional characterization of mutants in the transmembrane domains of the rat P2X7 receptor that regulate pore conductivity and agonist sensitivity

    Czech Academy of Sciences Publication Activity Database

    Jindřichová, Marie; Bhattacharya, Anirban; Rupert, Marian; Škopek, Petr; Obšil, T.; Zemková, Hana

    2015-01-01

    Roč. 133, č. 6 (2015), s. 815-827 ISSN 0022-3042 R&D Projects: GA ČR(CZ) GPP304/12/P371; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : ATP * purinergic receptor channel * P2X7 * pore dilation * YO-PRO-1 uptake Subject RIV: ED - Physiology Impact factor: 3.842, year: 2015

  12. Bisphenol A affects androgen receptor function via multiple mechanisms.

    Science.gov (United States)

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  13. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  14. The P2X7 Receptor Supports Both Life and Death in Fibrogenic Pancreatic Stellate Cells

    DEFF Research Database (Denmark)

    Haanes, Kristian; Schwab, Albrecht; Novak, Ivana

    2012-01-01

    The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7...... versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells...... inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic...

  15. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands.

    Science.gov (United States)

    Novak, Ivana; Jans, Ida M; Wohlfahrt, Louise

    2010-09-15

    The purinergic P2X(7) receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X(7) receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether the P2X(7) receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X(7)(-/-) (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release and intracellular Ca(2+) activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X(7)(-/-) mice, and in contrast, tear secretion was increased in P2X(7)(-/-) mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more dependent on the P2X(7) receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X(7) receptor expression. ATP and carbachol increased intracellular Ca(2+) activity, but responses depended on the gland type, presence of the P2X(7) receptor and the sex of the animal. Together, these results demonstrate that cholinergic stimulation leads to release of ATP that can via P2X(7) receptors up-regulate pancreatic and salivary secretion but down-regulate tear secretion. Our data also indicate that there is an interaction between purinergic and cholinergic receptor signalling and that function of the P2X(7) receptor is suppressed in females. We conclude that the P2X(7) receptors are important in short-term physiological regulation of exocrine gland secretion.

  16. Effect of P2X7 receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands

    Science.gov (United States)

    Novak, Ivana; Jans, Ida M; Wohlfahrt, Louise

    2010-01-01

    The purinergic P2X7 receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X7 receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether the P2X7 receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X7−/− (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release and intracellular Ca2+ activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X7−/− mice, and in contrast, tear secretion was increased in P2X7−/− mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more dependent on the P2X7 receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X7 receptor expression. ATP and carbachol increased intracellular Ca2+ activity, but responses depended on the gland type, presence of the P2X7 receptor and the sex of the animal. Together, these results demonstrate that cholinergic stimulation leads to release of ATP that can via P2X7 receptors up-regulate pancreatic and salivary secretion but down-regulate tear secretion. Our data also indicate that there is an interaction between purinergic and cholinergic receptor signalling and that function of the P2X7 receptor is suppressed in females. We conclude that the P2X7 receptors are important in short-term physiological regulation of exocrine gland secretion. PMID:20643770

  17. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    Directory of Open Access Journals (Sweden)

    Gregory Smutzer

    2016-01-01

    Full Text Available Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition.

  18. Functionally Selective AT(1) Receptor Activation Reduces Ischemia Reperfusion Injury

    DEFF Research Database (Denmark)

    Hostrup, Anders; Christensen, Gitte Lund; Bentzen, Bo Hjort

    2012-01-01

    of the physiological functions of AngII. The AT(1)R mediates its effects through both G protein-dependent and independent signaling, which can be separated by functionally selective agonists. In the present study we investigate the effect of AngII and the ß-arrestin biased agonist [SII]AngII on ischemia......]AngII had a protective effect. Together these results demonstrate a cardioprotective effect of simultaneous blockade of G protein signaling and activation of G protein independent signaling through AT(1 )receptors....

  19. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse.

    Science.gov (United States)

    Vázquez-Cuevas, F G; Cruz-Rico, A; Garay, E; García-Carrancá, A; Pérez-Montiel, D; Juárez, B; Arellano, R O

    2013-01-01

    Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.

  20. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  1. Influence of cochlear implantation on peripheral vestibular receptor function.

    Science.gov (United States)

    Krause, Eike; Louza, Julia P R; Wechtenbruch, Juliane; Gürkov, Robert

    2010-06-01

    The objectives of this study were 1) to assess the influence of a cochlear implantation on peripheral vestibular receptor function in the inner ear in the implant and in the nonimplant side, and 2) to analyze a possible correlation with resulting vertigo symptoms. Prospective clinical study. Cochlear implant center at tertiary referral hospital. A total of 32 patients, aged 15 to 83 years, undergoing cochlear implantation were assessed pre- and postoperatively for caloric horizontal semicircular canal response and vestibular-evoked myogenic potentials of the sacculus, and postoperatively for subjective vertigo symptoms. Patients with vertigo were compared with patients without symptoms with regard to the findings of the vestibular function tests. Cochlear implantation represents a significant risk factor for horizontal semicircular canal impairment (P 0.05). Cochlear implantation is a relevant risk factor for damage of peripheral vestibular receptor function. Therefore, preservation not only of residual hearing function but also of vestibular function should be aimed for, by using minimally invasive surgical techniques. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  2. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. The pathophysiological functions mediated by D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Goldstein, M.; Kuga, S.; Meller, E.; SHimizu, Y.

    1986-01-01

    This chapter describes some behavioral responses which might be mediated by D 1 and D 2 DA receptors, and the authors discuss their clinical relevance. It was of considerable interest to determine whether a selective D 1 DA antagonist, such as SCH 23390, will induce catalepsy and whether this behavior is mediated by D 1 , or by both D 1 and D 2 DA receptors. Rats were used in the experiments. The authors examined whether the addition of the S 2 antagonist ketanserin affects the displacement of 3 H-Spi by SCH 23390. Induction of self-mutilating biting (SMB) behavior in monkeys with unilateral ventromedial tegmental (VMT) lesions by DA agonists and its prevention by DA antagonists is examined. The authors also discuss the possible relationships between abnormal guanine nucleotide metabolism and dopaminergic neuronal function through the implications in LeschNyhan syndrome and in some mental disorders

  4. Functionality of the Paracoccidioides mating α-pheromone-receptor system.

    Directory of Open Access Journals (Sweden)

    Jéssica A Gomes-Rezende

    Full Text Available Recent evidence suggests that Paracoccidioides species have the potential to undergo sexual reproduction, although no sexual cycle has been identified either in nature or under laboratory conditions. In the present work we detected low expression levels of the heterothallic MAT loci genes MAT1-1 and MAT1-2, the α-pheromone (PBα gene, and the α- and a-pheromone receptor (PREB and PREA genes in yeast and mycelia forms of several Paracoccidioides isolates. None of the genes were expressed in a mating type dependent manner. Stimulation of P. brasiliensis MAT1-2 strains with the synthetic α-pheromone peptide failed to elicit transcriptional activation of MAT1-2, PREB or STE12, suggesting that the strains tested are insensitive to α-pheromone. In order to further evaluate the biological functionality of the pair α-pheromone and its receptor, we took advantage of the heterologous expression of these Paracoccidioides genes in the corresponding S. cerevisiae null mutants. We show that S. cerevisiae strains heterologously expressing PREB respond to Pbα pheromone either isolated from Paracoccidioides culture supernatants or in its synthetic form, both by shmoo formation and by growth and cell cycle arrests. This allowed us to conclude that Paracoccidioides species secrete an active α-pheromone into the culture medium that is able to activate its cognate receptor. Moreover, expression of PREB or PBα in the corresponding null mutants of S. cerevisiae restored mating in these non-fertile strains. Taken together, our data demonstrate pheromone signaling activation by the Paracoccidioides α-pheromone through its receptor in this yeast model, which provides novel evidence for the existence of a functional mating signaling system in Paracoccidioides.

  5. Central serotonergic and noradrenergic receptors in functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    S O'Mahony; TG Dinan; PW Keeling; ASB Chua

    2006-01-01

    Functional dyspepsia is a symptom complex characterised by upper abdominal discomfort or pain, early satiety,motor abnormalities, abdominal bloating and nausea in the absence of organic disease. The central nervous system plays an important role in the conducting and processing of visceral signals. Alterations in brain processing of pain, perception and affective responses may be key factors in the pathogenesis of functional dyspepsia. Central serotonergic and noradrenergic receptor systems are involved in the processing of motor,sensory and secretory activities of the gastrointestinal tract. Visceral hypersensitivity is currently regarded as the mechanism responsible for both motor alterations and abdominal pain in functional dyspepsia. Some studies suggest that there are alterations in central serotonergic and noradrenergic systems which may partially explain some of the symptoms of functional dyspepsia. Alterations in the autonomic nervous system may be implicated in the motor abnormalities and increases in visceral sensitivity in these patients.Noradrenaline is the main neurotransmitter in the sympathetic nervous system and again alterations in the functioning of this system may lead to changes in motor function. Functional dyspepsia causes considerable burden on the patient and society. The pathophysiology of functional dyspepsia is not fully understood but alterations in central processing by the serotonergic and noradrenergic systems may provide plausible explanations for at least some of the symptoms and offer possible treatment targets for the future.

  6. Transceptors as a functional link of transporters and receptors

    Directory of Open Access Journals (Sweden)

    George Diallinas

    2017-03-01

    Full Text Available Cells need to communicate with their environment in order to obtain nutrients, grow, divide and respond to signals related to adaptation in changing physiological conditions or stress. A very basic question in biology is how cells, especially of those organisms living in rapidly changing habitats, sense their environment. Apparently, this question is of particular importance to all free-living microorganisms. The critical role of receptors, transporters and channels, transmembrane proteins located in the plasma membrane of all types of cells, in signaling environmental changes is well established. A relative newcomer in environment sensing are the so called transceptors, membrane proteins that possess both solute transport and receptor-like signaling activities. Now, the transceptor concept is further enlarged to include micronutrient sensing via the iron and zinc high-affinity transporters of Saccharomyces cerevisiae. Interestingly, what seems to underline the transport and/or sensing function of receptors, transporters and transceptors is ligand-induced conformational alterations recognized by downstream intracellular effectors.

  7. Unique interaction pattern for a functionally biased ghrelin receptor agonist

    DEFF Research Database (Denmark)

    Sivertsen, Bjørn Behrens; Lang, Manja; Frimurer, Thomas M.

    2011-01-01

    Based on the conformationally constrained D-Trp-Phe-D-Trp (wFw) core of the prototype inverse agonist [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]substance P, a series of novel, small, peptide-mimetic agonists for the ghrelin receptor were generated. By using various simple, ring-constrained spacers...... connecting the D-Trp-Phe-D-Trp motif with the important C-terminal carboxyamide group, 40 nm agonism potency was obtained and also in one case (wFw-Isn-NH(2), where Isn is isonipecotic acid) ~80% efficacy. However, in contrast to all previously reported ghrelin receptor agonists, the piperidine-constrained w......Fw-Isn-NH(2) was found to be a functionally biased agonist. Thus, wFw-Isn-NH(2) mediated potent and efficacious signaling through the Ga(q) and ERK1/2 signaling pathways, but in contrast to all previous ghrelin receptor agonists it did not signal through the serum response element, conceivably the Ga(12...

  8. Megalin functions as an endocytic sonic hedgehog receptor.

    Science.gov (United States)

    McCarthy, Robert A; Barth, Jeremy L; Chintalapudi, Mastan R; Knaak, Christian; Argraves, W Scott

    2002-07-12

    Embryos deficient in the morphogen Sonic hedgehog (Shh) or the endocytic receptor megalin exhibit common neurodevelopmental abnormalities. Therefore, we have investigated the possibility that a functional relationship exists between the two proteins. During embryonic development, megalin was found to be expressed along the apical surfaces of neuroepithelial cells and was coexpressed with Shh in the ventral floor plate of the neural tube. Using enzyme-linked immunosorbent assay, homologous ligand displacement, and surface plasmon resonance techniques, it was found that the amino-terminal fragment of Shh (N-Shh) bound to megalin with high affinity. Megalin-expressing cells internalized N-Shh through a mechanism that was inhibited by antagonists of megalin, viz. anti-receptor-associated protein and anti-megalin antibodies. Heparin also inhibited N-Shh endocytosis, implicating proteoglycans in the internalization process, as has been described for other megalin ligands. Use of chloroquine to inhibit lysosomal proteinase activity showed that N-Shh endocytosed via megalin was not efficiently targeted to the lysosomes for degradation. The ability of megalin-internalized N-Shh to bypass lysosomes may relate to the finding that the interaction between N-Shh and megalin was resistant to dissociation with low pH. Together, these findings show that megalin is an efficient endocytic receptor for N-Shh. Furthermore, they implicate megalin as a new regulatory component of the Shh signaling pathway.

  9. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    Science.gov (United States)

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  10. Selective androgen receptor modulators as function promoting therapies.

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  11. Coomassie Brilliant Blue G is a more potent antagonist of P2 purinergic responses than Reactive Blue 2 (Cibacron Blue 3GA) in rat parotid acinar cells

    International Nuclear Information System (INIS)

    Soltoff, S.P.; McMillian, M.K.; Talamo, B.R.

    1989-01-01

    The ability of Brilliant Blue G (Coomassie Brilliant Blue G) and Reactive Blue 2 (Cibacron Blue 3GA) to block the effects of extracellular ATP on rat parotid acinar cells was examined by evaluating their effects on ATP-stimulated 45Ca 2+ entry and the elevation of [Ca 2+ ]i (Fura 2 fluorescence). ATP (300 microM) increased the rate of Ca 2+ entry to more than 25-times the basal rate and elevated [Ca 2+ ]i to levels more than three times the basal value. Brilliant Blue G and Reactive Blue 2 greatly reduced the entry of 45 Ca 2+ into parotid cells, but the potency of Brilliant Blue G (IC50 approximately 0.4 microM) was about 100-times that of Reactive Blue 2. Fura 2 studies demonstrated that inhibitory concentrations of these compounds did not block the cholinergic response of these cells, thus demonstrating the selectivity of the dye compounds for purinergic receptors. Unlike Reactive Blue 2, effective concentrations of Brilliant Blue G did not substantially quench Fura 2 fluorescence. The greater potency of Brilliant Blue G suggests that it may be very useful in identifying P2-type purinergic receptors, especially in studies which utilize fluorescent probes

  12. The First Fifteen Years of Steroid Receptor Research in Zebrafish; Characterization and Functional Analysis of the Receptors

    Directory of Open Access Journals (Sweden)

    Marcel J. M. Schaaf

    2017-07-01

    Full Text Available Steroid hormones regulate a wide range of processes in our body, and their effects are mediated by steroid receptors. In addition to their physiological role, these receptors mediate the effects of endocrine disrupting chemicals (EDCs and are widely used targets for dugs involved in the treatment of numerous diseases, ranging from cancer to inflammatory disorders. Over the last fifteen years, the zebrafish has increasingly been used as an animal model in steroid receptor research. Orthologues of all human steroid receptor genes appear to be present in zebrafish. All zebrafish steroid receptors have been characterized in detail, and their expression patterns have been analyzed. Functional studies have been performed using morpholino knockdown of receptor expression and zebrafish lines carrying mutations in one of their steroid receptor genes. To investigate the activity of the receptors in vivo, specific zebrafish reporter lines have been developed, and transcriptomic studies have been carried out to identify biomarkers for steroid receptor action. In this review, an overview of research on steroid receptors in zebrafish is presented, and it is concluded that further exploitation of the possibilities of the zebrafish model system will contribute significantly to the advancement of steroid receptor research in the next decade.

  13. The CCK(-like) receptor in the animal kingdom: functions, evolution and structures.

    Science.gov (United States)

    Staljanssens, Dorien; Azari, Elnaz Karimian; Christiaens, Olivier; Beaufays, Jérôme; Lins, Laurence; Van Camp, John; Smagghe, Guy

    2011-03-01

    In this review, the cholecystokinin (CCK)(-like) receptors throughout the animal kingdom are compared on the level of physiological functions, evolutionary basis and molecular structure. In vertebrates, the CCK receptor is an important member of the G-protein coupled receptors as it is involved in the regulation of many physiological functions like satiety, gastrointestinal motility, gastric acid secretion, gall bladder contraction, pancreatic secretion, panic, anxiety and memory and learning processes. A homolog for this receptor is also found in nematodes and arthropods, called CK receptor and sulfakinin (SK) receptor, respectively. These receptors seem to have evolved from a common ancestor which is probably still closely related to the nematode CK receptor. The SK receptor is more closely related to the CCK receptor and seems to have similar functions. A molecular 3D-model for the CCK receptor type 1 has been built together with the docking of the natural ligands for the CCK and SK receptors in the CCK receptor type 1. These molecular models can help to study ligand-receptor interactions, that can in turn be useful in the development of new CCK(-like) receptor agonists and antagonists with beneficial health effects in humans or potential for pest control. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  15. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n......AChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our...

  16. The vitamin d receptor and T cell function

    DEFF Research Database (Denmark)

    Kongsbak, Martin; Levring, Trine B; Geisler, Carsten

    2013-01-01

    The vitamin D receptor (VDR) is a nuclear, ligand-dependent transcription factor that in complex with hormonally active vitamin D, 1,25(OH)2D3, regulates the expression of more than 900 genes involved in a wide array of physiological functions. The impact of 1,25(OH)2D3-VDR signaling on immune...... function has been the focus of many recent studies as a link between 1,25(OH)2D3 and susceptibility to various infections and to development of a variety of inflammatory diseases has been suggested. It is also becoming increasingly clear that microbes slow down immune reactivity by dysregulating the VDR...... ultimately to increase their chance of survival. Immune modulatory therapies that enhance VDR expression and activity are therefore considered in the clinic today to a greater extent. As T cells are of great importance for both protective immunity and development of inflammatory diseases a variety of studies...

  17. Receptor tyrosine kinase structure and function in health and disease

    Directory of Open Access Journals (Sweden)

    Oleg A. Karpov

    2015-09-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane proteins that control the flow of information through signal transduction pathways, impacting on different aspects of cell function. RTKs are characterized by a ligand-binding ectodomain, a single transmembrane α-helix, a cytosolic region comprising juxtamembrane and kinase domains followed by a flexible C-terminal tail. Somatic and germline RTK mutations can induce aberrant signal transduction to give rise to cardiovascular, developmental and oncogenic abnormalities. RTK overexpression occurs in certain cancers, correlating signal strength and disease incidence. Diverse RTK activation and signal transduction mechanisms are employed by cells during commitment to health or disease. Small molecule inhibitors are one means to target RTK function in disease initiation and progression. This review considers RTK structure, activation, and signal transduction and evaluates biological relevance to therapeutics and clinical outcomes.

  18. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    Science.gov (United States)

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  19. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways.

    Science.gov (United States)

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó-Ollé, Anna; Cilleros-Mañé, Víctor; Just-Borràs, Laia

    2018-01-01

    In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function.

  20. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways

    Directory of Open Access Journals (Sweden)

    Josep Tomàs

    2018-04-01

    Full Text Available In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR in the mammalian neuromuscular junction (NMJ. Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally. These observations underlie the relevance of AR in the NMJ function.

  1. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  2. Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers

    OpenAIRE

    Levoye, Angélique; Dam, Julie; Ayoub, Mohammed A; Guillaume, Jean-Luc; Jockers, Ralf

    2006-01-01

    G-protein-coupled receptors (GPCRs) are important drug targets and are involved in virtually every biological process. However, there are still more than 140 orphan GPCRs, and deciphering their function remains a priority for fundamental and clinical research. Research on orphan GPCRs has concentrated mainly on the identification of their natural ligands, whereas recent data suggest additional ligand-independent functions for these receptors. This emerging concept is connected with the observ...

  3. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus.

    Directory of Open Access Journals (Sweden)

    Weiwei Lei

    Full Text Available Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in

  4. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus).

    Science.gov (United States)

    Lei, Weiwei; Ravoninjohary, Aurore; Li, Xia; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K; Jiang, Peihua

    2015-01-01

    Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces

  5. Lamin B Receptor: Interplay between Structure, Function and Localization

    Directory of Open Access Journals (Sweden)

    Eleni Nikolakaki

    2017-08-01

    Full Text Available Lamin B receptor (LBR is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity. Mutations within the transmembrane segments result in defects in cholesterol synthesis and are associated with diseases such as the Pelger–Huët anomaly and Greenberg skeletal dysplasia, whereas no such harmful mutations related to the anchoring properties of LBR have been reported so far. Recent evidence suggests a dynamic regulation of LBR expression levels, structural organization, localization and function, in response to various signals. The molecular mechanisms underlying this dynamic behavior have not yet been fully unraveled. Here, we provide an overview of the current knowledge of the interplay between the structure, function and localization of LBR, and hint at the interconnection of the two distinct functions of LBR.

  6. The vitamin D receptor and T cell function

    Directory of Open Access Journals (Sweden)

    Martin eKongsbak

    2013-06-01

    Full Text Available The vitamin D receptor (VDR is a nuclear, ligand-dependent transcription factor that in complex with hormonally active vitamin D, 1,25(OH2D3, regulates the expression of more than 900 genes involved in a wide array of physiological functions. The impact of 1,25(OH2D3-VDR signaling on immune function has been the focus of many recent studies as a link between 1,25(OH2D3 and sus-ceptibility to various infections and to development of a variety of inflammatory diseases has been suggested. It is also becoming increasingly clear that microbes slow down immune reactivity by dysregulating the VDR ultimately to increase their chance of survival. Immune modulatory therapies that enhance VDR expression and activity are therefore considered in the clinic today to a greater extent. As T cells are of great importance for both protective immunity and development of inflammatory diseases a variety of studies have been engaged investigating the impact of VDR ex-pression in T cells and found that VDR expression and activity plays an important role in both T cell development, differentiation and effector function. In this review we will analyze current know-ledge of VDR regulation and function in T cells and discuss its importance for immune activity.

  7. Do unliganded thyroid hormone receptors have physiological functions?

    Science.gov (United States)

    Chassande, O

    2003-08-01

    Thyroid hormone (TH) is required for the development of vertebrates and exerts numerous homeostatic functions in adults. TH acts through nuclear receptors which control the transcription of target genes. Unliganded and liganded thyroid hormone receptors (TRs) have been shown to exert opposite effects on the transcription of target genes in vitro. However, the occurance of an aporeceptor activity in vivo and its potential physiological significance has not been clearly addressed. Several data generated using experimental hypothyroidism and thyrotoxicosis in wild type and TR knockout mice support the notion that apoTRs have an intrinsic activity in several tIssues. ApoTRs, and in particular TRalpha1, are predominant during the early stages of vertebrate development and must be turned into holoTRs for post-natal development to proceed normally. However, the absence of striking alterations of embryonic and fetal development in mice devoid of TRs indicates that apoTRs do not play a fundamental role. During development, as well as in adults, apoTRs rather appears as a system which increases the range of transcriptional responses to moderate variations of T3.

  8. Structure and function of the human megalin receptor

    DEFF Research Database (Denmark)

    Dagil, Robert

    . The extracellular domain of megalin consists of several modular domains, of which the most abundant are the ligand binding complement type (CR) domains, that are divided into four clusters separated by YWTD -propeller domains. The broad ligand binding profile has associated megalin with the unwanted cellular uptake...... of aminoglycosides during antibacterial treatment, which can lead to nephro- and ototoxic side-effects. This thesis presents new insights into the structure-function relation of the megalin receptor. The interaction between megalin and several natural protein ligands as well as the aminoglycoside gentamicin...... were involved in binding, which utilizes the commonly found ligand binding motif. The details of the atomic resolutionmodel will aid the future design of effective megalin antagonists, however, since the common ligand binding motif of CR domains is used to bind gentamicin this may not be a trivial task...

  9. Molecular determinants of odorant receptor function in insects

    Indian Academy of Sciences (India)

    2014-07-20

    Jul 20, 2014 ... other host-odor responsive receptors from vector insect spe- cies would .... those that mediate host-seeking behaviour in insect disease vectors and ... receptors are transmitted and processed via olfactory circuits. (Vosshall ...

  10. Functional properties of Virus-Encoded and Virus-Regulated 7TM Receptors

    DEFF Research Database (Denmark)

    Spiess, Katja; Rosenkilde, Mette Marie

    2014-01-01

    During co-evolution with their hosts, viruses have developed several survival strategies that involve exploitation of 7TM receptors. These include virus-encoded 7TM receptors and ligands and viral regulation of endogenous receptors. Many functional properties have been ascribed to virus-exploited...

  11. Functional evolution of the vitamin D and pregnane X receptors

    Directory of Open Access Journals (Sweden)

    Ou Junhai

    2007-11-01

    Full Text Available Abstract Background The vitamin D receptor (VDR and pregnane X receptor (PXR are nuclear hormone receptors of the NR1I subfamily that show contrasting patterns of cross-species variation. VDR and PXR are thought to have arisen from duplication of an ancestral gene, evident now as a single gene in the genome of the chordate invertebrate Ciona intestinalis (sea squirt. VDR genes have been detected in a wide range of vertebrates including jawless fish. To date, PXR genes have not been found in cartilaginous fish. In this study, the ligand selectivities of VDRs were compared in detail across a range of vertebrate species and compared with those of the Ciona VDR/PXR. In addition, several assays were used to search for evidence of PXR-mediated hepatic effects in three model non-mammalian species: sea lamprey (Petromyzon marinus, zebrafish (Danio rerio, and African clawed frog (Xenopus laevis. Results Human, mouse, frog, zebrafish, and lamprey VDRs were found to have similar ligand selectivities for vitamin D derivatives. In contrast, using cultured primary hepatocytes, only zebrafish showed evidence of PXR-mediated induction of enzyme expression, with increases in testosterone 6β-hydroxylation activity (a measure of cytochrome P450 3A activity in other species and flurbiprofen 4-hydroxylation activity (measure of cytochrome P450 2C activity following exposure to known PXR activators. A separate assay in vivo using zebrafish demonstrated increased hepatic transcription of another PXR target, multidrug resistance gene (ABCB5, following injection of the major zebrafish bile salt, 5α-cyprinol 27-sulfate. The PXR target function, testosterone hydroxylation, was detected in frog and sea lamprey primary hepatocytes, but was not inducible in these two species by a wide range of PXR activators in other animals. Analysis of the sea lamprey draft genome also did not show evidence of a PXR gene. Conclusion Our results show tight conservation of ligand

  12. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  13. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Villela, Daniel C.; Teichmann, Anke

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may in...

  14. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinct...... receptor isoforms, of which isoforms 1, 2, and 4, encode functional proteins. Detailed pharmacology on isoforms 1 (unspliced receptor), and 2 (which has an 80 amino acid deletion within the third intracellular loop of the protein) revealed that both isoforms displayed robust responses to a series of known...... revealed a rank order of potency at both isoforms of clobenpropit>iodophenpropit>thioperamide, and these drugs are fivefold less potent at isoform 2 than isoform 1. To further explore the pharmacology of H(3) receptor function, we screened 150 clinically relevant neuropsychiatric drugs for H(3) receptor...

  15. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  16. Beta 2-adrenergic receptors on eosinophils. Binding and functional studies

    International Nuclear Information System (INIS)

    Yukawa, T.; Ukena, D.; Kroegel, C.; Chanez, P.; Dent, G.; Chung, K.F.; Barnes, P.J.

    1990-01-01

    We have studied the binding characteristics and functional effects of beta-adrenoceptors on human and guinea pig eosinophils. We determined the binding of the beta-antagonist radioligand [125I]pindolol (IPIN) to intact eosinophils obtained from the peritoneal cavity of guinea pigs and from blood of patients with eosinophilia. Specific binding was saturable, and Scatchard analysis showed a single binding site with a dissociation constant (Kd) of 24.6 pM and maximal number of binding sites (Bmax) of 7,166 per cell. ICI 118,551, a beta 2-selective antagonist, inhibited IPIN binding with a Ki value of 0.28 nM and was approximately 5,000-fold more effective than the beta 1-selective antagonist, atenolol. Isoproterenol increased cAMP levels about 5.5-fold above basal levels (EC50 = 25 microM); albuterol, a beta 2-agonist, behaved as a partial agonist with a maximal stimulation of 80%. Binding to human eosinophils gave similar results with a Kd of 25.3 pM and a Bmax corresponding to 4,333 sites per cell. Incubation of both human and guinea pig eosinophils with opsonized zymosan (2 mg/ml) or with phorbol myristate acetate (PMA) (10(-8) and 10(-6) M) resulted in superoxide anion generation and the release of eosinophil peroxidase; albuterol (10(-7) to 10(-5) M) had no inhibitory effect on the release of these products. Thus, eosinophils from patients with eosinophilia and from the peritoneal cavity of guinea pigs possess beta-receptors of the beta 2-subtype that are coupled to adenylate cyclase; however, these receptors do not modulate oxidative metabolism or degranulation. The possible therapeutic consequences of these observations to asthma are discussed

  17. Serotonin and brain function: a tale of two receptors.

    Science.gov (United States)

    Carhart-Harris, R L; Nutt, D J

    2017-09-01

    Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.

  18. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  19. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    Directory of Open Access Journals (Sweden)

    Gerd Krause

    2017-04-01

    Full Text Available The thyroid-stimulating hormone receptor (TSHR is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs. TSHR and its endogenous ligand thyrotropin (TSH are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016 concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other

  20. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work.

    Science.gov (United States)

    Kleinau, Gunnar; Worth, Catherine L; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to

  1. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    Science.gov (United States)

    Kleinau, Gunnar; Worth, Catherine L.; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to

  2. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors

    Science.gov (United States)

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.

    2013-01-01

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates. PMID:23466675

  3. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors.

    Science.gov (United States)

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E

    2013-03-06

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.

  4. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis

    DEFF Research Database (Denmark)

    Husted, L B; Harsløf, T; Stenkjær, L

    2013-01-01

    variant allele, which has been associated with increased receptor function in monocytes, was associated with increased total hip BMD in women. With the exception of His155Tyr for which we found conflicting results in men and women, our results are consistent with the phenotype of the knockout mouse......UNLABELLED: The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three...... of these polymorphisms were associated with BMD and fracture risk. INTRODUCTION: The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted...

  5. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  6. Functional expression of the 5-HT1c receptor in neuronal and nonneuronal cells

    International Nuclear Information System (INIS)

    Julius, D.; MacDermott, A.B.; Jessel, T.M.; Huang, K.; Molineaux, S.; Schieren, I.; Axel, R.

    1988-01-01

    The isolation of the genes encoding the multiple serotonin receptor subtypes and the ability to express these receptors in new cellular environments will help to elucidate the molecular mechanisms of action of serotonin in the mammalian brain. The cloning of most neurotransmitter receptors has required the purification of receptor, the determination of partial protein sequence, and the synthesis of oligonucleotide probes with which to obtain cDNA or genomic clones. However, the serotonin receptors have not been purified and antibodies have not been generated. The authors therefore designed a cDNA expression system that permits the identification of functional cDNA clones encoding serotonin receptors in the absence of protein sequence information. They have combined cloning in RNA expression vectors with an electrophysiological assay in oocytes to isolate a functional cDNA clone encoding the entire 5-HT 1c receptor. The sequence of this clone reveals that the 5-HT 1c receptor belongs to a family of G-protein-coupled receptors that are thought to traverse the membrane seven times. Mouse fibroblasts transformed with this clone bind serotonergic ligands and respond to serotonin with an elevation in intracellular calcium. Moreover, in situ hybridization and Northern blot analysis indicate that the 5-HT 1c receptor mRNA is expressed in a wide variety of neurons in the rat central nervous system, suggesting that this receptor plays a prominent role in neuronal function

  7. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-01-01

    taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we...

  8. Modern approaches to the design of memory and cognitive function stimulants based on AMPA receptor ligands

    International Nuclear Information System (INIS)

    Grigoriev, V V; Proshin, A N; Kinzirsky, A S; Bachurin, Sergey O

    2009-01-01

    Data on the structure and properties of compounds acting on AMPA receptors, the key subtype of ionotropic glutamate receptors of the mammalian central nervous system, are analyzed. Data on the role of these receptors in provision of memory and cognitive function formation and impairment processes are presented. The attention is focused on the modern views on the mechanisms of AMPA receptor desensitization and deactivation and action of substances affecting these processes. The structures of key positive modulators of AMPA receptors are given. The problems of application of these substances as therapeutic means for preventing and treating neurodegenerative and psychoneurological diseases are discussed. Bibliography - 121 references.

  9. Modern approaches to the design of memory and cognitive function stimulants based on AMPA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, V V; Proshin, A N; Kinzirsky, A S; Bachurin, Sergey O [Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-05-31

    Data on the structure and properties of compounds acting on AMPA receptors, the key subtype of ionotropic glutamate receptors of the mammalian central nervous system, are analyzed. Data on the role of these receptors in provision of memory and cognitive function formation and impairment processes are presented. The attention is focused on the modern views on the mechanisms of AMPA receptor desensitization and deactivation and action of substances affecting these processes. The structures of key positive modulators of AMPA receptors are given. The problems of application of these substances as therapeutic means for preventing and treating neurodegenerative and psychoneurological diseases are discussed. Bibliography - 121 references.

  10. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  11. Modern approaches to the design of memory and cognitive function stimulants based on AMPA receptor ligands

    Science.gov (United States)

    Grigoriev, V. V.; Proshin, A. N.; Kinzirsky, A. S.; Bachurin, Sergey O.

    2009-05-01

    Data on the structure and properties of compounds acting on AMPA receptors, the key subtype of ionotropic glutamate receptors of the mammalian central nervous system, are analyzed. Data on the role of these receptors in provision of memory and cognitive function formation and impairment processes are presented. The attention is focused on the modern views on the mechanisms of AMPA receptor desensitization and deactivation and action of substances affecting these processes. The structures of key positive modulators of AMPA receptors are given. The problems of application of these substances as therapeutic means for preventing and treating neurodegenerative and psychoneurological diseases are discussed. Bibliography — 121 references.

  12. Minoxidil may suppress androgen receptor-related functions.

    Science.gov (United States)

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  13. The meth brain: methamphetamines alter brain functions via NMDA receptors

    Czech Academy of Sciences Publication Activity Database

    Proft, Juliane; Weiss, Norbert

    2015-01-01

    Roč. 34, č. 1 (2015), s. 1-3 ISSN 0231-5882 R&D Projects: GA ČR GA15-13556S Institutional support: RVO:61388963 Keywords : ion channel * methamphetamine * piriform cortex * NMDA receptor * AMPA receptor Subject RIV: CE - Biochemistry Impact factor: 0.892, year: 2015

  14. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    DEFF Research Database (Denmark)

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we...... in normal human intestinal epithelia and could play a role in cholera....

  15. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  16. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.

    Science.gov (United States)

    Gelband, C H; Sumners, C; Lu, D; Raizada, M K

    1998-02-27

    The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.

  17. EphA2 is a functional receptor for the growth factor progranulin.

    Science.gov (United States)

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  18. Functional relevance of neurotransmitter receptor heteromers in the central nervous system.

    Science.gov (United States)

    Ferré, Sergi; Ciruela, Francisco; Woods, Amina S; Lluis, Carme; Franco, Rafael

    2007-09-01

    The existence of neurotransmitter receptor heteromers is becoming broadly accepted and their functional significance is being revealed. Heteromerization of neurotransmitter receptors produces functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Neurotransmitter receptor heteromers can function as processors of computations that modulate cell signaling. Thus, the quantitative or qualitative aspects of the signaling generated by stimulation of any of the individual receptor units in the heteromer are different from those obtained during coactivation. Furthermore, recent studies demonstrate that some neurotransmitter receptor heteromers can exert an effect as processors of computations that directly modulate both pre- and postsynaptic neurotransmission. This is illustrated by the analysis of striatal receptor heteromers that control striatal glutamatergic neurotransmission.

  19. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases.

    Science.gov (United States)

    Bocharov, Eduard V; Sharonov, Georgy V; Bocharova, Olga V; Pavlov, Konstantin V

    2017-09-01

    Among membrane receptors, the single-span receptor protein kinases occupy a broad but specific functional niche determined by distinctive features of the underlying transmembrane signaling mechanisms that are briefly overviewed on the basis of some of the most representative examples, followed by a more detailed discussion of several hierarchical levels of organization and interactions involved. All these levels, including single-molecule interactions (e.g., dimerization, liganding, chemical modifications), local processes (e.g. lipid membrane perturbations, cytoskeletal interactions), and larger scale phenomena (e.g., effects of membrane surface shape or electrochemical potential gradients) appear to be closely integrated to achieve the observed diversity of the receptor functioning. Different species of receptor protein kinases meet their specific functional demands through different structural features defining their responses to stimulation, but certain common patterns exist. Signaling by receptor protein kinases is typically associated with the receptor dimerization and clustering, ligand-induced rearrangements of receptor domains through allosteric conformational transitions with involvement of lipids, release of the sequestered lipids, restriction of receptor diffusion, cytoskeleton and membrane shape remodeling. Understanding of complexity and continuity of the signaling processes can help identifying currently neglected opportunities for influencing the receptor signaling with potential therapeutic implications. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Structure-function relationships for the interleukin 2 receptor system

    Directory of Open Access Journals (Sweden)

    Richard J. Robb

    1987-01-01

    Full Text Available Receptors for interleukin 2 (IL-2 esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta] chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.

  1. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking

    DEFF Research Database (Denmark)

    Roed, Sarah Noerklit; Nøhr, Anne Cathrine; Wismann, Pernille

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have......) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue...... coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression...

  2. Angiotensin II Type 2 Receptor and Receptor Mas Are Colocalized and Functionally Interdependent in Obese Zucker Rat Kidney

    DEFF Research Database (Denmark)

    Patel, Sanket N; Ali, Quaisar; Samuel, Preethi

    2017-01-01

    The actions of angiotensin II type 2 receptor (AT2R) and the receptor Mas (MasR) are complex but show similar pronatriuretic function; particularly, AT2R expression and natriuretic function are enhanced in obese/diabetic rat kidney. In light of some reports suggesting a potential positive...... interaction between these receptors, we tested hypothesis that renal AT2R and MasR physically interact and are interdependent to stimulate cell signaling and promote natriuresis in obese rats. We found that infusion of AT2R agonist C21 in obese Zucker rats (OZR) increased urine flow and urinary Na excretion...... coimmunoprecipitated with MasR in cortical homogenate of OZR. Immunoblotting of cortical homogenate cross-linked with zero-length oxidative (sulfhydryl groups) cross-linker cupric-phenanthroline revealed a shift of AT2R and MasR bands upward with overlapping migration for their complexes which were sensitive...

  3. [GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors?].

    Science.gov (United States)

    Levoye, Angélique; Jockers, Ralf

    2007-01-01

    G protein-coupled receptors (GPCRs), also called seven transmembrane domain (7TM) proteins, represent the largest family of cell surface receptors. GPCRs control a variety of physiological processes, are involved in multiple diseases and are major drug targets. Despite a vast effort of academic and industrial research, more than one hundred receptors remain orphans. These orphan GPCRs offer a great potential for drug discovery, as almost 60% of currently prescribed drugs target GPCRs. Deorphenization strategies have concentrated mainly on the identification of the natural ligands of these proteins. Recent advances have shown that orphan GPCRs, similar to orphan nuclear receptors, can regulate the function of non-orphan receptors by heterodimerization. These findings not only help to better understand the extraordinary diversity of GPCRs, but also open new perspectives for the identification of the function of these orphan receptors that hold great therapeutic potential.

  4. Molecular Mechanisms of β2-Adrenergic Receptor Function and Regulation

    OpenAIRE

    McGraw, Dennis W.; Liggett, Stephen B.

    2005-01-01

    It is now clear that the β2-adrenergic receptor continuously oscillates between various conformations in the basal state, and that agonists act to stabilize one or more conformations. It is conceivable that synthetic agonists might be engineered to preferentially confine the receptor to certain conformations deemed clinically important while having a less stabilizing effect on unwanted conformations. In addition, studies of genetically engineered mice have revealed previously unrecognized cro...

  5. P2X receptor channels in endocrine glands

    Czech Academy of Sciences Publication Activity Database

    Stojilkovic, S. S.; Zemková, Hana

    2013-01-01

    Roč. 2, č. 4 (2013), s. 173-180 ISSN 2190-460X R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : ATP * purinergic P2X receptor channels * pituitary * endocrine glands Subject RIV: ED - Physiology

  6. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    Science.gov (United States)

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2013-04-01

    Full Text Available Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.

  8. Important roles of P2Y receptors in the inflammation and cancer of digestive system.

    Science.gov (United States)

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-05-10

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future.

  9. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

    Science.gov (United States)

    Zhao, Lan-Xue; Ge, Yan-Hui; Xiong, Cai-Hong; Tang, Ling; Yan, Ying-Hui; Law, Ping-Yee; Qiu, Yu; Chen, Hong-Zhuan

    2018-03-06

    M1 muscarinic acetylcholine receptors (M1 mAChRs) are the most abundant muscarinic receptors in the hippocampus and have been shown to have procognitive effects. AMPA receptors (AMPARs), an important subtype of ionotropic glutamate receptors, are key components in neurocognitive networks. However, the role of AMPARs in procognitive effects of M1 mAChRs and how M1 mAChRs affect the function of AMPARs remain poorly understood. Here, we found that basal expression of GluA1, a subunit of AMPARs, and its phosphorylation at Ser845 were maintained by M1 mAChR activity. Activation of M1 mAChRs promoted membrane insertion of GluA1, especially to postsynaptic densities. Impairment of hippocampus-dependent learning and memory by antagonism of M1 mAChRs paralleled the reduction of GluA1 expression, and improvement of learning and memory by activation of M1 mAChRs was accompanied by the synaptic insertion of GluA1 and its increased phosphorylation at Ser845. Furthermore, abrogation of phosphorylation of Ser845 residue of GluA1 ablated M1 mAChR-mediated improvement of learning and memory. Taken together, these results show a functional correlation of M1 mAChRs and GluA1 and the essential role of GluA1 in M1 mAChR-mediated cognitive improvement.-Zhao, L.-X., Ge, Y.-H., Xiong, C.-H., Tang, L., Yan, Y.-H., Law, P.-Y., Qiu, Y., Chen, H.-Z. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

  10. GABA_A receptor function is regulated by lipid bilayer elasticity

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Werge, Thomas; Berthelsen, Camilla

    2006-01-01

    ( s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABAA receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown...... reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABAA receptor function is regulated by lipid bilayer elasticity....... PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer....

  11. Functional characterisation of human glycine receptors in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.

    2005-01-01

    The human glycine receptor subtypes alpha1beta and alpha2 have been expressed stably in HEK293 cells, and the functional characteristics of the receptors have been characterised in the FLIPR Membrane Potential Assay. The pharmacological properties obtained for nine standard ligands at the two rec...

  12. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  13. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    Science.gov (United States)

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  14. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    Science.gov (United States)

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Validation of antibodies for neuroanatomical localization of the P2Y receptor in macaque brain

    DEFF Research Database (Denmark)

    Dreisig, Karin; Degn, Matilda; Sund, Louise

    2016-01-01

    Focus on the purinergic receptor P2Y11 has increased following the finding of an association between the sleep disorder narcolepsy and a genetic variant in P2RY11 causing decreased gene expression. Narcolepsy is believed to arise from an autoimmune destruction of the hypothalamic neurons that pro......Focus on the purinergic receptor P2Y11 has increased following the finding of an association between the sleep disorder narcolepsy and a genetic variant in P2RY11 causing decreased gene expression. Narcolepsy is believed to arise from an autoimmune destruction of the hypothalamic neurons...

  16. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function

  17. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kitamura, Kazuo; Nagata, Sayaka; Hikosaka, Tomomi [Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan)

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.

  18. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  19. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors

    OpenAIRE

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.

    2013-01-01

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergi...

  20. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi

    Science.gov (United States)

    Bai, Hua; Palli, Subba R.

    2010-01-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action. PMID:20457145

  1. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  2. Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling.

    Science.gov (United States)

    Moriyama, Yoshinori; Hiasa, Miki; Sakamoto, Shohei; Omote, Hiroshi; Nomura, Masatoshi

    2017-09-01

    Vesicular storage of ATP is one of the processes initiating purinergic chemical transmission. Although an active transport mechanism was postulated to be involved in the processes, a transporter(s) responsible for the vesicular storage of ATP remained unidentified for some time. In 2008, SLC17A9, the last identified member of the solute carrier 17 type I inorganic phosphate transporter family, was found to encode the vesicular nucleotide transporter (VNUT) that is responsible for the vesicular storage of ATP. VNUT transports various nucleotides in a membrane potential-dependent fashion and is expressed in the various ATP-secreting cells. Mice with knockout of the VNUT gene lose vesicular storage and release of ATP from neurons and neuroendocrine cells, resulting in blockage of the initiation of purinergic chemical transmission. Thus, VNUT plays an essential role in the vesicular storage and release of ATP. The VNUT knockout mice exhibit resistance for neuropathic pain and a therapeutic effect against diabetes by way of increased insulin sensitivity. Thus, VNUT inhibitors and suppression of VNUT gene expression may be used for therapeutic purposes through suppression of purinergic chemical transmission. This review summarizes the studies to date on VNUT and discusses what we have learned about the relevance of vesicular ATP release as a potential drug target.

  3. The structure and function of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Rasmussen, Søren Gøgsig Faarup; Kobilka, Brian K

    2009-01-01

    G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane-protein...

  4. Receptor mutagenesis strategies for examination of structure-function relationships

    NARCIS (Netherlands)

    Blomenröhr, Marion; Vischer, Henry F; Bogerd, Jan

    2004-01-01

    This chapter describes three different strategies of receptor mutagenesis with their advantages, disadvantages, and limitations. Oligonucleotide-directed mutagenesis using either the Altered Sites II in vitro mutagenesis system or the GeneTailor site-directed mutagenesis system can generate base

  5. Scavenger receptor AI/II truncation, lung function and COPD

    DEFF Research Database (Denmark)

    Thomsen, M; Nordestgaard, B G; Tybjaerg-Hansen, A

    2011-01-01

    The scavenger receptor A-I/II (SRA-I/II) on alveolar macrophages is involved in recognition and clearance of modified lipids and inhaled particulates. A rare variant of the SRA-I/II gene, Arg293X, truncates the distal collagen-like domain, which is essential for ligand recognition. We tested whet...

  6. Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    LENUS (Irish Health Repository)

    Toumi, F

    2011-02-01

    Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function.

  7. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    Science.gov (United States)

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  8. Tyrosine kinase receptor RON functions downstream of the erythropoietin receptor to induce expansion of erythroid progenitors

    NARCIS (Netherlands)

    van den Akker, Emile; van Dijk, Thamar; Parren-van Amelsvoort, Martine; Grossmann, Katja S.; Schaeper, Ute; Toney-Earley, Kenya; Waltz, Susan E.; Löwenberg, Bob; von Lindern, Marieke

    2004-01-01

    Erythropoietin (EPO) is required for cell survival during differentiation and for progenitor expansion during stress erythropoiesis. Although signaling pathways may couple directly to docking sites on the EPO receptor (EpoR), additional docking molecules expand the signaling platform of the

  9. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  10. Multivalent Fcγ-receptor engagement by a hexameric Fc-fusion protein triggers Fcγ-receptor internalisation and modulation of Fcγ-receptor functions.

    Science.gov (United States)

    Qureshi, O S; Rowley, T F; Junker, F; Peters, S J; Crilly, S; Compson, J; Eddleston, A; Björkelund, H; Greenslade, K; Parkinson, M; Davies, N L; Griffin, R; Pither, T L; Cain, K; Christodoulou, L; Staelens, L; Ward, E; Tibbitts, J; Kiessling, A; Smith, B; Brennan, F R; Malmqvist, M; Fallah-Arani, F; Humphreys, D P

    2017-12-06

    Engagement of Fcγ-receptors triggers a range of downstream signalling events resulting in a diverse array of immune functions. As a result, blockade of Fc-mediated function is an important strategy for the control of several autoimmune and inflammatory conditions. We have generated a hexameric-Fc fusion protein (hexameric-Fc) and tested the consequences of multi-valent Fcγ-receptor engagement in in vitro and in vivo systems. In vitro engagement of hexameric-Fc with FcγRs showed complex binding interactions that altered with receptor density and triggered the internalisation and degradation of Fcγ-receptors. This caused a disruption of Fc-binding and phagocytosis. In vivo, in a mouse ITP model we observed a short half-life of hexameric-Fc but were nevertheless able to observe inhibition of platelet phagocytosis several days after hexameric-Fc dosing. In cynomolgus monkeys, we again observed a short half-life, but were able to demonstrate effective FcγR blockade. These findings demonstrate the ability of multi-valent Fc-based therapeutics to interfere with FcγR function and a potential mechanism through which they could have a sustained effect; the internalisation and degradation of FcγRs.

  11. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    OpenAIRE

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepid...

  12. P2Y2 and P2Y4 receptors regulate pancreatic Ca²+-activated K+ channels differently

    DEFF Research Database (Denmark)

    Klærke, Susanne Edeling Hede; Amstrup, Jan; Klærke, Dan Arne

    2005-01-01

    Extracellular ATP is an important regulator of transepithelial transport in a number of tissues. In pancreatic ducts, we have shown that ATP modulates epithelial K+ channels via purinergic receptors, most likely the P2Y2 and P2Y4 receptors, but the identity of the involved K+ channels was not cle...

  13. Helminthosporic acid functions as an agonist for gibberellin receptor.

    Science.gov (United States)

    Miyazaki, Sho; Jiang, Kai; Kobayashi, Masatomo; Asami, Tadao; Nakajima, Masatoshi

    2017-11-01

    Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.

  14. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  15. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    Directory of Open Access Journals (Sweden)

    Maria Martí-Solano

    Full Text Available Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.

  16. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  17. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    Science.gov (United States)

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  18. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    Directory of Open Access Journals (Sweden)

    Karolina Corin

    Full Text Available A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  19. Functional specificity of sex pheromone receptors in the cotton bollworm Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Male moths can accurately perceive the sex pheromone emitted from conspecific females by their highly accurate and specific olfactory sensory system. Pheromone receptors are of special importance in moth pheromone reception because of their central role in chemosensory signal transduction processes that occur in olfactory receptor neurons in the male antennae. There are a number of pheromone receptor genes have been cloned, however, only a few have been functionally characterized. Here we cloned six full-length pheromone receptor genes from Helicoverpa armigera male antennae. Real-time PCR showing all genes exhibited male-biased expression in adult antennae. Functional analyses of the six pheromone receptor genes were then conducted in the heterologous expression system of Xenopus oocytes. HarmOR13 was found to be a specific receptor for the major sex pheromone component Z11-16:Ald. HarmOR6 was equally tuned to both of Z9-16: Ald and Z9-14: Ald. HarmOR16 was sensitively tuned to Z11-16: OH. HarmOR11, HarmOR14 and HarmOR15 failed to respond to the tested candidate pheromone compounds. Our experiments elucidated the functions of some pheromone receptor genes of H. armigera. These advances may provide remarkable evidence for intraspecific mating choice and speciation extension in moths at molecular level.

  20. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    Science.gov (United States)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  1. Regulation versus modulation in GnRH receptor function

    International Nuclear Information System (INIS)

    Zolman, J.C.; Theodoropoulos, T.J.

    1985-01-01

    Serum luteinizing hormone (LH) concentration after exposure to gonadotropin-releasing hormone (GnRH) indicates that an instantaneous increase occurs in the rate of release of LH directly from the anterior pituitary, as measured dynamically during superfusion in vitro. On the other hand, estradiol-17 beta (E2) alone shows no such instantaneous effect on LH release rate (at least for the first four hours), in either physiologic or pharmacologic concentrations. At the same time, brief (ten to 30 minute) exposure of isolated anterior pituitary plasma membranes to physiologic concentrations of E2 significantly alters the binding of a fully biologically active 125 I-GnRH to its plasma membrane receptor protein. In order to characterize the effect of E2 on GnRH binding further, dispersed bovine anterior pituitary cells were preincubated for six hours in the presence or absence of physiologic concentrations of E2 (10(-10)M). Following preincubation in the presence of E2, the cell suspension was incubated for 30 minutes with physiologic concentrations (5 x 10(-11) - 5 x 10(-10)M) of a fully biologically active 125 I-GnRH. The treatment, at least, doubled the number of biologically important high affinity GnRH binding sites (Kd's . 7.5 x -10(-11) - 4.5 x 10(-10)M), and changed the binding capacity of some of the binding sites up to three fold, which altered the cooperativity of GnRH-receptor interaction. Thus, the interaction of E2 with GnRH at the level of GnRH receptor is mandatory for the short-term pituitary effect of E2 on LH release in vitro and in vivo

  2. [Structure and function of suburothelial myofibroblasts in the human urinary bladder under normal and pathological conditions].

    Science.gov (United States)

    Neuhaus, J; Heinrich, M; Schlichting, N; Oberbach, A; Fitzl, G; Schwalenberg, T; Horn, L-C; Stolzenburg, J-U

    2007-09-01

    Myofibroblasts play a pivotal role in numerous pathological alterations. Clarification of the structure and function and of the cellular plasticity of this cell type in the bladder may lead to new insights into the pathogenesis of lower urinary tract disorders. Bladder biopsies from patients with bladder carcinoma and interstitial cystitis were used to analyse the morphology and receptor expression using confocal immunofluorescence and electron microscopy. Cytokine effects and coupling behavior were tested in cultured myofibroblasts and detrusor smooth muscle cells. Myofibroblasts are in close contact with the suburothelial capillary network. They express Cx43 and form functional syncytia. The expression of muscarinic and purinergic receptors is highly variable. Dye coupling experiments showed differences to detrusor myocytes. Upregulation of smooth muscle cell alpha-actin and/or transdifferentiation into smooth muscle cells may contribute to the etiology of urge incontinence. A multi-step model is presented as a working hypothesis.

  3. Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones.

    Science.gov (United States)

    Horackova, M; Huang, M H; Armour, J A

    1994-05-01

    To determine the capacity of ATP to modify cardiomyocytes directly or indirectly via peripheral autonomic neurones, the effects of various purinergic agents were studied on long term cultures of adult guinea pig ventricular myocytes and their co-cultures with extracardiac (stellate ganglion) or intrinsic cardiac neurones. Ventricular myocytes and cardiac neurones were enzymatically dissociated and plated together or alone (myocytes only). Myocyte cultures were used for experiments after three to six weeks. The electrical and contractile properties of cultured myocytes and myocyte-neuronal networks were investigated. The spontaneous beating frequency of ventricular myocytes co-cultured with stellate ganglion neurones increased by approximately 140% (p under control conditions, but when beta adrenergic receptors of tetrodotoxin sensitive neural responses were blocked, ATP induced greater augmentation (> 100%). In contrast, ATP induced much smaller effects in non-innervated myocyte cultures (approximately 26%, p UTP > MSATP > beta gamma ATP > alpha beta ATP. Adenosine (10(-4) M) attenuated the beating frequency of myocytes in both types of co-culture, while not significantly affecting non-innervated myocyte cultures. The experimental model used in this study showed that extrinsic and intrinsic cardiac neurones which possess P2 receptors can greatly enhance cardiac myocyte contractile rate when activated by ATP. Since adenosine reduced contractile rate in both types of co-cultures while not affecting non-innervated myocytes, it is concluded that some of these neurones possess P1 receptors.

  4. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    Science.gov (United States)

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  5. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    Science.gov (United States)

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  6. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  7. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Science.gov (United States)

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  8. Intrapulmonary receptors in the Tegu lizard: II. Functional characteristics and localization;.

    Science.gov (United States)

    Scheid, P; Kuhlmann, W D; Fedde, M R

    1977-02-01

    Intrapulmonary receptors identified in the Tegu lizard by single-unit vagal recording (Fedde et al., 1977) were subjected to a number of stimuli and localized within the lung. Some carbon dioxide receptors could follow periodic changes in intrapulmonary CO2 concentrations as rapidly as 1.3 Hz; No oxygen sensitivity was observed with this receptor type, and halothane markedly depressed the discharge frequency. In response to intravenously injected acetazolamide they increased their discharge frequency and became almost totally insensitive to CO2, suggesting molecular per se is not the direct controller of receptor discharge; These receptors show many of the functional characteristics described for those in the avian lung. Afferent activity from both CO2 and mechanoreceptors could be elicited by electrically stimulating the lung surface. The CO2 receptors appeared to be organized in a receptive field covering more than 1 cm2 of lung surface, multiple receptors being innervated by a single afferent fiber. Activity in afferent fibers from mechanoreceptors could be evoked from only one distinct spot on the lung surface. Conduction velocities of afferent fibers from CO2 receptors ranged from 1 to 3 m-sec-1; from mechanoreceptors, from 1.9 to 5.2 m-sec-1.

  9. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    Science.gov (United States)

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  10. A robust and rapid method of producing soluble, stable, and functional G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Karolina Corin

    Full Text Available Membrane proteins, particularly G-protein coupled receptors (GPCRs, are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.

  11. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Martin Ligr

    Full Text Available Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR and estrogen receptor (ER in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis.

  12. Stabilization of functional recombinant cannabinoid receptor CB(2 in detergent micelles and lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Krishna Vukoti

    Full Text Available Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB(2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB(2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB(2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of (2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB(2 in dodecyl maltoside (DDM/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB(2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at

  13. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka

    2008-01-01

    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase...... differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane...

  14. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-01-01

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα + ) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  15. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  16. Functional pharmacology of cloned heterodimeric GABA-B receptors expressed in mammalian cells

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    1999-01-01

    reported in different tissues, and this study thus provides a functional assay of cloned GABAB receptors which should be a valuable tool for further characterization of GABAB ligands. Finally, we can conclude that the functional pharmacological profiles of the two GABABR1 splice variants are very similar....

  17. METHODS FOR RECOMBINANT EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF HUMAN CANNABINOID RECEPTOR CB2

    Directory of Open Access Journals (Sweden)

    Alexei A. Yeliseev

    2013-03-01

    Full Text Available Cannabinoid receptor CB2 is a seven transmembrane-domain integral membrane protein that belongs to a large superfamily of G protein-coupled receptors (GPCR. CB2 is a part of the endocannabinoid system that plays vital role in regulation of immune response, inflammation, pain sensitivity, obesity and other physiological responses. Information about the structure and mechanisms of functioning of this receptor in cell membranes is essential for the rational development of specific pharmaceuticals. Here we review the methodology for recombinant expression, purification, stabilization and biochemical characterization of CB2 suitable for preparation of multi-milligram quantities of functionally active receptor. The biotechnological protocols include expression of the recombinant CB2 in E. coli cells as a fusion with the maltose binding protein, stabilization with a high affinity ligand and a derivative of cholesterol in detergent micelles, efficient purification by tandem affinity chromatography, and reconstitution of the receptor into lipid bilayers. The purified recombinant CB2 receptor is amenable to functional and structural studies including nuclear magnetic resonance spectroscopy and a wide range of biochemical and biophysical techniques.

  18. Cloning and functional characterization of the DA2 receptor gene in Chinese mitten crab (Eriocheir sinensis)

    Science.gov (United States)

    Xu, Min-jie; Zhang, Cong; Yang, Zhigang

    2018-01-01

    Dopamine (DA) plays a modulatory role in numerous physiological processes such as light adaptation and food intake, and exerts these functions through DA receptors (DARs). This study presents, for the first time, isolation and characterization of the dopamine receptor 2(DA2 receptor) cDNA from the intestinal tissue of Eriocheir sinensis, an economically important freshwater aquaculture species in China. The DA2 receptor cDNA sequence, which was obtained by rapid amplification of cDNA ends, is 2369bp long, encode peptide of 589 amino acid, and is highly homologous to related sequences in crustaceans. Analysis of the deduced amino acid sequence and the structure of the DA2 indicated that this receptor is a member of the family of G protein-coupled receptors (GPCRs), as it contains seven transmembrane domains and other common signatures of GPCRs. RT-PCR showed that the expression of the DA2 receptor gene was distributed in various tissues, and high expression levels were observed in the cranial ganglia and the thoracic ganglia. Further study of the effect of photoperiod on DA2 expression showed that constant darkness induced a significant increase in DA2 expression in the cranial ganglia. Finally, analysis of DA2 receptor expression under different feeding statuses showed that there was significantly greater expression in the hepatopancreas and intestines after feeding than before feeding, but there were no differences in expression between the before feeding and during feeding periods in either tissue. Our results indicate that the DA2 receptor structurally belongs to the family of G protein-coupled receptors, and that the cranial ganglia are the main tissues in which the DA2 receptor participates in light adaptation during dark hours. In addition, the DA2 receptor in E. sinensis may be involved in the physiological regulation of the hepatopancreas and digestive tract after the ingestion of food. This study provides a foundation for further exploration of the light

  19. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Thomas B Duguet

    2016-07-01

    Full Text Available Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the

  20. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms.

    Directory of Open Access Journals (Sweden)

    Becky J Proskocil

    Full Text Available BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.

  1. Ebselen has lithium-like effects on central 5-HT2A receptor function.

    Science.gov (United States)

    Antoniadou, I; Kouskou, M; Arsiwala, T; Singh, N; Vasudevan, S R; Fowler, T; Cadirci, E; Churchill, G C; Sharp, T

    2018-02-27

    Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in G q protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here we investigated both ebselen and lithium in models of the 5-HT 2A receptor, a G q protein coupled receptor implicated in lithium's actions. 5-HT 2A receptor function was modelled in mice by measuring the behavioural (head-twitches) and cortical immediate early gene (IEG; Arc, c-fos and Erg2 mRNA) responses to 5-HT 2A receptor agonist administration. Ebselen and lithium were administered either acutely or chronically prior to assessment of 5-HT 2A receptor function. Given the SSRI augmenting action of lithium and 5-HT 2A antagonists, ebselen was also tested for this action by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT 2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690,330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen increased regional brain 5-HT synthesis and enhanced the increase in extracellular 5-HT induced by citalopram. The current data demonstrate lithium-mimetic effects of ebselen in different experimental models of 5-HT 2A receptor function, likely mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorder, including as an antidepressant augmenting agent. This article is protected by copyright. All rights reserved.

  2. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J.; Meinild, A.-K.

    2013-01-01

    AIM: A number of K(+) channels are regulated by small, fast changes in cell volume. The mechanisms underlying cell volume sensitivity are not known, but one possible mechanism could be purinergic signalling. Volume activated ATP release could trigger signalling pathways that subsequently lead...... stimuli. Basal ATP release was approx. three times higher in the KCNQ1 + AQP1 and KCNQ1 injected oocytes compared to the non-injected ones. Exogenously added ATP (0.1 mm) did not have any substantial effect on volume-induced KCNQ1 currents. Nevertheless, apyrase decreased all currents by about 50...

  3. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    Science.gov (United States)

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  4. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Kanamarlapudi

    Full Text Available Adenosine diphosphate (ADP is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1 and P2Y(12 purinoceptors. Recently, we demonstrated that P2Y(1 and P2Y(12 purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6 in the internalization and function of P2Y(1 and P2Y(12 purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1 or P2Y(12 purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  5. Differential compartmentalization and distinct functions of GABAB receptor variants

    DEFF Research Database (Denmark)

    Vigot, Réjan; Barbieri, Samuel; Bräuner-Osborne, Hans

    2006-01-01

    , while predominantly GABAB1b mediates postsynaptic inhibition. Electron microscopy reveals a synaptic distribution of GABAB1 isoforms that agrees with the observed functional differences. Transfected CA3 neurons selectively express GABAB1a in distal axons, suggesting that the sushi repeats, a conserved...... protein interaction motif, specify heteroreceptor localization. The constitutive absence of GABAB1a but not GABAB1b results in impaired synaptic plasticity and hippocampus-dependent memory, emphasizing molecular differences in synaptic GABAB functions....

  6. How membrane lipids control the 3D structure and function of receptors

    Directory of Open Access Journals (Sweden)

    Jacques Fantini

    2018-02-01

    Full Text Available The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids or less tightly attached to the external surface of the protein (annular lipids. The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane proteins through stereoselective mechanisms, they can also help membrane receptors acquire (or maintain a functional 3D structure. Cholesterol is the prototype of membrane lipids that finely controls the 3D structure and function of receptors. However, several other lipids such as sphingolipids may also modulate the function of membrane proteins though conformational adjustments. All these concepts are discussed in this review in the light of representative examples taken from the literature.

  7. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  8. Expression and purification of functional human mu opioid receptor from E.coli.

    Directory of Open Access Journals (Sweden)

    Yanbin Ma

    Full Text Available N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3-0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a K(D of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.

  9. Structural basis and functions of abscisic acid receptors PYLs

    Science.gov (United States)

    Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.

    2015-01-01

    Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428

  10. TLR receptors in laryngeal carcinoma - immunophenotypic, molecular and functional studies.

    Directory of Open Access Journals (Sweden)

    Mirosław Szczepański

    2011-04-01

    Full Text Available Toll-like receptors (TLRs have been shown to play crucial role in the recognition of unicellular pathogens. We have shown the expression of three TLRs on tumor cells of human laryngeal carcinoma by means of immunohistochemistry. In the current study we searched presence of TLR1-10 on protein and molecular level in larynx carcinoma cell lines and the impact of respective TLR ligands on TLR expression. Larynx carcinoma cell lines have been used. Cell were subjected to immunocytochemistry. RNA isolated from the cells was tested by RT-PCR. Cells were cultured in the presence of respective TLR ligands. Cells than were harvested and subjected to flow cytometry, using anti TLR1-10 Moabs. The cells were evaluated of membrane and cytoplasmic cell staining. TLR reactivity varied in individual cell lines. RT-PCR allowed to show mRNA for all TLRs tested. After short-term cell culture each cell line exhibited distinct pattern of expression of TLRs following interaction with respective ligand. Cytoplasmic TLR staining had usually higher MFI value than membrane one, but after culture with ligand it became reversed. TLRs 7 and 9 showed highest expression in the majority of tumor cells tested. In conclusion, larynx carcinoma cell lines exhibit rather universal expression of TLRs, both on protein and molecular level. Culture of TLR expressing tumor cells with ligands points out for potential reactivity of tumor cells with TLR agonists, what may have therapeutic implications.

  11. In vitro function of the aryl hydrocarbon receptor predicts in ...

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investigations demonstrated that sensitivity to activation of the AHR1 (50% effect concentration; EC50) in an in vitro luciferase reporter gene (LRG) assay was predictive of the sensitivity of embryos (lethal dose to cause 50% lethality; LD50) across all species of birds for all DLCs. However, nothing was known about whether sensitivity to activation of the AHR is predictive of sensitivity of embryos of fishes to DLCs. Therefore, this study investigated in vitro sensitivities of AHR1s and AHR2s to the model DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), among eight species of fish of known sensitivities of embryos to TCDD. AHR1s and AHR2s of all fishes were activated by TCDD in vitro. There was no significant linear relationship between in vitro sensitivity of AHR1 and in vivo sensitivity among the investigated fishes (R2 = 0.33, p = 0.23). However, there was a significant linear relationship between in vitro sensitivity of AHR2 and in vivo sensitivity among the investigated fishes (R2 = 0.97, p = fishes was compared to the previously generated linear relationship between in vitro s

  12. Different purinergic receptors lead to intracellular calcium increases in pancreatic ducts

    DEFF Research Database (Denmark)

    Christoffersen, B C; Hug, M J; Novak, I

    1998-01-01

    that might play a role in the regulation of pancreatic bicarbonate transport. Native intralobular ducts were obtained from rat pancreas and [Ca2+]i in 10-20 cells was measured using the fura-2 method. ATP (10(-4) mol/l) evoked a characteristic biphasic Ca2+ transient in duct cells. Nucleotides, used...

  13. SPINK9 Stimulates Metalloprotease/EGFR-Dependent Keratinocyte Migration via Purinergic Receptor Activation

    Czech Academy of Sciences Publication Activity Database

    Sperrhacke, M.; Fischer, J.; Wu, Z.H.; Klunder, S.; Sedláček, Radislav; Schroeder, J.M.; Meyer-Hoffert, U.; Reiss, K.

    2014-01-01

    Roč. 134, č. 6 (2014), s. 1645-1654 ISSN 0022-202X R&D Projects: GA ČR GAP303/10/2044 Institutional support: RVO:68378050 Keywords : SPINK * ADAM * keratinocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.216, year: 2014

  14. The role of purinergic receptors in cancer-induced bone pain

    DEFF Research Database (Denmark)

    Falk, Sarah; Uldall, Maria; Heegaard, Anne-Marie

    2012-01-01

    Cancer-induced bone pain severely compromises the quality of life of many patients suffering from bone metastasis, as current therapies leave some patients with inadequate pain relief. The recent development of specific animal models has increased the understanding of the molecular and cellular...

  15. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    Science.gov (United States)

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    Science.gov (United States)

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  17. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Directory of Open Access Journals (Sweden)

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  18. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function?

    Directory of Open Access Journals (Sweden)

    Elodie Urlacher

    Full Text Available Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA and its receptor (Apime-ASTA-R; and C-type allatostatins (Apime-ASTC and Apime-ASTCC and their common receptor (Apime-ASTC-R. Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.

  19. Overexpression of functional TrkA receptors after internalisation in human airway smooth muscle cells.

    Science.gov (United States)

    Freund-Michel, Véronique; Frossard, Nelly

    2008-10-01

    Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.

  20. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    Science.gov (United States)

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  1. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  2. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    International Nuclear Information System (INIS)

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the α-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced 22 Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the γ, δ, and ε subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four (α, β, γ, and δ) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the α, β, and δ subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the γ- and ε- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the γ is replaced by ε

  3. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    Science.gov (United States)

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  4. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.

  5. 5α-Bile alcohols function as farnesoid X receptor antagonists

    International Nuclear Information System (INIS)

    Nishimaki-Mogami, Tomoko; Kawahara, Yosuke; Tamehiro, Norimasa; Yoshida, Takemi; Inoue, Kazuhide; Ohno, Yasuo; Nagao, Taku; Une, Mizuho

    2006-01-01

    The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5β-configuration in FXR activation. The results showed that the 5β-(A/B cis) bile alcohols 5β-cyprinol and bufol are potent FXR agonists, whereas their 5α-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A orientation of bile salts in agonist/antagonist function

  6. Application of 5-hydroxytryptamine receptor imaging for study of neuropsychiatric disorders and brain functions

    International Nuclear Information System (INIS)

    Qiu Chun; Guan Yihui

    2011-01-01

    In the central nervous system, the widely distributed 5-hydroxytryptamine (5-HT)receptors are involved in regulating a large number of psychological and physiological functions, including mood, sleep, endocrine and autonomic nervous system. Abnormal 5-HT transmission has been implicated in a variety of neuropsychiatric disorders, such as pain, depression and epilepsy. With the development of radioligands, non-invasive nuclear imaging technique with exquisite sensitivity and specificity has been applied for delineation of neurotransmitter function in vivo. It does great benefit for researches of these diseases and development of drugs. This review provided an overview of 5-HT receptors radioligands and recent findings. (authors)

  7. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    Directory of Open Access Journals (Sweden)

    Darya V. Bazovkina

    2015-01-01

    Full Text Available In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  8. DMPD: Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667936 Structure, function and regulation of the Toll/IL-1 receptor adaptor prote... (.svg) (.html) (.csml) Show Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. ...PubmedID 17667936 Title Structure, function and regulation of the Toll/IL-1 recep

  9. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    -reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  10. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    Science.gov (United States)

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  11. Functional Studies of Sex Pheromone Receptors in Asian Corn Borer Ostrinia furnacalis

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-05-01

    Full Text Available Lepidopteran insects use sex pheromones for sexual communication. Pheromone receptors expressed on peripheral olfactory receptor neurons (ORNs are critical part to detect the sex pheromones. In genus Ostrinia, several pheromone receptors were functional analyzed in O. nubilalis and O. scapulalis but the knowledge in O. furnacalis was rare. In this study, seven pheromone receptors were deorphanized by heterologous expression system of Xenopus oocytes. Functional types of sensilla trichoidea were classified by single sensillum recordings to interpret the response pattern of olfactory sensory neurons to Ostrinia pheromone components. OfurOR4 and OfurOR6 responded to the major sex pheromone Z/E12-14:OAc. OfurOR4 is the main receptor for both Z/E12-14:OAc and OfurOR6 mainly responded to E12-14:OAc. Functional differentiation of gene duplication were found between OfurOR5a and OfurOR5b. OfurOR5b showed a broad response to most of the pheromone components in O. furnacalis, whereas OfurOR5a was found without ligands. OfurOR7 showed a specific response to Z9-14:OAc and OfurOR8 mainly responded to Z11-14:OAc and E11-14:OAc. OfurOR3 did not respond to any pheromone components. Our results improved the current knowledge of pheromone reception in Ostrinia species which may contribute to speciation.

  12. CD147 Immunoglobulin Superfamily Receptor Function and Role in Pathology

    OpenAIRE

    Iacono, Kathryn T.; Brown, Amy L.; Greene, Mark I.; Saouaf, Sandra J.

    2007-01-01

    The immunoglobulin superfamily member CD147 plays an important role in fetal, neuronal, lymphocyte and extracellular matrix development. Here we review the current understanding of CD147 expression and protein interactions with regard to CD147 function and its role in pathologic conditions including heart disease, Alzheimer’s disease, stroke and cancer. A model linking hypoxic conditions found within the tumor microenvironment to up-regulation of CD147 expression and tumor progression is intr...

  13. Neto2 influences on kainate receptor pharmacology and function

    DEFF Research Database (Denmark)

    Han, Liwei; Howe, James; Pickering, Darryl S

    2016-01-01

    the mechanism of Neto2 modulation is still unclear, gain-of-function results from the characterization of GluK1-GluA2 chimeras indicate that the GluK1 sequences included in these chimeras (part or all of the TMD and part of the linkers between the TMDs and LBD) play a key role in Neto2 modulation of KAR...

  14. On the existence and function of galanin receptor heteromers in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Kjell eFuxe

    2012-10-01

    Full Text Available Galanin receptor (GalR subtypes1-3 linked to central galanin neurons may form heteromers with each other and other types of G protein coupled receptors (GPCRs in the Central Nervous System (CNS. These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15 to modulate the function of different types of glia-neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR-5-HT1A heteromers likely exist with antagonistic GalR-5-HT1A receptor-receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1-5-HT1A heteromers in cellular models with transinhibition of the protomer signaling. A GalR1-GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15 in the CNS. Furthermore, a GalR1-GalR2-5-HT1A heterotrimer is postulated to explain why only galanin (1-15 but not galanin (1-29 can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR-5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR-NPYY1 receptor interactions in putative GalR-NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1-GalR2 heteromer appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1-GalR2-NPYY2 heterotrimer. Finally, putative GalR-α2-adrenoreceptor heteromers with antagonistic receptor-receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression.

  15. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature

    DEFF Research Database (Denmark)

    Chen, L; Kaßmann, M; Sendeski, M

    2015-01-01

    with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney.......AIM: Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized...... that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. METHODS: We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. RESULTS: The TRPV1 agonist capsaicin relaxed mouse...

  16. Effect of hypothyroidism on the purinergic responses of corpus cavernosal smooth muscle in rabbits.

    Science.gov (United States)

    Yildirim, M K; Bagcivan, I; Sarac, B; Kilicarslan, H; Yildirim, S; Kaya, T

    2008-01-01

    Several studies have reported evidence of hormonal abnormalities in 25-35% of impotent men. Hypothyroidism has been reported to occur in 6% of impotent men. In the present study, we examined purinergic relaxation responses in hypothyroidism in an experimental rabbit model and compared them with controls to evaluate the possible involvement of the purinergic pathway. The study comprised 20 male New Zealand white rabbits. The rabbits were divided into two equal groups. We tested the effects of ATP, alpha beta ATP, and adenosine precontracted with phenylephrine on the isolated corpus cavernosum preparations from control and hypothyroid rabbits. We also evaluated the effects of ATP, alpha beta ATP, and adenosine on the cGMP levels in the isolated corpus cavernosum preparations from control and hypothyroid rabbits. T3, T4, and testosterone levels were significantly lower in hypothyroid rabbits. ATP, alpha beta ATP, carbachol, and electrical field stimulation (EFS)-induced frequency-dependent relaxation responses in the isolated rabbit corpus cavernosum strips precontracted with phenylephrine reduced significantly (Phypothyroid rabbits. Reduction of relaxation response in hypothyroid rabbits corpus cavernosum can depend on a decreased release of nitric oxide (NO) from nitrergic nerves and endothelium.

  17. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.

    Science.gov (United States)

    Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi

    2018-03-28

    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.

  18. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.

    Science.gov (United States)

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E; Morales, Miguel A; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  19. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion

    Directory of Open Access Journals (Sweden)

    Pablo Valle-Leija

    2017-07-01

    Full Text Available Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc, but are not thought to express a functional full-length TrkB receptor (TrkB-Fl. We, and others, have demonstrated that nerve growth factor (NGF and brain derived neurotrophic factor (BDNF modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR, 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  20. Blockade of human P2X7 receptor function with a monoclonal antibody.

    Science.gov (United States)

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  1. The Role of TAM Family Receptors in Immune Cell Function: Implications for Cancer Therapy.

    Science.gov (United States)

    Paolino, Magdalena; Penninger, Josef M

    2016-10-21

    The TAM receptor protein tyrosine kinases-Tyro3, Axl, and Mer-are essential regulators of immune homeostasis. Guided by their cognate ligands Growth arrest-specific gene 6 (Gas6) and Protein S (Pros1), these receptors ensure the resolution of inflammation by dampening the activation of innate cells as well as by restoring tissue function through promotion of tissue repair and clearance of apoptotic cells. Their central role as negative immune regulators is highlighted by the fact that deregulation of TAM signaling has been linked to the pathogenesis of autoimmune, inflammatory, and infectious diseases. Importantly, TAM receptors have also been associated with cancer development and progression. In a cancer setting, TAM receptors have a dual regulatory role, controlling the initiation and progression of tumor development and, at the same time, the associated anti-tumor responses of diverse immune cells. Thus, modulation of TAM receptors has emerged as a potential novel strategy for cancer treatment. In this review, we discuss our current understanding of how TAM receptors control immunity, with a particular focus on the regulation of anti-tumor responses and its implications for cancer immunotherapy.

  2. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  3. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation

    NARCIS (Netherlands)

    Jelitai, Márta; Schlett, Katalin; Varju, Patrícia; Eisel, Ulrich; Madarász, Emília

    The schedule of NMDA receptor subunit expression and the appearance of functional NMDA-gated ion channels were investigated during the retinoic acid (RA) induced neuronal differentiation of NE-4C, a p53-deficient mouse neuroectodermal progenitor cell line. NR2A. NR2B, and NR2D subunit transcripts

  4. Establishment of Sf9 transformants constitutively expressing PBAN receptor variants: application to functional evaluation

    Science.gov (United States)

    To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines stably expressing a number of fluorescent Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants incl...

  5. Common functional mineralocorticoid receptor polymorphisms modulate the cortisol awakening response : Interaction with SSRIs

    NARCIS (Netherlands)

    Klok, Melanie D.; Vreeburg, Sophie A.; Penninx, Brenda W. J. H.; Zitman, Frans G.; de Kloet, E. Ron; DeRijk, Roel H.

    Background: Cortisol controls the activity of the hypothalamic pituitary adrenal (HPA) axis during stress and during the circadian cycle through central mineralocorticoid (MR) and glucocorticoid receptors (GR). Changes in MR and GR functioning, therefore, may affect HPA axis activity. In this study

  6. Glutamate mediates the function of melanocortin receptor 4 on sim1 neurons in body weight regulation

    Science.gov (United States)

    The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing ...

  7. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  8. p75 Neurotrophin Receptor in the Skin: Beyond Its Neurotrophic Function.

    Science.gov (United States)

    Pincelli, Carlo

    2017-01-01

    p75 neurotrophin receptor (p75 NTR ), also known as CD271, is the low-affinity receptor that, together with the tyrosine kinase receptor tropomyosin-receptor kinase (Trk), mediate neurotrophin (NT) functions. Beside their classic role in skin innervation, NT and their receptors constitute a complex cutaneous network associated with a number of autocrine and paracrine activities. In this context, the role of p75 NTR is becoming more and more important. This review will focus on the intriguing functions of p75 NTR in healthy and diseased skin. First, p75 NTR counterbalances the proliferative and survival activities of its cognate receptor Trk by inducing keratinocyte apoptosis. In addition, p75 NTR identifies an early transit-amplifying (TA) keratinocyte population and plays a critical role in keratinocyte stem cell transition to its progeny as well as in epidermal differentiation. p75 NTR is absent in psoriatic TA cells, thus rendering these cells resistant to apoptosis. On the other hand, p75 NTR infection restores NT-induced apoptosis in psoriatic keratinocytes. Taken together, these results provide evidence for a critical role of p75 NTR in epidermal homeostasis, while its lack may account for the TA defect in psoriasis. While the issue of p75 NTR as a marker of melanoma initiating cells is still to be solved, there is strong evidence that downregulation of this receptor is a precondition to melanoma invasion and metastasis in vitro and in vivo . All in all, this review points to p75 NTR as a major actor in both physiologic and pathologic conditions at the skin level.

  9. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  10. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    Harbison Carole E

    2007-02-01

    Full Text Available Abstract Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS, and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV. Feline aminopeptidase N (fAPN serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV, canine coronavirus, transmissible gastroenteritis virus (TGEV, and human coronavirus 229E (HCoV-229E. A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41, but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 ( Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.

  11. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor.

    Science.gov (United States)

    Troppmann, Britta; Kleinau, Gunnar; Krause, Gerd; Gromoll, Jörg

    2013-01-01

    BACKGROUND In recent years it became evident that several types of the luteinizing hormone/choriogonadotrophin receptor (LHCGR) exist. In addition to the classical receptor type known in rodents, an LHCGR type containing an additional exon is present in primates and humans. This specific exon 6A introduces a hitherto unknown regulatory pathway of the LHCGR at the transcriptional level which can lead to the expression of an alternative protein covering the extracellular part only. Furthermore, an LHCGR type lacking exon 10 at the mRNA and protein levels has been described in the New World primate lineage, giving rise to an additional receptor type in which amino acids of the extracellular hinge region connecting the leucine-rich repeat domain and transmembrane domain are missing. METHODS Topic-related information was retrieved by systematic searches using Medline/PubMed. Structural homology models were retrieved from a glycoprotein hormone receptors web application and from recent publications. RESULTS In a novel approach, we combine functional aspects with three-dimensional properties of the LHCGR and the different receptor types to deduce causative relationships between these two parameters. On this basis, the physiological impact and patho-physiological consequences of the different LHCGR types are inferred. CONCLUSIONS The complex system of different LHCGR types and two corresponding hormones (LH and CG) represents a major challenge for future studies on selective hormone binding, signal transduction and receptor regulation. The presence of these naturally occurring LHCGR types requires re-examining of our present view on receptor function, experimental set-ups and data interpretation, but also offers new clinical approaches to interfere with LH/CG action in humans.

  12. The structure and function of glutamate receptors: Mg2+ block to X-ray diffraction.

    Science.gov (United States)

    Mayer, Mark L

    2017-01-01

    Experiments on the action of glutamate on mammalian and amphibian nervous systems started back in the 1950s but decades passed before it became widely accepted that glutamate was the major excitatory neurotransmitter in the CNS. The pace of research greatly accelerated in the 1980s when selective ligands that identified glutamate receptor subtypes became widely available, and voltage clamp techniques, coupled with rapid perfusion, began to resolve the unique functional properties of what cloning subsequently revealed to be a large family of receptors with numerous subtypes. More recently the power of X-ray crystallography and cryo-EM has been applied to the study of glutamate receptors, revealing their atomic structures, and the conformational changes that underlie their gating. In this review I summarize the history of this field, viewed through the lens of a career in which I spent 3 decades working on the structure and function of glutamate receptor ion channels. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Published by Elsevier Ltd.

  13. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    Directory of Open Access Journals (Sweden)

    Andreas Binder

    Full Text Available Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K was associated with the presence of paradoxical heat sensation (p = 0.03, and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V with cold hypoalgesia (p = 0.0035. Two main subgroups characterized by preserved (1 and impaired (2 sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and pG (rs222747, M315I to cold hypaesthesia (p = 0.002, but there was absence of associations in subgroup 2. In this study we found no evidence that genetic

  14. Functional Analysis of the Tomato Immune Receptor Ve1 through Domain Swaps with Its Non-Functional Homolog Ve2

    Science.gov (United States)

    Rovenich, Hanna; Song, Yin; Liebrand, Thomas W. H.; Masini, Laura; van den Berg, Grardy C. M.; Joosten, Matthieu H. A. J.; Thomma, Bart P. H. J.

    2014-01-01

    Resistance in tomato against race 1 strains of the fungal vascular wilt pathogens Verticillium dahliae and V. albo-atrum is mediated by the Ve locus. This locus comprises two closely linked inversely oriented genes, Ve1 and Ve2, which encode cell surface receptors of the extracellular leucine-rich repeat receptor-like protein (eLRR-RLP) type. While Ve1 mediates Verticillium resistance through monitoring the presence of the recently identified V. dahliae Ave1 effector, no functionality for Ve2 has been demonstrated in tomato. Ve1 and Ve2 contain 37 eLRRs and share 84% amino acid identity, facilitating investigation of Ve protein functionality through domain swapping. In this study it is shown that Ve chimeras in which the first thirty eLRRs of Ve1 were replaced by those of Ve2 remain able to induce HR and activate Verticillium resistance, and that deletion of these thirty eLRRs from Ve1 resulted in loss of functionality. Also the region between eLRR30 and eLRR35 is required for Ve1-mediated resistance, and cannot be replaced by the region between eLRR30 and eLRR35 of Ve2. We furthermore show that the cytoplasmic tail of Ve1 is required for functionality, as truncation of this tail results in loss of functionality. Moreover, the C-terminus of Ve2 fails to activate immune signaling as chimeras containing the C-terminus of Ve2 do not provide Verticillium resistance. Furthermore, Ve1 was found to interact through its C-terminus with the eLRR-containing receptor-like kinase (eLRR-RLK) interactor SOBIR1 that was recently identified as an interactor of eLRR-RLP (immune) receptors. Intriguingly, also Ve2 was found to interact with SOBIR1. PMID:24505431

  15. Anxiety and beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Kang, Eun-Ho; Yu, Bum-Hee

    2005-06-01

    Many studies have shown a close relationship between anxiety and beta-adrenergic receptor function in patients with anxiety disorders. This study examined the relationship between beta-adrenergic receptor function and anxiety levels in a normal population. Subjects for this study included 36 men and 44 women between the ages of 20 and 40 years whose Body Mass Index (BMI) was between 18 and 26. All of them were healthy subjects who had no previous history of medical or psychiatric illnesses. The authors measured the Spielberger State-Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI), and Chronotropic 25 Dose (CD25) of isoproterenol, previously developed to assess in vivo beta-adrenergic receptor sensitivity. We also examined correlations between log normalized CD25 and mood states. The mean of CD25 was 2.64+/-1.37 mug and the mean of CD25 in men was significantly higher (i.e., lower beta-adrenergic receptor sensitivity) than that of women (3.26+/-1.35 vs. 2.14+/-1.17 microg; t = 3.99, p anxiety (r = -0.344, p = 0.002), trait anxiety (r = -0.331, p = 0.003), and BDI (r = -0.283, p = 0.011). CD25 was positively correlated with BMI (r = 0.423, p anxiety, and BMI. The sensitivity of beta-adrenergic receptors increased as anxiety levels became higher in a normal population. Thus, the relationship between anxiety and beta-adrenergic receptor function in healthy subjects may be different from that of patients with anxiety disorders.

  16. Hydrogen Exchange Mass Spectrometry of Functional Membrane-bound Chemotaxis Receptor Complexes

    Science.gov (United States)

    Koshy, Seena S.; Eyles, Stephen J.; Weis, Robert M.; Thompson, Lynmarie K.

    2014-01-01

    The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (~2 Å) piston displacement of one helix of the periplasmic and transmembrane domains towards the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen exchange mass spectrometry (HDX-MS) measurements of global exchange of CF demonstrate that CF exhibits significantly slower exchange in functional complexes than in solution. Since the exchange rates in functional complexes are comparable to that of other proteins of similar structure, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements, by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system. PMID:24274333

  17. Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation

    International Nuclear Information System (INIS)

    Tremblay, J.; Huot, C.; Koch, C.; Potier, M.

    1991-01-01

    Radiation inactivation has been used to evaluate the molecular size of domains responsible for atrial natriuretic peptide (ANP)-binding and cyclase functions of the ANP receptor/guanylate cyclase. Two types of inactivation curves were observed for cyclase function in both adrenal cortex and aortic smooth muscle cells: (1) biphasic with enhanced guanylate cyclase activity after exposure to low radiation doses and (2) linear after preincubation of membrane proteins with 0.5 microM ANP or solubilization with Triton X-100. The existence of an inhibitory component was the simplest model that best explained the types of radiation curves obtained. Activation of guanylate cyclase by ANP or Triton X-100 could occur via the dissociation of this inhibitory component from the catalytic domain. On the other hand, the loss of ANP-binding activity was linear with increasing radiation exposures under basal, ANP treatment, and Triton X-100 solubilization conditions. Radiation inactivation sizes of about 30 kDa for cyclase function, 20 kDa for ANP-binding function, and 90 kDa for inhibitory function were calculated. These studies suggest that the ANP receptor/guanylate cyclase behaves as a multidomain protein. The results obtained by radiation inactivation of the various biological functions of this receptor are compatible with the hypothesis of an intramolecular inhibitory domain repressing the guanylate cyclase catalytic domain within its membrane environment

  18. Glucocorticoid-Induced Fetal Programming Alters the Functional Complement of Angiotensin Receptors Subtypes within the Kidney

    OpenAIRE

    Gwathmey, TanYa M.; Shaltout, Hossam A.; Rose, James C.; Diz, Debra I.; Chappell, Mark C.

    2011-01-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80–81 days gestation with full term delivery. Renal nuclear and plasma membrane fractions were isolated from 1.0–1.5 year old sheep for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were sign...

  19. Pharmacologic perspectives of functional selectivity by the angiotensin II type 1 receptor

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Hansen, Jakob Lerche

    2008-01-01

    and to sudden injury occurring in the circulatory system. Hence, current drugs that block all AT(1) receptor actions most likely leave room for improvement. Recent developments show that two major signaling pathways used by the AT(1) receptor may be dissected by pharmacologic means. Key pathologic responses...... protein actions and simultaneous activation of G protein-dependent or -independent signaling could therefore be desirable in certain situations. The previously unappreciated concept of "functional selectivity" makes this exact strategy feasible and may yield improved drugs for cardiovascular therapy....

  20. TAM receptor tyrosine kinase function and the immunopathology of liver disease.

    Science.gov (United States)

    Mukherjee, S K; Wilhelm, A; Antoniades, C G

    2016-06-01

    Tyro3, Axl, MERTK (TAM) receptor tyrosine kinases are implicated in the regulation of the innate immune response through clearance of apoptotic cellular debris and control of cytokine signaling cascades. As a result they are pivotal in regulating the inflammatory response to tissue injury. Within the liver, immune regulatory signaling is employed to prevent the overactivation of innate immunity in response to continual antigenic challenge from the gastrointestinal tract. In this review we appraise current understanding of the role of TAM receptor function in the regulation of both innate and adaptive immunity, with a focus on its impact upon hepatic inflammatory pathology. Copyright © 2016 the American Physiological Society.

  1. S1P receptor signalling and RGS proteins; expression and function in vascular smooth muscle cells and transfected CHO cells

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; van Loenen, Pieter B.; Hajji, Najat; Michel, Martin C.; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2009-01-01

    Sphingosine-1-phosphate (S1P) signalling via G protein-coupled receptors is important for the regulation of cell function and differentiation. Specific Regulators of G protein Signalling (RGS) proteins modulate the function of these receptors in many cell types including vascular smooth muscle cells

  2. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils.

    Science.gov (United States)

    Tamaki, Mami; Konno, Yasunori; Kobayashi, Yoshiki; Takeda, Masahide; Itoga, Masamichi; Moritoki, Yuki; Oyamada, Hajime; Kayaba, Hiroyuki; Chihara, Junichi; Ueki, Shigeharu

    2014-07-01

    Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Hemichannels: new roles in astroglial function

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-06-01

    Full Text Available The role of astrocytes in brain function has evolved over the last decade, from support cells to active participants in the neuronal synapse through the release of gliotransmitters. Astrocytes express receptors for most neurotransmitters and respond to them through Ca2+ intracellular oscillations and propagation of intercellular Ca2+ waves. While such waves are able to propagate among neighboring astrocytes through gap junctions, thereby activating several astrocytes simultaneously, they can also trigger the release of gliotransmitters, including glutamate, d-serine, glycine, ATP, adenosine or GABA. There are several mechanisms by which gliotransmitter release occurs, including functional hemichannels. These gliotransmitters can activate neighboring astrocytes and participate in the propagation of intercellular Ca2+ waves, or activate pre- and post-synaptic receptors, including NMDA, AMPA and purinergic receptors. In consequence, hemichannels could play a pivotal role in astrocyte-to-astrocyte communication and astrocyte-to-neuron cross-talk. Recent evidence suggests that astroglial hemichannels are involved in higher brain functions including memory and glucose sensing. The present review will focus on the role of hemichannels in astrocyte-to-astrocyte and astrocyte-to neuron communication and in brain physiology.

  4. Sleep and immune function: glial contributions and consequences of aging.

    Science.gov (United States)

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  5. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies

    DEFF Research Database (Denmark)

    Staus, Dean P; Wingler, Laura M; Strachan, Ryan T

    2014-01-01

    . However, a monomeric single-domain antibody (nanobody) from the Camelid family was recently found to allosterically bind and stabilize an active conformation of the β2-adrenergic receptor (β2AR). Here, we set out to study the functional interaction of 18 related nanobodies with the β2AR to investigate...... their roles as novel tools for studying GPCR biology. Our studies revealed several sequence-related nanobody families with preferences for active (agonist-occupied) or inactive (antagonist-occupied) receptors. Flow cytometry analysis indicates that all nanobodies bind to epitopes displayed...... on the intracellular receptor surface; therefore, we transiently expressed them intracellularly as "intrabodies" to test their effects on β2AR-dependent signaling. Conformational specificity was preserved after intrabody conversion as demonstrated by the ability for the intracellularly expressed nanobodies...

  6. Functional interactions between 7TM receptors in the renin-angiotensin system--dimerization or crosstalk?

    DEFF Research Database (Denmark)

    Lyngsø, Christina; Erikstrup, Niels; Hansen, Jakob L

    2008-01-01

    . The importance of the RAS is clearly emphasised by the widespread use of drugs targeting this system in clinical practice. These include, renin inhibitors, angiotensin II receptor type I blockers, and inhibitors of the angiotensin converting enzyme. Some of the important effectors within the system are 7...... be important for receptor function, and in the development of cardiovascular diseases. This is very significant, since "dimers" may provide pharmacologists with novel targets for improved drug therapy. However, we know that 7TM receptors can mediate signals as monomeric units, and so far it has been very......The Renin-Angiotensin System (RAS) is important for the regulation of cardiovascular physiology, where it controls blood pressure, and salt- and water homeostasis. Dysregulation of RAS can lead to severe diseases including hypertension, diabetic nephropathy, and cardiac arrhythmia, and -failure...

  7. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI

    DEFF Research Database (Denmark)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian

    2013-01-01

    This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3...... dopamine receptor antagonist [(11)C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels...... caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular...

  8. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney.

    Science.gov (United States)

    Gwathmey, TanYa M; Shaltout, Hossam A; Rose, James C; Diz, Debra I; Chappell, Mark C

    2011-03-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; Psheep (16 ± 3% vs 6 ± 4%; Pfetal programming.

  9. Dissecting signaling and functions of adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Araç, Demet; Aust, Gabriela; Calebiro, Davide

    2012-01-01

    G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix...... contacts in a variety of organ systems, adhesion-GPCRs are by far the most poorly understood GPCR class. Adhesion-GPCRs possess a unique molecular structure, with extended N-termini containing various adhesion domains. In addition, many adhesion-GPCRs are autoproteolytically cleaved into an N......-terminal fragment (NTF, NT, α-subunit) and C-terminal fragment (CTF, CT, β-subunit) at a conserved GPCR autoproteolysis-inducing (GAIN) domain that contains a GPCR proteolysis site (GPS). These two features distinguish adhesion-GPCRs from other GPCR classes. Though active research on adhesion-GPCRs in diverse areas...

  10. Effect of genetic and pharmacological blockade of GABA receptors on the 5-HT2C receptor function during stress.

    OpenAIRE

    Martin Cédric B P; Gassmann Martin; Chevarin Caroline; Hamon Michel; Rudolph Uwe; Bettler Bernhard; Lanfumey Laurence; Mongeau Raymond

    2014-01-01

    5-HT2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on serotonin (5-HT) release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT tur...

  11. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    Science.gov (United States)

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  12. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

    Directory of Open Access Journals (Sweden)

    Hafner Martin

    2004-08-01

    Full Text Available Abstract Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.

  13. Membrane-mediated oligomerization of G protein coupled receptors and its implications for GPCR function

    Directory of Open Access Journals (Sweden)

    Stefan Gahbauer

    2016-10-01

    Full Text Available The dimerization or even oligomerization of G protein coupled receptors (GPCRs causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signalling complexes. Recent findings further suggest that the surrounding membrane, i.e. its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function.

  14. Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantia nigra

    International Nuclear Information System (INIS)

    Dawson, T.M.; Dawson, V.L.; Gage, F.H.; Fisher, L.J.; Hunt, M.A.; Wamsley, J.K.

    1991-01-01

    Interruption of the ascending dopamine neurons of the nigrostriatal pathway, by 6-hydroxydopamine (6-OHDA) lesion in rats, produced a significant loss of the dopamine transport complexes labeled with the phencyclidine derivative [3H]BTCP. This loss of dopamine innervation in the striatum was present at least 12 to 14 months after lesioning and was functionally manifested by ipsilateral rotation of the animals in response to amphetamine. In these same animals, in comparison to controls, there was a significant increase in the number (Bmax) of [3H]SCH 23390-labeled D-1 receptors in the striatum (36.7%) and the substantia nigra (35.1%) and a 54.4% increase in the number (Bmax) of [3H]sulpiride-labeled striatal D-2 receptors without an apparent change in affinity (Kd). Ten to twelve months after the transplantation of homologous fetal substantia nigra into the denervated striatum, there was a significant decrease in amphetamine-induced turning behavior. In these animals, there was an ingrowth of dopamine nerve terminals in the striatum as demonstrated by a return of [3H]BTCP binding. Accompanying this reinnervation was the normalization of D-1 and D-2 receptors to control values in the striatum as well as the return of D-1 receptors to prelesion densities in the substantia nigra. In a subgroup of transplanted rats, amphetamine continued to induce ipsilateral turning. In these animals both D-1 and D-2 receptors remained supersensitive. These results support the hypothesis that the functional recovery of transplanted animals is due, in part, to reinnervation of the striatum. In addition, long-term alterations in receptor density may be related to the behavioral deficits that are associated with the 6-OHDA-lesioned rat

  15. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    Science.gov (United States)

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  16. The VPAC1 receptor: structure and function of a class B GPCR prototype

    Directory of Open Access Journals (Sweden)

    Alain eCouvineau

    2012-11-01

    Full Text Available The class B G protein-coupled receptors (GPCRs represents a small sub-family encompassing 15 members, and are very promising targets for the development of drugs to treat many diseases such as chronic inflammation, neurodegeneration, diabetes, stress and osteoporosis. The VPAC1 receptor which is an archetype of the class B GPCRs binds Vasoactive Intestinal Peptide (VIP, a neuropeptide widely distributed in central and peripheral nervous system modulating many physiological processes including regulation of exocrine secretions, hormone release, foetal development, immune response... VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC1 receptors. Over the past decade, structure-function relationship studies have demonstrated that the N-terminal ectodomain (N-ted of VPAC1 plays a pivotal role in VIP recognition. The use of different approaches such as directed mutagenesis, photoaffinity labeling, Nuclear Magnetic Resonance (NMR, molecular modeling and molecular dynamic simulation has led to demonstrate that: i the central and C-terminal part of the VIP molecule interacts with the N-ted of VPAC1 receptor which is itself structured as a « Sushi » domain; ii the N-terminal end of the VIP molecule interacts with the first transmembrane domain of the receptor where three residues (K143, T144 and T147 play an important role in VPAC1 interaction with the first histidine residue of VIP.

  17. Small leucine zipper protein functions as a negative regulator of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Juyeon Jeong

    Full Text Available The nuclear transcription factor estrogen receptor α (ERα plays a critical role in breast cancer progression. ERα acts as an important growth stimulatory protein in breast cancer and the expression level of ERα is tightly related to the prognosis and treatment of patients. Small leucine zipper protein (sLZIP functions as a transcriptional cofactor by binding to various nuclear receptors, including glucocorticoid receptor, androgen receptor, and peroxisome proliferator-activated receptor γ. However, the role of sLZIP in the regulation of ERα and its involvement in breast cancer progression is unknown. We found that sLZIP binds to ERα and represses the transcriptional activity of ERα in ERα-positive breast cancer cells. sLZIP also suppressed the expression of ERα target genes. sLZIP disrupted the binding of ERα to the estrogen response element of the target gene promoter, resulting in suppression of cell proliferation. sLZIP is a novel co-repressor of ERα, and plays a negative role in ERα-mediated cell proliferation in breast cancer.

  18. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    Science.gov (United States)

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  19. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  20. Functional characteristics of the naked mole rat μ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Melanie Busch-Dienstfertig

    Full Text Available While humans and most animals respond to µ-opioid receptor (MOR agonists with analgesia and decreased aggression, in the naked mole rat (NMR opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1 can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids.

  1. Expression and function of serotonin 2A and 2B receptors in the mammalian respiratory network.

    Directory of Open Access Journals (Sweden)

    Marcus Niebert

    Full Text Available Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT(2A, 5-HT(2B, and 5-HT(2C receptors that are directed towards protein kinase C (PKC. In contrast to 5-HT(2ARs, expression and function of 5-HT(2BRs within the respiratory network are still unclear. 5-HT(2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT(2ARs and 5-HT(2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT(2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation.

  2. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles D. Thompson

    2017-10-01

    Full Text Available Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs for these ligands, the OX1 and OX2 orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX2 gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia or are of potential pharmacogenetic significance. Evidence for functional and/or heterodimerization between wild-type variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.

  3. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP receptor expression and function.

    Directory of Open Access Journals (Sweden)

    Anke Bill

    Full Text Available The human prostacyclin receptor (hIP receptor is a seven-transmembrane G protein-coupled receptor (GPCR that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  4. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor expression and function.

    Science.gov (United States)

    Bill, Anke; Rosethorne, Elizabeth M; Kent, Toby C; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P; Renaud, Nicole A; Charlton, Steven J; Gosling, Martin; Gaither, L Alex; Groot-Kormelink, Paul J

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  5. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    DEFF Research Database (Denmark)

    Marques, Rita D; Praetorius, Helle A; Leipziger, Jens

    2013-01-01

    Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nuc...

  6. Functional expression of Squalus acanthias melanocortin-5 receptor in CHO cells: ligand selectivity and interaction with MRAP.

    Science.gov (United States)

    Reinick, Christina L; Liang, Liang; Angleson, Josepha K; Dores, Robert M

    2012-04-05

    The melanocortin-5 receptor (MC(5)) of the dogfish Squalus acanthias (SacMC(5) receptor) can be functionally expressed in CHO cells in the absence of the co-expression of an exogenous MRAP cDNA. Both human ACTH(1-24) and dogfish ACTH(1-25) were much better stimulators of the SacMC(5) receptor than any of the mammalian or dogfish MSH ligands that were tested. The order of ligand selectivity for the dogfish melanocortins was ACTH(1-25)>αMSH>γ-MSH=δ-MSH>β-MSH. Unlike mammalian MC(5) receptors, the functional expression of the SacMC(5) receptor was not negatively impacted when the receptor was co-expressed with a cartilaginous fish (Callorhinchus milii) MRAP2 cDNA. However, co-expression with either mouse mMRAP1 or zebrafish zfMRAP1 increased the sensitivity of SacMC(5) receptor for hACTH(1-24) by at least one order of magnitude. Hence, SacMC(5) receptor has the potential to interact with MRAP1 orthologs and in this regard behaved more like a melanocortin MC(2) receptor ortholog than a melanocortin MC(5) receptor ortholog. These observations are discussed in light of the evolution of the melanocortin receptor gene family in cartilaginous fish, and the physiological implications of these observations are considered. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Functional labeling of insulin receptor subunits in live cells. Alpha 2 beta 2 species is the major autophosphorylated form

    International Nuclear Information System (INIS)

    Le Marchand-Brustel, Y.; Ballotti, R.; Gremeaux, T.; Tanti, J.F.; Brandenburg, D.; Van Obberghen, E.

    1989-01-01

    Both receptor subunits were functionally labeled in order to provide methods allowing, in live cells and in broken cell systems, concomitant evaluation of the insulin receptor dual function, hormone binding, and kinase activity. In cell-free systems, insulin receptors were labeled on their alpha-subunit with 125I-photoreactive insulin, and on their beta-subunit by autophosphorylation. Thereafter, phosphorylated receptors were separated from the complete set of receptors by means of anti-phosphotyrosine antibodies. Using this approach, a subpopulation of receptors was found which had bound insulin, but which were not phosphorylated. Under nonreducing conditions, receptors appeared in three oligomeric species identified as alpha 2 beta 2, alpha 2 beta, and alpha 2. Mainly the alpha 2 beta 2 receptor species was found to be phosphorylated while insulin was bound to alpha 2 beta 2, alpha 2 beta, and alpha 2 forms. In live cells, biosynthetic labeling of insulin receptors was used. Receptors were first labeled with [35S]methionine. Subsequently, the addition of insulin led to receptor autophosphorylation by virtue of the endogenous ATP pool. The total amount of [35S]methionine-labeled receptors was precipitated with antireceptor antibodies, whereas with anti-phosphotyrosine antibodies, only the phosphorylated receptors were isolated. Using this approach we made the two following key findings: (1) Both receptor species, alpha 2 beta 2 and alpha 2 beta, are present in live cells and in comparable amounts. This indicates that the alpha 2 beta form is not a degradation product of the alpha 2 beta 2 form artificially generated during receptor preparation. (2) The alpha 2 beta 2 species is the prevalently autophosphorylated form

  8. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    Science.gov (United States)

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  9. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Joanna Bandoła

    2017-08-01

    Full Text Available Plasmacytoid dendritic cells (pDCs regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR by the antigen-presenting pDCs, mediated by toll-like receptor (TLR 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  10. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.

    Science.gov (United States)

    Vainshtein, I; Kovacina, K S; Roth, R A

    2001-03-16

    The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.

  11. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells.

    Science.gov (United States)

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  12. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function

    Directory of Open Access Journals (Sweden)

    Alvarez Alejandra R

    2009-11-01

    Full Text Available Abstract Background The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. Results We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, overexpression of Frizzled-1 increased the number of clusters of Bassoon, a component of the active zone, while treatment with the extracellular cysteine-rich domain (CRD of Frizzled-1 decreased Bassoon clustering, suggesting a role for this receptor in presynaptic differentiation. Consistent with this, treatment with the Frizzled-1 ligand Wnt-3a induced presynaptic protein clustering and increased functional presynaptic recycling sites, and these effects were prevented by co-treatment with the CRD of Frizzled-1. Moreover, in synaptically mature neurons Wnt-3a was able to modulate the kinetics of neurotransmitter release. Conclusion Our results indicate that the activation of the Wnt pathway through Frizzled-1 occurs at the presynaptic level, and suggest that the synaptic effects of the Wnt signaling pathway could be modulated by local activation through synaptic Frizzled receptors.

  13. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Liu, Yipeng; Liu, Yang; Jiang, Xingchuan; Wang, Guirong

    The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    Science.gov (United States)

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelin B (ET B ) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ET B receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ET B receptors were selectively deleted from smooth muscle by crossing floxed ET B mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ET B deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ET B was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ET B -mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ET B -mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ET B knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ET B blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ET B -mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ET B knockout mice. In the absence of other pathology, ET B receptors in vascular smooth muscle make a small but significant contribution to ET B -dependent regulation of BP. These ET B receptors have no effect on vascular contraction or neointimal remodeling. © 2016 The Authors.

  15. Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors.

    Science.gov (United States)

    Gotzes, F; Balfanz, S; Baumann, A

    1994-01-01

    Members of the superfamily of G-protein coupled receptors share significant similarities in sequence and transmembrane architecture. We have isolated a Drosophila homologue of the mammalian dopamine receptor family using a low stringency hybridization approach. The deduced amino acid sequence is approximately 70% homologous to the human D1/D5 receptors. When expressed in HEK 293 cells, the Drosophila receptor stimulates cAMP production in response to dopamine application. This effect was mimicked by SKF 38393, a specific D1 receptor agonist, but inhibited by dopaminergic antagonists such as butaclamol and flupentixol. In situ hybridization revealed that the Drosophila dopamine receptor is highly expressed in the somata of the optic lobes. This suggests that the receptor might be involved in the processing of visual information and/or visual learning in invertebrates.

  16. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    Science.gov (United States)

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  17. Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Carlos Eduardo, E-mail: carlos.leite@pucrs.br [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 90035-003 (Brazil); Maboni, Lucas de Oliveira [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Cruz, Fernanda Fernandes [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Rosemberg, Denis Broock [Programa de Pós-graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, CEP 89809-000 (Brazil); and others

    2013-11-01

    The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE{sub 2}. Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae. - Graphical abstract: This scheme provides a chronological proposition for the biochemical events induced by copper in zebrafish larvae. The dashed line shows the absorption of copper over the exposure time. After 1 h of exposure to copper, the release of PGE{sub 2} occurs, followed by an increase of MPO (as a consequence

  18. Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae

    International Nuclear Information System (INIS)

    Leite, Carlos Eduardo; Maboni, Lucas de Oliveira; Cruz, Fernanda Fernandes; Rosemberg, Denis Broock

    2013-01-01

    The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE 2 . Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae. - Graphical abstract: This scheme provides a chronological proposition for the biochemical events induced by copper in zebrafish larvae. The dashed line shows the absorption of copper over the exposure time. After 1 h of exposure to copper, the release of PGE 2 occurs, followed by an increase of MPO (as a consequence of

  19. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors.

    Science.gov (United States)

    Levite, Mia

    2008-08-01

    Neurotransmitters are traditionally viewed as nerve-secreted molecules that trigger or inhibit neuronal functions. Yet, neurotransmitters bind also their neurotransmitter receptors in T-cells and directly activate or suppress T-cell functions. This review focuses only on the activating effects of neurotransmitters on T-cells, primarily naïve/resting cells, and covers dopamine, glutamate, serotonin, and few neuropeptides: GnRH-I, GnRH-II, substance P, somatostatin, CGRP, and neuropeptide Y. T-cells express many neurotransmitter receptors. These are regulated by TCR-activation, cytokines, or the neurotransmitters themselves, and are upregulated/downregulated in some human diseases. The context - whether the T-cells are naïve/resting or antigen/mitogen/cytokine-activated, the T-cell subset (CD4/CD8/Th1/Th2/Teff/Treg), neurotransmitter dose (low/optimal or high/excess), exact neurotransmitter receptors expressed, and the cytokine milieu - is crucial, and can determine either activation or suppression of T-cells by the same neurotransmitter. T-cells also produce many neurotransmitters. In summary, neurotransmitters activate vital T-cell functions in a direct, potent and specific manner, and may serve for communicating between the brain and the immune system to elicit an effective and orchestrated immune function, and for new therapeutic avenues, to improve T-cell eradication of cancer and infectious organisms.

  20. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    International Nuclear Information System (INIS)

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko

    2006-01-01

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling

  1. Enteric Glia Mediate Neuron Death in Colitis Through Purinergic Pathways That Require Connexin-43 and Nitric OxideSummary

    Directory of Open Access Journals (Sweden)

    Isola A.M. Brown

    2016-01-01

    Full Text Available Background & Aims: The concept of enteric glia as regulators of intestinal homeostasis is slowly gaining acceptance as a central concept in neurogastroenterology. Yet how glia contribute to intestinal disease is still poorly understood. Purines generated during inflammation drive enteric neuron death by activating neuronal P2X7 purine receptors (P2X7R; triggering adenosine triphosphate (ATP release via neuronal pannexin-1 channels that subsequently recruits intracellular calcium ([Ca2+]i in surrounding enteric glia. We tested the hypothesis that the activation of enteric glia contributes to neuron death during inflammation. Methods: We studied neuroinflammation in vivo using the 2,4-dinitrobenzene sulfonic acid model of colitis and in situ using whole-mount preparations of human and mouse intestine. Transgenic mice with a targeted deletion of glial connexin-43 (Cx43 [GFAP::CreERT2+/−/Cx43f/f] were used to specifically disrupt glial signaling pathways. Mice deficient in inducible nitric oxide (NO synthase (iNOS−/− were used to study NO production. Protein expression and oxidative stress were measured using immunohistochemistry and in situ Ca2+ and NO imaging were used to monitor glial [Ca2+]i and [NO]i. Results: Purinergic activation of enteric glia drove [Ca2+]i responses and enteric neuron death through a Cx43-dependent mechanism. Neurotoxic Cx43 activity, driven by NO production from glial iNOS, was required for neuron death. Glial Cx43 opening liberated ATP and Cx43-dependent ATP release was potentiated by NO. Conclusions: Our results show that the activation of glial cells in the context of neuroinflammation kills enteric neurons. Mediators of inflammation that include ATP and NO activate neurotoxic pathways that converge on glial Cx43 hemichannels. The glial response to inflammatory mediators might contribute to the development of motility disorders. Keywords: Enteric Nervous System, Hemichannels

  2. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. U.S. Government work not protected by U.S. copyright.

  3. Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D1-D3 Receptor Heterotetramer

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T.; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.

    2014-01-01

    The dopamine D1 receptor–D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa–induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R–D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. PMID:25097189

  4. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    Science.gov (United States)

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  5. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    -induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB receptor function. In contrast, blockade of CB, but not CB, receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA...... a critical involvement of CB receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo....

  6. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken

    Directory of Open Access Journals (Sweden)

    Pinheiro Pedro LC

    2012-07-01

    Full Text Available Abstract Background The parathyroid hormone (PTH-family consists of a group of structurally related factors that regulate calcium and bone homeostasis and are also involved in development of organs such as the heart, mammary gland and immune system. They interact with specific members of family 2 B1 G-protein coupled receptors (GPCRs, which have been characterised in teleosts and mammals. Two PTH/PTHrP receptors, PTH1R and PTH2R exist in mammals and in teleost fish a further receptor PTH3R has also been identified. Recently in chicken, PTH-family members involved in calcium transport were characterized and specific PTHRs are suggested to exist although they have not yet been isolated or functionally characterized. The aim of this study is to further explore the evolution and function of the vertebrate PTH/PTHrP system through the isolation, phylogenetic analysis and functional characterization of the chicken receptors. Results Two PTHRs were isolated in chicken and sequence comparison and phylogenetic analysis indicate that the chicken receptors correspond to PTH1R and PTH3R, which emerged prior to the teleost/tetrapod divergence since they are present in cartilaginous fish. The vertebrate PTH2R receptor and its ligand TIP39 have been lost from bird genomes. Chicken PTH1R and PTH3R have a divergent and widespread tissue expression and are also evident in very early embryonic stages of development. Receptor stimulation studies using HEK293 cells stably expressing the chicken PTH1R and PTH3R and monitoring cAMP production revealed they are activated by chicken 1–34 N-terminal PTH-family peptides in a dose dependent manner. PTH-L and PTHrP were the most effective peptides in activating PTH1R (EC50 = 7.7 nM and EC50 = 22.7 nM, respectively. In contrast, PTH-L (100 nM produced a small cAMP accumulation on activation of PTH3R but PTHrP and PTH (EC50 = 2.5 nM and EC50 = 22.1 nM, respectively readily activated the receptor. PTHr

  7. CD147/EMMPRIN Acts as a Functional Entry Receptor for Measles Virus on Epithelial Cells▿

    Science.gov (United States)

    Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Terao-Muto, Yuri; Sato, Hiroki; Kai, Chieko

    2010-01-01

    Measles is a highly contagious human disease caused by measles virus (MeV) and remains the leading cause of death in children, particularly in developing countries. Wild-type MeV preferentially infects lymphocytes by using signaling lymphocytic activation molecule (SLAM), whose expression is restricted to hematopoietic cells, as a receptor. MeV also infects other epithelial and neuronal cells that do not express SLAM and causes pneumonia and diarrhea and, sometimes, serious symptoms such as measles encephalitis and subacute sclerosing panencephalitis. The discrepancy between the tissue tropism of MeV and the distribution of SLAM-positive cells suggests that there are unknown receptors other than SLAM for MeV. Here we identified CD147/EMMPRIN (extracellular matrix metalloproteinase inducer), a transmembrane glycoprotein, which acts as a receptor for MeV on epithelial cells. Furthermore, we found the incorporation of cyclophilin B (CypB), a cellular ligand for CD147, in MeV virions, and showed that inhibition of CypB incorporation significantly attenuated SLAM-independent infection on epithelial cells, while it had no effect on SLAM-dependent infection. To date, MeV infection was considered to be triggered by binding of its hemagglutinin (H) protein and cellular receptors. Our present study, however, indicates that MeV infection also occurs via CD147 and virion-associated CypB, independently of MeV H. Since CD147 is expressed in a variety of cells, including epithelial and neuronal cells, this molecule possibly functions as an entry receptor for MeV in SLAM-negative cells. This is the first report among members of the Mononegavirales that CD147 is used as a virus entry receptor via incorporated CypB in the virions. PMID:20147391

  8. CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells.

    Science.gov (United States)

    Watanabe, Akira; Yoneda, Misako; Ikeda, Fusako; Terao-Muto, Yuri; Sato, Hiroki; Kai, Chieko

    2010-05-01

    Measles is a highly contagious human disease caused by measles virus (MeV) and remains the leading cause of death in children, particularly in developing countries. Wild-type MeV preferentially infects lymphocytes by using signaling lymphocytic activation molecule (SLAM), whose expression is restricted to hematopoietic cells, as a receptor. MeV also infects other epithelial and neuronal cells that do not express SLAM and causes pneumonia and diarrhea and, sometimes, serious symptoms such as measles encephalitis and subacute sclerosing panencephalitis. The discrepancy between the tissue tropism of MeV and the distribution of SLAM-positive cells suggests that there are unknown receptors other than SLAM for MeV. Here we identified CD147/EMMPRIN (extracellular matrix metalloproteinase inducer), a transmembrane glycoprotein, which acts as a receptor for MeV on epithelial cells. Furthermore, we found the incorporation of cyclophilin B (CypB), a cellular ligand for CD147, in MeV virions, and showed that inhibition of CypB incorporation significantly attenuated SLAM-independent infection on epithelial cells, while it had no effect on SLAM-dependent infection. To date, MeV infection was considered to be triggered by binding of its hemagglutinin (H) protein and cellular receptors. Our present study, however, indicates that MeV infection also occurs via CD147 and virion-associated CypB, independently of MeV H. Since CD147 is expressed in a variety of cells, including epithelial and neuronal cells, this molecule possibly functions as an entry receptor for MeV in SLAM-negative cells. This is the first report among members of the Mononegavirales that CD147 is used as a virus entry receptor via incorporated CypB in the virions.

  9. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    Science.gov (United States)

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  10. Vitamin D receptor B1 and exon 1d: functional and evolutionary analysis.

    Science.gov (United States)

    Gardiner, Edith M; Esteban, Luis M; Fong, Colette; Allison, Susan J; Flanagan, Judith L; Kouzmenko, Alexander P; Eisman, John A

    2004-05-01

    The vitamin D receptor (VDR) shares a conserved structural and functional organization with other nuclear receptor (NR) superfamily members. For many NRs, N-terminal variant isoforms that display distinct cell-, stage- and promoter-specific actions have been identified. The novel VDR isoform VDRB1, with a 50 amino acid N-terminal extension, is produced from low abundance transcripts that contain exon 1d of the human VDR locus. There is evidence for the conservation of this exon in other mammalian and avian species. The transactivation differences between VDRB1 and the original VDR, clarified here, provide insights into mechanisms that may contribute to functional differences and potentially distinct physiological roles for these two VDR isoforms.

  11. A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent

    International Nuclear Information System (INIS)

    Josephson, L.; Groman, E.V.; Menz, E.; Lewis, J.M.; Bengele, H.

    1990-01-01

    We have synthesized a surface functionalized superparamagnetic iron oxide colloid whose clearance from the vascular compartment was inhibited by asialofetuin but not fetuin. Unlike other particulate or colloidal magnetic resonance (MR) contrast agents, the agent of the current communication is not withdrawn from the vascular compartment by cells of the macrophage-monocyte phagocytic system, as indicated by its selective increase in hepatic relaxation rates. Because of this we refer to this colloid as a hepatic selective (HS) MR contrast agent. At 20 mumol Fe/kg the HS MR agent darkened MR images of liver. The HS MR agent exhibited no acute toxicity when injected into rats at 1800 mumol Fe/kg. Based on these observations, surface functionalized superparamagnetic iron oxide colloids may be the basis of MR contrast agents internalized by receptor mediated endocytosis generally, and by the asialoglycoprotein receptor in particular

  12. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    DEFF Research Database (Denmark)

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars

    2008-01-01

    The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism in adipocytes, by regulating their differentiation, maintenance, and function. The transcriptional activity of PPARgamma is dictated by the set...... in cells, and through use of chimeric proteins, we established that coactivation by Tip60 critically depends on the N-terminal activation function 1 of PPARgamma, a domain involved in isotype-specific gene expression and adipogenesis. Chromatin immunoprecipitation experiments showed that the endogenous Tip...... of proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact...

  13. Sphingosine-1-phosphate receptors: Zooming in on ligand-induced intracellular trafficking and its functional implications

    NARCIS (Netherlands)

    Verzijl, Dennis; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2010-01-01

    Regulatory processes including receptor phosphorylation and intracellular trafficking, also referred to as receptor internalization, are important processes to terminate G protein-coupled receptor (GPCR) signaling. Compelling evidence now indicates that internalization of a receptor is not

  14. The effect of partial agonist of serotonin-1A receptor on cognitive functions in animal model of schizophrenia

    OpenAIRE

    Antošová, Eliška

    2011-01-01

    Serotoin is a neurotransmitter participating in regulation of many physiologic fuctions. Main serotogenous neurons can be found in nukleus raphe of the brain stem. Nucleus raphe inervates many areas of the brain including the cerebal cortex and hipocampus. These structures are important for controling of higher cognitive functions. 5HT1A receptor is one of many subtypes of serotonin receptors and its activation inhibits iniciating of the action potencials. 5HT1A receptor is expressed presynap...

  15. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation.

    Science.gov (United States)

    Jelitai, Márta; Schlett, Katalin; Varju, Patrícia; Eisel, Ulrich; Madarász, Emília

    2002-04-01

    The schedule of NMDA receptor subunit expression and the appearance of functional NMDA-gated ion channels were investigated during the retinoic acid (RA) induced neuronal differentiation of NE-4C, a p53-deficient mouse neuroectodermal progenitor cell line. NR2A, NR2B, and NR2D subunit transcripts were present in both nondifferentiated and neuronally differentiated cultures, while NR2C subunits were expressed only transiently, during the early period of neural differentiation. Several splice variants of NR1 were detected in noninduced progenitors and in RA-induced cells, except the N1 exon containing transcripts that appeared after the fourth day of induction, when neuronal processes were already formed. NR1 and NR2A subunit proteins were detected both in nondifferentiated progenitor cells and in neurons, while the mature form of NR2B subunit protein appeared only at the time of neuronal process elongation. Despite the early presence of NR1 and NR2A subunits, NMDA-evoked responses could be detected in NE-4C neurons only after the sixth day of induction, coinciding in time with the expression of the mature NR2B subunit. The formation of functional NMDA receptors also coincided with the appearance of synapsin I and synaptophysin. The lag period between the production of the subunits and the onset of channel function suggests that subunits capable of channel formation cannot form functional NMDA receptors until a certain stage of neuronal commitment. Thus, the in vitro neurogenesis by NE-4C cells provides a suitable tool to investigate some inherent regulatory processes involved in the initial maturation of NMDA receptor complexes. Copyright 2002 Wiley Periodicals, Inc.

  16. Scavenger receptor AI/II truncation, lung function and COPD: a large population-based study

    DEFF Research Database (Denmark)

    Thomsen, M; Nordestgaard, B G; Tybjærg-Hansen, Anne

    2011-01-01

    The scavenger receptor A-I/II (SRA-I/II) on alveolar macrophages is involved in recognition and clearance of modified lipids and inhaled particulates. A rare variant of the SRA-I/II gene, Arg293X, truncates the distal collagen-like domain, which is essential for ligand recognition. We tested...... whether the Arg293X variant is associated with reduced lung function and risk of chronic obstructive pulmonary disease (COPD) in the general population....

  17. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Shamloo, Mehrdad; Rickhag, Karl Mattias

    2011-01-01

    Stroke leads to brain damage with subsequent slow and incomplete recovery of lost brain functions. Enriched housing of stroke-injured rats provides multi-modal sensorimotor stimulation, which improves recovery, although the specific mechanisms involved have not been identified. In rats housed in ...... of biomolecules required for brain repair, thereby stimulating brain plasticity. Pharmacological targeting of the sigma-1 receptor provides new opportunities for stroke treatment beyond the therapeutic window of neuroprotection....

  18. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    Science.gov (United States)

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  19. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.

    Science.gov (United States)

    Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2017-03-01

    Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    Science.gov (United States)

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  1. Cell model for the study of receptor and regulatory functions of human proHB-EGF

    Directory of Open Access Journals (Sweden)

    N. V. Korotkevych

    2014-08-01

    Full Text Available Developing of new models and approaches, particularly with fluorescent techniques, for investigation of intracellular transport of proHB-EGF and its ligand-receptor complexes is strongly required. In order to create a model for studying proHB-EGF functions the genetic construction pEGFP-N1-proHB-EGF, encoding proHB-EGF-EGFP which is fluorescent-labeled form of proHB-EGF with enhanced green fluorescent protein EGFP in the cytoplasmic terminus of the molecule, was obtained. Eukaryotic cells expressing fusion protein proHB-EGF-EGFP on the cell surface were obtained by transfection with pEGFP-N1-proHB-EGF. Expressed in the Vero cells proHB-EGF-EGFP could bind fluorescent derivative of nontoxic receptor-binding subunit B of diphtheria toxin mCherry-SubB. After stimulation of transfected cells with TPA (12-O-Tetradecanoylphorbol-13-acetate, proHB-EGF-EGFP formed a fluorescentl-labeled C-terminal fragment of the molecule – CTF-EGFP. Thus, the obtained genetic construction pEGFP-N1-proHB-EGF could be helpful in visualization of molecules proHB-EGF and CTF in cells, may open new possibilities for the studying of their functions, such as receptor function of proHB-EGF for diphtheria toxin, intracellular translocation of CTF and provide possibilities for natural proHB-EGF ligands search.

  2. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    International Nuclear Information System (INIS)

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-01-01

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  3. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells.

    Science.gov (United States)

    Armstrong, Lynne; Medford, Andrew R L; Uppington, Kay M; Robertson, John; Witherden, Ian R; Tetley, Teresa D; Millar, Ann B

    2004-08-01

    The recognition of potentially harmful microorganisms involves the specific recognition of pathogen-associated molecular patterns (PAMPs) and the family of Toll-like receptors (TLRs) is known to play a central role in this process. TLR-4 is the major recognition receptor for lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, whereas TLR-2 responds to bacterial products from gram-positive organisms. Although resident alveolar macrophages are the first line of defense against microbial attack, it is now understood that the alveolar epithelium also plays a pivotal role in the innate immunity of the lung. The purpose of the current study was to determine whether human primary type II alveolar epithelial cells (ATII) express functional TLR-2 and TLR-4 and how they may be regulated by inflammatory mediators. We have used reverse transcriptase-polymerase chain reaction and flow cytometry to determine basal and inducible expression on ATII. We have used highly purified preparations of the gram-positive bacterial product lipoteichoic acid (LTA) and LPS to look at the functional consequences of TLR-2 and TLR-4 ligation, respectively, in terms of interleukin-8 release. We have shown that human primary ATII cells express mRNA and protein for both TLR-2 and TLR-4, which can be modulated by incubation with LPS and tumor necrosis factor. Furthermore, we have demonstrated that these receptors are functional. This suggests that ATII have the potential to contribute significantly to the host defense of the human alveolus against bacteria.

  4. Elabela-apelin receptor signaling pathway is functional in mammalian systems.

    Science.gov (United States)

    Wang, Zhi; Yu, Daozhan; Wang, Mengqiao; Wang, Qilong; Kouznetsova, Jennifer; Yang, Rongze; Qian, Kun; Wu, Wenjun; Shuldiner, Alan; Sztalryd, Carole; Zou, Minghui; Zheng, Wei; Gong, Da-Wei

    2015-02-02

    Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development.

  5. Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis.

    Science.gov (United States)

    Konno, Yasunori; Ueki, Shigeharu; Takeda, Masahide; Kobayashi, Yoshiki; Tamaki, Mami; Moritoki, Yuki; Oyamada, Hajime; Itoga, Masamichi; Kayaba, Hiroyuki; Omokawa, Ayumi; Hirokawa, Makoto

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system.

  6. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  7. Expression and function of β-adrenergic receptors in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Maeki, T.; Andersson, L.C.; Kontula, K.K.

    1992-01-01

    We investigated the expression and functional characteristics of β-adrenoceptors in a panel of 10 phenotypically different human hematopoietic cell lines. A binding assay with [ 125 I]iodocyanopindolol as the ligand revealed that cell lines of myelomonocytic or histiocytic derivation (HL-60, ML-2, RC-2A, U-937) expressed high numbers of β-adrenoceptors. An intermediate density of receptors was found in a non-T, non-B cell leukemia line (Nall-1), whereas T-cell (JM, CCRF-CEM), B-cell (Raji) or erythroleukemic cell lines (K-562, HEL) displayed minimala or undetectable binding of the radioligand. Isoprenaline-stimulated cAMP production by the cells correlated to their extent of β-adrenoceptor expression. Southern blot hybridization analysis of genomic DNA from the cell lines with a 32 P-labelled β 2 -adrenoceptor cDNA probe revealed no evidence for major rearrangement or amplification of the receptor gene. Incubation with isoprenaline in vitro suppressed the proliferation of the receptor-rich RC-2A cells but did not affect the growth rate of the receptor-deficient K-562 cells. Treatment with propranolol slightly enhanced the proliferation of the RC-2A cells but did not markedly alter the growth rate of two other cell lines, regardless of their β-adrenoceptor status. These findings indicate a regulatory influence by the sympathoadrenergic system on selected cells of the myelomonocytic lineage. (au)

  8. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    Science.gov (United States)

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  9. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Directory of Open Access Journals (Sweden)

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  10. Large-scale overproduction, functional purification and ligand affinities of the His-tagged human histamine H1 receptor.

    NARCIS (Netherlands)

    Ratnala, V.R.; Swarts, H.G.P.; Oostrum, J. van; Leurs, R.; Groot, H.J.M. de; Bakker, R.; Grip, W.J. de

    2004-01-01

    This report describes an efficient strategy for amplified functional purification of the human H1 receptor after heterologous expression in Sf9 cells. The cDNA encoding a C-terminally histidine-tagged (10xHis) human histamine H1 receptor was used to generate recombinant baculovirus in a Spodoptera

  11. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat

  12. Localization and function of histamine H3 receptor in the nasal mucosa

    OpenAIRE

    Suzuki, Shinya; Takeuchi, Kazuhiko; Majima, Yuichi

    2008-01-01

    BACKGROUND: Histamine is an important chemical mediator of allergic rhinitis (AR). Histamine H3 receptors H3R are located on cholinergic and NANC neurons of the myenteric plexus, and activation of H3R regulates gastric acid secretion. However, little is known about the localization and function of H3R in the upper airway. OBJECTIVE: The objective of this study was to examine the localization and possible function of H3R in the nasal mucosa. METHODS: We extracted total RNA from the inferior tu...

  13. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    Science.gov (United States)

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  14. Retinoic Acid-Related Orphan Receptors (RORs: Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    Directory of Open Access Journals (Sweden)

    Donald N. Cook

    2015-12-01

    Full Text Available In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs. We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.

  15. An energetic orphan in an endocrine tissue: a revised perspective of the function of estrogen receptor-related receptor alpha in bone and cartilage.

    Science.gov (United States)

    Bonnelye, Edith; Aubin, Jane E

    2013-02-01

    Estrogen receptor-related receptor alpha (ERRα) is an orphan nuclear receptor with sequence homology to the estrogen receptors, ERα/β, but it does not bind estrogen. ERRα not only plays a functional role in osteoblasts but also in osteoclasts and chondrocytes. In addition, the ERRs, including ERRα, can be activated by coactivators such as peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC1α and β) and are implicated in adipogenesis, fatty acid oxidation, and oxidative stress defense, suggesting that ERRα-through its activity in bone resorption and adipogenesis--may regulate the insulin and leptin pathways and contribute to aging-related changes in bone and cartilage. In this review, we discuss data on ERRα and its cellular and molecular modes of action, which have broad implications for considering the potential role of this orphan receptor in cartilage and bone endocrine function, on whole-organism physiology, and in the bone aging process. Copyright © 2013 American Society for Bone and Mineral Research.

  16. Effects of Hypoxia on Erythrocyte Membrane Properties—Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow

    Directory of Open Access Journals (Sweden)

    Ryszard Grygorczyk

    2017-12-01

    Full Text Available Intravascular hemolysis occurs in hereditary, acquired, and iatrogenic hemolytic conditions but it could be also a normal physiological process contributing to intercellular signaling. New evidence suggests that intravascular hemolysis and the associated release of adenosine triphosphate (ATP may be an important mechanism for in vivo local purinergic signaling and blood flow regulation during exercise and hypoxia. However, the mechanisms that modulate hypoxia-induced RBC membrane fragility remain unclear. Here, we provide an overview of the role of RBC ATP release in the regulation of vascular tone and prevailing assumptions on the putative release mechanisms. We show importance of intravascular hemolysis as a source of ATP for local purinergic regulation of blood flow and discuss processes that regulate membrane propensity to rupture under stress and hypoxia.

  17. Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Dieudonnée Togbe

    Full Text Available BACKGROUND: TNF-related lymphotoxin alpha (LTalpha is essential for the development of Plasmodium berghei ANKA (PbA-induced experimental cerebral malaria (ECM. The pathway involved has been attributed to TNFR2. Here we show a second arm of LTalpha-signaling essential for ECM development through LTbeta-R, receptor of LTalpha1beta2 heterotrimer. METHODOLOGY/PRINCIPAL FINDINGS: LTbetaR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTalphabeta deficient mice. Resistance of LTalphabeta or LTbetaR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin(+ CD8(+ T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTbetaR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM. CONCLUSIONS/SIGNIFICANCE: LTbetaR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTbetaR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM.

  18. Functional reconstitution of prostaglandin E receptor from bovine adrenal medulla with guanine nucleotide binding proteins

    International Nuclear Information System (INIS)

    Negishi, M.; Ito, S.; Yokohama, H.; Hayashi, H.; Katada, T.; Ui, M.; Hayaishi, O.

    1988-01-01

    Prostaglandin E 2 (PEG 2 ) was found to bind specifically to a 100,000 x g pellet prepared from bovine adrenal medulla. The PGE receptor was associated with a GTP-binding protein (G-protein) and could be covalently cross-linked with this G-protein by dithiobis(succinimidyl propionate) in the 100,000 x g pellet. In order to characterize the G-protein associated with the PGE receptor and reconstitute these proteins in phospholipid vesicles, the authors purified the G-protein to apparent homogeneity from the 100,000 x g pellet. The G-protein served as a substrate of pertussis toxin but differed in its α subunit from two known pertussis toxin substrate G-proteins (G/sub i/ and G 0 ) purified from bovine brain. The molecular weight of the α subunit was 40,000, which is between those of G/sub i/ and G 0 . The purified protein was also distinguished immunologically from G/sub i/ and G 0 and was referred to as G/sub am/. Reconstitution of the PGE receptor with pure C/sub am/, G/sub i/, or G 0 in phospholipid vesicles resulted in a remarkable restoration of [ 3 H]PGE 2 binding activity in a GTP-dependent manner. The efficiency of these three G-proteins in this capacity was roughly equal. When pertussis toxin- or N-ethylmaleimide-treated G-proteins, instead of the native ones, were reconstituted into vesicles, the restoration of binding activity was no longer observed. These results indicate that the PGE receptor can couple functionally with G/sub am/, G/sub i/, or G 0 in phospholipid vesicles and suggest that G/sub am/ may be involved in signal transduction of the PGE receptor in bovine adrenal medulla

  19. Cloning and functional characterization of the rabbit C-C chemokine receptor 2

    Directory of Open Access Journals (Sweden)

    Hamdouchi Chafiq

    2005-07-01

    Full Text Available Abstract Background CC-family chemokine receptor 2 (CCR2 is implicated in the trafficking of blood-borne monocytes to sites of inflammation and is implicated in the pathogenesis of several inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and atherosclerosis. The major challenge in the development of small molecule chemokine receptor antagonists is the lack of cross-species activity to the receptor in the preclinical species. Rabbit models have been widely used to study the role of various inflammatory molecules in the development of inflammatory processes. Therefore, in this study, we report the cloning and characterization of rabbit CCR2. Data regarding the activity of the CCR2 antagonist will provide valuable tools to perform toxicology and efficacy studies in the rabbit model. Results Sequence alignment indicated that rabbit CCR2 shares 80 % identity to human CCR2b. Tissue distribution indicated that rabbit CCR2 is abundantly expressed in spleen and lung. Recombinant rabbit CCR2 expressed as stable transfectants in U-937 cells binds radiolabeled 125I-mouse JE (murine MCP-1 with a calculated Kd of 0.1 nM. In competition binding assays, binding of radiolabeled mouse JE to rabbit CCR2 is differentially competed by human MCP-1, -2, -3 and -4, but not by RANTES, MIP-1α or MIP-1β. U-937/rabbit CCR2 stable transfectants undergo chemotaxis in response to both human MCP-1 and mouse JE with potencies comparable to those reported for human CCR2b. Finally, TAK-779, a dual CCR2/CCR5 antagonist effectively inhibits the binding of 125I-mouse JE (IC50 = 2.3 nM to rabbit CCR2 and effectively blocks CCR2-mediated chemotaxis. Conclusion In this study, we report the cloning of rabbit CCR2 and demonstrate that this receptor is a functional chemotactic receptor for MCP-1.

  20. Functional requirements for inhibitory signal transmission by the immunomodulatory receptor CD300a.

    Science.gov (United States)

    DeBell, Karen E; Simhadri, Venkateswara R; Mariano, John L; Borrego, Francisco

    2012-04-26

    Activation signals can be negatively regulated by cell surface receptors bearing immunoreceptor tyrosine-based inhibitory motifs (ITIMs). CD300a, an ITIM bearing type I transmembrane protein, is expressed on many hematopoietic cells, including subsets of lymphocytes. We have taken two approaches to further define the mechanism by which CD300a acts as an inhibitor of immune cell receptor signaling. First, we have expressed in Jurkat T cells a chimeric receptor consisting of the extracellular domains of killer-cell immunoglobulin-like receptor (KIR)2DL2 fused to the transmembrane and cytoplasmic segments of CD300a (KIR-CD300a) to explore surrogate ligand-stimulated inhibition of superantigen stimulated T cell receptor (TCR) mediated cell signaling. We found that intact CD300a ITIMs were essential for inhibition and that the tyrosine phosphorylation of these ITIMs required the src tyrosine kinase Lck. Tyrosine phosphorylation of the CD300a ITIMs created docking sites for both src homology 2 domain containing protein tyrosine phosphatase (SHP)-1 and SHP-2. Suppression of SHP-1 and SHP-2 expression in KIR-CD300a Jurkat T cells with siRNA and the use of DT40 chicken B cell lines expressing CD300a and deficient in several phosphatases revealed that SHP-1, but not SHP-2 or the src homology 2 domain containing inositol 5' phosphatase SHIP, was utilized by CD300a for its inhibitory activity. These studies provide new insights into the function of CD300a in tuning T and B cell responses.

  1. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  2. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  3. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  4. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  5. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    Science.gov (United States)

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

  6. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function.

    Science.gov (United States)

    Parrish-Novak, J; Dillon, S R; Nelson, A; Hammond, A; Sprecher, C; Gross, J A; Johnston, J; Madden, K; Xu, W; West, J; Schrader, S; Burkhead, S; Heipel, M; Brandt, C; Kuijper, J L; Kramer, J; Conklin, D; Presnell, S R; Berry, J; Shiota, F; Bort, S; Hambly, K; Mudri, S; Clegg, C; Moore, M; Grant, F J; Lofton-Day, C; Gilbert, T; Rayond, F; Ching, A; Yao, L; Smith, D; Webster, P; Whitmore, T; Maurer, M; Kaushansky, K; Holly, R D; Foster, D

    2000-11-02

    Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and is capable of signal transduction. The full-length receptor was expressed in BaF3 cells, which created a functional assay for ligand detection and cloning. Conditioned media from activated human CD3+ T cells supported proliferation of the assay cell line. We constructed a complementary DNA expression library from activated human CD3+ T cells, and identified a cytokine with a four-helix-bundle structure using functional cloning. This cytokine is most closely related to IL2 and IL15, and has been designated IL21 with the receptor designated IL21 R. In vitro assays suggest that IL21 has a role in the proliferation and maturation of natural killer (NK) cell populations from bone marrow, in the proliferation of mature B-cell populations co-stimulated with anti-CD40, and in the proliferation of T cells co-stimulated with anti-CD3.

  7. Distinct functional characteristics of levocabastine sensitive rat neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    Science.gov (United States)

    Yamada, M; Yamada, M; Lombet, A; Forgez, P; Rostène, W

    1998-01-01

    Neurotensin has been shown to produce pharmacological effects both in brain and periphery. Several of these effects are mediated by a high-affinity neurotensin NT1 receptor. On the other hand, a low-affinity levocabastine-sensitive neurotensin NT2 receptor was molecularly cloned from rodent brain recently. In this study, in contrast to NT1 receptor, levocabastine (a histamine H1 receptor antagonist) and SR48692 (an antagonist for NT1 receptor) strongly stimulated intracellular Ca2+ mobilization in transfected Chinese hamster ovary cells expressing rat NT2 receptor, thus acting as potent NT2 receptor. Furthermore, despite of their affinities for NT2 receptor, the Ca2+ responses to potent NT1 agonists, neurotensin or JMV449 ([Lys8-(CH2NH)-Lys9]Pro-Tyr-Ile-Leu, a peptidase resistant analogue of neurotensin) were much smaller than that observed with SR48692. These findings suggest that NT1 and NT2 receptors present distinct functional characteristics and that SR48692 may act as a potent agonist for NT2 receptor.

  8. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen

    International Nuclear Information System (INIS)

    Takeda, Keisuke; Hara, Noboru; Nishiyama, Tsutomu; Tasaki, Masayuki; Ishizaki, Fumio; Tomita, Yoshihiko

    2016-01-01

    Recruitment of cofactors in the interaction of the androgen receptor (AR) and AR ligands plays a critical role in determining androgenic/antiandrogenic effects of the AR ligand on signaling, but the functions of key cofactors, including nuclear receptor coactivator (NCOA), remain poorly understood in prostate cancer cells treated with AR ligands. We examined prostate cancer cell lines LNCaP and VCaP expressing mutated and wild-type ARs, respectively, to clarify the significance of NCOAs in the effect of antiandrogens. Hydroxyflutamide showed antagonistic activity against VCaP and an agonistic effect on LNCaP. Bicalutamide served as an antagonist for both. We analyzed mRNA transcription and protein expression of NCOAs in these cells pretreated with dihydrotestosterone and thereafter treated with the mentioned antiandrogens. Transcriptional silencing of candidate NCOAs and AR was performed using small interfering RNA (siRNA). Cell proliferation was evaluated with MTT assay. LNCaP treated with bicalutamide showed an about four-fold increase in the expression of NCOA2 mRNA compared to those pretreated with dihydrotestosterone alone (P <0.01). In VCaP pretreated with dihydrotestosterone, transcriptions of NCOA2 and NCOA7 were slightly increased with bicalutamide (1.96- and 2.42-fold, respectively) and hydroxyflutamide (1.33-fold in both). With Western blotting, the expression of NCOA2 protein also increased in LNCaP cells treated with bicalutamide compared with that in control cells pretreated with dihydrotestosterone alone. Following silencing with siRNA for NCOA2, PSA levels in media with LNCaP receiving bicalutamide were elevated compared with those in non-silencing controls (101.6 ± 4.2 vs. 87.8 ± 1.4 ng/mL, respectively, P =0.0495). In LNCaP cells treated with dihydrotestosterone and bicalutamide, NCOA2-silencing was associated with a higher proliferation activity compared with non-silencing control and AR-silencing. NCOA2, which has been thought to be recruited

  9. A bovine papillomavirus-1 based vector restores the function of the low-density lipoprotein receptor in the receptor-deficient CHO-ldlA7 cell line

    Directory of Open Access Journals (Sweden)

    Ustav Mart

    2002-04-01

    Full Text Available Abstract Background The rationale of using bovine papillomavirus-1 (BPV-1 derived vectors in gene therapy protocols lies in their episomal maintenance at intermediate to high copy number, and stable, high-level expression of the gene products. We constructed the BPV-1 based vector harbouring the human low-density lipoprotein receptor (LDLR gene cDNA and tested its ability to restore the function of the LDLR in the receptor-deficient cell line CHO-ldlA7. Results The introduced vector p3.7LDL produced functionally active LDL receptors in the receptor-deficient cell line CHO-ldlA7 during the 32-week period of observation as determined by the internalisation assay with the labelled LDL particles. Conclusion Bovine papillomavirus type-1 (BPV-1-derived vectors could be suitable for gene therapy due to their episomal maintenance at intermediate to high copy number and stable, high-level expression of the gene products. The constructed BPV-1 based vector p3.7LDL produced functionally active LDL receptors in the LDLR-deficient cell line CHO-ldlA7 during the 32-week period of observation. In vivo experiments should reveal, whether 1–5% transfection efficiency obtained in the current work is sufficient to bring about detectable and clinically significant lowering of the amount of circulating LDL cholesterol particles.

  10. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease.

    Science.gov (United States)

    Fries, Gabriel R; Gassen, Nils C; Rein, Theo

    2017-12-05

    Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels-transcription, post-transcription, and post-translation-and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51's involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.

  11. Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and Hippocampal Inputs

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Athilingam, Jegath; Robinson, Sarah E

    2016-01-01

    Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin...... acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist...... into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings...

  12. Role of the Ectodomain Serine 275 in Shaping the Binding Pocket of the ATP-Gated P2X3 Receptor

    Czech Academy of Sciences Publication Activity Database

    Petrenko, N.; Khafizov, K.; Tvrdoňová, Vendula; Skorinkin, A.; Giniatullin, R.

    2011-01-01

    Roč. 50, č. 39 (2011), s. 8427-8436 ISSN 0006-2960 Grant - others:Univerzita Karlova(CZ) 3446/2011 Institutional research plan: CEZ:AV0Z50110509 Keywords : P2X3 * purinergic * ATP * ATP-binding pocket * receptor Subject RIV: ED - Physiology Impact factor: 3.422, year: 2011

  13. The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling.

    Directory of Open Access Journals (Sweden)

    Carolin Massalski

    Full Text Available The Arabidopsis E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 was previously shown to be involved in growth and development, pollen germination and stress responses. It was proposed to perform these functions through regulation of extracellular ATP signals. However, a GFP-tagged version was localized exclusively in the Golgi and did not hydrolyze ATP. In this study, AtAPY1 without the bulky GFP-tag was biochemically characterized with regard to its suggested role in purinergic signaling. Both the full-length protein and a soluble form without the transmembrane domain near the N-terminus were produced in HEK293 cells. Of the twelve nucleotide substrates tested, only three--GDP, IDP and UDP--were hydrolyzed, confirming that ATP was not a substrate of AtAPY1. In addition, the effects of pH, divalent metal ions, known E-NTPDase inhibitors and calmodulin on AtAPY1 activity were analyzed. AtAPY1-GFP extracted from transgenic Arabidopsis seedlings was included in the analyses. All three AtAPY1 versions exhibited very similar biochemical properties. Activity was detectable in a broad pH range, and Ca(2+, Mg(2+ and Mn(2+ were the three most efficient cofactors. Of the inhibitors tested, vanadate was the most potent one. Surprisingly, sulfonamide-based inhibitors shown to inhibit other E-NTPDases and presumed to inhibit AtAPY1 as well were not effective. Calmodulin stimulated the activity of the GFP-tagless membranous and soluble AtAPY1 forms about five-fold, but did not alter their substrate specificities. The apparent Km values obtained with AtAPY1-GFP indicate that AtAPY1 is primarily a GDPase. A putative three-dimensional structural model of the ecto-domain is presented, explaining the potent inhibitory potential of vanadate and predicting the binding mode of GDP. The found substrate specificity classifies AtAPY1 as a nucleoside diphosphatase typical of N-terminally anchored Golgi E-NTPDases and negates a direct function in

  14. Thyroid hormone and retinoid X receptor function and expression during sea lamprey (Petromyzon marinus) metamorphosis.

    Science.gov (United States)

    Manzon, Lori A; Youson, John H; Holzer, Guillaume; Staiano, Leopoldo; Laudet, Vincent; Manzon, Richard G

    2014-08-01

    Sea lampreys (Petromyzon marinus) are members of the ancient class Agnatha and undergo a metamorphosis that transforms blind, sedentary, filter-feeding larvae into free-swimming, parasitic juveniles. Thyroid hormones (THs) appear to be important for lamprey metamorphosis, however, serum TH concentrations are elevated in the larval phase, decline rapidly during early metamorphosis and remain low until metamorphosis is complete; these TH fluctuations are contrary to those of other metamorphosing vertebrates. Moreover, thyroid hormone synthesis inhibitors (goitrogens) induce precocious metamorphosis and exogenous TH treatments disrupt natural metamorphosis in P. marinus. Given that THs exert their effects by binding to TH nuclear receptors (TRs) that often act as heterodimers with retinoid X receptors (RXRs), we cloned and characterized these receptors from P. marinus and examined their expression during metamorphosis. Two TRs (PmTR1 and PmTR2) and three RXRs (PmRXRs) were isolated from P. marinus cDNA. Phylogenetic analyses group the PmTRs together on a branch prior to the gnathostome TRα/β split. The three RXRs also group together, but our data indicated that these transcripts are most likely either allelic variants of the same gene locus, or the products of a lamprey-specific duplication event. Importantly, these P. marinus receptors more closely resemble vertebrate as opposed to invertebrate chordate receptors. Functional analysis revealed that PmTR1 and PmTR2 can activate transcription of TH-responsive genes when treated with nanomolar concentrations of TH and they have distinct pharmacological profiles reminiscent of vertebrate TRβ and TRα, respectively. Also similar to other metamorphosing vertebrates, expression patterns of the PmTRs during lamprey metamorphosis suggest that PmTR1 has a dynamic, tissue-specific expression pattern that correlates with tissue morphogenesis and biochemical changes and PmTR2 has a more uniform expression pattern. This TR

  15. Gonadotropins, their receptors, and the regulation of testicular functions in fish

    NARCIS (Netherlands)

    Schulz, Rüdiger W; Vischer, H F; Cavaco, J E; Dos Santos Rocha, M.E.; Tyler, R.C.; Goos, H.J.; Bogerd, J.

    The pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) regulate steroidogenesis and spermatogenesis by activating receptors expressed by Leydig cells (LH receptor) and Sertoli cells (FSH receptor), respectively. This concept is also valid in fish, although the

  16. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function

    International Nuclear Information System (INIS)

    Nagayama, Yuji; Wadsworth, H.L.; Chazenbalk, G.D.; Russo, D.; Seto, Pui; Rapoport, B.

    1991-01-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction the authors constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese hamster ovary cells. The data obtained suggest that the carboxyl region of the extracellular domain (amino acid residues 261-418) and particularly the middle region (residues 171-260) play a role in signal transduction. The possibility is also raised of an interaction between the amino and carboxyl regions of the extracellular domain in the process of signal transduction. In summary, these studies suggest that the middle region and carboxyl half of the extracellular domain of the TSH receptor are involved in signal transduction and that the TSH-binding region is likely to span the entire extracellular domain, with multiple discontinuous contact sites

  17. Disabled is a putative adaptor protein that functions during signaling by the sevenless receptor tyrosine kinase.

    Science.gov (United States)

    Le, N; Simon, M A

    1998-08-01

    DRK, the Drosophila homolog of the SH2-SH3 domain adaptor protein Grb2, is required during signaling by the sevenless receptor tyrosine kinase (SEV). One role of DRK is to provide a link between activated SEV and the Ras1 activator SOS. We have investigated the possibility that DRK performs other functions by identifying additional DRK-binding proteins. We show that the phosphotyrosine-binding (PTB) domain-containing protein Disabled (DAB) binds to the DRK SH3 domains. DAB is expressed in the ommatidial clusters, and loss of DAB function disrupts ommatidial development. Moreover, reduction of DAB function attenuates signaling by a constitutively activated SEV. Our biochemical analysis suggests that DAB binds SEV directly via its PTB domain, becomes tyrosine phosphorylated upon SEV activation, and then serves as an adaptor protein for SH2 domain-containing proteins. Taken together, these results indicate that DAB is a novel component of the SEV signaling pathway.

  18. Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress

    DEFF Research Database (Denmark)

    Ryan, Karen K; Mul, Joram D; Clemmensen, Christoffer

    2014-01-01

    function. These results support the hypothesis that endogenous MC4R signaling contributes to the HPA axis response to stress. Because MC4R plays a critical role in the regulation of energy balance, the present work suggests that it may also serve as an important communication link between brain metabolic...... in hypothalamic-pituitary-adrenocortical axis (HPA) regulation. The present work investigated the role of chronic Mc4r function to modulate basal HPA axis tone and to facilitate acute HPA responses to psychological stress, using a novel rat model with Mc4r loss-of-function. In this study, adult male rats were......The melanocortin 4 receptor (MC4R), well-known for its role in the regulation of energy balance, is widely expressed in stress-regulatory brain regions, including the paraventricular nucleus of the hypothalamus (PVH) and the medial amygdala (MeA). In agreement with this, MC4R has been implicated...

  19. Functional characterization of the modified melanocortin peptides responsible for ligand selectivity at the human melanocortin receptors.

    Science.gov (United States)

    Chen, Min; Georgeson, Keith E; Harmon, Carroll M; Haskell-Luevano, Carrie; Yang, Yingkui

    2006-11-01

    The melanocortin system plays an important role in energy homeostasis as well as skin pigmentation, steroidogenesis and exocrine gland function. In this study, we examined eight Ac-His-Phe-Arg-Trp-NH(2) tetrapeptides that were modified at the Phe position and pharmacologically characterized their activities at the human MCR wild-types and their mutants. Our results indicate that at the hMC1R, all D stereochemical modified residues at the Phe position of peptides increase cAMP production in a dose-dependent manner. At the hMC3R, the DPhe peptide dose dependently increases cAMP production but all other three tetrapeptides were not. At the hMC4R, both the DPhe and DNal(1') peptides induce cAMP production. However, both DTyr and DNal(2') were not able to induce cAMP production. Further studies indicated that at the hMC1R M128L mutant receptor, the all D-configured tetrapeptides reduce their potencies as compared to that of hMC1R wild-type. However, at the hMC3R and hMC4R L165M and L133M mutant receptors, the DNal(2') and DTyr tetrapeptides possess agonist activity. These findings indicate that DPhe in tetrapeptide plays an important role in ligand selectivity and specific residue TM3 of the melanocortin receptors is crucial for ligand selectivity.

  20. Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function.

    Science.gov (United States)

    Bronfman, F C; Lazo, O M; Flores, C; Escudero, C A

    2014-01-01

    Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.

  1. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  2. P2X7 Receptor Function in Bone-Related Cancer

    Directory of Open Access Journals (Sweden)

    Elena Adinolfi

    2012-01-01

    Full Text Available Modulation of tumor microenvironment by different mediators is central in determining neoplastic formation and progression. Among these molecules extracellular ATP is emerging as a good candidate in promoting cell growth, neovascularization, tumor-host interactions, and metastatization. This paper summarizes recent findings on expression and function of P2X7 receptor for extracellular ATP in primary and metastatic bone cancers. Search of mRNA expression microchip databases and literature analysis demonstrate a high expression of P2X7 in primary bone tumors as well as in other malignancies such as multiple myeloma, neuroblastoma, breast, and prostate cancer. Evidence that P2X7 triggers NFATc1, PI3K/Akt, ROCK, and VEGF pathways in osteoblasts promoting either primary tumor development or osteoblastic lesions is also reported. Moreover, P2X7 receptor is involved in osteoclast differentiation, RANKL expression, matrix metalloproteases and cathepsin secretion thus promoting bone resorption and osteolytic lesions. Taken together these data point to a pivotal role for the P2X7 receptor in bone cancer biology.

  3. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  4. Proteinase-Activated Receptor 1 (PAR1 regulates leukemic stem cell functions.

    Directory of Open Access Journals (Sweden)

    Nicole Bäumer

    Full Text Available External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  5. Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo.

    Science.gov (United States)

    Capra, Valérie; Mauri, Mario; Guzzi, Francesca; Busnelli, Marta; Accomazzo, Maria Rosa; Gaussem, Pascale; Nisar, Shaista P; Mundell, Stuart J; Parenti, Marco; Rovati, G Enrico

    2017-01-15

    Thromboxane A 2 is a potent mediator of inflammation and platelet aggregation exerting its effects through the activation of a G protein-coupled receptor (GPCR), termed TP. Although the existence of dimers/oligomers in Class A GPCRs is widely accepted, their functional significance still remains controversial. Recently, we have shown that TPα and TPβ homo-/hetero-dimers interact through an interface of residues in transmembrane domain 1 (TM1) whose disruption impairs dimer formation. Here, biochemical and pharmacological characterization of this dimer deficient mutant (DDM) in living cells indicates a significant impairment in its response to agonists. Interestingly, two single loss-of-function TPα variants, namely W29C and N42S recently identified in two heterozygous patients affected by bleeding disorders, match some of the residues mutated in our DDM. These two naturally occurring variants display a reduced potency to TP agonists and are characterized by impaired dimer formation in transfected HEK-293T cells. These findings provide proofs that lack of homo-dimer formation is a crucial process for reduced TPα function in vivo, and might represent one molecular mechanism through which platelet TPα receptor dysfunction affects the patient(s) carrying these mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus.

    Science.gov (United States)

    Mehta, Fabiola F; Son, Jieun; Hewitt, Sylvia C; Jang, Eunjung; Lydon, John P; Korach, Kenneth S; Chung, Sang-Hyuk

    2016-04-05

    While the function of progesterone receptor (PR) has been studied in the mouse vagina and uterus, its regulation and function in the cervix has not been described. We selectively deleted epithelial PR in the female reproductive tracts using the Cre/LoxP recombination system. We found that epithelial PR was required for induction of apoptosis and suppression of cell proliferation by progesterone (P4) in the cervical and vaginal epithelium. We also found that epithelial PR was dispensable for P4 to suppress apoptosis and proliferation in the uterine epithelium. PR is encoded by the Pgr gene, which is regulated by estrogen receptor α (ERα) in the female reproductive tracts. Using knock-in mouse models expressing ERα mutants, we determined that the DNA-binding domain (DBD) and AF2 domain of ERα were required for upregulation of Pgr in the cervix and vagina as well as the uterine stroma. The ERα AF1 domain was required for upregulation of Pgr in the vaginal stroma and epithelium and cervical epithelium, but not in the uterine and cervical stroma. ERα DBD, AF1, and AF2 were required for suppression of Pgr in the uterine epithelium, which was mediated by stromal ERα. Epithelial ERα was responsible for upregulation of epithelial Pgr in the cervix and vagina. Our results indicate that regulation and functions of epithelial PR are different in the cervix, vagina, and uterus.

  7. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    Science.gov (United States)

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  8. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  9. Repression of estrogen receptor β function by putative tumor suppressor DBC1

    International Nuclear Information System (INIS)

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-01-01

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) α appears to promote the proliferation of cancer tissues, while ERβ can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ERα and ERβ may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ERα expression and promotes breast cancer cell survival by binding to ERα. Here we report an ERβ-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ERβ and DBC1 interact in a ligand-independent manner similar to ERα. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ERβ. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ERα, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ERβin vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ERβ. These results implicate the principal role of DBC1 in regulating ERβ-dependent gene expressions.

  10. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    OpenAIRE

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the pre...

  11. Mating changes the subcellular distribution and the functionality of estrogen receptors in the rat oviduct.

    Science.gov (United States)

    Orihuela, Pedro A; Zuñiga, Lidia M; Rios, Mariana; Parada-Bustamante, Alexis; Sierralta, Walter D; Velásquez, Luis A; Croxatto, Horacio B

    2009-11-30

    Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct.

  12. A novel mutation in the P2Y12 receptor and a function-reducing polymorphism in protease-activated receptor 1 in a patient with chronic bleeding.

    Science.gov (United States)

    Patel, Y M; Lordkipanidzé, M; Lowe, G C; Nisar, S P; Garner, K; Stockley, J; Daly, M E; Mitchell, M; Watson, S P; Austin, S K; Mundell, S J

    2014-05-01

    The study of patients with bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets. We have identified a patient with a chronic bleeding disorder expressing a homozygous P2RY(12) mutation, predicting an arginine to cysteine (R122C) substitution in the G-protein-coupled P2Y(12) receptor. This mutation is found within the DRY motif, which is a highly conserved region in G-protein-coupled receptors (GPCRs) that is speculated to play a critical role in regulating receptor conformational states. To determine the functional consequences of the R122C substitution for P2Y(12) function. We performed a detailed phenotypic analysis of an index case and affected family members. An analysis of the variant R122C P2Y(12) stably expressed in cells was also performed. ADP-stimulated platelet aggregation was reduced as a result of a significant impairment of P2Y(12) activity in the patient and family members. Cell surface R122C P2Y(12) expression was reduced both in cell lines and in platelets; in cell lines, this was as a consequence of agonist-independent internalization followed by subsequent receptor trafficking to lysosomes. Strikingly, members of this family also showed reduced thrombin-induced platelet activation, owing to an intronic polymorphism in the F2R gene, which encodes protease-activated receptor 1 (PAR-1), that has been shown to be associated with reduced PAR-1 receptor activity. Our study is the first to demonstrate a patient with deficits in two stimulatory GPCR pathways that regulate platelet activity, further indicating that bleeding disorders constitute a complex trait. © 2014 International Society on Thrombosis and Haemostasis.

  13. Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    2017-08-01

    Full Text Available Natural-killer receptor group 2, member D (NKG2D is a well characterized natural killer (NK cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs, DNAX accessory molecule-1 (DNAM1 and CD16, will be also discussed.

  14. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    Science.gov (United States)

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  16. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    Science.gov (United States)

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  17. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    Science.gov (United States)

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the presence of colony stimulating factor-1 and receptor activator of NF-κB ligand in the presence or absence of the A1R antagonist 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX). Osteoclast morphology was analyzed in tartrate-resistant acid phosphatase or F-actin-stained samples, and bone resorption was evaluated by toluidine blue staining of dentin. BMCs from A1R-knockout mice form fewer osteoclasts than BMCs from WT mice, and the A1R antagonist DPCPX inhibits osteoclast formation (IC50=1 nM), with altered morphology and reduced ability to resorb bone. A1R blockade increased ubiquitination and degradation of TRAF6 in RAW264.7 cells induced to differentiate into osteoclasts. These studies suggest a critical role for adenosine in bone homeostasis via interaction with adenosine A1R and further suggest that A1R may be a novel pharmacologic target to prevent the bone loss associated with inflammatory diseases and menopause.—Kara, F. M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B. B., Stanley, R., Cronstein, B. N. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. PMID:20181934

  18. Isotopic rubidium ion efflux assay for the functional characterization of nicotinic acetylcholine receptors on clonal cell lines

    International Nuclear Information System (INIS)

    Lukas, R.J.; Cullen, M.J.

    1988-01-01

    An isotopic rubidium ion efflux assay has been developed for the functional characterization of nicotinic acetylcholine receptors on cultured neurons. This assay first involves the intracellular sequestration of isotopic potassium ion analog by the ouabain-sensitive action of a sodium-potassium ATPase. Subsequently, the release of isotopic rubidium ion through nicotinic acetylcholine receptor-coupled monovalent cation channels is activated by application of nicotinic agonists. Specificity of receptor-mediated efflux is demonstrated by its sensitivity to blockade by nicotinic, but not muscarinic, antagonists. The time course of agonist-mediated efflux, within the temporal limitations of the assay, indicates a slow inactivation of receptor function on prolonged exposure to agonist. Dose-response profiles (i) have characteristic shapes for different nicotinic agonists, (ii) are described by three operationally defined parameters, and (iii) reflect different affinities of agonists for binding sites that control receptor activation and functional inhibition. The rubidium ion efflux assay provides fewer hazards but greater sensitivity and resolution than isotopic sodium or rubidium ion influx assays for functional nicotinic receptors

  19. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    International Nuclear Information System (INIS)

    Kohno, Kenji; Hayes, H.; Mekada, Eisuke; Uchida, Tsuyoshi

    1987-01-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125 I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH 4 Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells

  20. Role of type I interferon receptor signaling on NK cell development and functions.

    Directory of Open Access Journals (Sweden)

    Jean Guan

    Full Text Available Type I interferons (IFN are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.

  1. A comparative review of Toll-like receptor 4 expression and functionality in different animal species

    Directory of Open Access Journals (Sweden)

    Céline eVAURE

    2014-07-01

    Full Text Available Toll-like receptors (TLRs belong to the pattern recognition receptor (PRR family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide (LPS, along with several other components of pathogens and endogenous molecules produced during abnormal situations, such as tissue damage. Evolution across species can lead to substantial diversity in the TLR4’s affinity and specificity to its ligands, the TLR4 gene and cellular expression patterns and tissue distribution. Consequently, TLR4 functions vary across different species. In recent years, the use of synthetic TLR agonists as adjuvants has emerged as a realistic therapeutic goal, notably for the development of vaccines against poorly immunogenic targets. Given that an adjuvanted vaccine must be assessed in pre-clinical animal models before being tested in humans, the extent to which an animal model represents and predicts the human condition is of particular importance. This review focuses on the current knowledge on the critical points of divergence between human and the mammalian species commonly used in vaccine research and development (non-human primate, mouse, rat, rabbit, swine and dog, in terms of molecular, cellular and functional properties of TLR4.

  2. Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways.

    Science.gov (United States)

    Neubrand, Veronika E; Cesca, Fabrizia; Benfenati, Fabio; Schiavo, Giampietro

    2012-04-15

    An increasing body of evidence suggests that several membrane receptors--in addition to activating distinct signalling cascades--also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease.

  3. Analysis of odorant receptor protein function in the yellow fever mosquito, aedes aegypti

    Science.gov (United States)

    Odorant receptors (ORs) in insects are ligand-gated ion channels comprised of two subunits: a variable receptor and an obligatory co-receptor (Orco). This protein receptor complex of unknown stoichiometry interacts with an odor molecule leading to changes in permeability of the sensory dendrite, th...

  4. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

    Science.gov (United States)

    Chartoff, Elena H.; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  5. Sex differences in kappa opioid receptor function and their potential impact on addiction

    Directory of Open Access Journals (Sweden)

    Elena eChartoff

    2015-12-01

    Full Text Available Behavioral, biological and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN, an endogenous ligand at kappa opioid receptors (KORs, is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain,mood and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN gene, genetic linkage with the melanocortin-1 receptor (MC1R, heterodimerization of KORs and mu opioid receptors (MORs, and gonadal hormones

  6. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction.

    Science.gov (United States)

    Chartoff, Elena H; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  7. Negative modulation of NMDA receptor channel function by DREAM/calsenilin/KChIP3 provides neuroprotection?

    Science.gov (United States)

    Wang, KeWei; Wang, Yun

    2012-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels highly permeable to calcium and essential to excitatory neurotransmission. The NMDARs have attracted much attention because of their role in synaptic plasticity and excitotoxicity. Evidence has recently accumulated that NMDARs are negatively regulated by intracellular calcium binding proteins. The calcium-dependent suppression of NMDAR function serves as a feedback mechanism capable of regulating subsequent Ca2+ entry into the postsynaptic cell, and may offer an alternative approach to treating NMDAR-mediated excitotoxic injury. This short review summarizes the recent progress made in understanding the negative modulation of NMDAR function by DREAM/calsenilin/KChIP3, a neuronal calcium sensor (NCS) protein. PMID:22518099

  8. Syndecans as cell surface receptors: Unique structure equates with functional diversity

    DEFF Research Database (Denmark)

    Choi, Youngsil; Chung, Heesung; Jung, Heyjung

    2011-01-01

    An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation....... As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external...... glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions....

  9. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  10. Tachykinin NK2 receptor and functional mechanisms in human colon: changes with indomethacin and in diverticular disease and ulcerative colitis.

    Science.gov (United States)

    Burcher, Elizabeth; Shang, Fei; Warner, Fiona J; Du, Qin; Lubowski, David Z; King, Denis W; Liu, Lu

    2008-01-01

    Neurokinin A (NKA) is an important spasmogen in human colon. We examined inflammatory disease-related changes in the tachykinin NK(2) receptor system in human sigmoid colon circular muscle, using functional, radioligand binding, and quantitative reverse transcription-polymerase chain reaction methods. In circular muscle strips, indomethacin enhanced contractile responses to NKA (p diverticular disease (DD) specimens, indicating NK(2) receptor-mediated release of relaxant prostanoids. Contractile responses to both tachykinins were reduced in strips from DD (p disease patients, demonstrating that the change in responsiveness to tachykinins in disease is specifically mediated by the NK(2) receptor. In membranes from UC specimens, receptor affinity for (125)I-NKA (median K(D) 0.91 nM, n = 16) was lower (p disease-related changes in receptor number (B(max)) were found (mean, 2.0-2.5 fmol/mg of wet weight tissue), suggesting that the reduced contractile responses in disease are not due to a loss of receptor number. Different mechanisms may account for the reduced contractility in DD compared with UC. A gender-related difference in receptor density was seen in controls, with B(max) lower in females (1.77 fmol/mg, n = 15) than in males (2.60 fmol/mg, n = 25, p = 0.01). In contrast, no gender-related differences were seen in NK(2) receptor mRNA in control colonic muscle, indicating that the gender difference is a post-translational event.

  11. Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou; Kobe, Bostjan

    2017-04-06

    Tracheary Element Differentiation Inhibitory Factor (TDIF) belongs to the family of post-translationally modified CLE (CLAVATA3/embryo surrounding region (ESR)-related) peptide hormones that control root growth and define the delicate balance between stem cell proliferation and differentiation in SAM (shoot apical meristem) or RAM (root apical meristem). In Arabidopsis, Tracheary Element Differentiation Inhibitory Factor Receptor (TDR) and its ligand TDIF signaling pathway is involved in the regulation of procambial cell proliferation and inhibiting its differentiation into xylem cells. Here we present the crystal structures of the extracellular domains (ECD) of TDR alone and in complex with its ligand TDIF resolved at 2.65 Åand 2.75 Å respectively. These structures provide insights about the ligand perception and specific interactions between the CLE peptides and their cognate receptors. Our in vitro biochemical studies indicate that the interactions between the ligands and the receptors at the C-terminal anchoring site provide conserved binding. While the binding interactions occurring at the N-terminal anchoring site dictate differential binding specificities between different ligands and receptors. Our studies will open different unknown avenues of TDR-TDIF signaling pathways that will enhance our knowledge in this field highlighting the receptor ligand interaction, receptor activation, signaling network, modes of action and will serve as a structure function relationship model between the ligand and the receptor for various similar leucine-rich repeat receptor-like kinases (LRR-RLKs).

  12. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor

    DEFF Research Database (Denmark)

    Cohen, A; Shainberg, Asher; Hochhauser, E

    2011-01-01

    Pyrimidine nucleotides are signaling molecules, which activate G protein-coupled membrane receptors of the P2Y family. P2Y(2) and P2Y(4) receptors are part of the P2Y family, which is composed of 8 subtypes that have been cloned and functionally defined. We have previously found that uridine-5......'-triphosphate (UTP) reduces infarct size and improves cardiac function following myocardial infarct (MI). The aim of the present study was to determine the role of P2Y(2) receptor in cardiac protection following MI using knockout (KO) mice, in vivo and wild type (WT) for controls. In both experimental groups...... used (WT and P2Y(2)(-/-) receptor KO mice) there were 3 subgroups: sham, MI, and MI+UTP. 24h post MI we performed echocardiography and measured infarct size using triphenyl tetrazolium chloride (TTC) staining on all mice. Fractional shortening (FS) was higher in WT UTP-treated mice than the MI group...

  13. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber)

    DEFF Research Database (Denmark)

    Jørgensen, Kristine B.; Krogh-Jensen, Karen; Pickering, Darryl S

    2016-01-01

    The present study investigated the cholinergic system in the African naked mole-rat (Heterocephalus glaber) with focus on the muscarinic acetylcholine receptor subtypes M1 and M4. The protein sequences for the subtypes m 1–5 of the naked mole-rat were compared to that of the house mouse (Mus...... musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies...

  14. Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area.

    Science.gov (United States)

    Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; Ferré, Sergi

    2017-02-01

    The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form

  15. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    Science.gov (United States)

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  16. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Garcia, Neus; Lanuza, Maria A; Tomàs, Marta; Besalduch, Núria; Obis, Teresa; Priego, Mercedes; Hurtado, Erica

    2014-05-01

    Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally. Copyright © 2014 Wiley Periodicals, Inc.

  17. Methylphenidate and Atomoxetine Enhance Prefrontal Function through alpha[subscript 2]-Adrenergic and Dopamine D[subscript 1] Receptors

    Science.gov (United States)

    Gamo, Nao J.; Wang, Min; Arnsten, Amy F. T.

    2010-01-01

    Objective: This study examined the effects of the attention-deficit/hyperactivity disorder treatments, methylphenidate (MPH) and atomoxetine (ATM), on prefrontal cortex (PFC) function in monkeys and explored the receptor mechanisms underlying enhancement of PFC function at the behavioral and cellular levels. Method: Monkeys performed a working…

  18. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.

    Science.gov (United States)

    Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R

    1996-08-16

    Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.

  19. Multigenerational effects of adolescent morphine exposure