WorldWideScience

Sample records for purinergic mechanosensory transduction

  1. Purinergic mechanosensory transduction and visceral pain

    Directory of Open Access Journals (Sweden)

    Burnstock Geoffrey

    2009-11-01

    Full Text Available Abstract In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  2. Molecular basis of mechanosensory transduction

    Science.gov (United States)

    Gillespie, Peter G.; Walker, Richard G.

    2001-09-01

    Mechanotransduction - a cell's conversion of a mechanical stimulus into an electrical signal - reveals vital features of an organism's environment. From hair cells and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms, mechanically sensitive cells are essential in the life of an organism. The scarcity of these cells and the uniqueness of their transduction mechanisms have conspired to slow molecular characterization of the ensembles that carry out mechanotransduction. But recent progress in both invertebrates and vertebrates is beginning to reveal the identities of proteins essential for transduction.

  3. Hair cell specific NTPDase6 immunolocalisation in vestibular end organs: potential role of purinergic signaling in vestibular sensory transduction.

    Science.gov (United States)

    O'Keeffe, Mary G; Thorne, Peter R; Housley, Gary D; Robson, Simon C; Vlajkovic, Srdjan M

    2012-01-01

    A complex extracellular nucleotide signalling system acting on P2 receptors is involved in regulation of cochlear function in the mammalian inner ear. Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are ectonucleotidases that regulate P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from the CD39/ENTPD family (NTPDase1-8) are expressed in the adult rat cochlea, but their expression and distribution in the vestibular end organ is unknown. This report demonstrates selective expression of NTPDase6 by rat vestibular hair cells. Hair cells transducing both angular acceleration (crista ampullaris) and static head position (maculae of the utricle and saccule) exhibited strong immunolabelling with a bias towards the sensory pole and in particular, the hair cell bundle. NTPDase6 is an intracellular enzyme that can be released in a soluble form from cell cultures and shows an enzymatic preference for nucleoside 5'-diphosphates, such as guanosine 5'-diphosphate (GDP) and uridine 5'-diphosphate (UDP). The main function of NTPDase6 may be the regulation of nucleotide levels in cellular organelles by regulating the conversion of nucleotides to nucleosides. NTPDase6 immunolocalisation in the vestibular end organ could be linked to the regulation of P2 receptor signalling and sensory transduction, including maintenance of vestibular hair bundles.

  4. Purinergic signalling: an experimental perspective.

    Science.gov (United States)

    Housley, G D; Thorne, P R

    2000-07-01

    Investigation of the multiple roles of extracellular nucleotides in the cochlea has developed from analysis of ATP-activated conductances in single sensory hair cells. Molecular probes such as radiolabelled ATP analogues and radiolabelled mRNA for ATP-gated ion channel subunits (P2X receptors) rapidly revealed the extensive nature of ATP signalling in this sensory organ. This has provided a foundation for physiological investigations which put extracellular nucleotides at the centre of homeostatic regulation of the driving force for sound transduction, modulation of mechanical tuning, control of cochlear blood flow and auditory neurotransmission. The purinergic signal transduction pathways associated with these processes have several novel features of significance to the broader field of purinergic neuroscience. In turn, these studies have benefited from the recent experimental advances in the field of purinergic signalling, a significant component of which is associated with the work of Professor Geoffrey Burnstock.

  5. Purinergic signalling and diabetes

    DEFF Research Database (Denmark)

    Burnstock, Geoffrey; Novak, Ivana

    2013-01-01

    The pancreas is an organ with a central role in nutrient breakdown, nutrient sensing and release of hormones regulating whole body nutrient homeostasis. In diabetes mellitus, the balance is broken-cells can be starving in the midst of plenty. There are indications that the incidence of diabetes...... type 1 and 2, and possibly pancreatogenic diabetes, is rising globally. Events leading to insulin secretion and action are complex, but there is emerging evidence that intracellular nucleotides and nucleotides are not only important as intracellular energy molecules but also as extracellular signalling...... molecules in purinergic signalling cascades. This signalling takes place at the level of the pancreas, where the close apposition of various cells-endocrine, exocrine, stromal and immune cells-contributes to the integrated function. Following an introduction to diabetes, the pancreas and purinergic...

  6. Purinergic signaling in schistosomal infection

    Directory of Open Access Journals (Sweden)

    Claudia Lucia Martins Silva

    2016-10-01

    Full Text Available Human schistosomiasis is a chronic inflammatory disease caused by blood fluke worms belonging to the genus Schistosoma. Health metrics indicate that the disease is related to an elevated number of years lost-to-disability and years lost-to-life. Schistosomiasis is an intravascular disease that is related to a Th1 and Th2 immune response polarization, and the degree of polarization affects the outcome of the disease. The purinergic system is composed of adenosine and nucleotides acting as key messenger molecules. Moreover, nucleotide-transforming enzymes and cell-surface purinergic receptors are obligatory partners of this purinergic signaling. In mammalian cells, purinergic signaling modulates innate immune responses and inflammation among other functions; conversely purinergic signaling may also be modulated by inflammatory mediators. Moreover, schistosomes also express some enzymes of the purinergic system, and it is possible that worms modulate host purinergic signaling. Current data obtained in murine models of schistosomiasis support the notion that the host purinergic system is altered by the disease. The dysfunction of adenosine receptors, metabotropic P2Y and ionotropic P2X7 receptors, and NTPDases likely contributes to disease morbidity.

  7. Drosophila TRPN(=NOMPC channel localizes to the distal end of mechanosensory cilia.

    Directory of Open Access Journals (Sweden)

    Jeongmi Lee

    Full Text Available BACKGROUND: A TRPN channel protein is essential for sensory transduction in insect mechanosensory neurons and in vertebrate hair cells. The Drosophila TRPN homolog, NOMPC, is required to generate mechanoreceptor potentials and currents in tactile bristles. NOMPC is also required, together with a TRPV channel, for transduction by chordotonal neurons of the fly's antennal ear, but the TRPN or TRPV channels have distinct roles in transduction and in regulating active antennal mechanics. The evidence suggests that NOMPC is a primary mechanotransducer channel, but its subcellular location-key for understanding its exact role in transduction-has not yet been established. METHODOLOGY/PRINCIPAL FINDINGS: Here, by immunostaining, we locate NOMPC at the tips of mechanosensory cilia in both external and chordotonal sensory neurons, as predicted for a mechanotransducer channel. In chordotonal neurons, the TRPN and TRPV channels are respectively segregated into distal and proximal ciliary zones. This zonal separation is demarcated by and requires the ciliary dilation, an intraciliary assembly of intraflagellar transport (IFT proteins. CONCLUSIONS: Our results provide a strong evidence for NOMPC as a primary transduction channel in Drosophila mechansensory organs. The data also reveals a structural basis for the model of auditory chordotonal transduction in which the TRPN and TRPV channels play sequential roles in generating and amplifying the receptor potential, but have opposing roles in regulating active ciliary motility.

  8. Purinergic Signalling: Therapeutic Developments

    Directory of Open Access Journals (Sweden)

    Geoffrey Burnstock

    2017-09-01

    Full Text Available Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.

  9. Glycogenolysis and purinergic signaling.

    Science.gov (United States)

    Hertz, Leif; Xu, Junnan; Peng, Liang

    2014-01-01

    Both ATP and glutamate are on one hand essential metabolites in brain and on the other serve a signaling function as transmitters. However, there is the major difference that the flux in the pathway producing transmitter glutamate is comparable to the rate of glucose metabolism in brain, whereas that producing transmitter ATP is orders of magnitude smaller than the metabolic turnover between ATP and ADP. Moreover, de novo glutamate production occurs exclusively in astrocytes, whereas transmitter ATP is produced both in neurons and astrocytes. This chapter deals only with ATP and exclusively with its formation and release in astrocytes, and it focuses on potential associations with glycogenolysis, which is known to be indispensable for the synthesis of glutamate. Glycogenolysis is dependent upon an increase in free intracellular Ca(2+) concentration (Ca(2+)]i). It can be further stimulated by cAMP, but in contrast to widespread beliefs, cAMP can on its own not induce glycogenolysis. Astrocytes generate ATP from accumulated adenosine, and this process does not seem to require glycogenolysis. A minor amount of the generated ATP is utilized as a transmitter, and its synthesis requires the presence of the mainly intracellular nucleoside transporter ENT3. Many transmitters as well as extracellular K(+) concentrations high enough to open the voltage-sensitive L-channels for Ca(2+) cause a release of transmitter ATP from astrocytes. Adenosine and ATP induce release of ATP by action at several different purinergic receptors. The release evoked by transmitters or elevated K(+) concentrations is abolished by DAB, an inhibitor of glycogenolysis.

  10. Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins.

    Science.gov (United States)

    Del Valle, M E; Cobo, T; Cobo, J L; Vega, J A

    2012-08-01

    The mammalian skin has developed sensory structures (mechanoreceptors) that are responsible for different modalities of mechanosensitivity like touch, vibration, and pressure sensation. These specialized sensory organs are anatomically and functionally connected to a special subset of sensory neurons called mechanosensory neurons, which electrophysiologically correspond with Aβ fibers. Although mechanosensory neurons and cutaneous mechanoreceptors are rather well known, the biology of the sense of touch still remains poorly understood. Basically, the process of mechanosensitivity requires the conversion of a mechanical stimulus into an electrical signal through the activation of ion channels that gate in response to mechanical stimuli. These ion channels belong primarily to the family of the degenerin/epithelium sodium channels, especially the subfamily acid-sensing ion channels, and to the family of transient receptor potential channels. This review compiles the current knowledge on the occurrence of putative mechanoproteins in mechanosensory neurons and mechanoreceptors, as well as the involvement of these proteins on the biology of touch. Furthermore, we include a section about what the knock-out mice for mechanoproteins are teaching us. Finally, the possibilities for mechanotransduction in mechanoreceptors, and the common involvement of the ion channels, extracellular membrane, and cytoskeleton, are revisited.

  11. Purinergic signaling in infection and autoimmune disease

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Baggio Savio

    2016-10-01

    Full Text Available Purinergic signaling plays a key role in inflammatory processes and modulates immune responses against a variety of bacterial and eukaryotic parasites. Here we highlight the role of purinergic receptor activation in infection and autoimmune diseases. Purinergic signaling and inflammasomes modulate the host immune response against chlamydial infections. In addition, increasing evidence suggests that purinergic signaling contributes to Schistosomiasis morbidity, a neglected tropical disease caused by parasitic worms called schistosomes. Finally, the P2X7 receptor and NLRP3 inflammasome have been described to be involved in the pathogenesis of systemic lupus erythematosus, suggesting that these signaling pathways as suitable therapeutic targets for management and treatment of different immune diseases.

  12. Molecular evolution of the vertebrate mechanosensory cell and ear

    Science.gov (United States)

    Fritzsch, Bernd; Beisel, Kirk W.; Pauley, Sarah; Soukup, Garrett

    2014-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has

  13. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  14. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all...... the elements necessary for agonist-mediated intercellular communication. ATP is released from epithelial cells, which activates P2 receptors in the apical and basolateral membrane and thereby modulates tubular transport. Termination of the signal is conducted via the breakdown of ATP to adenosine. Recent far......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  15. Purinergic signalling: past, present and future

    Directory of Open Access Journals (Sweden)

    G. Burnstock

    2009-01-01

    Full Text Available The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine receptors and P2 receptors sensitive to ATP and adenosine diphosphate (ADP. Cloning of these receptors in the early 1990's was a turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic purinergic signalling of cell proliferation, differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also considered.

  16. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation

    Directory of Open Access Journals (Sweden)

    Andromeda Linan Rico

    2016-12-01

    Full Text Available Enterochromaffin cells (EC synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s involved in EC cell ‘mechanosensation’ and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are ‘mechanosensors’ that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains and tight regulation of 5-HT release by purines. The ‘purinergic hypothesis’ is that MS releases purines to act in an autocrine / paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, A2A/A2B or inhibitory (P2Y12, A1, A3 receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B–Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12 -Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.

  17. A mechanosensory receptor required for food texture detection in Drosophila

    Science.gov (United States)

    Sánchez-Alcañiz, Juan Antonio; Zappia, Giovanna; Marion-Poll, Frédéric; Benton, Richard

    2017-01-01

    Textural properties provide information on the ingestibility, digestibility and state of ripeness or decay of sources of nutrition. Compared with our understanding of the chemosensory assessment of food, little is known about the mechanisms of texture detection. Here we show that Drosophila melanogaster can discriminate food texture, avoiding substrates that are either too hard or too soft. Manipulations of food substrate properties and flies' chemosensory inputs indicate that texture preferences are revealed only in the presence of an appetitive stimulus, but are not because of changes in nutrient accessibility, suggesting that animals discriminate the substrates' mechanical characteristics. We show that texture preference requires NOMPC, a TRP-family mechanosensory channel. NOMPC localizes to the sensory dendrites of neurons housed within gustatory sensilla, and is essential for their mechanosensory-evoked responses. Our results identify a sensory pathway for texture detection and reveal the behavioural integration of chemical and physical qualities of food. PMID:28128210

  18. Ionic mechanisms subserving mechanosensory transduction and neural integration in statocyst hair cells of Hermissenda

    Science.gov (United States)

    Farley, Joseph

    1988-01-01

    The neural processing of gravitational-produced sensory stimulation of statocyst hair cells in the nudibranch mollusk Hermissenda was studied. The goal in these studies was to understand how: gravireceptor neurons sense or transduce gravitational forces, gravitational stimulation is integrated so as to produce a graded receptor potential, and ultimately the generation of an action potential, and various neural adaptation phenomena which hair cells exhibit arise. The approach to these problems was primarily electrophysical.

  19. Purinergic signaling during Porphyromonas gingivalis infection

    Directory of Open Access Journals (Sweden)

    Cássio Luiz Coutinho Almeida-da-Silva

    2016-08-01

    Full Text Available Despite recent advances unraveling mechanisms of host–pathogen interactions in innate immunity, the participation of purinergic signaling in infection-driven inflammation remains an emerging research field with many unanswered questions. As one of the most-studied oral pathogens, Porphyromonas gingivalis is considered as a keystone pathogen with a central role in development of periodontal disease. This pathogen needs to evade immune-mediated defense mechanisms and tolerate inflammation in order to survive in the host. In this review, we summarize evidence showing that purinergic signaling modulates P. gingivalis survival and cellular immune responses, and discuss the role played by inflammasome activation and cell death during P. gingivalis infection.

  20. Purinergic signalling in the pancreas in health and disease.

    Science.gov (United States)

    Burnstock, G; Novak, I

    2012-05-01

    Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.

  1. A genetic basis for mechanosensory traits in humans.

    Science.gov (United States)

    Frenzel, Henning; Bohlender, Jörg; Pinsker, Katrin; Wohlleben, Bärbel; Tank, Jens; Lechner, Stefan G; Schiska, Daniela; Jaijo, Teresa; Rüschendorf, Franz; Saar, Kathrin; Jordan, Jens; Millán, José M; Gross, Manfred; Lewin, Gary R

    2012-01-01

    In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  2. A genetic basis for mechanosensory traits in humans.

    Directory of Open Access Journals (Sweden)

    Henning Frenzel

    Full Text Available In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  3. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  4. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  5. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.

    Science.gov (United States)

    Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel

    2016-06-28

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.

  6. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    Science.gov (United States)

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  7. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.

    Science.gov (United States)

    Joshi, Kanishka; Mian, Ahsan; Miller, John

    2016-08-01

    Filiform mechanosensory hairs of crickets are of great interest to engineers because of the hairs' highly sensitive response to low-velocity air-currents. In this study, we analyze the biomechanical properties of filiform hairs of the cercal sensory system of a common house cricket. The cercal sensory system consists of two antennalike appendages called cerci that are situated at the rear of the cricket's abdomen. Each cercus is covered with 500-750 flow sensitive filiform mechanosensory hairs. Each hair is embedded in a complex viscoelastic socket that acts as a spring and dashpot system and guides the movement of the hair. When a hair deflects due to the drag force induced on its length by a moving air-current, the spiking activity of the neuron that innervates the hair changes and the combined spiking activity of all hairs is extracted by the cercal sensory system. Filiform hairs have been experimentally studied by researchers, though the basis for the hairs' biomechanical characteristics is not fully understood. The socket structure has not been analyzed experimentally or theoretically from a mechanical standpoint, and the characterization that exists is mathematical in nature and only provides a very rudimentary approximation of the socket's spring nature. This study aims to understand and physically characterize the socket's behavior and interaction with the filiform hair by examining hypotheses about the hair and socket biomechanics. A three-dimensional computer-aided design (CAD) model was first created using confocal microscopy images of the hair and socket structure of the cricket, and then finite-element analyses (FEAs) based on the physical conditions that the insect experiences were simulated. The results show that the socket can act like a spring; however, it has two-tier rotational spring constants during pre- and postcontacts of iris and hair bulge due to its constitutive nonstandard geometric shapes.

  8. Purinergic signalling in the pancreas in health and disease

    DEFF Research Database (Denmark)

    Burnstock, G; Novak, I

    2012-01-01

    systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming......Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After...... the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory...

  9. Mechanosensory Neurons With Bend- and Osmo-sensitivity in Mouthpart Setae From the Spiny Lobster Panulirus argus

    DEFF Research Database (Denmark)

    Garm, Anders; Derby, Charles D; Høeg, Jens T

    2004-01-01

    The mouthparts of the spiny lobster Panulirus argus hold primarily two types of setae--simple setae and cuspidate setae. Mechanosensory neurons from these setae were examined by electrophysiological recordings. The population of simple setae contained two types of mechanosensory neurons: displace......The mouthparts of the spiny lobster Panulirus argus hold primarily two types of setae--simple setae and cuspidate setae. Mechanosensory neurons from these setae were examined by electrophysiological recordings. The population of simple setae contained two types of mechanosensory neurons...

  10. Purinergic Receptors in Thrombosis and Inflammation.

    Science.gov (United States)

    Hechler, Béatrice; Gachet, Christian

    2015-11-01

    Under various pathological conditions, including thrombosis and inflammation, extracellular nucleotide levels may increase because of both active release and passive leakage from damaged or dying cells. Once in the extracellular compartment, nucleotides interact with plasma membrane receptors belonging to the P2 purinergic family, which are expressed by virtually all circulating blood cells and in most blood vessels. In this review, we focus on the specific role of the 3 platelet P2 receptors P2Y1, P2Y12, and P2X1 in hemostasis and arterial thrombosis. Beyond platelets, these 3 receptors, along with the P2Y2, P2Y6, and P2X7 receptors, constitute the main P2 receptors mediating the proinflammatory effects of nucleotides, which play important roles in various functions of circulating blood cells and cells of the vessel wall. Each of these P2 receptor subtypes specifically contributes to chronic or acute vascular inflammation and related diseases, such as atherosclerosis, restenosis, endotoxemia, and sepsis. The potential for therapeutic targeting of these P2 receptor subtypes is also discussed.

  11. Purinergic nerves and purinoceptors: early perspectives.

    Science.gov (United States)

    Satchell, D

    2000-07-01

    I have had the pleasure and privilege of being involved in one facet of Geoffrey Burnstock's early career. I have reviewed this work together with more recent developments in the area. In 1968, the presence of non-adrenergic, non-cholinergic inhibitory nerves had been established but the identity of their neurotransmitter was unknown. Stimulation of these nerves in recycled perfused toad and guinea-pig stomachs caused release of adenosine and inosine. When ATP was added to recycled perfusates, it was broken down to adenosine and inosine. These findings together with information that AMP was released from stimulated, isolated turkey Auerbach's plexus which was known to contain the nerves, suggested that ATP could be the neurotransmitter. This was supported by observations that ATP elicited responses similar to that of nerve stimulation in a variety of tissues. Developments from the early purinergic nerve hypothesis are considered including independence of extracellular actions of ATP from its intracellular actions, identification and cloning of purinoceptors and cotransmission of ATP with other substances.

  12. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...... in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles...

  13. Intrinsic frequency response patterns in mechano-sensory neurons of the leech.

    Science.gov (United States)

    Fischer, Linda; Scherbarth, Frank; Chagnaud, Boris; Felmy, Felix

    2017-07-15

    Animals employ mechano-sensory systems to detect and explore their environment. Mechano-sensation encompasses stimuli such as constant pressure, surface movement or vibrations at various intensities that need to be segregated in the central nervous system. Besides different receptor structures, sensory filtering via intrinsic response properties could provide a convenient way to solve this problem. In leech, three major mechano-sensory cell types can be distinguished, according to their stimulus sensitivity, as nociceptive, pressure and touch cells. Using intracellular recordings, we show that the different mechano-sensory neuron classes in Hirudo medicinalis differentially respond supra-threshold to distinct frequencies of sinusoidal current injections between 0.2 and 20 Hz. Nociceptive cells responded with a low-pass filter characteristic, pressure cells as high-pass filters and touch cells as an intermediate band-pass filter. Each class of mechano-sensory neurons is thus intrinsically tuned to a specific frequency range of voltage oscillation that could help segregate mechano-sensory information centrally. © 2017. Published by The Company of Biologists Ltd.

  14. Introduction to the Special Issue on Purinergic Receptors.

    Science.gov (United States)

    Burnstock, Geoffrey

    2017-02-22

    In this Introduction to the series of papers that follow about purinergic receptors, there is a brief history of the discovery of purinergic signalling, the identity of purinoceptors and the current recognition of P1, P2X and P2Y subtypes. An account of key functions mediated by purinoceptors follows, including examples of both short-term and long-term (trophic) signalling and a table showing the selective agonists and antagonists for the purinoceptor subtypes. References to evolution and roles of purinoceptors in pathological conditions are also presented.

  15. The role of purinergic signalling in exocrine pancreas

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund

    ATP is a fundamentally important molecule in intracellular processes, especially recognised as the molecular source of energy. ATP is however also released as a signal from most cell types, and extracellular signalling by ATP goes under the common name purinergic signalling and it includes releas...

  16. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all ...

  17. Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles.

    Science.gov (United States)

    Abdul-Majeed, Shakila; Nauli, Surya M

    2011-08-01

    Polycystic kidney disease is characterized by cardiovascular irregularities, including hypertension. Dopamine, a circulating hormone, is implicated in essential hypertension in humans and animal models. Vascular endothelial primary cilia are known to function as mechano-sensory organelles. Although both primary cilia and dopamine receptors play important roles in vascular hypertension, their relationship has never been explored. To determine the roles of the dopaminergic system and mechano-sensory cilia, we studied the effects of dopamine on ciliary length and function in wild-type and mechano-insensitive polycystic mutant cells (Pkd1(-/)(-) and Tg737(orpk/orpk)). We show for the first time that mouse vascular endothelia exhibit dopamine receptor-type 5 (DR5), which colocalizes to primary cilia in cultured cells and mouse arteries in vivo. DR5 activation increases cilia length in arteries and endothelial cells through cofilin and actin polymerization. DR5 activation also restores cilia function in the mutant cells. In addition, silencing DR5 completely abolishes mechano-ciliary function in WT cells. We found that DR5 plays very important roles in ciliary length and function. Furthermore, the chemo-sensory function of cilia can alter the mechano-sensory function through changes in sensitivity to fluid-shear stress. We propose that ciliary DR5 has functional chemo- and mechano-sensory roles in endothelial cells.

  18. Mechanosensory based orienting behaviors in fluvial and lacustrine populations of mottled sculpin (Cottus bairdi)

    Science.gov (United States)

    Sheryl Coombs; Gary D. Grossman

    2006-01-01

    We compared prey-orienting and rheotactic behaviors in a fluvial (Coweeta Creek) and lacustrine (Lake Michigan) population of mottled sculpin. Blinded sculpin from both populations exhibited unconditioned, mechanosensory based rheotaxis to low velocity flows. Whereas Lake Michigan sculpin generally showed increasing levels of positive rheotaxis to increasing velocities...

  19. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  20. Attenuated purinergic receptor function in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Thaning, Pia; Bune, Laurids T.; Hellsten, Ylva

    2010-01-01

    Objective: Extra cellular nucleotides and nucleosides are involved in regulation of skeletal muscle blood flow. Diabetes induces cardiovascular dysregulation but the extent to which the vasodilatatory capacity of nucleotides and nucleosides are affected in type 2 diabetes is unknown. The present......) was measured during intrafemoral artery infusion of ATP, UTP, and ADO eliciting a blood flow equal to knee-extensor exercise at 12 watts ( approximately 2.6 L/min). Results: The vasodilatatory effect of the purinergic system was 50 % lower in the diabetic group as exemplified by a LBF increase by 274+/-37 vs......-DM (1.5). The distribution and mRNA-expression of receptors were similar in the two groups. Conclusions: The vasodilatatory effect of the purinergic system is severely reduced in type 2 diabetic patients. The potency of nucleotides varies with the following rank order: UTP>ATP>>>ADO. This is not due...

  1. The role of purinergic signalling in exocrine pancreas

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund

    ATP is a fundamentally important molecule in intracellular processes, especially recognised as the molecular source of energy. ATP is however also released as a signal from most cell types, and extracellular signalling by ATP goes under the common name purinergic signalling and it includes releas....... At low concentrations it simulates proliferation, whereas it at higher concentrations is lethal to the cells, both caused by the purinergic P2X7 receptor....... mechanisms, receptors and br akdown enzymes. The work presented herein illustrates that ATP is present and is taken up into the zymogen granules of pancreatic acinar cells by the vesicular nucleotide transporter. Zymogen granules also contain the digestive enzymes in the acinar cells. Various stimuli release...

  2. Role of purinergic receptor polymorphisms in human bone

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn J L; Agrawal, Ankita

    2011-01-01

    in the mechanotransductory process, where mechanical stimulation on bone leads to anabolic responses in the skeleton. A number of single nucleotide polymorphisms have been identified in the P2 receptor genes, where especially the P2X7 subtype has been the focus of extensive investigation where several polymorphisms have......Osteoporosis is a multifactorial disease with a strong genetic component. Variations in a number of genes have been shown to associate with bone turnover and risk of osteoporosis. P2 purinergic receptors are proteins that have ATP or other nucleotides as their natural ligands. Various P2Y and P2X...... receptor subtypes have been identified on bone cells. Several cellular functions in bone tissue are coupled to P2-receptor activation, including bone resorption, cytokine release, apoptosis, bone formation, and mineral deposition. Furthermore, ATP release and P2 purinergic signalling is a key pathway...

  3. Purinergic Inhibition of ENaC Produces Aldosterone Escape

    OpenAIRE

    Stockand, James D.; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A.; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-01-01

    The mechanisms underlying “aldosterone escape,” which refers to the excretion of sodium (Na+) during high Na+ intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na+ channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na+ intake in mice. Physiologic concentrat...

  4. Purinergic inhibition of ENaC produces aldosterone escape.

    Science.gov (United States)

    Stockand, James D; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-11-01

    The mechanisms underlying "aldosterone escape," which refers to the excretion of sodium (Na(+)) during high Na(+) intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na(+) channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na(+) intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y(2)(-/-) mice, which lack the purinergic receptor, had significantly less increased Na(+) excretion than wild-type mice in response to high-Na(+) intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y(2) receptor each modestly increased the resistance of ENaC to changes in Na(+) intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na(+) intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na(+) excretion in response to high-Na(+) intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape.

  5. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Directory of Open Access Journals (Sweden)

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  6. Purinergic signaling and blood vessels in health and disease.

    Science.gov (United States)

    Burnstock, Geoffrey; Ralevic, Vera

    2014-01-01

    Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.

  7. Short- and long-term (trophic) purinergic signalling.

    Science.gov (United States)

    Burnstock, Geoffrey

    2016-08-05

    There is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body, in addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion. It is not always easy to distinguish between short- and long-term signalling. For example, adenosine triphosphate (ATP) can sometimes act as a short-term trigger for long-term trophic events that become evident days or even weeks after the original challenge. Examples of short-term purinergic signalling during sympathetic, parasympathetic and enteric neuromuscular transmission and in synaptic transmission in ganglia and in the central nervous system are described, as well as in neuromodulation and secretion. Long-term trophic signalling is described in the immune/defence system, stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption and in cancer. It is likely that the increase in intracellular Ca(2+) in response to both P2X and P2Y purinoceptor activation participates in many short- and long-term physiological effects.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.

  8. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    Science.gov (United States)

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  9. Molecular modeling of mechanosensory ion channel structural and functional features.

    Science.gov (United States)

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  10. Molecular modeling of mechanosensory ion channel structural and functional features.

    Directory of Open Access Journals (Sweden)

    Renate Gessmann

    Full Text Available The DEG/ENaC (Degenerin/Epithelial Sodium Channel protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1. MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  11. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  12. Differing Neurophysiologic Mechanosensory Input From Glabrous and Hairy Skin in Juvenile Rats

    OpenAIRE

    Boada, M. Danilo; Houle, Timothy T.; Eisenach, James C.; Ririe, Douglas G.

    2010-01-01

    Sensory afferents in skin encode and convey thermal and mechanical conditions, including those that threaten tissue damage. A small proportion of skin, the glabrous skin of the distal extremities, is specialized to explore the environment in fine detail. Aside from increased innervation density, little is known regarding properties of mechanosensory afferents to glabrous skin in younger animals that explain the exquisite precision and high contrast in rapidly sampling physical structures, inc...

  13. ER–Mitochondrial Calcium Flow Underlies Vulnerability of Mechanosensory Hair Cells to Damage

    OpenAIRE

    Esterberg, Robert; Hailey, Dale W.; Rubel, Edwin W; Raible, David W.

    2014-01-01

    Mechanosensory hair cells are vulnerable to environmental insult, resulting in hearing and balance disorders. We demonstrate that directional compartmental flow of intracellular Ca2+ underlies death in zebrafish lateral line hair cells after exposure to aminoglycoside antibiotics, a well characterized hair cell toxin. Ca2+ is mobilized from the ER and transferred to mitochondria via IP3 channels with little cytoplasmic leakage. Pharmacological agents that shunt ER-derived Ca2+ directly to cyt...

  14. Insulin Signaling in the Aging of Healthy and Proteotoxically Stressed Mechanosensory Neurons

    Directory of Open Access Journals (Sweden)

    Courtney eScerbak

    2014-07-01

    Full Text Available Insulin signaling is central to cellular metabolism and organismal aging. However, the role of insulin signaling in natural and proteotoxically stressed aging neurons has yet to be fully described. We studied aging of Caenorbaditis elegans mechanosensory neurons expressing a neurotoxic expanded polyglutamine transgene (polyQ128, or lacking this proteotoxicity stressor (polyQ0, under conditions in which the insulin signaling pathway was disrupted by RNA interference (RNAi. We describe specific changes in lifespan, mechanosensory neuronal morphologies, and mechansensory function following RNAi treatment targeting the insulin signaling pathway. Overall, we confirmed that transcription factor DAF-16 is neuroprotective in the proteotoxically stressed model, though not strikingly in the naturally aging model. Decreased insulin signaling through daf-2 RNAi improved mechanosensory function in both models and decreased protein aggregation load in polyQ128, yet showed opposing effects on accumulation of neuronal aberrations in both strains. Decreased daf-2 signaling slightly enhanced mechanosensation while greatly enhancing branching of the mechanosensory neuron axons and dendrites in polyQ0 animals, suggesting that branching is an adaptive response in natural aging. These effects in polyQ0 did not appear to involve DAF-16, suggesting the existence of a non-canonical DAF-2 pathway for the modulation of morphological adaptation. However, in polyQ128 animals, decreased daf-2 signaling significantly enhanced mechanosensation while decreasing neuronal aberrations. Unlike other interventions that reduce the strength of insulin signaling, daf-2 RNAi dramatically redistributed large polyQ128 aggregates to the cell body, away from neuronal processes. Our results suggest that insulin signaling strength can differentially affect specific neurons aging naturally or under proteotoxic stress.

  15. Quantitation of signal transduction.

    Science.gov (United States)

    Krauss, S; Brand, M D

    2000-12-01

    Conventional qualitative approaches to signal transduction provide powerful ways to explore the architecture and function of signaling pathways. However, at the level of the complete system, they do not fully depict the interactions between signaling and metabolic pathways and fail to give a manageable overview of the complexity that is often a feature of cellular signal transduction. Here, we introduce a quantitative experimental approach to signal transduction that helps to overcome these difficulties. We present a quantitative analysis of signal transduction during early mitogen stimulation of lymphocytes, with steady-state respiration rate as a convenient marker of metabolic stimulation. First, by inhibiting various key signaling pathways, we measure their relative importance in regulating respiration. About 80% of the input signal is conveyed via identifiable routes: 50% through pathways sensitive to inhibitors of protein kinase C and MAP kinase and 30% through pathways sensitive to an inhibitor of calcineurin. Second, we quantify how each of these pathways differentially stimulates functional units of reactions that produce and consume a key intermediate in respiration: the mitochondrial membrane potential. Both the PKC and calcineurin routes stimulate consumption more strongly than production, whereas the unidentified signaling routes stimulate production more than consumption, leading to no change in membrane potential despite increased respiration rate. The approach allows a quantitative description of the relative importance of signal transduction pathways and the routes by which they activate a specific cellular process. It should be widely applicable.

  16. Transductive Ordinal Regression

    CERN Document Server

    Seah, Chun-Wei; Ong, Yew-Soon

    2011-01-01

    Ordinal regression is commonly formulated as a multi-class problem with ordinal constraints. The challenge of designing accurate classifiers for ordinal regression generally increases with the number of classes involved, due to the large number of labeled patterns that are needed. The availability of ordinal class labels, however, are often costly to calibrate or difficult to obtain. Unlabeled patterns, on the other hand, often exist in much greater abundance and are freely available. To take benefits from the abundance of unlabeled patterns, we present a novel transductive learning paradigm for ordinal regression in this paper, namely Transductive Ordinal Regression (TOR). The key challenge of the present study lies in the precise estimation of both the ordinal class label of the unlabeled data and the decision functions of the ordinal classes, simultaneously. The core elements of the proposed TOR include an objective function that caters to several commonly used loss functions casted in transductive setting...

  17. The role of purinergic signaling in depressive disorders.

    Science.gov (United States)

    Sperlagh, Beata; Csolle, Cecilia; Ando, Romeo D; Goloncser, Flora; Kittel, Agnes; Baranyi, Maria

    2012-12-01

    The purinergic signaling system consists of transporters, enzymes and receptors responsible for the synthesis, release, action and extracellular inactivation of adenosine 5'-triphosphate (ATP) and its extracellular breakdown product adenosine. The actions of ATP are mediated ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 adenosine receptors. Purinergic signaling pathways are widely expressed in the central nervous system (CNS) and participate in its normal and pathological functions. Among P2X receptors, the P2X7 receptor (P2rx7) has received considerable interest in both basic and clinical neuropsychiatric research because of its profound effects in animal CNS pathology and its potential involvement as a susceptibility gene in mood disorders. Although genetic findings were not always consistently replicated, several studies demonstrated that single nucleotide polymorphisms (SNPs) in the human P2X7 gene (P2RX7) show significant association with major depressive disorder and bipolar disorder. Animal studies revealed that the genetic knock-down or pharmacological antagonism leads to reduced depressive-like behavior, attenuated response in mania-model and alterations in stress reactivity. A potential mechanism of P2rx7 activation on mood related behavior is increased glutamate release, activation of extrasynaptic NMDA receptors and subsequent enduring changes in neuroplasticity. In addition, dysregulation of monoaminergic transmission and HPA axis reactivity could also contribute to the observed changes in behavior. Besides P2rx7, the inhibition of adenosine A1 and A2A receptors also mediate antidepressant-like effects in animal experiments. In conclusion, despite contradictions between existing data, these findings point to the therapeutic potential of the purinergic signaling system in mood disorders.

  18. Purinergic receptors in the endocrine and exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, I

    2008-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly......, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors...

  19. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    Directory of Open Access Journals (Sweden)

    Giulia Magni

    2014-01-01

    Full Text Available It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.

  20. Trichomoniasis immunity and the involvement of the purinergic signaling

    Directory of Open Access Journals (Sweden)

    Camila Braz Menezes

    2016-08-01

    Full Text Available Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.

  1. ACETYL-L-CARNITINE AFFECTS THE ELECTRICAL ACTIVITY OF MECHANOSENSORY NEURONS IN HIRUDO MEDICINALIS GANGLIA

    Directory of Open Access Journals (Sweden)

    Giovanna Traina

    2017-04-01

    Full Text Available Was previously discovered that in the leech Hirudo medicinalis, acetyl-l-carnitine (ALC affects forms of non-associative learning, such as sensitization and dishabituation, due to nociceptive stimulation of the dorsal skin in the swim induction behavioural paradigm, likely through modulating the activity of the mechanosensory tactile (T neurons, which initiate swimming. Since was found that ALC impaired sensitization and dishabituation, both of which are mediated by the neurotransmitter serotonin, the present study analyzed how ALC may interfere with the sensitizing response. Was already found that ALC reduced the activity of nociceptive (N neurons, which modulate T cell activity through serotonergic mediation.

  2. The central projection of cephalic mechanosensory axons in the haematophagous bug Triatoma infestans

    Directory of Open Access Journals (Sweden)

    Insausti Teresita C

    2000-01-01

    Full Text Available The projections of mechanosensory hairs located on the dorsal and lateral head of the adult haematophagous bug Triatoma infestans were analyzed by means of cobalt filling. Axons run into the anterior and posterior tegumentary nerve and project through the brain to the ventral nerve cord. The fibres are small in diameter and run as a fascicle. Some branches run into suboesophageal and prothoracic centres; others run as far as to the mesothoracic ganglion. These sensory projections resemble that of wind-sensitive head hairs of the locust. The functional role of this sensory system in this species is discussed.

  3. Immediate and punitive impact of mechanosensory disturbance on olfactory behaviour of larval Drosophila

    Directory of Open Access Journals (Sweden)

    Timo Saumweber

    2014-09-01

    Full Text Available The ability to respond to and to learn about mechanosensory disturbance is widespread among animals. Using Drosophila larvae, we describe how the frequency of mechanosensory disturbance (‘buzz’ affects three aspects of behaviour: free locomotion, innate olfactory preference, and potency as a punishment. We report that (i during 2–3 seconds after buzz onset the larvae slowed down and then turned, arguably to escape this situation; this was seen for buzz frequencies of 10, 100, and 1000 Hz, (ii innate olfactory preference was reduced when tested in the presence of the buzz; this effect was strongest for the 100 Hz frequency, (iii after odour-buzz associative training, we observed escape from the buzz-associated odour; this effect was apparent for 10 and 100, but not for 1000 Hz. We discuss the multiple behavioural effects of mechanosensation and stress that the immediate effects on locomotion and the impact as punishment differ in their frequency-dependence. Similar dissociations between immediate, reflexive behavioural effects and reinforcement potency were previously reported for sweet, salty and bitter tastants. It should be interesting to see how these features map onto the organization of sensory, ascending pathways.

  4. Thalamocortical dynamics of sleep: roles of purinergic neuromodulation.

    Science.gov (United States)

    Halassa, Michael M

    2011-04-01

    Thalamocortical dynamics, the millisecond to second changes in activity of thalamocortical circuits, are central to perception, action and cognition. Generated by local circuitry and sculpted by neuromodulatory systems, these dynamics reflect the expression of vigilance states. In sleep, thalamocortical dynamics are thought to mediate "offline" functions including memory consolidation and synaptic scaling. Here, I discuss thalamocortical sleep dynamics and their modulation by the ascending arousal system and locally released neurochemicals. I focus on modulation of these dynamics by electrically silent astrocytes, highlighting the role of purinergic signaling in this glial form of communication. Astrocytes modulate cortical slow oscillations, sleep behavior, and sleep-dependent cognitive function. The discovery that astrocytes can modulate sleep dynamics and sleep-related behaviors suggests a new way of thinking about the brain, in which integrated circuits of neurons and glia control information processing and behavioral output.

  5. Acupuncture-Induced Analgesia: A Neurobiological Basis in Purinergic Signaling.

    Science.gov (United States)

    Tang, Yong; Yin, Hai-Yan; Rubini, Patrizia; Illes, Peter

    2016-12-01

    Chronic pain is a debilitating and rather common health problem. The present shortage in analgesic drugs with a favorable spectrum but without remarkable side effects furthered the search for alternative therapeutic manipulations. Increasing evidence from both basic and clinical research on acupuncture, a main alternative therapy of traditional Chinese medicine, suggests that chronic pain is sensitive to acupuncture procedures. Clarification of the underlying mechanisms is a challenge of great theoretical and practical significance. The seminal hypothesis of Geoffrey Burnstock and the astounding findings of Maiken Nedergaard on the involvement of purinergic signaling in the beneficial effects of acupuncture fertilized the field and led to an intensification of research on acupurines. In this review, we will summarize the state-of-the-art situation and try to forecast how the field is likely to develop in the future. © The Author(s) 2016.

  6. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis.

    Science.gov (United States)

    Chaves, Mariana M; Canetti, Cláudio; Coutinho-Silva, Robson

    2016-09-05

    Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.

  7. Dopamine receptor type 1 of Caenorhabditis elegans expressing in mechanosensory neurons

    Directory of Open Access Journals (Sweden)

    Bondarchuk T. I.

    2012-01-01

    Full Text Available Until now the results on profiling dopamine receptors in C. elegans have been incomplete and fragmentary. The aim of this study was to investigate the expression profile of dop-1 gene in C. elegans using 3 kb promoter with 3'-end locating before ATG of dop-1 gene. Methods. The strain of C. elegans with mutant unc-119 gene was used. To check a pattern of the dop-1 expression, the promoter of this gene was amplified using PCR. The animals were co-bombarded with plasmid pPD95.77 dop-1::GFP and reporter construct containing unc-119 gene. Results. Using GFP as a reporter protein, we built a whole picture of expression of dopamine receptor type 1 in C. elegans and found that this protein could be detected only in mechanosensory neurons such as PLM, PVQR, PVQL, ALNR, ALNL, DVAR, DVC.

  8. The abdomen of Drosophila: does planar cell polarity orient the neurons of mechanosensory bristles?

    Directory of Open Access Journals (Sweden)

    Fabre Caroline CG

    2008-04-01

    Full Text Available Abstract Background In the adult abdomen of Drosophila, the shafts of mechanosensory bristles point consistently from anterior to posterior. This is an example of planar cell polarity (PCP; some genes responsible for PCP have been identified. Each adult bristle is made by a clone of four cells, including the neuron that innervates it, but little is known as to how far the formation or positions of these cells depends on PCP. The neurons include a single dendrite and an axon; it is not known whether the orientation of these processes is influenced by PCP. Results We describe the development of the abdominal mechanosensory bristles in detail. The division of the precursor cell gives two daughters, one (pIIa divides to give rise to the bristle shaft and socket cell and the other (pIIb generates the neuron, the sheath and the fifth cell. Although the bristles and their associated shaft and socket cells are consistently oriented, the positioning and behaviour of the neuron, the sheath and the fifth cell, as well as the orientation of the axons and the dendritic paths, depend on location. For example, in the anterior zone of the segment, the axons grow posteriorly, while in the posterior zone, they grow anteriorly. Manipulating the PCP genes can reverse bristle orientation, change the path taken by the dendrite and the position of the cell body of the neuron. However, the paths taken by the axon are not affected. Conclusion PCP genes, such as starry night and dachsous orient the bristles and position the neuronal cell body and affect the shape of the dendrites. However, these PCP genes do not appear to change the paths followed by the sensory axons, which must, therefore, be polarised by other factors.

  9. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.

    Directory of Open Access Journals (Sweden)

    Jan M Ache

    2015-07-01

    Full Text Available Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs. First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This

  10. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.

    Science.gov (United States)

    Ache, Jan M; Dürr, Volker

    2015-07-01

    Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs). First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC) analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This reveals the versatility

  11. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne

    2015-01-01

    of purinergic receptors. The TGR5 receptor, expressed on the luminal side of pancreatic ducts, was not involved in ATP release and Ca(2+) signals, but could stimulate Na(+)/Ca(2+) exchange in some conditions. CONCLUSIONS: CDCA evokes significant ATP release that can stimulate purinergic receptors, which in turn...... signalling are other important regulators of similar secretory mechanisms in pancreas. The aim of our study was to elucidate whether there is interplay between ATP and BA signalling. RESULTS: Here we show that CDCA (chenodeoxycholic acid) caused fast and concentration-dependent ATP release from acini (AR42J...... increase [Ca(2+)]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca(2+) conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects...

  12. Integrins mediating bone signal transduction

    Institute of Scientific and Technical Information of China (English)

    HE Chuanglong; WANG Yuanliang; YANG Lihua; ZHANG Jun

    2004-01-01

    Integrin-mediated adhesions play critical roles in diverse cell functions. Integrins offers a platform on which mechanical stimuli, cytoskeletal organization, biochemical signals can concentrate. Mechanical stimuli transmitted by integrins influence the cytoskeleton, in turn, the cytoskeleton influences cell adhesion via integrins, then cell adhesion results in a series of signal transduction cascades. In skeleton, integrins also have a key role for bone resoption by osteoclasts and reformation by osteoblasts. In present review, the proteins involved in integrin signal transduction and integrin signal transduction pathways were discussed, mainly on the basic mechanisms of integrin signaling and the roles of integrins in bone signal transduction, which may give insight into new therapeutic agents to all kinds of skeletal diseases and new strategies for bone tissue engineering.

  13. Señales purinérgicas Purinergic signals

    Directory of Open Access Journals (Sweden)

    Eduardo R Lazarowski

    2009-04-01

    Full Text Available En la última década se ha aportado clara evidencia de que tanto nucleósidos como nucleótidos de adenina y uridina pueden funcionar como factores de señalización extracelular. Su acción es mediada por dos tipos principales de receptores de superficie denominados purinérgicos. Los receptores P1 se activan por adenosina, y son todos metabotrópicos, mientras que los receptores de nucleótidos (ATP, ADP, UTP y UDP y nucleótidos-azúcares (UDP-glucosa y UDP-galactosa pueden ser metabotrópicos (P2Y o ionotrópicos (P2X. La importancia y complejidad de este sistema de señalización se evidencia por la diversidad de mecanismos de liberación de nucleótidos al medio extracelular y por la distribución ubicua de varios grupos de ectonucleotidasas capaces de catalizar la degradación y conversión de nucleótidos. Hasta el momento se han descrito y clonado una veintena de estos receptores que modulan una variedad de respuestas, como el impulso nervioso, la respuesta inflamatoria, la secreción de insulina, la regulación del tono vascular y la percepción del dolor. En la presente revisión se describen las características estructurales y farmacológicas de los receptores purinérgicos y se analiza la interacción dinámica entre estos receptores, los nucleósidos y nucleótidos, y las ectonucleotidasas, con especial atención a la dinámica de la agregación plaquetaria, la respuesta inmune y la hidratación de las mucosas respiratorias.In the last decade evidence accumulated that nucleosides and nucleotides of both uridine and adenine can act as extracellular signaling factors. Their action is mediated by two main types of surface receptors commonly known as purinergic. P1 receptors are metabotropic and activated by adenosine, whereas receptors for nucleotides (ATP, ADP, UTP and UDP and nucleotide-sugars (UDP-glucose and UDP-galactose can be either metabotropic (P2Y or ionotropic (P2X. The importance and complexity of this signaling system

  14. Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles

    OpenAIRE

    Robert W Banks; Cahusac, Peter M. B.; Graca, Anna; Kain, Nakul; Shenton, Fiona; Singh, Paramjeet; Njå, Arild; Simon, Anna; Watson, Sonia; Slater, Clarke R; Bewick, Guy S.

    2013-01-01

    Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the peripheral sensory terminals of primary mechanosensory dorsal root ganglion cells, so the presence of such a system in the lanceolate end...

  15. Impaired Purinergic Regulation of the Glial (Müller) Cell Volume in the Retina of Transgenic Rats Expressing Defective Polycystin-2.

    Science.gov (United States)

    Vogler, Stefanie; Pannicke, Thomas; Hollborn, Margrit; Kolibabka, Matthias; Wiedemann, Peter; Reichenbach, Andreas; Hammes, Hans-Peter; Bringmann, Andreas

    2016-07-01

    Retinal glial (Müller) cells possess an endogenous purinergic signal transduction cascade which normally prevents cellular swelling in osmotic stress. The cascade can be activated by osmotic or glutamate receptor-dependent ATP release. We determined whether activation of this cascade is altered in Müller cells of transgenic rats that suffer from a slow photoreceptor degeneration due to the expression of a truncated human cilia gene polycystin-2 (CMV-PKD21/703 HA). Age-matched Sprague-Dawley rats served as control. Retinal slices were superfused with a hypoosmotic solution (60 % osmolarity). Müller cells in retinas of PKD21/703 rats swelled immediately in hypoosmotic stress; this was not observed in control retinas. Pharmacological blockade of P2Y1 or adenosine A1 receptors induced osmotic swelling of Müller cells from control rats. The swelling induced by the P2Y1 receptor antagonist was mediated by induction of oxidative-nitrosative stress, mitochondrial dysfunction, production of inflammatory lipid mediators, and a sodium influx from the extracellular space. Exogenous VEGF or glutamate prevented the hypoosmotic swelling of Müller cells from PKD21/703 rats; this effect was mediated by activation of the purinergic signaling cascade. In neuroretinas of PKD21/703 rats, the gene expression levels of P2Y1 and A1 receptors, pannexin-1, connexin 45, NTPDases 1 and 2, and various subtypes of nucleoside transporters are elevated compared to control. The data may suggest that the osmotic swelling of Müller cells from PKD21/703 rats is caused by an abrogation of the osmotic ATP release while the glutamate-induced ATP release is functional. In the normal retina, ATP release and autocrine P2Y1 receptor activation serve to inhibit the induction of oxidative-nitrosative stress, mitochondrial dysfunction, and production of inflammatory lipid mediators, which otherwise will induce a sodium influx and cytotoxic Müller cell swelling under anisoosmotic conditions. Purinergic

  16. ASIC2 is present in human mechanosensory neurons of the dorsal root ganglia and in mechanoreceptors of the glabrous skin.

    Science.gov (United States)

    Cabo, R; Alonso, P; Viña, E; Vázquez, G; Gago, A; Feito, J; Pérez-Moltó, F J; García-Suárez, O; Vega, J A

    2015-03-01

    Mechanosensory neurons lead to the central nervous system touch, vibration and pressure sensation. They project to the periphery and form different kinds of mechanoreceptors. The manner in which they sense mechanical signals is still not fully understood, but electrophysiological experiments have suggested that this may occur through the activation of ion channels that gate in response to mechanical stimuli. The acid-sensing ion channels (ASICs), especially ASIC2, may function as mechanosensors or are required for mechanosensation, and they are expressed in both mechanosensory neurons and mechanoreceptors. Here, we have used double immunohistochemistry for ASIC2 together with neuronal and glial markers associated with laser confocal microscopy and image analysis, to investigate the distribution of ASIC2 in human lumbar dorsal root ganglia, as well as in mechanoreceptors of the hand and foot glabrous skin. In lumbar dorsal root ganglia, ASIC2 immunoreactive neurons were almost all intermediate or large sized (mean diameter ≥20-70 µm), and no ASIC2 was detected in the satellite glial. ASIC2-positive axons were observed in Merkel cell-neurite complexes, Meissner and Pacinian corpuscles, all of them regarded as low-threshold mechanoreceptors. Moreover, a variable percent of Meissner (8 %) and Pacinian corpuscles (27 %) also displayed ASIC2 immunoreactivity in the Schwann-related cells. These results demonstrate the distribution of ASIC2 in the human cutaneous mechanosensory system and suggest the involvement of ASIC2 in mechanosensation.

  17. Mapping sea urchins tube feet proteome--a unique hydraulic mechano-sensory adhesive organ.

    Science.gov (United States)

    Santos, Romana; Barreto, Angela; Franco, Catarina; Coelho, Ana Varela

    2013-02-21

    Marine organisms secrete adhesives for substrate attachment that to be effective require functional assembly underwater and displacement of water, ions, and weakly bound polyions that are ubiquitous in seawater. Therefore, understanding the characteristics of these protein/carbohydrate-based marine adhesives is imperative to decipher marine adhesion and also, to accelerate the development of new biomimetic underwater adhesives and anti-fouling agents. The present study, aims at mapping the proteome of the sea urchin Paracentrotus lividus adhesive organs using a combination of complementary protein separation techniques (1-D-nanoLC and 2-DE), databases and search algorithms. This strategy resulted in the identification of 328 non-redundant proteins, constituting the first comprehensive list of sea urchin tube feet proteins. Given the known importance of phosphorylation and glycosylation in marine adhesion, the 2DE proteome was re-analyzed with specific fluorescent stains for these two PTMs, resulting in the identification of 69 non-redundant proteins. The obtained results demonstrate that tube feet are unique mechano-sensory adhesive organs and highlight putative adhesive proteins, that although requiring further confirmation, constitute a step forward in the quest to decipher sea urchins temporary adhesion.

  18. Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals.

    Science.gov (United States)

    Jordan, Laura K; Kajiura, Stephen M; Gordon, Malcolm S

    2009-10-01

    Short range hydrodynamic and electrosensory signals are important during final stages of prey capture in elasmobranchs (sharks, skates and rays), and may be particularly useful for dorso-ventrally flattened batoids with mouths hidden from their eyes. In stingrays, both the lateral line canal and electrosensory systems are highly modified and complex with significant differences on ventral surfaces that relate to feeding ecology. This study tests functional hypotheses based on quantified differences in sensory system morphology of three stingray species, Urobatis halleri, Myliobatis californica and Pteroplatytrygon violacea. Part I investigates the mechanosensory lateral line canal system whereas part II focuses on the electrosensory system. Stingray lateral line canals include both pored and non-pored sections and differ in branching complexity and distribution. A greater proportion of pored canals and high pore numbers were predicted to correspond to increased response to water flow. Behavioral experiments were performed to compare responses of stingrays to weak water jets mimicking signals produced by potential prey at velocities of 10-20 cm s(-1). Bat rays, M. californica, have the most complex and broadly distributed pored canal network and demonstrated both the highest response rate and greater response intensity to water jet signals. Results suggest that U. halleri and P. violacea may rely on additional sensory input, including tactile and visual cues, respectively, to initiate stronger feeding responses. These results suggest that stingray lateral line canal morphology can indicate detection capabilities through responsiveness to weak water jets.

  19. The scolopidial accessory organs and Nebenorgans in orthopteroid insects: Comparative neuroanatomy, mechanosensory function, and evolutionary origin.

    Science.gov (United States)

    Strauß, Johannes

    2017-09-18

    Scolopidial sensilla in insects often form large sensory organs involved in proprioception or exteroception. Here the knowledge on Nebenorgans and accessory organs, two organs consisting of scolopidial sensory cells, is summarised. These organs are present in some insects which are model organisms for the physiology of mechanosensory systems (cockroaches and tettigoniids). Recent comparative studies documented the accessory organ in several taxa of Orthoptera (including tettigoniids, cave crickets, Jerusalem crickets) and the Nebenorgan in related insects (Mantophasmatodea). The accessory organ or Nebenorgan is usually a small organ of 8-15 sensilla located in the posterior leg tibia of all leg pairs. The physiological properties of the accessory organs and Nebenorgans are so far largely unknown. Taking together neuroanatomical and electrophysiological data from disparate taxa, there is considerable evidence that the accessory organ and Nebenorgan are vibrosensitive. They thus complement the larger vibrosensitive subgenual organ in the tibia. This review summarises the comparative studies of these sensory organs, in particular the arguments and criteria for the homology of the accessory organ and Nebenorgan among orthopteroid insects. Different scenarios of repeated evolutionary origins or losses of these sensory organs are discussed. Neuroanatomy allows to distinguish individual sensory organs for analysis of sensory physiology, and to infer scenarios of sensory evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles.

    Science.gov (United States)

    Li, Lishi; Ginty, David D

    2014-02-25

    In mouse hairy skin, lanceolate complexes associated with three types of hair follicles, guard, awl/auchene and zigzag, serve as mechanosensory end organs. These structures are formed by unique combinations of low-threshold mechanoreceptors (LTMRs), Aβ RA-LTMRs, Aδ-LTMRs, and C-LTMRs, and their associated terminal Schwann cells (TSCs). In this study, we investigated the organization, ultrastructure, and maintenance of longitudinal lanceolate complexes at each hair follicle subtype. We found that TSC processes at hair follicles are tiled and that individual TSCs host axonal endings of more than one LTMR subtype. Electron microscopic analyses revealed unique ultrastructural features of lanceolate complexes that are proposed to underlie mechanotransduction. Moreover, Schwann cell ablation leads to loss of LTMR terminals at hair follicles while, in contrast, TSCs remain associated with hair follicles following skin denervation in adult mice and, remarkably, become re-associated with newly formed axons, indicating a TSC-dependence of lanceolate complex maintenance and regeneration in adults. DOI: http://dx.doi.org/10.7554/eLife.01901.001.

  1. Variation in the purinergic P2RX(7) receptor gene and schizophrenia

    DEFF Research Database (Denmark)

    Hansen, Thomas; Jakobsen, Klaus D; Fenger, Mogens;

    2008-01-01

    The purinergic receptor gene P2RX(7) is located in a major linkage hotspot for schizophrenia and bipolar disorders, 12q21-33. It has previously been associated with bipolar disorder but has never been analysed in relation to schizophrenia, although it is involved in several neuronal processes...

  2. Purinergic signaling in the lumen of a normal nephron and in remodeled PKD encapsulated cysts

    Science.gov (United States)

    Hovater, Michael B.; Olteanu, Dragos; Welty, Elisabeth A.

    2008-01-01

    The nephron is the functional unit of the kidney. Blood and plasma are continually filtered within the glomeruli that begin each nephron. Adenosine 5′ triphosphate (ATP) and its metabolites are freely filtered by each glomerulus and enter the lumen of each nephron beginning at the proximal convoluted tubule (PCT). Flow rate, osmolality, and other mechanical or chemical stimuli for ATP secretion are present in each nephron segment. These ATP-release stimuli are also different in each nephron segment due to water or salt permeability or impermeability along different luminal membranes of the cells that line each nephron segment. Each of the above stimuli can trigger additional ATP release into the lumen of a nephron segment. Each nephron-lining epithelial cell is a potential source of secreted ATP. Together with filtered ATP and its metabolites derived from the glomerulus, secreted ATP and adenosine derived from cells along the nephron are likely the principal two of several nucleotide and nucleoside candidates for renal autocrine and paracrine ligands within the tubular fluid of the nephron. This minireview discusses the first principles of purinergic signaling as they relate to the nephron and the urinary bladder. The review discusses how the lumen of a renal tubule presents an ideal purinergic signaling microenvironment. The review also illustrates how remodeled and encapsulated cysts in autosomal dominant polycystic kidney disease (ADPKD) and remodeled pseudocysts in autosomal recessive PKD (ARPKD) of the renal collecting duct likely create an even more ideal microenvironment for purinergic signaling. Once trapped in these closed microenvironments, purinergic signaling becomes chronic and likely plays a significant epigenetic and detrimental role in the secondary progression of PKD, once the remodeling of the renal tissue has begun. In PKD cystic microenvironments, we argue that normal purinergic signaling within the lumen of the nephron provides detrimental

  3. Quantitative characterization of the filiform mechanosensory hair array on the cricket cercus.

    Directory of Open Access Journals (Sweden)

    John P Miller

    Full Text Available BACKGROUND: Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is approximately 1 cm long, and is covered with 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement vectors, have been characterized semi-quantitatively in studies over the last 40 years, and have been shown to be very stereotypical across different animals in this species. Although the cercal sensory system has been the focus of many studies in the areas of neuroethology, development, biomechanics, sensory function and neural coding, there has not yet been a quantitative study of the functional morphology of the receptor array of this important model system. METHODOLOGY/PRINCIPAL FINDINGS: We present a quantitative characterization of the structural characteristics and functional morphology of the cercal filiform hair array. We demonstrate that the excitatory direction along each hair's movement plane can be identified by features of its socket that are visible at the light-microscopic level, and that the length of the hair associated with each socket can also be estimated accurately from a structural parameter of the socket. We characterize the length and directionality of all hairs on the basal half of a sample of three cerci, and present statistical analyses of the distributions. CONCLUSIONS/SIGNIFICANCE: The inter-animal variation of several global organizational features is low, consistent with constraints imposed by functional effectiveness and/or developmental processes. Contrary to previous reports, however, we show that the filiform hairs are not re-identifiable in the strict sense.

  4. Meeting Report: Teaching Signal Transduction

    Science.gov (United States)

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to reflect on the…

  5. Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles.

    Science.gov (United States)

    Banks, Robert W; Cahusac, Peter M B; Graca, Anna; Kain, Nakul; Shenton, Fiona; Singh, Paramjeet; Njå, Arild; Simon, Anna; Watson, Sonia; Slater, Clarke R; Bewick, Guy S

    2013-05-15

    Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the peripheral sensory terminals of primary mechanosensory dorsal root ganglion cells, so the presence of such a system in the lanceolate ending would provide support for our hypothesis that it is a general property of fundamental importance to the regulation of the responsiveness of the broad class of primary mechanosensory endings. We show not only that an SLV-based system is present in lanceolate endings, but also that there are clear parallels between its operation in the two types of mechanosensory endings. In particular, we demonstrate that, as in the muscle spindle: (i) FM1-43 labels the sensory terminals of the lanceolate ending, rather than the closely associated accessory (glial) cells; (ii) the dye enters and leaves the terminals primarily by SLV recycling; (iii) the dye does not block the electrical response to mechanical stimulation, in contrast to its effect on the hair cell and dorsal root ganglion cells in culture; (iv) SLV recycling is Ca(2+) sensitive; and (v) the sensory terminals are enriched in glutamate. Thus, in the lanceolate sensory ending SLV recycling is itself regulated, at least in part, by glutamate acting through a phospholipase D-coupled metabotropic glutamate receptor.

  6. Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus?

    Directory of Open Access Journals (Sweden)

    Francesco Di Virgilio

    2016-10-01

    Full Text Available Purinergic signalling plays a crucial role in immunity and autoimmunity. Among purinergic receptors, the P2X7 receptor (P2X7R has an undisputed role as it is expressed to high level by immune cells, triggers cytokine release and modulates immune cell differentiation. In this review, we focus on evidence supporting a possible role of the P2X7R in the pathogenesis of systemic lupus erythematosus (SLE.

  7. Facial Mechanosensory Influence on Forelimb Movement in Newborn Opossums, Monodelphis domestica.

    Directory of Open Access Journals (Sweden)

    Marie-Josée Desmarais

    Full Text Available The opossum, Monodelphis domestica, is born very immature but crawls, unaided, with its forelimbs (FL from the mother's birth canal to a nipple where it attaches to pursue its development. What sensory cues guide the newborn to the nipple and trigger its attachment to it? Previous experiments showed that low intensity electrical stimulation of the trigeminal ganglion induces FL movement in in vitro preparations and that trigeminal innervation of the facial skin is well developed in the newborn. The skin does not contain Vater-Pacini or Meissner touch corpuscles at this age, but it contains cells which appear to be Merkel cells (MC. We sought to determine if touch perceived by MC could exert an influence on FL movements. Application of the fluorescent dye AM1-43, which labels sensory cells such as MC, revealed the presence of a large number of labeled cells in the facial epidermis, especially in the snout skin, in newborn opossums. Moreover, calibrated pressure applied to the snout induced bilateral and simultaneous electromyographic responses of the triceps muscle in in vitro preparations of the neuraxis and FL from newborn. These responses increase with stimulation intensity and tend to decrease over time. Removing the facial skin nearly abolished these responses. Metabotropic glutamate 1 receptors being involved in MC neurotransmission, an antagonist of these receptors was applied to the bath, which decreased the EMG responses in a reversible manner. Likewise, bath application of the purinergic type 2 receptors, used by AM1-43 to penetrate sensory cells, also decreased the triceps EMG responses. The combined results support a strong influence of facial mechanosensation on FL movement in newborn opossums, and suggest that this influence could be exerted via MC.

  8. Gibberellin Signal Transduction in Rice

    Institute of Scientific and Technical Information of China (English)

    Liu-Min Fan; Xiaoyan Feng; Yu Wang; Xing Wang Deng

    2007-01-01

    In the past decade, significant knowledge has accumulated regarding gibberellin (GA) signal transduction in rice as a result of studies using multiple approaches, particularly molecular genetics. The present review highlights the recent developments in the identification of GA signaling pathway components, the discovery of GA-induced destruction of GA signaling represser (DELLA protein), and the possible mechanism underlying the regulation of GA-responsive gene expression in rice.

  9. Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J.; Meinild, A.-K.

    2013-01-01

    to ion channel stimulation and cell volume back-regulation. Our aim was to investigate whether volume sensitivity of the voltage-gated K(+) channel, KCNQ1, is dependent on ATP release and regulation by purinergic signalling. METHODS: We used Xenopus oocytes heterologously expressing human KCNQ1, KCNE1......, water channels (AQP1) and P2Y2 receptors. ATP release was monitored by a luciferin-luciferase assay and ion channel conductance was recorded by two-electrode voltage clamp. RESULTS: The luminescence assay showed that oocytes released ATP in response to mechanical, hypoosmotic stimuli and hyperosmotic...... to mechanical stimuli and cell volume changes. Purinergic P2 and P1 receptors confer some of the KCNQ1 channel volume sensitivity, although endogenous adenosine receptors and expressed P2Y2 receptors do so in the negative direction....

  10. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.

    Science.gov (United States)

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M; Piacentini, Mauro; Gougeon, Marie-Lise; Kroemer, Guido; Perfettini, Jean-Luc

    2011-08-29

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches. © 2011 Séror et al.

  11. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation.

    Science.gov (United States)

    Riteau, N; Baron, L; Villeret, B; Guillou, N; Savigny, F; Ryffel, B; Rassendren, F; Le Bert, M; Gombault, A; Couillin, I

    2012-10-11

    Deposition of uric acid crystals in joints causes the acute and chronic inflammatory disease known as gout and prolonged airway exposure to silica crystals leads to the development of silicosis, an irreversible fibrotic pulmonary disease. Aluminum salt (Alum) crystals are frequently used as vaccine adjuvant. The mechanisms by which crystals activate innate immunity through the Nlrp3 inflammasome are not well understood. Here, we show that uric acid, silica and Alum crystals trigger the extracellular delivery of endogenous ATP, which just precedes the secretion of mature interleukin-1β (IL-1β) by macrophages, both events depending on purinergic receptors and connexin/pannexin channels. Interestingly, not only ATP but also ADP and UTP are involved in IL-1β production upon these Nlrp3 inflammasome activators through multiple purinergic receptor signaling. These findings support a pivotal role for nucleotides as danger signals and provide a new molecular mechanism to explain how chemically and structurally diverse stimuli can activate the Nlrp3 inflammasome.

  12. Purinergic receptors in skeletal muscles in health and in muscular dystrophy.

    Science.gov (United States)

    Krasowska, Elżbieta; Róg, Justyna; Sinadinos, Anthony; Young, Christopher N J; Górecki, Dariusz C; Zabłocki, Krzysztof

    2014-01-01

    The P2 purinergic (nucleotide) receptor super-family comprises of two families of protein. The P2X, which are channel-forming ionotropic receptors and the P2Y metabotropic receptors activating G protein-mediated signalling pathways. Members of both groups have been identified in skeletal muscle cells at different stages of differentiation. It is well documented that sequential expression and down-regulation of particular P2 receptors on the surface of sarcolemma is closely associated with muscle maturation during embryogenesis and postnatal growth. P2 receptors are also involved in muscle regeneration following injury. Moreover, enhanced expression of specific purinergic receptors together with increased availability of extracellular ATP in dystrophic muscles are important elements of the dys- trophic pathophysiology considerably increasing severity.

  13. Mechanosensory Neuron Aging: Differential Trajectories with Lifespan-Extending Alaskan Berry and Fungal Treatments in Caenorhabditis elegans

    Science.gov (United States)

    Scerbak, Courtney; Vayndorf, Elena M.; Hernandez, Alicia; McGill, Colin; Taylor, Barbara E.

    2016-01-01

    Many nutritional interventions that increase lifespan are also proposed to postpone age-related declines in motor and cognitive function. Potential sources of anti-aging compounds are the plants and fungi that have adapted to extreme environments. We studied the effects of four commonly consumed and culturally relevant Interior Alaska berry and fungus species (bog blueberry, lowbush cranberry, crowberry, and chaga) on the decline in overall health and neuron function and changes in touch receptor neuron morphology associated with aging. We observed increased wild-type Caenorhabditis elegans lifespan and improved markers of healthspan upon treatment with Alaskan blueberry, lowbush cranberry, and chaga extracts. Interestingly, although all three treatments increased lifespan, they differentially affected the development of aberrant morphologies in touch receptor neurons. Blueberry treatments decreased anterior mechanosensory neuron (ALM) aberrations (i.e., extended outgrowths and abnormal cell bodies) while lowbush cranberry treatment increased posterior mechanosensory neuron (PLM) aberrations, namely process branching. Chaga treatment both decreased ALM aberrations (i.e., extended outgrowths) and increased PLM aberrations (i.e., process branching and loops). These results support the large body of knowledge positing that there are multiple cellular strategies and mechanisms for promoting health with age. Importantly, these results also demonstrate that although an accumulation of abnormal neuron morphologies is associated with aging and decreased health, not all of these morphologies are detrimental to neuronal and organismal health. PMID:27486399

  14. Alzheimer's disease shares gene expression aberrations with purinergic dysregulation of HPRT deficiency (Lesch-Nyhan disease).

    Science.gov (United States)

    Kang, Tae Hyuk; Friedmann, Theodore

    2015-03-17

    Transcriptomic studies of murine D3 embryonic stem (ES) cells deficient in the purinergic biosynthetic function hypoxanthine guanine phosphoribosyltransferase (HPRT) and undergoing dopaminergic neuronal differentiation has demonstrated a marked shift from neuronal to glial gene expression and aberrant expression of multiple genes also known to be aberrantly expressed in Alzheimer's and other CNS disorders. Such genetic dysregulations may indicate some shared pathogenic metabolic mechanisms in diverse CNS diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys.

    Science.gov (United States)

    Schwiebert, Erik M; Wallace, Darren P; Braunstein, Gavin M; King, Sandi R; Peti-Peterdi, Janos; Hanaoka, Kazushige; Guggino, William B; Guay-Woodford, Lisa M; Bell, P Darwin; Sullivan, Lawrence P; Grantham, Jared J; Taylor, Amanda L

    2002-04-01

    ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vitro and detectable in cyst fluids from microdissected human autosomal dominant polycystic kidney (ADPKD) cysts. Here, we show enhanced ATP release from autosomal recessive polycystic kidney (ARPKD) and ADPKD epithelial cell models. RT-PCR and immunoblotting for P2Y G protein-coupled receptors and P2X purinergic receptor channels show expression of mRNA and/or protein for multiple subtypes from both families. Assays of cytosolic Ca(2+) concentration and secretory Cl(-) transport show P2Y and P2X purinergic receptor-mediated stimulation of Cl(-) secretion via cytosolic Ca(2+)-dependent signaling. Therefore, we hypothesize that autocrine purinergic signaling may augment detrimentally cyst volume expansion in ADPKD or tubule dilation in ARPKD, accelerating disease progression.

  16. Expression and characterization of purinergic receptors in rat middle meningeal artery-potential role in migraine.

    Directory of Open Access Journals (Sweden)

    Kristian Agmund Haanes

    Full Text Available The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex pathophysiology of migraine. The aim of the present study was to isolate the middle meningeal artery (MMA from rodents and characterize their purinergic receptors using a sensitive wire myograph method and RT-PCR. The data presented herein suggest that blood flow through the MMA is, at least in part, regulated by purinergic receptors. P2X1 and P2Y6 receptors are the strongest contractile receptors and, surprisingly, ADPβS caused contraction most likely via P2Y1 or P2Y13 receptors, which is not observed in other arteries. Adenosine addition, however, caused relaxation of the MMA. The adenosine relaxation could be inhibited by SCH58261 (A2A receptor antagonist and caffeine (adenosine receptor antagonist. This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well with the functional findings. Together these observations could be used as targets for future understanding of the in vivo role of purinergic receptors in the MMA.

  17. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems.

    Science.gov (United States)

    Köles, László; Kató, Erzsébet; Hanuska, Adrienn; Zádori, Zoltán S; Al-Khrasani, Mahmoud; Zelles, Tibor; Rubini, Patrizia; Illes, Peter

    2016-03-01

    Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.

  18. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  19. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  20. Sensory Transduction in Caenorhabditis elegans

    Science.gov (United States)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  1. Dynamic properties of the action potential encoder in an insect mechanosensory neuron.

    Science.gov (United States)

    French, A S

    1984-08-01

    A variety of sensory receptors show adaptation to dynamic stimuli that can be well characterized as fractional differentiation of the input signal. The cause of this behavior is unknown, but because it can be represented by linear systems theory, it has been assumed to arise during early linear processes of transduction or adaptation, rather than during the nonlinear process of action potential encoding. I measured the action potential encoding properties of an insect mechanoreceptor by direct electrical stimulation of the sensory cell axon and found a dynamic response that is identical to the response given by mechanical stimulation. This indicates that the fractional differentiation is a property of the encoder rather than the transducer.

  2. Flow-induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron

    DEFF Research Database (Denmark)

    Juul Jensen, Mikkel E.; Odgaard, Elvin V. P.; Christensen, Mette Høgh

    2007-01-01

    in mTAL, and (3) whether this flow response is affected in mice that are deplete of the main purinergic receptor. [Ca2+]i was imaged in perfused mTAL with fura-2 or fluo-4. It is shown that luminal and basolateral P2Y2 receptors are the main purinergic receptor in this segment. Moreover, the data...

  3. Cellular semiotics and signal transduction

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2007-01-01

    to the processes of sign interpretation and transmission between organisms of the same or different species). In Biosemiotics it is customary to recognise the cell as the most elementary integration unit for semiosis. Therefore intra and intercellular communication constitute the departure point for the study......Semiosis, the processes of production, communication and interpretation of signs - coding and de-coding - takes place within and between organisms. The term "endosemiosis" refers to the processes of interpretation and sign transmission inside an organism (as opposed to "exosemiosis", which refers...... considering semiotic logic in order to construct our understanding of living phenomena. Given the central integrating role of signal transduction in physiological and ecological studies, this chapter outlines its semiotic implications. The multi-modality and modularity of signal molecules and relative...

  4. Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus.

    Science.gov (United States)

    Zhang, Yue; Nelson, Raoul D; Carlson, Noel G; Kamerath, Craig D; Kohan, Donald E; Kishore, Bellamkonda K

    2009-05-01

    Lithium (Li)-induced nephrogenic diabetes insipidus (NDI) has been attributed to the increased production of renal prostaglandin (PG)E(2). Previously we reported that extracellular nucleotides (ATP/UTP), acting through P(2y2) receptor in rat medullary collecting duct (mCD), produce and release PGE(2). Hence we hypothesized that increased production of PGE(2) in Li-induced NDI may be mediated by enhanced purinergic signaling in the mCD. Sprague-Dawley rats were fed either control or Li-added diet for 14 or 21 days. Li feeding resulted in marked polyuria and polydipsia associated with a decrease in aquaporin (AQP)2 protein abundance in inner medulla ( approximately 20% of controls) and a twofold increase in urinary PGE(2). When acutely challenged ex vivo with adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), UTP, or ADP, mCD of Li-fed rats showed significantly higher increases (50-130% over control diet-fed rats) in PGE(2) production, indicating that more than one subtype of P(2y) receptor is involved. This was associated with a 3.4-fold increase in P(2y4), but not P(2y2), receptor mRNA expression in the inner medulla of Li-fed rats compared with control diet-fed rats. Confocal laser immunofluorescence microscopy revealed predominant localization of both P(2y2) and P(2y4) receptors in the mCD of control or Li diet-fed rats. Together, these data indicate that in Li-induced NDI 1) purinergic signaling in the mCD is sensitized with increased production of PGE(2) and 2) P(2y2) and/or P(2y4) receptors may be involved in the enhanced purinergic signaling. Our study also reveals the potential beneficial effects of P(2y) receptor antagonists in the treatment and/or prevention of Li-induced NDI.

  5. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier

    DEFF Research Database (Denmark)

    Lou, Nanhong; Takano, Takahiro; Pei, Yong

    2016-01-01

    Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G......-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed...

  6. Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus

    OpenAIRE

    Zhang, Yue; Nelson, Raoul D.; Carlson, Noel G.; Kamerath, Craig D.; Kohan, Donald E.; Kishore, Bellamkonda K.

    2009-01-01

    Lithium (Li)-induced nephrogenic diabetes insipidus (NDI) has been attributed to the increased production of renal prostaglandin (PG)E2. Previously we reported that extracellular nucleotides (ATP/UTP), acting through P2y2 receptor in rat medullary collecting duct (mCD), produce and release PGE2. Hence we hypothesized that increased production of PGE2 in Li-induced NDI may be mediated by enhanced purinergic signaling in the mCD. Sprague-Dawley rats were fed either control or Li-added diet for ...

  7. Architectures and representations for string transduction

    NARCIS (Netherlands)

    Chrupala, Grzegorz

    2015-01-01

    String transduction problems are ubiquitous in natural language processing: they include transliteration, grapheme-to-phoneme conversion, text normalization and translation. String transduction can be reduced to the simpler problems of sequence labeling by expressing the target string as a sequence

  8. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  9. Sentra, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, N.; Marland, E.; Yu, G. X.; Bhatnagar, S.; Lusk, R.; Mathematics and Computer Science

    2002-01-01

    Sentra (http://www-wit.mcs.anl.gov/sentra) is a database of signal transduction proteins with the emphasis on microbial signal transduction. The database was updated to include classes of signal transduction systems modulated by either phosphorylation or methylation reactions such as PAS proteins and serine/threonine kinases, as well as the classical two-component histidine kinases and methyl-accepting chemotaxis proteins. Currently, Sentra contains signal transduction proteins from 43 completely sequenced prokaryotic genomes as well as sequences from SWISS-PROT and TrEMBL. Signal transduction proteins are annotated with information describing conserved domains, paralogous and orthologous sequences, and conserved chromosomal gene clusters. The newly developed user interface supports flexible search capabilities and extensive visualization of the data.

  10. SENTRA, a database of signal transduction proteins.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Romine, M. F.; Maltsev, N.; Mathematics and Computer Science; PNNL

    2000-01-01

    SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.

  11. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    Purinergic receptors regulate various processes including epithelial transport. There are several studies on P2 receptors in pancreatic ducts of various species, but relatively little is known about these receptors in human tissue. The aim of this study was to identify purinergic receptors in human......ATP, commonly used to stimulate P2X7 receptors, elicited non-oscillatory and transient Ca(2+) responses. Ivermectin, a potentiator of P2X4 receptors, increased Ca(2+) signals evoked by ATP. The single cell Ca(2+) measurements indicated functional expression of P2Y2 and other P2Y receptors, and notably...... expression of P2X4 and P2X7 receptors. Expression of P2Y2, P2X4 and P2X7 receptors was confirmed by immunocytochemistry. This fingerprint of P2 receptors in human pancreatic duct models forms the basis for studying effect of nucleotides on ion and fluid secretion, as well as on Ca(2+) and tissue homeostasis...

  12. The sixth sense: hematopoietic stem cells detect danger through purinergic signaling.

    Science.gov (United States)

    Rossi, Lara; Salvestrini, Valentina; Ferrari, Davide; Di Virgilio, Francesco; Lemoli, Roberto M

    2012-09-20

    Over the past decade, extracellular nucleotides (such as ATP and UTP) have emerged as key immunomodulators. This family of molecules, already known for its key metabolic functions, has been the focus of intense investigation that has unambiguously shown its crucial role as mediators of cell-to-cell communication. More recently, in addition to its involvement in inflammation and immunity, purinergic signaling has also been shown to modulate BM-derived stem cells. Extracellular nucleotides promote proliferation, CXCL12-driven migration, and BM engraftment of hematopoietic progenitor and stem cells. In addition, purinergic signaling acts indirectly on hematopoietic progenitor and stem cells by regulating differentiation and release of proinflammatory cytokines in BM-derived human mesenchymal stromal cells, which are part of the hematopoietic stem cell (HSC) niche. HSC research has recently blended into the field of immunology, as new findings highlighted the role played by immunologic signals (such as IFN-α, IFN-γ, or TNF-α) in the regulation of the HSC compartment. In this review, we summarize recent reports unveiling a previously unsuspected ability of HSCs to integrate inflammatory signals released by immune and stromal cells, with particular emphasis on the dual role of extracellular nucleotides as mediators of both immunologic responses and BM stem cell functions.

  13. Purinergic signaling in the cerebellum: Bergmann glial cells express functional ionotropic P2X7 receptors.

    Science.gov (United States)

    Habbas, Samia; Ango, Fabrice; Daniel, Hervé; Galante, Micaela

    2011-12-01

    Astrocytes constitute active networks of intercommunicating cells that support the metabolism and the development of neurons and affect synaptic functions via multiple pathways. ATP is one of the major neurotransmitters mediating signaling between neurons and astrocytes. Potentially acting through both purinergic metabotropic P2Y receptors (P2YRs) and ionotropic P2X receptors (P2XRs), up until now ATP has only been shown to activate P2YRs in Bergmann cells, the radial glia of the cerebellar cortex that envelopes Purkinje cell afferent synapses. In this study, using multiple experimental approaches in acute cerebellar slices we demonstrate the existence of functional P2XRs on Bergmann cells. In particular, we show here that Bergmann cells express uniquely P2X7R subtypes: (i) immunohistochemical analysis revealed the presence of P2X7Rs on Bergmann cell processes, (ii) in whole cell recordings P2XR pharmacological agonists induced depolarizing currents that were blocked by specific antagonists of P2X7Rs, and could not be elicited in slices from P2X₇R-deficient mice and finally, (iii) calcium imaging experiments revealed two distinct calcium signals triggered by application of exogenous ATP: a transient signal deriving from release of calcium from intracellular stores, and a persistent one following activation of P2X7Rs. Our data thus reveal a new pathway by which extracellular ATP may affect glial cell function, thus broadening our knowledge on purinergic signaling in the cerebellum.

  14. The role of P2 purinergic receptores in bone metabolisme and their therapeutic potential

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Solgaard, M; Schwarz, P

    2006-01-01

    Abstract. The role of purinergic P2 receptors in bone biology has been evaluated over the last decade. These receptors have proven to be an interesting target for new pharmacological agents with the ability to regulate bone metabolism. As the prevalence of osteoporosis increases new efficient age...... drugs, which can be used for treatment of metabolic bone diseases, including osteoporosis. This article is reviewing the studies documenting the effects of nucleotides and P2 receptors in bone and bone cells.......Abstract. The role of purinergic P2 receptors in bone biology has been evaluated over the last decade. These receptors have proven to be an interesting target for new pharmacological agents with the ability to regulate bone metabolism. As the prevalence of osteoporosis increases new efficient...... agents to treat the disease are sought for. The P2 receptors are activated by nucleotides and recently, studies have shown a possible role for these in bone turnover and metabolism. P2 receptors can be divided further into P2X and P2Y subtypes with strikingly different mechanisms of action...

  15. Purinergic receptors have different effects in rat exocrine pancreas. Calcium signals monitored by fura-2 using confocal microscopy

    DEFF Research Database (Denmark)

    Novak, Ivana; Nitschke, Roland; Amstrup, Jan

    2002-01-01

    Pancreatic ducts have several types of purinergic P2 receptors, however, nothing is known about P2 receptors in acini. The aim was to establish whether acini express functional P2 receptors coupled to intracellular Ca2+ signals and to measure the signals ratiometrically in a confocal laser scanni...

  16. Purinergic Signaling Regulates the Transforming Growth Factor-β3-Induced Chondrogenic Response of Mesenchymal Stem Cells to Hydrostatic Pressure.

    Science.gov (United States)

    Steward, Andrew J; Kelly, Daniel J; Wagner, Diane R

    2016-06-01

    Although hydrostatic pressure (HP) is known to regulate chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs), improved insight into the mechanotransduction of HP may form the basis for novel tissue engineering strategies. Previously, we demonstrated that matrix stiffness and calcium ion (Ca(++)) mobility regulate the mechanotransduction of HP; however, the mechanisms, by which these Ca(++) signaling pathways are initiated, are currently unknown. The purinergic pathway, in which adenosine triphosphate (ATP) is released and activates P-receptors to initiate Ca(++) signaling, plays a key role in the mechanotransduction of compression, but has yet to be investigated with regard to HP. Therefore, the objective of this study was to investigate the interplay between purinergic signaling, matrix stiffness, and the chondrogenic response of MSCs to HP. Porcine bone marrow-derived MSCs were seeded into soft or stiff agarose hydrogels and subjected to HP (10 MPa at 1 Hz for 4 h/d for 21 days) or kept in free swelling conditions. Stiff constructs were incubated with pharmacological inhibitors of extracellular ATP, P2 receptors, or hemichannels, or without any inhibitors as a control. As with other loading modalities, HP significantly increased ATP release in the control group; however, inhibition of hemichannels completely abrogated this response. The increase in sulfated glycosaminoglycan (sGAG) synthesis and vimentin reorganization observed in the control group in response to HP was suppressed in the presence of all three inhibitors, suggesting that purinergic signaling is involved in the mechanoresponse of MSCs to HP. Interestingly, ATP was released from both soft and stiff hydrogels in response to HP, but HP only enhanced chondrogenesis in the stiff hydrogels, indicating that matrix stiffness may act downstream of purinergic signaling to regulate the mechanoresponse of MSCs to HP. Addition of exogenous ATP did not replicate the effects of HP on

  17. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.

    Science.gov (United States)

    Gohar, Eman Y; Speed, Joshua S; Kasztan, Malgorzata; Jin, Chunhua; Pollock, David M

    2016-08-01

    Renal endothelin-1 (ET-1) and purinergic signaling systems regulate Na(+) reabsorption in the renal medulla. A link between the renal ET-1 and purinergic systems was demonstrated in vitro, however, the in vivo interaction between these systems has not been defined. To test whether renal medullary activation of purinergic (P2) receptors promotes ET-dependent natriuresis, we determined the effect of increased medullary NaCl loading on Na(+) excretion and inner medullary ET-1 mRNA expression in anesthetized adult male Sprague-Dawley rats in the presence and absence of purinergic receptor antagonism. Isosmotic saline (NaCl; 284 mosmol/kgH2O) was infused into the medullary interstitium (500 μl/h) during a 30-min baseline urine collection period, followed by isosmotic or hyperosmotic saline (1,800 mosmol/kgH2O) for two further 30-min urine collection periods. Na(+) excretion was significantly increased during intramedullary infusion of hyperosmotic saline. Compared with isosmotic saline, hyperosmotic saline infused into the renal medulla caused significant increases in inner medullary ET-1 mRNA expression. Renal intramedullary infusion of the P2 receptor antagonist suramin inhibited the increase in Na(+) excretion and inner medullary ET-1 mRNA expression induced by NaCl loading in the renal medulla. Activation of medullary P2Y2/4 receptors by infusion of UTP increased urinary Na(+) excretion. Combined ETA and ETB receptor blockade abolished the natriuretic response to intramedullary infusion of UTP. These data demonstrate that activation of medullary P2 receptors promotes ET-dependent natriuresis in male rats, suggesting that the renal ET-1 and purinergic signaling systems interact to efficiently facilitate excretion of a NaCl load.

  18. Role of purinergic receptors in the activation of human airway smooth muscle cells by the antimicrobial peptide LL-37

    Directory of Open Access Journals (Sweden)

    Suzanne Zuyderduyn

    2006-12-01

    Full Text Available Inflammatory cells that infiltrate and surround the airway smooth muscle (ASM layer express antimicrobial peptides including the cathelicidin LL-37. LL-37 has been shown to activate epithelial cells by transactivation of the epidermal growth factor receptor (EGFR. Previously, we have shown that LL-37-induced IL-8 release by ASM cells was not dependent on either formyl peptide receptors or the EGFR (ATS 2005. In monocytes LL-37 induces processing of IL-1ß through activation of the purinergic P2X7 receptor. Therefore, the aim of our study was to evaluate the role of purinergic receptors in LL-37-induced activation of ASM cells, and to explore the involvement of several intracellular signalling pathways. ASM cells were cultured and serum-deprived 24 hours before stimulation with LL-37 (10 µg·ml–1. The purinergic receptor antagonist suramin and inhibitors of ERK1/2, p38, Src and PI3K were preincubated for one hour. ERK1/2 phosphorylation was assessed by Western Blot, and IL-8 release was determined in supernatants using a sandwich ELISA. RT-PCR was performed for P2X7 on untreated ASM cells. LL-37 induced ERK1/2 phosphorylation and IL-8 release; both were inhibited by suramin (IL-8: 86%. Inhibitors of ERK1/2, p38 and Src signalling also reduced LL-37-induced IL-8 release (by 67%, 63% and 76%, respectively, suggesting a role for these pathways. P2X7 mRNA was expressed in ASM cells. These data show that LL-37-induced IL-8 release is mediated via purinergic receptors, ERK1/2 activation, p38 and Src signalling. Our PCR data are in line with the hypothesis that also in ASM P2X7 is the purinergic receptor involved in LL-37 signalling, although this needs further investigation.

  19. Transduction of chemical into electrical energy.

    Science.gov (United States)

    Nachmansohn, D

    1976-01-01

    The paper recalls some fundamental notions, developed by Otto Meyerhof, which were used in the analysis of the transduction of chemical into mechanical energy during muscular contraction. These notions formed the basis of the approach to the analysis of the transduction of chemical into electrical energy, i.e., the very principle underlying nerve and muscle excitability and bioelectricity. Instrumental for this purpose was the use, since 1937, of electric organs of fish, a tissue highly specialized for bioelectrogenesis.

  20. Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Carlos Eduardo, E-mail: carlos.leite@pucrs.br [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 90035-003 (Brazil); Maboni, Lucas de Oliveira [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Cruz, Fernanda Fernandes [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Rosemberg, Denis Broock [Programa de Pós-graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, CEP 89809-000 (Brazil); and others

    2013-11-01

    The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE{sub 2}. Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae. - Graphical abstract: This scheme provides a chronological proposition for the biochemical events induced by copper in zebrafish larvae. The dashed line shows the absorption of copper over the exposure time. After 1 h of exposure to copper, the release of PGE{sub 2} occurs, followed by an increase of MPO (as a consequence

  1. [Research Progress on Expression and Function of P2 Purinergic Receptor in Blood Cells].

    Science.gov (United States)

    Feng, Wen-Li; Wang, Li-Na; Zheng, Guo-Guang

    2015-10-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind a class of plasma membrane receptors, P2 purinergic receptors, to trigger intercellular signaling. P2 receptors can be further divided into two structurally and functionally different sub-famlies, the P2X and P2Y receptors. Different blood cells express diverse spectrum of P2 receptors at different levels. Extracellular adenosine triphosphate (ATP) exerts different effects on blood cells, regulating cell proliferation, differentiation, migration, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptors and human diseases attracts more and more attention. This review briefly discusses the expression and function of P2 receptors in hematopoietic system.

  2. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity.

    Science.gov (United States)

    Deaglio, Silvia; Robson, Simon C

    2011-01-01

    Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.

  3. Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate.

    Science.gov (United States)

    Lam, Michelle; Mitsui, Retsu; Hashitani, Hikaru

    2016-01-01

    Prostatic smooth muscle develops spontaneous myogenic tone which is modulated by autonomic neuromuscular transmission. This study aimed to investigate the role of purinergic transmission in regulating electrical activity of prostate smooth muscle and whether its contribution may be altered with age. Intracellular recordings were simultaneously made with isometric tension recordings in smooth muscle preparations of the guinea-pig prostate. Immunostaining for P2X1 receptors on whole mount preparations was also performed. In prostate preparations which generated spontaneous slow waves, electrical field stimulation (EFS)-evoked excitatory junction potentials (EJPs) which were abolished by guanethidine (10 μM), α-β-methylene ATP (10 μM) or pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (PPADS, 10 μM) but not phentolamine (1 μM). Consistently, immunostaining revealed the expression of P2X1 receptors on prostatic smooth muscle. EJPs themselves did not cause contractions, but EJPs could sum to trigger a slow wave and associated contraction. Yohimbine (1 μM) and 3,7-dimethyl-1-propargylxanthine (DMPX, 10 μM) but not propranolol (1 μM) potentiated EJPs. Although properties of EJPs were not different between young and aging guinea-pig prostates, ectoATPase inhibitor ARL 67156 (100 μM) augmented EJP amplitudes by 64.2 ± 29.6% in aging animals, compared to 22.1 ± 19.9% in young animals. These results suggest that ATP released from sympathetic nerves acts on P2X1 purinoceptors located on prostate smooth muscle to evoke EJPs, while pre-junctional α2-adrenergic and adenosine A2 receptors may play a role in preventing excessive transmitter release. Age-related up-regulation of enzymatic ATP breakdown may be a compensatory mechanism for the enhanced purinergic transmission which would cause hypercontractility arising from increased ATP release in older animals.

  4. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.

    Science.gov (United States)

    Franco, Martha; Bautista, Rocio; Tapia, Edilia; Soto, Virgilia; Santamaría, José; Osorio, Horacio; Pacheco, Ursino; Sánchez-Lozada, L Gabriela; Kobori, Hiroyuki; Navar, L Gabriel

    2011-06-01

    To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.

  5. Purinergic signalling in a latent stem cell niche of the rat spinal cord.

    Science.gov (United States)

    Marichal, Nicolás; Fabbiani, Gabriela; Trujillo-Cenóz, Omar; Russo, Raúl E

    2016-06-01

    The ependyma of the spinal cord harbours stem cells which are activated by traumatic spinal cord injury. Progenitor-like cells in the central canal (CC) are organized in spatial domains. The cells lining the lateral aspects combine characteristics of ependymocytes and radial glia (RG) whereas in the dorsal and ventral poles, CC-contacting cells have the morphological phenotype of RG and display complex electrophysiological phenotypes. The signals that may affect these progenitors are little understood. Because ATP is massively released after spinal cord injury, we hypothesized that purinergic signalling plays a part in this spinal stem cell niche. We combined immunohistochemistry, in vitro patch-clamp whole-cell recordings and Ca(2+) imaging to explore the effects of purinergic agonists on ependymal progenitor-like cells in the neonatal (P1-P6) rat spinal cord. Prolonged focal application of a high concentration of ATP (1 mM) induced a slow inward current. Equimolar concentrations of BzATP generated larger currents that reversed close to 0 mV, had a linear current-voltage relationship and were blocked by Brilliant Blue G, suggesting the presence of functional P2X7 receptors. Immunohistochemistry showed that P2X7 receptors were expressed around the CC and the processes of RG. BzATP also generated Ca(2+) waves in RG that were triggered by Ca(2+) influx and propagated via Ca(2+) release from internal stores through activation of ryanodine receptors. We speculate that the intracellular Ca(2+) signalling triggered by P2X7 receptor activation may be an epigenetic mechanism to modulate the behaviour of progenitors in response to ATP released after injury.

  6. Purinergic Modulation of Spinal Neuroglial Maladaptive Plasticity Following Peripheral Nerve Injury.

    Science.gov (United States)

    Cirillo, Giovanni; Colangelo, Anna Maria; Berbenni, Miluscia; Ippolito, Vita Maria; De Luca, Ciro; Verdesca, Francesco; Savarese, Leonilde; Alberghina, Lilia; Maggio, Nicola; Papa, Michele

    2015-12-01

    Modulation of spinal reactive gliosis following peripheral nerve injury (PNI) is a promising strategy to restore synaptic homeostasis. Oxidized ATP (OxATP), a nonselective antagonist of purinergic P2X receptors, was found to recover a neuropathic behavior following PNI. We investigated the role of intraperitoneal (i.p.) OxATP treatment in restoring the expression of neuronal and glial markers in the mouse spinal cord after sciatic spared nerve injury (SNI). Using in vivo two-photon microscopy, we imaged Ca(2+) transients in neurons and astrocytes of the dorsal horn of spinal cord at rest and upon right hind paw electrical stimulation in sham, SNI, and OxATP-treated mice. Neuropathic behavior was investigated by von Frey and thermal plantar test. Glial [glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1)] and GABAergic [vesicular GABA transporter (vGAT) and glutamic acid decarboxylase 65/76 (GAD65/67)] markers and glial [glutamate transporter (GLT1) and GLAST] and neuronal amino acid [EAAC1, vesicular glutamate transporter 1 (vGLUT1)] transporters have been evaluated. In SNI mice, we found (i) increased glial response, (ii) decreased glial amino acid transporters, and (iii) increased levels of neuronal amino acid transporters, and (iv) in vivo analysis of spinal neurons and astrocytes showed a persistent increase of Ca(2+) levels. OxATP administration reduced glial activation, modulated the expression of glial and neuronal glutamate/GABA transporters, restored neuronal and astrocytic Ca(2+) levels, and prevented neuropathic behavior. In vitro studies validated that OxATP (i) reduced levels of reactive oxygen species (ROS), (ii) reduced astrocytic proliferation, (iii) increase vGLUT expression. All together, these data support the correlation between reactive gliosis and perturbation of the spinal synaptic homeostasis and the role played by the purinergic system in modulating spinal plasticity following PNI.

  7. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    Science.gov (United States)

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  8. The cornucopia of intestinal chemosensory transduction

    Directory of Open Access Journals (Sweden)

    Paul P Bertrand

    2009-12-01

    Full Text Available The chemosensory transduction mechanisms that the gastrointestinal (GI tract uses to detect chemical and nutrient stimuli are poorly understood. The GI tract is presented with a wide variety of stimuli including potentially harmful chemicals or toxins as well as 'normal' stimuli including nutrients, bacteria and mechanical forces. Sensory transduction is at its simplest the conversion of these stimuli into a neural code in afferent nerves. Much of the information encoded is used by the enteric nervous system (ENS to generate local reflexes while complementary information is sent to the central nervous system (CNS via afferents or by release of hormones to affect behaviour. This review focuses on the chemosensory transduction mechanisms present in the GI tract. It examines the expression and localisation of the machinery for chemosensory transduction. It summarises the types of cells which might be involved in detecting stimuli and releasing neuroactive transmitters. Finally, it highlights the idea that chemosensory transduction mechanisms in the GI tract utilise many overlapping and complementary mechanisms for detecting and transducing stimuli into reflex action.

  9. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura

    Directory of Open Access Journals (Sweden)

    Oksana eTuchina

    2015-07-01

    Full Text Available The Coenobitidae (Decapoda, Anomura, Paguroidea is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans.

  10. Bioinformatics analyses for signal transduction networks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Research in signaling networks contributes to a deeper understanding of organism living activities. With the development of experimental methods in the signal transduction field, more and more mechanisms of signaling pathways have been discovered. This paper introduces such popular bioin-formatics analysis methods for signaling networks as the common mechanism of signaling pathways and database resource on the Internet, summerizes the methods of analyzing the structural properties of networks, including structural Motif finding and automated pathways generation, and discusses the modeling and simulation of signaling networks in detail, as well as the research situation and tendency in this area. Now the investigation of signal transduction is developing from small-scale experiments to large-scale network analysis, and dynamic simulation of networks is closer to the real system. With the investigation going deeper than ever, the bioinformatics analysis of signal transduction would have immense space for development and application.

  11. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    Plasma adenosine-5'-triphosphate (ATP) is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study...... investigated: 1) the role of nitric oxide (NO), prostaglandins and adenosine as mediators of ATP induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5-7 min of femoral intra......-arterial infusion of ATP (0.45-2.45 micromol/min; mean+/-SEM) in 19 healthy, male subjects with and without co-infusion of NG-mono-methyl-L-arginine (L-NMMA; NO formation inhibitor; 12.3+/-0.3 mg/min), indomethacin (INDO; prostaglandin formation blocker; 613+/-12 microg/min) and/or theophylline (adenosine receptor...

  12. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis.

    Science.gov (United States)

    Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V

    2017-03-02

    The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca(2+) mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation.

  13. Purinergic receptor functionality is necessary for infection of human hepatocytes by hepatitis delta virus and hepatitis B virus.

    Directory of Open Access Journals (Sweden)

    John M Taylor

    Full Text Available Hepatitis B virus (HBV and hepatitis delta virus (HDV are major sources of acute and chronic hepatitis. HDV requires the envelope proteins of HBV for the processes of assembly and infection of new cells. Both viruses are able to infect hepatocytes though previous studies have failed to determine the mechanism of entry into such cells. This study began with evidence that suramin, a symmetrical hexasulfated napthylurea, could block HDV entry into primary human hepatocytes (PHH and was then extrapolated to incorporate findings of others that suramin is one of many compounds that can block activation of purinergic receptors. Thus other inhibitors, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS and brilliant blue G (BBG, both structurally unrelated to suramin, were tested and found to inhibit HDV and HBV infections of PHH. BBG, unlike suramin and PPADS, is known to be more specific for just one purinergic receptor, P2X7. These studies provide the first evidence that purinergic receptor functionality is necessary for virus entry. Furthermore, since P2X7 activation is known to be a major component of inflammatory responses, it is proposed that HDV and HBV attachment to susceptible cells, might also contribute to inflammation in the liver, that is, hepatitis.

  14. Energy transduction in lactic acid bacteria

    NARCIS (Netherlands)

    Poolman, Bert

    In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes

  15. Inhibitors targeting two-component signal transduction.

    Science.gov (United States)

    Watanabe, Takafumi; Okada, Ario; Gotoh, Yasuhiro; Utsumi, Ryutaro

    2008-01-01

    A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.

  16. Purinergic receptor signaling at the basolateral membrane of macula densa cells.

    Science.gov (United States)

    Liu, Ruisheng; Bell, P Darwin; Peti-Peterdi, Janos; Kovacs, Gergly; Johansson, Alf; Persson, A Erik G

    2002-05-01

    Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).

  17. Purinergic receptor-mediated intracellular Ca2+ oscillations in chicken granulosa cells.

    Science.gov (United States)

    Morley, P; Vanderhyden, B C; Tremblay, R; Mealing, G A; Durkin, J P; Whitfield, J F

    1994-03-01

    production. These studies demonstrate that chicken granulosa cells display P2 purinergic receptors on their surfaces. Activation of these receptors triggers [Ca2+]i oscillations that follow the release of Ca2+ from internal stores and depend on Ca2+ influx through dihydropyridine-insensitive Ca2+ channels. The physiological function(s) of P2 purinergic receptors on granulosa cells is not known.

  18. Quercetin changes purinergic enzyme activities and oxidative profile in platelets of rats with hypothyroidism.

    Science.gov (United States)

    Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Zanini, Daniela; Cardoso, Andréia M; Abadalla, Fátima H; Thomé, Gustavo R; Murussi, Camila; Polachini, Carla R N; Delenogare, Diéssica P; Loro, Vania L; Morsch, Vera M; Schetinger, Maria R C

    2016-12-01

    Diseases related to thyroid hormones have been extensively studied because affect a large number of individuals, and these hormones participate in the regulation of the whole organism homeostasis. However, little is known about the involvement of purinergic signaling related to oxidative stress in hypothyroidism and possible therapeutic adjuncts for treatment of this disorder. Thus, the present study investigates the effects of quercetin on NTPDase, 5'-nucleotidase and adenosine deaminase activities, platelet aggregation and oxidative profile in platelets of rats with methimazole (MMI)-induced hypothyroidism. Methimazole at a concentration of 20mg/100mL was administered for 90days. From the second month the animals received quercetin 10 or 25mg/kg for 60days. Results showed that: Ecto-5'-nucleotidase activity decreased in methimazole/water group and the treatment with quercetin 25mg/kg decreased NTPDase, 5'-nucleotidase and adenosine deaminase activities. Moreover, platelet aggregation increased in methimazole/water group. Lipid peroxidation increased while superoxide dismutase and catalase activities decreased, but, interestingly, the treatment with quercetin reversed these changes. These results demonstrated that quercetin modulates adenine nucleotide hydrolysis decreasing the ADP formation and adenosine deamination. At the same time quercetin improves the oxidative profile, as well as reduces platelet aggregation, which together with the modulation in the nucleotides levels can contribute to the prevention of platelet disorders.

  19. The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration.

    Science.gov (United States)

    Färber, Katrin; Markworth, Sören; Pannasch, Ulrike; Nolte, Christiane; Prinz, Vincent; Kronenberg, Golo; Gertz, Karen; Endres, Matthias; Bechmann, Ingo; Enjyoji, Keiichi; Robson, Simon C; Kettenmann, Helmut

    2008-02-01

    Microglia is activated by brain injury. They migrate in response to ATP and although adenosine alone has no effect on wild type microglial migration, we show that inhibition of adenosine receptors impedes ATP triggered migration. CD39 is the dominant cellular ectonucleotidase that degrades nucleotides to nucleosides, including adenosine. Importantly, ATP fails to stimulate P2 receptor mediated migration in cd39(-/-) microglia. However, the effects of ATP on migration in cd39(-/-) microglia can be restored by co-stimulation with adenosine or by addition of a soluble ectonucleotidase. We also tested the impact of cd39-deletion in a model of ischemia, in an entorhinal cortex lesion and in the facial nucleus after facial nerve lesion. The accumulation of microglia at the pathological sites was markedly decreased in cd39(-/-) animals. We conclude that the co-stimulation of purinergic and adenosine receptors is a requirement for microglial migration and that the expression of cd39 controls the ATP/adenosine balance.

  20. The roles of P2 purinergic receptors in nociception and antinociception

    Institute of Scientific and Technical Information of China (English)

    SatohM; MinamM

    2002-01-01

    Extracellular adenosine 5'-triphosphate (ATP) has been established as a neurotransmitter or neuromodulator in both the periphe- ral and central nervous systems,in addition to diverse intracellular roles of it.P2 purinergic receptors,the receptors of ATP,are classified into two subfamilites,ionotropic P2X and metabotropic P2Y receptors.Recent studies suggest that ATP play a significant role in facilitating perpheral and spinal nociceptive transmission via P2X receptors.However,we demonstrated that at the supraspinal level P2X receptor agonists produce an antinociception.On the other hand,the activation of some subtypes of P2Y receptors in the spinal cord caused inhibitory effects on nociceptive transmission.Thus,P2X and P2Y receptors are suggested to be related to diverse roles in nociceptive functions at peripheral,spinal and supraspinal levels.We would like to take an overview about the significance of P2X and P2Y receptors in nociception and antinociception.

  1. Signal transduction immunohistochemistry - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Alexander E. Kalyuzhny statement that immunohistochemical detection of labile, low abundance and short-lived signal transduction molecules appears to be a very challenging task actually captures the same reader’s feeling. Each of us daily using immunohistochemical protocols to reveal targets either useful for research or diagnostic aims will surely wonder by which tricky techniques it is possible to overcome the preservation and unmasking of those labile antigens involved in signal transduction. Well, by seventheen chapters grouped in five parts Prof. Alexander E. Kalyuzhny is presenting an invaluable technical and methodological source of hints to satisfy our needs: to overcome troubleshottings if we are already in the field or to orientate those entering the field....

  2. Energy Harvesting By Optimized Piezo Transduction Mechanism

    CERN Document Server

    Boban, Bijo; Satheesh, U; Devaprakasam, D

    2014-01-01

    We report generation of electrical energy from nonlinear mechanical noises available in the ambient environment using optimized piezo transduction mechanisms. Obtaining energy from an ambient vibration has been attractive for remotely installed standalone microsystems and devices. The mechanical noises in the ambient environment can be converted to electrical energy by a piezo strip based on the principle of piezoelectric effect. In this work, we have designed and developed a standalone energy harvesting module based on piezo transduction mechanisms. Using this designed module we harvested noise energy and stored electrical energy in a capacitor. Using NI-PXI workstation with a LabVIEW programming, the output voltage of the piezo strip and voltage of the capacitor were measured and monitored. In this paper we discuss about the design, development, implementation, performance and characteristics of the energy harvesting module.

  3. Caenorhabditis elegans paraoxonase-like proteins control the functional expression of DEG/ENaC mechanosensory proteins

    Science.gov (United States)

    Chen, Yushu; Bharill, Shashank; Altun, Zeynep; O’Hagan, Robert; Coblitz, Brian; Isacoff, Ehud Y.; Chalfie, Martin

    2016-01-01

    Caenorhabditis elegans senses gentle touch via a mechanotransduction channel formed from the DEG/ENaC proteins MEC-4 and MEC-10. An additional protein, the paraoxonase-like protein MEC-6, is essential for transduction, and previous work suggested that MEC-6 was part of the transduction complex. We found that MEC-6 and a similar protein, POML-1, reside primarily in the endoplasmic reticulum and do not colocalize with MEC-4 on the plasma membrane in vivo. As with MEC-6, POML-1 is needed for touch sensitivity, the neurodegeneration caused by the mec-4(d) mutation, and the expression and distribution of MEC-4 in vivo. Both proteins are likely needed for the proper folding or assembly of MEC-4 channels in vivo as measured by FRET. MEC-6 detectably increases the rate of MEC-4 accumulation on the Xenopus oocyte plasma membrane. These results suggest that MEC-6 and POML-1 interact with MEC-4 to facilitate expression and localization of MEC-4 on the cell surface. Thus MEC-6 and POML-1 act more like chaperones for MEC-4 than channel components. PMID:26941331

  4. Optical racetrack resonator transduction of nanomechanical cantilevers.

    Science.gov (United States)

    Sauer, V T K; Diao, Z; Freeman, M R; Hiebert, W K

    2014-02-07

    Optomechanical transduction has demonstrated its supremacy in probing nanomechanical displacements. In order to apply nano-optomechanical systems (NOMS) as force and mass sensors, knowledge about the transduction responsivity (i.e. the change in measured optical transmission with nanomechanical displacement) and its tradeoffs with system design is paramount. We compare the measured responsivities of NOMS devices with varying length, optomechanical coupling strength gom, and optical cavity properties. Cantilever beams 1.5 to 5 μm long are fabricated 70 to 160 nm from a racetrack resonator optical cavity and their thermomechanical (TM) noise signals are measured. We derive a generic expression for the transduction responsivity of the NOMS in terms of optical and mechanical system parameters such as finesse, optomechanical coupling constant, and interaction length. The form of the expression holds direct insight as to how these parameters affect the responsivity. With this expression, we obtain the optomechanical coupling constants using only measurements of the TM noise power spectra and optical cavity transmission slopes. All optical pump/probe operation is also demonstrated in our side-coupled cantilever-racetrack NOMS. Finally, to assess potential operation in a gas sensing environment, the TM noise signal of a device is measured at atmospheric pressure.

  5. Functional expression of ionotropic purinergic receptors on mouse taste bud cells

    OpenAIRE

    2007-01-01

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 [mu m ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca2+ imaging showed that si...

  6. Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels.

    Science.gov (United States)

    Lee, Moonhee; Jantaratnotai, Nattinee; McGeer, Edith; McLarnon, James G; McGeer, Patrick L

    2011-01-19

    Mg(2+) is a known antagonist of some Ca(2+) ion channels. It may therefore be able to counteract the toxic consequences of excessive Ca(2+) entry into immune-type cells. Here we examined the effects of Mg(2+) on inflammation induced by Ca(2+) influx into microglia and THP-1 cells following activation of purinergic receptors. Using tissue culture, an inflammatory response was induced by treatment with either the P2X7 purinergic receptor agonist 2',3'-[benzoyl-4-benzoyl]-ATP (BzATP) or the P2Y2,4 receptor agonist uridine 5'-triphosphate (UTP). Both microglia and THP-1 cells expressed the mRNAs for these receptors. Treatment produced a rapid rise in intracellular Ca(2+) which was significantly reduced by Mg(2+) or the calcium chelator BAPTA-AM. Purinergic receptor stimulation activated the intracellular inflammatory pathway P38 MAP kinase and NFκB. This caused release of TNFα, IL-6, nitrite ions and other materials that are neurotoxic to SH-SY5Y cells. These effects were all ameliorated by Mg(2+). They were also partly ameliorated by the P2X7R antagonists, oxATP and KN-62, the P2YR antagonist MRS2179, and the store operated Ca(2+) channel blocker, SK96365. These results indicate that elevated Mg(2+) is a broad spectrum inhibitor of Ca(2+) entry into microglia or THP-1 cells. Mg(2+) administration may be a strategy for reducing the damaging consequences Ca(2+) induced neuroinflammation in degenerative neurological disorders such as Alzheimer disease and Parkinson disease.

  7. Diminished Paracrine Regulation of the Epithelial Na+ Channel by Purinergic Signaling in Mice Lacking Connexin 30*

    Science.gov (United States)

    Mironova, Elena; Peti-Peterdi, Janos; Bugaj, Vladislav; Stockand, James D.

    2011-01-01

    We tested whether ATP release through Connexin 30 (Cx30) is part of a local purinergic regulatory system intrinsic to the aldosterone-sensitive distal nephron (ASDN) important for proper control of sodium excretion; if changes in sodium intake influence ATP release via Cx30; and if this allows a normal ENaC response to changes in systemic sodium levels. In addition, we define the consequences of disrupting ATP regulation of ENaC in Cx30−/− mice. Urinary ATP levels in wild-type mice increase with sodium intake, being lower and less dependent on sodium intake in Cx30−/− mice. Loss of inhibitory ATP regulation causes ENaC activity to be greater in Cx30−/− versus wild-type mice, particularly with high sodium intake. This results from compromised ATP release rather than end-organ resistance: ENaC in Cx30−/− mice responds to exogenous ATP. Thus, loss of paracrine ATP feedback regulation of ENaC in Cx30−/− mice disrupts normal responses to changes in sodium intake. Consequently, ENaC is hyperactive in Cx30−/− mice lowering sodium excretion particularly during increases in sodium intake. Clamping mineralocorticoids high in Cx30−/− mice fed a high sodium diet causes a marked decline in renal sodium excretion. This is not the case in wild-type mice, which are capable of undergoing aldosterone-escape. This loss of the ability of ENaC to respond to changes in sodium levels contributes to salt-sensitive hypertension in Cx30−/− mice. PMID:21075848

  8. Diminished paracrine regulation of the epithelial Na+ channel by purinergic signaling in mice lacking connexin 30.

    Science.gov (United States)

    Mironova, Elena; Peti-Peterdi, Janos; Bugaj, Vladislav; Stockand, James D

    2011-01-14

    We tested whether ATP release through Connexin 30 (Cx30) is part of a local purinergic regulatory system intrinsic to the aldosterone-sensitive distal nephron (ASDN) important for proper control of sodium excretion; if changes in sodium intake influence ATP release via Cx30; and if this allows a normal ENaC response to changes in systemic sodium levels. In addition, we define the consequences of disrupting ATP regulation of ENaC in Cx30(-/-) mice. Urinary ATP levels in wild-type mice increase with sodium intake, being lower and less dependent on sodium intake in Cx30(-/-) mice. Loss of inhibitory ATP regulation causes ENaC activity to be greater in Cx30(-/-) versus wild-type mice, particularly with high sodium intake. This results from compromised ATP release rather than end-organ resistance: ENaC in Cx30(-/-) mice responds to exogenous ATP. Thus, loss of paracrine ATP feedback regulation of ENaC in Cx30(-/-) mice disrupts normal responses to changes in sodium intake. Consequently, ENaC is hyperactive in Cx30(-/-) mice lowering sodium excretion particularly during increases in sodium intake. Clamping mineralocorticoids high in Cx30(-/-) mice fed a high sodium diet causes a marked decline in renal sodium excretion. This is not the case in wild-type mice, which are capable of undergoing aldosterone-escape. This loss of the ability of ENaC to respond to changes in sodium levels contributes to salt-sensitive hypertension in Cx30(-/-) mice.

  9. Targeting Renal Purinergic Signalling for the Treatment of Lithium-induced Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Kishore, B. K.; Carlson, N. G.; Ecelbarger, C. M.; Kohan, D. E.; Müller, C. E.; Nelson, R. D.; Peti-Peterdi, J.; Zhang, Y.

    2015-01-01

    Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats, and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulfate (Plavix®) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unraveled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action. PMID:25877068

  10. Hydraulic Pressure during Fluid Flow Regulates Purinergic Signaling and Cytoskeleton Organization of Osteoblasts.

    Science.gov (United States)

    Gardinier, Joseph D; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L

    2014-06-01

    During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm(2) FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.

  11. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium.

    Science.gov (United States)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen; Willumsen, Niels Johannes; Frederiksen, Ole

    2005-07-01

    We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions to 8 and 17% below control level, respectively. Serosal application of nucleotides had no effect. The ATP-induced response appeared to involve additional activation of apical adenosine (P1) and P2X receptors. The inhibitory effect of ATP and UTP on Isc was eliminated by pretreatment with amiloride (100 microM), while the stimulatory effect was potentiated, indicating that ATP and UTP inhibit Na+ and stimulate Cl- current. Ionomycin (1 microM) induced responses similar to UTP and ATP and desensitized the epithelium to the nucleotides, indicating involvement of intracellular Ca2+ (Ca2+ i. Furthermore, ATP, UTP and ionomycin induced 21, 24, and 21% decreases, respectively, in transepithelial conductance. Measurements of unidirectional isotope fluxes showed a 39% decrease in the dominant net Na+ absorption in response to ATP, while the smaller net Cl- secretion increased only insignificantly and unidirectional Cl- fluxes decreased significantly. The results suggest that nucleotides released to the airway surface liquid exert an autocrine regulation of epithelial NaCl absorption mainly by inhibiting the amiloride-sensitive epithelial Na+ channel (ENaC) and paracellular anion conductance via a P2Y receptor-dependent increase in Ca2+ i, while stimulation of Cl- secretion is of minor importance.

  12. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves.

    Science.gov (United States)

    Faroni, A; Smith, R J P; Procacci, P; Castelnovo, L F; Puccianti, E; Reid, A J; Magnaghi, V; Verkhratsky, A

    2014-10-01

    Adenosine-5'-triphosphate, the physiological ligand of P2X receptors, is an important factor in peripheral nerve development. P2X7 receptor is expressed in Schwann cells (SCs), but the specific effects of P2X7 purinergic signaling on peripheral nerve development, myelination, and function are largely unknown. In this study, sciatic nerves from P2X7 knockout mice were analyzed for altered expression of myelin-associated proteins and for alterations in nerve morphology. Immunohistochemical analyses revealed that, in the wild-type peripheral nerves, the P2X7 receptor was localized mainly in myelinating SCs, with only a few immunopositive nonmyelinating SCs. Complete absence of P2X7 receptor protein was confirmed in the sciatic nerves of the knockout mice by Western blot and immunohistochemistry. Western blot analysis revealed that expression levels of the myelin proteins protein zero and myelin-associated glycoprotein are reduced in P2X7 knockout nerves. In accordance with the molecular results, transmission electron microscopy analyses revealed that P2X7 knockout nerves possess significantly more unmyelinated axons, contained in a higher number of Remak bundles. The myelinating/nonmyelinating SC ratio was also decreased in knockout mice, and we found a significantly increased number of irregular fibers compared with control nerves. Nevertheless, the myelin thickness in the knockout was unaltered, suggesting a stronger role for P2X7 in determining SC maturation than in myelin formation. In conclusion, we present morphological and molecular evidence of the importance of P2X7 signaling in peripheral nerve maturation and in determining SC commitment to a myelinating phenotype.

  13. Functional expression of purinergic P2X7 receptors in pregnant rat myometrium.

    Science.gov (United States)

    Miyoshi, Hiroshi; Yamaoka, Kaoru; Urabe, Satoshi; Kodama, Miho; Kudo, Yoshiki

    2010-04-01

    ATP has been reported to enhance the membrane conductance of myometrial cells and uterine contractility. Purinergic P2 receptor expression has been reported in the myometrium, using molecular biology, but the functional identity of the receptor subtype has not been determined. In this study, ATP-induced currents were recorded and characterized in single myometrial cells from pregnant rats using whole cell patch clamping. Extracellular ATP was applied in the range of 10 muM-1 mM and induced currents with an EC(50) of 74 muM, with no desensitization, time dependency, or voltage dependency. The currents induced carried multiple monovalent cations, with conductances ranked as K(+) > Cs(+) > Li(+) > Na(+). They were activated by P2X receptor agonists, with their effectiveness ranked as 2',3'-O-(4-benzoylbenzoyl)-ATP > ATP > alphabeta-methylene-ATP > 2-methylthio ATP > or = UTP > or = GTP > ADP. These currents were blocked by the selective P2X7 receptor antagonist 3-[5-(2,3-dichlorophenyl)-1 H-tetrazol-1-yl]methyl pyridine (A-438079). We therefore concluded that ATP-induced currents in rat myometrial cells crossed cell membranes via P2X7 receptors. We further showed that the ATP-induced currents were blocked by extracellular Mg(2+) (IC(50) = 0.26 mM). Clinically, administering extracellular Mg(2+) is known to inhibit uterine contraction. It therefore seems likely that uterine contraction may be induced by raised extracellular ATP and suppressed via Mg(2+) inhibiting P2X7 receptors. Further research is needed into the P2X7 receptor as a therapeutic target in abnormal uterine contraction, as a possible treatment for premature labor.

  14. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  15. Electromechanical Energy Transduction for Hybrid Vehicles

    Science.gov (United States)

    Reddy Vanja, Sridhar; Kelly, Michael W.; Caruso, A. N.

    2010-03-01

    Hybrid vehicle technology seeks to reduce the total energy consumption used for vehicle locomotion by recovering and reutilizing kinetic energy that is otherwise unrecovered or dissipated in conventional vehicle deceleration. The goal of the work is to determine the transduction mechanisms that work towards a Carnot efficiency without considering constraints or limitations placed by cost or materials. Specifically, this talk will present ideal thermodynamic models of energy exchange between mechanical, electrostatic, electromechanical and electrochemical devices with a goal of projecting an ideal hybrid vehicle.

  16. Brassinosteroid signal transduction: An emerging picture

    Institute of Scientific and Technical Information of China (English)

    WANG Qiaomei; MA Ligeng

    2003-01-01

    Steroid hormones play essential roles in animal growth and development. Steroid signaling in animal system is focused on the direct gene regulation response mediated by its nuclear receptors. Recently, steroid hormones are also found in plants. Identification of BRI1 - a critical component of the plasma-membrane steroid receptor complex, and the related signal transduction pathway mediated by the membrane receptor have revealed an elementary picture of BR signaling from the cell surface perception to the activation of BR-responsive nuclear genes.

  17. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP, an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1R. At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3-dependent Ca(2+ release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.

  18. Subcellular propagation of calcium waves in Müller glia does not require autocrine/paracrine purinergic signaling.

    Science.gov (United States)

    Phuong, Tam T T; Yarishkin, Oleg; Križaj, David

    2016-09-02

    The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca(2+) waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca(2+) wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca(2+) waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.

  19. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors.

    Science.gov (United States)

    Schenk, Ursula; Frascoli, Michela; Proietti, Michele; Geffers, Robert; Traggiai, Elisabetta; Buer, Jan; Ricordi, Camillo; Westendorf, Astrid M; Grassi, Fabio

    2011-03-01

    Extracellular nucleotides are pleiotropic regulators of mammalian cell function. Adenosine triphosphate (ATP) released from CD4(+) helper T cells upon stimulation of the T cell receptor (TCR) contributes in an autocrine manner to the activation of mitogen-activated protein kinase (MAPK) signaling through purinergic P2X receptors. Increased expression of p2rx7, which encodes the purinergic receptor P2X7, is part of the transcriptional signature of immunosuppressive CD4(+)CD25(+) regulatory T cells (T(regs)). Here, we show that the activation of P2X7 by ATP inhibits the suppressive potential and stability of T(regs). The inflammatory cytokine interleukin-6 (IL-6) increased ATP synthesis and P2X7-mediated signaling in T(regs), which induced their conversion to IL-17-secreting T helper 17 (T(H)17) effector cells in vivo. Moreover, pharmacological antagonism of P2X receptors promoted the cell-autonomous conversion of naïve CD4(+) T cells into T(regs) after TCR stimulation. Thus, ATP acts as an autocrine factor that integrates stimuli from the microenvironment and cellular energetics to tune the developmental and immunosuppressive program of the T cell in adaptive immune responses.

  20. Purinergic (P2) receptor control of lower genitourinary tract function and new avenues for drug action: an overview.

    Science.gov (United States)

    Gur, Serap; Kadowitz, Philip J; Hellstrom, Wayne J G

    2007-01-01

    Micturition, penile erection, contraction of prostatic smooth muscle, peristalsis of the male excurrent duct system and lumbosacral spinal cord neurotransmission all require adenosine 5'-triphosphate (ATP) activity and this likely involves purinergic (P2) receptors. P2 receptors are categorized as either ligand-gated ionotropic P2X or metabotropic G-protein-coupled P2Y subtypes. In the urinary bladder, purinergic receptor mechanisms are involved in both motor and sensory function. In the prostate, P2X1-receptors, which mediate contraction, are present in the fibromuscular stroma while G protein-coupled P2Y purinoceptors have a wide range of actions in prostate cancer. In the excretory ducts of the testis (ductus epididymidis, vas deferens and its associated seminal vesicles), heavy immunostaining for P2X1 and P2X2 subtypes is detected in the membranes of smooth muscle, suggesting their role in sperm transport and ejaculation. In the penis, intense P2X1 and weak P2X2 immunoreactivity are observed in smooth muscle of blood vessels and the corpus cavernosum, implying their participation in detumescence. Human corporal cavernosum stimulation induces relaxation of P2Y purinoceptors. Targeting of extracellular or intracellular P2X and/or P2Y receptor signaling pathways holds promise in affecting the lower genitourinary tract system. Our advancing knowledge about purine agonists and their pharmacologic benefits in erectile, ejaculatory, urinary bladder and prostatic hyperplasia may service clinical problems in the near future.

  1. Automated modelling of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Aach John

    2002-11-01

    Full Text Available Abstract Background Intracellular signal transduction is achieved by networks of proteins and small molecules that transmit information from the cell surface to the nucleus, where they ultimately effect transcriptional changes. Understanding the mechanisms cells use to accomplish this important process requires a detailed molecular description of the networks involved. Results We have developed a computational approach for generating static models of signal transduction networks which utilizes protein-interaction maps generated from large-scale two-hybrid screens and expression profiles from DNA microarrays. Networks are determined entirely by integrating protein-protein interaction data with microarray expression data, without prior knowledge of any pathway intermediates. In effect, this is equivalent to extracting subnetworks of the protein interaction dataset whose members have the most correlated expression profiles. Conclusion We show that our technique accurately reconstructs MAP Kinase signaling networks in Saccharomyces cerevisiae. This approach should enhance our ability to model signaling networks and to discover new components of known networks. More generally, it provides a method for synthesizing molecular data, either individual transcript abundance measurements or pairwise protein interactions, into higher level structures, such as pathways and networks.

  2. Purinergic receptors stimulate Na+/Ca2+ exchange in pancreatic duct cells: possible role of proteins handling and transporting Ca2+

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Ankorina-Stark, Ieva

    2009-01-01

    Most purinergic receptors activate intracellular Ca(2+) signalling, and in epithelia they stimulate transport of major ions. Aim of the present study on pancreatic ducts was to find whether P2 receptors also regulate cellular Ca(2+) transport, such as that via the Na(+)/Ca(2+) exchanger (NCX). Si...

  3. Engineering key components in a synthetic eukaryotic signal transduction pathway

    OpenAIRE

    Antunes, Mauricio S; Kevin J Morey; Tewari-Singh, Neera; Bowen, Tessa A.; Smith, J. Jeff; Webb, Colleen T.; Hellinga, Homme W.; Medford, June I.

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparent...

  4. Hepatic Lipase Release is Inhibited by a Purinergic Induction of Autophagy

    Directory of Open Access Journals (Sweden)

    Cynthia Chatterjee

    2014-03-01

    Full Text Available Background/Aims: We have shown that extracellular adenosine diphosphate (ADP affects lipoprotein secretion from liver cells by stimulating cellular autophagic degradation. In this study, we investigated the effect of ADP and cellular autophagy on hepatic lipase (HL release from human liver cells. Methods/Results: Depletion of media serum stimulates an autophagic response in liver cells, which parallels an 8-fold increase in the release of ADP into the media and a complete inhibition of HL release. Treatment of cells with exogenous ADP stimulates cellular autophagy and also blocks HL release. Treatment with the autophagic stimulant and proteasomal inhibitor, ALLN (25 µM, reduces cellular HL levels and blocks HL release at 4h. In contrast, treatment with the autophagy inhibitor, 3-methyladenine (3-MA (5 mM, increases cellular HL levels and stimulates HL release. ADP acts through the G-protein coupled receptor, P2Y13, to stimulate autophagy. siRNA-targeted reduction in P2Y13 protein expression stimulates the release of HL by 5 to 8-fold, while overexpression of P2Y13 blocks HL release. HL release from liver cells is therefore inhibited by a purinergic induction of autophagy. To evaluate the effect of extracellular ADP on the processing of HL, we expressed a V5-epitope tag-labeled HL (HL-V5 and then measured secretion, uptake and degradation. Two isoforms of HL-V5, at 62 and 68 kDa, are released from HepG2 cells, but only the 62 kDa protein undergoes reuptake / internalization. The 62 kDa HL-V5 isoform progressively accumulates in the cell over 24h, with no detectible modification or degradation. Treatment of liver cells with ADP has no effect on HL-V5 internalization or degradation at 30 min and 4h. Conclusion: These studies show that extracellular nucleotides act to prevent HL accumulation in the media by stimulating cellular autophagic degradation and blocking HL release.

  5. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes.

    Science.gov (United States)

    Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi

    2015-03-01

    Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion

  6. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis

    Science.gov (United States)

    Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar; Dattaroy, Diptadip; Alhasson, Firas; Michelotti, Gregory; Nagarkatti, Mitzi; Nagarkatti, Prakash; Diehl, Anna Mae; Chatterjee, Saurabh

    2015-01-01

    Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression. PMID:26474534

  7. Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors.

    Science.gov (United States)

    Khoja, Sheraz; Shah, Vivek; Garcia, Damaris; Asatryan, Liana; Jakowec, Michael W; Davies, Daryl L

    2016-10-01

    Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ion channels regulated by ATP. We recently demonstrated that P2X4R knockout (KO) mice exhibited deficits in sensorimotor gating, social interaction, and ethanol drinking behavior. Dopamine (DA) dysfunction may underlie these behavioral changes, but there is no direct evidence for P2X4Rs' role in DA neurotransmission. To test this hypothesis, we measured markers of DA function and dependent behaviors in P2X4R KO mice. P2X4R KO mice exhibited altered density of pre-synaptic markers including tyrosine hydroxylase, dopamine transporter; post-synaptic markers including dopamine receptors and phosphorylation of downstream targets including dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa and cyclic-AMP-response element binding protein in different parts of the striatum. Ivermectin, an allosteric modulator of P2X4Rs, significantly affected dopamine and cyclic AMP regulated phosphoprotein of 32 kDa and extracellular regulated kinase1/2 phosphorylation in the striatum. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Using the 6-hydroxydopamine model of DA depletion, P2X4R KO mice exhibited an attenuated levodopa (L-DOPA)-induced motor behavior, whereas ivermectin enhanced this behavior. Collectively, these findings identified an important role for P2X4Rs in maintaining DA homeostasis and illustrate how this association is important for CNS functions including motor control and sensorimotor gating. We propose that P2X4 receptors (P2X4Rs) regulate dopamine (DA) homeostasis and associated behaviors. Pre-synaptic and post-synaptic DA markers were significantly altered in the dorsal and ventral striatum of P2X4R KO mice, implicating altered DA neurotransmission. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Ivermectin (IVM), a positive modulator of P2X4Rs, enhanced levodopa (L-DOPA)-induced motor behavior. These studies highlight potential

  8. The role of purinergic and dopaminergic systems on MK-801-induced antidepressant effects in zebrafish.

    Science.gov (United States)

    da Silva, Raquel Bohrer; Siebel, Anna Maria; Bonan, Carla Denise

    2015-12-01

    Depression is a serious disease characterized by low mood, anhedonia, loss of interest in daily activities, appetite and sleep disturbances, reduced concentration, and psychomotor agitation. There is a growing interest in NMDA antagonists as a promising target for the development of new antidepressants. Considering that purinergic and dopaminergic systems are involved in depression and anxiety states, we characterized the role of these signaling pathways on MK-801-induced antidepressant effects in zebrafish. Animals treated with MK-801 at the doses of 5, 10, 15, or 20μM during 15, 30, or 60min spent longer time in the top area of aquariums in comparison to control group, indicating an anxiolytic/antidepressant effect induced by this drug. Animals treated with MK-801 spent longer time period at top area until 2 (5μM MK-801) and 4 (20μM MK-801) hours after treatment, returning to basal levels from 24h to 7days after exposure. Repeated MK-801 treatment did not induce cumulative effects, since animals treated daily during 7days had the same behavioral response pattern observed since the first until the 7th day. In order to investigate the effects of adenosine A1 and A2A receptor antagonist and agonist and the influence of modulation of adenosine levels on MK-801 effects, we treated zebrafish with caffeine, DPCPX, CPA, ZM 241385, CGS 21680, AMPCP, EHNA, dipyridamole, and NBTI during 30min before MK-801 exposure. The non-specific adenosine receptor antagonist caffeine (50mg/kg) and the selective A1 receptor antagonist DPCPX (15mg/kg) prevented the behavioral changes induced by MK-801. The non-specific nucleoside transporter (NT) inhibitor dipyridamole (10mg/kg) exacerbated the behavioral changes induced by MK-801. Dopamine receptor antagonists (sulpiride and SCH 23390) did not change the behavioral alterations induced by MK-801. Our findings demonstrated that antidepressant-like effects of MK-801 in zebrafish are mediated through adenosine A1 receptor activation.

  9. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis.

    Science.gov (United States)

    Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar; Dattaroy, Diptadip; Alhasson, Firas; Michelotti, Gregory; Nagarkatti, Mitzi; Nagarkatti, Prakash; Diehl, Anna Mae; Chatterjee, Saurabh

    2016-01-01

    Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused an increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression.

  10. Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia

    Directory of Open Access Journals (Sweden)

    Smith SMC

    2013-08-01

    Full Text Available Stephanie MC Smith,1,2 Gordon S Mitchell,1,2 Scott A Friedle,3 Christine M Sibigtroth,1 Stéphane Vinit,1 Jyoti J Watters1–31Department of Comparative Biosciences, 2Comparative Biomedical Sciences Training Program, 3Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USAAbstract: Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours in the presence and absence of the nonselective P2X receptor agonist 2′(3′-O-(4-benzoylbenzoyladenosine-5′-triphosphate (BzATP to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS, tumor necrosis factor alpha (TNFα, and interleukin (IL-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X

  11. Quantifying efficient information transduction of biochemical signaling cascades

    CERN Document Server

    Tsuruyama, Tatsuaki

    2016-01-01

    Cells can be considered as systems that utilize changes in thermodynamic entropy as information. Therefore, they serve as useful models for investigating the relationships between entropy production and information transmission, i.e., signal transduction. Based on the hypothesis that cells apply a chemical reaction cascade for the most efficient transduction of information, we adopted a coding design that minimizes the number of bits per concentration of molecules that are employed for information transduction. As a result, the average rate of entropy production is uniform across all cycles in a cascade reaction. Thus, the entropy production rate can be a valuable measure for the quantification of intracellular signal transduction.

  12. Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential.

    Science.gov (United States)

    Alfahel, E; Korngreen, A; Parola, A H; Priel, Z

    1996-02-01

    To examine the role of membrane dynamics in transmembrane signal transduction, we studied changes in membrane fluidity in mucociliary tissues from frog palate and esophagus epithelia stimulated by extracellular ATP. Micromolar concentrations of ATP induced strong changes in fluorescence polarization, possibly indicating membrane fluidization. This effect was dosage dependent, reaching a maximum at 10-microM ATP. It was dependent on the presence of extracellular Ca2+ (or Mg2+), though it was insensitive to inhibitors of voltage-gated calcium channels. It was inhibited by thapsigargin and by ionomycin (at low extracellular Ca2+ concentration), both of which deplete Ca2+ stores. It was inhibited by the calcium-activated potassium channel inhibitors quinidine, charybdotoxin, and apamine and was reduced considerably by replacement of extracellular Na+ with K+. Hyperpolarization, or depolarization, of the mucociliary membrane induced membrane fluidization. The degree of membrane fluidization depended on the degree of hyperpolarization or depolarization of the ciliary membrane potential and was considerably lower than the effect induced by extracellular ATP. These results indicate that appreciable membrane fluidization induced by extracellular ATP depends both on an increase in intracellular Ca2+, mainly from its internal stores, and on hyperpolarization of the membrane. Calcium-dependent potassium channels couple the two effects. In light of recent results on the enhancement of ciliary beat frequency, it would appear that extracellular ATP-induced changes both in ciliary beat frequency and in membrane fluidity are triggered by similar signal transduction pathways.

  13. mGluR1 receptors contribute to non-purinergic slow excitatory transmission to submucosal VIP neurons of guinea-pig ileum

    Directory of Open Access Journals (Sweden)

    Jaime Pei Pei Foong

    2009-05-01

    Full Text Available Vasoactive intestinal peptide (VIP immunoreactive secretomotor neurons in the submucous plexus are involved in mediating bacterial toxin-induced hypersecretion leading to diarrhoea. VIP neurons become hyperexcitable after the mucosa is exposed to cholera toxin, which suggests that the manipulation of the excitability of these neurons may be therapeutic. This study used standard intracellular recording methods to systematically characterize slow excitatory postsynaptic potentials (EPSPs evoked in submucosal VIP neurons by different stimulus regimes (1, 3 and 15 pulse 30 Hz stimulation, together with their associated input resistances and pharmacology. All slow EPSPs were associated with a significant increase in input resistance compared to baseline values. Slow EPSPs evoked by a single stimulus were confirmed to be purinergic, however, slow EPSPs evoked by 15 pulse trains were non-purinergic and those evoked by 3 pulse trains were mixed. NK1 or NK3 receptor antagonists did not affect slow EPSPs. The group I mGluR receptor antagonist, PHCCC reduced the amplitude of purinergic and non-purinergic slow EPSPs. Blocking mGluR1 receptors depressed the overall response to 3 and 15 pulse trains, but this effect was inconsistent, while blockade of mGluR5 receptors had no effect on the non-purinergic slow EPSPs. Thus, although other receptors are almost certainly involved, our data indicate that there are at least two pharmacologically distinct types of slow EPSPs in the VIP secretomotor neurons: one mediated by P2Y receptors and the other in part by mGluR1 receptors.

  14. Genetics of auditory mechano-electrical transduction.

    Science.gov (United States)

    Michalski, Nicolas; Petit, Christine

    2015-01-01

    The hair bundles of cochlear hair cells play a central role in the auditory mechano-electrical transduction (MET) process. The identification of MET components and of associated molecular complexes by biochemical approaches is impeded by the very small number of hair cells within the cochlea. In contrast, human and mouse genetics have proven to be particularly powerful. The study of inherited forms of deafness led to the discovery of several essential proteins of the MET machinery, which are currently used as entry points to decipher the associated molecular networks. Notably, MET relies not only on the MET machinery but also on several elements ensuring the proper sound-induced oscillation of the hair bundle or the ionic environment necessary to drive the MET current. Here, we review the most significant advances in the molecular bases of the MET process that emerged from the genetics of hearing.

  15. Nonequilibrium phase transitions in biomolecular signal transduction

    Science.gov (United States)

    Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David

    2011-11-01

    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.

  16. Striatal Signal Transduction and Drug Addiction

    Science.gov (United States)

    Philibin, Scott D.; Hernandez, Adan; Self, David W.; Bibb, James A.

    2011-01-01

    Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction. PMID

  17. Striatal signal transduction and drug addiction

    Directory of Open Access Journals (Sweden)

    Scott D. Philibin

    2011-09-01

    Full Text Available Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug

  18. FCJ-124 Interactive Environments as Fields of Transduction

    Directory of Open Access Journals (Sweden)

    Cristoph Brunner

    2011-10-01

    Full Text Available This article proposes a critical inquiry of interactive environments as fields of transduction. It is argued that Gilbert Simondon’s concepts of individuation, transduction, in-formation, the preindividual, and the associated milieu enable a processual thinking of the analysis and design of interactive technologies as technogenetic emergence. These concepts offer a way for interaction design to understand interactive environments through the dynamics between fields of transduction and fields of experience in relational and affective terms. The article analyses the way in which two technological assemblages, Voz Alta and the Impossible Room, provide different experiential fields experimenting with the transductive power of digital and interactive media. We emphasise the potential for creating new modes of experience. Our aim is to underline the necessary convergences between practices of design and thought; to enable affectively engaging fields of transduction.

  19. Transductive versions of the LASSO and the Dantzig Selector

    CERN Document Server

    Alquier, Pierre

    2010-01-01

    Transductive methods are useful in prediction problems when the training dataset is composed of a large number of unlabeled observations and a smaller number of labeled observations. In this paper, we propose an approach for developing transductive prediction procedures that are able to take advantage of the sparsity in the high dimensional linear regression. More precisely, we define transductive versions of the LASSO and the Dantzig Selector . These procedures combine labeled and unlabeled observations of the training dataset to produce a prediction for the unlabeled observations. We propose an experimental study of the transductive estimators, that shows that they improve the LASSO and Dantzig Selector in many situations, and particularly in high dimensional problems when the predictors are correlated. We then provide non-asymptotic theoretical guarantees for these estimation methods. Interestingly, our theoretical results show that the Transductive LASSO and Dantzig Selector satisfy sparsity inequalities ...

  20. Safety and Efficacy of an Oral Inhibitor of the Purinergic Receptor P2X7 in Adult Patients with Moderately to Severely Active Crohn's Disease: A Randomized Placebo-controlled, Double-blind, Phase IIa Study

    National Research Council Canada - National Science Library

    Eser, Alexander; Colombel, Jean-Frederic; Rutgeerts, Paul; Vermeire, Severine; Vogelsang, Harald; Braddock, Martin; Persson, Tore; Reinisch, Walter

    2015-01-01

    AZD9056 is a selective orally active inhibitor of the purinergic receptor P2X7, which is a key player in the generation and secretion of several proinflammatory cytokines involved in the pathogenesis of Crohn's disease (CD...

  1. Tissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease

    Directory of Open Access Journals (Sweden)

    Álvaro Sebastián-Serrano

    2015-01-01

    Full Text Available Tissue-nonspecific alkaline phosphatase (TNAP is one of the four isozymes in humans and mice that have the capacity to hydrolyze phosphate groups from a wide spectrum of physiological substrates. Among these, TNAP degrades substrates implicated in neurotransmission. Transgenic mice lacking TNAP activity display the characteristic skeletal and dental phenotype of infantile hypophosphatasia, as well as spontaneous epileptic seizures and die around 10 days after birth. This physiopathology, linked to the expression pattern of TNAP in the central nervous system (CNS during embryonic stages, suggests an important role for TNAP in neuronal development and synaptic function, situating it as a good target to be explored for the treatment of neurological diseases. In this review, we will focus mainly on the role that TNAP plays as an ectonucleotidase in CNS regulating the levels of extracellular ATP and consequently purinergic signaling.

  2. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Directory of Open Access Journals (Sweden)

    Vania A Figueroa

    2014-09-01

    Full Text Available Gap junction channels (GJCs and hemichannels (HCs are composed of protein subunits termed connexins (Cxs and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive nonsyndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the ATP release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects.

  3. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  4. The Membrane and Lipids as Integral Participants in Signal Transduction: Lipid Signal Transduction for the Non-Lipid Biochemist

    Science.gov (United States)

    Eyster, Kathleen M.

    2007-01-01

    Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction.…

  5. Mechanisms of UV-induced signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Kulms, D.; Schwarz, T. [Univ. Muenster, Muenster (Germany). Ludwing Boltzmann Inst. for Cell Biology and Immunobiology of the Skin

    2002-04-01

    Ultraviolet radiation (UV) causes a variety of biological effects that can be either beneficial or harmful for human health. To exert these effects on a cellular basis, UV uses a variety of signaling pathways. DNA is the major chromophore for UVB. Thus, nuclear DNA damage has been detected to be a major mediator of numerous UVB effects, and experimental reduction of DNA damage is associated with a loss of these effects. On the other hand, UV has been found to utilize molecular components within the cytoplasm or at the cell membrane for signaling. UV can directly activate cell surface receptors, kinases, and transcription factors. The nuclear and extranuclear signaling pathways are generated independently and have been recently recognized to be not mutually exclusive but to contribute to various UV effects in an independent and additive way. Further knowledge of how these signaling pathways relate to each other will certainly increase our understanding of how UV acts as a pathogen. The following review will briefly discuss current aspects of the mechanisms involved in UV-induced signal transduction. (author)

  6. Glycosphingolipid–Protein Interaction in Signal Transduction

    Directory of Open Access Journals (Sweden)

    Domenico Russo

    2016-10-01

    Full Text Available Glycosphingolipids (GSLs are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.

  7. Glycosphingolipid–Protein Interaction in Signal Transduction

    Science.gov (United States)

    Russo, Domenico; Parashuraman, Seetharaman; D’Angelo, Giovanni

    2016-01-01

    Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development. PMID:27754465

  8. Extracellular Adenosine Diphosphate Ribose Mobilizes Intracellular Ca2+ via Purinergic-Dependent Ca2+ Pathways in Rat Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chun Huang

    2015-11-01

    Full Text Available Background/Aims: Adenosine diphosphate ribose (ADPR, a product of β-NAD+ metabolism generated by the multifunctional enzyme CD38, is recognized as a novel signaling molecule. The catalytic site of CD38 orients extracellularly or intracellularly, capable of generating ADPR outside and inside the cells. CD38-dependent pathways have been characterized in pulmonary artery smooth muscle cells (PASMCs; however the physiological function of extracellular ADPR is unclear. Methods: Ca2+ mobilizing and proliferative effects of extracellular ADPR were characterized and compared with the ATP-induced responses in rat PASMCs; and the expression of purinergic receptor (P2X and P2Y subtypes were examined in pulmonary arteries. Results: ADPR elicited concentration-dependent increase in [Ca2+]i with a fast transient and a sustained phase in PASMCs. The sustained phase was abolished by Ca2+ removal and inhibited by the non-selective cation channel blocker SKF-96365, but was unaffected by TRPM2 antagonists or nifedipine. The purinergic receptor (P2X antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonate inhibited partially the transient and the sustained Ca2+ response, while the P2(XY inhibitor suramin and the phospholipase C inhibitor U73122 abolished the sustained Ca2+ influx. The P2Y1 antagonist MRS2179 had no effect on the response. By contrast, ATP and ADP activated Ca2+ response exhibited a high and a low affinity component, and the pharmacological profile of ATP-induced Ca2+ response was distinctive from that of ADPR. BrdU incorporation assay showed that ADPR caused significant inhibition whereas ATP caused slight stimulation of PASMC proliferation. RT-PCR analysis found that almost all P2X and P2Y subtypes are expressed in PAs. Conclusion: ADPR and ATP activate Ca2+ responses through different combinations of multiple purinergic receptor subtypes; and extracellular ADPR may exert an autocrine/paracrine action via purinergic receptors on PASMCs.

  9. The sensory transduction pathways in bacterial chemotaxis

    Science.gov (United States)

    Taylor, Barry L.

    1989-01-01

    Bacterial chemotaxis is a useful model for investigating in molecular detail the behavioral response of cells to changes in their environment. Peritrichously flagellated bacteria such as coli and typhimurium swim by rotating helical flagella in a counterclockwise direction. If flagellar rotation is briefly reversed, the bacteria tumble and change the direction of swimming. The bacteria continuously sample the environment and use a temporal sensing mechanism to compare the present and immediate past environments. Bacteria respond to a broad range of stimuli including changes in temperature, oxygen concentration, pH and osmotic strength. Bacteria are attracted to potential sources of nutrition such as sugars and amino acids and are repelled by other chemicals. In the methylation-dependent pathways for sensory transduction and adaptation in E. coli and S. typhimurium, chemoeffectors bind to transducing proteins that span the plasma membrane. The transducing proteins are postulated to control the rate of autophosphorylation of the CheA protein, which in turn phosphorylates the CheY protein. The phospho-CheY protein binds to the switch on the flagellar motor and is the signal for clockwise rotation of the motor. Adaptation to an attractant is achieved by increasing methylation of the transducing protein until the attractant stimulus is cancelled. Responses to oxygen and certain sugars involve methylation-independent pathways in which adaption occurs without methylation of a transducing protein. Taxis toward oxygen is mediated by the electron transport system and changes in the proton motive force. Recent studies have shown that the methylation-independent pathway converges with the methylation-dependent pathway at or before the CheA protein.

  10. The transduction properties of intercostal muscle mechanoreceptors

    Directory of Open Access Journals (Sweden)

    Johnson Richard D

    2002-10-01

    Full Text Available Abstract Background Intercostal muscles are richly innervated by mechanoreceptors. In vivo studies of cat intercostal muscle have shown that there are 3 populations of intercostal muscle mechanoreceptors: primary muscle spindles (1°, secondary muscle spindles (2° and Golgi tendon organs (GTO. The purpose of this study was to determine the mechanical transduction properties of intercostal muscle mechanoreceptors in response to controlled length and velocity displacements of the intercostal space. Mechanoreceptors, recorded from dorsal root fibers, were localized within an isolated intercostal muscle space (ICS. Changes in ICS displacement and the velocity of ICS displacement were independently controlled with an electromagnetic motor. ICS velocity (0.5 – 100 μm/msec to a displacement of 2,000 μm and displacement (50–2,000 μm at a constant velocity of 10 μm/msec parameters encompassed the full range of rib motion. Results Both 1° and 2° muscle spindles were found evenly distributed within the ICS. GTOs were localized along the rib borders. The 1° spindles had the greatest discharge frequency in response to displacement amplitude followed by the 2° afferents and GTOs. The 1° muscle spindles also possessed the greatest discharge frequency in response to graded velocity changes, 3.0 spikes·sec-1/μm·msec-1. GTOs had a velocity response of 2.4 spikes·sec-1/μm·msec-1 followed by 2° muscle spindles at 0.6 spikes·sec-1/μm·msec-1. Conclusion The results of this study provide a systematic description of the mechanosenitivity of the 3 types of intercostal muscle mechanoreceptors. These mechanoreceptors have discharge properties that transduce the magnitude and velocity of intercostal muscle length.

  11. Signal transduction in the footsteps of goethe and schiller.

    Science.gov (United States)

    Friedrich, Karlheinz; Lindquist, Jonathan A; Entschladen, Frank; Serfling, Edgar; Thiel, Gerald; Kieser, Arnd; Giehl, Klaudia; Ehrhardt, Christina; Feller, Stephan M; Ullrich, Oliver; Schaper, Fred; Janssen, Ottmar; Hass, Ralf

    2009-02-04

    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction - Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field.The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction.

  12. Signal Transduction in the Footsteps of Goethe and Schiller

    Directory of Open Access Journals (Sweden)

    Feller Stephan M

    2009-02-01

    Full Text Available Abstract The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction – Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field. The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction.

  13. Transduction mechanisms and their applications in micromechanical devices

    NARCIS (Netherlands)

    Elwenspoek, M.; Blom, F.R.; Bouwstra, S.; Lammerink, T.S.J.; Pol, van de F.C.M.; Tilmans, H.A.C.; Popma, Th.J.A.; Fluitman, J.H.J.

    1989-01-01

    Transduction mechanisms and their applications in micromechanical actuators and resonating sensors are presented. They include piezoelectric, dielectric, electro-thermo-mechanic, opto-thermo-mechanic, and thermo-pneumatic mechanisms. Advantages and disadvantages with respect to technology and perfor

  14. Falsification of the ionic channel theory of hair cell transduction.

    Science.gov (United States)

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  15. One-component systems dominate signal transduction in prokaryotes

    OpenAIRE

    Ulrich, Luke E; Koonin, Eugene V.; Zhulin, Igor B.

    2005-01-01

    Two-component systems that link environmental signals to cellular responses are viewed as the primary mode of signal transduction in prokaryotes. By analyz-ing information encoded by 145 prokaryotic genomes, we found that the majority of signal transduction systems consist of a single protein that contains input and output domains but lacks phosphotransfer domains typical of two-component systems. One-component systems are evolutionarily older, more widely distributed among bacteria and archa...

  16. Serotonin Signal Transduction in Two Groups of Autistic Patients

    Science.gov (United States)

    2013-12-01

    AD_________________ Award Number: W81XWH-11-1-0820 TITLE: Serotonin Signal Transduction in Two...Report 3. DATES COVERED 15 September 2011-14 September 2013 4. TITLE AND SUBTITLE Serotonin Signal Transduction in Two Groups of Autistic Patients...the arena of serotonin sensitivity, from those cells obtained from autistic subjects with normal serum serotonin . This was not the case, as the

  17. Modeling Signal Transduction and Lipid Rafts in Immune Cells

    Science.gov (United States)

    Prasad, Ashok

    2011-03-01

    Experimental evidence increasingly suggests that lipid rafts are nanometer sized cholesterol dependent dynamic assemblies enriched in sphingolipids and associated proteins. Lipid rafts are dynamic structures that break-up and reform on a relatively short time-scale, and are believed to facilitate the interactions of raft-associated proteins. The role of these rafts in signaling has been controversial, partly due to controversies regarding the existence and nature of the rafts themselves. Experimental evidence has indicated that in several cell types, especially T cells, rafts do influence signal transduction and T cell activation. Given the emerging consensus on the biophysical character of lipid rafts, the question can be asked as to what roles they possibly play in signal transduction. Here we carry out simulations of minimal models of the signal transduction network that regulates Src-family kinase dynamics in T cells and other cell types. By separately treating raft-based biochemical interactions, we find that rafts can indeed putatively play an important role in signal transduction, and in particular may affect the sensitivity of signal transduction. This illuminates possible functional consequences of membrane heterogeneities on signal transduction and points towards mechanisms for spatial control of signaling by cells.

  18. Engineering key components in a synthetic eukaryotic signal transduction pathway.

    Science.gov (United States)

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways.

  19. The impact of simulated microgravity on purinergic signaling in an endothelial and smooth muscle cell co-culture model

    Science.gov (United States)

    Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda

    Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial

  20. Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.

    Science.gov (United States)

    Goulet, Julie; van Hemmen, J Leo; Jung, Sarah N; Chagnaud, Boris P; Scholze, Björn; Engelmann, Jacob

    2012-05-01

    Fish and aquatic frogs detect minute water motion by means of a specialized mechanosensory system, the lateral line. Ubiquitous in fish, the lateral-line system is characterized by hair-cell based sensory structures across the fish's surface called neuromasts. These neuromasts occur free-standing on the skin as superficial neuromasts (SN) or are recessed into canals as canal neuromasts. SNs respond to rapid changes of water velocity in a small layer of fluid around the fish, including the so-called boundary layer. Although omnipresent, the boundary layer's impact on the SN response is still a matter of debate. For the first time using an information-theoretic approach to this sensory system, we have investigated the SN afferents encoding capabilities. Combining covariance analysis, phase analysis, and modeling of recorded neuronal responses of primary lateral line afferents, we show that encoding by the SNs is adequately described as a linear, velocity-responsive mechanism. Afferent responses display a bimodal distribution of opposite Wiener kernels that likely reflected the two hair-cell populations within a given neuromast. Using frozen noise stimuli, we further demonstrate that SN afferents respond in an extremely precise manner and with high reproducibility across a broad frequency band (10-150 Hz), revealing that an optimal decoder would need to rely extensively on a temporal code. This was further substantiated by means of signal reconstruction of spike trains that were time shifted with respect to their original. On average, a time shift of 3.5 ms was enough to diminish the encoding capabilities of primary afferents by 70%. Our results further demonstrate that the SNs' encoding capability is linearly related to the stimulus outside the boundary layer, and that the boundary layer can, therefore, be neglected while interpreting lateral line response of SN afferents to hydrodynamic stimuli.

  1. EDITORIAL: Special section on signal transduction Special section on signal transduction

    Science.gov (United States)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks

  2. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  3. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  4. Effects of differentiation on purinergic and neurotensin-mediated calcium signaling in human HT-29 colon cancer cells.

    Science.gov (United States)

    Chowdhury, Mohammad A; Peters, Amelia A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2013-09-13

    Calcium signaling is a key regulator of processes important in differentiation. In colon cancer cells differentiation is associated with altered expression of specific isoforms of calcium pumps of the endoplasmic reticulum and the plasma membrane, suggesting that differentiation of colon cancer cells is associated with a major remodeling of calcium homeostasis. Purinergic and neurotensin receptor activation are known regulators of cytosolic free Ca(2+) levels in colon cancer cells. This study aimed to assess changes in cytosolic free Ca(2+) levels in response to ATP and neurotensin with differentiation induced by sodium butyrate or culturing post-confluence. Parameters assessed included peak cytosolic free Ca(2+) level after activation; time to reach peak cytosolic free Ca(2+) and the EC50 of dose response curves. Our results demonstrate that differentiation of HT-29 colon cancer cells is associated with a remodeling of both ATP and neurotensin mediated Ca(2+) signaling. Neurotensin-mediated calcium signaling appeared more sensitive to differentiation than ATP-mediated Ca(2+) signaling.

  5. Ion Transport in Human Pancreatic Duct Epithelium, Capan-1 Cells, Is Regulated by Secretin, VIP, Acetylcholine, and Purinergic Receptors

    DEFF Research Database (Denmark)

    Wang, Jing; Novak, Ivana

    2013-01-01

    OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, puriner......OBJECTIVES: The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular......, purinergic receptors, and determine their effects on ion transport. METHODS: Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured...... in response to agonists. RESULTS: Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion...

  6. Analysis of a polymorphic microRNA target site in the purinergic receptor P2RX7 gene.

    Science.gov (United States)

    Rahman, Omar Abdul; Sasvari-Szekely, Maria; Szekely, Anna; Faludi, Gabor; Guttman, Andras; Nemoda, Zsofia

    2010-06-01

    The recent discovery of post-transcriptional regulation by microRNAs (miRNAs) drew our attention to SNPs of putative miRNA target sites in candidate genes of depression-related psychiatric disorders. The P2RX7 (purinergic receptor P2X, ligand-gated ion channel, 7) gene has been suggested as a candidate for major depressive and bipolar disorder, because of repeated associations with the rs2230912 (Gln460Arg) polymorphism. As this polymorphism is located at the end of the coding region, we considered a possible linkage with SNP(s) in putative miRNA target sites of the 3' untranslated region. Based on our in silico search, the rs1653625 fulfilled this criterion. This SNP, however, is surrounded with polycytosine and polyadenine tracts, which hindered its analysis until now. In this study, we describe a readily applicable genotyping method for rs1653625 by applying a primer that introduces mismatched nucleotides to create a restriction enzyme cleavage site. The resulting allele-specific products with 19 base pair difference were separated by both traditional horizontal agarose gel electrophoresis and multicapillary gel electrophoresis. The developed genotyping method was applied in our depression-related association study.

  7. Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice.

    Science.gov (United States)

    Darville, Toni; Welter-Stahl, Lynn; Cruz, Cristiane; Sater, Ali Abdul; Andrews, Charles W; Ojcius, David M

    2007-09-15

    Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.

  8. The Influence of Simulated Microgravity on Purinergic Signaling Is Different between Individual Culture and Endothelial and Smooth Muscle Cell Coculture

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-01-01

    Full Text Available Exposure to microgravity conditions causes cardiovascular deconditioning in astronauts during spaceflight. Until now, no specific drugs are available for countermeasure, since the underlying mechanism is largely unknown. Endothelial cells (ECs and smooth muscle cells (SMCs play key roles in various vascular functions, many of which are regulated by purinergic 2 (P2 receptors. However, their function in ECs and SMCs under microgravity conditions is still unclear. In this study, primary ECs and SMCs were isolated from bovine aorta and verified with specific markers. We show for the first time that the P2 receptor expression pattern is altered in ECs and SMCs after 24 h exposure to simulated microgravity using a clinostat. However, conditioned medium compensates this change in specific P2 receptors, for example, P2X7. Notably, P2 receptors such as P2X7 might be the important players during the paracrine interaction. Additionally, ECs and SMCs secreted different cytokines under simulated microgravity, leading into a pathogenic proliferation and migration. In conclusion, our data indicate P2 receptors might be important players responding to gravity changes in ECs and SMCs. Since some artificial P2 receptor ligands are applied as drugs, it is reasonable to assume that they might be promising candidates against cardiovascular deconditioning in the future.

  9. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Victor H. Leyva-Grado

    2017-03-01

    Full Text Available An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10, gamma interferon (IFN-γ, and CC chemokine ligand 2 (CCL2 was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection.

  10. A transduction path method of solid state sensor analysis and investigation

    OpenAIRE

    Dubay, Curtis L.

    1984-01-01

    Approved for public release; distribution is unlimited This paper proposes a "transduction path" method of analysis for solid state sensors. It is based upon the idea that a sensor represents a transduction path from some input measurand to an electrical output. The transduction path may consist of one or more transduction or modification principles drawn from all fields of science. Also proposed is a "transduction path diagram" which provides a graphical representation of a transductio...

  11. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  12. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice

    Science.gov (United States)

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.

  13. Gene Expression Pattern of Signal Transduction in Chronic Myeloid Leukemia

    Institute of Scientific and Technical Information of China (English)

    LI Huiyu; JIE Shenghua; GUO Tiannan; HUANG Shi'ang

    2006-01-01

    To explore the transcriptional gene expression profiles of signaling pathway in Chronic myeloid leukemia (CML), a series of cDNA microarray chips were tested. The results showed that differentially expressed genes related to singal transduction in CML were screened out and the genes involved in Phosphoinositide 3-kinases (PI3K), Ras-MAPK (mitogen-activated protein kinase) and other signaling pathway genes simultaneously. The results also showed that most of these genes were up-expression genes , which suggested that signal transduction be overactivated in CML. Further analysis of these differentially expressed signal transduction genes will be helpful to understand the molecular mechanism of CML and find new targets of treatment.

  14. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  15. The development of taste transduction and taste chip technology

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LIU Qingjun; XU Ying; CAI Hua; QIN Lifeng; WANG Lijiang; WANG Ping

    2005-01-01

    The intrinsic perception process of taste is obviously far less known than those of vision, audition, touch and olfaction. Despite that taste cells utilize a variety of sensory mechanisms to translate plenty of gustatory sensations such as sour, sweet, bitter, salty and umami into cellular signals, gustatory perception mechanisms are still under exploration due to the lack of effective methods on cellular and molecular level. Recently the development of molecular biological and electrophysiological studies has promoted exploration of olfactory and gustatory transduction and coding mechanisms dramatically. Based on the studies of artificial olfaction, artificial taste and cell-based biosensor in our laboratory, this paper reviews the current research on taste transduction mechanism. We introduce the recent advances in cell chip that combined biology with microelectronics, discuss taste cell chip as well as its potential of prospective application in taste transduction mechanism in detail and propose the research trends of taste chip in future.

  16. Phosphoinositide pathway and the signal transduction network in neural development

    Institute of Scientific and Technical Information of China (English)

    Vincenza Rita Lo Vasco

    2012-01-01

    The development of the nervous system is under the strict control of a number of signal transduction pathways,often interconnected.Among them,the phosphoinositide (PI) pathway and the related phospholipase C (PI-PLC) family of enzymes have been attracting much attention.Besides their well-known role in the regulation of intracellular calcium levels,PI-PLC enzymes interact with a number of molecules belonging to further signal transduction pathways,contributing to a specific and complex network in the developing nervous system.In this review,the connections of PI signalling with further transduction pathways acting during neural development are discussed,with special regard to the role of the PI-PLC family of enzymes.

  17. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  18. Expression of SMAD signal transduction molecules in the pancreas

    DEFF Research Database (Denmark)

    Brorson, Michael; Hougaard, D.; Nielsen, Jens Høiriis

    2001-01-01

    Members of the TGF-beta superfamily of cytokines have been implicated in pancreatic cancer, pancreatitis and in regulation and differentiation of pancreatic endocrine and exocrine cells. Different TGF-beta members signal through phosphorylation of different signal transduction proteins, which eve...... is known to transduce signals from receptors binding bone morphogenetic protein (BMP) these results indicate a previously unknown role of BMP-like ligands in islet function.......Members of the TGF-beta superfamily of cytokines have been implicated in pancreatic cancer, pancreatitis and in regulation and differentiation of pancreatic endocrine and exocrine cells. Different TGF-beta members signal through phosphorylation of different signal transduction proteins, which...

  19. On the Monadic Second-Order Transduction Hierarchy

    CERN Document Server

    Blumensath, Achim

    2010-01-01

    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder C <= K :iff C is a subset of tau(K) for some transduction tau. If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type omega + 3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n in N, of all paths, of all trees, and of all grids.

  20. One-component systems dominate signal transduction in prokaryotes

    Science.gov (United States)

    Ulrich, Luke E.; Koonin, Eugene V.; Zhulin, Igor B.

    2009-01-01

    Two-component systems that link environmental signals to cellular responses are viewed as the primary mode of signal transduction in prokaryotes. By analyz-ing information encoded by 145 prokaryotic genomes, we found that the majority of signal transduction systems consist of a single protein that contains input and output domains but lacks phosphotransfer domains typical of two-component systems. One-component systems are evolutionarily older, more widely distributed among bacteria and archaea, and display a greater diversity of domains than two-component systems. PMID:15680762

  1. Purinergic activation of Ca2+-permeable TRPV4 channels is essential for mechano-sensitivity in the aldosterone-sensitive distal nephron.

    Directory of Open Access Journals (Sweden)

    Mykola Mamenko

    Full Text Available Mechanical forces are known to induce increases of [Ca(2+](i in the aldosterone-sensitive distal nephron (ASDN cells to regulate epithelial transport. At the same time, mechanical stress stimulates ATP release from ASDN cells. In this study, we combined ratiometric Fura-2 based monitoring of [Ca(2+](i in freshly isolated split-opened ASDN with targeted deletion of P2Y2 and TRPV4 in mice to probe a role for purinergic signaling in mediating mechano-sensitive responses in ASDN cells. ATP application causes a reproducible transient Ca(2+ peak followed by a sustained plateau. Individual cells of the cortical collecting duct (CCD and the connecting tubule (CNT respond to purinergic stimulation with comparative elevations of [Ca(2+](i. Furthermore, ATP-induced Ca(2+-responses are nearly identical in both principal (AQP2-positive and intercalated (AQP2-negative cells as was confirmed using immunohistochemistry in split-opened ASDN. UTP application produces elevations of [Ca(2+](i similar to that observed with ATP suggesting a dominant role of P2Y2-like receptors in generation of [Ca(2+](i response. Indeed, genetic deletion of P2Y2 receptors decreases the magnitude of ATP-induced and UTP-induced Ca(2+ responses by more than 70% and 90%, respectively. Both intracellular and extracellular sources of Ca(2+ appeared to contribute to the generation of ATP-induced Ca(2+ response in ASDN cells. Importantly, flow- and hypotonic-induced Ca(2+ elevations are markedly blunted in P2Y2 -/- mice. We further demonstrated that activation of mechano-sensitive TRPV4 channel plays a major role in the sustained [Ca(2+](i elevation during purinergic stimulation. Consistent with this, ATP-induced Ca(2+ plateau are dramatically attenuated in TRV4 -/- mice. Inhibition of TRPC channels with 10 µM BTP2 also decreased ATP-induced Ca(2+ plateau whilst to a lower degree than that observed with TRPV4 inhibition/genetic deletion. We conclude that stimulation of purinergic signaling

  2. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia.

    Science.gov (United States)

    Lu, Wen-Hsin; Wang, Chih-Yen; Chen, Po-See; Wang, Jing-Wen; Chuang, De-Maw; Yang, Chung-Shi; Tzeng, Shun-Fen

    2013-05-01

    Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.

  3. Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model.

    Science.gov (United States)

    Talley Watts, Lora; Sprague, Shane; Zheng, Wei; Garling, R Justin; Jimenez, David; Digicaylioglu, Murat; Lechleiter, James

    2013-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children and young adults. Neuroprotective agents that may promote repair or counteract damage after injury do not currently exist. We recently reported that stimulation of the purinergic receptor subtype P2Y(1)R using 2-methylthioladenosine 5' diphosphate (2MeSADP) significantly reduced cytotoxic edema induced by photothrombosis. Here, we tested whether P2Y(1)R stimulation was neuroprotective after TBI. A controlled closed head injury model was established for mice using a pneumatic impact device. Brains were harvested at 1, 3, or 7 days post-injury and assayed for morphological changes by immunocytochemistry, Western blot analysis, and wet/dry weight. Cerebral edema and expression of both aquaporin type 4 and glial fibrillary acidic protein were increased at all time points examined. Immunocytochemical measurements in both cortical and hippocampal slices also revealed significant neuronal swelling and reactive gliosis. Treatment of mice with 2MeSADP (100 μM) or MRS2365 (100 μM) 30 min after trauma significantly reduced all post-injury symptoms of TBI including edema, neuronal swelling, reactive gliosis, and AQ4 expression. The neuroprotective effect was lost in IP(3)R2-/- mice treated with 2MeSADP. Immunocytochemical labeling of brain slices confirmed that P2Y(1)R expression was defined to cortical and hippocampal astrocytes, but not neurons. Taken together, the data show that stimulation of astrocytic P2Y(1)Rs significantly reduces brain injury after acute trauma and is mediated by the IP(3)-signaling pathway. We suggest that enhancing astrocyte mitochondrial metabolism offers a promising neuroprotective strategy for a broad range of brain injuries.

  4. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model.

    Science.gov (United States)

    Mendiola-Precoma, Jesus; Padilla, Karla; Rodríguez-Cruz, Alfredo; Berumen, Laura C; Miledi, Ricardo; García-Alcocer, Guadalupe

    2017-01-01

    Dementia caused by Alzheimer's disease (AD) is mainly characterized by accumulation in the brain of extra- and intraneuronal amyloid-β (Aβ) and tau proteins, respectively, which selectively affect specific regions, particularly the neocortex and the hippocampus. Sporadic AD is mainly caused by an increase in apolipoprotein E, a component of chylomicrons, which are cholesterol transporters in the brain. Recent studies have shown that high lipid levels, especially cholesterol, are linked to AD. Adenosine is an atypical neurotransmitter that regulates a wide range of physiological functions by activating four P1 receptors (A1, A2A, A2B, and A3) and P2 purinergic receptors that are G protein-coupled. A1 receptors are involved in the inhibition of neurotransmitter release, which could be related to AD. The aim of the present work was to study the effects of a lard-enriched diet (LED) on cognitive and memory processes in adult rats (6 months of age) as well as the effect of theobromine on these processes. The results indicated that the fat-enriched diet resulted in a long-term deterioration in cognitive and memory functions. Increased levels of Aβ protein and IL-1β were also observed in the rats fed with a high-cholesterol diet, which were used to validate the AD animal model. In addition, the results of qPCR and immunohistochemistry indicated a decrease in gene expression and distribution of A1 purinegic receptor, respectively, in the hippocampus of LED-fed rats. Interestingly, theobromine, at both concentrations tested, restored A1 receptor levels and improved cognitive functions and Aβ levels for a dose of 30 mg/L drinking water.

  5. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein.

    Science.gov (United States)

    Delarasse, Cécile; Auger, Rodolphe; Gonnord, Pauline; Fontaine, Bertrand; Kanellopoulos, Jean M

    2011-01-28

    The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.

  6. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice.

    Science.gov (United States)

    Hoque, Rafaz; Sohail, Muhammed Adnan; Salhanick, Steven; Malik, Ahsan F; Ghani, Ayaz; Robson, Simon C; Mehal, Wajahat Z

    2012-05-15

    Inflammation contributes to liver injury in acetaminophen (APAP) hepatotoxicity in mice and is triggered by stimulation of immune cells. The purinergic receptor P2X7 is upstream of the nod-like receptor family, pryin domain containing-3 (NLRP3) inflammasome in immune cells and is activated by ATP and NAD that serve as damage-associated molecular patterns. APAP hepatotoxicity was assessed in mice genetically deficient in P2X7, the key inflammatory receptor for nucleotides (P2X7-/-), and in wild-type mice. P2X7-/- mice had significantly decreased APAP-induced liver necrosis. In addition, APAP-poisoned mice were treated with the specific P2X7 antagonist A438079 or etheno-NAD, a competitive antagonist of NAD. Pre- or posttreatment with A438079 significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury in wild-type but not P2X7-/- mice. Pretreatment with etheno-NAD also significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury. In addition, APAP toxicity in mice lacking the plasma membrane ecto-NTPDase CD39 (CD39-/-) that metabolizes ATP was examined in parallel with the use of soluble apyrase to deplete extracellular ATP in wild-type mice. CD39-/- mice had increased APAP-induced hemorrhage and mortality, whereas apyrase also decreased APAP-induced mortality. Kupffer cells were treated with extracellular ATP to assess P2X7-dependent inflammasome activation. P2X7 was required for ATP-stimulated IL-1β release. In conclusion, P2X7 and exposure to the ligands ATP and NAD are required for manifestations of APAP-induced hepatotoxicity.

  7. Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury.

    Directory of Open Access Journals (Sweden)

    Josef Anrather

    Full Text Available Cyclooxygenases (COX are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2 synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2 synthesis (10 minutes after NMDA, while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA. Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2 synthesis is dependent on P2X7 receptors, extracellular Ca(2+ and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2 synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2 receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2 receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2 production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain

  8. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors.

    Science.gov (United States)

    Itoh, K; Chiang, C-Y; Li, Z; Lee, J-C; Dostrovsky, J O; Sessle, B J

    2011-09-29

    Central sensitization is a crucial process underlying the increased neuronal excitability of nociceptive pathways following peripheral tissue injury and inflammation. Our previous findings have suggested that extracellular adenosine 5'-triphosphate (ATP) molecules acting at purinergic receptors located on presynaptic terminals (e.g., P2X2/3, P2X3 subunits) and glial cells are involved in the glutamatergic-dependent central sensitization induced in medullary dorsal horn (MDH) nociceptive neurons by application to the tooth pulp of the inflammatory irritant mustard oil (MO). Since growing evidence indicates that activation of P2X7 receptors located on glia is involved in chronic inflammatory and neuropathic pain, the aim of the present study was to test in vivo for P2X7 receptor involvement in this acute inflammatory pain model. Experiments were carried out in anesthetized Sprague-Dawley male rats. Single unit recordings were made in MDH functionally identified nociceptive neurons for which mechanoreceptive field, mechanical activation threshold and responses to noxious stimuli were tested. We found that continuous intrathecal (i.t.) superfusion over MDH of the potent P2X7 receptor antagonists brilliant blue G and periodated oxidized ATP could each significantly attenuate the MO-induced MDH central sensitization. MDH central sensitization could also be produced by i.t. superfusion of ATP and even more effectively by the P2X7 receptor agonist benzoylbenzoyl ATP. Superfusion of the microglial blocker minocycline abolished the MO-induced MDH central sensitization, consistent with reports that dorsal horn P2X7 receptors are mostly expressed on microglia. In control experiments, superfusion over MDH of vehicle did not produce any significant changes. These novel findings suggest that activation of P2X7 receptors in vivo may be involved in the development of central sensitization in an acute inflammatory pain model.

  9. Empirical Properties of Multilingual Phone-To-Word Transduction

    Science.gov (United States)

    2008-01-01

    EMPIRICAL PROPERTIES OF MULTILINGUAL PHONE-TO-WORD TRANSDUCTION Geoffrey Zweig Microsoft Research gzweig@microsoft.com Jon Nedel U.S. Department of...69–88, 2002. [2] G. Saon, G. Zweig , and D. Povey, “Anatomy of an extremely fast LVCSR decoder,” in Interspeech, 2005. [3] S. Ortmanns, H. Ney, and A

  10. Exploring signal transduction networks using mass spectrometry-based proteomics

    NARCIS (Netherlands)

    Meijer, L.A.T.

    2012-01-01

    Mass spectrometry (MS)-based proteomics can be used to answer a diversity of biological questions. In this thesis, we describe the application of several MS-based proteomics approaches to get insight into several aspects of signal transduction. In Chapter 2, quantitative global phosphoproteomics are

  11. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Skov, S; Bregenholt, S;

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...

  12. Coordinate gene regulation by fimbriae-induced signal transduction

    DEFF Research Database (Denmark)

    Schembri, Mark; Klemm, Per

    2001-01-01

    of Ag43 production. No effect was observed in an oxyR mutant. We conclude that fimbriae expression per se constitutes a signal transduction mechanism that affects a number of unrelated genes via the thiol-disulfide status of OxyR. Thus, phase variation in fimbrial expression is coordinated...

  13. Diffusion wave and signal transduction in biological live cells

    CERN Document Server

    Fan, Tian You

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  14. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy;

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds...

  15. Protein phosphorylation and its role in archaeal signal transduction.

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies.

  16. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  17. Polylysine modification of adenoviral fiber protein enhances muscle cell transduction.

    Science.gov (United States)

    Bouri, K; Feero, W G; Myerburg, M M; Wickham, T J; Kovesdi, I; Hoffman, E P; Clemens, P R

    1999-07-01

    Adenoviral vectors (ADVs) are used widely for gene delivery to different tissues including muscle. One particularly promising use for ADVs is in the transfer of the dystrophin gene to the muscle of patients with Duchenne muscular dystrophy (DMD). However, studies in different animal models of DMD suggest that ADVs inefficiently transduce mature skeletal muscle. In this article we test whether AdZ.F(pK7), a genetically modified ADV that expresses a polylysine moiety on the end of the fiber protein, could enhance transduction of muscle cells and circumvent the maturation-dependent loss of muscle infectivity by ADVs. The efficiency of transduction was tested at different levels of muscle maturation. In vitro, AdZ.F(pK7) showed a higher level of transduction at all stages of differentiation including myoblasts, myotubes, and single muscle fibers. In vivo, mature skeletal muscle was transduced fourfold better by AdZ.F(pK7) than by the unmodifled vector (AdZ.F). Together, these observations demonstrate improved ADV transduction of skeletal muscle by modifying ADV tropism, and provide a proof-of-principle that modification of ADVs to target muscle-specific molecules could result in tissue-specific transfer of skeletal muscle tissue as well.

  18. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), c

  19. The sugarcane signal transduction (SUCAST catalogue: prospecting signal transduction in sugarcane

    Directory of Open Access Journals (Sweden)

    Glaucia Mendes Souza

    2001-12-01

    Full Text Available EST sequencing has enabled the discovery of many new genes in a vast array of organisms, and the utility of this approach to the scientific community is greatly increased by the establishment of fully annotated databases. The present study aimed to identify sugarcane ESTs sequenced in the sugarcane expressed sequence tag (SUCEST project (http://sucest.lad.ic.unicamp.br that corresponded to signal transduction components. We also produced a sugarcane signal transduction (SUCAST catalogue (http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm that covered the main categories and pathways. Expressed sequence tags (ESTs encoding enzymes for hormone (gibberellins, ethylene, auxins, abscisic acid and jasmonic acid biosynthetic pathways were found and tissue specificity was inferred from their relative frequency of occurrence in the different libraries. Whenever possible, transducers of hormones and plant peptide signaling were catalogued to the respective pathway. Over 100 receptors were found in sugarcane, which contains a large family of Ser/Thr kinase receptors and also photoreceptors, histidine kinase receptors and their response regulators. G-protein and small GTPases were analyzed and compared to known members of these families found in mammalian and plant systems. Major kinase and phosphatase pathways were mapped, with special attention being given to the MAP kinase and the inositol pathway, both of which are well known in plants.O sequenciamento de ESTs (etiquetas de sequencias transcritas tem possibilitado a descoberta de muitos novos genes em uma ampla variedade de organismos. Um aumento do aproveitamento desta informação pela comunidade científica tem sido possível graças ao desenvolvimento de base de dados contendo seqüências completamente anotadas. O trabalho aqui relatado teve como objetivo a identificação de ESTs de cana de açúcar seqüenciadas através do projeto SUCEST (http://sucest.lad.ic. unicamp.br que

  20. Signal transduction pathways in liver and the influence of hepatitis C virus infection on their activities

    Institute of Scientific and Technical Information of China (English)

    Magdalena M Dabrowska; Anatol Panasiuk; Robert Flisiak

    2009-01-01

    In liver, the most intensively studied transmembrane and intracellular signal transduction pathways are the Janus kinase signal transduction pathway, the mitogen-activated protein kinases signal transduction pathway, the transforming growth factor b signal transduction pathway, the tumor necrosis factor a signal transduction pathway and the recently discovered sphingolipid signal transduction pathway. All of them are activated by many different cytokines and growth factors. They regulate specific cell mechanisms such as hepatocytes proliferation, growth, differentiation, adhesion, apoptosis, and synthesis and degradation of the extracellular matrix. The replication cycle of hepatitis C virus (HCV) is intracellular and requires signal transduction to the nucleus to regulate transcription of its genes. Moreover, HCV itself, by its structural and nonstructural proteins, could influence the activity of the second signal messengers. Thus, the inhibition of the transmembrane and intracellular signal transduction pathways could be a new therapeutic target in chronic hepatitis C treatment.

  1. The purinergic receptor P2X7 role in control of Dengue virus-2 infection and cytokine/chemokine production in infected human monocytes.

    Science.gov (United States)

    Corrêa, Gladys; de A Lindenberg, Carolina; Fernandes-Santos, Caroline; Gandini, Mariana; Petitinga Paiva, Fabienne; Coutinho-Silva, Robson; F Kubelka, Claire

    2016-07-01

    Purinergic signaling has a crucial role in intracellular pathogen elimination. The P2X7 purinergic receptor (P2X7R), once activated by ATP, leads to pro-inflammatory responses including reactive oxygen species production. ATP can be released by injured cells, as endogenous danger signals. Dengue fever may evolve to a severe disease, leading to hypovolemic shock and coagulation dysfunctions as a result of a cytokine storm. Our aim was to evaluate the role of P2X7R activation during Dengue virus (DENV) infection. Extracellular ATP inhibited viral load in pretreated monocytes, as measured by NS1 secretion and by decrease in DENV(+) P2X7(+) cell frequencies, suggesting that P2X7R is involved in the antiviral response. Nitric oxide (NO) has anti-DENV properties and is decreased after DENV infection. NO production after ATP stimulation is abrogated by KN62 treatment, a specific P2X7R inhibitor, indicating that P2X7R likely is acting in the virus containment process. Additionally, TNF, CXCL8, CCL2 and CXCL10 factors that are associated with dengue severity were modulated by the P2X7R activation. We conclude that P2X7R is directly involved in the modulation of the antiviral and inflammatory process that occurs during DENV infection in vitro, and may have an important role in patient recovery in a first moment.

  2. DMPD: LPS/TLR4 signal transduction pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18304834 LPS/TLR4 signal transduction pathway. Lu YC, Yeh WC, Ohashi PS. Cytokine. ...2008 May;42(2):145-51. Epub 2008 Mar 4. (.png) (.svg) (.html) (.csml) Show LPS/TLR4 signal transduction path...way. PubmedID 18304834 Title LPS/TLR4 signal transduction pathway. Authors Lu YC, Yeh WC, Ohashi PS. Publica

  3. Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7*

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-01-01

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466

  4. Diadenosine homodinucleotide products of ADP-ribosyl cyclases behave as modulators of the purinergic receptor P2X7.

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-07-02

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5',5'"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509-14514). P24, but not P18, proved to increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca(2+) through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca(2+) influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC(50) of approximately 1 mum. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca(2+)](i) has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146-23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca(2+)](i) to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A.

  5. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.

    2013-09-03

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively. © Springer Science+Business Media New York 2013.

  6. A PKD Channel-based Biosensor for Taste Transduction

    Science.gov (United States)

    Wu, Chunsheng; Du, Liping; Hu, Liang; Zhang, Wei; Zhao, Luhang; Wang, Ping

    2011-09-01

    This study describes a micro electrode array (MEA)-based biosensor for taste transduction using heterologous expressed taste polycystic kidney disease-like (PKD) channels as molecular sensors. Taste PKD1L3/2L1 channels were expressed on the plasma membrane of human embryo kidney (HEK)-293 cells [1]. Then the cells were cultured on the surface of MEA chip [2] to record the responses of PKD channels to sour stimulations by monitoring membrane potential. The results indicate this MEA-based biosensor can record the special off-responses of PKD channels to sour stimulation in a non-invasive manner for a long term. It may provide an alternative tool for the research of taste transduction, especially for the characterization of taste ion channels.

  7. The new sideway of CNTF signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The action of ciliary neurotrophic factor (CNTF) on intercellular free Ca2+ concentrations [Ca2+]I induced by glutamate (Glu) in primary cultured hippocampal neurons were detected with Fura2/AM,a Ca2+-sensitive fluorophore,and the morphological influence of G-protein on it was ob- jected. Glu could induce rapid increase of [Ca2+]I in hippo- campal neurons. CNTF had no significant action on [Ca2+]I in resting hippocampal neurons. However,after incubation of CNTF for 5 min,the increase of [Ca2+]I in hippocampal neurons rapidly induced by Glu was inhibited. Pretussis toxin (PTX)-sensitive G protein could block the action. These results indicate that a new non-genomic rapid sideway might exist in the upper stream of CNTF signal transduction pathway,which was related to Ca2+ signal transduction.

  8. Role of the phosphoinositide signal transduction pathway in the endometrium

    Institute of Scientific and Technical Information of China (English)

    Vincenza Rita Lo Vasco

    2012-01-01

    The regulation of calcium concentration triggers physiological events in all cell types. Unregulated elevation in calcium concentrations is often cytotoxic.In fact, uncontrolled calcium levels alter proteins’ function, apoptosis regulation, as well as proliferation, secretion and contraction.Calcium levels are tightly regulated.A great interest was paid to signal transduction pathways for their role in mammalian reproduction.The role of phosphoinositide(PI) signal transduction pathway and related phosphoinositide-specific phospholipaseC(PI-PLC) enzymes in the regulation of calcium levels was actively studied and characterized.However, the role of PI signaling andPI-PLC enzymes in the endometrium is far to be completely highlighted.In the present review the role ofPI, the expression of selectedPI-PLC enzymes and the crosstalk with further signaling systems in the endometrium will be discussed.

  9. Study of spatial signal transduction in bistable switches

    Science.gov (United States)

    Zhao, Qi; Yao, Cheng-Gui; Tang, Jun; Liu, Li-Wei

    2016-10-01

    Bistable switch modules are among the most important fundamental motifs in signal-transduction pathways. To better understand their spatial signal transduction, we model the diffusion process in the one-dimensional (1-D) domain. We find that when none of the elements diffuse, the response of the system exhibits a spatial switch-like property. However, when one of the elements is highly diffusible, the response of the system does not show any spatial switching behavior. Furthermore, we observe that the spatial responses of the system are more sensitive to the time constant of the switch when none of the elements are diffusible. Further, a slow loop keeps the system in the high steady state more positions than that in the fast loop. Finally, we consolidate our numerical results analytically by performing a mathematical method.

  10. Maxwell's demon in biochemical signal transduction with feedback loop.

    Science.gov (United States)

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-23

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on 'Maxwell's demon'-a feedback controller that utilizes information of individual molecules-have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  11. The actin-binding proteins eps8 and gelsolin have complementary roles in regulating the growth and stability of mechanosensory hair bundles of mammalian cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Olt

    Full Text Available Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.

  12. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F., E-mail: francesc.perez@csic.es [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, 08193 Bellaterra (Spain); Borrisé, X. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra Spain (Spain); San Paulo, A. [Instituto de Microelectrónica de Madrid (IMM-CSIC), 28760 Tres Cantos, Madrid (Spain)

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  13. Post-translational modification of PII signal transduction proteins

    OpenAIRE

    Mike eMerrick

    2015-01-01

    The PII proteins constitute one of the most widely distributed families of signal transduction proteins in nature. They are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. Quite remarkably PII proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and in all known cases they achieve their regulatory effect by direct interaction with their target. PII prot...

  14. Identification of photoperception and light signal transduction pathways in citrus

    Directory of Open Access Journals (Sweden)

    Vera Quecini

    2007-01-01

    Full Text Available Studies employing model species have elucidated several aspects of photoperception and light signal transduction that control plant development. However, the information available for economically important crops is scarce. Citrus genome databases of expressed sequence tags (EST were investigated in order to identify genes coding for functionally characterized proteins responsible for light-regulated developmental control in model plants. Approximately 176,200 EST sequences from 53 libraries were queried and all bona fide and putative photoreceptor gene families were found in citrus species. We have identified 53 orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses although some important Arabidopsis phytochrome- and cryptochrome-signaling components are absent from citrus sequence databases. The main gene families responsible for phototropin-mediated signal transduction were present in citrus transcriptome, including general regulatory factors (14-3-3 proteins, scaffolding elements and auxin-responsive transcription factors and transporters. A working model of light perception, signal transduction and response-eliciting in citrus is proposed based on the identified key components. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.

  15. An Electrokinetic Model of Transduction in the Semicircular Canal

    Science.gov (United States)

    O'Leary, Dennis P.

    1970-01-01

    Transduction in the semicircular canal was studied by focusing an infrared beam on either side of exposed ampullae from the posterior canals of Rana pipiens. The direction of fluid movement resulting from a stimulus was inferred by observing the polarity of the change in afferent impulse mean rate relative to the spontaneous value. On the basis of the accepted functional polarization of this receptor, the results indicate that fluid moved toward the warmer side of the ampulla. Convection and thermal reception were shown to be unlikely explanations for these results. Morover, cupular displacements toward the warmer side would not be expected. Because thermo-osmosis can cause fluid to move toward the warmer side in a gelatin membrane, the results can be interpreted as evidence that thermo-osmosis occurred in the gelatinous cupula and influenced the transduction mechanism. Thermo-osmosis of liquids appears to be due to an electric field that is set up in a charged membrane; hence, the hair cells might have detected an electric field that occurred in the cupula during thermo-osmosis. Electroreception might be an important link in the transduction of physiological stimuli also. Rotational stimuli could result in weak electric fields in the cupula by the mechanoelectric effect. Cupular displacements could be important for large stimuli, but extrapolations to threshold stimuli suggest displacements of angstrom amplitudes. Therefore, electroreception by the hair cells could be an explanation of the great sensitivity that has been observed in the semicircular canal and other labyrinthine receptors. PMID:5496906

  16. State-time spectrum of signal transduction logic models

    Science.gov (United States)

    MacNamara, Aidan; Terfve, Camille; Henriques, David; Peñalver Bernabé, Beatriz; Saez-Rodriguez, Julio

    2012-08-01

    Despite the current wealth of high-throughput data, our understanding of signal transduction is still incomplete. Mathematical modeling can be a tool to gain an insight into such processes. Detailed biochemical modeling provides deep understanding, but does not scale well above relatively a few proteins. In contrast, logic modeling can be used where the biochemical knowledge of the system is sparse and, because it is parameter free (or, at most, uses relatively a few parameters), it scales well to large networks that can be derived by manual curation or retrieved from public databases. Here, we present an overview of logic modeling formalisms in the context of training logic models to data, and specifically the different approaches to modeling qualitative to quantitative data (state) and dynamics (time) of signal transduction. We use a toy model of signal transduction to illustrate how different logic formalisms (Boolean, fuzzy logic and differential equations) treat state and time. Different formalisms allow for different features of the data to be captured, at the cost of extra requirements in terms of computational power and data quality and quantity. Through this demonstration, the assumptions behind each formalism are discussed, as well as their advantages and disadvantages and possible future developments.

  17. The Hippo signal transduction network in skeletal and cardiac muscle.

    Science.gov (United States)

    Wackerhage, Henning; Del Re, Dominic P; Judson, Robert N; Sudol, Marius; Sadoshima, Junichi

    2014-08-05

    The discovery of the Hippo pathway can be traced back to two areas of research. Genetic screens in fruit flies led to the identification of the Hippo pathway kinases and scaffolding proteins that function together to suppress cell proliferation and tumor growth. Independent research, often in the context of muscle biology, described Tead (TEA domain) transcription factors, which bind CATTCC DNA motifs to regulate gene expression. These two research areas were joined by the finding that the Hippo pathway regulates the activity of Tead transcription factors mainly through phosphorylation of the transcriptional coactivators Yap and Taz, which bind to and activate Teads. Additionally, many other signal transduction proteins crosstalk to members of the Hippo pathway forming a Hippo signal transduction network. We discuss evidence that the Hippo signal transduction network plays important roles in myogenesis, regeneration, muscular dystrophy, and rhabdomyosarcoma in skeletal muscle, as well as in myogenesis, organ size control, and regeneration of the heart. Understanding the role of Hippo kinases in skeletal and heart muscle physiology could have important implications for translational research. Copyright © 2014, American Association for the Advancement of Science.

  18. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  19. Transduction in Streptomyces hygroscopicus mediated by the temperate bacteriophage SH10.

    Science.gov (United States)

    Süss, F; Klaus, S

    1981-01-01

    The temperate actinophage SH10 mediates generalized transduction in Streptomyces hygroscopicus at low frequency. The efficiency of transduction depends on the average phage input, age of outgrowing spores of the recipient and on the selective marker. The highest EOT was found for the auxotrophic mutants 21(phe-) and 5(try-) (4.2 x 10(-6) and 2.7 x 10(-6), respectively). Transduction of the thermosensitive mutant NG14-216 ts 35 was two orders of magnitude lower (2.5 x 10(-8)). The transductant colonies segregated into stable and unstable clones. Stable transductants were never found to be lysogenic for phage SH10.

  20. NCI-H295R, a human adrenal cortex-derived cell line, expresses purinergic receptors linked to Ca²⁺-mobilization/influx and cortisol secretion.

    Directory of Open Access Journals (Sweden)

    Haruhisa Nishi

    Full Text Available Purinergic receptor expression and involvement in steroidogenesis were examined in NCI-H295R (H295R, a human adrenal cortex cell line which expresses all the key enzymes necessary for steroidogenesis. mRNA/protein for multiple P1 (A(2A and A(2B, P2X (P2X₅ and P2X₇, and P2Y (P2Y₁, P2Y₂, P2Y₆, P2Y₁₂, P2Y₁₃, and P2Y₁₄ purinergic receptors were detected in H295R. 2MeS-ATP (10-1000 µM, a P2Y₁ agonist, induced glucocorticoid (GC secretion in a dose-dependent manner, while other extracellular purine/pyrimidine agonists (1-1000 µM had no distinct effect on GC secretion. Extracellular purines, even non-steroidogenic ones, induced Ca²⁺-mobilization in the cells, independently of the extracellular Ca²⁺ concentration. Increases in intracellular Ca²⁺ concentration induced by extracellular purine agonists were transient, except when induced by ATP or 2MeS-ATP. Angiotensin II (AngII: 100 nM and dibutyryl-cyclic AMP (db-cAMP: 500 µM induced both GC secretion and Ca²⁺-mobilization in the presence of extracellular Ca²⁺ (1.2 mM. GC secretion by AngII was reduced by nifedipine (10-100 µM; whereas the Ca²⁺ channel blocker did not inhibit GC secretion by 2MeS-ATP. Thapsigargin followed by extracellular Ca²⁺ exposure induced Ca²⁺-influx in H295R, and the cells expressed mRNA/protein of the component molecules for store-operated calcium entry (SOCE: transient receptor C (TRPC channels, calcium release-activated calcium channel protein 1 (Orai-1, and the stromal interaction molecule 1 (STIM1. In P2Y₁-knockdown, 2MeS-ATP-induced GC secretion was significantly inhibited. These results suggest that H295R expresses a functional P2Y₁ purinergic receptor for intracellular Ca²⁺-mobilization, and that P2Y₁ is linked to SOCE-activation, leading to Ca²⁺-influx which might be necessary for glucocorticoid secretion.

  1. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  2. Nerve injury induces glial cell line-derived neurotrophic factor (GDNF) expression in Schwann cells through purinergic signaling and the PKC-PKD pathway.

    Science.gov (United States)

    Xu, Pin; Rosen, Kenneth M; Hedstrom, Kristian; Rey, Osvaldo; Guha, Sushovan; Hart, Courtney; Corfas, Gabriel

    2013-07-01

    Upon peripheral nerve injury, specific molecular events, including increases in the expression of selected neurotrophic factors, are initiated to prepare the tissue for regeneration. However, the mechanisms underlying these events and the nature of the cells involved are poorly understood. We used the injury-induced upregulation of glial cell-derived neurotrophic factor (GDNF) expression as a tool to gain insights into these processes. We found that both myelinating and nonmyelinating Schwann cells are responsible for the dramatic increase in GDNF expression after injury. We also demonstrate that the GDNF upregulation is mediated by a signaling cascade involving activation of Schwann cell purinergic receptors, followed by protein kinase C signaling which activates protein kinase D (PKD), which leads to increased GDNF transcription. Given the potent effects of GDNF on survival and repair of injured peripheral neurons, we propose that targeting these pathways may yield therapeutic tools to treat peripheral nerve injury and neuropathies.

  3. Antagonists and the purinergic nerve hypothesis: 2, 2'-pyridylisatogen tosylate (PIT), an allosteric modulator of P2Y receptors. A retrospective on a quarter century of progress.

    Science.gov (United States)

    Spedding, M; Menton, K; Markham, A; Weetman, D F

    2000-07-01

    2,2'-Pyridylisatogen tosylate (PIT) is a selective antagonist of P2Y responses in smooth muscle and does not antagonise the effects of adenosine. Responses to purinergic nerve stimulation are resistant to PIT. PIT is an allosteric modulator of responses to ATP in recombinant P2Y(1) receptors expressed in Xenopus oocytes with potentiation of ATP at low concentrations (0.1-10 microM) and antagonism at higher ones (>10 microM). A radioligand binding profile showed that PIT did not interact with any other receptors, with the exception of low affinity for the adenosine A(1) receptor (pK(i), 5.3). The compound recognises purine sites and then may cause irreversible binding to sulfhydryl groups following prolonged incubation or high concentrations. PIT is a potent spin trapper.

  4. Involvement of the P2X7 purinergic receptor in inflammation: an update of antagonists series since 2009 and their promising therapeutic potential.

    Science.gov (United States)

    Baudelet, Davy; Lipka, Emmanuelle; Millet, Régis; Ghinet, Alina

    2015-01-01

    The purinergic receptor P2X7 is highly expressed in immune peripheral and central cells suggesting its important role in numerous diseases characterized by inflammatory processes like cancer, or neurodegenerative pathologies in relation with modulation of the immune system. Thereby, antagonization of this receptor may be a hopeful therapeutic strategy to treat a large range of diseases. Indeed, selective P2X7 antagonists display beneficial anti-inflammatory, analgesic, and in some cases, anticancer properties. This article will review the involvement of P2X7 in the immune system, the update of P2X7 antagonists series since 2009 and their promising therapeutic potential for the treatment of several immune- related diseases.

  5. P2-purinerge receptorer

    DEFF Research Database (Denmark)

    Solgaard, Marie; Jørgensen, Niklas Rye

    2005-01-01

    and by osteoclasts, and agonist binding affects cell proliferation, differentiation, activity and apoptosis. With increasing knowledge of the function and role of these receptors in bone biology, they will undoubtedly be a future target for the design of new drugs which can be used for treatment of metabolic bone...

  6. Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes

    Science.gov (United States)

    Palygin, Oleg; Weyer, Andy D.; Barabas, Marie E.; Lawlor, Michael W.; Staruschenko, Alexander; Stucky, Cheryl L.

    2016-01-01

    Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1. PMID:26978657

  7. Characterization of the ABA signal transduction pathway in Vitis vinifera.

    Science.gov (United States)

    Boneh, Uri; Biton, Iris; Schwartz, Amnon; Ben-Ari, Giora

    2012-05-01

    The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments.

  8. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  9. [Regulation of plant height by gibberellins biosynthesis and signal transduction].

    Science.gov (United States)

    Wei, Lingzhu; Cheng, Jianhui; Li, Lin; Wu, Jiang

    2012-02-01

    Plant height is one of the most important agronomic traits that could affect both crop yield and quality. Among all the hormones, gibberellins are crucial to regulate plant height. Cloning and molecular mechanism research of the plant height genes associated gibberellins have extremely important value for the regulation of crop growth and agricultural production, and have been widely used in rice, wheat and other grain crops breeding. In order to promote utilization of gibberellins in fruit trees, flowers and other horticultural crops breeding, we reviewed the regulation of plant height by gibberellins biosynthesis and signal transduction at the molecular level in this paper.

  10. Myosin individualized: single nucleotide polymorphisms in energy transduction

    Directory of Open Access Journals (Sweden)

    Wieben Eric D

    2010-03-01

    Full Text Available Abstract Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC. Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these

  11. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction

    Science.gov (United States)

    Mapder, Tarunendu; Talukder, Srijeeta; Chattopadhyay, Sudip; Banik, Suman K.

    2016-01-01

    To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique. PMID:26812153

  12. Bio-inspired signal transduction with heterogeneous networks of nanoscillators

    Science.gov (United States)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2012-02-01

    Networks of single-electron transistors mimic some of the essential properties of neuron populations, because weak electrical signals trigger network oscillations with a frequency proportional to the input signal. Input potentials representing the pixel gray level of a grayscale image can then be converted into rhythms and the image can be recovered from these rhythms. Networks of non-identical nanoscillators complete the noisy transduction more reliably than identical ones. These results are important for signal processing schemes and could support recent studies suggesting that neuronal variability enhances the processing of biological information.

  13. Coordinate gene regulation by fimbriae-induced signal transduction

    DEFF Research Database (Denmark)

    Schembri, Mark; Klemm, Per

    2001-01-01

    whether fimbriae expression can affect expression of other genes, Analysis of gene expression in two E.coli strains, differing in the fim locus, indicated the flu gene to be affected. The flu gene encodes the antigen 43 (Ag43) surface protein, specifically involved in bacterial aggregation...... of Ag43 production. No effect was observed in an oxyR mutant. We conclude that fimbriae expression per se constitutes a signal transduction mechanism that affects a number of unrelated genes via the thiol-disulfide status of OxyR. Thus, phase variation in fimbrial expression is coordinated...

  14. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Tarunendu Mapder

    Full Text Available To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique.

  15. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction.

    Science.gov (United States)

    Mapder, Tarunendu; Talukder, Srijeeta; Chattopadhyay, Sudip; Banik, Suman K

    2016-01-01

    To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique.

  16. Solar-powered nanomechanical transduction from crystalline molecular rotors.

    Science.gov (United States)

    Sylvester, Sven O; Cole, Jacqueline M

    2013-06-25

    A photoinduced solid-state SO₂ isomerism drives a larger mechanical change (benzene-ring rotation) in a neighbouring ion (i.e., the system acts as a solar-powered molecular transducer). The ring rotation and SO₂ photoisomerisation are observed using in situ X-ray crystallography and are controllable, reproducible, and metastable at low temperatures. This discovery presents a new range of materials for solar-energy-based molecular transduction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Roles of lipid turnover in transmembrane signal transduction.

    Science.gov (United States)

    Ganong, B R

    1991-11-01

    Cells of higher organisms respond to external stimuli with a cascade of intracellular biochemical events initiated by binding of a hormone, growth factor, or neurotransmitter to a specific cell surface receptor. Previously well-characterized signal transduction pathways involve cyclic nucleotides as intracellular second messengers. Over the past decade, increasing attention has been focused on other signaling pathways in which membrane lipids serve as second messengers or their precursors. This review describes current understanding of these pathways and points to recent discoveries likely to open new frontiers in the coming decade.

  18. Mechanical transduction mechanisms of RecA-like molecular motors.

    Science.gov (United States)

    Liao, Jung-Chi

    2011-12-01

    A majority of ATP-dependent molecular motors are RecA-like proteins, performing diverse functions in biology. These RecA-like molecular motors consist of a highly conserved core containing the ATP-binding site. Here I examined how ATP binding within this core is coupled to the conformational changes of different RecA-like molecular motors. Conserved hydrogen bond networks and conformational changes revealed two major mechanical transduction mechanisms: (1) intra-domain conformational changes and (2) inter-domain conformational changes. The intra-domain mechanism has a significant hydrogen bond rearrangement within the domain containing the P-loop, causing relative motion between two parts of the protein. The inter-domain mechanism exhibits little conformational change in the P-loop domain. Instead, the major conformational change is observed between the P-loop domain and an adjacent domain or subunit containing the arginine finger. These differences in the mechanical transduction mechanisms may link to the underlying energy surface governing a Brownian ratchet or a power stroke.

  19. Dual-transduction-mode sensing approach for chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang (Frank); Swensen, James S.

    2012-11-01

    Smart devices such as electronic nose have been developed for application in many fields like national security, defense, environmental regulation, health care, pipeline monitoring and food analysis. Despite a large array of individual sensors, these devices still lack the ability to identify a target at a very low concentration out of a mixture of odors, limited by a single type of transduction as the sensing response to distinguish one odor from another. Here, we propose a new sensor architecture empowering each individual sensor with multi-dimensional transduction signals. The resolving power of our proposed electronic nose is thereby multiplied by a set of different and independent variables which synergistically will provide a unique combined fingerprint for each analyte. We demonstrate this concept using a Light Emitting Organic Field-Effect Transistor (LEOFET). Sensing response has been observed on both electrical and optical output signals from a green LEOFET upon exposure to an explosive taggant, with optical signal exhibiting much higher sensitivity. This new sensor architecture opens a field of devices for smart detection of chemical and biological targets.

  20. Gravity perception and signal transduction in single cells

    Science.gov (United States)

    Block, I.; Wolke, A.; Briegleb, W.; Ivanova, K.

    Cellular signal processing in multi-, as well as in unicellular organisms, has to rely on fundamentally similar mechanisms. Free-living single cells often use the gravity vector for their spatial orientation (gravitaxis) and show distinct gravisensitivities. In this investigation the gravisensitive giant ameboid cell Physarum polycephalum (Myxomycetes, acellular slime molds) is used. Its gravitaxis and the modulation of its intrinsic rhythmic contraction activity by gravity was demonstrated in 180 °turn experiments and in simulated, as well as in actual, near-weightlessness studies (fast-rotating clinostat; Spacelab D1, IML-1). The stimulus perception was addressed in an IML-2 experiment, which provided information on the gravireceptor itself by the determination of the cell's acceleration-sensitivity threshold. Ground-based experiments designed to elucidate the subsequent steps in signal transduction leading to a motor response, suggest that an acceleration stimulus induces changes in the level of second messenger, adenosine 3',5'-cyclic monophosphate (cAMP), indicating also that the acceleration-stimulus signal transduction chain of Physarum uses an ubiquitous second messenger pathway.

  1. Spatial regulation and the rate of signal transduction activation.

    Directory of Open Access Journals (Sweden)

    Nizar N Batada

    2006-05-01

    Full Text Available Of the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates. To determine which of these two possibilities is more likely, we derive an explicit equation for the rate at which cell surface membrane proteins interact based on a Brownian motion model in the presence of endocytosis and exocytosis. We find that in the absence of any diffusion constraints, cell surface protein interaction rate is extremely high relative to cytoplasmic protein interaction rate even in a large mammalian cell with a receptor abundance of a mere two hundred molecules. Since a larger number of downstream signaling events needs to take place, each occurring at a much slower rate than the initial activation via association of cell surface proteins, we conclude that the role of co-localization is most likely that of cross-talk reduction rather than coupling efficiency enhancement.

  2. Receptor domains of two-component signal transduction systems.

    Science.gov (United States)

    Perry, Julie; Koteva, Kalinka; Wright, Gerard

    2011-05-01

    Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.

  3. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  4. Optical Microresonators for Sensing and Transduction: A Materials Perspective.

    Science.gov (United States)

    Heylman, Kevin D; Knapper, Kassandra A; Horak, Erik H; Rea, Morgan T; Vanga, Sudheer K; Goldsmith, Randall H

    2017-08-01

    Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fetus sound stimulation: cilia memristor effect of signal transduction.

    Science.gov (United States)

    Jankovic-Raznatovic, Svetlana; Dragojevic-Dikic, Svetlana; Rakic, Snezana; Nikolic, Branka; Plesinac, Snezana; Tasic, Lidija; Perisic, Zivko; Sovilj, Mirjana; Adamovic, Tatjana; Koruga, Djuro

    2014-01-01

    This experimental study evaluates fetal middle cerebral artery (MCA) circulation after the defined prenatal acoustical stimulation (PAS) and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Analysis of the Pulsatility index basic (PIB) and before PAS and Pulsatility index reactive after the first PAS (PIR 1) shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2) shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the "memristor" property. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  6. Advances in NF-κB Signaling Transduction and Transcription

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The molecular mechanisms for NF-κB signaling transduction and transcription have been the most attractive subjects for both basic research and pharmaceutical industries due to its important roles in both physiological and pathogenesis, particularly the close association of dysregulated NF-κB with tumorgenesis and inflammation. Several novel intracellular molecular events that regulate NF-κB activity have been described recently, including the discovery of an alternative signaling pathway that appears inducing a specific subset genes involved in adoptive immune response. Multi-level and multi-dimensional regulation of NF-κB activity by phosphorylation and acetylation modifications have unveiled and became the hottest targets for potentially tissue specific molecular interventions. Another emerging mechanism for NF-κB-responsive gene's regulation where NF-κB participates the transcriptional regulation independent of its cognate regulatory binding site within the target gene's promoter but facilitating the transaction activity of other involved transcription factors,that implicated an novel transcriptional activities for NF-κB. Thus, the current review will focus on these recent progresses that have been made on NF-κB signaling transduction and transcription. Cellular & Molecular Immunology. 2004; 1(6):425-435.

  7. Advances in NF-κB Signaling Transduction and Transcription

    Institute of Scientific and Technical Information of China (English)

    Weihua Xiao

    2004-01-01

    The molecular mechanisms for NF-κB signaling transduction and transcription have been the most attractive subjects for both basic research and pharmaceutical industries due to its important roles in both physiological and pathogenesis, particularly the close association of dysregulated NF-κB with tumorgenesis and inflammation. Several novel intracellular molecular events that regulate NF-κB activity have been described recently, including the discovery of an alternative signaling pathway that appears inducing a specific subset genes involved in adoptive immune response. Multi-level and multi-dimensional regulation of NF-κB activity by phosphorylation and acetylation modifications have unveiled and became the hottest targets for potentially tissue specific molecular interventions. Another emerging mechanism for NF-κB-responsive gene's regulation where NF-κB participates the transcriptional regulation independent of its cognate regulatory binding site within the target gene's promoter but facilitating the transaction activity of other involved transcription factors,that implicated an novel transcriptional activities for NF-κB. Thus, the current review will focus on these recent progresses that have been made on NF-κB signaling transduction and transcription. Cellular & Molecular Immunology. 2004;1(6):425-435.

  8. Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Katherine J Zappia

    Full Text Available Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1 is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1.

  9. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  10. Genetic analysis of gravity signal transduction in roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  11. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  12. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  13. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  14. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    Directory of Open Access Journals (Sweden)

    Magdalena Druszczynska

    2013-01-01

    Full Text Available The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.

  15. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  16. Simulation of signal transduction in model multiprotein systems

    Science.gov (United States)

    Su, Julius

    2009-03-01

    To simulate the dynamics of multiprotein machines, I have developed a method called multiconformer Brownian dynamics (mcBD). In this method, proteins rotate and translate via Brownian motion while their conformations are varied among a prestored set of structures on a simplified energy landscape, taking into account inter-protein interactions. As an example, I build a simple model of a G-protein coupled receptor/G-protein complex, and show that ligand binding causes conformational shifts, which induce GDP to leave, GTP to bind, and the complex to dissociate. The two proteins couple their fast fluctuations together into large-scale coordinated functional motions, resulting in signal transduction. I vary the shapes, electrostatics, and energy landscapes of the proteins independently and examine the impact this has on the system's function. In one result, increasing the binding between proteins improves the fidelity of communication, but at the expense of overall switching frequency.

  17. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens

    Science.gov (United States)

    Moorthy, Sudha; Keklak, Julia; Klein, Eric A.

    2016-01-01

    During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection. PMID:26901228

  18. Melusin Promotes a Protective Signal Transduction Cascade in Stressed Hearts

    Science.gov (United States)

    Sorge, Matteo; Brancaccio, Mara

    2016-01-01

    Melusin is a chaperone protein selectively expressed in heart and skeletal muscles. Melusin expression levels correlate with cardiac function in pre-clinical models and in human patients with aortic stenosis. Indeed, previous studies in several animal models indicated that Melusin plays a broad cardioprotective role in different pathological conditions. Chaperone proteins, besides playing a role in protein folding, are also able to facilitate supramolecular complex formation and conformational changes due to activation/deactivation of signaling molecules. This role sets chaperone proteins as crucial regulators of intracellular signal transduction pathways. In particular Melusin activates AKT and ERK1/2 signaling, protects cardiomyocytes from apoptosis and induces a compensatory hypertrophic response in several pathological conditions. Therefore, selective delivery of the Melusin gene in heart via cardiotropic adenoviral associated virus serotype 9 (AAV9), may represent a new promising gene-therapy approach for different cardiac pathologies. PMID:27672636

  19. Signal Transduction Model of Magnetic Sensing in Cryptochrome Mediated Photoreception

    Science.gov (United States)

    Todd, Phillise Tiffeny

    While migratory birds have long been known to use the Earth's magnetic field for navigation, the precise biophysical mechanism behind this magnetic sense remains unconfirmed. A leading theory of magnetoreception suggests a chemical compass model with a yet undetermined molecular reaction site and unknown magnetically sensitive reactants. The cryptochrome photoreceptor has emerged as a promising candidate site. This investigation numerically models the first order kinetics of cryptochrome mediated photoreception, in order to evaluate its ability to function as a magnetic sensor and transduce orientation information along a neural pathway. A signal-to-noise ratio is defined to quantify the threshold for the functioning of a cryptochrome-based chemical compass. The model suggests that a flavin-superoxide radical pair in cryptochrome functions as the chemical reactants for magnetoreception. Such a cryptochrome-based signal transduction model reasonably predicts the general light intensity and wavelength effects that have been experimentally observed in migratory birds.

  20. Molecular Mechanisms of Two-Component Signal Transduction.

    Science.gov (United States)

    Zschiedrich, Christopher P; Keidel, Victoria; Szurmant, Hendrik

    2016-09-25

    Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.

  1. Signal Transduction and Intracellular Trafficking by the Interleukin 36 Receptor*

    Science.gov (United States)

    Saha, Siddhartha S.; Singh, Divyendu; Raymond, Ernest L.; Ganesan, Rajkumar; Caviness, Gary; Grimaldi, Christine; Woska, Joseph R.; Mennerich, Detlev; Brown, Su-Ellen; Mbow, M. Lamine; Kao, C. Cheng

    2015-01-01

    Improper signaling of the IL-36 receptor (IL-36R), a member of the IL-1 receptor family, has been associated with various inflammation-associated diseases. However, the requirements for IL-36R signal transduction remain poorly characterized. This work seeks to define the requirements for IL-36R signaling and intracellular trafficking. In the absence of cognate agonists, IL-36R was endocytosed and recycled to the plasma membrane. In the presence of IL-36, IL-36R increased accumulation in LAMP1+ lysosomes. Endocytosis predominantly used a clathrin-mediated pathway, and the accumulation of the IL-36R in lysosomes did not result in increased receptor turnover. The ubiquitin-binding Tollip protein contributed to IL-36R signaling and increased the accumulation of both subunits of the IL-36R. PMID:26269592

  2. MAPK Assays in Arabidopsis MAMP-PRR Signal Transduction.

    Science.gov (United States)

    Chung, Hoo Sun; Sheen, Jen

    2017-01-01

    Activation of MAPK (Mitogen-Activated Protein Kinase) cascades after MAMP (Microbe-Associated Molecular Pattern) perception through PRR (Pattern Recognition Receptor) is one of the first conserved responses when plants encounter microbial organisms. Phosphorylation of various cellular factors in the MAMP-PRR pathway by MAPK cascades is critical for broad-spectrum plant innate immunity. Measurement of MAPK activation and identification of MAPK phosphorylation targets in the MAMP-PRR signal transduction pathway are essential to understand how plants reprogram their cellular processes to cope with unfavorable microbial attack. Here, we describe detailed protocols of three assays measuring MAPK activity after MAMP perception: (1) immune-blotting analysis with anti-phospho ERK1/2 antibody; (2) in-gel kinase assay using a general substrate myelin basic protein (MBP); (3) an in vitro kinase assay to evaluate phosphorylation of MAPK substrate candidates during MAMP-PRR signaling based on a protoplast expression system.

  3. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  4. Molecular biology of thermosensory transduction in C. elegans.

    Science.gov (United States)

    Aoki, Ichiro; Mori, Ikue

    2015-10-01

    As the environmental temperature prominently influences diverse biological aspects of the animals, thermosensation and the subsequent information processing in the nervous system has attracted much attention in biology. Thermotaxis in the nematode Caenorhabditis elegans is an ideal behavioral paradigm by which to address the molecular mechanism underlying thermosensory transduction. Molecular genetic analysis in combination with other physiological and behavioral studies revealed that sensation of ambient temperature is mediated mainly by cyclic guanosine monophosphate (cGMP) signaling in thermosensory neurons. The information of the previously perceived temperature is also stored within the thermosensory neurons, and the consequence of the comparison between the past and the present temperature is conveyed to the downstream interneurons to further regulate the motor-circuits that encode the locomotion.

  5. The mechanism of signal transduction by two-component systems.

    Science.gov (United States)

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2010-12-01

    Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Determinants of specificity in two-component signal transduction.

    Science.gov (United States)

    Podgornaia, Anna I; Laub, Michael T

    2013-04-01

    Maintaining the faithful flow of information through signal transduction pathways is critical to the survival and proliferation of organisms. This problem is particularly challenging as many signaling proteins are part of large, paralogous families that are highly similar at the sequence and structural levels, increasing the risk of unwanted cross-talk. To detect environmental signals and process information, bacteria rely heavily on two-component signaling systems comprised of sensor histidine kinases and their cognate response regulators. Although most species encode dozens of these signaling pathways, there is relatively little cross-talk, indicating that individual pathways are well insulated and highly specific. Here, we review the molecular mechanisms that enforce this specificity. Further, we highlight recent studies that have revealed how these mechanisms evolve to accommodate the introduction of new pathways by gene duplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Signal transduction in Mimosa pudica: biologically closed electrical circuits.

    Science.gov (United States)

    Volkov, Alexander G; Foster, Justin C; Markin, Vladislav S

    2010-05-01

    Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 microF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data.

  8. Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus.

    Science.gov (United States)

    Onoue, Takeshi; Goto, Motomitsu; Tominaga, Takashi; Sugiyama, Mariko; Tsunekawa, Taku; Hagiwara, Daisuke; Banno, Ryoichi; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2016-04-21

    In the hypothalamus, several reports have implied that ROS mediate physiological effects of insulin. In this study, we investigated the mechanisms of insulin-induced ROS production and the effect of ROS on insulin signal transduction in mouse hypothalamic organotypic cultures. Insulin increased intracellular ROS, which were suppressed by NADPH oxidase inhibitor. H2O2 increased phospho-insulin receptor β (p-IRβ) and phospho-Akt (p-Akt) levels. Insulin-induced increases in p-IRβ and p-Akt levels were attenuated by ROS scavenger or NADPH oxidase inhibitor. Our data suggest that insulin-induced phosphorylation of IRβ and Akt is mediated via ROS which are predominantly produced by NADPH oxidase in mouse hypothalamus.

  9. Signal transduction pathway profiling of individual tumor samples

    Directory of Open Access Journals (Sweden)

    Peterson Carsten

    2005-06-01

    Full Text Available Abstract Background Signal transduction pathways convey information from the outside of the cell to transcription factors, which in turn regulate gene expression. Our objective is to analyze tumor gene expression data from microarrays in the context of such pathways. Results We use pathways compiled from the TRANSPATH/TRANSFAC databases and the literature, and three publicly available cancer microarray data sets. Variation in pathway activity, across the samples, is gauged by the degree of correlation between downstream targets of a pathway. Two correlation scores are applied; one considers all pairs of downstream targets, and the other considers only pairs without common transcription factors. Several pathways are found to be differentially active in the data sets using these scores. Moreover, we devise a score for pathway activity in individual samples, based on the average expression value of the downstream targets. Statistical significance is assigned to the scores using permutation of genes as null model. Hence, for individual samples, the status of a pathway is given as a sign, + or -, and a p-value. This approach defines a projection of high-dimensional gene expression data onto low-dimensional pathway activity scores. For each dataset and many pathways we find a much larger number of significant samples than expected by chance. Finally, we find that several sample-wise pathway activities are significantly associated with clinical classifications of the samples. Conclusion This study shows that it is feasible to infer signal transduction pathway activity, in individual samples, from gene expression data. Furthermore, these pathway activities are biologically relevant in the three cancer data sets.

  10. Prolactin receptor and signal transduction to milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  11. Aptamer modification improves the adenoviral transduction of malignant glioma cells.

    Science.gov (United States)

    Chen, Hao; Zheng, Xiaojing; Di, BingYan; Wang, Dongyang; Zhang, Yaling; Xia, Haibin; Mao, Qinwen

    2013-12-01

    Adenovirus has shown increasing promise in the gene-viral therapy for glioblastoma, a treatment strategy that relies on the delivery of viruses or transgenes into tumor cells. However, targeting of adenovirus to human glioblastoma remains a challenge due to the low expression level of coxsackie and adenovirus receptor (CAR) in glioma cells. Aptamers are small and highly structured single-stranded oligonucleotides that bind at high affinity to a target molecule, and are good candidates for targeted imaging and therapy. In this study, to construct an aptamer-modified Ad5, we first genetically modified the HVR5 of Ad hexon by biotin acceptor peptide (BAP), which would be metabolically biotinylated during production in HEK293 cells, and then attached the biotin labeled aptamer to the modified Ad through avidin–biotin binding. The aptamers used in this study includes AS1411 and GBI-10. The former is a DNA aptamer that can bind to nucleolin, a nuclear matrix protein found on the surface of cancer cells. The latter is a DNA aptamer that can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. To examine if aptamer-modification of the hexon protein could improve the adenoviral transduction efficiency, a glioblastoma cell line, U251, was transduced with aptamer-modified Ads. The transduction efficiency of AS1411- or GBI-10-modified Ad was approximately 4.1-fold or 5.2-fold higher than that of the control. The data indicated that aptamer modified adenovirus would be a useful tool for cancer gene therapy.

  12. Transductive multi-view zero-shot learning.

    Science.gov (United States)

    Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang

    2015-11-01

    Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.

  13. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    Science.gov (United States)

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  14. The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling.

    Directory of Open Access Journals (Sweden)

    Carolin Massalski

    Full Text Available The Arabidopsis E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 was previously shown to be involved in growth and development, pollen germination and stress responses. It was proposed to perform these functions through regulation of extracellular ATP signals. However, a GFP-tagged version was localized exclusively in the Golgi and did not hydrolyze ATP. In this study, AtAPY1 without the bulky GFP-tag was biochemically characterized with regard to its suggested role in purinergic signaling. Both the full-length protein and a soluble form without the transmembrane domain near the N-terminus were produced in HEK293 cells. Of the twelve nucleotide substrates tested, only three--GDP, IDP and UDP--were hydrolyzed, confirming that ATP was not a substrate of AtAPY1. In addition, the effects of pH, divalent metal ions, known E-NTPDase inhibitors and calmodulin on AtAPY1 activity were analyzed. AtAPY1-GFP extracted from transgenic Arabidopsis seedlings was included in the analyses. All three AtAPY1 versions exhibited very similar biochemical properties. Activity was detectable in a broad pH range, and Ca(2+, Mg(2+ and Mn(2+ were the three most efficient cofactors. Of the inhibitors tested, vanadate was the most potent one. Surprisingly, sulfonamide-based inhibitors shown to inhibit other E-NTPDases and presumed to inhibit AtAPY1 as well were not effective. Calmodulin stimulated the activity of the GFP-tagless membranous and soluble AtAPY1 forms about five-fold, but did not alter their substrate specificities. The apparent Km values obtained with AtAPY1-GFP indicate that AtAPY1 is primarily a GDPase. A putative three-dimensional structural model of the ecto-domain is presented, explaining the potent inhibitory potential of vanadate and predicting the binding mode of GDP. The found substrate specificity classifies AtAPY1 as a nucleoside diphosphatase typical of N-terminally anchored Golgi E-NTPDases and negates a direct function in

  15. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Zhang [Institute of Biotechnology, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan, ROC (China); Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China); Wu, Carol P. [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China); Chao, Yu-Chan, E-mail: mbycchao@imb.sinica.edu.tw [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Catherine Yen-Yen, E-mail: liucat_2@yahoo.com [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China)

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.

  16. Roles of ABA Signal Transduction during Higher Plant Seed Development and Germination

    Institute of Scientific and Technical Information of China (English)

    Shao Hongbo; Liang Zongsuo; Shao Mingan

    2003-01-01

    ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes.Great advancements have taken place over the past 10 years by application of the 4rabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an Accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips.

  17. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  18. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers.

    Science.gov (United States)

    Castellani, Stefano; Orlando, Clara; Carbone, Annalucia; Di Gioia, Sante; Conese, Massimo

    2016-11-23

    Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions.

  19. NO, nitrotyrosine, and cyclic GMP in signal transduction

    Science.gov (United States)

    Hanafy, K. A.; Krumenacker, J. S.; Murad, F.

    2001-01-01

    Over the past 25 years, the role of nitric oxide (NO) in biology has evolved from being recognized as an environmental pollutant to an endogenously produced substance involved in cell communication and signal transduction. NO is produced by a family of enzymes called nitric oxide synthases (NOSs), which can be stimulated by a variety of factors that mediate responses to various stimuli. NO can initiate its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC), or through several other chemical reactions. Activation of sGC results in the production of 3',5'-cyclic guanosine monophosphate (cGMP), an intracellular second messenger signaling molecule, which can subsequently mediate such diverse physiological events such as vasodilatation and immunomodulation. Chemically reactive NO can affect physiological changes through modifications to cellular proteins, one of which is tyrosine nitration. The demonstration that NO is involved in so many biological pathways indicates the importance of this endogenously produced substance, and suggests that there is much more to be discovered about its role in biology in years to come.

  20. Genetic Basis of Ethylene Perception and Signal Transduction in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Ziqiang Zhu; Hongwei Guo

    2008-01-01

    Ethylene is a simple gaseous hormone in plants. It plays important roles in plant development and stress tolerance. In the presence of ethylene treatment, all ethylene receptors are in an activated form, which can physically interact with CTR1 and consequently recruit CTR1 protein to endoplasmic reticulum membrane to activate it. Activated CTR1 suppresses the downstream signal transduction by an unknown mechanism. Upon binding to its receptors, ethylene will inactivate the receptor/CTR1 module and in turn alleviate their inhibitory effect on two positive regulators acting downstream of CTRI: EIN2 and EIN3. Genetic study reveals that EIN2 is an essential component in the ethylene signaling pathway but its biochemical function remains a mystery. EIN3 is a plant-specific transcription factor and its protein abundance in the nucleus is rapidly induced upon ethylene treatment. In the absence of ethylene signal, EIN3 protein is degraded by an SCF complex containing one of the two F-box proteins EBF1/EBF2 in a 26S proteasome-dependent manner. EIN3 can bind to the promoter sequences of a number of downstream components, such as ERFs, which in turn bind to a GCC box,a cis-element found in many ethylene-regulated defense genes. Ethylene has been shown to also regulate many other hormones' signaling pathways including auxin, abscisic acid and jasmonic acid, implying the existence of complicated signaling networks in the growth, development and defense responses of various plants.

  1. Mannotriose regulates learning and memory signal transduction in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Lina Zhang; Weiwei Dai; Xueli Zhang; Zhangbin Gong; Guoqin Jin

    2013-01-01

    Rehmannia is a commonly used Chinese herb, which improves learning and memory. However, the crucial components of the signal transduction pathway associated with this effect remain elusive. Pri-mary hippocampal neurons were cultured in vitro, insulted with high-concentration (1 × 10-4 mol/L) cor-ticosterone, and treated with 1 × 10-4 mol/L mannotriose. Thiazolyl blue tetrazolium bromide assay and western blot analysis showed that hippocampal neuron survival rates and protein levels of glucocorti-coid receptor, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor were al dramatical y decreased after high-concentration corticosterone-induced injury. This effect was reversed by mannotriose, to a similar level as RU38486 and donepezil. Our findings indicate that mannotriose could protect hippocampal neurons from high-concentration corticosterone-induced injury. The mechanism by which this occurred was associated with levels of glucocorticoid receptor protein, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor.

  2. ROPs in the spotlight of plant signal transduction.

    Science.gov (United States)

    Berken, A

    2006-11-01

    Small guanine nucleotide binding proteins of the Rho family called ROP play a crucial role as regulators of signal transduction in plants. They participate in pathways that influence growth and development, and the adaptation of plants to various environmental situations. As members of the Ras superfamily, ROPs function as molecular switches cycling between a GDP-bound 'off' and a GTP-bound 'on' state in a strictly regulated manner. Latest research provided fascinating new insights into ROP regulation by novel guanine nucleotide exchange factors, unconventional GTPase activating proteins, and guanine nucleotide dissociation inhibitors, which apparently organize localized ROP activation. Important progress has also been made concerning signaling components upstream and downstream of the ROP cycle involving receptor-like serine/threonine kinases and effectors that can manipulate cytoskeletal dynamics, intracellular calcium levels, H2O2 production and further cellular targets. This review outlines the fast developing knowledge on ROP GTPases highlighting their specific features, regulation and roles in a cellular signaling context.

  3. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  4. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  5. Signal transduction around thymic stromal lymphopoietin (TSLP in atopic asthma

    Directory of Open Access Journals (Sweden)

    Kuepper Michael

    2008-08-01

    Full Text Available Abstract Thymic stromal lymphopoietin (TSLP, a novel interleukin-7-like cytokine, triggers dendritic cell-mediated inflammatory responses ultimately executed by T helper cells of the Th2 subtype. TSLP emerged as a central player in the development of allergic symptoms, especially in the airways, and is a prime regulatory cytokine at the interface of virus- or antigen-exposed epithelial cells and dendritic cells (DCs. DCs activated by epithelium-derived TSLP can promote naïve CD4+ T cells to adopt a Th2 phenotype, which in turn recruite eosinophilic and basophilic granulocytes as well as mast cells into the airway mucosa. These different cells secrete inflammatory cytokines and chemokines operative in inducing an allergic inflammation and atopic asthma. TSLP is, thus, involved in the control of both an innate and an adaptive immune response. Since TSLP links contact of allergen with the airway epithelium to the onset and maintainance of the asthmatic syndrome, defining the signal transduction underlying TSLP expression and function is of profound interest for a better understandimg of the disease and for the development of new therapeutics.

  6. Post-translational modification of PII signal transduction proteins

    Directory of Open Access Journals (Sweden)

    Mike eMerrick

    2015-01-01

    Full Text Available The PII proteins constitute one of the most widely distributed families of signal transduction proteins in nature. They are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. Quite remarkably PII proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and in all known cases they achieve their regulatory effect by direct interaction with their target. PII proteins in the Proteobacteria and the Actinobacteria are subject to post-translational modification by uridylylation or adenylylation respectively, whilst in some Cyanobacteria they can be modified by phosphorylation. In all these cases the protein’s modification state is influenced by the cellular nitrogen status and is thought to regulate its activity. However in many organisms there is no evidence for modification of PII proteins and indeed the ability of these proteins to respond to the cellular nitrogen status is fundamentally independent of post-translational modification. In this review we explore the role of post-translational modification in PII proteins in the light of recent studies.

  7. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  8. Modulation of signal transduction by tea catechins and related phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Masahito [Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168 Street, NY 10032-2704 (United States); Weinstein, I. Bernard [Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168 Street, NY 10032-2704 (United States)]. E-mail: ibw1@columbia.edu

    2005-12-11

    Epidemiologic studies in human populations and experimental studies in rodents provide evidence that green tea and its constituents can inhibit both the development and growth of tumors at a variety of tissue sites. In addition, EGCG, a major biologically active component of green tea, inhibits growth and induces apoptosis in a variety of cancer cell lines. The purpose of this paper is to review evidence that these effects are mediated, at least in part, through inhibition of the activity of specific receptor tyrosine kinases (RTKs) and related downstream pathways of signal transduction. We also review evidence indicating that the antitumor effects of the related polyphenolic phytochemicals resveratrol, genistein, curcumin, and capsaicin are exerted via similar mechanisms. Some of these agents (EGCG, genistein, and curcumin) appear to directly target specific RTKs, and all of these compounds cause inhibition of the activity of the transcription factors AP-1 and NF-{kappa}B, thus inhibiting cell proliferation and enhancing apoptosis. Critical areas of future investigation include: (1) identification of the direct molecular target(s) of EGCG and related polyphenolic compounds in cells; (2) the in vivo metabolism and bioavailability of these compounds; (3) the ancillary effects of these compounds on tumor-stromal interactions; (4) the development of synergistic combinations with other antitumor agents to enhance efficacy in cancer prevention and therapy, and also minimize potential toxicities.

  9. Rewiring the specificity of two-component signal transduction systems.

    Science.gov (United States)

    Skerker, Jeffrey M; Perchuk, Barrett S; Siryaporn, Albert; Lubin, Emma A; Ashenberg, Orr; Goulian, Mark; Laub, Michael T

    2008-06-13

    Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.

  10. Evolution of two-component signal transduction systems.

    Science.gov (United States)

    Capra, Emily J; Laub, Michael T

    2012-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a variety of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically composed of a sensor histidine kinase that receives the input stimuli and then phosphorylates a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights.

  11. The Evolution of Two-Component Signal Transduction Systems

    Science.gov (United States)

    Capra, Emily J.; Laub, Michael T.

    2014-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333

  12. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  13. Glycation & the RAGE axis: targeting signal transduction through DIAPH1.

    Science.gov (United States)

    Shekhtman, Alexander; Ramasamy, Ravichandran; Schmidt, Ann Marie

    2017-02-01

    The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration. Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases. Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.

  14. Decoding the phosphorylation code in Hedgehog signal transduction

    Institute of Scientific and Technical Information of China (English)

    Yongbin Chen; Jin Jiang

    2013-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis,and its deregulation leads to numerous human disorders including cancer.Binding of Hh to Patched (Ptc),a twelve-transmembrane protein,alleviates its inhibition of Smoothened (Smo),a seven-transmembrane protein related to G-proteincoupled receptors (GPCRs),leading to Smo phosphorylation and activation.Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a fulllength activator,leading to derepression/activation of Hh target genes.Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli,and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities.In this review,we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction,and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms.

  15. Nanomechanical motion transduction with a scalable localized gap plasmon architecture

    Science.gov (United States)

    Roxworthy, Brian J.; Aksyuk, Vladimir A.

    2016-12-01

    Plasmonic structures couple oscillating electromagnetic fields to conduction electrons in noble metals and thereby can confine optical-frequency excitations at nanometre scales. This confinement both facilitates miniaturization of nanophotonic devices and makes their response highly sensitive to mechanical motion. Mechanically coupled plasmonic devices thus hold great promise as building blocks for next-generation reconfigurable optics and metasurfaces. However, a flexible approach for accurately batch-fabricating high-performance plasmomechanical devices is currently lacking. Here we introduce an architecture integrating individual plasmonic structures with precise, nanometre features into tunable mechanical resonators. The localized gap plasmon resonators strongly couple light and mechanical motion within a three-dimensional, sub-diffraction volume, yielding large quality factors and record optomechanical coupling strength of 2 THz.nm-1. Utilizing these features, we demonstrate sensitive and spatially localized optical transduction of mechanical motion with a noise floor of 6 fm.Hz-1/2, representing a 1.5 orders of magnitude improvement over existing localized plasmomechanical systems.

  16. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction.

    Science.gov (United States)

    Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria

    2015-07-14

    A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology.

  17. Modeling Signal Transduction Networks: A comparison of two Stochastic Kinetic Simulation Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Pettigrew, Michel F.; Resat, Haluk

    2005-09-15

    Simulations of a scalable four compartment reaction model based on the well known epidermal growth factor receptor (EGFR) signal transduction system are used to compare two stochastic algorithms ? StochSim and the Gibson-Gillespie. It is concluded that the Gibson-Gillespie is the algorithm of choice for most realistic cases with the possible exception of signal transduction networks characterized by a moderate number (< 100) of complex types, each with a very small population, but with a high degree of connectivity amongst the complex types. Keywords: Signal transduction networks, Stochastic simulation, StochSim, Gillespie

  18. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction

    Science.gov (United States)

    Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria

    2015-01-01

    A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology. PMID:26184222

  19. Active Learning for Transductive Support Vector Machines with Applications to Text Classification

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    This paper presents a novel active learning approach for transductive support vector machines with applications to text classification. The concept of the centroid of the support vectors is proposed so that the selective sampling based on measuring the distance from the unlabeled samples to the centroid is feasible and simple to compute. With additional hypothesis, active learning offers better performance with comparison to regular inductive SVMs and transductive SVMs with random sampling,and it is even competitive to transductive SVMs on all available training data. Experimental results prove that our approach is efficient and easy to implement.

  20. New insights into transduction pathways that regulate boar sperm function.

    Science.gov (United States)

    Hurtado de Llera, A; Martin-Hidalgo, D; Gil, M C; Garcia-Marin, L J; Bragado, M J

    2016-01-01

    Detailed molecular mechanisms mediating signal transduction cascades that regulate boar sperm function involving Ser/Thr and tyrosine phosphorylation of proteins have been reviewed previously. Therefore, this review will focus in those kinase pathways identified recently (boar spermatozoa that regulate different functional spermatozoa processes. AMP-activated protein kinase (AMPK) is a cell energy sensor kinase that was first identified in mammalian spermatozoa in 2012, and since then it has emerged as an essential regulator of boar sperm function. Signaling pathways leading to AMPK activation in boar sperm are highlighted in this review (PKA, CaMKKα/β, and PKC as well as Ca(2+) and cAMP messengers as upstream regulators). Interestingly, stimuli considered as cell stress (hyperosmotic stress, inhibition of mitochondrial activity, absence of intracellular Ca(2+)) markedly activate AMPK in boar spermatozoa. Moreover, AMPK plays a remarkable and necessary regulatory role in mammalian sperm function, controlling essential boar sperm functional processes such as motility, viability, mitochondrial membrane potential, organization and fluidity of plasma membrane, and outer acrosome membrane integrity. These mentioned processes are all required under fluctuating environment of spermatozoa when transiting through the female reproductive tract to achieve fertilization. An applied role of AMPK in artificial insemination techniques is also suggested as during boar seminal doses preservation at 17 °C, physiological levels of AMPK activity markedly increase (maximum on Day 7) and result essential to maintain the aforementioned fundamental sperm processes. Moreover, regulation of sperm function exerted by the glycogen synthase kinase 3 and Src family kinase pathways is summarized.

  1. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  2. Signal transduction molecule patterns indicating potential glioblastoma therapy approaches

    Directory of Open Access Journals (Sweden)

    Cruceru ML

    2013-11-01

    Full Text Available Maria Linda Cruceru,1 Ana-Maria Enciu,1,2,7 Adrian Claudiu Popa,1,3 Radu Albulescu,2,4,7 Monica Neagu,2,7 Cristiana Pistol Tanase,2,7 Stefan N Constantinescu5–7 1Carol Davila University of Medicine and Pharmacy, Department of Cellular and Molecular Medicine, Bucharest, Romania; 2Victor Babes National Institute of Pathology, Bucharest, Romania; 3Army Centre for Medical Research, Bucharest, Romania; 4National Institute for Chemical Pharmaceutical R&D, Bucharest, Romania; 5de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; 6Ludwig Institute for Cancer Research, Brussels, Belgium; 7Operational Sectorial Programme for Competitive Economic Growth Canbioprot at Victor Babes National Institute of Pathology, Bucharest, Romania Purpose: The expression of an array of signaling molecules, along with the assessment of real-time cell proliferation, has been performed in U87 glioma cell line and in patients’ glioblastoma established cell cultures in order to provide a better understanding of cellular and molecular events involved in glioblastoma pathogenesis. Experimental therapy was performed using a phosphatydylinositol-3´-kinase (PI3K inhibitor. Patients and methods: xMAP technology was employed to assess expression levels of several signal transduction molecules and real-time xCELLigence platform for cell behavior. Results: PI3K inhibition induced the most significant effects on global signaling pathways in patient-derived cell cultures, especially on members of the mitogen-activated protein-kinase family, P70S6 serine-threonine kinase, and cAMP response element-binding protein expression and further prevented tumor cell proliferation. Conclusion: The PI3K pathway might be a prime target for glioblastoma treatment. Keywords: personalized medicine, PI3K inhibitor, targeted therapy, xCELLigence, xMAP analysis

  3. Transduction-like gene transfer in the methanogen Methanococcus voltae

    Science.gov (United States)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  4. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Second-chance signal transduction explains cooperative flagellar switching.

    Directory of Open Access Journals (Sweden)

    Henry G Zot

    Full Text Available The reversal of flagellar motion (switching results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit. To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1 the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2 the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910 The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii.

  6. Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size.

    Science.gov (United States)

    Masin, Jiri; Fiser, Radovan; Linhartova, Irena; Osicka, Radim; Bumba, Ladislav; Hewlett, Erik L; Benz, Roland; Sebo, Peter

    2013-12-01

    A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins.

  7. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  8. Postaggregative Differentiation Induction by Cyclic AMP in Dictyostelium : Intracellular Transduction Pathway and Requirement for Additional Stimuli

    NARCIS (Netherlands)

    Schaap, Pauline; Lookeren Campagne, Michiel M. van; Driel, Roel van; Spek, Wouter; Haastert, Peter J.M. van; Pinas, Johan

    1986-01-01

    Cyclic AMP induces postaggregative differentiation in aggregation competent cells of Dictyostelium by interacting with cell surface cAMP receptors. We investigated the transduction pathway of this response and additional requirements for the induction of postaggregative differentiation. Optimal indu

  9. Transduction of plasmid DNA in Streptomyces spp. and related genera by bacteriophage FP43.

    Science.gov (United States)

    McHenney, M A; Baltz, R H

    1988-05-01

    A segment (hft) of bacteriophage FP43 DNA cloned into plasmid pIJ702 mediated high-frequency transduction of the resulting plasmid (pRHB101) by FP43 in Streptomyces griseofuscus. The transducing particles contained linear concatemers of plasmid DNA. Lysates of FP43 prepared on S. griseofuscus containing pRHB101 also transduced many other Streptomyces species, including several that restrict plaque formation by FP43 and at least two that produce restriction endonucleases that cut pRHB101 DNA. Transduction efficiencies in different species were influenced by the addition of anti-FP43 antiserum to the transduction plates, the temperature for cell growth before transduction, the multiplicity of infection, and the host on which the transducing lysate was prepared. FP43 lysates prepared on S. griseofuscus(pRHB101) also transduced species of Streptoverticillium, Chainia, and Saccharopolyspora.

  10. Enhanced transduction of polymer photonic crystal band-edge lasers via additional layer deposition

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2010-01-01

    We present the concept of enhanced transduction for polymer photonic crystal lasers by deposition of an additional polymer layer with selective gas response. We report a significant increase in sensitivity to changes in gas concentration....

  11. Effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors

    Science.gov (United States)

    Palmre, Viljar; Pugal, David; Kim, Kwang

    2014-03-01

    This study investigates the effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors. A physics-based mechanoelectrical transduction model was developed that takes into account the electrode surface profile (shape) by describing the polymer-electrode interface as a Koch fractal structure. Based on the model, the electrode surface effects were experimentally investigated in case of IPMCs with Pd-Pt electrodes. IPMCs with different electrode surface structures were fabricated through electroless plating process by appropriately controlling the synthesis parameters and conditions. The changes in the electrode surface morphology and the corresponding effects on the IPMC mechanoelectrical transduction were examined. Our experimental results indicate that increasing the dispersion of Pd particles near the membrane surface, and thus the polymer-electrode interfacial area, leads to a higher peak mechanoelectrically induced voltage of IPMC. However, the overall effect of the electrode surface structure is relatively low compared to the electromechanical transduction, which is in good agreement with theoretical prediction.

  12. SELF-ADAPTIVE CONTROLS OF A COMPLEX CELLULAR SIGNALING TRANSDUCTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Hong; ZHOU Zhiyuan; DAI Rongyang; LUO Bo; ZHENG Xiaoli; YANG Wenli; HE Tao; WU Minglu

    2004-01-01

    In cells, the interactions of distinct signaling transduction pathways originating from cross-talkings between signaling molecules give rise to the formation of signaling transduction networks, which contributes to the changes (emergency) of kinetic behaviors of signaling system compared with single molecule or pathway. Depending on the known experimental data, we have constructed a model for complex cellular signaling transduction system, which is derived from signaling transduction of epidermal growth factor receptor in neuron. By the computational simulating methods, the self-adaptive controls of this system have been investigated. We find that this model exhibits a relatively stable selfadaptive system, especially to over-stimulation of agonist, and the amplitude and duration of signaling intermediates in it could be controlled by multiple self-adaptive effects, such as "signal scattering", "positive feedback", "negative feedback" and "B-Raf shunt". Our results provide an approach to understanding the dynamic behaviors of complex biological systems.

  13. The MiST2 database: a comprehensive genomics resource on microbial signal transduction

    OpenAIRE

    Ulrich, Luke E.; Igor B Zhulin

    2009-01-01

    The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. Thes...

  14. The psychobiology of mind-body communication: the complex, self-organizing field of information transduction.

    Science.gov (United States)

    Rossi, E L

    1996-01-01

    The current information revolution in molecular biology has important implications for an new understanding of the phenomenology of mind, memory and behavior as a complex, self-organizing field of information transduction. This paper traces the pathways of information transduction in life processes from the molecular-genetic level to the dynamics of mind and behavior together with suggestions for future research exploring the psychobiology of mind-body communication and its implications for the psychotherapeutic arts of the future.

  15. Minodronic acid induces morphological changes in osteoclasts at bone resorption sites and reaches a level required for antagonism of purinergic P2X2/3 receptors.

    Science.gov (United States)

    Tanaka, Makoto; Hosoya, Akihiro; Mori, Hiroshi; Kayasuga, Ryoji; Nakamura, Hiroaki; Ozawa, Hidehiro

    2017-02-27

    Minodronic acid is an aminobisphosphonate that is an antagonist of purinergic P2X2/3 receptors involved in pain. The aim of this study was to investigate the action and distribution of minodronic acid and the potential for P2X2/3 receptor antagonism based on the estimated concentration of minodronic acid. Microlocalization of radiolabeled minodronic acid was examined in the femur of neonatal rats. The bone-binding characteristics of minodronic acid and morphological changes in osteoclasts were analyzed in vitro. The minodronic acid concentration around bone resorption lacunae was predicted based on bone binding and the shape of lacunae. In microautoradiography, radioactive silver grains were abundant in bone-attached osteoclasts and were detected in calcified and ossification zones and in the cytoplasm of osteoclasts but not in the hypertrophic cartilage zone. In an osteoclast culture with 1 µM minodronic acid, 65% of minodronic acid was bound to bone, and C-terminal cross-linking telopeptide release was inhibited by 96%. Cultured osteoclasts without minodronic acid treatment formed ruffled borders and bone resorption lacunae and had rich cytoplasm, whereas those treated with 1 µM minodronic acid were not multinucleated, stained densely with toluidine blue, and were detached from the bone surface. In the 1 µM culture, the estimated minodronic acid concentration in resorption lacunae was 880 µM, which is higher than the IC50 for minodronic acid antagonism of P2X2/3 receptors. Thus, inhibition of P2X2/3 receptors around osteoclasts may contribute to the analgesic effect of minodronic acid.

  16. Residual Chemosensory Capabilities in Double P2X2/P2X3 Purinergic Receptor Null Mice: Intraoral or Postingestive Detection?

    Science.gov (United States)

    Hallock, Robert M.; Tatangelo, Marco; Barrows, Jennell

    2009-01-01

    Mice lacking the purinergic receptors, P2X2 and P2X3 (P2X2/P2X3Dbl−/−), exhibit essentially no tastant-evoked activity in the chorda tympani and glossopharyngeal nerves and substantial loss of tastant-evoked behavior as measured in long-term intake experiments. To assess whether the residual chemically driven behaviors in these P2X2/P2X3Dbl−/− mice were attributable to postingestive detection or oropharyngeal detection of the compounds, we used brief access lickometer tests to assess the behavioral capabilities of the P2X2/P2X3Dbl−/− animals. The P2X2/P2X3Dbl−/− mice showed avoidance to high levels (10 mM quinine and 10–30 mM denatonium benzoate) of classical “bitter”-tasting stimuli in 24-h, 2-bottle preference tests but minimal avoidance of these substances in the lickometer tests, suggesting that the strong avoidance in the intake tests was largely mediated by post-oral chemosensors. Similarly, increases in consumption of 1 M sucrose by P2X2/P2X3Dbl−/− mice in long-term intake tests were not mirrored by increases in consumption of sucrose in lickometer tests, suggesting that sucrose detection in these mice is mediated by postingestive consequences. In contrast, in brief access tests, P2X2/P2X3Dbl−/− mice avoided citric acid and hydrochloric acid at the same concentrations as their wild-type counterparts, indicating that these weak acids activate oropharyngeal chemoreceptors. PMID:19833662

  17. Purinergic activation of rat skeletal muscle membranes increases Vmax and Na+ affinity of the Na,K-ATPase and phosphorylates phospholemman and α1 subunits.

    Science.gov (United States)

    Walas, Helle; Juel, Carsten

    2012-02-01

    Muscle activity is associated with an increase in extracellular purines (ATP, ADP), which are involved in signalling mechanisms. The present study investigates the effect of purines on the function of Na,K-ATPase (Na,K-pump) in rat skeletal muscle. Na,K-ATPase activity was quantified by measuring the release of inorganic phosphate in the presence of ATP and variable Na(+) concentrations. In membranes purified from glycolytic muscle fibres, purinergic stimulation increases V (max) and decreases the K (m) (higher Na(+) affinity) of the Na,K-ATPase. Stimulatory effects were obtained using ATP, ADP, 2-methylthio-ADP and UPT, but not UDP and adenosine. The effect of ADP on V (max) can be inhibited by the non-specific P2Y receptor antagonists, suramin and PPADS. Moreover, the P2Y(13) receptor antagonist MRS 2211 strongly inhibited the response to ADP, whereas the specific P2Y(1) receptor antagonist MRS 2500 had less effect. Based on results from these agonists and antagonists, we conclude that P2Y(13) receptors mediate the main effects observed, that P2Y1 receptors are also involved and that some P2Y(2)/P2Y(4) receptors also appear to be involved. Receptor antagonists had no effect on ADP-induced subunit (phospholemman and α1) phosphorylation and changes in K (m) (Na(+) affinity). Thus, the stimulatory effects of purines are mediated by two independent mechanisms: P2Y receptor-mediated increase in Na,K-ATPase capacity (increased V (max)) and P2Y receptor-independent phosphorylation of Na,K-ATPase phospholemman and α1 subunits, which induce changes in ion affinity. These mechanisms may contribute to up-regulation of Na,K-ATPase during muscle activity.

  18. Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7.

    Science.gov (United States)

    Kaiser, M; Sobottka, H; Fischer, W; Schaefer, M; Nörenberg, W

    2014-09-01

    Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was included in some assays. Fluorometric and electrophysiologic assays were used to characterize effects of TIIAS and TIIA on recombinantly expressed human, rat, and mouse P2X7. Results were confirmed in human monocyte-derived macrophages expressing native P2X7. In all experiments, involvement of P2X7 was verified using established P2X7 antagonists. TIIAS, but not TIIA, reduces Ca(2+) influx via human P2X7 (hP2X7) with an IC50 of 4.3 µM. TIIAS was less potent at mouse P2X7 and poorly inhibited rat P2X7. Monitoring of YO-PRO-1 uptake confirmed these findings, indicating that formation of the hP2X7 pore is also suppressed by TIIAS. Electrophysiologic experiments revealed a noncompetitive mode of action. TIIAS time-dependently inhibits hP2X7 gating, possibly by binding to the intracellular domain of the receptor. Inhibition of native P2X7 in macrophages by TIIAS was confirmed by monitoring Ca(2+) influx, YO-PRO-1 uptake, and release of the proinflammatory cytokine interleukin-1β. Fluorometric experiments involving recombinantly expressed rat P2X2 and human P2X4 were conducted and verified the compound's selectivity. Our data suggest that hP2X7 is a molecular target of TIIAS, but not of TIIA, a compound with different pharmacologic properties.

  19. Graft-Infiltrating Macrophages Adopt an M2 Phenotype and Are Inhibited by Purinergic Receptor P2X7 Antagonist in Chronic Rejection.

    Science.gov (United States)

    Wu, C; Zhao, Y; Xiao, X; Fan, Y; Kloc, M; Liu, W; Ghobrial, R M; Lan, P; He, X; Li, X C

    2016-09-01

    Macrophages exhibit diverse phenotypes and functions; they are also a major cell type infiltrating chronically rejected allografts. The exact phenotypes and roles of macrophages in chronic graft loss remain poorly defined. In the present study, we used a mouse heart transplant model to examine macrophages in chronic allograft rejection. We found that treatment of C57BL/6 mice with CTLA4 immunoglobulin fusion protein (CTLA4-Ig) prevented acute rejection of a Balb/c heart allograft but allowed chronic rejection to develop over time, characterized by prominent neointima formation in the graft. There was extensive macrophage infiltration in the chronically rejected allografts, and the graft-infiltrating macrophages expressed markers associated with M2 cells but not M1 cells. In an in vitro system in which macrophages were polarized into either M1 or M2 cells, we screened phenotypic differences between M1 and M2 cells and identified purinergic receptor P2X7 (P2x7r), an adenosine triphosphate (ATP)-gated ion channel protein that was preferentially expressed by M2 cells. We further showed that blocking the P2x7r using oxidized ATP (oATP) inhibited M2 induction in a dose-dependent fashion in vitro. Moreover, treatment of C57BL/6 recipients with the P2x7r antagonist oATP, in addition to CTLA4-Ig treatment, inhibited graft-infiltrating M2 cells, prevented transplant vasculopathy, and induced long-term heart allografts survival. These findings highlight the importance of the P2x7r-M2 axis in chronic rejection and establish P2x7r as a potential therapeutic target in suppression of chronic rejection.

  20. Sentra : a database of signal transduction proteins for comparative genome analysis.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Glass, E. M.; Syed, M. H.; Zhang, Y.; Rodriguez, A.; Maltsev, N.; Galerpin, M. Y.; Mathematics and Computer Science; Univ. of Chicago; NIH

    2007-01-01

    Sentra (http://compbio.mcs.anl.gov/sentra), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentra's infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users.

  1. Signal transduction pathways in Synechocystis sp. PCC 6803 and biotechnological implications under abiotic stress.

    Science.gov (United States)

    Liu, Z X; Li, H C; Wei, Y P; Chu, W Y; Chong, Y L; Long, X H; Liu, Z P; Qin, S; Shao, H B

    2015-06-01

    Cyanobacteria have developed various response mechanisms in long evolution to sense and adapt to external or internal changes under abiotic stresses. The signal transduction system of a model cyanobacterium Synechocystis sp. PCC 6803 includes mainly two-component signal transduction systems of eukaryotic-type serine/threonine kinases (STKs), on which most have been investigated at present. These two-component systems play a major role in regulating cell activities in cyanobacteria. More and more co-regulation and crosstalk regulations among signal transduction systems had been discovered due to increasing experimental data, and they are of great importance in corresponding to abiotic stresses. However, mechanisms of their functions remain unknown. Nevertheless, the two signal transduction systems function as an integral network for adaption in different abiotic stresses. This review summarizes available knowledge on the signal transduction network in Synechocystis sp. PCC 6803 and biotechnological implications under various stresses, with focuses on the co-regulation and crosstalk regulations among various stress-responding signal transduction systems.

  2. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol.

    Science.gov (United States)

    Horn, Peter A; Keyser, Kirsten A; Peterson, Laura J; Neff, Tobias; Thomasson, Bobbie M; Thompson, Jesse; Kiem, Hans-Peter

    2004-05-15

    The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34(+) hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)- and granulocyte-colony stimulating factor (G-CSF)-primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.

  3. Signal transduction, receptors, mediators and genes: younger than ever - the 13th meeting of the Signal Transduction Society focused on aging and immunology

    Directory of Open Access Journals (Sweden)

    Klotz Lars-Oliver

    2010-02-01

    Full Text Available Abstract The 13th meeting of the Signal Transduction Society was held in Weimar, from October 28 to 30, 2009. Special focus of the 2009 conference was "Aging and Senescence", which was co-organized by the SFB 728 "Environmentally-Induced Aging Processes" of the University of Düsseldorf and the study group 'Signal Transduction' of the German Society for Cell Biology (DGZ. In addition, several other areas of signal transduction research were covered and supported by different consortia associated with the Signal Transduction Society including the long-term associated study groups of the German Society for Immunology and the Society for Biochemistry and Molecular Biology, and for instance the SFB/Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" located in Würzburg, Mainz and Berlin. The different research areas that were introduced by outstanding keynote speakers attracted more than 250 scientists, showing the timeliness and relevance of the interdisciplinary concept and exchange of knowledge during the three days of the scientific program. This report gives an overview of the presentations of the conference.

  4. Signaling transduction pathways involved in basophil adhesion and histamine release

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles of β1 andβ2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK)1/2 in basophil adhesion and histamine release (HR). Methods Basophils (purity of 10%-50%) were preincubated with anti-CD29 or anti-CD18 blocking antibodies before used for adhesion study. Basophils were preincubated with the pharmacological inhibitors wortmannin, PP1, PD98059 before used for adhesion and HR study. Cell adherence to bovine serum albumin (BSA) or fibronectin (Fn) was monitored using cell associated histamine as a basophil marker and the histamine was measured by the glass fiber assay.Results Basophil spontaneous adhesion to Fn was inhibited by anti-CD29. Interleukin (IL)-3, granulocyte/macrophage colony stimulating factor (GM-CSF) induced adhesion to BSA was inhibited by anti-CD18. Wortmannin at 1 μmol/L and PP1 at 20 μmol/L strongly interfered with, whereas PD98059 at 50 μmol/L weakly inhibited basophil spontaneous adhesion to Fn. One μmol/L wortmannin strongly inhibited IL-3, IL-5, GM-CSF and anti-IgE induced adhesion to BSA. PP1 at 20 μmol/L partly inhibited anti-IgE induced adhesion. Fifty μmol/L PD98059 marginally inhibited IL-5, weakly inhibited anti-IgE, partly inhibited GM-CSF induced adhesion. Wortmannin, PP1 and PD98059 inhibited anti-IgE (1:100 or 1:1000) induced basophil HR in a dose dependent manner. They inhibited calcium ionophore A23187 (10 μmol/L, 5 μmol/L) induced basophil HR in a dose dependent manner, but to different extend with PP1 being the most efficient.Conclusions Basophil spontaneous adhesion to Fn is mediated by β1-integrins whereas cytokine induced adhesion

  5. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Science.gov (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  6. Neural transduction in Xenopus laevis lateral line system.

    Science.gov (United States)

    Strelioff, D; Honrubia, V

    1978-03-01

    1. The process of neural excitation in hair cell systems was studied in an in vitro preparation of the Xenopus laevis (African clawed toad) lateral line organ. A specially designed stimulus chamber was used to apply accurately controlled pressure, water movement, or electrical stimuli, and to record the neural responses of the two afferent fibers innervating each organ or stitch. The objective of the study was to determine the characteristics of the neural responses to these stimuli, and thus gain insight into the transduction process. 2. A sustained deflection of the hair cell cilia due to a constant flow of water past the capula resulted in a maintained change in the mean firing rate (MFR) of the afferent fibers. The data also demonstrated that the neural response was proportional to the velocity of the water flow and indicated that both deflection and movement of the cilia were the effective physiological stimuli for this hair cell system. 3. The preparations responded to sinusoidal water movements (past the capula) over the entire frequency range of the stimulus chamber, 0.1-130 Hz, and were most sensitive between 10 and 40 Hz. The variation of the MFR and the percent modulation indicated that the average dynamic range of each organ was 23.5 dB. 4. The thresholds, if any, for sustained pressure changes and for sinusoidal pressure variations in the absence of water movements were very high. Due to the limitations of the stimulus chamber it was not possible to generate pressure stimuli of sufficient magnitude to elicit a neural response without also generating suprathreshold water-movement stimuli. Sustained pressures had no detectable effect on the neural response to water-movement stimuli. 5. The preparations were very sensitive to electrical potentials applied across the toad skin on which the hair cells were located. Potentials which made the ciliated surfaces of the hair cells positive with respect to their bases increased the MFR of the fibers, whereas

  7. Plasmid Transduction Using Bacteriophage Φadh for Expression of CC Chemokines by Lactobacillus gasseri ADH▿

    Science.gov (United States)

    Damelin, Leonard H.; Mavri-Damelin, Demetra; Klaenhammer, Todd R.; Tiemessen, Caroline T.

    2010-01-01

    Vaginal mucosal microfloras are typically dominated by Gram-positive Lactobacillus species, and colonization of vaginal mucosa by exogenous microbicide-secreting Lactobacillus strains has been proposed as a means of enhancing this natural mucosal barrier against human immunodeficiency virus (HIV) infection. We asked whether an alternative strategy could be utilized whereby anti-HIV molecules are expressed within the cervicovaginal milieu by endogenous vaginal Lactobacillus populations which have been engineered in situ via transduction. In this study, we therefore investigated the feasibility of utilizing transduction for the expression of two HIV coreceptor antagonists, the CC chemokines CCL5 and CCL3, in a predominant vaginal Lactobacillus species, Lactobacillus gasseri. Modifying a previously established transduction model, which utilizes L. gasseri ADH and its prophage Φadh, we show that mitomycin C induction of L. gasseri ADH transformants containing pGK12-based plasmids with CCL5 and CCL3 expression and secretion cassettes (under the control of promoters P6 and P59, respectively) and a 232-bp Φadh cos site fragment results in the production of transducing particles which contain 8 to 9 copies of concatemeric plasmid DNA. High-frequency transduction for these particles (almost 6 orders of magnitude greater than that for pGK12 alone) was observed, and transductants were found to contain recircularized expression plasmids upon subsequent culture. Importantly, transductants produced CC chemokines at levels comparable to those produced by electroporation-derived transformants. Our findings therefore lend support to the potential use of transduction in vaginal Lactobacillus species as a novel strategy for the prevention of HIV infection across mucosal membranes. PMID:20418431

  8. Plasmid transduction using bacteriophage Phi(adh) for expression of CC chemokines by Lactobacillus gasseri ADH.

    Science.gov (United States)

    Damelin, Leonard H; Mavri-Damelin, Demetra; Klaenhammer, Todd R; Tiemessen, Caroline T

    2010-06-01

    Vaginal mucosal microfloras are typically dominated by Gram-positive Lactobacillus species, and colonization of vaginal mucosa by exogenous microbicide-secreting Lactobacillus strains has been proposed as a means of enhancing this natural mucosal barrier against human immunodeficiency virus (HIV) infection. We asked whether an alternative strategy could be utilized whereby anti-HIV molecules are expressed within the cervicovaginal milieu by endogenous vaginal Lactobacillus populations which have been engineered in situ via transduction. In this study, we therefore investigated the feasibility of utilizing transduction for the expression of two HIV coreceptor antagonists, the CC chemokines CCL5 and CCL3, in a predominant vaginal Lactobacillus species, Lactobacillus gasseri. Modifying a previously established transduction model, which utilizes L. gasseri ADH and its prophage Phiadh, we show that mitomycin C induction of L. gasseri ADH transformants containing pGK12-based plasmids with CCL5 and CCL3 expression and secretion cassettes (under the control of promoters P6 and P59, respectively) and a 232-bp Phiadh cos site fragment results in the production of transducing particles which contain 8 to 9 copies of concatemeric plasmid DNA. High-frequency transduction for these particles (almost 6 orders of magnitude greater than that for pGK12 alone) was observed, and transductants were found to contain recircularized expression plasmids upon subsequent culture. Importantly, transductants produced CC chemokines at levels comparable to those produced by electroporation-derived transformants. Our findings therefore lend support to the potential use of transduction in vaginal Lactobacillus species as a novel strategy for the prevention of HIV infection across mucosal membranes.

  9. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells.

    Science.gov (United States)

    Corcoran, Ryan B; Scott, Matthew P

    2006-05-30

    Sterol synthesis is required for Sonic hedgehog (Shh) signal transduction. Errors in Shh signal transduction play important roles in the formation of human tumors, including medulloblastoma (MB). It is not clear which products of sterol synthesis are necessary for Shh signal transduction or how they act. Here we show that cholesterol or specific oxysterols are the critical products of sterol synthesis required for Shh pathway signal transduction in MB cells. In MB cells, sterol synthesis inhibitors reduce Shh target gene transcription and block Shh pathway-dependent proliferation. These effects of sterol synthesis inhibitors can be reversed by exogenous cholesterol or specific oxysterols. We also show that certain oxysterols can maximally activate Shh target gene transcription through the Smoothened (Smo) protein as effectively as the known Smo full agonist, SAG. Thus, sterols are required and sufficient for Shh pathway activation. These results suggest that oxysterols may be critical regulators of Smo, and thereby Shh signal transduction. Inhibition of Shh signaling by sterol synthesis inhibitors may offer a novel approach to the treatment of MB and other Shh pathway-dependent human tumors.

  10. Suppression of tumorigenicity and metastatic potential of melanoma cells by transduction of interferon gene

    Directory of Open Access Journals (Sweden)

    Lykhova A. A.

    2014-01-01

    Full Text Available The aim of this study was to investigate an inhibitory effect of baculovirus-mediated transduction of the murine interferon-beta gene on mouse melanoma in vitro and in vivo. Methods. Studies were performed on B16 mouse melanoma (MM-4 cell line. Transduction, immunocytochemical and tumor cell biology approaches have been used in this study. Results. Transduction of MM-4 cells by the recombinant baculovirus with IFN-beta gene is accompanied by morphological changes of tumor cells, suppression of cell proliferation, significant inhibition of platting efficiency of cells and their colonies formation in semisolid agar. Moreover, transduction of melanoma MM-4 cells by the baculovirus IFN-transgene leads to inhibition of tumorigenicity and metastatic ability of the cells in vivo. The intravenous administration of recombinant baculovirus vector with IFN gene inhibits growth of metastases induced in the lungs of mice by intravenously injected tumor cells. Conclusions. Transduction of mouse melanoma cells by the recombinant baculovirus with murine IFN-beta gene inhibits their proliferative potential, tumorigenicity and metastatic activity.

  11. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  12. Neuro-protective effects of CNTF on hippocampal neurons via an unknown signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In our previous study, we proposed that there may be an unknown pathway in the upper stream of the known signal transduction pathway of Ciliary neurotrophic factor (CNTF) that mediates the neuro-protective function of CNTF. In the present experiment, we observed that the neuro-protective function of the non-classic signal transduction pathway in a L-NMDA (a glutamic acid ion type receptor atagonist) induced hippocampal neuron injury model, using primary culture rat hippocampal neurons, continuous photography and gp130 immunohistochemical assay. The results showed that L-NMDA induced injurious reaction of hippocampal neurons, and CNTF was able to inhibit the toxic action of L-NMDA on hippocampal neurons. Additionally, when JAK/STATs in the known classic signal transduction pathway of CNTF were blocked by PTPi-2, the protective effect of CNTF against L-NMDA injury still existed. L-NMDA caused a rapid increase in the concentration of hippocampal intracellular free [Ca2+]i. CNTF was able to attenuate L-NMDA-induced elevation of [Ca2+]i, and blocking JAK/STATs in the known classic signal trans- duction pathway of CNTF did not affect L-NMDA- induced elevation of [Ca2+]i, indicating that, apart from the known classic signal transduction pathway, there may be some other transduction pathways for CNTF to exert the protective effect on hippocampal neurons, and this pathway is related to [Ca2+].

  13. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Science.gov (United States)

    Fearnley, Gareth W.; Smith, Gina A.; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A.; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T.; Zachary, Ian C.; Tomlinson, Darren C.; Harrison, Michael A.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2016-01-01

    ABSTRACT Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. PMID:27044325

  14. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  15. The role of the CGRP-receptor component protein (RCP) in adrenomedullin receptor signal transduction.

    Science.gov (United States)

    Prado, M A; Evans-Bain, B; Oliver, K R; Dickerson, I M

    2001-11-01

    G protein-coupled receptors are usually thought to act as monomer receptors that bind ligand and then interact with G proteins to initiate signal transduction. In this study we report an intracellular peripheral membrane protein named the calcitonin gene-related peptide (CGRP)-receptor component protein (RCP) required for signal transduction at the G protein-coupled receptor for adrenomedullin. Cell lines were made that expressed an antisense construct of the RCP cDNA, and in these cells diminished RCP expression correlated with loss of adrenomedullin signal transduction. In contrast, loss of RCP did not diminish receptor density or affinity, therefore RCP does not appear to act as a chaperone protein. Instead, RCP represents a novel class of protein required to couple the adrenomedullin receptor to the cellular signal transduction pathway. A candidate adrenomedullin receptor named the calcitonin receptor-like receptor (CRLR) has been described, which forms high affinity adrenomedullin receptors when co-expressed with the accessory protein receptor-activity modifying protein 2 (RAMP2). RCP co-immunoprecipitated with CRLR and RAMP2, indicating that a functional adrenomedullin receptor is composed of at least three proteins: the ligand binding protein (CRLR), an accessory protein (RAMP2), and a coupling protein for signal transduction (RCP).

  16. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  17. Analysis of nitrated proteins in Saccharomyces cerevisiae involved in mating signal transduction.

    Science.gov (United States)

    Kang, Jeong Won; Lee, Na Young; Cho, Kyung-Cho; Lee, Min Young; Choi, Do-Young; Park, Sang-Hyun; Kim, Kwang Pyo

    2015-01-01

    Protein tyrosine nitration (PTN) is a PTM that regulates signal transduction and inflammatory responses, and is related to neurodegenerative and cardiovascular diseases. The cellular function of PTN remains unclear because the low stoichiometry of PTN limits the identification and quantification of nitrated peptides. Effective enrichment is an important aspect of PTN analysis. In this study, we analyzed the in vivo nitroproteome elicited by mating signal transduction in Saccharomyces cerevisiae using a novel chemical enrichment method followed by LC-MS/MS. Nitroproteome profiling successfully identified changes in the nitration states of 14 proteins during mating signal transduction in S. cerevisiae, making this the first reported in vivo nitroproteome in yeast. We investigated the biological functions of these nitroproteins and their relationships to mating signal transduction in S. cerevisiae using a protein-protein interaction network. Our results suggest that PTN and denitration may be involved in nonreactive nitrogen species-mediated signal transduction and can provide clues for understanding the functional roles of PTN in vivo.

  18. [Progress of studies on effects of acupuncture on cellular signal transduction].

    Science.gov (United States)

    Xu, Tian; Li, Zhong-ren

    2011-04-01

    In order to elucidate the underlying mechanism of acupuncture in regulating different physiological functional activities at cellular level, abundant researches have been conducted on cellular signal transduction activities. The present article preliminarily analyzes acupuncture stimulation induced various cellular signaling pathways from the afferent physical signals of the regional mechanical stimulation at the acupoint, activation of receptors of the cellular membrane such as Guanine nucleotide binding protein coupled receptors, etc., intracellular second messenger molecules including cAMP, Ca2+, inositol triphosphate, diacyl glycerol, etc., signal transduction pathways as mitogen-activated protein kinase, Janus kinase-signal transduction and transcription activator, nitrogen oxide-cyclic guanylic acid, etc., to the extremely complicated cellular signal transduction networks. In addition, the present paper also makes a discussion on the present developing situation of acupuncture research. It is possible that the connective tissue of the body surface will become a key point in the future research on acupuncture remedy. More attention should be paid to the interrelation among various intracellular signaling pathways and the network of cellular signal transduction in the research on acupuncture therapy for regulating a variety of physiological effects.

  19. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors

    Directory of Open Access Journals (Sweden)

    Ranghino Graziella

    2008-06-01

    Full Text Available Abstract Background GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor were then modeled on the receptor. Results Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255. The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Conclusion Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist

  20. Leukocyte Expression of Type 1 and Type 2 Purinergic Receptors and Pro-Inflammatory Cytokines during Total Sleep Deprivation and/or Sleep Extension in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Mounir Chennaoui

    2017-05-01

    Full Text Available The purinergic type P1 (adenosine A1 and A2A receptors and the type P2 (X7 receptor have been suggested to mediate physiological effects of adenosine and adenosine triphosphate on sleep. We aimed to determine gene expression of A1R (receptor, A2AR, and P2RX7 in leukocytes of healthy subjects during total sleep deprivation followed by sleep recovery. Expression of the pro-inflammatory cytokines IL-1β and TNF-α were also determined as they have been characterized as sleep regulatory substances, via P2RX7 activation. Blood sampling was performed on 14 young men (aged 31.9 ± 3.9 at baseline (B, after 24 h of sleep deprivation (24 h-SD, and after one night of sleep recovery (R. We compared gene expression levels after six nights of habitual (22.30–07.00 or extended (21.00–07.00 bedtimes. Using quantitative real-time PCR, the amount of mRNA for A1R, A2AR, P2RX7, TNF-α, and IL-1β was analyzed. After 24 h-SD compared to B, whatever prior sleep condition, a significant increase of A2AR expression was observed that returned to basal level after sleep recovery [day main effect, F(2, 26 = 10.8, p < 0.001]. In both sleep condition, a day main effect on P2RX7 mRNA was observed [F(2, 26 = 6.7, p = 0.005] with significant increases after R compared with 24 h-SD. TNF-α and IL-1β expressions were not significantly altered. Before 24 h-SD (baseline, the A2AR expression was negatively correlated with the latency of stage 3 sleep during the previous night, while that of the A1R positively. This was not observed after sleep recovery following 24 h-SD. This is the first study showing increased A2AR and not A1 gene expression after 24 h-SD in leukocytes of healthy subjects, and this even if bedtime was initially increased by 1.5 h per night for six nights. In conclusion, prolonged wakefulness induced an up-regulation of the A2A receptor gene expression in leukocytes from healthy subjects. Significant correlations between baseline expression of A1 and A2A

  1. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis

    National Research Council Canada - National Science Library

    Skerker, Jeffrey M; Prasol, Melanie S; Perchuk, Barrett S; Biondi, Emanuele G; Laub, Michael T

    2005-01-01

    Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals...

  2. Imitating cricket mechanosensory hairs: dream or reality?

    NARCIS (Netherlands)

    Krijnen, Gijs J.M.; Casas, Jerome

    2008-01-01

    MEMS offers exciting possibilities for bio-inspired mechanosensors. Over the last years we have been working on cricket inspired hair-sensors for flow observations. In stimulating interactions within EU consortia important insights have surfaced and MEMS sensors with demonstrated acoustic sensitivit

  3. Optomechanical Transduction and Characterization of a Silica Microsphere Pendulum via Evanescent Light

    CERN Document Server

    Madugani, Ramgopal; Ward, Jonathan M; Le, Vu H; Chormaic, Síle Nic

    2015-01-01

    Transduction of the motion of a micron- or nano-sized object to an optical signal is essential for optomechanical systems. Here, we study the optical response of a cantilever-like, silica, microsphere pendulum, evanescently coupled to a ?ber taper. In this system, the optical coupling element also acts as the mechanical motion transducer and the pendulum's oscillations modulate the optical whispering gallery modes (WGMs) both dispersively and dissipatively. This unique mechanism leads to an experimentally-observable, asymmetric response function of the transduction spectrum. This phenomenon is explained by using coupled mode theory with Fourier transforms. The optomechanical transduction and its relation to the external coupling gap is experimentally investigated in depth and shows good agreement with the theory. A deep understanding of this mechanism is necessary in order to explore cooling and trapping of a micropendulum system.

  4. Evaluating the Role of Wnt Signal Transduction in Promoting the Development of the Heart

    Directory of Open Access Journals (Sweden)

    Leonard M. Eisenberg

    2007-01-01

    Full Text Available Wnts are a family of secreted signaling proteins that are encoded by 19 distinct genes in the vertebrate genome. These molecules initiate several signal transduction pathways: the canonical Wnt, Wnt/Ca2+, and Wnt/planar cell polarity pathways. Wnt proteins have major impact on embryonic development, tumor progression, and stem cell differentiation. Wnt signal transduction also influences the formation of the heart, yet many issues concerning the involvement of Wnt regulation in initiating cardiac development remain unresolved. In this review, we will examine the published record to discern (a what has been shown by experimental studies on the participation of Wnt signaling in cardiogenesis, and (b what are the important questions that need to be addressed to understand the importance and function of Wnt signal transduction in facilitating the development of the heart.

  5. Gene expression, signal transduction pathways and functional networks associated with growth of sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Sass, Hjalte Christian Reeberg; Borup, Rehannah; Alanin, Mikkel

    2017-01-01

    The objective of this study was to determine global gene expression in relation to Vestibular schwannomas (VS) growth rate and to identify signal transduction pathways and functional molecular networks associated with growth. Repeated magnetic resonance imaging (MRI) prior to surgery determined...... of signal transduction pathways and functional molecular networks associated with tumor growth. In total 109 genes were deregulated in relation to tumor growth rate. Genes associated with apoptosis, growth and cell proliferation were deregulated. Gene ontology included regulation of the cell cycle, cell...... differentiation and proliferation, among other functions. Fourteen pathways were associated with tumor growth. Five functional molecular networks were generated. This first study on global gene expression in relation to vestibular schwannoma growth rate identified several genes, signal transduction pathways...

  6. Postaggregative differentiation induction by cyclic AMP in Dictyostelium: intracellular transduction pathway and requirement for additional stimuli.

    Science.gov (United States)

    Schaap, P; Van Lookeren Campagne, M M; Van Driel, R; Spek, W; Van Haastert, P J; Pinas, J

    1986-11-01

    Cyclic AMP induces postaggregative differentiation in aggregation competent cells of Dictyostelium by interacting with cell surface cAMP receptors. We investigated the transduction pathway of this response and additional requirements for the induction of postaggregative differentiation. Optimal induction of postaggregative gene expression requires that vegetative cells are first exposed to 2-4 hr of nanomolar cAMP pulses, and subsequently for 4-6 hr to steady-state cAMP concentrations in the micromolar range. Cyclic AMP pulses, which are endogenously produced before and during aggregation, induce full responsiveness to cAMP as a morphogen. The transduction pathway from the cell surface cAMP receptor to postaggregative gene expression may involve Ca2+ ions as intracellular messengers. A cAMP-induced increase in intracellular cAMP or cGMP levels is not involved in the transduction pathway.

  7. Analysis of a signal transduction pathway involved in leaf epidermis differentiation.

    Energy Technology Data Exchange (ETDEWEB)

    Philip W. Becraft

    2005-05-23

    The major objective of this study was to identify and analyze signal transduction factors that function with the CR4 receptor kinase. We pursued this analysis in Arabidopsis. Analysis of other members of the ACR4 related receptor (CRR) family produced biochemical evidence consistent with some of them functioning in ACR4 signal transduction. Yeast 2-hybrid identified six proteins that interact with the cytoplasmic domain of ACR4, representing putative downstream signal transduction components. The interactions for all 6 proteins were verified by in vitro pull down assays. Five of the interacting proteins were phosphorylated by ACR4. We also identified candidate interactors with the extracellular TNFR domain. We hypothesize this may be the ligand binding domain for ACR4. In one approach, yeast 2-hybrid was again used and five candidate proteins identified. Nine additional candidates were identified in a genome wide scan of Arabidopsis amino acid sequences that threaded onto the TNF structure.

  8. Two-Component Signal Transduction Systems in the Cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    LIU Xingguo; HUANG Wei; WU Qingyu

    2006-01-01

    Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.

  9. Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics.

    Science.gov (United States)

    Utsumi, Ryutaro

    2017-09-01

    Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species. Although TCSs are often studied and characterized individually, they are assumed to interact with each other and form signal transduction networks within the cell. In this review, I focus on the formation of TCS networks via connectors. I also explore the possibility of using TCS inhibitors, especially HK inhibitors, as alternative antimicrobial agents.

  10. The progress of olfactory transduction and biomimetic olfactory-based biosensors

    Institute of Scientific and Technical Information of China (English)

    WU ChunSheng; WANG LiJiang; ZHOU Jun; ZHAO LuHang; WANG Ping

    2007-01-01

    Olfaction is a very important sensation for all animals. Recently great progress has been made in the research of olfactory transduction. Especially the novel finding of the gene superfamily encoding olfactory receptors has led to rapid advances in olfactory transduction. These advances also promoted the research of biomimetic olfactory-based biosensors and some obvious achievements have been obtained due to their potential commercial prospects and promising industrial applications. This paper briefly introduces the biological basis of olfaction, summarizes the progress of olfactory signal transduction in the olfactory neuron, the olfactory bulb and the olfactory cortex, outlines the latest developments and applications of biomimetic olfactory-based biosensors. Finally, the olfactory biosensor based on light addressable potentiometric sensor (LAPS) is addressed in detail based on our recent work and the research trends of olfactory biosensors in future are discussed.

  11. [Acupuncture-moxibustion and mitogen-activated protein kinase signal transduction pathways].

    Science.gov (United States)

    Tiano, Shen; Zhong-Ren, Li

    2012-03-01

    The Literatures on mechanism of acupuncture from the aspect of mitogen-activated protein kinase (MAPK) signal transduction pathways are analyzed in this paper. And the result shows that many acupuncture effects are closely related with the regulation of MAPK signal transduction pathway. However, the current studies only cover limited aspects, and there problems still existed in the experiment designation. Acupuncture and electroacupuncture are often adopted for the treatment group, while moxibustion is not applied for most of them. There are not unified wave model, frequency and stimulation period for electroacupuncture. And the studies still remain in simple confirmation and proper inference. In the future, the domain of researches should be further wid ened and the experiment designation further perfected. Therefore, the therapeutic effect of acupuncture in clinic will be greatly improved through researches on MAPK signal transduction pathway and the production mechanism of acupuncture effect.

  12. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Lim, Soon Sung [Department of Food Science and Nutrition and RIC Center, Hallym University, Chunchon 200-702 (Korea, Republic of); Kang, Tae-Cheon [Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kim, Duk-Soo [Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Hwang, Hyun Sook, E-mail: wazzup@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2011-03-18

    Research highlights: {yields} We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. {yields} PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. {yields} PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. {yields} PM increased anti-inflammatory activity of PEP-1-catalase. {yields} PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1{beta}, and tumor necrosis factor-{alpha} induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  13. Ephrin A2 receptor targeting does not increase adenoviral pancreatic cancer transduction in vivo

    Institute of Scientific and Technical Information of China (English)

    Michael A van Geer; Conny T Bakker; Naoya Koizumi; Hiroyuki Mizuguchi; John G Wesseling; Ronald PJ Oude Elferink; Piter J Bosma

    2009-01-01

    AIM:To generate an adenoviral vector specifically targeting the EphA2 receptor (EphA2R) highly expressed on pancreatic cancer cells in vivo.METHODS:YSA,a small peptide ligand that binds the EphA2R with high affinity,was inserted into the HI loop of the adenovirus serotype 5 fiber knob.To further increase the specificity of this vector,binding sites for native adenoviral receptors,the coxsackie and adenovirus receptor (CAR) and integrin,were ablated from the viral capsid.The ablated retargeted adenoviral vector was produced on 293T cells.Specific targeting of this novel adenoviral vector to pancreatic cancer was investigated on established human pancreatic cancer cell lines.Upon demonstrating specific in vitro targeting,in vivo targeting to subcutaneous growing human pancreatic cancer was tested by intravenous and intraperitoneal administration of the ablated adenoviral vector.RESULTS:Ablation of native cellular binding sites reduced adenoviral transduction at least 100-fold.Insertion of the YSA peptide in the HI loop restored adenoviral transduction of EphA2R-expressing cells but not of cells lacking this receptor.YSA-mediated transduction was inhibited by addition of synthetic YSA peptide.The transduction specificity of the ablated retargeted vector towards human pancreatic cancer cells was enhanced almost 10-fold in vitro.In a subsequent in vivo study in a nude (nu/nu) mouse model however,no increased adenoviral targeting to subcutaneously growing human pancreas cancer nodules was seen upon injection into the tail vein,nor upon injection into the peritoneum.CONCLUSION:Targeting the EphA2 receptor increases specificity of adenoviral transduction of human pancreatic cancer cells in vitro but fails to enhance pancreatic cancer transduction in vivo.

  14. NET-SYNTHESIS: a software for synthesis, inference and simplification of signal transduction networks.

    Science.gov (United States)

    Kachalo, Sema; Zhang, Ranran; Sontag, Eduardo; Albert, Réka; DasGupta, Bhaskar

    2008-01-15

    We present a software for combined synthesis, inference and simplification of signal transduction networks. The main idea of our method lies in representing observed indirect causal relationships as network paths and using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. We illustrate the biological usability of our software by applying it to a previously published signal transduction network and by using it to synthesize and simplify a novel network corresponding to activation-induced cell death in large granular lymphocyte leukemia. NET-SYNTHESIS is freely downloadable from http://www.cs.uic.edu/~dasgupta/network-synthesis/

  15. Quasi steady-state approximations in complex intracellular signal transduction networks - a word of caution

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A.M.; Bersani, E.

    2008-01-01

    Enzyme reactions play a pivotal role in intracellular signal transduction. Many enzymes are known to possess Michaelis-Menten (MM) kinetics and the MM approximation is often used when modeling enzyme reactions. However, it is known that the MM approximation is only valid at low enzyme concentrati......Enzyme reactions play a pivotal role in intracellular signal transduction. Many enzymes are known to possess Michaelis-Menten (MM) kinetics and the MM approximation is often used when modeling enzyme reactions. However, it is known that the MM approximation is only valid at low enzyme...

  16. Cancer classification through filtering progressive transductive support vector machine based on gene expression data

    Science.gov (United States)

    Lu, Xinguo; Chen, Dan

    2017-08-01

    Traditional supervised classifiers neglect a large amount of data which not have sufficient follow-up information, only work with labeled data. Consequently, the small sample size limits the advancement of design appropriate classifier. In this paper, a transductive learning method which combined with the filtering strategy in transductive framework and progressive labeling strategy is addressed. The progressive labeling strategy does not need to consider the distribution of labeled samples to evaluate the distribution of unlabeled samples, can effective solve the problem of evaluate the proportion of positive and negative samples in work set. Our experiment result demonstrate that the proposed technique have great potential in cancer prediction based on gene expression.

  17. Regulation of apoptotic signal transduction pathways by the heat shock proteins

    Institute of Scientific and Technical Information of China (English)

    LI; Zhengyu; ZHAO; Xia; WEI; Yuquan

    2004-01-01

    The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.

  18. Targeting two-component signal transduction: a novel drug discovery system.

    Science.gov (United States)

    Okada, Ario; Gotoh, Yasuhiro; Watanabe, Takafumi; Furuta, Eiji; Yamamoto, Kaneyoshi; Utsumi, Ryutaro

    2007-01-01

    We have developed two screening systems for isolating inhibitors that target bacterial two-component signal transduction: (1) a differential growth assay using a temperature-sensitive yycF mutant (CNM2000) of Bacillus subtilis, which is supersensitive to histidine kinase inhibitors, and (2) a high-throughput genetic system for targeting the homodimerization of histidine kinases essential for the bacterial two-component signal transduction. By using these methods, we have been able to identify various types of inhibitors that block the autophosphorylation of histidine kinases with different modes of actions.

  19. [Signal transduction and drug resistance in Mycobacterium tuberculosis--A review].

    Science.gov (United States)

    Wang, Shanshan; Feng, Yi; Zhang, Zhe

    2015-08-04

    Mycobacterium tuberculosis infection kills two million people every year, and the chemotherapy has led to significant amount of drug resistance. Signal transduction systems are used by bacteria to survive or adapt to their living environment, but the relationship to drug resistance is not well understood. In this article, we introduced the two-component signal transduction systems of M. tuberculosis and analyzed their relationship with drug resistance. We identified five two-component system pairs involved in the formation of drug resistance. Therefore, these two-component systems are good targeting sites for small biochemical drugs to target so as to reverse the drug resistance and virulence.

  20. The Role of Cgrp-Receptor Component Protein (Rcp) in Cgrp-Mediated Signal Transduction

    OpenAIRE

    Prado, M.A.; B. Evans-Bain; Santi, S. L.; Dickerson, I M

    2001-01-01

    The calcitonin gene-related peptide (CGRP)-receptor component protein (RCP) is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as...

  1. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  2. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  3. Hair cell mechano-transduction : Its influence on the gross mechanical characteristics of a hair cell sense organ

    NARCIS (Netherlands)

    vanNetten, Sietse M.

    1997-01-01

    The complex mechanical behaviour of a hair cell bundle appears to be a direct consequence of the gating forces on the individual transduction channels. The mechanical molecular interactions involved in transduction channel gating, therefore, also bear a reciprocal influence, via the hair bundles; on

  4. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor...-4. Palsson-McDermott EM, O'Neill LA. Immunology. 2004 Oct;113(2):153-62. (.png) (.svg) (.html) (.csml) Show Signal... transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signal

  5. Transduction of the MPG-tagged fusion protein into mammalian cells and oocytes depends on amiloride-sensitive endocytic pathway

    Directory of Open Access Journals (Sweden)

    Cheon Yong-Pil

    2009-08-01

    Full Text Available Abstract Background MPG is a cell-permeable peptide with proven efficiency to deliver macromolecular cargoes into cells. In this work, we examined the efficacy of MPG as an N-terminal tag in a fusion protein to deliver a protein cargo and its mechanism of transduction. Results We examined transduction of MPG-EGFP fusion protein by live imaging, flow cytometry, along with combination of cell biological and pharmacological methods. We show that MPG-EGFP fusion proteins efficiently enter various mammalian cells within a few minutes and are co-localized with FM4-64, a general marker of endosomes. The transduction of MPG-EGFP occurs rapidly and is inhibited at a low temperature. The entry of MPG-EGFP is inhibited by amiloride, but cytochalasin D and methyl-β-cyclodextrin did not inhibit the entry, suggesting that macropinocytosis is not involved in the transduction. Overexpression of a mutant form of dynamin partially reduced the transduction of MPG-EGFP. The partial blockade of MPG-EGFP transduction by a dynamin mutant is abolished by the treatment of amiloride. MPG-EGFP transduction is also observed in the mammalian oocytes. Conclusion The results show that the transduction of MPG fusion protein utilizes endocytic pathway(s which is amiloride-sensitive and partially dynamin-dependent. Collectively, the MPG fusion protein could be further developed as a novel tool of "protein therapeutics", with potentials to be used in various cell systems including mammalian oocytes.

  6. Hair cell mechano-transduction : Its influence on the gross mechanical characteristics of a hair cell sense organ

    NARCIS (Netherlands)

    vanNetten, SM

    1997-01-01

    The complex mechanical behaviour of a hair cell bundle appears to be a direct consequence of the gating forces on the individual transduction channels. The mechanical molecular interactions involved in transduction channel gating, therefore, also bear a reciprocal influence, via the hair bundles; on

  7. PathFinder: mining signal transduction pathway segments from protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Yang Jiong

    2007-09-01

    Full Text Available Abstract Background A Signal transduction pathway is the chain of processes by which a cell converts an extracellular signal into a response. In most unicellular organisms, the number of signal transduction pathways influences the number of ways the cell can react and respond to the environment. Discovering signal transduction pathways is an arduous problem, even with the use of systematic genomic, proteomic and metabolomic technologies. These techniques lead to an enormous amount of data and how to interpret and process this data becomes a challenging computational problem. Results In this study we present a new framework for identifying signaling pathways in protein-protein interaction networks. Our goal is to find biologically significant pathway segments in a given interaction network. Currently, protein-protein interaction data has excessive amount of noise, e.g., false positive and false negative interactions. First, we eliminate false positives in the protein-protein interaction network by integrating the network with microarray expression profiles, protein subcellular localization and sequence information. In addition, protein families are used to repair false negative interactions. Then the characteristics of known signal transduction pathways and their functional annotations are extracted in the form of association rules. Conclusion Given a pair of starting and ending proteins, our methodology returns candidate pathway segments between these two proteins with possible missing links (recovered false negatives. In our study, S. cerevisiae (yeast data is used to demonstrate the effectiveness of our method.

  8. Polymer-enhanced adenoviral transduction of CAR-negative bladder cancer cells.

    Science.gov (United States)

    Kasman, Laura M; Barua, Sutapa; Lu, Ping; Rege, Kaushal; Voelkel-Johnson, Christina

    2009-01-01

    The application of adenoviral gene therapy for cancer is limited by immune clearance of the virus as well as poor transduction efficiency, since the protein used for viral entry (CAR) serves physiological functions in adhesion and is frequently decreased among cancer cells. Cationic polymers have been used to enhance adenoviral gene delivery, but novel polymers with low toxicity are needed to realize this approach. We recently identified polymers that were characterized by high transfection efficiency of plasmid DNA and a low toxicity profile. In this study we evaluated the novel cationic polymer EGDE-3,3' for its potential to increase adenoviral transduction of the CAR-negative bladder cancer cell line TCCSUP. The amount of adenovirus required to transduce 50-60% of the cells was reduced 100-fold when Ad.GFP was preincubated with the EGDE-3,3' polymer. Polyethyleneimine (pEI), a positively charged polymer currently used as a standard for enhancing adenoviral transduction, also increased infectivity, but transgene expression was consistently higher with EGDE-3,3'. In addition, EGDE-3,3'-supplemented transduction of an adenovirus expressing an apoptosis inducing transgene, Ad.GFP-TRAIL, significantly enhanced the amount of cell death. Thus, our results indicate that novel biocompatible polymers may be useful in improving the delivery of adenoviral gene therapy.

  9. A mathematical model of the mating signal transduction pathway in the yeast Saccharomyces cerevisiae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Ivan Milac

    1998-09-14

    Outline of two major goals in my proposal for this fellowship. First goal having no previous training in biology, was to become knowledgeable of the paradigms, experimental techniques, and current research interests of molecular biology. Second goal was to construct a mathematical model of the mating signal transduction pathway in the yeast Saccharomyces cerevisiae.

  10. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    Science.gov (United States)

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-08-28

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  11. Intracellular signal transduction by the extracellular calcium-sensing receptor of Xenopus melanotrope cells.

    NARCIS (Netherlands)

    Hurk, MJ van den; Cruijsen, P.M.; Schoeber, J.P.H.; Scheenen, W.J.J.M.; Roubos, E.W.; Jenks, B.G.

    2008-01-01

    The extracellular calcium-sensing receptor (CaR) is expressed in various types of endocrine pituitary cell, but the intracellular mechanism this G protein-coupled receptor uses in these cells is not known. In the present study we investigated possible intracellular signal transduction pathway(s)

  12. Molecular insights into the mechanism of sensing and signal transduction of the thermosensor DesK

    NARCIS (Netherlands)

    Ballering, J.|info:eu-repo/dai/nl/325784876

    2016-01-01

    The ability to sense and respond to environmental signals is essential for cell survival. Unraveling the molecular mechanisms underlying signaling processes remains a challenge, however. This thesis provides molecular insights into the mechanism of sensing and signal transduction of the thermosensor

  13. The efficiency of expressing human neprilysin by using lentiviral vector transduction in neural stem cells

    Institute of Scientific and Technical Information of China (English)

    黄文

    2013-01-01

    Objective To study the transduction efficiency of expressing human neprilysin by using lentiviral(Lenti-NEP) in mouse embryonic neural stem cells(NSC) in vitro. Methods Primary NSC were harvested from C57BL/6J pregnant mouse at embryonic day

  14. Vectofusin-1, a new viral entry enhancer, strongly promotes lentiviral transduction of human hematopoietic stem cells.

    Science.gov (United States)

    Fenard, David; Ingrao, Dina; Seye, Ababacar; Buisset, Julien; Genries, Sandrine; Martin, Samia; Kichler, Antoine; Galy, Anne

    2013-05-07

    Gene transfer into hCD34(+) hematopoietic stem/progenitor cells (HSCs) using human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) has several promising therapeutic applications. Yet, efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist such as fibronectin fragments and cationic compounds, but all present limitations. In this study, we describe a new transduction enhancer called Vectofusin-1, which is a short cationic peptide, active on several LV pseudotypes. Vectofusin-1 is used as a soluble additive to safely increase the frequency of transduced HSCs and to augment the level of transduction to one or two copies of vector per cell in a vector dose-dependent manner. Vectofusin-1 acts at the entry step by promoting the adhesion and the fusion between viral and cellular membranes. Vectofusin-1 is therefore a promising additive that could significantly ameliorate hCD34(+) cell-based gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e90; doi:10.1038/mtna.2013.17; published online 7 May 2013.

  15. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor

    DEFF Research Database (Denmark)

    Reisberg, S.; Piro, B.; Noel, V.

    2008-01-01

    To elucidate the mechanism involved in the electrochemical transduction process of a conducting polymer-based DNA sensor, peptide nucleic acids (PNA) were used. PNA are DNA analogues having similar hybridization properties but are neutral. This allows to discriminate the electrostatic effect of D...

  16. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  17. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  18. NA+ AS COUPLING ION IN ENERGY TRANSDUCTION IN EXTREMOPHILIC BACTERIA AND ARCHAEA

    NARCIS (Netherlands)

    Speelmans, G.; Poolman, B.; Konings, W.N

    1995-01-01

    For microoganisms to live under extreme physical conditions requires important adaptations of the cells. In many organisms the use of Na+ instead of protons as coupling ion in energy transduction is associated with such adaptation. This review focuses on the enzymes that are responsible for the gene

  19. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K

    2006-01-01

    , including the possibility to establish stable producer cell lines. After injection of RRV-LV expressing green fluorescent protein into different structures in the rat brain we found efficient transduction of both neurons and glial cells. By using two cell-type-specific promoters, neuron-specific enolase...

  20. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Science.gov (United States)

    Uchida, Naoya; Hsieh, Matthew M; Platner, Charlotte; Saunthararajah, Yogen; Tisdale, John F

    2014-01-01

    Efficient ex vivo transduction of hematopoietic stem cells (HSCs) is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity) and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation), compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  1. Decitabine suspends human CD34+ cell differentiation and proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Naoya Uchida

    Full Text Available Efficient ex vivo transduction of hematopoietic stem cells (HSCs is encumbered by differentiation which reduces engraftment. We hypothesized that inhibiting DNA methyltransferase with decitabine would block differentiation of transduced CD34+ cells under cytokine stimulation and thus improve transduction efficiency for engrafting HSCs. Human CD34+ cells in cytokine-containing media were treated with or without decitabine for 24 or 48 hours, and then these cells were transduced with a GFP-expressing lentiviral vector. Utilizing decitabine pre-treatment for 48 hours, we observed an equivalent percentage of successfully transduced cells (GFP-positivity and a higher percentage of cells that retained CD34 positivity, compared to no decitabine exposure. Cell proliferation was inhibited after decitabine exposure. Similar results were observed among CD34+ cells from six different donors. Repopulating activity was evaluated by transplantation into NOD/SCID/IL2Rγnull mice and demonstrated an equivalent percentage of GFP-positivity in human cells from decitabine-treated samples and a trend for higher human cell engraftment (measured 20-24 weeks after transplantation, compared to no decitabine exposure. In conclusion, ex vivo decitabine exposure inhibits both differentiation and proliferation in transduced human CD34+ cells and modestly increases the engraftment ability in xenograft mice, while the transduction efficiency is equivalent in decitabine exposure, suggesting improvement of lentiviral transduction for HSCs.

  2. Conductance simulation of the purinergic P2X2, P2X4, and P2X7 ionic channels using a combined Brownian dynamics and molecular dynamics approach.

    Science.gov (United States)

    Turchenkov, Dmitry A; Bystrov, Vladimir S

    2014-08-07

    This paper investigates the application of an original combined approach of molecular and Brownian dynamic methods with quantum chemistry calculations for modeling the process of conductance of ion channels using purinergic P2X family receptors P2X2, P2X4, and P2X7 as a case study. A simplified model of the ionic channel in the lipid bilayer has been developed. A high level of conductance (30 pS) of P2X2 ionic channel together with the key role of Asp349 in forming the selectivity filter of P2X2 has been shown by using this approach. Calculated P2X2 permeability to monovalent cations Li(+), Na(+), and K(+) conforms to the free diffusion coefficient of these ions, which shows the low selectivity of P2X2 ionic channel.

  3. Purinergic signaling at immunological synapses.

    Science.gov (United States)

    Dubyak, G R

    2000-07-01

    The early studies and hypotheses of Geoffrey Burnstock catalyzed intensive characterization of roles for nucleotides and P2 nucleotide receptors in neurotransmission and neuromodulation. These latter analyses have focused on the mechanisms of nucleotide release and action in the microenvironments of nerve endings and synapses. However, studies of various white blood cells, such as monocytes, neutrophils, and lymphocytes, suggest that locally released nucleotides also modulate intercellular signaling at so-called 'immunological synapses'. This communication describes recent findings and speculations regarding nucleotide release and signaling in several key phases of the immune and inflammatory responses.

  4. Engineering fusogenic molecules to achieve targeted transduction of enveloped lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Wang Pin

    2009-06-01

    Full Text Available Abstract Background Lentiviral vectors with broad tropism are one of the most promising gene delivery systems capable of efficiently delivering genes of interest into both dividing and non-dividing cells while maintaining long-term transgene expression. However, there are needs for developing lentiviral vectors with the capability to deliver genes to specific cell types, thus reducing the "off-target" effect of gene therapy. In the present study, we investigated the possibility of engineering the fusion-active domain of a fusogenic molecule (FM with the aim to improve targeted transduction of lentiviral vectors co-displaying an anti-CD20 antibody (αCD20 and a FM. Results Specific mutations were introduced into the fusion domain of a binding-deficient Sindbis virus glycoprotein to generate several mutant FMs. Lentiviral vectors incorporated with αCD20 and one of the engineered FMs were successfully produced and demonstrated to be able to preferentially deliver genes to CD-20-expressing cells. Lentiviral vectors bearing engineered FMs exhibited 8 to 17-fold enhanced transduction towards target cells as compared to the parental FM. Different levels of enhancement were observed for the different engineered FMs. A pH-dependent study of vector transduction showed that the broader pH range of the engineered FM is a possible mechanism for the resulted increase in transduction efficiency. Conclusion The fusion domain of Sindbis virus glycoprotein is amenable for engineering and the engineered proteins provide elevated capacity to mediate lentiviral vectors for targeted transduction. Our data suggests that application of such an engineering strategy can optimize the two-molecular targeting method of lentiviral vectors for gene delivery to predetermined cells.

  5. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  6. Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways.

    Science.gov (United States)

    Adachi, Makoto; Gazel, Alix; Pintucci, Giuseppe; Shuck, Alyssa; Shifteh, Shiva; Ginsburg, Dov; Rao, Laxmi S; Kaneko, Takehiko; Freedberg, Irwin M; Tamaki, Kunihiko; Blumenberg, Miroslav

    2003-10-01

    UV light, a paradigmatic initiator of cell stress, invokes responses that include signal transduction, activation of transcription factors, and changes in gene expression. Consequently, in epidermal keratinocytes, its principal and frequent natural target, UV regulates transcription of a distinctive set of genes. Hypothesizing that UV activates distinctive epidermal signal transduction pathways, we compared the UV-responsive activation of the JNK and NFkappaB pathways in keratinocytes, with the activation of the same pathways by other agents and in other cell types. Using of inhibitors and antisense oligonucleotides, we found that in keratinocytes only UVB/UVC activate JNK, while in other cell types UVA, heat shock, and oxidative stress do as well. Keratinocytes express JNK-1 and JNK-3, which is unexpected because JNK-3 expression is considered brain-specific. In keratinocytes, ERK1, ERK2, and p38 are activated by growth factors, but not by UV. UVB/UVC in keratinocytes activates Elk1 and AP1 exclusively through the JNK pathway. JNKK1 is essential for UVB/UVC activation of JNK in keratinocytes in vitro and in human skin in vivo. In contrast, in HeLa cells, used as a control, crosstalk among signal transduction pathways allows considerable laxity. In parallel, UVB/UVC and TNFalpha activate the NFkappaB pathway via distinct mechanisms, as shown using antisense oligonucleotides targeted against IKKbeta, the active subunit of IKK. This implies a specific UVB/UVC responsive signal transduction pathway independent from other pathways. Our results suggest that in epidermal keratinocytes specific signal transduction pathways respond to UV light. Based on these findings, we propose that the UV light is not a genetic stress response inducer in these cells, but a specific agent to which epidermis developed highly specialized responses.

  7. The signal transduction mechanisms on the intestinal mucosa of rat following irradiation

    Energy Technology Data Exchange (ETDEWEB)

    You, J. H.; Kim, S. S.; Lee, K. J.; Lee, J. S. [Ewha Womans Univ., Seoul (Korea, Republic of). Coll. of Medicine

    1997-06-01

    Phospholipase C(PLC) isozymes play significant roles in signal transduction mechanism. The exact mechanisms of these signal transduction following irradiation, however, were not clearly documented. Thus, this study was planned to determine the biological significance of PLC, ras oncoprotein, EGFR, and PKC in damage and regeneration of rat intestinal mucosa following irradiation. Sixty Sprague-Dawley rats were irradiated to entire body with a single dose of 8Gy. The rats were divided into 5 groups according to the sacrifice days after irradiation. The expression of PLC, ras oncoprotein, EGRF PKC in each group were examined by the immunoblotting and immunohistochemistry. The histopathologic findings were observed using H and E stain, and the mitoses for the evidence of regeneration were counted using the light microscopy and PCNA kit. The phosphoinositide(PI) hydrolyzing activity assay was also done for the indirect evaluation of PLC-{gamma}1 activity. In the immunohistochemistry, the expression of PLC-{beta} was negative for all groups. The expression of PLC-{gamma}1 was highest in the group III followed by group II in the proliferative zone of mucosa. The expression of PKC-{delta}1 was strongly positive in group I followed by group II in the damaged surface epithelium. The above findings were also confirmed in the immunoblotting study. In the immunoblotting study, the expressions of PLC-{beta}, PLC-{gamma}1, and PLC-{delta}1 were the same as the results of immunohistochemistry. The expression of ras oncoprotein was weakly positive in groups II, III and IV and the expression of PKC was weakly positive in the group II and III. PLC-{gamma}1 mediated signal transduction including ras oncoprotein, EGFR, and PKC play a significant role in mucosal regeneration after irradiation. PLC-{delta}1 mediated signal transduction might have an important role in mucosal damage after irradiation. Further studies will be necessary to confirm the signal transduction mediating the PLC

  8. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  9. Conditional Dicer substrate formation via shape and sequence transduction with small conditional RNAs.

    Science.gov (United States)

    Hochrein, Lisa M; Schwarzkopf, Maayan; Shahgholi, Mona; Yin, Peng; Pierce, Niles A

    2013-11-20

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) enables knockdown of a gene of choice, executing the logical operation: silence gene Y. The fact that the siRNA is constitutively active is a significant limitation, making it difficult to confine knockdown to a specific locus and time. To achieve spatiotemporal control over silencing, we seek to engineer small conditional RNAs (scRNAs) that mediate 'conditional RNAi' corresponding to the logical operation: if gene X is transcribed, silence independent gene Y. By appropriately selecting gene X, knockdown of gene Y could then be restricted in a tissue- and time-specific manner. To implement the logic of conditional RNAi, our approach is to engineer scRNAs that, upon binding to mRNA 'detection target' X, perform shape and sequence transduction to form a Dicer substrate targeting independent mRNA 'silencing target' Y, with subsequent Dicer processing yielding an siRNA targeting mRNA Y for destruction. Toward this end, here we design and experimentally validate diverse scRNA mechanisms for conditional Dicer substrate formation. Test tube studies demonstrate strong OFF/ON conditional response, with at least an order of magnitude increase in Dicer substrate production in the presence of the cognate mRNA detection target. By appropriately dimensioning and/or chemically modifying the scRNAs, only the product of signal transduction, and not the reactants or intermediates, is efficiently processed by Dicer, yielding siRNAs. These mechanism studies explore diverse design principles for engineering scRNA signal transduction cascades including reactant stability vs metastability, catalytic vs noncatalytic transduction, pre- vs post-transcriptional transduction, reactant and product molecularity, and modes of molecular self-assembly and disassembly.

  10. Membrane Guanylate Cyclase, A Multimodal Transduction Machine: History, Present and Future Directions

    Directory of Open Access Journals (Sweden)

    Rameshwar K Sharma

    2014-07-01

    Full Text Available A sequel to these authors’ earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC from its origin to the year 2010, this article contains 13 parts. The first is HISTORICAL and covers MGC from the year 1963-1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its BIOCHEMICAL IDENTITY. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its EXPANSION. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of PHOTOTRANSDUCTION. Parts 4 to 7 cover its BIOCHEMISTRY and PHYSIOLOGY. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Part 8 demonstrates how this knowledge begins to be TRANSLATED into the diagnosis and providing the molecular definition of retinal dystrophies. Part 9 discusses a striking property of ROS-GC where it becomes a [Ca2+]i bimodal switch and transcends its signaling role in other neural transduction processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cycles activator, the S100B protein, is made. It extends the role of ROS-GC transduction system beyond the photoreceptor cells to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in Part 10, discovery of ANOTHER CD-GCAP, NC, is made and its linkage with signaling of the inner plexiform layer neurons is established. Part 11 discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the

  11. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pa

  12. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks.

    Science.gov (United States)

    Handly, L Naomi; Yao, Jason; Wollman, Roy

    2016-09-25

    Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of cellular function. Traditional study of signal transduction pathways involves mapping cellular signaling pathways at the population level. However, population-averaged readouts do not adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell level. Recent technological advances that observe cellular response, computationally model signaling pathways, and experimentally manipulate cells now enable studying signal transduction at the single-cell level. These studies will enable deeper insights into the dynamic nature of signaling networks.

  13. Efficiency of retroviral transduction into hematopoietic cells by cocultivation procedure does not correlate with viral titer.

    Science.gov (United States)

    Bagnis, C; Chischportich, C; Imbert, A M; Van den Broeke, A; Cornet, V; Mannoni, P

    1997-01-01

    Relative transduction efficiency with retroviral vector-producing clones was assayed by cocultivating TF-1, a human CD34+ hematopoietic cell line and YR-2, a sheep B-lymphoid cell line, with LacZ containing vector-producing cells, and then by scoring the percentage of X-Gal+ cells. At the same time, viral titer was estimated by titration assay with murine fibroblasts. Results clearly demonstrated a lack of correlation between viral titer and efficiency of transduction into hematopoietic cells, which depends neither on the type of packaging cell line, PG-13 and GP-envAM12 in this study, nor on the type of LacZ containing retroviral vector. These results strongly favor consideration of interactions between producers and target cells of the study for the screening of producing cell lines.

  14. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  15. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-03-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β, Sonic Hedgehog (SHH, and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1 to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery.

  16. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks.

    Science.gov (United States)

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-03-28

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery.

  17. Molecular mechanism of cellular reception of ionizing radiation and of activation of signal transduction pathway

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    The author reviewed what in cells receives ionizing radiation as a stress and which signal transduction pathway is activated to induce the stress reaction in the following order: Activation of protein kinase C (PKC) pathway by radiation, activation of MAP kinase superfamily by radiation, induction of p53 function by radiation, and radiation exposure and stress reaction pathway. Conclusion was as follows: Cellular receptors to radiation can be cell membrane and DNA. Membrane reception of radiation induces activation of tyrosine kinase and sphingomyelinase, which resulting in activation of PKC- and MAP kinase-mediated signal transduction. The signal generated in the nucleus participates in regulation of cell cycle and in DNA repair. Therefore, it seems that irradiation of ionizing radiation gives energy to various cellular receptor sites as well as DNA, which generate various independent signals to be transduced and accumulated in the nucleus, and leading to cellular response. (K.H.). 63 refs.

  18. FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Borziak, Kirill [ORNL; Jouline, Igor B [ORNL

    2007-01-01

    Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similarity to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.

  19. Neural signal transduction aided by noise in multisynaptic excitatory and inhibitory pathways with saturation

    Science.gov (United States)

    Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2011-08-01

    We study the stochastic resonance phenomenon in saturating dynamical models of neural signal transduction, at the synaptic stage, wherein the noise in multipathways enhances the processing of neuronal information integrated by excitatory and inhibitory synaptic currents. For an excitatory synaptic pathway, the additive intervention of an inhibitory pathway reduces the stochastic resonance effect. However, as the number of synaptic pathways increases, the signal transduction is greatly improved for parallel multipathways that feature both excitation and inhibition. The obtained results lead us to the realization that the collective property of inhibitory synapses assists neural signal transmission, and a parallel array of neurons can enhance their responses to multiple synaptic currents by adjusting the contributions of excitatory and inhibitory currents.

  20. Hypergravity modifies the signal transduction of ionizing radiation through p53

    Energy Technology Data Exchange (ETDEWEB)

    Okaichi, Kumio; Usui, Aya; Okumura, Yutaka [Nagasaki Univ. (Japan). Atomic Disease Inst.; Ohnishi, Takeo [Nara Medical Univ., Kashihara (Japan)

    2002-12-01

    To determine the possible effect of hypergravity to modify the signal transduction of ionizing radiation, we analyzed the accumulation of p53 and the expression of p53-dependent genes, Waf-1 and Bax, using the western blot analysis. Hypergravity (20 x g) induced the accumulation of p53 in the human glioblastoma cell line A172 after 3 h of incubation. Low-dose (0.5 Gy) irradiation to the cells accumulated p53 1.5 h after irradiation, and induced Waf-1 and Bax. Under the condition of hypergravity (20 x g), the peak of p53 accumulation was shifted from 1.5 h to 3 h after irradiation, and the inductions of Waf-1 and Bax were suppressed entirely. These results indicate that hypergravity modifies the signal transduction of ionizing radiation through p53 in the cells. (author)

  1. Role of functionality in two-component signal transduction: A stochastic study

    Science.gov (United States)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

  2. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Jianfei Hu

    Full Text Available Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process.

  3. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

    Science.gov (United States)

    Zhang, Jingyu; Tian, Xiao-Jun; Xing, Jianhua

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery. PMID:27043642

  4. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    Science.gov (United States)

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  5. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda

    2007-01-01

    the extracellular environment in order to control basic cellular processes during embryonic and postnatal development, as well as in tissue homeostasis in adulthood. Consequently, defects in building of the cilium or in transport or function of ciliary signal proteins are associated with a series of pathologies......, including developmental disorders and cancer. In this review, we highlight recent examples of the mechanisms by which signal components are selectively targeted and transported to the ciliary membrane and we present an overview of the signal transduction pathways associated with primary and motile cilia......The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from...

  6. Effects of AC Coils Parameters on Transduction Efficiency of EMAT for Steel Plate Inspection

    Directory of Open Access Journals (Sweden)

    Xiaochun Song

    2014-01-01

    Full Text Available In order to improve the transduction efficiency of electromagnetic acoustic transducer (EMAT for steel plates inspection, the constitutive equation of magnetostrictive material was theoretically derived and simplified while the magnetostrictive force is parallel to the material surface. Based on the multiphysics field FEM, the effects of such excitation parameters as current, frequency, and pulse number in AC coils on magnetostrictive strain were mainly simulated, and the influence of the coil with different winding shapes on magnetostrictive strain was also analyzed. The simulation and experimental results indicate that magnetostrictive strain increases with a continuously increasing excitation current density, but it decreases with the increase of the frequency and pulse number of AC currents. Moreover, on condition that loop length and AC currents are held constant, spiral type coils have higher transduction efficiency than homocentric squares and figure-of-eight coils.

  7. Mechanobiology of cartilage: how do internal and external stresses affect mechanochemical transduction and elastic energy storage?

    Science.gov (United States)

    Silver, Frederick H; Bradica, Gino

    2002-12-01

    Articular cartilage is a multilayered structure that lines the surfaces of all articulating joints. It contains cells, collagen fibrils, and proteoglycans with compositions that vary from the surface layer to the layer in contact with bone. It is composed of several zones that vary in structure, composition, and mechanical properties. In this paper we analyze the structure of the extracellular matrix found in articular cartilage in an effort to relate it to the ability of cartilage to store, transmit, and dissipate mechanical energy during locomotion. Energy storage and dissipation is related to possible mechanisms of mechanochemical transduction and to changes in cartilage structure and function that occur in osteoarthritis. In addition, we analyze how passive and active internal stresses affect mechanochemical transduction in cartilage, and how this may affect cartilage behavior in health and disease.

  8. Two-component signal transduction system SaeRS positively regulates Staphylococcus epidermidis glucose metabolism.

    Science.gov (United States)

    Lou, Qiang; Qi, Yijun; Ma, Yuanfang; Qu, Di

    2014-01-01

    Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS). Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  9. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction.

    Science.gov (United States)

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2009-10-16

    The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.

  10. Involvement of Ca2+/CaM in the signal transduction of acetylcholine regulating stomatal movement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It has been known that the neurotransmitter acetylcholine (ACh) also exists in plants and is able to regulate the movement of stomata. In another aspect, Ca2+/CaM as the second messengers have a critical role of signal transduction in stomatal guard-cell. Here we showed that Ca2+/CaM were also involved in theACh regulated stomatal movement. In the medium containing Ca2+, the Ca2+ channel blockers (NIF and Ver) and CaM inhibitors (TFP and W7) could neutralize the ACh induced stomatal opening, however, they are ineffective in the medium containing K+. Those results indicated that Ca2+/CaM were involved in the signal transduction pathway of ACh regulating stomatal movement.

  11. Knowledge representation model for systems-level analysis of signal transduction networks.

    Science.gov (United States)

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang-Yup; Hanisch, Daniel; Park, Sunwon

    2004-01-01

    A Petri-net based model for knowledge representation has been developed to describe as explicitly and formally as possible the molecular mechanisms of cell signaling and their pathological implications. A conceptual framework has been established for reconstructing and analyzing signal transduction networks on the basis of the formal representation. Such a conceptual framework renders it possible to qualitatively understand the cell signaling behavior at systems-level. The mechanisms of the complex signaling network are explored by applying the established framework to the signal transduction induced by potent proinflammatory cytokines, IL-1beta and TNF-alpha The corresponding expert-knowledge network is constructed to evaluate its mechanisms in detail. This strategy should be useful in drug target discovery and its validation.

  12. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  13. Low Dose Histone Deacetylase Inhibitor, Depsipeptide (FR901228), Promotes Adenoviral Transduction in Human Rhabdomyosarcoma Cell Lines

    OpenAIRE

    Fariba Navid; Mischen, Blaine T.; Helman, Lee J.

    2004-01-01

    Purpose. Transduction of rhabdomyosarcoma (RMS) cells with adenoviral vectors for in vivo and in vitro applications has been limited by the low to absent levels of coxackie and adenovirus receptor (CAR). This study investigates the potential use of low doses of a histone deacetylase inhibitor, depsipeptide (FR901228), currently in Phase II human trials, to enhance adenoviral uptake in six rhabdomyosarcoma cell lines. Methods. Differences in adenoviral uptake in the presence and absence of dep...

  14. Regulation of human androgen receptor by corepressors and signal transduction in prostate cancer

    OpenAIRE

    2006-01-01

    The thesis primarily addresses the role of transcriptional corepressor and signal transduction cascades in regulating androgen receptor (AR) activity. AR is a ligand-activated transcription factor and is important for the development of male phenotype. Malfunctioning of AR function has been implicated in the progression of the prostate cancer (CaP). Clinical management of the CaP most often involves the administration of anti-hormones (Cas, CPA) that bind to AR and turn it transcr...

  15. Cultured lymphocytes from alcoholic subjects have altered cAMP signal transduction.

    OpenAIRE

    Nagy, L E; Diamond, I; Gordon, A.

    1988-01-01

    Previous work has shown that freshly isolated lymphocytes from alcoholic subjects show significantly reduced basal and adenosine receptor-stimulated cAMP levels. This decrease could be due to ethanol-induced cellular adaptation or to a genetic difference in the regulation of cAMP signal transduction. Therefore, we cultured human lymphocytes in defined medium without ethanol for 7-8 days and then examined differences in receptor-dependent cAMP accumulation between lymphocytes from alcoholic an...

  16. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner;

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  17. Sensing of aqueous phosphates by polymers with dual modes of signal transduction.

    Science.gov (United States)

    Aldakov, Dmitry; Anzenbacher, Pavel

    2004-04-21

    A new approach to sensing of aqueous phosphate-related anions based on chromogenic conductive polymers is demonstrated. This method utilizes synergy between low-level p-doping in a polythiophene polymer and hydrogen bonding to increase anion-sensor affinity. These chromogenic conductive polymers show anion-specific changes both in color and in conductivity upon increasing concentration of anions, thus providing two independent modes of signal transduction.

  18. Screening and identification of key signal transduction pathways in pulmonary silicotic fibrosis

    Institute of Scientific and Technical Information of China (English)

    薛荣

    2014-01-01

    Objective To investigate the differential gene expression profile of the lung tissues in experimental silicosis rats and to screen for and identify the key signal transduction pathways in pulmonary silicotic fibrosis.Methods A total of 80 rats were randomly divided into control group(n=40)and silica-instilled group(n=40).Each group was equally divided into five subgroups,and each subgroup was treated at 1,7,14,21,

  19. Signal transduction of erythrocytes after specific binding of ecdysterone and cholesterol immobilized on nanodispersed magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mykhaylyk, O.M. E-mail: helek@iptelecom.net.ua; Kotzuruba, A.V.; Buchanevich, O.M.; Korduban, A.M.; Meged, E.F.; Gulaya, N.M

    2001-07-01

    Concurrent binding of cholesterol and ecdysterone immobilized on nanodispersed magnetite to intact rat erythrocytes was investigated. Several binding components on erythrocyte plasma membrane with different affinities were revealed in the range of 10{sup -15}-10{sup -8} M. The specific binding modulates signal transduction through adenylate cyclase and guanylate cyclase systems as manifested by the decrease in cAMP and increase in cGMP second messenger production.

  20. Signal transduction by erythrocytes on specific binding of doxorubicin immobilized on nanodispersed magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mykhaylyk, Olga [Institute Applied Problems Physics and Biophysics, NAS, Sluzhbova 3, UA-03142 Kyiv (Ukraine)]. E-mail: Olga.Mykhaylyk@gmx.net; Kotzuruba, Anatoliy [Institute of Biochemistry, NAS, Leontovicha 9, UA-01030 Kyiv (Ukraine); Dudchenko, Nataliya [Institute Applied Problems Physics and Biophysics, NAS, Sluzhbova 3, UA-03142 Kyiv (Ukraine); Toerok, Gyula [Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O. Box 49 (Hungary)

    2005-05-15

    Two specific binding sites for doxorubicin were revealed at the plasma membrane of human erythrocytes on investigation of the binding of doxorubicin magnetic nanoconjugates. Free and conjugated doxorubicins modulated signal transduction in erythrocytes in a similar way. Both up-regulated nitric oxide and cyclic GMP (cGMP) and down-regulated cyclic AMP (cAMP) production and stabilize the membranes of damaged erythrocytes.

  1. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    OpenAIRE

    Kotwal, Girish J.; Steven Hatch; Marshall, William L.

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a funda...

  2. Transduction and apoptosis induction in the rat prostate, using adenovirus vectors.

    Science.gov (United States)

    Kirkman, W; Chen, P; Schroeder, R; Feneley, M R; Rodriguez, R; Wickham, T J; King, C R; Bruder, J T

    2001-08-10

    Proapoptotic adenovirus vectors offer great promise for the treatment of cancer and nonmalignant conditions. Benign prostate hyperplasia (BPH) is a common nonmalignant enlargement of the prostate that involves epithelial, stromal, and smooth muscle components of the gland. We tested the hypothesis that an adenovirus vector expressing Fas ligand can be used to induce apoptosis in the prostate. We analyzed the efficiency of transduction and apoptosis induction in primary cultures of human prostate cells after adenovirus-mediated gene transfer. Efficient transduction was observed in primary prostate epithelial cells. Stromal and smooth muscle cells were more difficult to transduce, as no coxsackie-adenovirus receptor (CAR) expression was detectable on these cells. However, transduction was achieved in these cells when the multiplicity of infection was increased to 100 focal-forming units per cell, or when the vectors were delivered as calcium phosphate precipitates. Infection of all three primary prostate cell types with an adenovirus vector that expresses Fas ligand (AdFasL/G) resulted in rapid apoptosis. Direct injection of the rat prostate with an adenovirus vector carrying luciferase resulted in substantial luciferase expression. TUNEL analysis demonstrated that AdFasL/G administration induced low-level apoptosis in prostatic epithelial cells throughout the gland. As a first step toward enhancing the efficiency of prostate transduction in vivo, we tested an adenovirus vector that was engineered to have an expanded tropism. This vector, AdZ.F2K(pK7), was 10- to 500-fold more efficient than unmodified vectors in transducing prostate epithelial, smooth muscle, and stromal cells in culture. Moreover, AdZ.F2K(pK7) was more efficient than an unmodified vector at transducing the rat prostate in vivo, although the effect was dose dependent.

  3. Correlative study on the JAK-STAT/PSMβ3 signal transduction pathway in asthenozoospermia

    OpenAIRE

    Li, Junguo; ZHANG Li; LI, Bing

    2016-01-01

    The aim of the present study was to investigate the possible mechanism of Janus kinase (JAK)-signal transduction and activator of transcription (STAT)/PSMβ3 signaling in the occurrence of asthenozoospermia. We examined seminal fluid samples from 30 cases of asthenozoospermia and 30 healthy controls. Sperm was collected using the Percoll density gradient centrifugation method. The expression of JAK, STAT and PSMβ3 mRNA was assessed by reverse-transcription quantitative PCR and the protein leve...

  4. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  5. TNF-alpha/IL-1/NF-kappaB transduction pathway in human cancer prostate.

    Science.gov (United States)

    Royuela, M; Rodríguez-Berriguete, G; Fraile, B; Paniagua, R

    2008-10-01

    TNFalpha exerts apoptosis throughout an intracellular transduction pathway that involves the kinase proteins TRAF-2 (integration point of apoptotic and survival signals), ASK1 (pro-apoptotic protein), MEK-4 (p38 activator and metastasis suppressor gene), JNK (stress mitogen activated protein kinase) and the transcription factor AP-1. TNFalpha also exerts proliferation by p38 activation, or when TRAF-2 simultaneously induces the transcription factor NF-kappaB by NIK. NIK and p38 may also be activated by IL-1. P38 activated several transcription factors such as Elk-1, ATF-2 and NF-kappaB. NIK also may activate NF-kappaB. The aim of the present article was to evaluate the different components of this TNFalpha/IL-1 transduction pathway in human prostate carcinoma (PC) in comparison with normal human prostate. In prostate cancer, pro-apoptotic TNFalpha/AP-1 pathway is probably inactivated by different factors such as p21 (at ASK-1 level) and bcl-2 (at JNK level), or diverted towards p38 or NIK activation. IL-1alpha enhances proliferation through IL-1RI that activates either NIK or p38 transduction pathway. P38 and NIK activate different transcription factors related with cell proliferation and survival such as ATF-2, Elk-1 or NF-kappaB. In order to search a possible target to cancer prostate treatment we proposed that inhibition of several proinflamatory cytokines such as IL-1 and TNFalpha might be a possible target for PC treatment, because decrease the activity of all transduction pathway members that activate transcription factors as NF-kappaB, Elk-1 or ATF-2.

  6. Evolution and phyletic distribution of two-component signal transduction systems

    OpenAIRE

    Wuichet, Kristin; Cantwell, Brian J.; Zhulin, Igor B.

    2010-01-01

    Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We ...

  7. Physiological performance of warm-adapted marine ectotherms: Thermal limits of mitochondrial energy transduction efficiency.

    Science.gov (United States)

    Martinez, Eloy; Hendricks, Eric; Menze, Michael A; Torres, Joseph J

    2016-01-01

    Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial energy transduction in liver mitochondria from the striped mojarra (Eugerres plumieri), the whitemouth croaker (Micropogonias furnieri) and the palometa (Trachinotus goodei), to those of the subtropical pinfish (Lagodon rhomboides) and the blue runner (Caranx crysos). Mitochondrial function was assayed at temperatures ranging from 10 to 40°C and results obtained for both tropical and subtropical species showed a reduction in the energy transduction efficiency of the oxidative phosphorylation (OXPHOS) system in most species studied at temperatures below whole-organism critical temperature thresholds. Our results show a loss of coupling between O2 consumption and ATP production before the onset of the critical thermal maxima, indicating that elevated temperature may severely impact the yield of ATP production per carbon unit oxidized. As warming trends are projected for tropical regions, increasing water temperatures in tropical estuaries and coral reefs could impact long-term growth and reproductive performance in tropical organisms, which are already close to their upper thermal limit.

  8. Histidine Phosphotransfer Proteins in Fungal Two-Component Signal Transduction Pathways

    OpenAIRE

    2013-01-01

    The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, s...

  9. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  10. The shear stress of it all: the cell membrane and mechanochemical transduction

    OpenAIRE

    White, Charles R; Frangos, John A.

    2007-01-01

    As the inner lining of the vessel wall, vascular endothelial cells are poised to act as a signal transduction interface between haemodynamic forces and the underlying vascular smooth-muscle cells. Detailed analyses of fluid mechanics in atherosclerosis-susceptible regions of the vasculature reveal a strong correlation between endothelial cell dysfunction and areas of low mean shear stress and oscillatory flow with flow recirculation. Conversely, steady shear stress stimulates cellular respons...

  11. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  12. Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Eichwald, C.; Kaiser, F. [Technical Univ. of Darmstadt (Germany)

    1995-06-01

    Experiments on the effects of extremely-low-frequency (ELF) electric and magnetic fields on cells of the immune system, T-lymphocytes in particular, suggest that the external field interacts with the cell at the level of intracellular signal transduction pathways. These are directly connected with changes in the calcium-signaling processes of the cell. Based on these findings, a theoretical model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal transduction pathway is presented. The authors discuss the possibility that the external field acts on the kinetics of the signal transduction between the activated receptors at the cell membrane and the G-proteins. It is shown that, depending on the specific combination of cell internal biochemical and external physical parameters, entirely different responses of the cell can occur. The authors compare the effects of a coherent (periodic) modulation and of incoherent perturbations (noise). The model and the calculations are based on the theory of self-sustained, nonlinear oscillators. It is argued that these systems form an ideal basis for information-encoding processes in biological systems.

  13. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis.

    Science.gov (United States)

    Daiker, Viktor; Lebert, Michael; Richter, Peter; Häder, Donat-Peter

    2010-04-01

    The unicellular flagellate Euglena gracilis shows a negative gravitactic behavior. This is based on physiological mechanisms which in the past have been indirectly assessed. Meanwhile, it was possible to isolate genes involved in the signal transduction chain of gravitaxis. The DNA sequences of five calmodulins were found in Euglena, one of which was only known in its protein structure (CaM.1); the other four are new. The biosynthesis of the corresponding proteins of CaM.1-CaM.5 was inhibited by means of RNA interference to determine their involvement in the gravitactic signal transduction chain. RNAi of CaM.1 inhibits free swimming of the cells and pronounced cell-form aberrations. The division of cells was also hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Blockage of CaM.3 to CaM. 5 did not impair gravitaxis. In contrast, the blockage of CaM.2 has only a transient and not pronounced influence on motility and cell form, but leads to a total loss of gravitactic orientation for more than 30 days. This indicates that CaM.2 is an element in the signal transduction chain of gravitaxis in E. gracilis. The results are discussed with regard to the current working model of gravitaxis in E. gracilis.

  14. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7–742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  15. A biosensor for urea from succinimide-modified acrylic microspheres based on reflectance transduction.

    Science.gov (United States)

    Ulianas, Alizar; Heng, Lee Yook; Ahmad, Musa

    2011-01-01

    New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294) for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97) with a limit of detection of 9.97 μM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5) with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  16. Interplay of Specific Trans- and Juxtamembrane Interfaces in Plexin A3 Dimerization and Signal Transduction.

    Science.gov (United States)

    Barton, Rachael; Khakbaz, Pouyan; Bera, Indrani; Klauda, Jeffery B; Iovine, M Kathryn; Berger, Bryan W

    2016-09-01

    Plexins are transmembrane proteins that serve as guidance receptors during angiogenesis, lymphangiogenesis, neuronal development, and zebrafish fin regeneration, with a putative role in cancer metastasis. Receptor dimerization or clustering, induced by extracellular ligand binding but modulated in part by the plexin transmembrane (TM) and juxtamembrane (JM) domains, is thought to drive plexin activity. Previous studies indicate that isolated plexin TM domains interact through a conserved, small-x3-small packing motif, and the cytosolic JM region interacts through a hydrophobic heptad repeat; however, the roles and interplay of these regions in plexin signal transduction remain unclear. Using an integrated experimental and simulation approach, we find disruption of the small-x3-small motifs in the Danio rerio Plexin A3 TM domain enhances dimerization of the TM-JM domain by enhancing JM-mediated dimerization. Furthermore, mutations of the cytosolic JM heptad repeat that disrupt dimerization do so even in the presence of TM domain mutations. However, mutations to the small-x3-small TM interfaces also disrupt Plexin A3 signaling in a zebrafish axonal guidance assay, indicating the importance of this TM interface in signal transduction. Collectively, our experimental and simulation results demonstrate that multiple TM and JM interfaces exist in the Plexin A3 homodimer, and these interfaces independently regulate dimerization that is important in Plexin A3 signal transduction.

  17. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    Science.gov (United States)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  18. Image informatics for studying signal transduction in cells interacting with 3D matrices

    Science.gov (United States)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  19. Influence of arsenate and arsenite on signal transduction pathways: an update

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Vaillancourt, Richard R. [The University of Arizona College of Pharmacy, Department of Pharmacology and Toxicology, Tucson, AZ (United States)

    2010-08-15

    Arsenic has been a recognized contaminant and toxicant, as well as a medicinal compound throughout human history. Populations throughout the world are exposed to arsenic and these exposures have been associated with a number of human cancers. Not much is known about the role of arsenic as a human carcinogen and more recently its role in non-cancerous diseases, such as cardiovascular disease, hypertension and diabetes mellitus have been uncovered. The health effects associated with arsenic are numerous and the association between arsenic exposure and human disease has intensified the search for molecular mechanisms that describe the biological activity of arsenic in humans and leads to the aforementioned disease states. Arsenic poses a human health risk due in part to the regulation of cellular signal transduction pathways and over the last few decades, some cellular mechanisms that account for arsenic toxicity, as well as, signal transduction pathways have been discovered. However, given the ubiquitous nature of arsenic in the environment, making sense of all the data remains a challenge. This review will focus on our knowledge of signal transduction pathways that are regulated by arsenic. (orig.)

  20. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensin Ⅱ

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 姚婉贞; 庞永政; 唐朝枢

    2004-01-01

    Background Human urotensin Ⅱ (UⅡ) is the most potent mammalian vasoconstrictor identified so far. Our previous study showed that UⅡ is a potent mitogen of airway smooth muscle cells (ASMC) inducing ASMC proliferation in a dose-dependent manner. The signal transduction pathway of UⅡ mitogenic effect remains to be clarified. This study was conducted to investigate the signal transduction pathway in the proliferation of ASMC induced by UⅡ.Methods In primary cultures of rat ASMCs, activities of protein kinase C (PKC), mitogen-activated protein kinase (MAPK) and calcineurin (CaN) induced by UⅡ were measured. The effect of CaN on PKC and MAPK was studied by adding cyclosporin A (CsA), a specific inhibitor of CaN. Using H7 and PD98059, inhibitors of PKC and MAPK, respectively, to study the effect of PKC and MAPK on CaN. The cytosolic free calcium concentration induced by UⅡ was measured using Fura-2/AM. Results UⅡ 10-7 mol/L stimulated ASMC PKC and MAPK activities by 44% and 24% (P0.05). CsA 10-6 mol/L inhibited UⅡ-stimulated PKC activity by 14% (P0.05).Conclusions UⅡ increases cytosolic free calcium concentration and activates PKC, MAPK and CaN. The signal transduction pathway between PKC and CaN has cross-talk.

  1. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2011-08-01

    Full Text Available New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294 for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97 with a limit of detection of 9.97 mM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5 with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  2. A new method to identify dynamic transduction properties of aortic baroreceptors.

    Science.gov (United States)

    Sugimachi, M; Imaizumi, T; Sunagawa, K; Hirooka, Y; Todaka, K; Takeshita, A; Nakamura, M

    1990-03-01

    We identified, in 17 alpha-chloralose-anesthetized rabbits, the dynamic transduction characteristics of the aortic arch baroreceptors using a "white-noise technique." We recorded aortic pressure and aortic depressor nerve activity while perturbing pressure by rapid, intermittent ventricular pacing (400 beats/min). Dividing the cross-power spectrum between nerve activity and pressure by the power spectrum of pressure yielded the transfer function. The gain of the transfer function increased threefold as the frequency increased from 0.005 to 5 Hz, suggesting that the baroreceptors responded primarily to dynamic rather than to static changes in pressure. To quantify the nonlinear properties of baroreceptor transduction, we compared measured instantaneous nerve activity with that linearly predicted. We demonstrated that the major nonlinearity was attributable to "threshold". The overall baroreceptor transduction properties could be represented by a cascade connection of a linear subsystem followed by a nonlinear subsystem with threshold. The white-noise technique made it possible to identify the unbiased linear properties in a nonlinear system, and thus was very useful in identifying complex biological systems.

  3. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator

    CERN Document Server

    Srinivasan, Kartik; Rakher, Matthew T; Davanco, Marcelo; Aksyuk, Vladimir

    2010-01-01

    Sensitive transduction of the motion of a microscale cantilever is central to many applications in mass, force, magnetic resonance, and displacement sensing. Reducing cantilever size to nanoscale dimensions can improve the bandwidth and sensitivity of techniques like atomic force microscopy, but current optical transduction methods suffer when the cantilever is small compared to the achievable spot size. Here, we demonstrate sensitive optical transduction in a monolithic cavity-optomechanical system in which a sub-picogram silicon cantilever with a sharp probe tip is separated from a microdisk optical resonator by a nanoscale gap. High quality factor (Q ~ 10^5) microdisk optical modes transduce the cantilever's MHz frequency thermally-driven vibrations with a displacement sensitivity of ~ 4.4x10^-16 m\\sqrt[2]{Hz} and bandwidth > 1 GHz, and a dynamic range > 10^6 is estimated for a 1 s measurement. Optically-induced stiffening due to the strong optomechanical interaction is observed, and engineering of probe d...

  4. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates.

    Science.gov (United States)

    Samaranch, Lluis; Salegio, Ernesto A; San Sebastian, Waldy; Kells, Adrian P; Foust, Kevin D; Bringas, John R; Lamarre, Clementine; Forsayeth, John; Kaspar, Brian K; Bankiewicz, Krystof S

    2012-04-01

    Widespread distribution of gene products at clinically relevant levels throughout the CNS has been challenging. Adeno-associated virus type 9 (AAV9) vector has been reported as a good candidate for intravascular gene delivery, but low levels of preexisting antibody titers against AAV in the blood abrogate cellular transduction within the CNS. In the present study we compared the effectiveness of vascular delivery and cerebrospinal fluid (CSF) delivery of AAV9 in transducing CNS tissue in nonhuman primates. Both delivery routes generated similar distribution patterns, although we observed a more robust level of transduction after CSF delivery. Consistent with previous reports administering AAV9, we found greater astrocytic than neuronal tropism via both routes, although we did find a greater magnitude of CNS transduction after CSF delivery compared with intravascular delivery. Last, we have demonstrated that delivery of AAV9 into the CSF does not shield against AAV antibodies. This has obvious implications when developing and/or implementing any clinical trial studies.

  5. De novo designed protein transduction domain mimics from simple synthetic polymers.

    Science.gov (United States)

    Tezgel, A Özgül; Telfer, Janice C; Tew, Gregory N

    2011-08-08

    Protein transduction domains (PTDs) that readily transverse cellular membranes are of great interest and are attractive tools for the intracellular delivery of bioactive molecules. Learning to program synthetic polymers and oligomers with the appropriate chemical information to capture adequately the biological activity of proteins is critical to our improved understanding of how these natural molecules work. In addition, the versatility of these synthetic mimics provides the opportunity to discover analogs with superior properties compared with their native sequences. Here we report the first detailed structure-activity relationship of a new PTD family of polymers based on a completely abiotic backbone. The synthetic approach easily allows doubling the density of guanidine functional groups, which increases the transduction efficiency of the sequences. Cellular uptake studies on three different cell lines (HEK 293T, CHO, and Jurkat T cells) confirm that these synthetic analogs are highly efficient novel protein transduction domain mimics (PTDMs), which are more effective than TAT(49-57) and nonaarginine (R9) and also highlight the usefulness of polymer chemistry at the chemistry-biology interface.

  6. Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress.

    Science.gov (United States)

    Volkov, Alexander G; O'Neal, Lawrence; Volkova, Maia I; Markin, Vladislav S

    2013-10-15

    Leaf movements in Mimosa pudica, are in response to thermal stress, touch, and light or darkness, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of the M. pudica shows elastic properties. We have found that the movements of the petiole, or pinnules, are accompanied by a change of the pulvinus morphing structures. After brief flaming of a pinna, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of electrolytes between these parts of the pulvinus; as a result of these changes the petiole falls. During the relaxation of the petiole, the process goes in the opposite direction. Ion and water channel blockers, uncouplers as well as anesthetic agents diethyl ether or chloroform decrease the speed of alert wave propagation along the plant. Brief flaming of a pinna induces bidirectional propagation of electrical signal in pulvini. Transduction of electrical signals along a pulvinus induces generation of an action potential in perpendicular direction between extensor and flexor sides of a pulvinus. Inhibition of signal transduction and mechanical responses in M. pudica by volatile anesthetic agents chloroform or by blockers of voltage gated ion channels shows that the generation and propagation of electrical signals is a primary effect responsible for turgor change and propagation of an excitation. There is an electrical coupling in a pulvinus similar to the electrical synapse in the animal nerves. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Transduction of human primitive repopulating hematopoietic cells with lentiviral vectors pseudotyped with various envelope proteins.

    Science.gov (United States)

    Kim, Yoon-Sang; Wielgosz, Matthew M; Hargrove, Phillip; Kepes, Steven; Gray, John; Persons, Derek A; Nienhuis, Arthur W

    2010-07-01

    Lentiviral vectors are useful for transducing primitive hematopoietic cells. We examined four envelope proteins for their ability to mediate lentiviral transduction of mobilized human CD34(+) peripheral blood cells. Lentiviral particles encoding green fluorescent protein (GFP) were pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G), the amphotropic (AMPHO) murine leukemia virus envelope protein, the endogenous feline leukemia viral envelope protein or the feline leukemia virus type C envelope protein. Because the relative amount of genome RNA per ml was similar for each pseudotype, we transduced CD34(+) cells with a fixed volume of each vector preparation. Following an overnight transduction, CD34(+) cells were transplanted into immunodeficient mice which were sacrificed 12 weeks later. The average percentages of engrafted human CD45(+) cells in total bone marrow were comparable to that of the control, mock-transduced group (37-45%). Lenti-particles pseudotyped with the VSV-G envelope protein transduced engrafting cells two- to tenfold better than particles pseudotyped with any of the gamma-retroviral envelope proteins. There was no correlation between receptor mRNA levels for the gamma-retroviral vectors and transduction efficiency of primitive hematopoietic cells. These results support the use of the VSV-G envelope protein for the development of lentiviral producer cell lines for manufacture of clinical-grade vector.

  8. Excitation and Adaptation in Bacteria–a Model Signal Transduction System that Controls Taxis and Spatial Pattern Formation

    Directory of Open Access Journals (Sweden)

    Chuan Xue

    2013-04-01

    Full Text Available The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a “derivative sensor” with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions.

  9. Effects of Electrode Surface Morphology on the Transduction of Ionic Polymer-Metal Composites

    Science.gov (United States)

    Palmre, Viljar

    Ionic polymer-metal composites (IPMCs) are innovative smart materials that exhibit electromechanical and mechanoelectrical transduction (conversion of electrical input into mechanical deformation and vice versa). Due to low driving voltage (Pd-Pt electrodes-based IPMCs, with the aim to improve the electrode surface design and thereby enhance the transduction performance of the material. Firstly, the synthesis techniques are developed to control and manipulate the surface structure of the mentioned electrodes through the electroless plating process. Using these techniques, IPMCs with different electrode surface structures are fabricated. The changes in the electrode surface morphology and the resulting effects on the material's electromechanical, mechanoelectrical, electrochemical and mechanical properties area examined and analyzed. This study shows that increasing the impregnation-reduction cycles under appropriate conditions leads to the formation and growth of platinum nanoparticles with sharp tips and edges---called Pt nanothorn assemblies---at the polymer-electrode interface. IPMCs designed with such nanostructured Pt electrodes are first to be reported. The experiments demonstrate that the formation and growth of Pt nanothorn assemblies at the electrode interface increases considerably the total transported charge during the transduction, thereby increasing significantly the displacement and blocking force output of IPMC. The improvement of the mentioned electromechanical properties was 3--5 times, depending on the input voltage and frequency used. Also, the peak mechanoelectrically induced voltage increased somewhat, although the overall effect of the surface structure was relatively low compared to the electromechanical transduction. The Pd-Pt electrodes-based composite systems are introduced due to their unique highly capacitive palladium inner surface layer. It is shown that by controlling the impregnation time in Pd complex solution during the

  10. Recombinant Mitochondrial Transcription Factor A with N-terminal Mitochondrial Transduction Domain Increases Respiration and Mitochondrial Gene Expression

    OpenAIRE

    Iyer, Shilpa; Thomas, Ravindar R.; Portell, Francisco R.; Dunham, Lisa D.; Quigley, Caitlin K.; Bennett, James P

    2009-01-01

    We developed a scalable procedure to produce human mitochondrial transcription factor A (TFAM) modified with an N-terminal protein transduction domain (PTD) and mitochondrial localization signal (MLS) that allow it to cross membranes and enter mitochondria through its “mitochondrial transduction domain” (MTD=PTD+MLS). Alexa488-labeled MTD-TFAM rapidly entered the mitochondrial compartment of cybrid cells carrying the G11778A LHON mutation. MTD-TFAM reversibly increased respiration and levels ...

  11. Inconsistent Transduction

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.

    2017-01-01

    with the objects in question on their own premises. Therefore, tuning into the “not-knowing” requires expanding the perspective to encompass non-human forms of knowledge incorporated through an object-oriented ontological line of thinking. By switching the focus from the human perspective to that of the objects...... of translations within and between objects. As a consequence, the aesthetic dimension and the knowledge derived from artistic research struggle to position themselves as more than candy on the surface of the scientific field unless considered within alternative knowledge paradigms that acknowledge...

  12. Inconsistent Transduction

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.

    2017-01-01

    argue that, to manifest the conditions hidden in knowledge and the unconscious transferences that accompany the need to be scientific, one must be critical of traditional understandings of knowledge production. Therefore, it is crucial to explore understandings of knowledge production that are directed...... of translations within and between objects. As a consequence, the aesthetic dimension and the knowledge derived from artistic research struggle to position themselves as more than candy on the surface of the scientific field unless considered within alternative knowledge paradigms that acknowledge...

  13. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-05-23

    Protein-protein interactions are critically dependent on just a few residues (“hot spots”) at the interfaces. Hot spots make a dominant contribution to the binding free energy and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there exists a need for accurate and reliable computational hot spot prediction methods. Compared to the supervised hot spot prediction algorithms, the semi-supervised prediction methods can take into consideration both the labeled and unlabeled residues in the dataset during the prediction procedure. The transductive support vector machine has been utilized for this task and demonstrated a better prediction performance. To the best of our knowledge, however, none of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue prediction, by considering all the three semisupervised assumptions using nonlinear models. Our algorithm, IterPropMCS, works in an iterative manner. In each iteration, the algorithm first propagates the labels of the labeled residues to the unlabeled ones, along the shortest path between them on a graph, assuming that they lie on a nonlinear manifold. Then it selects the most confident residues as the labeled ones for the next iteration, according to the cluster and smoothness criteria, which is implemented by a nonlinear density estimator. Experiments on a benchmark dataset, using protein structure-based features, demonstrate that our approach is effective in predicting hot spots and compares favorably to other available methods. The results also show that our method outperforms the state-of-the-art transductive learning methods.

  14. Developing Itô stochastic differential equation models for neuronal signal transduction pathways.

    Science.gov (United States)

    Manninen, Tiina; Linne, Marja-Leena; Ruohonen, Keijo

    2006-08-01

    Mathematical modeling and simulation of dynamic biochemical systems are receiving considerable attention due to the increasing availability of experimental knowledge of complex intracellular functions. In addition to deterministic approaches, several stochastic approaches have been developed for simulating the time-series behavior of biochemical systems. The problem with stochastic approaches, however, is the larger computational time compared to deterministic approaches. It is therefore necessary to study alternative ways to incorporate stochasticity and to seek approaches that reduce the computational time needed for simulations, yet preserve the characteristic behavior of the system in question. In this work, we develop a computational framework based on the Itô stochastic differential equations for neuronal signal transduction networks. There are several different ways to incorporate stochasticity into deterministic differential equation models and to obtain Itô stochastic differential equations. Two of the developed models are found most suitable for stochastic modeling of neuronal signal transduction. The best models give stable responses which means that the variances of the responses with time are not increasing and negative concentrations are avoided. We also make a comparative analysis of different kinds of stochastic approaches, that is the Itô stochastic differential equations, the chemical Langevin equation, and the Gillespie stochastic simulation algorithm. Different kinds of stochastic approaches can be used to produce similar responses for the neuronal protein kinase C signal transduction pathway. The fine details of the responses vary slightly, depending on the approach and the parameter values. However, when simulating great numbers of chemical species, the Gillespie algorithm is computationally several orders of magnitude slower than the Itô stochastic differential equations and the chemical Langevin equation. Furthermore, the chemical

  15. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  16. An Integrated Model of Epidermal Growth Factor Receptor Trafficking and Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Ewald, Jonathan A.; Dixon, David A.; Wiley, H. S.

    2003-08-01

    Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a probability weighted-dynamic Monte Carlo simulation. Our model consists of hundreds of distinct endocytic compartments and about 13,000 reactions/events that occur over a broad spatio-temporal range. By using a realistic multi-compartment model, we can investigate the distribution of the receptors among cellular compartments as well as their potential signal transduction characteristics. Our new model also allows the incorporation of physio-chemical aspects of ligand-receptor interactions, such as pH-dependent binding in different endosomal compartments. To determine the utility of this approach, we simulated the differential activation of the EGFR by two of its ligands, epidermal growth factor (EGF) and transforming growth factor- alpha (TGF-a). Our simulations predict that when EGFR is activated with TGF-a, receptor activation is biased toward the cell surface whereas EGF produces a signaling bias towards the endosomal compartment. Experiments confirm these predictions from our model and simulations. Our model accurately predicts the kinetics and extent of receptor down-regulation induced by either EGF or TGF-a. Our results suggest that receptor trafficking controls the compartmental bias of signal transduction, rather than simply modulating signal magnitude. Our model provides a new approach to evaluating the complex effect of receptor trafficking on signal transduction. Importantly, the stochastic and compartmental nature of the simulation allows these models to be directly tested by high-throughput approaches, such as quantitative image analysis.

  17. Do signal transduction cascades influence survival in triple-negative breast cancer? A preliminary study

    Science.gov (United States)

    Mumm, Jan-Niclas; Kölbl, Alexandra C; Jeschke, Udo; Andergassen, Ulrich

    2016-01-01

    Background Triple-negative breast cancer (TNBC) is a rather aggressive form of breast cancer, comprised by early metastasis formation and reduced overall survival of the affected patients. Steroid hormone receptors and the human epidermal growth factor receptor 2 are not overexpressed, limiting therapeutic options. Therefore, new treatment options have to be investigated. The aim of our preliminary study was to detect coherences between some molecules of intracellular signal transduction pathways and survival of patients with TNBC, in order to obtain some hints for new therapeutical solutions. Methods Thirty-one paraffin-embedded tumor tissue samples, which were determined to be negative for steroid hormone receptors as well as human epidermal growth factor receptor 2, were immunohistochemically stained for a number of signal transduction molecules from several signaling pathways. β-Catenin, HIF1α, MCL, Notch1, LRP6, XBP1, and FOXP3 were stained with specific antibodies, and their staining was correlated with patient survival by Kaplan–Meier analyses. Results Only two of the investigated molecules have shown correlation with overall survival. Cytoplasmic staining of HIF1α and centro-tumoral lymphocyte FOXP3 staining showed statistically significant correlations with survival. Conclusion The coherence of signal transduction molecules with survival of patients with TNBC is still controversially discussed in the literature. Our study comprises one more mosaic stone in the elucidation of these intracellular processes and their influences on patient outcome. Lots of research still has to be done in this field, but it would be worthwhile as it may offer new therapeutic targets for a group of patients with breast cancer, which is still hard to treat. PMID:27307757

  18. Signal transduction pathway analysis in fibromatosis: receptor and nonreceptor tyrosine kinases☆

    Science.gov (United States)

    Cates, Justin M. M.; Black, Jennifer O.; Itani, Doha M.; Fasig, John H.; Keedy, Vicki L.; Hande, Kenneth R.; Whited, Brent W.; Homlar, Kelly C.; Halpern, Jennifer L.; Holt, Ginger E.; Schwartz, Herbert S.; Coffin, Cheryl M.

    2014-01-01

    Summary Despite reports of receptor tyrosine kinase activation in desmoid-type fibromatosis, therapeutic benefits of kinase inhibitor therapy are unpredictable. Variability in signal transduction or cellular kinases heretofore unevaluated in desmoid tumors may be responsible for these inconsistent responses. In either case, a better understanding of growth regulatory signaling pathways is necessary to assess the theoretical potential of inhibitor therapy. Immunohistochemical analysis of tyrosine kinases and activated isoforms of downstream signal transduction proteins was performed on a tissue microarray containing 27 cases of desmoid-type fibromatosis and 14 samples of scar; 6 whole sections of normal fibrous tissue were studied for comparison. Platelet-derived growth factor receptor, β type, and focal adhesion kinase 1 were expressed in all desmoid tumors and healing scars but only 80% and 50% of nonproliferative fibrous tissue samples, respectively. Hepatocyte growth factor receptor was detected in 89% of desmoids and all scars tested, but not in any of the fibrous tissue samples. Epidermal growth factor receptor was detected in only 12% of desmoids and not in scar or fibrous tissue. Mast/stem cell growth factor receptor, receptor tyrosine–protein kinase erbB-2, and phosphorylated insulin-like growth factor 1 receptor/insulin receptor were negative in all study cases. Variable levels of phosphorylated downstream signal transduction molecules RAC-α/β/γ serine/threonine-protein kinase, mitogenactivated protein kinase, and signal transducer and activator of transcription-3 were observed in desmoids (58%, 62%, and 67%), scar tissues (100%, 86%, and 86%), and fibrous tissue (33%, 17%, and 17%). These results indicate that tyrosine kinase signaling is active in both fibromatosis and healing scar, but not in most nonproliferating fibrous tissues. Although platelet-derived growth factor receptor, β type, is expressed ubiquitously in desmoids, the kinases driving

  19. Signal transduction pathway analysis in fibromatosis: receptor and nonreceptor tyrosine kinases.

    Science.gov (United States)

    Cates, Justin M M; Black, Jennifer O; Itani, Doha M; Fasig, John H; Keedy, Vicki L; Hande, Kenneth R; Whited, Brent W; Homlar, Kelly C; Halpern, Jennifer L; Holt, Ginger E; Schwartz, Herbert S; Coffin, Cheryl M

    2012-10-01

    Despite reports of receptor tyrosine kinase activation in desmoid-type fibromatosis, therapeutic benefits of kinase inhibitor therapy are unpredictable. Variability in signal transduction or cellular kinases heretofore unevaluated in desmoid tumors may be responsible for these inconsistent responses. In either case, a better understanding of growth regulatory signaling pathways is necessary to assess the theoretical potential of inhibitor therapy. Immunohistochemical analysis of tyrosine kinases and activated isoforms of downstream signal transduction proteins was performed on a tissue microarray containing 27 cases of desmoid-type fibromatosis and 14 samples of scar; 6 whole sections of normal fibrous tissue were studied for comparison. Platelet-derived growth factor receptor, β type, and focal adhesion kinase 1 were expressed in all desmoid tumors and healing scars but only 80% and 50% of nonproliferative fibrous tissue samples, respectively. Hepatocyte growth factor receptor was detected in 89% of desmoids and all scars tested, but not in any of the fibrous tissue samples. Epidermal growth factor receptor was detected in only 12% of desmoids and not in scar or fibrous tissue. Mast/stem cell growth factor receptor, receptor tyrosine-protein kinase erbB-2, and phosphorylated insulin-like growth factor 1 receptor/insulin receptor were negative in all study cases. Variable levels of phosphorylated downstream signal transduction molecules RAC-α/β/γ serine/threonine-protein kinase, mitogen-activated protein kinase, and signal transducer and activator of transcription-3 were observed in desmoids (58%, 62%, and 67%), scar tissues (100%, 86%, and 86%), and fibrous tissue (33%, 17%, and 17%). These results indicate that tyrosine kinase signaling is active in both fibromatosis and healing scar, but not in most nonproliferating fibrous tissues. Although platelet-derived growth factor receptor, β type, is expressed ubiquitously in desmoids, the kinases driving cell

  20. Preparation and functional analysis of recombinant protein transduction domain-metallothionein fusion proteins.

    Science.gov (United States)

    Lim, Kwang Suk; Won, Young-Wook; Park, Yong Soo; Kim, Yong-Hee

    2010-08-01

    In order for proteins to be used as pharmaceuticals, delivery technologies need to be developed to overcome biochemical and anatomical barriers to protein drug transport, to protect proteins from systemic degradation, and to target the drug action to specific sites. Protein transduction domains (PTDs) are used for the non-specific transduction of bio-active cargo, such as proteins, genes, and particles, through cellular membranes to overcome biological barriers. Metallothionein (MT) is a low molecular weight intra-cellular protein that consists of 61 amino acids, including 20 cysteine residues, and is over-expressed under stressful conditions. Although MT has the potential to improve the viability of islet cells and cardiomyocytes by inhibiting diabetic-induced apoptosis and by removing reactive oxygen species (ROS), and thereby prevent or reduce diabetes and diabetic complications, all MT applications have been made for gene therapy or under induced over-expression of endogenous MT. To overcome the drawbacks of ineffective intra-cellular MT protein uptake, a human MT gene was cloned and fused with protein transduction domains (PTDs), such as HIV-1 Tat and undeca-arginine, in a bacterial expression vector to produce PTD-MT fusion proteins. The expression and purification of three types of proteins were optimized by adding Zn ions to maintain their stability and functionality mimicking intra-cellular stable conformation of MT as a Zn-MT cluster. The Zn-MT cluster showed better stability than MT in vitro. PTD-MT fusion proteins strongly protected Ins-1 beta cells against oxidative stress and apoptosis induced by glucolipotoxicity with or without hypoxia, and also protected H9c2 cardiomyocytes against hyperglycemia-induced apoptosis with or without hypoxia. PTD-MT recombinant fusion proteins may be useful protein therapeutics for the treatment or prevention of diabetes and diabetes-related complications.