WorldWideScience

Sample records for purified sarcoplasmic reticulum

  1. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K.P.

    1978-01-01

    Light and heavy sarcoplasmic reticulum vesicles isolated from rabbit leg muscle have been used in a study of chloride-induced calcium release. The biochemical and morphological data indicate that light sarcoplasmic reticulum vesicles are derived from the longitudinal reticulum and heavy sarcoplasmic reticulum vesicles are derived from the terminal cisternae of the sarcoplasmic reticulum. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP to amounts greater than 100 nmoles Ca/sup + +/ per mg of protein in less than one minute. Light and heavy sarcoplasmic reticulum vesicles each had a biphasic time course of calcium uptake. The initial uptake was followed by a rapid release after approximately one minute, of 30 to 40% of the accumulated calcium, which was then followed by a slower phase of calcium accumulation. Results indicate that the chloride induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization. The release of calcium from the light SR vesicles is probably due to osmotic swelling and the release of calcium from the heavy SR vesicles is probably due to depolarization.

  2. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR,HSR) were isolated from rabbit leg muscle using a combination of differential centrifugation and isopycnic zonal ultracentrifugation. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes whereas the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The sucrose HSR vesicles have an additional morphological feature which appears as membrane projections that resemble the SR feet. The freeze-fracture morphology of either type of SR reveals an asymmetric distribution of intramembraneous particles in the same orientation and distribution as the sarcoplasmic reticulum in vivo. Biochemical studies were made on the content of Ca, Mg, ATPase, and protein of the vesicles and phosphorylation of the vesicles. The biochemical and morphological data indicate that the LSR is derived from the longitudinal sarcoplasmic reticulum and the HSR is derived from the terminal cisternae of the sarcoplasmic reticulum, contains junctional SR membrane and has three unique proteins (calsequestrin, an intrinsic 30,000 dalton protein and a 9000 dalton proteolipid).

  3. Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins

    International Nuclear Information System (INIS)

    Hofmann, S.L.; Brown, M.S.; Lee, E.; Pathak, R.K.; Anderson, R.G.; Goldstein, J.L.

    1989-01-01

    A protein in the sarcoplasmic reticulum of rabbit skeletal and cardiac muscle was identified because of its ability to bind 125I-labeled low density lipoprotein (LDL) with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein, referred to as the 165-kDa protein, is restricted to striated muscle. It was not detected in 14 other tissues, including several that contain smooth muscle, but it appears in rat L6 myoblasts when they differentiate into myocytes. Immunofluorescence and immunoelectron microscopic studies revealed that the protein is present throughout the sarcoplasmic reticulum and the terminal cisternae. It binds 45Ca2+ on nitrocellulose blots and stains metachromatically with Stains-all, a cationic dye that stains Ca2+-binding proteins. It does not appear to be a glycoprotein, and it appears slightly larger than the 160-kDa glycoprotein previously described in sarcoplasmic reticulum. The 165-kDa protein binds LDL, beta-migrating very low density lipoprotein, and a cholesterol-induced high density lipoprotein particle that contains apoprotein E as its sole apoprotein with much higher affinity than it binds high density lipoprotein. The protein is stable to boiling and to treatment with sodium dodecyl sulfate, but it becomes sensitive to these treatments when its cystine residues are reduced and alkylated. The protein was purified 1300-fold to apparent homogeneity from rabbit skeletal muscle membranes. It differs from the cell surface LDL receptor in that (1) its apparent molecular weight is not changed by reduction and alkylation; (2) it is present in Watanabe-heritable hyperlipidemic rabbits, which lack functional LDL receptors; (3) binding of lipoproteins is not inhibited by EDTA; and (4) it is located within the lumen of the sarcoplasmic reticulum where it has no access to plasma lipoproteins

  4. Porcine malignant hyperthermia susceptibility: hypersensitive calcium-release mechanism of skeletal muscle sarcoplasmic reticulum.

    Science.gov (United States)

    O'Brien, P J

    1986-01-01

    This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum. Images Fig. 1. PMID:3742367

  5. Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Leberer, E.; Charuk, J.H.M.; MacLennan, D.H.; Green, N.M.

    1989-01-01

    Antibody screening was used to isolate a cDNA encoding the 160-kDa glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. The cDNA is identical to that encoding the 53-kDa glycoprotein except that it contains an in-frame insertion of 1,308 nucleotides near its 5' end, apparently resulting from alternative splicing. The protein encoded by the cDNA would contain a 19-residue NH 2 -terminal signal sequence and a 453-residue COOH-terminal sequence identical to the 53-kDa glycoprotein. It would also contain a 436-amino acid insert between these sequences. This insert would be highly acidic, suggesting that it might bind Ca 2+ . The purified 160-kDa glycoprotein and the glycoprotein expressed in COS-1 cells transfected with cDNA encoding the 160-kDa glycoprotein were shown to bind 45 C 2+ in a gel overlay assay. The protein was shown to be located in the lumen of the sarcoplasmic reticulum and to be associated through Ca 2+ with the membrane. The authors propose that this lumenal Ca 2+ binding glycoprotein of the sarcoplasmic reticulum be designated sarcalumenin

  6. Cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Jacobson, M.S.; Ambudkar, I.S.; Young, E.P.; Naseem, S.M.; Heald, F.P.; Shamoo, A.E.

    1985-01-01

    The effect on the cardiac sarcoplasmic reticulum of an atherogenic (1% cholesterol) diet fed during the neonatal vs the juvenile period of life was studied in Yorkshire swine. Male piglets were randomly assigned at birth to 1 of 4 groups: group I (control), group II (lactation feeding), group III (juvenile period feeding) and group IV (lactation and juvenile feeding). All animals were killed at 55 weeks of age and cardiac sarcoplasmic reticulum (SR) isolated for assay of calcium uptake, Ca 2+ -Mg 2+ ATPase activity, and lipid analysis by thin-layer chromatography and gas chromatography. The amount of cholesterol/mg SR protein and the cholesterol/phospholipid ratio were higher in the animals fed during lactation (groups II and IV) and lower in those fed only during the juvenile period (group III). Phospholipid fatty acid patterns as measured by gas chromatography were unaltered in any group. Calcium uptake was markedly diminished in all experimental conditions: group II 47%, group III 65% and group IV 96%. Compared to the observed changes in calcium transport, the ATP hydrolytic activity was relatively less affected. Only in group IV a significant decrease (41%) was seen. Groups II and III show no change in ATP hydrolytic activity. The decrease in calcium uptake and altered cholesterol/phospholipid ratio without effect on ATP hydrolytic activity is consistent with an uncoupling of calcium transport related to the atherogenic diet in early life. (author)

  7. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  8. Calcium uptake by sarcoplasmic reticulum in the presence of organophosphorus insecticide methyl-parathion

    International Nuclear Information System (INIS)

    Blasiak, J.

    1995-01-01

    Using an isotope labelling technique it has been shown that an organophosphorus insecticide methyl parathion (0,0-diethyl 0-4-nitrophenyl phosphorothionate) depressed calcium uptake by sarcoplasmic reticulum isolated from rabbit hind leg muscle. The effect was significant for insecticide concentrations of 50 and 100 μM and was dose-dependent. The insecticide exerted a more pronounced effect on calcium uptake in the presence of ATP in the reticulum environment than in the absence of ATP. The inhibitory action of methyl parathion on Ca 2+ accumulation by sarcoplasmic reticulum can cause a rise in myoplasmic free Ca 2+ , the essential prerequisite for contracture activation. Because methyl parathion, as well as other organophosphorus insecticides, is primarily neurotoxic, evidence of non-specific effect could be important for assessing its environmental safety. (author). 20 refs, 2 figs

  9. Structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes: freeze-fracture electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L; Mehard, C W; Meissner, G; Zahler, W L; Fleischer, S

    1974-01-01

    The role of phospholipid in the structure of the membranes of beef heart mitochondria and of the sarcoplasmic reticulum membranes from rabbit skeletal muscle has been investigated by freeze-fracture electron microscopy. Progressive removal of membrane phospholipids, by phospholipase A treatment or detergent treatment, or by organic solvent extraction, results in loss of the smooth background seen in membrane fracture faces and decreased ability of membrane to undergo freeze fracture to yield fracture faces. Instead cross-sections of vesicles or particle clusters are observed. Sarcoplasmic reticulum vesicles have a 9 to 1 asymmetry in the distribution of particles between the convex and concave fracture faces. There is also a wide range of particle size distribution in both of these fracture faces with 85-A particles in greatest number. The removal of membrane associated proteins by detergent extraction does not appreciably change the distribution in particle size. Sarcoplasmic reticulum vesicles were dissolved with detergent and reassembled to form membrane vesicles containing mainly one protein (approx. 90%), i.e., the Ca/sup 2 +/ pump protein, and with a ratio of lipid to protein similar to the original membrane. The reconstituted vesicles readily underwent freeze fracture but the asymmetric particle distribution between the fracture faces was no longer observed. The size distribution of particles in the reconstituted membrane, consisting mainly of Ca/sup 2 +/ pump protein, and phospholipid, was similar in heterogeneity to the original sarcoplasmic reticulum membrane. Thus the heterogeneity in particle size could reflect variation in the orientation of the Ca/sup 2 +/ pump protein within the membrane.

  10. Effect of ionizing radiation on catalytic properties of Ca2+-ATP-ase from sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    Bagel', I.M.; Shafranovskaya, E.V.; Gorokh, G.A.; Markova, A.G.

    1999-01-01

    It was studied kinetic and thermodynamic characteristics of Ca 2+ -ATP-ase of rat skeletal muscle (membranes of sarcoplasmic reticulum) after irradiation in doses 0,5, 4,0 and 8,0 Gy. It was shown that external gamma-irradiation at different doses changed kinetic and thermodynamic characteristics of the enzyme of sarcoplasmic reticulum membranes of skeletal muscle. These alterations probably correlate with disbalance of hormonal regulation of intracellular calcium metabolism and changes in membrane structure and functions

  11. Investigation of function similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatases with the inhibitors quercetin and calmidazolium

    International Nuclear Information System (INIS)

    Fischer, T.H.; Campbell, K.P.; White, G.C. II

    1987-01-01

    The platelet and skeletal sarcoplasmic reticulum calcium-dependent adenosinetriphosphatases (Ca 2+ -ATPases) were functionally compared with respect to substrate activation by steady-state kinetic methods using the inhibitors quercetin and calmidazolium. Quercetin inhibited platelet and sarcoplasmic reticulum Ca 2+ -ATPase activities in a dose-dependent manner with IC 50 values of 25 and 10 μM, respectively. Calmidazolium also inhibited platelet and sarcoplasmic reticulum Ca 2+ -ATPase activities, with half-maximal inhibition measured at 5 and 4 μM, respectively. Both inhibitors also affected the [ 45 Ca] calcium transport activity of intact platelet microsomes at concentrations similar to those which reduced Ca 2+ -ATPase activity. These inhibitors were then used to examine substrate ligation by the platelet and sarcoplasmic reticulum calcium pump proteins. For both Ca 2+ -ATPase proteins, quercetin has an affinity for the E-Ca 2 (fully ligated with respect to calcium at the exterior high-affinity calcium binding sites, unligated with respect to ATP) conformational state of the protein that is approximately 10-fold grater than for other conformational states in the hydrolytic cycle. Quercetin can thus be considered a competitive inhibitor of the calcium pump proteins with respect to ATP. In contrast to the effect of quercetin, calmidazolium interacts with the platelet and sarcoplasmic reticulum Ca 2+ -ATPases in an uncompetitive manner. The dissociation constants for this inhibitor for the different conformational states of the calcium pump proteins were similar, indicating that calmidazolium has equal affinity for all of the reaction intermediates probed. These observations indicate that the substrate ligation processes are similar for the two pump proteins. This supports the concept that the hydrolytic cycles of the two proteins are comparable

  12. Specific binding of [3H]LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    International Nuclear Information System (INIS)

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-01-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for [ 3 H]LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound [ 3 H]LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that [ 3 H]LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs

  13. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles.

    Science.gov (United States)

    Xiang, J Z; Kentish, J C

    1995-03-01

    The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the

  14. Specific binding of (/sup 3/H)LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, R.F.; Utterback, B.G.; Robertson, D.W.

    1989-05-01

    LY186126 was found to be a potent inhibitor of type IV cyclic AMP phosphodiesterase located in the sarcoplasmic reticulum of canine cardiac muscle. This compound, a close structural analogue of indolidan (LY195115), was prepared in high specific activity, tritiated form to study the positive inotropic receptor(s) for cardiotonic phosphodiesterase inhibitors such as indolidan and milrinone. A high-affinity binding site for (/sup 3/H)LY186126 was observed (Kd = 4 nM) in purified preparations of canine cardiac sarcoplasmic reticulum vesicles. Binding was proportional to vesicle protein, was inactivated by subjecting membranes to proteolysis or boiling, and was dependent on added Mg2+. Scatchard analysis suggested the presence of a single class of binding sites in the membrane preparation. Indolidan, milrinone, and LY186126 (all at 1 microM) produced essentially complete displacement of bound (/sup 3/H)LY186126, while nifedipine, propranolol, and prazosin had little or no effect at this concentration. This represents the first reported use of a radioactive analogue to label the inotropic receptor for cardiotonic phosphodiesterase inhibitors. The results suggest that (/sup 3/H)LY186126 is a useful radioligand for examining the subcellular site(s) responsible for positive inotropic effects of these drugs.

  15. Dynamic Changes in Sarcoplasmic Reticulum Structure in Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Amanda L. Vega

    2011-01-01

    sarcoplasmic reticulum (SR and the sarcolemma where Ca2+ release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca2+] during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.

  16. Disturbances of the sarcoplasmic reticulum and transverse tubular system in 24-h electrostimulated fast-twitch skeletal muscle

    DEFF Research Database (Denmark)

    Frías, J A; Cadefau, J A; Prats, C

    2005-01-01

    Chronic low-frequency stimulation of rabbit tibialis anterior muscle over a 24-h period induces a conspicuous loss of isometric tension that is unrelated to muscle energy metabolism (J.A. Cadefau, J. Parra, R. Cusso, G. Heine, D. Pette, Responses of fatigable and fatigue-resistant fibres of rabbit...... muscle to low-frequency stimulation, Pflugers Arch. 424 (1993) 529-537). To assess the involvement of sarcoplasmic reticulum and transverse tubular system in this force impairment, we isolated microsomal fractions from stimulated and control (contralateral, unstimulated) muscles on discontinuous sucrose...... of muscles stimulated for 24 h underwent acute changes in the pattern of protein bands. First, light fractions from longitudinal sarcoplasmic reticulum, enriched in Ca2+-ATPase activity, R1 and R2, were greatly reduced (67% and 51%, respectively); this reduction was reflected in protein yield of crude...

  17. Methods for Creating and Animating a Computer Model Depicting the Structure and Function of the Sarcoplasmic Reticulum Calcium ATPase Enzyme.

    Science.gov (United States)

    Chen, Alice Y.; McKee, Nancy

    1999-01-01

    Describes the developmental process used to visualize the calcium ATPase enzyme of the sarcoplasmic reticulum which involves evaluating scientific information, consulting scientists, model making, storyboarding, and creating and editing in a computer medium. (Author/CCM)

  18. [ACTIVITY OF Ca2+,Mg(2+)-ATPase OF SARCOPLASMIC RETICULUM AND CONTRACTION STRENGTH OF THE FROG SKELETAL MUSCLES UNDER THE EFFECT OF ORGANOPHOSPHORUS INSECTICIDES].

    Science.gov (United States)

    Nozdrenko, D M; Korchinska, L V; Soroca, V M

    2015-01-01

    The results of an experimental study of organophosphorus insecticides, including pirimiphosmethyl, diazinon and chlorpyrifos caused a decline of the contraction properties in m. tibialis anterior fiber bundles of Rana temporaria, as well as sarcoplasmic reticulum Ca2+, Mg(2+)-ATPase enzymatic activity reduction are outlined in this paper. Concentration-dependent strengths response diminishing in isolated skeletal muscle fiber bundles as a result of non-cholinergic influence of organophosphorus insecticides were found. A decrease of Ca2+, Mg(2+)-ATPase enzymatic activity in sarcoplasmic reticulum was observed after administration of each insecticide. The most significant inhibition of this enzyme was observed when using chlorpyrifos.

  19. Effects of exercise training and exhaustion on 45Ca uptake by rat skeletal muscle mitochondria and sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Bonner, H.W.; Leslie, S.W.; Combs, A.B.; Tate, C.A.

    1976-01-01

    Mitochondrial and sarcoplasmic reticular 45 Ca 2+ uptake and Ca 2+ -ATPase activity were determined in skeletal muscle from exercise trained and non-trained rats at rest or following short-term exhaustive exercise. In trained rats exercised to exhaustion, mitochondrial 45 Ca 2+ uptake was significantly depressed when compared to non-trained rats at rest. Ca 2+ -ATPase activity of sarcoplasmic reticulum from trained rats exercised to exhaustion was significantly increased as compared to trained rats at rest. These data suggest that the disruptive influence of Ca 2+ accumulation in mitochondria isolated following exhaustive exercise may be diminished as a result of training

  20. Detection, Properties, and Frequency of Local Calcium Release from the Sarcoplasmic Reticulum in Teleost Cardiomyocytes

    OpenAIRE

    Llach, Anna; Molina, Cristina E.; Alvarez Lacalle, Enrique; Tort, Lluis; Benítez, Raul; Hove, Leif

    2011-01-01

    Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from...

  1. Activity of Ca(2+,Mg(2+-ATPase of sarcoplasmic reticulum and contraction strength of the frog skeletal muscles under the effect of organophosphorus insecticides

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-08-01

    Full Text Available The results of an experimental study of organo­phosphorus insecticides, including pirimiphosmethyl, diazinon and chlorpyrifos caused a decline of the contraction properties in m. tibialis anterior fiber bundles of Rana temporaria, as well as sarcoplasmic reticulum Ca2+,Mg2+-ATPase enzymatic activity reduction are outlined in this paper. Concentration-dependent strengths response diminishing in isolated skeletal muscle fiber bundles as a result of non-cholinergic influence of organophosphorus insecticides were found. A decrease of Ca2+,Mg2+-ATPase enzymatic activity in sarcoplasmic reticulum was observed after administration of each insecticide. The most significant inhibition of this enzyme was observed when using chlorpyrifos.

  2. Cardiac sarcoplasmic reticulum. Effects of an atherogenic diet during the neonatal and juvenile period

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, M S; Ambudkar, I S; Young, E P; Naseem, S M; Heald, F P; Shamoo, A E [Maryland Univ., College Park (USA). School of Medicine

    1985-04-01

    The effect on the cardiac sarcoplasmic reticulum of an atherogenic (1% cholesterol) diet fed during the neonatal vs the juvenile period of life was studied in Yorkshire swine. Male piglets were randomly assigned at birth to 1 of 4 groups: group I (control), group II (lactation feeding), group III (juvenile period feeding) and group IV (lactation and juvenile feeding). All animals were killed at 55 weeks of age and cardiac sarcoplasmic reticulum (SR) isolated for assay of calcium uptake, Ca/sup 2 +/-Mg/sup 2 +/ ATPase activity, and lipid analysis by thin-layer chromatography and gas chromatography. The amount of cholesterol/mg SR protein and the cholesterol/phospholipid ratio were higher in the animals fed during lactation (groups II and IV) and lower in those fed only during the juvenile period (group III). Phospholipid fatty acid patterns as measured by gas chromatography were unaltered in any group. Calcium uptake was markedly diminished in all experimental conditions: group II 47%, group III 65% and group IV 96%. Compared to the observed changes in calcium transport, the ATP hydrolytic activity was relatively less affected. Only in group IV a significant decrease (41%) was seen. Groups II and III show no change in ATP hydrolytic activity. The decrease in calcium uptake and altered cholesterol/phospholipid ratio without effect on ATP hydrolytic activity is consistent with an uncoupling of calcium transport related to the atherogenic diet in early life.

  3. Different thermostabilities of sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPases from rabbit and trout muscles.

    Science.gov (United States)

    de Toledo, F G; Albuquerque, M C; Goulart, B H; Chini, E N

    1995-05-01

    Trout and rabbit (Ca2+ + Mg2+)-ATPases from sarcoplasmic reticulum were compared for differences in thermal inactivation and susceptibility to trypsin digestion. The trout ATPase is more heat-sensitive than the rabbit ATPase and is stabilized by Ca2+, Na+, K+ and nucleotides. Solubilization of both ATPases shows that the two ATPases have different protein-intrinsic inactivation kinetics. When digested by trypsin, the two ATPases display different cleavage patterns. The present results indicate that the trout and rabbit ATPases have dissimilarities in protein structure that may explain the differences in thermal inactivation kinetics.

  4. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Kevin Peter [Univ. of Rochester, NY (United States)

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca2+ + Mg2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca2+ + Mg2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca2+ mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization.

  5. Biochemical and morphological characterization of light and heavy sarcoplasmic reticulum vesicles. Volume I

    International Nuclear Information System (INIS)

    Campbell, K.P.

    1978-01-01

    Light (30 to 32.5% sucrose) and heavy (38.5 to 42% sucrose) sarcoplasmic reticulum vesicles (LSR, HSR) were isolated from rabbit leg muscle. They were then diluted and washed with sucrose or KCl and referred to as sucrose or KCl washed vesicles. Thin-section electron microscopy of LSR vesicles reveals empty vesicles of various sizes and shapes where as the HSR vesicles appear as rounded vesicles of uniform size filled with electron dense material. The LSR consists of predominantly Ca 2+ + Mg 2+ ATPase (80 to 90%), a small amount of the high affinity Ca binding protein (5%), and a 5000 dalton proteolipid. The sucrose HSR vesicles contain the Ca 2+ + Mg 2+ ATPase (50%), Calsequestrin (25%), high affinity Ca binding protein (5%), one extrinsic 34,000 dalton protein (3%), one intrinsic 30,000 dalton protein (3%), a 9000 dalton proteolipid, and a 5000 dalton proteolipid. The sucrose--washed HSR vesicles contain greater than three times the calcium content of the sucrose washed LSR vesicles where as the KCl--washed vesicles contain less than 15 nmoles Ca 2+ /mg of protein each. The light and heavy sarcoplasmic reticulum vesicles were both able to accumulate calcium in the presence of ATP. Exchange of methanesulfonate for chloride resulted in the release of calcium from both the light and heavy SR vesicles. Sucrose causes a slight inhibition of chloride--induced calcium release from the heavy SR vesicles but it greatly reduces the release of calcium from the light SR vesicles. Sodium dantrolene (20 uM) has no effect on the release of calcium from the light SR vesicles but it inhibits the release of calcium from the heavy SR vesicles. The results indicate that the chloride--induced release of calcium may be acting by two mechanisms, osmotic swelling and depolarization

  6. Specific protein-protein interactions of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    Damiani, E.; Margreth, A.

    1990-01-01

    Minor protein components of triads and of sarcoplasmic reticulum (SR) terminal cisternae (TC), i.e. 47 and 37 kDa peptides and 31-30 kDa and 26-25 kDa peptide doublets, were identified from their ability to bind 125 I calsequestrin (CS) in the presence of EGTA. The CS-binding peptides are specifically associated with the junctional membrane of TC, since they could not be detected in junctional transverse tubules and in longitudinal SR fragments. The 31-30 kDa peptide doublet, exclusively, did not bind CS in the presence of Ca 2+ . Thus, different types of protein-protein interactions appear to be involved in selective binding of CS to junctional TC

  7. The influence of ionizing radiation on the structure of Ca-ATPase hydrophobic fragment of skeletal muscle sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Vojtsitskij, V.M.; Fedorov, A.N.; Lugovskoj, Eh.B.; Derzskaya, S.G.; Khizhnyak, S.V.; Kurskij, M.D.; Kucherenko, N.E.

    1990-01-01

    Early (1 and 24 h) after X-irradiation with a dose of 0.21 C/kg changes occurred in the acceptibility of the polypeptide chain parts of sarcoplasmic reticulum Ca-ATPase for the effect of trypsin. The analysis of the results of studying the structural and functional properties of a hydrophobic fragment of this enzyme in the control and after irradiation permitted to define the part of the Ca-ATPase polypeptide chain that provided ion selectivity of the fragment

  8. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle

    International Nuclear Information System (INIS)

    Xin Hong; Tanaka, Hideyuki; Yamaguchi, Maki; Takemori, Shigeru; Nakamura, Akio; Kohama, Kazuhiro

    2005-01-01

    Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca 2+ . The SR releases Ca 2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca 2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca 2+ occurs through a channel composed of VR1

  9. Characterization of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Andersen, J.P.; Vilsen, B.; Nielsen, H.; Moller, J.V.

    1986-01-01

    Sarcoplasmic reticulum Ca 2+ -ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca 2+ -ATPase occurred within a few hours in the presence of ≤ 50 μM Ca 2+ . The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high 45 Ca 2+ concentration (500 μM), monomeric Ca 2+ -ATPase was stable for several house. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca 2+ -ATPase was found to be 10 5 -10 6 M -1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca 2+ -ATPase, even above the critical micellar concentration of the detergent. Binding of Ca 2+ and 48 V vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca 2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. The results suggest that formation of Ca 2+ -ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit

  10. Characterization of sarcoplasmic reticulum Ca(2+) ATPase pumps in muscle of patients with myotonic dystrophy and with hypothyroid myopathy.

    Science.gov (United States)

    Guglielmi, V; Oosterhof, A; Voermans, N C; Cardani, R; Molenaar, J P; van Kuppevelt, T H; Meola, G; van Engelen, B G; Tomelleri, G; Vattemi, G

    2016-06-01

    Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Preparation of a highly concentrated, completely monomeric, active sarcoplasmic reticulum Ca2+-ATPase.

    Science.gov (United States)

    Lüdi, H; Hasselbach, W

    1985-11-21

    Sarcoplasmic reticulum vesicles from fast skeletal muscle were partially delipidated with sodium cholate at high ionic strength and sedimented in a discontinuous sucrose gradient. Phospholipid content was reduced from 0.777 mumol/mg protein to 0.242 mumol/mg protein. As judged from gel electrophoresis and high pressure liquid gel chromatography, accessory proteins were removed during centrifugation and the Ca2+-ATPase was obtained in an almost pure form. Addition of myristoylglycerophosphocholine (1 mg/mg protein) reactivates ATPase and dinitrophenylphosphatase activity to the same degree obtained with native vesicles. Using the analytical ultracentrifuge it could be demonstrated that the reactivated Ca2+-ATPase was present exclusively in a monomeric state. These results were obtained at high and low ionic strength and up to a protein concentration of 10 mg/ml. Therefore this preparation should be very useful to investigate differences between oligomeric and monomeric Ca2+-ATPase.

  12. Modulation of sarcoplasmic reticulum calcium release by calsequestrin in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    SANDOR GYÖRKE

    2004-01-01

    Full Text Available Calsequestrin (CASQ2 is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR. Mutations in the cardiac calsequestrin gene (CASQ2 have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca2+-induced Ca2+ release (CICR and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.

  13. Size of the plasma membrane H+-ATPase from Neurospora crassa determined by radiation inactivation and comparison with the sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle

    International Nuclear Information System (INIS)

    Bowman, B.J.; Berenski, C.J.; Jung, C.Y.

    1985-01-01

    Using radiation inactivation, the authors have measured the size of the H + -ATPase in Neurospora crassa plasma membranes. Membranes were exposed to either high energy electrons from a Van de Graaff generator or to gamma irradiation from 60 Co. Both forms of radiation caused an exponential loss of ATPase activity in parallel with the physical destruction of the Mr = 104,000 polypeptide of which this enzyme is composed. By applying target theory, the size of the H + -ATPase in situ was found to be approximately 2.3 X 10(5) daltons. They also used radiation inactivation to measure the size of the Ca 2+ -ATPase of sarcoplasmic reticulum and got a value of approximately 2.4 X 10(5) daltons, in agreement with previous reports. By irradiating a mixture of Neurospora plasma membranes and rabbit sarcoplasmic reticulum, they directly compared the sizes of these two ATPases and found them to be essentially the same. The authors conclude that both H + -ATPase and Ca 2+ -ATPase are oligomeric enzymes, most likely composed of two approximately 100,000-dalton polypeptides

  14. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    Science.gov (United States)

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  15. Altered calcium pump and secondary deficiency of γ-sarcoglycan and microspan in sarcoplasmic reticulum membranes isolated from δ-sarcoglycan knockout mice

    Science.gov (United States)

    Solares-Pérez, Alhondra; Álvarez, Rocío; Crosbie, Rachelle H.; Vega-Moreno, Jesús; Medina-Monares, Joel; Estrada, Francisco J.; Ortega, Alicia; Coral-Vazquez, Ramón

    2016-01-01

    Sarcoglycans (SGs) and sarcospan (SSPN) are transmembrane proteins of the dystrophin-glycoprotein complex. Mutations in the genes encoding SGs cause many inherited forms of muscular dystrophy. In this study, using purified membranes of wild-type (WT) and δ-SG knockout (KO) mice, we found the specific localization of the SG-SSPN isoforms in transverse tubules (TT) and sarcoplasmic reticulum (SR) membranes. Immunoblotting revealed that the absence of δ-SG isoforms in TT and SR results in a secondary deficiency of γ-SG and µSPN. Our results showed augmented ATP hydrolytic activity, ATP-dependent calcium uptake and passive calcium efflux, probably through SERCA1 in KO compared to WT mice. Furthermore, we found a conformational change in SERCA1 isolated from KO muscle as demonstrated by calorimetric analysis. Following these alterations with mechanical properties, we found an increase in force in KO muscle with the same rate of fatigue but with a decreased fatigue recovery compared to WT. Together our observations suggest, for the first time, that the δ-SG isoforms may stabilize the expression of γ-SG and µSPN in the TT and SR membranes and that this possible complex may play a role in the maintenance of a stable level of resting cytosolic calcium concentration in skeletal muscle. PMID:20638123

  16. Phospholipid alterations in cardiac sarcoplasmic reticulum induced by xanthine oxidase: contamination of commercial preparations of xanthine oxidase by phospholipase A2

    International Nuclear Information System (INIS)

    Gamache, D.A.; Kornberg, L.J.; Bartolf, M.; Franson, R.C.

    1986-01-01

    Incubation of cardiac sarcoplasmic reticulum with xanthine oxidase alone at pH 7.0 resulted in a loss of lipid phosphorus that was potentiated by the addition of xanthine. Using autoclaved E.coli with 1- 14 C-oleate in the 2-acyl position of membrane phospholipids, the authors demonstrate that many, but not all, commercial preparations of xanthine oxidase contain significant phospholipase A 2 (PLA 2 ) activity (64.3-545.6 nmols/min/mg). The PLA 2 was maximally active in the neutral-alkaline pH range, was Ca 2+ -dependent, and was unaffected by the addition of xanthine. PLA 2 activity was totally inhibited by 1mM EDTA whereas radical production by optimal concentrations of xanthine/xanthine oxidase (X/XO) was unaffected by EDTA. Chromatographically purified xanthine oxidase (Sigma Grade III) contained high levels of PLA 2 activity (64.3 nmols/min/mg) compared to endogenous levels of neutral-active, Ca 2+ -dependent PLA 2 measured in various tissue homogenates (≤ 0.5 nmols/ min/mg). Because X/XO mixtures are used extensively to study oxygen free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular PLA 2 may have influenced previously published reports, and such studies should be interpreted cautiously

  17. Impaired sarcoplasmic reticulum Ca(2+) release rate after fatiguing stimulation in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Sjøgaard, G; Madsen, Klavs

    2000-01-01

    during the first 0.5-1 h the metabolic state recovered to resting levels, and a slow phase from 1-3 h characterized by a rather slow recovery of the mechanical properties. The recovery of SR Ca(2+) release rate was closely correlated to +dF/dt during the slow phase of recovery (r(2) = 0.51; P ... to 66% that persisted for 1 h, followed by a gradual recovery to 87% of prefatigue release rate at 3 h recovery. Tetanic force and rate of force development (+dF/dt) and relaxation (-dF/dt) were depressed by approximately 80% after stimulation. Recovery occurred in two phases: an initial phase, in which......The purpose of the study was to characterize the sarcoplasmic reticulum (SR) function and contractile properties before and during recovery from fatigue in the rat extensor digitorum longus muscle. Fatiguing contractions (60 Hz, 150 ms/s for 4 min) induced a reduction of the SR Ca(2+) release rate...

  18. Calcium uptake by sarcoplasmic reticulum isolated from hearts of septic rats

    International Nuclear Information System (INIS)

    McDonough, K.H.

    1988-01-01

    Myocardial sarcoplasmic reticulum (SR) plays a critical role in the regulation of the cytosolic calcium fluctuations that occur during the cardiac cycle. One function of the SR is to lower the calcium concentration so that myocardial relaxation and thus ventricular filling can occur. The aim of the present study was to determine if hyperdynamic sepsis induced a decrease in the capacity of SR to take up calcium. This defect would result in decreased ventricular filling and thus decreased cardiac output, as has previously been shown in isolated perfused working hearts removed from septic rats. Therefore, rats were anesthetized with ether, and sepsis was induced by the injection of an aliquot of a fecal homogenate into the peritoneal cavity. Control animals either underwent surgery and received an aliquot of sterilized fecal inoculum (sham) or were untreated (no surgery). On day 2 after surgery, animals were anesthetized with pentobarbital, and hearts were removed, weighted, and SR isolated. The rate of uptake of 45 Ca 2+ by SR from septic rats was not depressed compared to controls but in fact was elevated. Maximum 45 Ca 2+ accumulated by the SR and Ca 2+ -stimulated ATPase activity were similar in SR from control and septic hearts. These results suggest that the contractile dysfunction noted in the myocardium in early sepsis is probably not due to inadequate SR removal of Ca 2+ during diastole

  19. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    Science.gov (United States)

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-10-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.

  20. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions

    DEFF Research Database (Denmark)

    Nielsen, J S; Sahlin, K; Ørtenblad, N

    2007-01-01

    AIM: The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity....... METHODS: Isolated rat soleus muscles performed 30 EC bouts. Single fibres were isolated from the muscle and after mechanical removal of sarcolemma used to measure eSRCa2+, rate of SR Ca2+ loading and myofibrillar Ca2+ sensitivity. RESULTS: Following EC maximal force in whole muscle was reduced by 30......% and 16/100 Hz force ratio by 33%. The eSRCa2+ in fibres from non-stimulated muscles was 45 +/- 5% of the maximal loading capacity. After EC, eSRCa2+ per fibre CSA decreased by 38% (P = 0.05), and the maximal capacity of SR Ca2+ loading was depressed by 32%. There were no effects of EC on either...

  1. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.

    OpenAIRE

    Ishii, T; Takeyasu, K

    1993-01-01

    Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity,...

  2. Nandrolone decanoate treatment affects sarcoplasmic reticulum Ca(2+) ATPase function in skinned rat slow- and fast-twitch fibres.

    Science.gov (United States)

    Bouhlel, Aicha; Joumaa, Wissam H; Léoty, Claude

    2003-09-01

    The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg x kg(-1)) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca(2+) loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca(2+) leakage depended on the quantity of Ca(2+) loaded. Furthermore, for similar SR Ca(2+) contents, the Ca(2+) leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca (2+) uptake by the SR in a fibre-type dependent manner.

  3. Patterns of proteolytic cleavage and carbodiimide derivatization in sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    de Ancos, J.G.; Inesi, G.

    1988-01-01

    Two series of experiments were carried out to characterize (a) peptide fragments of sarcoplasmic reticulum (SR) ATPase, based on proteolysis with different enzymes and distribution of known labels, and (b) specific labeling and functional inactivation patterns, following ATPase derivatization with dicyclohexylcarbodiimide (DCCD) under various conditions. Digestion with trypsin or chymotrypsin results in the initial cleavage of the SR ATPase in two fragments of similar size and then into smaller fragments, while subtilisin and thermolysin immediately yield smaller fragments. Peptide fragments were assigned to segments of the protein primary structure and to functionally relevant domains, such as those containing the 32 P at the active site and the fluorescein isothiocyanate at the nucleotide site. ATPase derivatization with [ 14 C]DCCD under mild conditions produced selective inhibition of ATPase hydrolytic catalysis without significant incorporation of the 14 C radioactive label. This effect is attributed to blockage of catalytically active residues by reaction of the initial DCCD adduct with endogenous or exogenous nucleophiles. ATPase derivatization with [ 14 C]DCCD under more drastic conditions produced inhibition of calcium binding, 14 C radioactive labeling of tryptic fragments A 1 and A 2 (but not of B), and extensive cross-linking. The presence of calcium during derivatization prevented functional inactivation, radioactive labeling of fragment A 2 , and internal cross-linking of fragment A 1 . It is proposed that both A 1 and A 2 fragments participate in formation of the calcium binding domain and that the labeled residues of fragment A 2 are directly involved in calcium complexation. A diagram is constructed, representing the relative positions of labels and functional domains within the ATPase protein

  4. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat.

    Science.gov (United States)

    Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D

    2009-01-15

    Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results

  5. Temperature and Ca2+-dependence of the sarcoplasmic reticulum Ca2(+)-ATPase in haddock, salmon, rainbow trout and zebra cichlid

    DEFF Research Database (Denmark)

    Godiksen, Helene; Jessen, Flemming

    2002-01-01

    Temperature dependence of Ca2+-ATPase from the sarcoplasmic reticulum (SR) in rabbit muscle has been widely studied, and it is generally accepted that a break point in Arrhenius plot exist at approximately 20 degreesC. Whether the break point arises as a result of temperature dependent changes......+- ATPase activity. The temperature range of the plateau was 14-21 and 18-25 degreesC in salmon and rainbow trout, respectively. Ca2+-dependence in the four different fish species investigated was very similar with half maximal activation (K-0.5) between 0.2 and 0.6 muM and half maximal inhibition (I-0.......5) between 60 and 250 muM. Results indicated that interaction between SR Ca2+-ATPase and its lipid environment may play an important role for the different Arrhenius plot of the different types of fish species investigated. (C) 2002 Elsevier Science Inc. All rights reserved....

  6. Uncoupling of sarcoplasmic reticulum Ca²⁺-ATPase by N-arachidonoyl dopamine. Members of the endocannabinoid family as thermogenic drugs

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed; Gaster, Michel

    2013-01-01

    BACKGROUND AND PURPOSE: The sarcoplasmic reticulum Ca²⁺-ATPase (SERCA) plays a role in thermogenesis. The exogenous compound capsaicin increased SERCA-mediated ATP hydrolysis not coupled to Ca²⁺ transport. Here, we have sought to identify endogenous compounds that may function as SERCA uncoupling...... agents. EXPERIMENTAL APPROACH: Using isolated SR vesicles from rabbits, we have screened for endogenous compounds that uncouple SERCA. We have also studied their ability to deplete cytoplasmic ATP from human skeletal muscle cells in culture. KEY RESULTS: Studies on SR vesicles showed that the endogenous......, regardless of the presence of glucose. CONCLUSIONS AND IMPLICATIONS: NADA is an endogenous molecule that may function as SERCA uncoupling agent in vivo. Members of the endocannabinoid family exert concerted actions on several Ca²⁺-handling proteins. Uncoupling of SERCA by exogenous compounds could be a novel...

  7. pH-modulation of chloride channels from the sarcoplasmic reticulum of skeletal muscle.

    Science.gov (United States)

    Kourie, J I

    1999-01-01

    The understanding of the role of cytoplasmic pH in modulating sarcoplasmic reticulum (SR) ion channels involved in Ca2+ regulation is important for the understanding of the function of normal and adversely affected muscles. The dependency of the SR small chloride (SCl) channel from rabbit skeletal muscle on cytoplasmic pH (pHcis) and luminal pH (pHtrans) was investigated using the lipid bilayer-vesicle fusion technique. Low pHcis 6.75-4.28 modifies the operational mode of this multiconductance channel (conductance levels between 5 and 75 pS). At pHcis 7.26-7.37 the channel mode is dominated by the conductance and kinetics of the main conductance state (65-75 pS) whereas at low pHcis 6.75-4.28 the channel mode is dominated by the conductance and kinetics of subconductance states (5-40 pS). Similarly, low pHtrans 4.07, but not pHtrans 6.28, modified the activity of SCl channels. The effects of low pHcis are pronounced at 10(-3) and 10(-4) M [Ca2+]cis but are not apparent at 10(-5) M [Ca2+]cis, where the subconductances of the channel are already prominent. Low pHcis-induced mode shift in the SCl channel activity is due to modification of the channel proteins that cause the uncoupling of the subconductance states. The results in this study suggest that low pHcis can modify the functional properties of the skeletal SR ion channels and hence contribute, at least partly, to the malfunction in the contraction-relaxation mechanism in skeletal muscle under low cytoplasmic pH levels.

  8. Roles of phosphorylation and nucleotide binding domains in calcium transport by sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Teruel, J.A.; Inesi, G.

    1988-01-01

    The roles of the phosphorylation (phosphorylated enzyme intermediate) and nucleotide binding domains in calcium transport were studied by comparing acetyl phosphate and ATP as substrates for the Ca 2+ -ATPase of sarcoplasmic reticulum vesicles. The authors found that the maximal level of phosphoenzyme obtained with either substrate is approximately 4 nmol/mg of protein, corresponding to the stoichiometry of catalytic sites in their preparation. The initial burst of phosphoenzyme formation observed in the transient state, following addition of either substrate, is accompanied by internalization of 2 mol of calcium per mole of phosphoenzyme. The internalized calcium is then translocated with a sequential pattern, independent of the substrate used. Following a rate-limiting step, the phosphoenzyme undergoes hydrolytic cleavage and proceeds to the steady-state activity which is soon back inhibited by the rise of Ca 2+ concentration in the lumen of the vesicles. When the back inhibition is released by the addition of oxalate, substrate utilization and calcium transport occur with a ratio of 1:2, independent of the substrate and its concentration. When the nucleotide binding site is derivatized with FITP, the enzyme can still utilize acetyl phosphate (but not ATP) for calcium transport. These observations demonstrate that the basic coupling mechanism of catalysis and calcium transport involves the phosphorylation and calcium binding domains, and not the nucleotide binding domain. On the other hand, occupancy of the FITC-sensitive nucleotide site is involved in kinetic regulation not only with respect to utilization of substrate for the phosphoryl transfer reaction but also for subsequent steps related to calcium translocation and phosphoenzyme turnover

  9. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  10. Effect of triorganotin compounds on calcium transport mechanisms in rat cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Cameron, J.A.; Kodavanti, P.R.S.; Yallapragada, P.R.; Desaiah, D.

    1990-01-01

    Although organotin compounds, in general, are neurotoxicants, recent studies indicate that these tin compounds affect heme metabolism as well as cardiovascular system. Sarcoplasmic reticulum (SR) calcium pump together with phosphorylation of phospholamban has an important role in myocardial contraction and relaxation. Since organotin compounds interfere with cardiovascular system, we have studied the in vitro as well as in vivo effects of tributyltin bromide (TBT), triethyltin bromide (TET) and trimethyltin chloride (TMT) on cardiac SR Ca 2+ -pump activity, in order to know the relative potency of these tin compounds. SR was isolated from heart ventricles of male Sprague-Dawley rats and used for in vitro studies. For in vivo studies, rats were treated orally in corn oil for 6 days with different doses of TET (0.5, 1.0 and 1.5 mg/kg/d), TMT (0.75, 1.5 and 2.5 mg/kg/d) and TBT (0.75, 1.5 and 2.5 mg/kg/d). Rats were sacrificed 24 hr after the last dosage and cardiac SR was prepared. Cardiac SR Ca 2+ -ATPase and 45 Ca-uptake were measured. All the three tin compounds inhibited Ca 2+ -ATPase and 45 Ca-uptake in vitro in a concentration dependent manner. The order of potency for Ca 2+ -ATPase as determined IC 50 , is TBT (2 uM) > TET (63 uM) > TMT (280 uM). For 45 Ca-uptake, if followed the same order i.e., TBT (0.35 uM) > TET (10 uM) > TMT (440 uM). In agreement with in vitro results, both SR Ca 2+ -ATPase and 45 Ca-uptake were significantly inhibited in rats treated with these tin compounds. These studies indicate that triorganotin compounds affect Ca 2+ -pumping mechanisms and thereby alter cardiac contraction-relaxation process

  11. N-acetylcysteine fails to modulate the in vitro function of sarcoplasmic reticulum of diaphragm in the final phase of fatigue.

    Science.gov (United States)

    Mishima, T; Yamada, T; Matsunaga, S; Wada, M

    2005-07-01

    In the present study, we tested the hypothesis whether N-acetylcysteine (NAC), a non-specific antioxidant, might influence fatigue by modulating Ca2+-handling capacity by the sarcoplasmic reticulum (SR). In the presence (10 mm) or absence of NAC, bundles of rat diaphragm were stimulated with tetanic trains (350 ms, 30-40 Hz) at 1 train every 2 s for 300 s. SR functions, as assessed by SR Ca2+-uptake and release rates and SR Ca2+-ATPase activity, were measured in vitro on muscle homogenates. Following the 300-s stimulation, the force developed by NAC-treated muscles is approximately 1.8-fold higher (P depression in SR function (P < 0.05). Despite the differing degrees of fatigue between NAC-treated and non-treated muscles, SR functions in these muscles were reduced to similar extents. These results suggest that modulation of SR function measured in vitro may not be a major contributor to inhibition of diaphragmic fatigue with antioxidant, at least, in the final phase of fatigue where force output is remarkably reduced.

  12. Presence of a Ca2+-sensitive CDPdiglyceride-inositol transferase in canine cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Kasinathan, C.; Kirchberger, M.A.

    1988-01-01

    Sarcoplasmic reticulum (SR) and plasma membranes from canine left ventricle were used to evaluate the presence of the enzyme CDPdiglyceride-inositol transferase in these membranes. (K + ,-Ca 2+ )-ATPase activity, a marker for SR, was 79.2 +/- 5.0 (SE) and 11.2 +/- 2.0 μmol x mg -1 x h -1 in SR and plasma membrane preparations, respectively, and (Na + , K + )-ATPase activity, a marker for plasma membranes, was 5.6 +/- 1.2 and 99.2 +/- 8.0 μmol x mg -1 x h -1 , respectively. Contamination of SR and plasma membrane preparations by mitochondria was estimated to be 2% and 8%, respectively, and by Golgi membranes, 0.9% and 1.8%, respectively. The transferase activity detected in the plasma membrane preparation could be accounted for largely, but not entirely, by contaminating SR membranes. The pH optimum for the SR transferase activity was between 8.0 and 9.0. Ca 2+ inhibited the enzyme, half-maximal inhibition occurring at about 10 μM Ca 2+ . No loss of [ 3 H]PtdIns could be detected when membranes were incubated in the presence or absence of Ca 2+ . The Ca 2+ inhibition of the transferase was noncompetitive with respect to CDP-dipalmitin while that with respect to myo-inositol was slightly noncompetitive at low [Ca 2+ ] and became uncompetitive at higher [Ca 2+ ]. It is concluded that CDPdiglyceride-inositol transferase is present on SR membranes and is sensitive to micromolar Ca 2+ . The data are consistent with a putative role for the inhibition of the SR transferase by Ca 2+ and acidic pH in the protection of the SR against calcium overload in ischemic myocardium

  13. Inhibition of sarcoplasmic reticulum Ca(2+)-ATPase decreases atrioventricular node-paced heart rate in rabbits.

    Science.gov (United States)

    Cheng, Hongwei; Smith, Godfrey L; Orchard, Clive H; Hancox, Jules C; Burton, Francis L

    2012-10-01

    Recent data indicate that Ca(2+) cycling in isolated atrioventricular node (AVN) cells contributes to setting spontaneous rate. The aim of the present study was to extend this observation to the intact AVN in situ, by evaluating the effects of inhibiting sarcoplasmic reticulum Ca(2+) uptake with cyclopiazonic acid (CPA) on intact AVN spontaneous activity and its response to isoprenaline. A model of the AVN-paced heart was produced to investigate intact AVN automaticity, by surgical ablation of the sino-atrial node (SAN) in the rabbit Langendorff-perfused heart. Electrograms were recorded from a site close to the AVN (triangle of Koch), an atrial site above the AVN, the left atrium and right ventricle, enabling AVN pacing of the preparation to be confirmed. Before SAN ablation, the heart rate was 166.8 ± 5.4 beats min(-1). Ablation of the SAN was clearly indicated by a sudden and significant decrease of heart rate to 108.6 ± 9.6 beats min(-1) (P AVN rate to 187.8 ± 12.0 beats min(-1) after 1 min of application (P AVN rate to 81.6 ± 4.8 (n = 9) and 77.4 ± 6.0 beats min(-1) (n = 7), respectively [P AVN rate increase in response to isoprenaline from 78.8 ± 10.0 to 46.8 ± 6.8 and 26.7 ± 5.3%, respectively (P AVN rate and its response to isoprenaline indicate that Ca(2+) cycling is important to the intact AVN spontaneous activity and its acceleration during sympathetic stimulation.

  14. Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available Mitochondria dynamically buffer cytosolic Ca(2+ in cardiac ventricular cells and this affects the Ca(2+ load of the sarcoplasmic reticulum (SR. In sinoatrial-node cells (SANC the SR generates periodic local, subsarcolemmal Ca(2+ releases (LCRs that depend upon the SR load and are involved in SANC automaticity: LCRs activate an inward Na(+-Ca(2+ exchange current to accelerate the diastolic depolarization, prompting the ensemble of surface membrane ion channels to generate the next action potential (AP.To determine if mitochondrial Ca(2+ (Ca(2+ (m, cytosolic Ca(2+ (Ca(2+ (c-SR-Ca(2+ crosstalk occurs in single rabbit SANC, and how this may relate to SANC normal automaticity.Inhibition of mitochondrial Ca(2+ influx into (Ru360 or Ca(2+ efflux from (CGP-37157 decreased [Ca(2+](m to 80 ± 8% control or increased [Ca(2+](m to 119 ± 7% control, respectively. Concurrent with inhibition of mitochondrial Ca(2+ influx or efflux, the SR Ca(2+ load, and LCR size, duration, amplitude and period (imaged via confocal linescan significantly increased or decreased, respectively. Changes in total ensemble LCR Ca(2+ signal were highly correlated with the change in the SR Ca(2+ load (r(2 = 0.97. Changes in the spontaneous AP cycle length (Ru360, 111 ± 1% control; CGP-37157, 89 ± 2% control in response to changes in [Ca(2+](m were predicted by concurrent changes in LCR period (r(2 = 0.84.A change in SANC Ca(2+ (m flux translates into a change in the AP firing rate by effecting changes in Ca(2+ (c and SR Ca(2+ loading, which affects the characteristics of spontaneous SR Ca(2+ release.

  15. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy.

    Science.gov (United States)

    Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong

    2018-05-01

    Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.

  16. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  17. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise.

    Science.gov (United States)

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Ruas, Jorge L; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T; Skurvydas, Albertas; Westerblad, Håkan

    2015-12-15

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.

  18. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise

    Science.gov (United States)

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J.; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T.; Skurvydas, Albertas; Westerblad, Håkan

    2015-01-01

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622

  19. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae

    Science.gov (United States)

    Milani-Nejad, Nima; Brunello, Lucia; Gyorke, Sándor; Janssen, Paul M.L.

    2014-01-01

    We set out to determine the factors responsible for twitch force decline in isolated intact rat cardiac trabeculae. The contractile force of trabeculae declined over extended periods of isometric twitch contractions. The force-frequency relationship within the frequency range of 4–8 Hz, at 37 °C, became more positive and the frequency optimum shifted to higher rates with this decline in baseline twitch tensions. The post-rest potentiation (37 °C), a phenomenon highly dependent on calcium handling mechanisms, became more pronounced with decrease in twitch tensions. We show that the main abnormality during muscle run-down was not due to a deficit in the myofilaments; maximal tension achieved using a K+ contracture protocol was either unaffected or only slightly decreased. Conversely, the sarcoplasmic reticulum (SR) calcium content, as assessed by rapid cooling contractures (from 27 °C to 0 °C), decreased, and had a close association with the declining twitch tensions (R2 ~ 0.76). SR Ca2+-ATPase, relative to Na+/Ca2+ exchanger activity, was not altered as there was no significant change in paired rapid cooling contracture ratios. Furthermore, confocal microscopy detected no abnormalities in the overall structure of the cardiomyocytes and t-tubules in the cardiac trabeculae (~23 °C). Overall, the data indicates that the primary mechanism responsible for force run-down in multi-cellular cardiac preparations is a decline in the SR calcium content and not the maximal tension generation capability of the myofilaments. PMID:25056841

  20. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle.

    Science.gov (United States)

    Manno, Carlo; Sztretye, Monika; Figueroa, Lourdes; Allen, Paul D; Ríos, Eduardo

    2013-01-15

    The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.

  1. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  2. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    International Nuclear Information System (INIS)

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N.

    2006-01-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3α and Ser9 of GSK3β. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3β, but not GSK3α. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels

  3. The role of the sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles.

    Science.gov (United States)

    Galli, Gina L J; Gesser, Hans; Taylor, Edwin W; Shiels, Holly A; Wang, Tobias

    2006-05-01

    The functional significance of the sarcoplasmic reticulum (SR) in the generation of high heart rates and blood pressures was investigated in four species of reptile; the turtle, Trachemys scripta; the python, Python regius, the tegu lizard, Tupinanvis merianae, and the varanid lizard, Varanus exanthematicus. Force-frequency trials and imposed pauses were performed on ventricular and atrial tissue from each species with and without the SR inhibitor ryanodine, and in the absence and presence of adrenaline. In all species, an imposed pause of 1 or 5 min caused a post-rest decay of force, and a negative force-frequency response was observed in all species within their in vivo frequency range of heart rates. These relationships were not affected by either ryanodine or adrenaline. In ventricular strips from varanid lizards and pythons, ryanodine caused significant reductions in twitch force within their physiologically relevant frequency range. In atrial tissue from the tegu and varanid lizards, SR inhibition reduced twitch force across the whole of their physiological frequency range. In contrast, in the more sedentary species, the turtle and the python, SR inhibition only decreased twitch force at stimulation frequencies above maximal in vivo heart rates. Adrenaline caused an increase in twitch force in all species studied. In ventricular tissue, this positive inotropic effect was sufficient to overcome the negative effects of ryanodine. In atrial tissue however, adrenaline could only ameliorate the negative effects of ryanodine at the lower pacing frequencies. Our results indicate that reptiles recruit Ca2+ from the SR for force development in a frequency and tissue dependent manner. This is discussed in the context of the development of high reptilian heart rates and blood pressures.

  4. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  5. Regulatory effects of phospholamban on cardiac sarcoplasmic reticulum function

    International Nuclear Information System (INIS)

    Kim, Hae Won.

    1989-01-01

    In this thesis, the author reports the effect of phospholamban on: (a) Ca 2+ release by cardiac SR and (b) the Ca 2+ -ATPase activity in a purified reconstituted system. Phosphorylation of phospholamban by Ca 2+ · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca 2+ release from cardiac SR vesicles loaded under passive conditions and on the apparent 45 Ca 2+ - 40 Ca 2+ exchange from cardiac SR vesicles loaded under active conditions. us, it appears that Ca 2+ · calmodulin-dependent phosphorylation of phospholamban is not involved in the regulation of Ca 2+ release and 45 Ca 2+-40 Ca 2+ exchange. To determine the molecular mechanism by which phospholamban regulates the Ca 2+ pump, a reconstituted system was developed, using a freeze-thaw sonication procedure. The Ca 2+ -ATPase was purified by a method which yields an active enzyme preparation essentially free of phospholamban. The best rates of Ca 2+ uptake were obtained when cholate and phosphatidylcholine (PC) were used at a ratio of cholate/PC/Ca 2 + -ATPase of 2/80/1. The maximal rates of Ca 2+ Uptake were 700 nmol/min/mg reconstituted vesicles compared to 800 nmol/min/mg SR vesicles. The EC 50 values for Ca 2+ were 0.05 μM for both Ca 2+ uptake and Ca 2+ -ATPase activity in the reconstituted vesicles compared to 0.63 μM Ca 2+ in native SR vesicles. To determine the effect of phospholamban on the Ca + -ATPase activity in the reconstituted vesicles, purified phospholamban was added to the cholate/Ca 2+ -ATPase mixture prior to combining it with liposomes

  6. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S

    2003-08-15

    Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.

  7. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  8. Role of sarcoplasmic reticulum calcium in development of secondary calcium rise and early afterdepolarizations in long QT syndrome rabbit model.

    Directory of Open Access Journals (Sweden)

    Po-Cheng Chang

    Full Text Available L-type calcium current reactivation plays an important role in development of early afterdepolarizations (EADs and torsades de pointes (TdP. Secondary intracellular calcium (Cai rise is associated with initiation of EADs.To test whether inhibition of sarcoplasmic reticulum (SR Ca2+ cycling suppresses secondary Cai rise and genesis of EADs.Langendorff perfusion and dual voltage and Cai optical mapping were conducted in 10 rabbit hearts. Atrioventricular block (AVB was created by radiofrequency ablation. After baseline studies, E4031, SR Ca2+ cycling inhibitors (ryanodine plus thapsigargin and nifedipine were then administrated subsequently, and the protocols were repeated.At baseline, there was no spontaneous or pacing-induced TdP. After E4031 administration, action potential duration (APD was significantly prolonged and the amplitude of secondary Cai rise was enhanced, and 7 (70% rabbits developed spontaneous or pacing-induced TdP. In the presence of ryanodine plus thapsigargin, TdP inducibility was significantly reduced (2 hearts, 20%, p = 0.03. Although APD was significantly prolonged (from 298 ± 30 ms to 457 ± 75 ms at pacing cycle length of 1000 m, p = 0.007 by ryanodine plus thapsigargin, the secondary Cai rise was suppressed (from 8.8 ± 2.6% to 1.2 ± 0.9%, p = 0.02. Nifedipine inhibited TdP inducibility in all rabbit hearts.In this AVB and long QT rabbit model, inhibition of SR Ca2+ cycyling reduces the inducibility of TdP. The mechanism might be suppression of secondary Cai rise and genesis of EADs.

  9. Determination of the separate lipid and protein profile structures derived from the total membrane profile structure or isolated sarcoplasmic reticulum via x-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Herbette, L.; Blasie, J.K.

    1984-01-01

    Sarcoplasmic reticulum (SR) membranes were prepared to contain biosynthetically deuterated SR phospholipids utilizing specific and general phospholipid exchange proteins (PLEP). Functional measurements and freeze fracture on SR dispersions and x-ray diffraction of hydrated oriented membrane multilayers revealed that the exchanged SR membranes were very similar to unexchanged SR membranes. Low resolution (28-A) neutron diffraction studies utilizing SR membranes exchanged with either protonated or perdeuterated SR phospholipids allowed direct determination of the lipid profile within the isolated SR membrane at two different unit cell repeat distances. These lipid profile structures were found to be highly asymmetric regarding the conformation of the fatty acid chain extents and compositional distribution of phospholipid molecules in the inner vs. outer monolayer of the SR membrane bilayer. The relatively high resolution (11-A) electron-density profile from x-ray diffraction was decomposed by utilizing the asymmetry in the number of phospholipid molecules residing in the inner vs. outer monolayer of the SR lipid bilayer as obtained from the neutron diffraction study. To our knowledge, this represents the first direct determination of a lipid bilayer profile structure within an isolated membrane system

  10. Interaction between neuronal nitric oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: role of nitroso-redox balance.

    Science.gov (United States)

    Dulce, Raul A; Mayo, Vera; Rangel, Erika B; Balkan, Wayne; Hare, Joshua M

    2015-01-02

    Although nitric oxide (NO) signaling modulates cardiac function and excitation-contraction coupling, opposing results because of inconsistent experimental conditions, particularly with respect to temperature, confound the ability to elucidate NO signaling pathways. Here, we show that temperature significantly modulates NO effects. To test the hypothesis that temperature profoundly affects nitroso-redox equilibrium, thereby affecting sarcoplasmic reticulum (SR) calcium (Ca(2+)) leak. We measured SR Ca(2+) leak in cardiomyocytes from wild-type (WT), NO/redox imbalance (neuronal nitric oxide synthase-deficient mice-1 [NOS1(-/-)]), and hyper S-nitrosoglutathione reductase-deficient (GSNOR(-/-)) mice. In WT cardiomyocytes, SR Ca(2+) leak increased because temperature decreased from 37°C to 23°C, whereas in NOS1(-/-) cells, the leak suddenly increased when the temperature surpassed 30°C. GSNOR(-/-) cardiomyocytes exhibited low leak throughout the temperature range. Exogenously added NO had a biphasic effect on NOS1(-/-) cardiomyocytes; reducing leak at 37°C but increasing it at subphysiological temperatures. Oxypurinol and Tempol diminished the leak in NOS1(-/-) cardiomyocytes. Cooling from 37°C to 23°C increased reactive oxygen species generation in WT but decreased it in NOS1(-/-) cardiomyocytes. Oxypurinol further reduced reactive oxygen species generation. At 23°C in WT cells, leak was decreased by tetrahydrobiopterin, an essential NOS cofactor. Cooling significantly increased SR Ca(2+) content in NOS1(-/-) cells but had no effect in WT or GSNOR(-/-). Ca(2+) leak and temperature are normally inversely proportional, whereas NOS1 deficiency reverses this effect, increasing leak and elevating reactive oxygen species production because temperature increases. Reduced denitrosylation (GSNOR deficiency) eliminates the temperature dependence of leak. Thus, temperature regulates the balance between NO and reactive oxygen species which in turn has a major effect on SR

  11. Effect of phospholipid, detergent and protein-protein interaction on stability and phosphoenzyme isomerization of soluble sarcoplasmic reticulum Ca-ATPase.

    Science.gov (United States)

    Vilsen, B; Andersen, J P

    1987-12-30

    The purpose of the present study was to elucidate the separate roles of lipid, detergent and protein-protein interaction for stability and catalytic properties of sarcoplasmic reticulum Ca-ATPase solubilized in the non-ionic detergent octa(ethylene glycol) monododecyl ether (C12E8). The use of large-zone high-performance liquid chromatography permitted us to define the self-association state of Ca-ATPase peptide at various detergent, phospholipid and protein concentrations, and also during enzymatic turnover with ATP. Conditions were established for monomerization of Ca-ATPase in the presence of a high concentration of phospholipid relative to detergent. The lipid-saturated monomeric preparation was relatively resistant to inactivation in the absence of Ca2+, whereas delipidated enzyme in monomeric or in oligomeric form was prone to inactivation. Kinetics of phosphoenzyme turnover were examined in the presence and absence of Mg2+. Dephosphorylation rates were sensitive to Mg2+, irrespective of whether the peptide was present in soluble monomeric form or was membrane-bound. C12E8-solubilized monomer without added phospholipid was, however, characterized by a fast initial phase of dephosphorylation in the absence of Mg2+. This was not observed with monomer saturated with phospholipid or with monomer solubilized in myristoylglycerophosphocholine or deoxycholate. The mechanism underlying this difference was shown to be a C12E8-induced acceleration of conversion of ADP-sensitive phosphoenzyme (E1P) to ADP-insensitive phosphoenzyme (E2P). The phosphoenzyme isomerization rate was also found to be enhanced by low-affinity binding of ATP. This was demonstrated both in membrane-bound and in soluble monomeric Ca-ATPase. Our results indicate that a single peptide chain constitutes the target for modulation of phosphoenzyme turnover by Mg2+ and ATP, and that detergent effects, distinct from those arising from disruption of protein-protein contacts, are the major determinants of

  12. Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study.

    Directory of Open Access Journals (Sweden)

    Jussi T Koivumäki

    Full Text Available Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca²+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL ion currents, accounts for the heterogeneity of intracellular Ca²+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR. Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca²+ dynamics: 1 the biphasic increment during the upstroke of the Ca²+ transient resulting from the delay between the peripheral and central SR Ca²+ release, and 2 the relative contribution of SL Ca²+ current and SR Ca²+ release to the Ca²+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca²+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca²+ release sites define the interface between Ca²+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca²+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca²+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca²+ signaling. Thus, the model provides a useful framework for future

  13. Influence of the sarcoplasmic reticulum on the inotropic responses of the rat myocardium resulting from changes in rate and rhythm.

    Science.gov (United States)

    Mill, J G; Vassallo, D V; Leite, C M; Campagnaro, P

    1994-06-01

    1. The role of the sarcoplasmic reticulum (SR) in the inotropic responses produced by changes in stimulation rate and rhythm and resting tension was investigated in the rat myocardium. 2. Rat papillary muscles contracting isometrically (basic stimulation rate = 30/min) were superfused in vitro with normal Krebs solution and after addition of ryanodine (1 microM). Post-rest potentiation was obtained after pauses of 5, 10, 15, 30, 60 and 120 s, and the stimulation rate was changed from 6 to 90 bpm. Post-extrasystolic potentiation was induced by interpolating an extra stimulus after an interval of 413 +/- 15 ms. NiCl2 (2 mM) was used to confirm that contractions obtained after SR blockade with ryanodine were activated only by sarcolemmal calcium influx. 3. In the presence of ryanodine, the post-rest potentiation phenomenon disappears and the force-frequency relationship changes from the typical force decrease produced by rate increase to force increase. Under the effect of ryanodine, resting tension increased with the increase in stimulation rate. This behavior was enhanced by reducing extracellular KCl from 5.4 mM to 1 mM. This maneuver decreases Na(+)-K(+)-ATPase and increases intracellular Na+ activity, which reduces Ca2+ extrusion through the Na(+)-Ca2+ exchange mechanism. 4. SR participation in the post-extrasystolic potentiation phenomenon is also suggested because ryanodine treatment reversed the extrasystolic force depression into potentiation. In the presence of ryanodine, blockade of Ca2+ influx with NiCl2 (2 mM) abolished isometric contractions indicating that after SR blockade contractions are mainly dependent on sarcolemmal Ca2+ influx. 5. The results suggest that the SR is involved in the genesis of post-rest potentiation and contributes to the typical force-frequency relationship of the rat myocardium and to the post-extrasystolic potentiation phenomenon. Moreover, SR activity seems to be important for the maintenance of low resting tension in the

  14. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    Science.gov (United States)

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  15. A novel artificial microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes improves Ca2+ uptake into the sarcoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Tobias Gröβl

    Full Text Available In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.

  16. 3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity.

    Science.gov (United States)

    Jardim-Messeder, Douglas; Camacho-Pereira, Juliana; Galina, Antonio

    2012-05-01

    3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA. However, Ca(2+)-uptake activity was significantly inhibited by 80% with 150 μM 3BrPA. These results indicate that 3BrPA has the ability to uncouple the ATP hydrolysis from the calcium transport activities. In addition, we observed that the inclusion of 2mM reduced glutathione (GSH) in the reaction medium with different 3BrPA concentrations promoted an increase in 40% in ATPase activity and protects the inhibition promoted by 3BrPA in calcium uptake activity. This derivatization is accompanied by a decrease of reduced cysteine (Cys), suggesting that GSH and 3BrPA increases SERCA activity and transport by pyruvylation and/or S-glutathiolation mediated by GSH at a critical Cys residues of the SERCA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm

    DEFF Research Database (Denmark)

    Winther, Anne-Marie Lund; Bublitz, Maike; Karlsen, Jesper Lykkegaard

    2013-01-01

    The contraction and relaxation of muscle cells is controlled by the successive rise and fall of cytosolic Ca(2+), initiated by the release of Ca(2+) from the sarcoplasmic reticulum and terminated by re-sequestration of Ca(2+) into the sarcoplasmic reticulum as the main mechanism of Ca(2+) removal...

  18. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation–contraction coupling in mammalian skeletal muscle

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver

    2016-01-01

    Key points Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation–contraction coupling (ECC) of mammalian skeletal muscle remains unknown.We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+‐sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue.We demonstrate that CB1Rs are not connected to the inositol 1,4,5‐trisphosphate pathway either in myotubes or in adult muscle fibres.By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein‐mediated way in adult skeletal muscle fibres but not in myotubes.These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Abstract Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R‐mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+‐sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5‐trisphosphate (IP3)‐mediated Ca2+ transients, nor did they alter excitation–contraction coupling. By contrast, in isolated muscle fibres of wild‐type mice, although CB1R agonists did not evoke IP3

  19. Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle.

    Science.gov (United States)

    Oláh, Tamás; Bodnár, Dóra; Tóth, Adrienn; Vincze, János; Fodor, János; Reischl, Barbara; Kovács, Adrienn; Ruzsnavszky, Olga; Dienes, Beatrix; Szentesi, Péter; Friedrich, Oliver; Csernoch, László

    2016-12-15

    Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca 2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca 2+ release and sarcoplasmic reticulum Ca 2+ ATPase during ECC in a G i/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca 2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP 3 )-mediated Ca 2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP 3 -mediated Ca 2

  20. Muscle Glycogen Content Modifies SR Ca2 + Release Rate in Elite Endurance Athletes

    DEFF Research Database (Denmark)

    Gejl, Kasper Degn; Hvid, Lars G; Frandsen, Ulrik

    2014-01-01

    The aim of the present study was to investigate the influence of muscle glycogen content on sarcoplasmic reticulum (SR) function and peak power output (Wpeak) in elite endurance athletes.......The aim of the present study was to investigate the influence of muscle glycogen content on sarcoplasmic reticulum (SR) function and peak power output (Wpeak) in elite endurance athletes....

  1. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1

    Science.gov (United States)

    Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.

    2015-01-01

    Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388

  2. Temperature dependence of the kinetics of isometric myocardium relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Izakov, V.Ya.; Bykov, B.L.; Kimmelman, I.Ya.

    1981-11-01

    The dependence of the exponential decay constant expressing the isometric relaxation of the myocardium on temperature is investigated in animals with various specific contents of myocardial sarcoplasmic reticulum. Experiments were performed on cardiac ventricles and atria isolated from rabbits, frogs and turtles and electrically stimulated to produce maximal contraction at temperatures from 10 to 35 C. Arrhenius plots derived from the data are found to be linear in the myocardia of the rabbit and frog, with a greater activation energy for the relaxation found in the rabbit. The Arrhenius plot for the turtle, which has a sarcoplasmic reticulum content intermediate between those of the frog and rabbit, corresponds to two straight lines with different activation energies. Results thus support the hypothesis of two separate mechanisms of calcium removal, involving the sarcoplasmic reticulum and cellular membrane, in muscle relaxation.

  3. Nanospan, an alternatively spliced isoform of sarcospan, localizes to the sarcoplasmic reticulum in skeletal muscle and is absent in limb girdle muscular dystrophy 2F.

    Science.gov (United States)

    Peter, Angela K; Miller, Gaynor; Capote, Joana; DiFranco, Marino; Solares-Pérez, Alhondra; Wang, Emily L; Heighway, Jim; Coral-Vázquez, Ramón M; Vergara, Julio; Crosbie-Watson, Rachelle H

    2017-06-06

    Sarcospan (SSPN) is a transmembrane protein that interacts with the sarcoglycans (SGs) to form a tight subcomplex within the dystrophin-glycoprotein complex that spans the sarcolemma and interacts with laminin in the extracellular matrix. Overexpression of SSPN ameliorates Duchenne muscular dystrophy in murine models. Standard cloning approaches were used to identify nanospan, and nanospan-specific polyclonal antibodies were generated and validated. Biochemical isolation of skeletal muscle membranes and two-photon laser scanning microscopy were used to analyze nanospan localization in muscle from multiple murine models. Duchenne muscular dystrophy biopsies were analyzed by immunoblot analysis of protein lysates as well as indirect immunofluorescence analysis of muscle cryosections. Nanospan is an alternatively spliced isoform of sarcospan. While SSPN has four transmembrane domains and is a core component of the sarcolemmal dystrophin-glycoprotein complex, nanospan is a type II transmembrane protein that does not associate with the dystrophin-glycoprotein complex. We demonstrate that nanospan is enriched in the sarcoplasmic reticulum (SR) fractions and is not present in the T-tubules. SR fractions contain membranes from three distinct structural regions: a region flanking the T-tubules (triadic SR), a SR region across the Z-line (ZSR), and a longitudinal SR region across the M-line (LSR). Analysis of isolated murine muscles reveals that nanospan is mostly associated with the ZSR and triadic SR, and only minimally with the LSR. Furthermore, nanospan is absent from the SR of δ-SG-null (Sgcd -/- ) skeletal muscle, a murine model for limb girdle muscular dystrophy 2F. Analysis of skeletal muscle biopsies from Duchenne muscular dystrophy patients reveals that nanospan is preferentially expressed in type I (slow) fibers in both control and Duchenne samples. Furthermore, nanospan is significantly reduced in Duchenne biopsies. Alternative splicing of proteins from the SG

  4. Picture frame fibres in a carrier of the trait for malignant hyperpyrexia

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H; Badenhorst, M [University of the Witwatersrand, Johannesburg (South Africa). Department of Physiology; Heffron, J J.A. [University of the Witwatersrand, Johannesburg (South Africa). Department of Physiological Chemistry

    1975-11-01

    A member of a family which was known to be susceptible to malignant hyperpyrexia, who was identified as a carrier by the presence of an elevated serum creatinephosphokinase, has been investigated further. Muscle was examined biochemically, and the study included the sarcoplasmic ATPase-activity, actinomycin, Mg2+ ATPase activity, ATP, phosphocreatine and glucose-6-phosphate. In addition, the calcium uptake by the sarcoplasmic reticulum was studied. The histochemical analysis of the muscle revealed the presence of a new fibre type characterized by a dense rim of ATPase activity, which gives the impression of a 'picture-frame'. Ultramicroscopic study revealed changes in the mitochondria and areas of myofibrillar disruption with swelling of the sarcoplasmic reticulum.

  5. Picture frame fibres in a carrier of the trait for malignant hyperpyrexia

    International Nuclear Information System (INIS)

    Isaacs, H.; Badenhorst, M.; Heffron, J.J.A.

    1975-01-01

    A member of a family which was known to be susceptible to malignant hyperpyrexia, who was identified as a carrier by the presence of an elevated serum creatinephosphokinase, has been investigated further. Muscle was examined biochemically, and the study included the sarcoplasmic ATPase-activity, actinomycin, Mg2+ ATPase activity, ATP, phosphocreatine and glucose-6-phosphate. In addition, the calcium uptake by the sarcoplasmic reticulum was studied. The histochemical analysis of the muscle revealed the presence of a new fibre type characterized by a dense rim of ATPase activity, which gives the impression of a 'picture-frame'. Ultramicroscopic study revealed changes in the mitochondria and areas of myofibrillar disruption with swelling of the sarcoplasmic reticulum

  6. A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Shigeki Kobayashi

    Full Text Available OBJECTIVES: The purpose of this study was to investigate whether adding a low-dose β1-blocker to milrinone improves cardiac function in failing cardiomyocytes and the underlying cardioprotective mechanism. BACKGROUND: The molecular mechanism underlying how the combination of low-dose β1-blocker and milrinone affects intracellular Ca(2+ handling in heart failure remains unclear. METHODS: We investigated the effect of milrinone plus landiolol on intracellular Ca(2+ transient (CaT, cell shortening (CS, the frequency of diastolic Ca(2+ sparks (CaSF, and sarcoplasmic reticulum Ca(2+ concentration ({Ca(2+}SR in normal and failing canine cardiomyocytes and used immunoblotting to determine the phosphorylation level of ryanodine receptor (RyR2 and phospholamban (PLB. RESULTS: In failing cardiomyocytes, CaSF significantly increased, and peak CaT and CS markedly decreased compared with normal myocytes. Administration of milrinone alone slightly increased peak CaT and CS, while CaSF greatly increased with a slight increase in {Ca(2+}SR. Co-administration of β1-blocker landiolol to failing cardiomyocytes at a dose that does not inhibit cardiomyocyte function significantly decreased CaSF with a further increase in {Ca(2+}SR, and peak CaT and CS improved compared with milrinone alone. Landiolol suppressed the hyperphosphorylation of RyR2 (Ser2808 in failing cardiomyocytes but had no effect on levels of phosphorylated PLB (Ser16 and Thr17. Low-dose landiolol significantly inhibited the alternans of CaT and CS under a fixed pacing rate (0.5 Hz in failing cardiomyocytes. CONCLUSION: A low-dose β1-blocker in combination with milrinone improved cardiac function in failing cardiomyocytes, apparently by inhibiting the phosphorylation of RyR2, not PLB, and subsequent diastolic Ca(2+ leak.

  7. A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum.

    Science.gov (United States)

    Kobayashi, Shigeki; Susa, Takehisa; Ishiguchi, Hironori; Myoren, Takeki; Murakami, Wakako; Kato, Takayoshi; Fukuda, Masakazu; Hino, Akihiro; Suetomi, Takeshi; Ono, Makoto; Uchinoumi, Hitoshi; Tateishi, Hiroki; Mochizuki, Mamoru; Oda, Tetsuro; Okuda, Shinichi; Doi, Masahiro; Yamamoto, Takeshi; Yano, Masafumi

    2015-01-01

    The purpose of this study was to investigate whether adding a low-dose β1-blocker to milrinone improves cardiac function in failing cardiomyocytes and the underlying cardioprotective mechanism. The molecular mechanism underlying how the combination of low-dose β1-blocker and milrinone affects intracellular Ca(2+) handling in heart failure remains unclear. We investigated the effect of milrinone plus landiolol on intracellular Ca(2+) transient (CaT), cell shortening (CS), the frequency of diastolic Ca(2+) sparks (CaSF), and sarcoplasmic reticulum Ca(2+) concentration ({Ca(2+)}SR) in normal and failing canine cardiomyocytes and used immunoblotting to determine the phosphorylation level of ryanodine receptor (RyR2) and phospholamban (PLB). In failing cardiomyocytes, CaSF significantly increased, and peak CaT and CS markedly decreased compared with normal myocytes. Administration of milrinone alone slightly increased peak CaT and CS, while CaSF greatly increased with a slight increase in {Ca(2+)}SR. Co-administration of β1-blocker landiolol to failing cardiomyocytes at a dose that does not inhibit cardiomyocyte function significantly decreased CaSF with a further increase in {Ca(2+)}SR, and peak CaT and CS improved compared with milrinone alone. Landiolol suppressed the hyperphosphorylation of RyR2 (Ser2808) in failing cardiomyocytes but had no effect on levels of phosphorylated PLB (Ser16 and Thr17). Low-dose landiolol significantly inhibited the alternans of CaT and CS under a fixed pacing rate (0.5 Hz) in failing cardiomyocytes. A low-dose β1-blocker in combination with milrinone improved cardiac function in failing cardiomyocytes, apparently by inhibiting the phosphorylation of RyR2, not PLB, and subsequent diastolic Ca(2+) leak.

  8. Time Course of the Response of Myofibrillar and Sarcoplasmic Protein Metabolism to Unweighting of the Soleus Muscle

    Science.gov (United States)

    Munoz, Kathryn A.; Satarug, Soisungwan; Tischler, Marc E.

    1993-01-01

    Contributions of altered in vivo protein synthesis and degradation to unweighting atrophy of the soleus muscle in tail-suspended young female rats were analyzed daily for up to 6 days. Specific changes in myofibrillar and sarcoplasmic proteins were also evaluated to assess their contributions to the loss of total protein. Synthesis of myofibrillar and sarcoplasmic proteins was estimated by intramuscular (IM) injection and total protein by intraperitoneal (IP) injection of flooding doses of H-3-phenylaianine. Total protein loss was greatest during the first 3 days following suspension and was a consequence of the loss of myofibrillar rather than sarcoplasmic proteins. However, synthesis of total myofibrillar and sarcoplasmic proteins diminished in parallel beginning in the first 24 hours. Therefore sarcoplasmic proteins must be spared due to a decrease in their degradation. In contrast, myofibrillar protein degradation increased, thus explaining the elevated degradation of the total pool. Following 72 hours of suspension, protein synthesis remained low, but the rate of myofibrillar protein loss diminished, suggesting a slowing of degradation. These various results show acute loss of protein during unweighting atrophy is a consequence of decreased synthesis and increased degradation of myofibrillar proteins, and sarcoplasmic proteins are spared due to slower degradation, likely explaining the sparing of plasma membrane receptors. Based on other published data, we propose that the slowing of atrophy after the initial response may be attributed to an increased effect of insulin.

  9. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  10. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.

    Science.gov (United States)

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-06-01

    Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western

  11. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    International Nuclear Information System (INIS)

    Liu Qiong; Zhan Jinbiao; Chen Xinhong; Zheng Shu

    2006-01-01

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum

  12. Solution-blown nanofiber mats from fish sarcoplasmic protein

    DEFF Research Database (Denmark)

    Sett, S.; Boutrup Stephansen, Karen; Yarin, A.L.

    2016-01-01

    In the present work, solution-blowing was adopted to form nanofibers from fish sarcoplasmic proteins (FSPs). Nanofiber mats containing different weight ratios (up to 90/10) of FSP in the FSP/nylon 6 blended nanofibers were formed from formic acid solutions, and compared to electrospun fibers made...... that the production rate of solution-blowing was increased 30-fold in relation to electrospinning. Overall, this study reveals FSP as an interesting biopolymeric alternative to synthetic polymers, and the introduction of FSP to nylon 6 provides a composite with controlled properties....

  13. Comparative profiling of sarcoplasmic phosphoproteins in ovine muscle with different color stability.

    Science.gov (United States)

    Li, Meng; Li, Zheng; Li, Xin; Xin, Jianzeng; Wang, Ying; Li, Guixia; Wu, Liguo; Shen, Qingwu W; Zhang, Dequan

    2018-02-01

    The phosphorylation of sarcoplasmic proteins in postmortem muscles was investigated in relationship to color stability in the present study. Although no difference was observed in the global phosphorylation level of sarcoplasmic proteins, difference was determined in the phosphorylation levels of individual protein bands from muscles with different color stability. Correlation analysis and liquid chromatography - tandem mass spectrometry (LC-MS/MS) identification of phosphoproteins showed that most of the color stability-related proteins were glycolytic enzymes. Interestingly, the phosphorylation level of myoglobin was inversely related to meat color stability. As the phosphorylation of myoglobin increased, color stability based on a ∗ value decreased and metMb content increased. In summary, the study revealed that protein phosphorylation might play a role in the regulation of meat color stability probably by regulating glycolysis and the redox stability of myoglobin, which might be affected by the phosphorylation of myoglobin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Detection of Sequence-Specific Tyrosine Nitration of Manganese SOD and SERCA in Cardiovascular Disease and Aging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shanqin; Ying, Jia; Jiang, Bingbing; Guo, Wei; Adachi, Takeshi; Sharov, Victor; Lazar, Harold; Menzoian, James; Knyushko, Tanya V.; Bigelow, Diana J.; Schoneich, Christian; Cohen, Richard

    2006-06-01

    Nitration of protein tyrosine residues (nY) is a marker of oxidative stress and may alter the biological activity of the modified proteins. The aim of this study was to develop antibodies towards site-specific nY-modified proteins and to use histochemical and immunoblotting to demonstrate protein nitration in tissues. Affinity-purified polyclonal antibodies towards peptides with known nY sites in MnSOD nY-34 and of two adjacent nY in the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA2 di-nY-294,295) were developed. Kidneys from rats infused with angiotensin II with known MnSOD nY and aorta from atherosclerotic rabbits and aging rat skeletal and cardiac sarcoplasmic reticulum with known SERCA di-nY were used for positive controls. Staining for MnSOD nY-34 was most intense in distal renal tubules and collecting ducts. Staining of atherosclerotic aorta for SERCA2 di-nY was most intense in atherosclerotic plaques. Aging rat skeletal muscle and atherosclerotic aorta and cardiac atrium from human diabetic patients also stained positively. Staining was decreased by sodium dithionite that chemically reduces nitrotyrosine to aminotyrosine, and the antigenic nY-peptide blocked staining for each respective nY site, but not for the other. As previously demonstrated, immunoblotting failed to detect these modified proteins in whole tissue lysates, but did when the proteins were concentrated. Immunohistochemical staining for specific nY-modified tyrosine residues offers the ability to assess the effects of oxidant stress associated with pathological conditions on individual proteins whose function may be affected in specific tissue sites.

  15. Is contraction-stimulated glucose transport feedforward regulated by Ca2+?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Angin, Yeliz; Sylow, Lykke

    2014-01-01

    cell types. The literature is contrasted against our recent findings suggesting that SR Ca(2+) release is neither essential nor adequate to stimulate glucose transport in muscle. Instead, feedback signals through AMPK and mechanical stress are likely to account for most of contraction......In many cell types, Ca(2+) signals to increase the movement and surface membrane insertion of vesicles. In skeletal muscle, Ca(2+) is predominantly released from the sarcoplasmic reticulum (SR) to initiate contraction. Sarcoplasmic reticulum Ca(2+) release is widely believed to be a direct......-stimulated glucose transport. A revised working model is proposed, in which muscle glucose transport during contraction is not directly regulated by SR Ca(2+) release but rather responds exclusively to feedback signals activated secondary to cross-bridge cycling and tension development....

  16. ALUMINUM CHLORIDE EFFECT ON Ca2+,Mg(2+)-ATPase ACTIVITY AND DYNAMIC PARAMETERS OF SKELETAL MUSCLE CONTRACTION.

    Science.gov (United States)

    Nozdrenko, D M; Abramchuk, O M; Soroca, V M; Miroshnichenko, N S

    2015-01-01

    We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10(-4) M Increasing the concentration of AlCl3 to 10(-2) M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg(2+)-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg(2+)-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  17. Aluminum chloride effect on Ca(2+,Mg(2+-ATPase activity and dynamic parameters of skeletal muscle contraction

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-10-01

    Full Text Available We studied enzymatic activity and measured strain-gauge contraction properties of the frog Rana temporaria m. tibialis anterior muscle fascicles during the action of aluminum chloride solution. It was shown that AlCl3 solutions did not affect the dynamic properties of skeletal muscle preparation in concentrations less than 10-4 M. Increasing the concentration of AlCl3 to 10-2 M induce complete inhibition of muscle contraction. A linear correlation between decrease in Ca2+,Mg2+-ATPase activity of sarcoplasmic reticulum and the investigated concentrations range of aluminum chloride was observed. The reduction in the dynamic contraction performance and the decrease Ca2+,Mg2+-ATPase activity of the sarcoplasmic reticulum under the effect of the investigated AlCl3 solution were minimal in pre-tetanus period of contraction.

  18. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  19. SR calcium handling and calcium after-transients in a rabbit model of heart failure

    NARCIS (Netherlands)

    Baartscheer, Antonius; Schumacher, Cees A.; Belterman, Charly N. W.; Coronel, Ruben; Fiolet, Jan W. T.

    2003-01-01

    Objective: After-depolarization associated arrhythmias are frequently observed in heart failure and associated with spontaneous calcium release from sarcoplasmic reticulum (SR), calcium after-transients. We hypothesize that disturbed SR calcium handling underlies calcium after-transients in heart

  20. Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation

    NARCIS (Netherlands)

    Sood, Subeena; Chelu, Mihail G.; van Oort, Ralph J.; Skapura, Darlene; Santonastasi, Marco; Dobrev, Dobromir; Wehrens, Xander H. T.

    2008-01-01

    BACKGROUND: Although defective Ca(2+) homeostasis may contribute to arrhythmogenesis in atrial fibrillation (AF), the underlying molecular mechanisms remain poorly understood. Studies in patients with AF revealed that impaired diastolic closure of sarcoplasmic reticulum (SR) Ca(2+)-release channels

  1. Genetics Home Reference: Brody myopathy

    Science.gov (United States)

    ... 1 (SERCA1). The SERCA1 enzyme is found in skeletal muscle cells, specifically in the membrane of a structure called the sarcoplasmic reticulum . This structure plays a major role in muscle contraction and relaxation by storing and releasing positively charged ...

  2. [Changes induced by hypertonic solutions in the transportation of calcium by the cardiac reticular sarcoplasma].

    Science.gov (United States)

    Sierra, M; Holguín, J A

    1979-01-01

    In the sarcoplasmic reticulum of the myocardium, celular organell which function is to regulate the cytoplasmic concentration of calcium in contraction and relaxation, we have studied the effect of hypertonic solutions of sucrose between 1 and 6.96 times the normal tonicity in order to observe the behavior of the internal linked or free calcium of this structure, as well as to prove the hypothesis that hypertonic solutions encourage the calcium exit of the sarcoplasmatic reticulum with the resulting signs of contractures. The following results were obtained: 1. The ATP hydrolisis and calcium transport rate are 14% and 90% respectively of the maximum speeds of 10(-5) M in calcium, while for concentrations of 10(-7) M or ess of the said cation, the transport rates and the ATPase do not reach 5% of the maximum values. 2. Between 1 and 2.54 times of the normal tonicity the calcium uptake remains between 400 and 500 nmoles of calcium/mg protein/min, the transported amount of calcium varies between 14 and 16 nmoles/mg protein and the rate of the ATP hydrolysis increases a 37% to 0.4 M in sucrose. 3. Between 0.4 and 1.2 M in sucrose of 2.54 to 6.96 times the isotonicity, the calcium transport rate velocity as well as the ATP hydrolisis are strongly inhibited. The vesicles volume minimizes and the amount of linked calcium remains within the control values, proving that the capacity of linking this cathion is independent from sarcoplasmic reticulum volume. These results show that the sarcoplasmic reticulum is involved in the contractures induced by hypertonic solutions in intact cells, since the osmolarity increase produces changes of volume which results in a decrease of the calcium transportation velocity or in an increase of the exit of said cathion.

  3. Effects of Preslaughter Stress Levels on the Post-mortem Sarcoplasmic Proteomic Profile of Gilthead Seabream Muscle

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Cordeiro, Odete D; Matos, Elisabete D.

    2012-01-01

    identification was performed by MALDI-TOF-TOF MS. Analysis of the results indicates changes on several cellular pathways, with some of these changes being attributable to oxidative and proteolytic activity on sarcoplasmic proteins, together with leaking of myofibrillar proteins. These processes appear to have...

  4. Design and characterization of self-assembled fish sarcoplasmic protein-alginate nanocomplexes

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; Mattebjerg, Maria Ahlm; Wattjes, Jasper

    2015-01-01

    Macrostructures based on natural polymers are subject to large attention, as the application range is wide within the food and pharmaceutical industries. In this study we present nanocomplexes (NCXs) made from electrostatic self-assembly between negatively charged alginate and positively charged...... fish sarcoplasmic proteins (FSP), prepared by bulk mixing. A concentration screening revealed that there was a range of alginate and FSP concentrations where stable NCXs with similar properties were formed, rather than two exact concentrations. The size of the NCXs was 293 +/- 3 nm, and the zeta...

  5. Endoplasmic reticulum stress in lung disease

    Directory of Open Access Journals (Sweden)

    Stefan J. Marciniak

    2017-06-01

    Full Text Available Exposure to inhaled pollutants, including fine particulates and cigarette smoke is a major cause of lung disease in Europe. While it is established that inhaled pollutants have devastating effects on the genome, it is now recognised that additional effects on protein folding also drive the development of lung disease. Protein misfolding in the endoplasmic reticulum affects the pathogenesis of many diseases, ranging from pulmonary fibrosis to cancer. It is therefore important to understand how cells respond to endoplasmic reticulum stress and how this affects pulmonary tissues in disease. These insights may offer opportunities to manipulate such endoplasmic reticulum stress pathways and thereby cure lung disease.

  6. Redox regulation of calcium release in skeletal and cardiac muscle

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2002-01-01

    Full Text Available In skeletal and cardiac muscle cells, specific isoforms of the Ryanodine receptor channels mediate Ca2+ release from the sarcoplasmic reticulum. These channels are highly susceptible to redox modifications, which regulate channel activity. In this work, we studied the effects of Ca2+ (endogenous agonist and Mg2+ (endogenous inhibitor on the kinetics of Ca2+ release from sarcoplasmic reticulum vesicles isolated from skeletal or cardiac mammalian muscle. Native skeletal vesicles exhibited maximal stimulation of release kinetics by 10-20 µM [Ca2+], whereas in native cardiac vesicles, maximal stimulation of release required only 1 µM [Ca2+]. In 10 µM [Ca2+], free [Mg2+] < 0.1 mM produced marked inhibition of release from skeletal vesicles but free [Mg2+] ­ 0.8 mM did not affect release from cardiac vesicles. Incubation of skeletal or cardiac vesicles with the oxidant thimerosal increased their susceptibility to stimulation by Ca2+ and decreased the inhibitory effect of Mg2+ in skeletal vesicles. Sulfhydryl-reducing agents fully reversed the effects of thimerosal. The endogenous redox species, glutathione disulfide and S-nitrosoglutathione, also stimulated release from skeletal sarcoplasmic reticulum vesicles. In 10 µM [Ca2+], 35S-nitrosoglutathione labeled a protein fraction enriched in release channels through S-glutathiolation. Free [Mg2+] 1 mM or decreasing free [Ca2+] to the nM range prevented this reaction. Possible physiological and pathological consequences of redox modification of release channels on Ca2+ signaling in heart and muscle cells are discussed

  7. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Michiko [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Hayashi, Teruo, E-mail: thayashi@mail.nih.gov [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Su, Tsung-Ping, E-mail: tsu@intra.nida.nih.gov [Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The endoplasmic reticulum subdomain termed MAM associates with mitochondria. Black-Right-Pointing-Pointer The biophysical role of lipids in the MAM-mitochondria association is unknown. Black-Right-Pointing-Pointer The in vitro membrane association assay was used to examine the role of lipids. Black-Right-Pointing-Pointer Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP{sub 3} receptor-mediated Ca{sup 2+} influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-{beta}-cyclodextrin (M{beta}C) significantly increases the association between MAMs and mitochondria, whereas M{beta}C saturated with cholesterol does not change the association. {sup 14}C-Serine pulse-labeling demonstrated that the treatment of living cells with M{beta}C decreases the level of de novo synthesized {sup 14}C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of

  8. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    International Nuclear Information System (INIS)

    Fujimoto, Michiko; Hayashi, Teruo; Su, Tsung-Ping

    2012-01-01

    Highlights: ► The endoplasmic reticulum subdomain termed MAM associates with mitochondria. ► The biophysical role of lipids in the MAM–mitochondria association is unknown. ► The in vitro membrane association assay was used to examine the role of lipids. ► Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP 3 receptor-mediated Ca 2+ influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-β-cyclodextrin (MβC) significantly increases the association between MAMs and mitochondria, whereas MβC saturated with cholesterol does not change the association. 14 C-Serine pulse-labeling demonstrated that the treatment of living cells with MβC decreases the level of de novo synthesized 14 C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of 14 C-phosphatidylethanolamine (PtEt). Apparently, cholesterol depletion increased the PtSer transport from MAMs to mitochondria. Our

  9. Localization and in-vivo characterization of thapsia garganica CYP76AE2 indicates a role in thapsigargin biosynthesis

    DEFF Research Database (Denmark)

    Andersen, Trine Bundgaard; Martinez-Swatson, Karen Agatha; Rasmussen, Silas Anselm

    2017-01-01

    The Mediterranean plant Thapsia garganica (dicot, Apiaceae), also known as deadly carrot, produces the highly toxic compound thapsigargin. This compound is a potent inhibitor of the sarcoplasmic-endoplasmic reticulum Ca2+ -ATPase calcium pump in mammals and is of industrial importance as the active...

  10. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  11. Crystallization and preliminary X-ray diffraction analysis of human endoplasmic reticulum aminopeptidase 2

    International Nuclear Information System (INIS)

    Ascher, David B.; Polekhina, Galina; Parker, Michael W.

    2012-01-01

    The luminal domain of human endoplasmic reticulum aminopeptidase 2 has been expressed, purified and crystallized. The crystals belonged to the orthorhombic space group P2 1 2 1 2 and diffracted anisotropically to 3.3 Å resolution in the best direction on an in-house source. Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a critical enzyme involved in the final processing of MHC class I antigens. Peptide trimming by ERAP2 and the other members of the oxytocinase subfamily is essential to customize longer precursor peptides in order to fit them to the correct length required for presentation on major histocompatibility complex class I molecules. While recent structures of ERAP1 have provided an understanding of the ‘molecular-ruler’ mechanism of substrate selection, little is known about the complementary activities of its homologue ERAP2 despite their sharing 49% sequence identity. In order to gain insights into the structure–function relationship of the oxytocinase subfamily, and in particular ERAP2, the luminal region of human ERAP2 has been crystallized in the presence of the inhibitor bestatin. The crystals belonged to an orthorhombic space group and diffracted anisotropically to 3.3 Å resolution in the best direction on an in-house X-ray source. A molecular-replacement solution suggested that the enzyme has adopted the closed state as has been observed in other inhibitor-bound aminopeptidase structures

  12. The structural basis of calcium transport by the calcium pump

    DEFF Research Database (Denmark)

    Olesen, Claus; Picard, Martin; Winther, Anne-Marie Lund

    2007-01-01

    The sarcoplasmic reticulum Ca2+-ATPase, a P-type ATPase, has a critical role in muscle function and metabolism. Here we present functional studies and three new crystal structures of the rabbit skeletal muscle Ca2+-ATPase, representing the phosphoenzyme intermediates associated with Ca2+ binding,...

  13. Brody disease: insights into biochemical features of SERCA1 and identification of a novel mutation.

    NARCIS (Netherlands)

    Vattemi, G.; Gualandi, F.; Oosterhof, A.; Marini, M.; Tonin, P.; Rimessi, P.; Neri, M.; Guglielmi, V.; Russignan, A.; Poli, C.; Kuppevelt, A.H.M.S.M. van; Ferlini, A.; Tomelleri, G.

    2010-01-01

    Brody disease is an inherited disorder of skeletal muscle function characterized by increasing impairment of relaxation during exercise. The autosomal recessive form can be caused by mutations in the ATP2A1 gene, which encodes for the sarcoplasmic/endoplasmic reticulum Ca-ATPase 1 (SERCA1) protein.

  14. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis.

    Science.gov (United States)

    Boštjančič, Emanuela; Zidar, Nina; Glavač, Damjan

    2012-10-15

    Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.

  15. Structure/activity relationship of thapsigargin inhibition on the purified Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a)

    DEFF Research Database (Denmark)

    Chen, Jialin; De Raeymaecker, Joren; Hovgaard, Jannik Brondsted

    2017-01-01

    SPCA1a displays a higher apparent Ca2+ affinity and lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linole-/oleamide and phosphatidyl ethanolamine inhibit, whereas phosphatidic acid and sphingomyelin enhance SPCA1a...... activity. Moreover, SPCA1a is blocked by μM concentrations of commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid (CPA) and 2,5-di-tert-butyl hydroquinone (BHQ). Since tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a...

  16. Ca2+ handling abnormalities in early-onset muscle diseases: Novel concepts and perspectives.

    NARCIS (Netherlands)

    Treves, S.; Jungbluth, H.; Voermans, N.C.; Muntoni, F.; Zorzato, F.

    2017-01-01

    The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel

  17. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope.

    Directory of Open Access Journals (Sweden)

    Nathalie Callens

    2016-03-01

    Full Text Available The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV, a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.

  18. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome

    2002-06-14

    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  19. The role of the endoplasmic reticulum stress response following cerebral ischemia.

    Science.gov (United States)

    Hadley, Gina; Neuhaus, Ain A; Couch, Yvonne; Beard, Daniel J; Adriaanse, Bryan A; Vekrellis, Kostas; DeLuca, Gabriele C; Papadakis, Michalis; Sutherland, Brad A; Buchan, Alastair M

    2018-06-01

    Background Cornu ammonis 3 (CA3) hippocampal neurons are resistant to global ischemia, whereas cornu ammonis (CA1) 1 neurons are vulnerable. Hamartin expression in CA3 neurons mediates this endogenous resistance via productive autophagy. Neurons lacking hamartin demonstrate exacerbated endoplasmic reticulum stress and increased cell death. We investigated endoplasmic reticulum stress responses in CA1 and CA3 regions following global cerebral ischemia, and whether pharmacological modulation of endoplasmic reticulum stress or autophagy altered neuronal viability . Methods In vivo: male Wistar rats underwent sham or 10 min of transient global cerebral ischemia. CA1 and CA3 areas were microdissected and endoplasmic reticulum stress protein expression quantified at 3 h and 12 h of reperfusion. In vitro: primary neuronal cultures (E18 Wistar rat embryos) were exposed to 2 h of oxygen and glucose deprivation or normoxia in the presence of an endoplasmic reticulum stress inducer (thapsigargin or tunicamycin), an endoplasmic reticulum stress inhibitor (salubrinal or 4-phenylbutyric acid), an autophagy inducer ([4'-(N-diethylamino) butyl]-2-chlorophenoxazine (10-NCP)) or autophagy inhibitor (3-methyladenine). Results In vivo, decreased endoplasmic reticulum stress protein expression (phospho-eIF2α and ATF4) was observed at 3 h of reperfusion in CA3 neurons following ischemia, and increased in CA1 neurons at 12 h of reperfusion. In vitro, endoplasmic reticulum stress inducers and high doses of the endoplasmic reticulum stress inhibitors also increased cell death. Both induction and inhibition of autophagy also increased cell death. Conclusion Endoplasmic reticulum stress is associated with neuronal cell death following ischemia. Neither reduction of endoplasmic reticulum stress nor induction of autophagy demonstrated neuroprotection in vitro, highlighting their complex role in neuronal biology following ischemia.

  20. A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome.

    Science.gov (United States)

    Morikawa, Shuntaro; Tajima, Toshihiro; Nakamura, Akie; Ishizu, Katsura; Ariga, Tadashi

    2017-12-01

    Wolfram syndrome (WS) is a disorder characterized by the association of insulin-dependent diabetes mellitus (DM), diabetes insipidus, deafness, and optic nerve atrophy. WS is caused by WFS1 mutations encoding WFS1 protein expressed in endoplasmic reticulum (ER). During ER protein synthesis, misfolded and unfolded proteins accumulate, known as "ER stress". This is attenuated by the unfolded protein response (UPR), which recovers and maintains ER functions. Because WFS1 is a UPR component, mutant WFS1 might cause unresolvable ER stress conditions and cell apoptosis, the major causes underlying WS symptoms. We encountered an 11-month-old Japanese female WS patient with insulin-dependent DM, congenital cataract and severe bilateral hearing loss. Analyze the WFS1 and functional consequence of the patient WFS1 in vitro. The patient WFS1 contained a heterozygous 4 amino acid in-frame deletion (p.N325_I328del). Her mutant WFS1 increased GRP78 and ATF6α promoter activities in the absence of thapsigargin, indicating constitutive ER stress and nuclear factor of activated T-cell reporter activity, reflecting elevated cytosolic Ca 2+ signals. Mutant transfection into cells reduced mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca 2+ transport ATPase 2b (SERCA2b) compared with wild type. Because SERCA2b is required for ER and cytoplasmic Ca 2+ homeostasis, decreased SERCA2b expression might affect ER Ca 2+ efflux, causing cell apoptosis. A novel heterozygous mutation of WFS1 induced constitutive ER stress through ATF6α activation and ER Ca 2+ efflux, resulting in cell apoptosis. These results provide new insights into the roles of WFS1 in UPR and mechanism of monogenic DM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Location matters: the endoplasmic reticulum and protein trafficking in dendrites

    Directory of Open Access Journals (Sweden)

    Omar A Ramírez

    2011-01-01

    Full Text Available Neurons are highly polarized, but the trafficking mechanisms that operate in these cells and the topological organization of their secretory organelles are still poorly understood. Particularly incipient is our knowledge of the role of the neuronal endoplasmic reticulum. Here we review the current understanding of the endoplasmic reticulum in neurons, its structure, composition, dendritic distribution and dynamics. We also focus on the trafficking of proteins through the dendritic endoplasmic reticulum, emphasizing the relevance of transport, retention, assembly of multi-subunit protein complexes and export. We additionally discuss the roles of the dendritic endoplasmic reticulum in synaptic plasticity.

  2. Morphological and Biochemical Characterization of Bovine Congenital Psudomyotonia

    OpenAIRE

    Dorotea, Tiziano

    2015-01-01

    The Ca2+-ATPase of sarco(endo)plasmic reticulum (SERCA) is a protein of about 110 kDa member of the P-type ATPases family. SERCA pumps utilize the energy derived from the hydrolysis of a molecule of ATP to transport two Ca2+ ions across the Sarcoplasmic Reticulum (SR) membrane to decrease the Ca2+ concentration in the cytosol. SERCA isoform 1a (SERCA1a) is the mainly expressed isoform in adult fast-twitch muscle fibre and it is both structurally and functionally the best characterized member ...

  3. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  4. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  5. C[sub 10]-O[sub eq]-N-(4-azido-5-[sup 125]iodo salicyloyl)-[beta]-alanyl-[beta] alanyl ryanodine (Az-[beta]AR), a novel photo-affinity ligand for the ryanodine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Bidasee, K.R.; Besch, H.R. Jr.; Kwon, Sangyeol; Emmick, J.T.; Besch, K.T.; Gerzon, Koert; Humerickhouse, R.A. (Indiana Univ., Indianapolis, IN (United States). School of Medicine)

    1994-01-01

    A high affinity, photoactivatable, radio-iodinated ligand for the ryanodine binding site(s) of the sarcoplasmic reticulum calcium-release channel, C[sub 10]-O[sub e]-N-(4-azido-5-[sup 125]iodo salicyloyl)-[beta]-alanyl-[beta]-alanyl ryanodine (Az-[beta]AR), was synthesized at a specific activity of 1400mCi/mmol. (Author).

  6. A conformation-specific interhelical salt bridge in the K+ binding site of gastric H,K-ATPase

    NARCIS (Netherlands)

    Koenderink, J.B.; Swarts, H.G.P.; Willems, P.H.G.M.; Krieger, E.; Pont, J.J.H.H.M. de

    2004-01-01

    Homology modeling of gastric H, K-ATPase based on the E-2 model of sarcoplasmic reticulum Ca2+-ATPase (Toyoshima, C., and Nomura, H. (2002) Nature 392, 835-839) revealed the presence of a single high-affinity binding site for K+ and an E-2 form-specific salt bridge between Glu(820) (M6) and Lys(791)

  7. A conformation-specific interhelical salt bridge in the K+ binding site of gastric H,K-ATPase.

    NARCIS (Netherlands)

    Koenderink, J.B.; Swarts, H.G.P.; Willems, P.H.G.M.; Krieger, E.; Pont, J.J.H.H.M. de

    2004-01-01

    Homology modeling of gastric H,K-ATPase based on the E2 model of sarcoplasmic reticulum Ca2+-ATPase (Toyoshima, C., and Nomura, H. (2002) Nature 392, 835-839) revealed the presence of a single high-affinity binding site for K+ and an E2 form-specific salt bridge between Glu820 (M6) and Lys791 (M5).

  8. SH Oxidation Stimulates Calcium Release Channels (Ryanodine Receptors From Excitable Cells

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2000-01-01

    Full Text Available The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub µM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed

  9. Further investigations on the inorganic phosphate binding site of beef heart mitochondrial F1-ATPase

    International Nuclear Information System (INIS)

    Pougeois, R.; Lauquin, G.J.

    1985-01-01

    The possibility that 4-azido-2-nitrophenyl phosphate (ANPP), a photoreactive derivative of inorganic phosphate (P /sub i/ ), could mimic ATP was investigated. ANPP was hydrolyzed in the dark by sarcoplasmic reticulum Ca 2+ -ATPase in the presence of Ca 2+ but not in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANPP was not hydrolyzed by purified mitochondrial F1-ATPase; however, ADP and ATP protected F1-ATPase against ANPP photoinactivation. On the other hand, the trinitrophenyl nucleotide analogues (TNP-ADP, TNP-ATP, and TNP-AMP-PNP), which bind specifically at the two catalytic sites of F1-ATPase, abolished P /sub i/ binding on F1-ATPase; they do not protect F1-ATPase against ANPP photoinactivation. Furthermore, ANPP-photoinactivated F1-ATPase binds the TNP analogues in the same way as the native enzyme. The Pi binding site of F1-ATPase, which is shown to be photolabeled by ANPP, does not appear to be at the gamma-phosphate position of the catalytic sites

  10. 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart

    OpenAIRE

    Jelicks, L.A.; Wittenberg, B.A.

    1995-01-01

    The proximal histidine N delta H proton of deoxymyoglobin experiences a large hyperfine shift resulting in its 1H nuclear magnetic resonance (NMR) signal appearing at approximately 76 ppm (at 35 degrees C), downfield of the diamagnetic spectral region. 1H NMR of this proton is used to monitor sarcoplasmic oxygen pressure in isolated perfused rat heart. This method monitors intracellular oxygenation in the whole heart and does not reflect oxygenation in a limited region. The deoxymyoglobin res...

  11. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  12. Cardiac function improved by sarcoplasmic reticulum Ca2+-ATPase overexpression in a heart failure model induced by chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Wei XIN

    2011-04-01

    Full Text Available Objective Chronic myocardial ischemia(CMI has become an important cause of heart failure(HF.The aim of present study was to examine the effects of Sarco-endoplasmic reticulum calcium ATPase(SERCA2a gene transfer in HF model in large animal induced by CMI.Methods HF was reproduced in minipigs by ligating the initial segment of proximal left anterior descending(LAD coronary artery with an ameroid constrictor to produce progressive vessel occlusion and ischemia.After confirmation of myocardial perfusion defect and cardiac function impairment by SPECT and echocardiography in the model,animals were divided into 4 groups: HF group;HF+enhanced green fluorescent protein(EGFP group;HF+SERCA2a group;and sham operation group as control.rAAV1-EGFP and rAAV1-SERCA2a(1×1012 vg for each animal were directly and intramyocardially injected to the animals of HF+EGFP and HF+SERCA2a groups.Sixty days after the gene transfer,the expression of SERCA2a at the protein level was examined by Western blotting and immunohistochemistry,the changes in cardiac function were determined by echocardiographic and hemodynamic analysis,and the changes in serum inflammatory and neuro-hormonal factors(including BNP,TNF-a,IL-6,ET-1 and Ang II were determined by radioimmunoassay.Results Sixty days after gene transfer,LVEF,Ev/Av and ±dp/dtmax increased significantly(P < 0.05,along with an increase of SERCA2a protein expression in the ischemic myocardium(PP < 0.05,accompanied by a significant decrease of inflammatory and neural-hormonal factors(PP < 0.05 in HF+SERCA2a group as compared with HF/HF+EGFP group.Conclusions Overexpression of SERCA2a may significantly improve the cardiac function of the ischemic myocardium of HF model induced by CMI and reverse the activation of neural-hormonal factors,implying that it has a potential therapeutic significance in CMI related heart failure.

  13. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes.

    Science.gov (United States)

    Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra

    2017-12-01

    Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.

  14. Inhibition of sarcoplasmic Ca2+-ATPase increases caffeine- and halothane-induced contractures in muscle bundles of malignant hyperthermia susceptible and healthy individuals

    Directory of Open Access Journals (Sweden)

    Roewer Norbert

    2005-06-01

    Full Text Available Abstract Background Malignant hyperthermia (MH is triggered by halogenated anaesthetics and depolarising muscle relaxants, leading to an uncontrolled hypermetabolic state of skeletal muscle. An uncontrolled sarcoplasmic Ca2+ release is mediated via the ryanodine receptor. A compensatory mechanism of increased sarcoplasmic Ca2+-ATPase activity was described in pigs and in transfected cell lines. We hypothesized that inhibition of Ca2+ reuptake via the sarcoplasmic Ca2+-ATPase (SERCA enhances halothane- and caffeine-induced muscle contractures in MH susceptible more than in non-susceptible skeletal muscle. Methods With informed consent, surplus muscle bundles of 7 MHS (susceptible, 7 MHE (equivocal and 16 MHN (non-susceptible classified patients were mounted to an isometric force transducer, electrically stimulated, preloaded and equilibrated. Following 15 min incubation with cyclopiazonic acid (CPA 25 μM, the European MH standard in-vitro-contracture test protocol with caffeine (0.5; 1; 1.5; 2; 3; 4 mM and halothane (0.11; 0.22; 0.44; 0.66 mM was performed. Data as median and quartiles; Friedman- and Wilcoxon-test for differences with and without CPA; p Results Initial length, weight, maximum twitch height, predrug resting tension and predrug twitch height of muscle bundles did not differ between groups. CPA increased halothane- and caffeine-induced contractures significantly. This increase was more pronounced in MHS and MHE than in MHN muscle bundles. Conclusion Inhibition of the SERCA activity by CPA enhances halothane- and caffeine-induced contractures especially in MHS and MHE skeletal muscle and may help for the diagnostic assignment of MH susceptibility. The status of SERCA activity may play a significant but so far unknown role in the genesis of malignant hyperthermia.

  15. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  16. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    International Nuclear Information System (INIS)

    Liu, Shun-Wei; Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien; Lin, Chun-Feng

    2013-01-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm 2 /V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm 2 /V s. • The discontinuity of grain boundary may cause the shift of threshold voltage

  17. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shun-Wei, E-mail: swliu@mail.mcut.edu.tw [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan, ROC (China); Lin, Chun-Feng [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China)

    2013-05-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm{sup 2}/V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm{sup 2}/V s. • The discontinuity of grain boundary may cause the shift of threshold voltage.

  18. Characterization of wheat endoplasmic reticulum oxidoreductin 1 and its application in Chinese steamed bread.

    Science.gov (United States)

    Liu, Guang; Wang, JingJing; Hou, Yi; Huang, Yan-Bo; Wang, JiaJia; Li, Cunzhi; Guo, ShiJun; Li, Lin; Hu, Song-Qing

    2018-08-01

    This study investigated characteristics of recombinant wheat Endoplasmic Reticulum Oxidoreductin 1 (wEro1) and its influence on Chinese steamed bread (CSB) qualities. The purified wEro1 monomer, which contained two conserved redox active motif sites, bound to flavin adenine dinucleotide (FAD) cofactor with a molecular weight of ∼47 kDa. wEro1 catalyzed the reduction of both bound and free FAD, and its reduction activity of free FAD reached 7.8 U/mg. Moreover, wEro1 catalyzed the oxidation of dithiothreitol and wheat protein disulfide isomerase (wPDI). Both glutathione and the reduced ribonuclease could work as electron donors for wEro1 in catalyzing the oxidation of wPDI. Additionally, wEro1 supplementation improved the CSB qualities with an increased specific volume of CSB and decreased crumb hardness, which was attributed to water-insoluble wheat proteins increasing and gluten network strengthening. The results give an understanding of the properties and function of wEro1 to facilitate its application especially in the flour-processing industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Methods for Purifying Enzymes for Mycoremediation

    Science.gov (United States)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  20. Altered Elementary Calcium Release Events and Enhanced Calcium Release by Thymol in Rat Skeletal Muscle

    OpenAIRE

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-01-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine bind...

  1. Recovery of Action Potentials and Twitches after K-contractures in Frog Skeletal Muscle(Physiology)

    OpenAIRE

    Atsuko, Suzuki; Ibuki, Shirakawa; Kazunari, Noguchi; Hirohiko, Kishi; Haruo, Sugi; Department of Physiology, School of Medicine, Teikyo University:(Present office)Department of Physical Therapy, Health Science University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University

    2004-01-01

    To give information about intracellular Ca^ translocation during and after K-contractures in vertebrate skeletal muscle fibers, we examined recovery of action potentials and twitches after interruption and spontaneous relaxation of K-contractures at low temperature (3℃) that greatly reduced the rate of Ca^ reuptake by the sarcoplasmic reticulum. On membrane repolarization interrupting K-contractures, the amplitude of both action potentials and twitches recovered quickly, while the falling pha...

  2. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels

    OpenAIRE

    Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong

    2017-01-01

    Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca2+ ATPase (SERCA), including the widely expres...

  3. Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir N

    2002-10-01

    Full Text Available Abstract Background Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown. Results We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation. Conclusions The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.

  4. Endoplasmic reticulum stress in pathogenesis of diabetic retinopathy and effect of calcium dobesilate

    Institute of Scientific and Technical Information of China (English)

    Yu-Min Gui; Ming Zhao; Jie Ding

    2016-01-01

    Objective:To study the mechanism of endoplasmic reticulum stress in the pathogenesis of diabetic retinopathy and effect of calcium dobesilate.Methods:A total of 120 diabetic retinopathy patients treated in our hospital from January 2010 to September 2015 were enrolled in this article. The serum endoplasmic reticulum stress protein and interleukin protein expression levels were analyzed before and after calcium dobesilate treatment. A total of 55 cases of healthy subjects receiving physical examination in our hospital during the same period were taken as control group.Results:Serum endoplasmic reticulum stress proteins PERK, CHOP and IRE as well as interleukin proteins IL1, IL2, IL6 and IL10 expression significantly increased, serum MDA level significantly increased while SOD, CAT and GSHpx levels significantly decreased in diabetic retinopathy patients, and compared with control group (P<0.01); after calcium dobesilate treatment, above factors were significantly restored (P<0.01).Conclusions: Diabetic retinopathy is closely related to endoplasmic reticulum stress and calcium dobesilate treatment may improve diabetic retinopathy by inhibiting endoplasmic reticulum stress.

  5. Observation of endoplasmic reticulum tubules via TOF-SIMS tandem mass spectrometry imaging of transfected cells.

    Science.gov (United States)

    Chini, Corryn E; Fisher, Gregory L; Johnson, Ben; Tamkun, Michael M; Kraft, Mary L

    2018-02-26

    Advances in three-dimensional secondary ion mass spectrometry (SIMS) imaging have enabled visualizing the subcellular distributions of various lipid species within individual cells. However, the difficulty of locating organelles using SIMS limits efforts to study their lipid compositions. Here, the authors have assessed whether endoplasmic reticulum (ER)-Tracker Blue White DPX ® , which is a commercially available stain for visualizing the endoplasmic reticulum using fluorescence microscopy, produces distinctive ions that can be used to locate the endoplasmic reticulum using SIMS. Time-of-flight-SIMS tandem mass spectrometry (MS 2 ) imaging was used to identify positively and negatively charged ions produced by the ER-Tracker stain. Then, these ions were used to localize the stain and thus the endoplasmic reticulum, within individual human embryonic kidney cells that contained higher numbers of endoplasmic reticulum-plasma membrane junctions on their surfaces. By performing MS 2 imaging of selected ions in parallel with the precursor ion (MS 1 ) imaging, the authors detected a chemical interference native to the cell at the same nominal mass as the pentafluorophenyl fragment from the ER-Tracker stain. Nonetheless, the fluorine secondary ions produced by the ER-Tracker stain provided a distinctive signal that enabled locating the endoplasmic reticulum using SIMS. This simple strategy for visualizing the endoplasmic reticulum in individual cells using SIMS could be combined with existing SIMS methodologies for imaging intracellular lipid distribution and to study the lipid composition within the endoplasmic reticulum.

  6. Endoplasmic Reticulum Stress and Associated ROS

    Directory of Open Access Journals (Sweden)

    Hafiz Maher Ali Zeeshan

    2016-03-01

    Full Text Available The endoplasmic reticulum (ER is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS. Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI-endoplasmic reticulum oxidoreductin (ERO-1, glutathione (GSH/glutathione disuphide (GSSG, NADPH oxidase 4 (Nox4, NADPH-P450 reductase (NPR, and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.

  7. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle

    International Nuclear Information System (INIS)

    Chadwick, C.C.; Saito, A.; Fleischer, S.

    1990-01-01

    The release of Ca 2+ from internal stores is requisite to muscle contraction. In skeletal muscle and heart, the Ca 2+ release channels (ryanodine receptor) of sarcoplasmic reticulum, involved in excitation-contraction coupling, have recently been isolated and characterized. In smooth muscle, inositol 1,4,5-trisphosphate (IP 3 ) is believed to mobilize Ca 2+ from internal stores and thereby modulate contraction. The authors describe the isolation of an IP 3 receptor from smooth muscle. Bovine aorta smooth muscle microsomes were solubilized with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, and the IP 3 receptor was purified by sucrose gradient centrifugation and column chromatography with heparin-agarose and wheat germ agglutinin-agarose. The receptor is an oligomer of a single polypeptide with a M r of 224,000 as determined by SDS/PAGE. Negative-staining electron microscopy reveals that the receptor is a large pinwheel-like structure having surface dimensions of ∼250 x 250 angstrom with fourfold symmetry. The IP 3 receptor from smooth muscle is similar to the ryanodine receptor with regard to its large size and fourfold symmetry, albeit distinct with regard to appearance, protomer size, and ligand binding

  8. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  9. Membrane defect in procine malignant hyperthermia

    International Nuclear Information System (INIS)

    O'Brien, P.J.

    1985-01-01

    Malignant hyperthermia (MH) has been proposed to result from abnormal calcium-homeostasis in skeletal muscle. This study tested the hypothesis that calcium-sequestration or calcium-release by sarcoplasmic reticulum was abnormal in MH-susceptible swine. A heavy sarcoplasmic reticulum fraction (HSR), enriched in terminal cisternae, was isolated from MH and control muscle using differential and density-gradient centrifugation. Calcium transport was studied using 45 Ca radioisotope and Millipore filtration. Enzymatic activities, cholesterol, phospholipid, and protein composition were determined using spectrophotometric techniques and polyacrylamide gel electrophoresis. Properties of calcium-sequestration by MH and control HSR were indistinguishable, although Ca 2+ -ATPase and calsequestrin content were 100% increased in MH HSR. However when muscle homogenate pH was decreased due to MH, calcium-uptake activity was depressed to <5% of control values. Results of this study indicate a model for the etiopathogenesis of MH, and for the inheritance and diagnosis of susceptibility to MH. Malignant hyperthermia is initiated due to a hypersensitive HSR calcium-release mechanism and propagated by a loss of calcium-sequestering function as acidosis develops. Susceptibility is inherited in an autosomal, codominant pattern and may be diagnosed most definitively and sensitively on the basis of calcium-release sensitivity-tests, performed on isolated HSR

  10. Toxicologic and Analytical Studies with T-2 and Related Trichothecene Mycotoxins

    Science.gov (United States)

    1985-08-20

    damaged myocytes, hypercontraction bands with myofibrillar, lysis or marked distension of sarcoplasmic reticulum with myofibrillar ly Is. * ’was...the increased activity of AST in both groups may suggest toxic or ischemic damage ’to visceral or muscular tissues. In the low dose group, systemic...pig. If there is a sudden change In the respiratory requirements, th? air accessory hose (Figure 3) can be used to rapidly add air to the distensible

  11. Ryanodine receptor 1 and associated pathologies

    OpenAIRE

    Fauré , Julien; Lunardi , Joël; Monnier , Nicole; Marty , Isabelle

    2014-01-01

    In skeletal muscle a rise in the cytosolic calcium concentration is the first trigger able to initiate the contraction of the sarcomere. Intracellular calcium levels are tightly controlled by channels and pumps, and it is not surprising that many inherited skeletal muscle disorders arise from mutations altering the players regulating calcium ions concentration (Betzenhauser et al., 2010). In this chapter, we will focus on the pathologies linked to the sarcoplasmic reticulum calcium channel-Ry...

  12. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  13. Osteochondritis dissecans (OCD), an endoplasmic reticulum storage disease?

    DEFF Research Database (Denmark)

    Skagen, Peter Storgaard; Horn, T; Kruse, H A

    2011-01-01

    Osteochondritis dissecans (OCD) fragments, cartilage and blood from four patients were used for morphological and molecular analysis. Controls included articular cartilage and blood samples from healthy individuals. Light microscopy and transmission electron microscopy (TEM) showed abnormalities...... in chondrocytes and extracellular matrix of cartilage from OCD patients. Abnormal type II collagen heterofibrils in "bundles" and chondrocytes with abnormal accumulation of matrix proteins in distended rough endoplasmic reticulum were typical findings. Further, Von Kossa staining and TEM showed empty lacunae...... polymorphism was found within the COL2A1 gene for one patient. We suggest that OCD lesions are caused by an alteration in chondrocyte matrix synthesis causing an endoplasmic reticulum storage disease phenotype, which disturbs or abrupts endochondral ossification....

  14. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  15. Endoplasmic Reticulum Stress and Obesity.

    Science.gov (United States)

    Yilmaz, Erkan

    2017-01-01

    In recent years, the world has seen an alarming increase in obesity and closely associated with insulin resistance which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) play in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably other causes for obesity-related insulin resistance and inflammation. One of these appears to be endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.

  16. Endoplasmic reticulum stress in wake-active neurons progresses with aging.

    Science.gov (United States)

    Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid

    2011-08-01

    Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  17. Inhibition of NAPDH Oxidase 2 (NOX2 Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Leroy C Joseph

    Full Text Available Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  18. Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle.

    Science.gov (United States)

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-03-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.

  19. (-)-Epicatechin-induced relaxation of isolated human saphenous vein: Roles of K+ and Ca2+ channels.

    Science.gov (United States)

    Marinko, Marija; Jankovic, Goran; Nenezic, Dragoslav; Milojevic, Predrag; Stojanovic, Ivan; Kanjuh, Vladimir; Novakovic, Aleksandra

    2018-02-01

    In this study, we aimed to investigate relaxant effect of flavanol (-)-epicatechin on the isolated human saphenous vein (HSV), as a part of its cardioprotective action, and to define the mechanisms underlying this vasorelaxation. (-)-Epicatechin induced a concentration-dependent relaxation of HSV pre-contracted by phenylephrine. Among K + channel blockers, 4-aminopyridine, margatoxin, and iberiotoxin significantly inhibited relaxation of HSV, while glibenclamide considerably reduced effects of the high concentrations of (-)-epicatechin. Additionally, (-)-epicatechin relaxed contraction induced by 80 mM K + , whereas in the presence of nifedipine produced partial relaxation of HSV rings pre-contracted by phenylephrine. In Ca 2+ -free solution, (-)-epicatechin relaxed contraction induced by phenylephrine, but had no effect on contraction induced by caffeine. A sarcoplasmic reticulum Ca 2+ -ATPase inhibitor, thapsigargin, significantly reduced relaxation of HSV produced by (-)-epicatechin. These results demonstrate that (-)-epicatechin produces endothelium-independent relaxation of isolated HSV rings. Vasorelaxation to (-)-epicatechin probably involves activation of 4-aminopyridine- and margatoxin-sensitive K V channels, BK Ca channels, and at least partly, K ATP channels. In addition, not only the inhibition of extracellular Ca 2+ influx, but regulation of the intracellular Ca 2+ release, via inositol-trisphosphate receptors and reuptake into sarcoplasmic reticulum, via stimulation of Ca 2+ -ATPase, as well, most likely participate in (-)-epicatechin-induced relaxation of HSV. Copyright © 2017 John Wiley & Sons, Ltd.

  20. The endoplasmic reticulum stress response in disease ...

    African Journals Online (AJOL)

    Rafael Vincent M. Manalo

    2017-07-12

    Jul 12, 2017 ... Review. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology .... This is an open access article under the CC BY-NC-ND license ... chain binding protein (BIP); however, ER stress permits the release, .... drugs designed to alleviate it often cause more harm long-term.

  1. Ixeris dentata Extract Increases Salivary Secretion through the Regulation of Endoplasmic Reticulum Stress in a Diabetes-Induced Xerostomia Rat Model.

    Science.gov (United States)

    Bhattarai, Kashi Raj; Lee, Hwa-Young; Kim, Seung-Hyun; Kim, Hyung-Ryong; Chae, Han-Jung

    2018-04-02

    This study aimed to investigate the molecular mechanism of diabetes mellitus (DM)-induced dry mouth and an application of natural products from Ixeris dentata (IXD), a recently suggested regulator of amylase secretion in salivary cells. Vehicle-treated or diabetic rats were orally treated with either water or an IXD extract for 10 days to observe the effect on salivary flow. We found that the IXD extract increased aquaporin 5 (AQP5) and alpha-amylase protein expression in the submandibular gland along with salivary flow rate. Similarly, the IXD extract and its purified compound increased amylase secretion in high glucose-exposed human salivary gland cells. Furthermore, increased endoplasmic reticulum stress response in the submandibular gland of diabetic rats was inhibited by treatment with the IXD extract, suggesting that IXD extract treatment improves the ER environment by increasing the protein folding capacity. Thus, pharmacological treatment with the IXD extract is suggested to relieve DM-induced dry mouth symptoms.

  2. Ixeris dentata Extract Increases Salivary Secretion through the Regulation of Endoplasmic Reticulum Stress in a Diabetes-Induced Xerostomia Rat Model

    Directory of Open Access Journals (Sweden)

    Kashi Raj Bhattarai

    2018-04-01

    Full Text Available This study aimed to investigate the molecular mechanism of diabetes mellitus (DM-induced dry mouth and an application of natural products from Ixeris dentata (IXD, a recently suggested regulator of amylase secretion in salivary cells. Vehicle-treated or diabetic rats were orally treated with either water or an IXD extract for 10 days to observe the effect on salivary flow. We found that the IXD extract increased aquaporin 5 (AQP5 and alpha-amylase protein expression in the submandibular gland along with salivary flow rate. Similarly, the IXD extract and its purified compound increased amylase secretion in high glucose-exposed human salivary gland cells. Furthermore, increased endoplasmic reticulum stress response in the submandibular gland of diabetic rats was inhibited by treatment with the IXD extract, suggesting that IXD extract treatment improves the ER environment by increasing the protein folding capacity. Thus, pharmacological treatment with the IXD extract is suggested to relieve DM-induced dry mouth symptoms.

  3. Methods for purifying carbon materials

    Science.gov (United States)

    Dailly, Anne [Pasadena, CA; Ahn, Channing [Pasadena, CA; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  4. Regulation of endoplasmic reticulum turnover by selective autophagy

    NARCIS (Netherlands)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-01-01

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and

  5. Regulation of endoplasmic reticulum turnover by selective autophagy

    NARCIS (Netherlands)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K.; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Huebner, Christian A.; Dikic, Ivan

    2015-01-01

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication(1). Constant ER turnover and modulation is needed to meet different cellular requirements

  6. Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?

    Science.gov (United States)

    Kjelstrup, Signe; de Meis, Leopoldo; Bedeaux, Dick; Simon, Jean-Marc

    2008-11-01

    We calculate, using the first law of thermodynamics, the membrane heat fluxes during active transport of Ca(2+) in the Ca(2+)-ATPase in leaky and intact vesicles, during ATP hydrolysis or synthesis conditions. The results show that the vesicle interior may cool down during hydrolysis and Ca(2+)-uptake, and heat up during ATP synthesis and Ca(2+)-efflux. The heat flux varies with the SERCA isoform. Electroneutral processes and rapid equilibration of water were assumed. The results are consistent with the second law of thermodynamics for the overall processes. The expression for the heat flux and experimental data, show that important contributions come from the enthalpy of hydrolysis for the medium in question, and from proton transport between the vesicle interior and exterior. The analysis give quantitative support to earlier proposals that certain, but not all, Ca(2+)-ATPases, not only act as Ca(2+)-pumps, but also as heat pumps. It can thus help explain why SERCA 1 type enzymes dominate in tissues where thermal regulation is important, while SERCA 2 type enzymes, with their lower activity and better ability to use the energy from the reaction to pump ions, dominate in tissues where this is not an issue.

  7. Direct measurement of newly synthesized ATP dissociation kinetics in sarcoplasmic reticulum ATPase

    International Nuclear Information System (INIS)

    Teruel-Puche, J.; Kurzmack, M.; Inesi, G.

    1987-01-01

    Incubation of SR vesicles with Ca 2+ and ( 32 P)acetylphosphate, yields steady state levels of ( 32 P)phosphorylated enzyme (ATPase) intermediate and high concentrations of Ca 2+ in the lumen of the vesicles. At this time, addition of ADP (and EGTA to lower the Ca 2+ concentration in the medium outside the vesicles) results in single cycle formation of (γ- 32 P)ATP by transfer of ( 32 P)phosphate from the enzyme intermediate to ADP. The phosphoenzyme decay and ATP formation exhibit a fast component within the first 20 msec following addition of ADP, and a slower component reaching an asymptote in approximately 100 msec. They have now measured by a rapid filtration method the fraction of newly synthesized ATP which is bound to the enzyme, as opposed to the fraction dissociated into the medium. They find that nearly all the ATP formed during the initial burst is still bound to the enzyme within the initial 20 msec of reaction. Dissociation of newly synthesized ATP occurs then with approximately 13 sec -1 rate constant, permitting reequilibration of the system and further formation of ATP. The rate limiting effect of ATP dissociation and other partial reactions on the slow component of single cycle ATP synthesis is evaluated by appropriate kinetic simulations

  8. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  9. Evidence that the effects of phospholipids on the activity of the Ca(2+)-ATPase do not involve aggregation.

    OpenAIRE

    Starling, A P; East, J M; Lee, A G

    1995-01-01

    The Ca(2+)-ATPase of skeletal-muscle sarcoplasmic reticulum, solubilized in monomeric from in C12E8, has been reconstituted by dialysis into sealed vesicles of dioleoyl phosphatidylcholine [di(C18:1)PC], dimyristoleoyl phosphatidylcholine [di(C14:1)PC], dinervonyl phosphatidylcholine [di(C24:1)PC] or dipalmitoyl phosphatidylcholine [di(C16:0)PC] in the gel phase, at a phospholipid/ATPase molar ratio of 10,000: 1. Cross-linking experiments show that ATPase molecules are present in these recons...

  10. Study of hot corrosion of flakes of non purified graphite and of purified graphite

    International Nuclear Information System (INIS)

    Boule, Michel

    1967-01-01

    The author reports the study of hot corrosion of the Ticonderoga graphite. He reports the study of the defects of graphite flakes (structure defects due to impurities), the dosing of these impurities, and then their removal by purification. Flakes have then been oxidised by means of a specially designed apparatus. Based on photographs taken by optical and electronic microscopy, the author compares the oxidation features obtained in dry air and in humid air, between purified and non purified flakes. He also reports the study of the evolution of oxidation with respect to the initial rate of impurities, and the study of the evolution of oxidation features in humid air during oxidation. All these comparisons are made while taking the oxidation rate into account [fr

  11. Light aging of reactive fuels purified by various methods

    Energy Technology Data Exchange (ETDEWEB)

    Khodzhaeva, M G; Burtyshev, N Ya; Molodozhenyuk, T B; Ryabovda, N D

    1976-01-01

    A study of the effect of uv-radiation on aging of Fergana fuel TS-1 has been extended to the uv-effect on alkali-purified fuels (e.g., Krasnovodsk, Omsk, and Orsk TS-1), on hydro-purified (Syzran T-8, Syzran T-7, and Novokuybyshev T-7) and on adsorption-purified Fergana TS-1. The PRK-4 lamp was employed. Aging criteria were formation of insoluble gums, soluble gums separable on silicagel, acidity, and optical density. Fuels purified in the same manner aged practically identically; after 6 months storage the greatest gum formation was seen in the fuels Orsk TS-1 and Syzran T-8. 3 references, 1 figure, 1 table.

  12. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation.

    Science.gov (United States)

    Imai, Jun; Otani, Mayu; Sakai, Takahiro; Hatta, Shinichi

    2017-08-21

    Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8 + T cells and memory CD8 + T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.

  13. The foldase CYPB is a component of the secretory pathway of Aspergillus niger and contains the endoplasmic reticulum retention signal HEEL.

    Science.gov (United States)

    Derkx, P M; Madrid, S M

    2001-12-01

    Here we report the isolation and characterization of the cypB gene from Aspergillus niger. The cypB gene encodes a protein with a predicted molecular weight of 20.7 kDa, which shows a high degree of identity to the cyclophilin family of peptidyl prolyl cis-trans isomerases (PPIases) from other eukaryotes. The 5' untranslated region of cypB includes three sequences resembling UPREs (unfolded protein response elements). The expression of cypB is upregulated by tunicamycin and DTT, suggesting that at least one UPRE is functional. The CYPB protein also has a 23-amino acid sequence which serves to target the protein to the endoplasmic reticulum (ER), and the ER retention sequence HEEL. CYPB-(His)(6) was expressed in Escherichia coli; the purified protein is capable of isomerizing a substrate peptide in vitro. This is also the first report to show that C-terminal addition of the sequence HEEL is sufficient to ensure retention of the green fluorescent protein (GFP) within the ER.

  14. Isoforms of purified methyltransferase from human blood platelets ...

    African Journals Online (AJOL)

    ... purification from normal human blood platelets have not been investigated, hence, the aim of this study was to purify, characterise the enzyme from human blood platelets and determine its possible role in phospholipid transmethylation. The plasma membranes were purified by velocity and sucrose gradient centrifugation ...

  15. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

    Science.gov (United States)

    Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao

    2016-08-01

    Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti

  16. Reproducible in vitro regeneration system for purifying sugarcane ...

    African Journals Online (AJOL)

    This procedure may be considered as one of the best ever published report on regeneration from in vitro grown plants to purify clones without subjecting the plants to field conditions and harvesting the mature cane. This technique was used to purify transgenic sugarcane plants carrying Bacillus thuringiensis gene.

  17. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  18. Method and device for feeding purified water to a pressure vessel

    International Nuclear Information System (INIS)

    Hirato, Miharu.

    1982-01-01

    Purpose: To prevent thermal wear at the junction of feedwater pipes and purified water pipes, as well as maintain the function of the purified water feeding system by stopping the introduction of purified water to the heated water feeding system and introducing purified water to the recycling water system upon transient operation or start-up. Constitution: Since a feedwater heater does not function well during transient operation or upon start-up, the temperature of heated water flowing through the feedwater pipe is reduced to produce a temperature difference relative to the set temperature for the purified water feeding system. The temperature difference is detected by a temperature sensor and, when it arrives at a predetermined difference, an operation valve is switched to interrupt the feed of the purified water to the heated water feeding system and it is sent to a water recycling system. Then, the purified water is sent from the water recycling system by way of the discharge portion to the inside of a pressure vessel. Thus, since only the heated water flows to the junction between the cleaned water pipes and the heated water pipes, neither shocks are generated nor the performance of the purified water feeding system is impaired. (Moriyama, K.)

  19. In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes.

    Science.gov (United States)

    Zhou, Xin; Bueno-Orovio, Alfonso; Orini, Michele; Hanson, Ben; Hayward, Martin; Taggart, Peter; Lambiase, Pier D; Burrage, Kevin; Rodriguez, Blanca

    2016-01-22

    Repolarization alternans (RA) are associated with arrhythmogenesis. Animal studies have revealed potential mechanisms, but human-focused studies are needed. RA generation and frequency dependence may be determined by cell-to-cell variability in protein expression, which is regulated by genetic and external factors. To characterize in vivo RA in human and to investigate in silico using human models, the ionic mechanisms underlying the frequency-dependent differences in RA behavior identified in vivo. In vivo electrograms were acquired at 240 sites covering the epicardium of 41 patients at 6 cycle lengths (600-350 ms). In silico investigations were conducted using a population of biophysically detailed human models incorporating variability in protein expression and calibrated using in vivo recordings. Both in silico and in vivo, 2 types of RA were identified, with Fork- and Eye-type restitution curves, based on RA persistence or disappearance, respectively, at fast pacing rates. In silico simulations show that RA are strongly correlated with fluctuations in sarcoplasmic reticulum calcium, because of strong release and weak reuptake. Large L-type calcium current conductance is responsible for RA disappearance at fast frequencies in Eye-type (30% larger in Eye-type versus Fork-type; Psilico, 2 types of RA are identified, with RA persistence/disappearance as frequency increases. In silico, L-type calcium current and Na(+)/Ca(2+) exchanger current determine RA human cell-to-cell differences through intracellular and sarcoplasmic reticulum calcium regulation. © 2015 The Authors.

  20. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle.

    Science.gov (United States)

    Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain

    2014-01-01

    Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.

  1. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  2. Partially purified polygalacturonase from Aspergillus niger (SA6 ...

    African Journals Online (AJOL)

    Polygalacturonase (PG) was isolated from Aspergillus niger (A. niger) (SA6), partially purified and characterized. The PG showed two bands on SDS-PAGE suggesting an “endo and exo PG with apparent molecular weights of 35 and 40 KDa, respectively. It was purified 9-fold with a yield of 0.18% and specific activity of 246 ...

  3. Effects of ginger extract on smooth muscle activity of sheep reticulum and rumen

    Directory of Open Access Journals (Sweden)

    Amin Mamaghani

    2013-06-01

    Full Text Available Reticulorumen hypomotility leads to the impaired physiologic functions of the digestive tract. Prokinetic action of ginger has been demonstrated in the laboratory animals and human. The aim of this study was to evaluate the effect of hydroalcoholic extract of ginger on contraction and motility of reticulum and rumen of ruminants. Collected samples of reticulum and rumen from eight sheep were investigated in vitro. The extract at the concentration of 0.1 and 1.0 mg L-1 had no effect on any preparations. Contraction of reticulum and rumen preparations was occurred at 10.0 and 100 mg L-1 concentrations (p < 0.05. Concentration of 1000 mg L-1 caused a relaxation in preparations contracted with 10.0 and 100 mg L-1. Likewise, the concentration of 1000 mg L-1 significantly (p < 0.05 inhibited ACh-induced contraction in both tissues. Six sheep were involved in electromyographic study. Administration of 40 mg kg-1 of the extract increased the overall frequency of contractions of the reticulum and rumen at the subsequent three days with the prominent increase at the second day (p < 0.05. Results of in vitro study indicated that hydroalcoholic extract of ginger contained spasmogenic and spasmolytic constituents. The results in vivo study represented evidences that the extract may have stimulant effect on reticulorumen motility in 40 mg kg-1 concentration.

  4. Endoplasmic reticulum stress and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Toshiyuki Oshitari

    2008-02-01

    Full Text Available Toshiyuki Oshitari1,2, Natsuyo Hata1, Shuichi Yamamoto11Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan; 2Department of Ophthalmology, Kimitsu Central Hospital, Kisarazu City, Chiba, JapanAbstract: Endoplasmic reticulum (ER stress is involved in the pathogenesis of several diseases including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic β-cells, insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major complication of diabetes and results in death of both neural and vascular cells. Because the death of the neurons directly affects visual function, the precise mechanism causing the death of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing the onset and the progression of diabetic retinopathy would be to treat the factors involved with both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present evidence that ER stress is involved in the death of both retinal neurons and vascular cells in diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing the onset and the progression of diabetic retinopathy.Keywords: endoplasmic reticulum stress, diabetic retinopathy, vascular cell death, neuronal cell death

  5. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  6. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    International Nuclear Information System (INIS)

    Grondin, Melanie; Marion, Michel; Denizeau, Francine; Averill-Bates, Diana A.

    2007-01-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl - /HCO 3 - exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes

  7. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    of calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas...... was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION: We conclude...

  8. Localization and in-vivo characterization of thapsia garganica CYP76AE2 indicates a role in thapsigargin biosynthesis

    DEFF Research Database (Denmark)

    Andersen, Trine Bundgaard; Martinez-Swatson, Karen Agatha; Rasmussen, Silas Anselm

    2017-01-01

    The Mediterranean plant Thapsia garganica (dicot, Apiaceae), also known as deadly carrot, produces the highly toxic compound thapsigargin. This compound is a potent inhibitor of the sarcoplasmic-endoplasmic reticulum Ca2+ -ATPase calcium pump in mammals and is of industrial importance as the active...... in Nicotiana benthamiana, converts epikunzeaol into epidihydrocostunolide. Furthermore, we show that thapsigargin is likely to be stored in secretory ducts in the roots. Transcripts from TgTPS2 (epikunzeaol synthase) and TgCYP76AE2 in roots were found only in the epithelial cells lining these secretory ducts...

  9. Relaxant mechanisms of 3, 5, 7, 30, 40-pentamethoxyflavone on isolated human cavernosum

    DEFF Research Database (Denmark)

    Jansakul, Chaweewan; Tachanaparuksa, Kuldej; Mulvany, Michael J.

    2012-01-01

    We have investigated effects and mechanisms responsible for the activity of 3, 5, 7, 30, 40-pentamethoxyflavone (PMF) on isolated human cavernosum. PMF is the major flavone isolated from Kaempferia parviflora claimed to act as an aphrodisiac. PMF caused relaxation of phenylephrine precontracted...... Krebs solution with nifedipine (blocker of L-type Ca2þ channels), or in Ca2þ-free Krebs solution, PMF caused a further inhibition of human cavernosum contracted with phenylephrine. In human cavernosum treated with thapsigargin (inhibitor of sarcoplasmic reticulum Ca2þ-ATPase) in Ca2þ-free medium, PMF...

  10. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  11. Effects of starvation on protein synthesis and nucleic acid metabolism in the muscle of the barred sand bass Paralabrax nebulifer

    Energy Technology Data Exchange (ETDEWEB)

    Lowery, M.S.

    1987-01-01

    Starvation induced different protein synthesis responses in red and white muscle of the barred sand bass Paralabrax nebulifer. Red muscle had /sup 14/C-leucine incorporation rates into total protein which were several times higher than white muscle in both the fed and starved states. Muscle was separated into a myofibrillar fraction consisting of the structural proteins and a sarcoplasmic fraction consisting of soluble proteins. Synthesis of the myofibrillar fraction of white muscle decreased by 90%, while red muscle myofibrillar synthesis remained essentially unchanged. Changes in the labeling of several enzymes purified from the sarcoplasmic fraction were different even though the overall loss of enzyme activity was similar, suggesting that changes in synthesis rates were important in maintaining appropriate relative enzyme concentrations.

  12. Plasma membrane—endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis

    NARCIS (Netherlands)

    Tavassoli, S.; Chao, J.T.; Young, B.P.; Cox, R.C.; Prinz, W.A.; de Kroon, A.I.P.M.; Loewen, C.I.R.

    2013-01-01

    Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid-synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and

  13. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  14. Induction of cortical endoplasmic reticulum by dimerization of a coatomer-binding peptide anchored to endoplasmic reticulum membranes

    OpenAIRE

    Lavieu, Grégory; Orci, Lelio; Shi, Lei; Geiling, Michael; Ravazzola, Mariella; Wieland, Felix; Cosson, Pierre; Rothman, James E.

    2010-01-01

    Cortical endoplasmic reticulum (cER) is a permanent feature of yeast cells but occurs transiently in most animal cell types. Ist2p is a transmembrane protein that permanently localizes to the cER in yeast. When Ist2 is expressed in mammalian cells, it induces abundant cER containing Ist2. Ist2 cytoplasmic C-terminal peptide is necessary and sufficient to induce cER. This peptide sequence resembles classic coat protein complex I (COPI) coatomer protein-binding KKXX signals, and indeed the dime...

  15. Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Lemeng Wu; Dongmei Wang; Ying Li; Hongliang Dou; Mark OMTso; Zhizhong Ma

    2013-01-01

    Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in-creased, which was associated with retinal ganglion celldeath in diabetic retinas. The C/ERB ho-mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in-dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu-ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.

  16. An Experiment with Air Purifiers in Delhi during Winter 2015-2016.

    Science.gov (United States)

    Vyas, Sangita; Srivastav, Nikhil; Spears, Dean

    2016-01-01

    Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi's during the winter.

  17. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells

    Science.gov (United States)

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  18. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  19. Endoplasmic reticulum stress causes EBV lytic replication

    OpenAIRE

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K.; Rowe, David T.; Wadowsky, Robert M.; Rosendorff, Adam

    2011-01-01

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)...

  20. Analysis of endoplasmic reticulum of tobacco cells using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Radochová, Barbora; Janáček, Jiří; Schwarzerová, K.; Demjénová, E.; Tomori, Z.; Karen, Petr; Kubínová, Lucie

    2005-01-01

    Roč. 24, č. 11 (2005), s. 181-185 ISSN 1580-3139 R&D Projects: GA AV ČR(CZ) KJB6011309 Institutional research plan: CEZ:AV0Z50110509 Keywords : confocal microscopy * endoplasmic reticulum * image analysis Subject RIV: EA - Cell Biology

  1. Subcellular distribution of calcium-binding proteins and a calcium-ATPase in canine pancreas

    International Nuclear Information System (INIS)

    Nigam, S.K.; Towers, T.

    1990-01-01

    Using a 45Ca blot-overlay assay, we monitored the subcellular fractionation pattern of several Ca binding proteins of apparent molecular masses 94, 61, and 59 kD. These proteins also appeared to stain blue with Stains-All. Additionally, using a monoclonal antiserum raised against canine cardiac sarcoplasmic reticulum Ca-ATPase, we examined the subcellular distribution of a canine pancreatic 110-kD protein recognized by this antiserum. This protein had the same electrophoretic mobility as the cardiac protein against which the antiserum was raised. The three Ca binding proteins and the Ca-ATPase cofractionated into the rough microsomal fraction (RM), previously shown to consist of highly purified RER, in a pattern highly similar to that of the RER marker, ribophorin I. To provide further evidence for an RER localization, native RM were subjected to isopycnic flotation in sucrose gradients. The Ca binding proteins and the Ca-ATPase were found in dense fractions, along with ribophorin I. When RM were stripped of ribosomes with puromycin/high salt, the Ca binding proteins and the Ca-ATPase exhibited a shift to less dense fractions, as did ribophorin I. We conclude that, in pancreas, the Ca binding proteins and Ca-ATPase we detect are localized to the RER (conceivably a subcompartment of the RER) or, possibly, a structure intimately associated with the RER

  2. Steroidogenesis in amlodipine treated purified Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Rabia, E-mail: rabialatif08@hotmail.com [Department of Physiology, Army Medical College, National University of Sciences and Technology, Islamabad (Pakistan); Lodhi, Ghulam Mustafa, E-mail: drmustafa786@gmail.com [Department of Physiology, Wah Medical College, Wah (Pakistan); Hameed, Waqas, E-mail: waqham@hotmail.com [Department of Physiology, Rehman Medical College, Peshawar (Pakistan); Aslam, Muhammad, E-mail: professormaslam@yahoo.com [Department of Physiology, Shifa College of Medicine, Islamabad (Pakistan)

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  3. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    Science.gov (United States)

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Acrolein Induces Endoplasmic Reticulum Stress and Causes Airspace Enlargement

    Science.gov (United States)

    Hanaoka, Masayuki; Natarajan, Ramesh; Kraskauskas, Donatas; Voelkel, Norbert F.

    2012-01-01

    Background Given the relative abundance and toxic potential of acrolein in inhaled cigarette smoke, it is surprising how little is known about the pulmonary and systemic effects of acrolein. Here we test the hypothesis whether systemic administration of acrolein could cause endoplasmic reticulum (ER) stress, and lung cell apoptosis, leading to the enlargement of the alveolar air spaces in rats. Methods Acute and chronic effects of intraperitoneally administered acrolein were tested. Mean alveolar airspace area was measured by using light microscopy and imaging system software. TUNEL staining and immunohistochemistry (IHC) for active caspase 3 and Western blot analysis for active caspase 3, and caspase 12 were performed to detect apoptosis. The ER-stress related gene expression in the lungs was determined by Quantitative real-time PCR analysis. Acrolein-protein adducts in the lung tissue were detected by IHC. Results Acute administration of acrolein caused a significant elevation of activated caspase 3, upregulation of VEGF expression and induced ER stress proteins in the lung tissue. The chronic administration of acrolein in rats led to emphysematous lung tissue remodeling. TUNEL staining and IHC for cleaved caspase 3 showed a large number of apoptotic septal cells in the acrolein-treated rat lungs. Chronic acrolein administration cause the endoplasmic reticulum stress response manifested by significant upregulation of ATF4, CHOP and GADd34 expression. In smokers with COPD there was a considerable accumulation of acrolein-protein adducts in the inflammatory, airway and vascular cells. Conclusions Systemic administration of acrolein causes endoplasmic reticulum stress response, lung cell apoptosis, and chronic administration leads to the enlargement of the alveolar air spaces and emphysema in rats. The substantial accumulation of acrolein-protein adducts in the lungs of COPD patients suggest a role of acrolein in the pathogenesis of emphysema. PMID:22675432

  5. Development of a biogas purifier for rural areas in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Hinata, T. [Hokkaido Central Agricultural Experiment Station, Hokkaido (Japan); Yasui, S. [Zukosha Co. Ltd., Obihiro, Hokkaido (Japan); Noguchi, N. [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tsukamoto, T. [IHI Shibaura. Co. Ltd., Obihiro, Hokkaido (Japan); Imai, T. [Green Plan Co. Ltd., Sapporo, Hokkaido (Japan); Kanai, M. [Air Water Co. Ltd, Sakai, Osaka (Japan); Matsuda, Z. [Hokuren Agricultural Research Center, Sapporo, Hokkaido (Japan)

    2010-07-01

    Although the biogas that is currently produced for dairy farms in Japan is a carbon-neutral energy, its use is restricted to farming areas only because there is no effective method of transporting unused biogas. There is a need for establishing practical methods for biogas removal from operating systems. In this study, a gas separation membrane was used in order to modify biogas to city gas 12A specifications, and to develop a biogas purifier equipped with a device to fill high pressure purified gas into cylinders to be taken outside the farming area. The objective was to expand the use of biogas produced from stand-alone gas plants. The amount of purified gas produced at a newly created refining-compression-filling (RCF) facility was approximately 97.0 Nm{sup 3}/day, for a raw material amount of about 216.0 Nm{sup 3}/day. The heat quantity of the purified gas was 38.9 MJ/Nm{sup 3}, which was within city gas 12A specifications. A total of 14.3 cylinders were filled each day with the manufactured purified gas. Test calculations along with a simulation exercise revealed that it would be possible to provide purified gas to approximately 6 per cent of common residences in a town in northern Japan. It was concluded that the newly created RCF facility allowed the modification of carbon-neutral biogas to conform to city gas 12A specifications, and allowed the transport of this gas out of the farming area.

  6. Method for purifying bidentate organophosphorus compounds

    International Nuclear Information System (INIS)

    Schulz, W.W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds

  7. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

    Science.gov (United States)

    Pitake, Saumitra; Ochs, Raymond S

    2016-04-01

    The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation-contraction coupling. However, the mechanism for subsequent Ca(2+) release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca(2+) under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation-contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca(2+) from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca(2+) was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca(2+) concentration in the media. Ca(2+) entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca(2+) entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca(2+) release from the ryanodine receptor to the cytosol. © 2015 by the Society for Experimental Biology and Medicine.

  8. Immune responsiveness and incidence of reticulum cell sarcoma in long-term syngeneic radiation chimeras

    International Nuclear Information System (INIS)

    Adorini, L.; Gorini, G.; Covelli, V.; Ballardin, E.; di Michele, A.; Bassani, B.; Metalli, P.; Doria, G.

    1976-01-01

    Long-term syngeneic radiation chimeras displayed a very low incidence of reticulum cell sarcoma as compared with control mice. Immune reactivity of these animals was studied in vivo by anti-dinitrophenyl antibody titer and affinity and in vitro by mitotic responsiveness to phytohemagglutinin, concanavalin A and lipopolysaccharide. Antibody titer and affinity as well as the response to T lectins were found to be increased in chimeras. These results were attributed to increased function of mature T2 cells, which could explain the reduced incidence of reticulum cell sarcoma in chimeras

  9. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  10. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  11. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  12. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  13. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-01

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug

  14. Purifying oils

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-15

    Gasoline, lamp oils, and lubricating or other mineral or shale oils are refined by contacting the vapor with a hot aqueous solution of salts of zinc, cadmium, or mercury, or mixtures thereof which may contain 0-5-3-0 percent of oxide or hydroxide in solution or suspension. Chlorides, bromides, iodides, sulfates, nitrates, and sulfonates of benzol, toluol, xylol, and petroleum are specified. Washing with a solution of sodium or potassium hydroxide or carbonate of calcium hydroxide may follow. The oil may first be purified by sulfuric acid or other known agent, or afterwards caustic alkali and sulfuric acid. The Specification as open to inspection under Sect. 91 (3) (a) describes also the use of salts of copper, iron, chromium, manganese, aluminum, nickel, or cobalt, with or without their oxides or hydroxides. This subject-matter does not appear in the Specification as accepted.

  15. Impossibility criterion for obtaining pure entangled states from mixed states by purifying protocols

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    Purifying noisy entanglement is a protocol that can increase the entanglement of a mixed state (as a source) at the expense of the entanglement of others (such as an ancilla) by collective measurement. A protocol with which one can get a pure entangled state from a mixed state is defined as purifying mixed states. We address a basic question: can one get a pure entangled state from a mixed state? We give a necessary and sufficient condition of purifying a mixed state by fit local operations and classical communication and show that for a class of source states and ancilla states in arbitrary bipartite systems purifying mixed states is impossible by finite rounds of purifying protocols. For 2x2 systems, it is proved that arbitrary states cannot be purified by individual measurement. The possible application and meaning of the conclusion are discussed

  16. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game

    DEFF Research Database (Denmark)

    Krustrup, Peter; Ørtenblad, Niels; Nielsen, Joachim

    2011-01-01

    The aim of this study was to examine maximal voluntary knee-extensor contraction force (MVC force), sarcoplasmic reticulum (SR) function and muscle glycogen levels in the days after a high-level soccer game when players ingested an optimised diet. Seven high-level male soccer players had a vastus...... lateralis muscle biopsy and a blood sample collected in a control situation and at 0, 24, 48 and 72 h after a competitive soccer game. MVC force, SR function, muscle glycogen, muscle soreness and plasma myoglobin were measured. MVC force sustained over 1 s was 11 and 10% lower (P ...

  17. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.

    Science.gov (United States)

    Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo

    2006-03-20

    In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate

  18. Sphingosine inhibits the sarco(endo)plasmic reticulum Ca"2"+-ATPase (SERCA) activity

    International Nuclear Information System (INIS)

    Benaim, Gustavo; Pimentel, Adriana A.; Felibertt, Pimali; Mayora, Adriana; Colman, Laura; Sojo, Felipe; Rojas, Héctor; De Sanctis, Juan B.

    2016-01-01

    The increase in the intracellular Ca"2"+ concentration ([Ca"2"+]_i) is the key variable for many different processes, ranging from regulation of cell proliferation to apoptosis. In this work we demonstrated that the sphingolipid sphingosine (Sph) increases the [Ca"2"+]_i by inhibiting the sarco(endo)plasmic reticulum Ca"2"+-ATPase (SERCA), in a similar manner to thapsigargin (Tg), a specific inhibitor of this Ca"2"+ pump. The results showed that addition of sphingosine produced a release of Ca"2"+ from the endoplasmic reticulum followed by a Ca"2"+ entrance from the outside mileu. The results presented in this work support that this sphingolipid could control the activity of the SERCA, and hence sphingosine may participate in the regulation of [Ca"2"+]_I in mammalian cells.

  19. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Karlsson, Anders H

    2011-01-01

    phosphorylation in sarcoplasmic proteins from three groups of pigs with different pH decline rates from PM 1 to 24¿h. Globally, the fast pH decline group had the highest phosphorylation level at PM 1¿h, but lowest at 24¿h, whereas the slow pH decline group showed the reverse case. The same pattern was also...... observed in most individual bands in 1-DE. The protein phosphorylation levels of 12 bands were significantly affected by the synergy effects of pH and time (p......Meat quality development is highly influenced by the pH decline caused by the postmortem (PM) glycolysis. Protein phosphorylation is an important mechanism in regulating the activity of glycometabolic enzymes. Here, a gel-based phosphoproteomic study was performed to analyze the protein...

  20. The endoplasmic reticulum is a hub to sort proteins toward unconventional traffic pathways and endosymbiotic organelles.

    Science.gov (United States)

    Bellucci, Michele; De Marchis, Francesca; Pompa, Andrea

    2017-12-18

    The discovery that much of the extracellular proteome in eukaryotic cells consists of proteins lacking a signal peptide, which cannot therefore enter the secretory pathway, has led to the identification of alternative protein secretion routes bypassing the Golgi apparatus. However, proteins harboring a signal peptide for translocation into the endoplasmic reticulum can also be transported along these alternative routes, which are still far from being well elucidated in terms of the molecular machineries and subcellular/intermediate compartments involved. In this review, we first try to provide a definition of all the unconventional protein secretion pathways in eukaryotic cells, as those pathways followed by proteins directed to an 'external space' bypassing the Golgi, where 'external space' refers to the extracellular space plus the lumen of the secretory route compartments and the inner space of mitochondria and plastids. Then, we discuss the role of the endoplasmic reticulum in sorting proteins toward unconventional traffic pathways in plants. In this regard, various unconventional pathways exporting proteins from the endoplasmic reticulum to the vacuole, plasma membrane, apoplast, mitochondria, and plastids are described, including the short routes followed by the proteins resident in the endoplasmic reticulum. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Home drinking-water purifiers

    International Nuclear Information System (INIS)

    Pizzichini, Massimo; Pozio, Alfonso; Russo, Claudio

    2005-01-01

    To salve the widespread problem of contaminated drinking water, home purifiers are now sold in Italy as well as other countries. This article describes how these devices work, how safe they are to use and how safe the water they produce, in the broad context of regulations on drinking water and mineral water. A new device being developed by ENEA to treat municipal water and ground water could provide greater chemical and bacteriological safety. However, the appearance of these new systems makes it necessary to update existing regulations [it

  2. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  3. Left ventricular wall stress and sarcoplasmic reticulum Ca(2+)-ATPase gene expression in renal hypertensive rats: dose-dependent effects of ACE inhibition and AT1-receptor blockade.

    Science.gov (United States)

    Zierhut, W; Studer, R; Laurent, D; Kästner, S; Allegrini, P; Whitebread, S; Cumin, F; Baum, H P; de Gasparo, M; Drexler, H

    1996-05-01

    Cardiac hypertrophy is associated with altered Ca2+ handling and may predispose to the development of LV dysfunction and cardiac failure. At the cellular level, the re-expression of ANF represents a well-established marker of myocyte hypertrophy while the decreased expression of the sarcoplasmatic reticulum (SR) Ca(2+)-ATPase is thought o play a crucial role in the alterations of Ca2+ handling and LV function. We assessed the dose-dependent effect of chronic ACE inhibition or AT1 receptor blockade on cardiac function in relation to the cardiac expression of the SR Ca(2+)-ATPase and ANF. Renal hypertensive rats (2K-1C) were treated for 12 weeks with three different doses of the ACE inhibitor benazepril, the AT1-receptor antagonist valsartan (each drug 0.3, 3, and 10 mg/kg per day i.p.) or placebo. LV dimensions, hypertrophy and wall stress were determined in vivo by magnetic resonance imaging and the gene expressions of ANF and SR Ca(2+)-ATPase were quantified by Northern blot. Low doses of both drugs did not affect blood pressure, hypertrophy, systolic wall stress and the ANF and SR Ca(2+)-ATPase gene expression. High doses of each drug reduced systolic blood pressure, wall stress, and LV hypertrophy to a similar extent and to values comparable to normotensive, age-matched rats. In addition, high dose treatment reduced LV end-systolic and end-diastolic volume as compared to untreated 2K-1C animals and normalized the mRNA levels of both ANF and SR Ca(2+)-ATPase (as compared to normotensive animals). We conclude that in this model, high doses of ACE inhibition and AT1-receptor blockade are necessary to normalize systolic blood pressure, LV hypertrophy and systolic LV wall stress which, in turn, is associated with restoration of a normal cardiac phenotype with respect to SR Ca(2+)-ATPase and ANF and normalization of cardiac function.

  4. Cytoskeletal-assisted dynamics of the mitochondrial reticulum in living cells.

    Science.gov (United States)

    Knowles, Michelle K; Guenza, Marina G; Capaldi, Roderick A; Marcus, Andrew H

    2002-11-12

    Subcellular organelle dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, and lead to complex multiexponential relaxations that occur over a wide range of spatial and temporal scales. Here we report spatio-temporal measurements of the fluctuations of the mitochondrial reticulum in osteosarcoma cells by using Fourier imaging correlation spectroscopy, over time and distance scales of 10(-2) to 10(3) s and 0.5-2.5 microm. We show that the method allows a more complete description of mitochondrial dynamics, through the time- and length-scale-dependent collective diffusion coefficient D(k,tau), than available by other means. Addition of either nocodazole to disrupt microtubules or cytochalasin D to disassemble microfilaments simplifies the intermediate scattering function. When both drugs are used, the reticulum morphology of mitochondria is retained even though the cytoskeletal elements have been de-polymerized. The dynamics of the organelle are then primarily diffusive and can be modeled as a collection of friction points interconnected by elastic springs. This study quantitatively characterizes organelle dynamics in terms of collective cytoskeletal interactions in living cells.

  5. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt

    2011-01-01

    Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated...... with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal...

  6. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  7. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  8. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells.

    Science.gov (United States)

    Lee, Syng-Ook; Jin, Un-Ho; Kang, Jeong Han; Kim, Sang Bae; Guthrie, Aaron S; Sreevalsan, Sandeep; Lee, Ju-Seog; Safe, Stephen

    2014-04-01

    NR4A1 (Nur77, TR3) is an orphan nuclear receptor that is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity. RNA interference of NR4A1 expression in Panc-1 cells induced apoptosis and subsequent proteomic analysis revealed the induction of several markers of endoplasmic reticulum stress, including glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), and activating transcription factor-4 (ATF-4). Treatment of pancreatic cancer cells with the NR4A1 antagonist 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) gave similar results. Moreover, both NR4A1 knockdown and DIM-C-pPhOH induced reactive oxygen species (ROS), and induction of ROS and endoplasmic reticulum stress by these agents was attenuated after cotreatment with antioxidants. Manipulation of NR4A1 expression coupled with gene expression profiling identified a number of ROS metabolism transcripts regulated by NR4A1. Knockdown of one of these transcripts, thioredoxin domain containing 5 (TXNDC5), recapitulated the elevated ROS and endoplasmic reticulum stress; thus, demonstrating that NR4A1 regulates levels of endoplasmic reticulum stress and ROS in pancreatic cancer cells to facilitate cell proliferation and survival. Finally, inactivation of NR4A1 by knockdown or DIM-C-pPhOH decreased TXNDC5, resulting in activation of the ROS/endoplasmic reticulum stress and proapoptotic pathways. The NR4A1 receptor is pro-oncogenic, regulates the ROS/endoplasmic reticulum stress pathways, and inactivation of the receptor represents a novel pathway for inducing cell death in pancreatic cancer. Mol Cancer Res; 12(4); 527-38. ©2014 AACR.

  9. Protective role of antioxidant vitamin E and catechin on idarubicin-induced cardiotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Kalender S.

    2002-01-01

    Full Text Available Idarubicin is an anthracycline antibiotic extensively used in acute leukemia. In the present study we investigated whether vitamin E and catechin can reduce the toxic effects of idarubicin. Vitamin E (200 IU kg-1 week-1, catechin (200 mg kg-1 week-1, idarubicin (5 mg kg-1 week-1, idarubicin + vitamin E (200 IU kg-1 week-1, and idarubicin + catechin (200 mg kg-1 week-1 combinations were given to male Sprague-Dawley rats weighing 210 to 230 g (N = 6/group. Idarubicin-treated animals exhibited a decrease in body and heart weight, a decrease in myocardial contractility, and changes in ECG parameters (P<0.01. Catechin + idarubicin- and vitamin E + idarubicin-treated groups exhibited similar alterations, but changes were attenuated in comparison to those in cardiac muscle of idarubicin-treated rats (P<0.05. Superoxide dismutase and catalase activity was reduced in the idarubicin-treated group (P<0.05. Glutathione peroxidase levels were decreased in the idarubicin-treated group (P<0.05 and reached maximum concentrations in the catechin- and catechin + idarubicin-treated groups compared to control (P<0.01. Malondialdehyde activity was decreased in the catechin + idarubicin-treated groups compared to control and increased in the other groups, reaching maximum concentrations in the vitamin E-treated group (P<0.01. In electron microscopy studies, swelling of the mitochondria and dilatation of the sarcoplasmic reticulum of myocytes were observed in the idarubicin-treated groups. In groups that were given idarubicin + vitamin E and idarubicin + catechin, the only morphological change was a weak dilatation of the sarcoplasmic reticulum. We conclude that catechin and vitamin E significantly reduce idarubicin-induced cardiotoxicity in rats.

  10. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts.

    Science.gov (United States)

    Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.

  11. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells.

    Science.gov (United States)

    Kao, Yu-Hsun; Chen, Yao-Chang; Lin, Yung-Kuo; Shiu, Rong-Jie; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2014-08-01

    Fibroblast growth factor (FGF)-23 is a key regulator of phosphate homeostasis. Higher FGF-23 levels are correlated with poor outcomes in cardiovascular diseases. FGF-23 can produce cardiac hypertrophy and increase intracellular calcium, which can change cardiac electrical activity. However, it is not clear whether FGF-23 possesses arrhythmogenic potential through calcium dysregulation. Therefore, the purposes of this study were to evaluate the electrophysiological effects of FGF-23 and identify the underlying mechanisms. Patch clamp, confocal microscope with Fluo-4 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis and calcium regulatory proteins in HL-1 atrial myocytes with and without FGF-23 (10 and 25 ng/mL) incubation for 24 h. FGF-23 (25 ng/mL) increased L-type calcium currents, calcium transient and sarcoplasmic reticulum Ca(2+) contents in HL-1 cells. FGF-23 (25 ng/mL)-treated cells (n = 14) had greater incidences (57%, 17% and 15%, P calcium/calmodulin-dependent protein kinase IIδ and phospholamban (PLB) at threonine 17 but had similar phosphorylation extents of PLB at serine 16, total PLB and sarcoplasmic reticulum Ca(2+) -ATPase protein. Moreover, the FGF receptor inhibitor (PD173074, 10 nM), calmodulin inhibitor (W7, 5 μM) and phospholipase C inhibitor (U73122, 1 μM) attenuated the effects of FGF-23 on calcium/calmodulin-dependent protein kinase II phosphorylation. FGF-23 increases HL-1 cells arrhythmogenesis with calcium dysregulation through modulating calcium-handling proteins. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  12. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  13. Structure-function relation of phospholamban: modulation of channel activity as a potential regulator of SERCA activity.

    Directory of Open Access Journals (Sweden)

    Serena Smeazzetto

    Full Text Available Phospholamban (PLN is a small integral membrane protein, which binds and inhibits in a yet unknown fashion the Ca(2+-ATPase (SERCA in the sarcoplasmic reticulum. When reconstituted in planar lipid bilayers PLN exhibits ion channel activity with a low unitary conductance. From the effect of non-electrolyte polymers on this unitary conductance we estimate a narrow pore with a diameter of ca. 2.2 Å for this channel. This value is similar to that reported for the central pore in the structure of the PLN pentamer. Hence the PLN pentamer, which is in equilibrium with the monomer, is the most likely channel forming structure. Reconstituted PLN mutants, which either stabilize (K27A and R9C or destabilize (I47A the PLN pentamer and also phosphorylated PLN still generate the same unitary conductance of the wt/non-phosphorylated PLN. However the open probability of the phosphorylated PLN and of the R9C mutant is significantly lower than that of the respective wt/non-phosphorylated control. In the context of data on PLN/SERCA interaction and on Ca(2+ accumulation in the sarcoplasmic reticulum the present results are consistent with the view that PLN channel activity could participate in the balancing of charge during Ca(2+ uptake. A reduced total conductance of the K(+ transporting PLN by phosphorylation or by the R9C mutation may stimulate Ca(2+ uptake in the same way as an inhibition of K(+ channels in the SR membrane. The R9C-PLN mutation, a putative cause of dilated cardiomyopathy, might hence affect SERCA activity also via its inherent low open probability.

  14. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  15. Home Air Purifiers Eradicate Harmful Pathogens

    Science.gov (United States)

    2014-01-01

    Marshall Space Flight Center funded the University of Madison-Wisconsin to develop ethylene scrubbers to keep produce fresh in space. Akida Holdings of Jacksonville, Florida, licensed the technology and developed Airocide, an air purifier that can kill airborne pathogens. Previously designed for industrial spaces, there is now a specially designed unit for home use.

  16. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    International Nuclear Information System (INIS)

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-01-01

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway

  17. Mobilization of Ca2+ by Cyclic ADP-Ribose from the Endoplasmic Reticulum of Cauliflower Florets1

    Science.gov (United States)

    Navazio, Lorella; Mariani, Paola; Sanders, Dale

    2001-01-01

    The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling. PMID:11299392

  18. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines

    Directory of Open Access Journals (Sweden)

    Michael William Graner

    2015-01-01

    Full Text Available The endoplasmic reticulum (ER is a major site of passage for proteins en route to other organelles, to the cell surface, and to the extracellular space. It is also the transport route for peptides generated in the cytosol by the proteasome into the ER for loading onto major histocompatibility complex class I (MHC I molecules for eventual antigen presentation at the cell surface. Chaperones within the ER are critical for many of these processes; however, outside the ER certain of those chaperones may play important and direct roles in immune responses. In some cases, particular ER chaperones have been utilized as vaccines against tumors or infectious disease pathogens when purified from tumor tissue or recombinantly generated and loaded with antigen. In other cases, the cell surface location of ER chaperones has implications for immune responses as well as possible tumor resistance. We have produced heat shock protein/chaperone protein-based cancer vaccines called CRCL (Chaperone-Rich Cell Lysate that are conglomerates of chaperones enriched from solid tumors by an isoelectric focusing technique. These preparations have been effective against numerous murine tumors, as well as in a canine with an advanced lung carcinoma treated with autologous CRCL. We also published extensive proteomic analyses of CRCL prepared from human surgically-resected tumor samples. Of note, these preparations contained at least ten ER chaperones and a number of other residents, along with many other chaperones/heat shock proteins. Gene ontology and network analyses utilizing these proteins essentially recapitulate the antigen presentation pathways and interconnections. In conjunction with our current knowledge of cell surface/extracellular ER chaperones, these data collectively suggest that a systems-level view may provide insight into the potent immune stimulatory activities of CRCL with an emphasis on the roles of ER components in those processes.

  19. Guanine nucleotide regulatory protein co-purifies with the D2-dopamine receptor

    International Nuclear Information System (INIS)

    Senogles, S.E.; Caron, M.G.

    1986-01-01

    The D 2 -dopamine receptor from bovine anterior pituitary was purified ∼1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with 3 H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D 2 receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 μM NPA. 35 S-GTPγS binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D 2 -dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D 2 -dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes

  20. The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress.

    Science.gov (United States)

    Chao de la Barca, Juan Manuel; Simard, Gilles; Amati-Bonneau, Patrizia; Safiedeen, Zainab; Prunier-Mirebeau, Delphine; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Gueguen, Naïg; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Ferré, Marc; Bris, Céline; Kouassi Nzoughet, Judith; Bocca, Cinzia; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Lenaers, Guy; Martinez, M Carmen; Procaccio, Vincent; Reynier, Pascal

    2016-11-01

    Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as

  1. Mine water purify from radium

    International Nuclear Information System (INIS)

    Lebecka, J.

    1996-01-01

    The article describes purification of radium containing water in coal mines. Author concludes that water purification is relatively simple and effective way to decrease environmental pollution caused by coal mining. The amount of radium disposed with type A radium water has been significantly decreased. The results of investigations show that it will be soon possible to purify also type B radium water. Article compares the amounts of radium disposed by coal mines in 1990, 1995 and forecast for 2000

  2. Simultaneous purifying of Hg0, SO2, and NOx from flue gas by Fe3+/H2O2: the performance and purifying mechanism.

    Science.gov (United States)

    Xing, Yi; Li, Liuliu; Lu, Pei; Cui, Jiansheng; Li, Qianli; Yan, Bojun; Jiang, Bo; Wang, Mengsi

    2018-03-01

    Hg 0 , SO 2 , and NOx result in heavily global environmental pollution and serious health hazards. Up to now, how to efficiently remove mercury with SO 2 and NOx from flue gas is still a tough task. In this study, series of high oxidizing Fenton systems were employed to purify the pollutants. The experimental results showed that Fe 3+ /H 2 O 2 was more suitable to purify Hg 0 than Fe 2+ /H 2 O 2 and Cu 2+ /H 2 O 2. The optimal condition includes Fe 3+ concentration of 0.008 mol/L, Hg 0 inlet concentration of 40 μg/m 3 , solution temperature of 50 °C, pH of 3, H 2 O 2 concentration of 0.7 mol/L, and O 2 percentage of 6%. When SO 2 and NOx were taken into account under the optimal condition, Hg 0 removal efficiency could be enhanced to 91.11% while the removal efficiency of both NOx and SO 2 was slightly declined, which was consistent to the analysis of purifying mechanism. The removal efficiency of Hg 0 was stimulated by accelerating the conversion of Fe 2+ to Fe 3+ , which resulted from the existence of SO 2 and NOx. The results of this study suggested that simultaneously purifying Hg 0 , SO 2 , and NOx from flue gas is feasible.

  3. Effects of two medicinal plants Psidium guajava L. (Myrtaceae) and Diospyros mespiliformis L. (Ebenaceae) leaf extracts on rat skeletal muscle cells in primary culture

    Science.gov (United States)

    Belemtougri, R.G.; Constantin, B.; Cognard, C.; Raymond, G.; Sawadogo, L.

    2006-01-01

    Crude decoction, aqueous and ethanolic extracts of two medicinal plants (Psidium guajava and Diospyros mespiliformis), widely used in the central plateau of Burkina Faso to treat many diseases were evaluated for their antagonistic effects on caffeine induced calcium release from sarcoplasmic reticulum of rat skeletal muscle cells. These different extracts showed a decrease of caffeine induced calcium release in a dose dependent manner. Comparison of the results showed that Psidium guajava leaf extracts are more active than extracts of Diospyros mespiliformis and that crude decoctions show better inhibitory activity. The observed results could explaine their use as antihypertensive and antidiarrhoeal agents in traditional medicine, by inhibiting intracellular calcium release. PMID:16365927

  4. Ca2+-clock-dependent pacemaking in the sinus node is impaired in mice with a cardiac specific reduction in SERCA2 abundance

    Directory of Open Access Journals (Sweden)

    Sunil Jit Ramamoorthy Jeewanlal Logantha

    2016-06-01

    Full Text Available Background: The sarcoplasmic reticulum Ca2+-ATPase (SERCA2 pump is an important component of the Ca2+-clock pacemaker mechanism that provides robustness and flexibility to sinus node pacemaking. We have developed transgenic mice with reduced cardiac SERCA2 abundance (Serca2 KO as a model for investigating SERCA2’s role in sinus node pacemaking.Methods and Results: In Serca2 KO mice, ventricular SERCA2a protein content measured by Western blotting was 75% (P70% Serca2 downregulation.Conclusions: Serca2 KO mice show a disrupted Ca2+-clock-dependent pacemaker mechanism contributing to impaired sinus node and atrioventricular node function.

  5. The Ca2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    DANIELA C URBINA

    2006-01-01

    Full Text Available Thapsigargin, a specific inhibitor of most animal intracellular SERCA-type Ca2+ pumps present in the sarcoplasmic/endoplasmic reticulum, was originally isolated from the roots of the Mediterranean plant Thapsia gargancia L. Here, we demonstrate that this root-derived compound is capable of altering root gravitropism in Arabidopsis thaliana. Thapsigargin concentrations as low as 0.1 µM alter root gravitropism whereas under similar conditions cyclopiazonic acid does not. Furthermore, a fluorescently conjugated thapsigargin (BODIPY FL thapsigargin suggests that target sites for thapsigargin are located in intracellular organelles in the root distal elongation zone and the root cap, regions known to regulate root gravitropism

  6. The road to understanding an ion pump

    Science.gov (United States)

    Toyoshima, Chikashi

    2016-04-01

    In the past 25 years or so I have been working almost exclusively on two proteins: the Ca2+-ATPase of muscle sarcoplasmic reticulum, and the Na+, K+-ATPase expressed in all animal cells, both are membrane ion pumps representing P-type ion translocating ATPases. My ambition as a scientist is to completely understand the meaning of their atomic structures. How I became a scientist is described elsewhere (Nuzzo R 2006 Proc. Natl. Acad. Sci. USA 103 1165-7), and focus here is given to my struggle towards a deep understanding of Ca2+-ATPase. This is a long but very fascinating and rewarding journey.

  7. Organellar Calcium Buffers

    Science.gov (United States)

    Prins, Daniel; Michalak, Marek

    2011-01-01

    Ca2+ is an important intracellular messenger affecting many diverse processes. In eukaryotic cells, Ca2+ storage is achieved within specific intracellular organelles, especially the endoplasmic/sarcoplasmic reticulum, in which Ca2+ is buffered by specific proteins known as Ca2+ buffers. Ca2+ buffers are a diverse group of proteins, varying in their affinities and capacities for Ca2+, but they typically also carry out other functions within the cell. The wide range of organelles containing Ca2+ and the evidence supporting cross-talk between these organelles suggest the existence of a dynamic network of organellar Ca2+ signaling, mediated by a variety of organellar Ca2+ buffers. PMID:21421925

  8. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  9. AhV_aPA-induced vasoconstriction involves the IP₃Rs-mediated Ca²⁺ releasing.

    Science.gov (United States)

    Zeng, Fuxing; Zou, Zhisong; Niu, Liwen; Li, Xu; Teng, Maikun

    2013-08-01

    AhV_aPA, the acidic PLA₂ purified from Agkistrodon halys pallas venom, was previously reported to possess a strong enzymatic activity and can remarkably induce a further contractile response on the 60 mM K⁺-induced contraction with an EC₅₀ in 369 nM on mouse thoracic aorta rings. In the present study, we found that the p-bromo-phenacyl-bromide (pBPB), which can completely inhibit the enzymatic activity of AhV_aPA, did not significantly reduce the contractile response on vessel rings induced by AhV_aPA, indicating that the vasoconstrictor effects of AhV_aPA are independent of the enzymatic activity. The inhibitor experiments showed that the contractile response induced by AhV_aPA is mainly attributed to the Ca²⁺ releasing from Ca²⁺ store, especially sarcoplasmic reticulum (SR). Detailed studies showed that the Ca²⁺ release from SR is related to the activation of inositol trisphosphate receptors (IP₃Rs) rather than ryanodine receptors (RyRs). Furthermore, the vasoconstrictor effect could be strongly reduced by pre-incubation with heparin, indicating that the basic amino acid residues on the surface of AhV_aPA may be involved in the interaction between AhV_aPA and the molecular receptors. These findings offer new insights into the functions of snake PLA₂ and provide a novel pathogenesis of A. halys pallas venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  11. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated

    NARCIS (Netherlands)

    Kok, JW; Babia, T; Klappe, K; Egea, G; Hoekstra, D

    1998-01-01

    Ceramide (Cer) transfer from the endoplasmic reticulum (ER) to the Golgi apparatus was measured under conditions that block vesicle-mediated protein transfer. This was done either in intact cells by reducing the incubation temperature to 15 degrees C, or in streptolysin O-permeabilized cells by

  12. Studies on a novel peptide isolated and purified from rat insulinoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Al-Akhras, G N

    1987-01-01

    Rat insulinoma peptide (RIP) which appears to be either a fragment of, or an altered rat C-peptide was isolated and purified by dialysis. The purity of this peptide was investigated using polyacrylamide gel electrophoresis with sodium dodecyl sulfate, isoelectric focusing, and high performance liquid chromatography. RIP may contain two peptides similar to each other but differing in their isoelectric points. The molecular weight of RIP was found to be 1982 daltons by fast atoms bombardment mass spectrometry giving a chain length of approximately 22 amino acid residues. From information obtained using radioimmunoassay employing antiserum R901, RIP appears to share a common C-terminus with rat C-peptide. A radioimmunoassay for RIP was developed using the purified RIP as immunogen and for standards and tracers. An indirect enzyme linked immunosorbent assay (ELISA) for rat insulinoma peptide was developed using purified RIP for immunogen and semi-purified RIP as a standard.

  13. The involvement of SMILE/TMTC3 in endoplasmic reticulum stress response.

    Directory of Open Access Journals (Sweden)

    Maud Racapé

    Full Text Available The state of operational tolerance has been detected sporadically in some renal transplanted patients that stopped immunosuppressive drugs, demonstrating that allograft tolerance might exist in humans. Several years ago, a study by Brouard et al. identified a molecular signature of several genes that were significantly differentially expressed in the blood of such patients compared with patients with other clinical situations. The aim of the present study is to analyze the role of one of these molecules over-expressed in the blood of operationally tolerant patients, SMILE or TMTC3, a protein whose function is still unknown.We first confirmed that SMILE mRNA is differentially expressed in the blood of operationally tolerant patients with drug-free long term graft function compared to stable and rejecting patients. Using a yeast two-hybrid approach and a colocalization study by confocal microscopy we furthermore report an interaction of SMILE with PDIA3, a molecule resident in the endoplasmic reticulum (ER. In accordance with this observation, SMILE silencing in HeLa cells correlated with the modulation of several transcripts involved in proteolysis and a decrease in proteasome activity. Finally, SMILE silencing increased HeLa cell sensitivity to the proteasome inhibitor Bortezomib, a drug that induces ER stress via protein overload, and increased transcript expression of a stress response protein, XBP-1, in HeLa cells and keratinocytes.In this study we showed that SMILE is involved in the endoplasmic reticulum stress response, by modulating proteasome activity and XBP-1 transcript expression. This function of SMILE may influence immune cell behavior in the context of transplantation, and the analysis of endoplasmic reticulum stress in transplantation may reveal new pathways of regulation in long-term graft acceptance thereby increasing our understanding of tolerance.

  14. Cooling performance of R510A in domestic water purifiers

    International Nuclear Information System (INIS)

    Park, Ki Jung; Lee, Yo Han; Jung, Dong Soo

    2010-01-01

    Cooling performance of R510A is examined both numerically and experimentally in an effort to replace HFC134a in the refrigeration system of domestic water purifiers. Although the use of HFC134a is currently dominant, it is being phased out in Europe and most developed countries due to its high potential contribution to global warming. To solve this problem, cycle simulation and experimental measurements are conducted with a new refrigerant mixture of 88%RE170/12%R600a using actual domestic water purifiers. This mixture has been recently numbered and listed as R510A by ASHRAE. Test results show that, due to the small internal volume of the refrigeration system of the domestic water purifiers, system performance with R510A is greatly influenced by the amount of charge. With the optimum charge amount of 20 to 21 g, approximately 50% that of HFC134a, the energy consumption of R510A is 22.3% lower than that of HFC134a. The compressor discharge temperature of R510A is 3.7 .deg. C lower than that of HFC134a at the optimum charge. Overall, R510A, a new, long term, and environmentally safe refrigerant, is a good alternative for HFC134a. Furthermore, it requires only minor changes in the refrigeration system of the domestic water purifiers

  15. Dipeptidyl peptidase-4 inhibitor, vildagliptin, inhibits pancreatic beta cell apoptosis in association with its effects suppressing endoplasmic reticulum stress in db/db mice.

    Science.gov (United States)

    Wu, Yan-ju; Guo, Xin; Li, Chun-jun; Li, Dai-qing; Zhang, Jie; Yang, Yiping; Kong, Yan; Guo, Hang; Liu, De-min; Chen, Li-ming

    2015-02-01

    Vildagliptin promotes beta cell survival by inhibiting cell apoptosis. It has been suggested that chronic ER (endoplasmic reticulum) stress triggers beta cell apoptosis. The objective of the study is to explore whether the pro-survival effect of vildagliptin is associated with attenuation of endoplasmic reticulum stress in islets of db/db mice. Vildagliptin was orally administered to db/db mice for 6 weeks, followed by evaluation of beta cell apoptosis by caspase3 activity and TUNEL staining method. Endoplasmic reticulum stress markers were determined with quantitative RT-PCR, immunohistochemistry and immunoblot analysis. After 6 weeks of treatment, vildagliptin treatment increased plasma active GLP-1 levels (22.63±1.19 vs. 11.69±0.44, Pvildagliptin treatment down-regulated several genes related to endoplasmic reticulum stress including TRIB3 (tribbles homolog 3) (15.9±0.4 vs. 33.3±1.7, ×10⁻³, PVildagliptin promoted beta cell survival in db/db mice in association with down-regulating markers of endoplasmic reticulum stress including TRIB3, ATF-4 as well as CHOP. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Sphingosine inhibits the sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA) activity

    Energy Technology Data Exchange (ETDEWEB)

    Benaim, Gustavo, E-mail: gbenaim@idea.gob.ve [Instituto de Estudios Avanzados (IDEA), Caracas (Venezuela, Bolivarian Republic of); Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas (Venezuela, Bolivarian Republic of); Pimentel, Adriana A., E-mail: adriana.pimentel@ucv.ve [Facultad de Farmacia, Universidad Central de Venezuela (UCV), Caracas (Venezuela, Bolivarian Republic of); Felibertt, Pimali [Facultad de Ciencias, Universidad de Carabobo, Valencia (Venezuela, Bolivarian Republic of); Mayora, Adriana [Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas (Venezuela, Bolivarian Republic of); Colman, Laura [Instituto Pasteur de Montevideo, Montevideo (Uruguay); Sojo, Felipe [Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas (Venezuela, Bolivarian Republic of); Rojas, Héctor [Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas (Venezuela, Bolivarian Republic of); Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas (Venezuela, Bolivarian Republic of); De Sanctis, Juan B. [Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas (Venezuela, Bolivarian Republic of)

    2016-04-29

    The increase in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) is the key variable for many different processes, ranging from regulation of cell proliferation to apoptosis. In this work we demonstrated that the sphingolipid sphingosine (Sph) increases the [Ca{sup 2+}]{sub i} by inhibiting the sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA), in a similar manner to thapsigargin (Tg), a specific inhibitor of this Ca{sup 2+} pump. The results showed that addition of sphingosine produced a release of Ca{sup 2+} from the endoplasmic reticulum followed by a Ca{sup 2+} entrance from the outside mileu. The results presented in this work support that this sphingolipid could control the activity of the SERCA, and hence sphingosine may participate in the regulation of [Ca{sup 2+}]{sub I} in mammalian cells.

  17. Characterization and treatment of cyanide in MGP purifier wastes

    Energy Technology Data Exchange (ETDEWEB)

    Theis, T.L. [Clarkson University, Potsdam, NY (United States). Dept. of Civil and Environmental Engineering

    1995-12-31

    Purifier wastes were generated from the clean-up gaseous impurities, principally hydrogen sulfide and hydrogen cyanide, contained in raw gas from MGP operations through retention by iron oxide solids. These materials were generated at a rate of about 10-20 kg/1000 m{sup 3} of gas produced, and although regeneration was sometimes practised, eventual disposal as fill material, usually on site, was eventually necessary. The remediation of MGP sites generally requires that the disposition of these waste solids be addressed. The effective treatment of purifier wastes presents special problems due to the acid-base properties of the material, its elevated sulfur content, and the significant quantities of carbon both added as wood shavings and present as compounds generated as a result of gas manufacture. In broad terms, treatment approaches can be divided into two classes, those aimed at destroying the cyanide and objectionable carbon compounds and otherwise disposing of the residual, and those which attempt to isolate the waste from its surroundings. The latter approach attempts to take advantage of the natural insolubility of most of the constituents of concern found in purifier wastes, while destructive technologies limit potential liability. 9 refs.

  18. Full scale demonstration of air-purifying pavement

    NARCIS (Netherlands)

    Ballari, M.; Brouwers, H.J.H.

    2013-01-01

    Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO2 over a length of 150 m ("DeNOx street"). Another part of the street, about 100 m, was paved with

  19. The quality control of glycoprotein folding in the endoplasmic reticulum, a trip from trypanosomes to mammals

    Directory of Open Access Journals (Sweden)

    A.J. Parodi

    1998-05-01

    Full Text Available The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyltransferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.

  20. [Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].

    Science.gov (United States)

    Zhang, Yi; Yan, Dan; Han, Yumei

    2005-10-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.

  1. 76 FR 29191 - Purified Carboxymethylcellulose From Finland and the Netherlands: Continuation of Antidumping...

    Science.gov (United States)

    2011-05-20

    ... Carboxymethylcellulose From Finland and the Netherlands: Continuation of Antidumping Duty Orders AGENCY: Import... antidumping duty orders on purified carboxymethylcellulose from Finland and the Netherlands would likely lead...) from Finland and the Netherlands. See Notice of Antidumping Duty Orders: Purified...

  2. Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer.

    Science.gov (United States)

    Blackwell, Daniel J; Zak, Taylor J; Robia, Seth L

    2016-09-20

    The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. 78 FR 9884 - Purified Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-02-12

    ... Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty Administrative Review and Final No... carboxymethylcellulose (purified CMC) from the Netherlands.\\1\\ This review covers two respondents, Akzo Nobel Functional... Review'' section of this notice. \\1\\ See Purified Carboxymethylcellulose From the Netherlands...

  4. Immunocytochemical localization of the [3H]estradiol-binding protein in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Grossman, A.; Oppenheim, J.; Grondin, G.; St Jean, P.; Beaudoin, A.R.

    1989-01-01

    Significant amounts of an estradiol-binding protein (EBP) are present in pancreatic acinar cells. This protein differs from the one found in female reproductive tissues and secondary sex organs (which is commonly referred to as estrogen receptor). EBP has now been purified from rat pancreas and was used as an antigen to induce polyclonal antibodies in rabbits. The antiserum obtained was purified initially by ammonium sulfate fractionation and then still further by interaction with a protein fraction from pancreas that was devoid of estradiol-binding activity. The latter procedure was used to precipitate nonspecific immunoglobulin Gs. Western blot analysis demonstrated that the anti-EBP antibody reacted specifically with a doublet of protein bands having mol wt of 64K and 66K. When this purified antibody was used as an immunocytochemical probe in conjunction with protein-A-gold, acinar cells were labeled on the surface of the endoplasmic reticulum, on the plasma membrane, and in mitochondria. This specific labeling pattern was not observed when preimmune serum was used. No labeling was observed over the nucleus, Golgi apparatus, or zymogen granules with purified anti-EBP antibodies. The unexpected distribution of EBP in both the endoplasmic reticulum and mitochondria is discussed

  5. Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy.

    Science.gov (United States)

    Garciarena, Carolina D; Pinilla, Oscar A; Nolly, Mariela B; Laguens, Ruben P; Escudero, Eduardo M; Cingolani, Horacio E; Ennis, Irene L

    2009-04-01

    The effect of endurance training (swimming 90 min/d for 5 days a week for 60 days) on cardiac hypertrophy was investigated in the spontaneously hypertensive rat (SHR). Sedentary SHRs (SHR-Cs) and normotensive Wistar rats were used as controls. Exercise training enhanced myocardial hypertrophy assessed by left ventricular weight/tibial length (228+/-7 versus 251+/-5 mg/cm in SHR-Cs and exercised SHRs [SHR-Es], respectively). Myocyte cross-sectional area increased approximately 40%, collagen volume fraction decreased approximately 50%, and capillary density increased approximately 45% in SHR-Es compared with SHR-Cs. The mRNA abundance of atrial natriuretic factor and myosin light chain 2 was decreased by the swimming routine (100+/-19% versus 41+/-10% and 100+/-8% versus 61+/-9% for atrial natriuretic factor and myosin light chain 2 in SHR-Cs and SHR-Es, respectively). The expression of sarcoplasmic reticulum Ca(2+) pump was significantly augmented, whereas that of Na(+)/Ca(2+) exchanger was unchanged (93+/-7% versus 167+/-8% and 158+/-13% versus 157+/-7%, sarcoplasmic reticulum Ca(2+) pump and Na(+)/Ca(2+) exchanger in SHR-Cs and SHR-Es, respectively; PEndurance training inhibited apoptosis, as reflected by a decrease in caspase 3 activation and poly(ADP-ribose) polymerase-1 cleavage, and normalized calcineurin activity without inducing significant changes in the phosphatidylinositol 3-kinase/Akt pathway. The swimming routine improved midventricular shortening determined by echocardiography (32.4+/-0.9% versus 36.9+/-1.1% in SHR-Cs and SHR-Es, respectively; Pendurance training to convert pathological into physiological hypertrophy improving cardiac performance. The reduction of myocardial fibrosis and calcineurin activity plus the increase in capillary density represent factors to be considered in determining this beneficial effect.

  6. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  7. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle.

    Science.gov (United States)

    Kanzaki, Keita; Watanabe, Daiki; Kuratani, Mai; Yamada, Takashi; Matsunaga, Satoshi; Wada, Masanobu

    2017-02-01

    The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca 2+ -regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca 2+ -ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca 2+ -regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca 2+ -ATPase, undergo calpain-dependent proteolysis. Copyright © 2017 the American Physiological Society.

  8. Preservation of the positive lusitropic effect of beta-adrenoceptors stimulation in diabetic cardiomyopathy.

    Science.gov (United States)

    Amour, Julien; Loyer, Xavier; Michelet, Pierre; Birenbaum, Aurélie; Riou, Bruno; Heymes, Christophe

    2008-10-01

    In diabetic cardiomyopathy, diastolic dysfunction results in part from sarcoplasmic reticulum abnormalities affecting both phospholamban and sarcoplasmic reticulum Ca2+ uptake (SERCA2a). Consequently, the positive lusitropic effect of beta-adrenoceptors stimulation could be altered, and beta3-adrenoceptor over-expression may play a role, as previously demonstrated with an altered positive inotropic effect. In this study, we tested the hypothesis that the beta-adrenergic positive lusitropic effect is altered in diabetic cardiomyopathy, and that beta3-adrenoceptor over-expression is involved. beta-adrenergic responses were investigated in vivo (dobutamine-echocardiography) and in vitro (papillary muscle preparation) in healthy and diabetic rats killed 4 (4W) and 12 (12W) wk after IV streptozotocin injection. The effect of beta3-adrenoceptor pathway inhibition by S-cyanopindolol (selective beta3-adrenoceptor antagonist) or by NG-nitro-L-arginine-methyl-ester (nonselective nitric oxide synthase inhibitor) on the lusitropic response to isoproterenol (nonselective beta-adrenoceptors agonist) was studied in vitro. Western blots were performed to quantify the protein expressions of beta1- and beta3-adrenoceptors, phospholamban, and SERCA2a. Data are presented as mean percentages of baseline+/-sd. Despite the increased phospholamban/SERCA2a protein ratio and documented diastolic dysfunction, the positive lusitropic effect of beta-adrenoceptors stimulation was preserved in vivo (dobutamine) and in vitro (isoproterenol) in 4W and 12W diabetic, compared with healthy, rats. The beta3-adrenoceptor was up-regulated whereas beta1-adrenoceptor was down-regulated in 4W and 12W diabetic, compared with healthy, rats. Nevertheless, S-cyanopindolol or NG-nitro-L-arginine-methyl-ester had no lusitropic effect. The positive lusitropic effect of beta-adrenoceptor stimulation was preserved in diabetic cardiomyopathy. beta3-adrenoceptor over-expression does not seem to affect this process.

  9. Development of porcine model of chronic tachycardia-induced cardiomyopathy.

    Science.gov (United States)

    Paslawska, Urszula; Gajek, Jacek; Kiczak, Liliana; Noszczyk-Nowak, Agnieszka; Skrzypczak, Piotr; Bania, Jacek; Tomaszek, Alicja; Zacharski, Maciej; Sambor, Izabela; Dziegiel, Piotr; Zysko, Dorota; Banasiak, Waldemar; Jankowska, Ewa A; Ponikowski, Piotr

    2011-11-17

    There are few experimental models of heart failure (HF) in large animals, despite structural and functional similarities to human myocardium. We have developed a porcine model of chronic tachycardia-induced cardiomyopathy. Homogenous siblings of White Large breed swine (n=6) underwent continuous right ventricular (RV) pacing at 170 bpm; 2 subjects served as controls. In the course of RV pacing, animals developed a clinical picture of HF and were presented for euthanasia at subsequent stages: mild, moderate and end-stage HF. Left ventricle (LV) sections were analyzed histologically and relative ANP, BNP, phospholamban and sarcoplasmic reticulum calcium ATPase 2a transcript levels in LV were quantified by real time RT-PCR. In the course of RV pacing, animals demonstrated reduced exercise capacity (time of running until being dyspnoeic: 6.6 ± 0.5 vs. 2.4 ± 1.4 min), LV dilatation (LVEDD: 4.9 ± 0.4 vs. 6.7 ± 0.4 cm), impaired LV systolic function (LVEF: 69 ± 8 vs. 32 ± 7 %), (all baseline vs. before euthanasia, all p<0.001). LV tissues from animals with moderate and end-stage HF demonstrated local foci of interstitial fibrosis, congestion, cardiomyocyte hypertrophy and atrophy, which was not detected in controls and mild HF animals. The up-regulation of ANP and BNP and a reduction in a ratio of sarcoplasmic reticulum calcium ATPase 2a and phospholamban in failing myocardium were observed as compared to controls. In pigs, chronic RV pacing at relatively low rate can be used as an experimental model of HF, as it results in a gradual deterioration of exercise tolerance accompanied by myocardial remodeling confirmed at subcellular level. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  11. THE RESPONSE OF DISSEMINATED RETICULUM CELL SARCOMA TO THE INTRAVENOUS INJECTION OF COLLOIDAL RADIOACTIVE GOLD

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Philip; Levitt, Seymour H.

    1963-06-15

    Case histories of two patients treated with colloidal radiogold for diffuse reticulum cell sarcoma are presented. Further analysis of the method is suggested by the unusually long survival time of one of the patients. It was concluded that, although external radiotherapy remains the treatment of choice in localized reticulum cell sarcoma, intravenous colloidal radiogold may be a useful agent in lymphosarcomas with diffuse minute neoplastic liver and spleen involvements. Intravenous colloidal radiogold can produce bone marrow depression and thrombocytopenia which can lead to death. This factor tends to argue against therapeutic use of the agent. It is suggested that no more than 50 mC Au/sup 198/ intravenously should be used for treatment of this disease. (R.M.G.)

  12. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response.

    LENUS (Irish Health Repository)

    Samali, Afshin

    2010-01-01

    The endoplasmic reticulum (ER) is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR). The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  13. Methods for Monitoring Endoplasmic Reticulum Stress and the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Afshin Samali

    2010-01-01

    Full Text Available The endoplasmic reticulum (ER is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR. The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  14. Temperature dependence of cardiac sarcoplasmic reticulum and sarcolemma in the ventricle of catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    El-Sabry Abu-Amra

    2015-10-01

    The sarcolemmal Ca2+ contribution of activator Ca2+ was greater at a test temperature of 30 °C as assessed by verapamil. Whereas the SR-Ca2+ contribution was higher at 20 and 30 °C and a frequency rate of 0.2 and 0.4 Hz as assessed by caffeine and adrenaline, respectively. Bradykinin potentiating factor (BPF7 which was isolated from jelly fish (Cassiopea andromeda decreased the cardiac force developed at a frequency rate of 0.2 Hz and a temperature of 20 °C, whereas it increased the force developed at frequency rates of 0.2 and 0.4 Hz at 30 °C. These results indicate that BPF7 may act like verapamil in reducing the cardiac force through blocking the sarcolemmal Ca2+ channels at low temperature and like adrenaline in an increase of the cardiac force developed at warm temperature and the high frequency rate through stimulation of SR-Ca2+ activator. Therefore, this study indicates that the sarcolemmal Ca2+ influx and the SR-Ca2+ release contributors of activator Ca2+ for cardiac force development in the catfish heart were significantly greater at warm temperature and at the pacing frequency rates of 0.2 and 0.4 Hz as assessed by verapamil, adrenaline, caffeine and BPF7. However, the relative contribution of the sarcolemmal Ca2+ influx in the development of cardiac force in the catfish heart was greater than that of SR-Ca2+ release.

  15. Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2017-06-20

    The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca 2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.

  16. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet air purifier. 880.6500 Section 880.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... to ultraviolet radiation. (b) Classification. Class II (performance standards). ...

  17. Lipid Droplet Formation Is Dispensable for Endoplasmic Reticulum-associated Degradation*

    OpenAIRE

    Olzmann, James A.; Kopito, Ron R.

    2011-01-01

    Proteins that fail to fold or assemble in the endoplasmic reticulum (ER) are destroyed by cytoplasmic proteasomes through a process known as ER-associated degradation. Substrates of this pathway are initially sequestered within the ER lumen and must therefore be dislocated across the ER membrane to be degraded. It has been proposed that generation of bicellar structures during lipid droplet formation may provide an “escape hatch” through which misfolded proteins, toxins, and viruses can exit ...

  18. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    Science.gov (United States)

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  19. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  20. Effect of streamer plasma air purifier on sbs symptoms and performance of office work

    DEFF Research Database (Denmark)

    Zhang, X.J.; Fang, Lei; Wargocki, Pawel

    2011-01-01

    Subjective experiments were conducted to evaluate the effect of a streamer plasma air purifier on perceived air quality, SBS symptoms and performance of office work during 5-hour exposure of 32 recruited subjects in field laboratory in which real materials were used to establishing a realistic...... level of air pollution. Intensity of SBS symptoms were indicated using visual-analogue scales. Subjects’ performance was evaluated with several computer tasks. The results show that operation of the air purifiers improved perceived air quality and reduced the odor intensity of indoor air. Eye dryness...... symptom was found significantly improved when the air purifiers were used but no other SBS symptoms or performance of office work were improved when the air purifiers were in operation compared to the condition when they were off....

  1. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.

    Science.gov (United States)

    Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin

    2016-09-01

    Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene

  2. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    Science.gov (United States)

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    Science.gov (United States)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  4. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    OpenAIRE

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit t...

  5. Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    DEFF Research Database (Denmark)

    Raciti, G A; Iadicicco, C; Ulianich, L

    2010-01-01

    Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells.......Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells....

  6. Effect of partially purified angiotensin converting enzyme inhibitory ...

    African Journals Online (AJOL)

    This study evaluated the effect of partially-purified angiotensin converting enzyme (ACE) inhibitory proteins obtained from the leaves of Moringa oleifera on blood glucose, serum ACE activity and lipid profile of alloxaninduced diabetic rats. Twenty-five apparently healthy male albino rats were divided into five groups of five ...

  7. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Wargocki, Pawel

    2010-01-01

    The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... as well as when it was off. Operation of the purifier significantly improved PAQ in the rooms polluted by building materials (used carpet, old linoleum, and old chip-board), and a used ventilation filter as well as a mixture of building materials, used ventilation filter and cathode-ray tube computer...... monitors. The effect cor-responded to approximately doubling the outdoor air supply rate. Operation of the purifier significantly worsened the PAQ in rooms with human bioeffluents, probably due to incomplete oxidation of alcohols which are one of the main pollutants emitted by humans. Present results show...

  8. Endoplasmic Reticulum Stress-Associated Lipid Droplet Formation and Type II Diabetes

    OpenAIRE

    Zhang, Xuebao; Zhang, Kezhong

    2012-01-01

    Diabetes mellitus (DM), a metabolic disorder characterized by hyperglycemia, is caused by insufficient insulin production due to excessive loss of pancreatic β cells (type I diabetes) or impaired insulin signaling due to peripheral insulin resistance (type II diabetes). Pancreatic β cell is the only insulin-secreting cell type that has highly developed endoplasmic reticulum (ER) to cope with high demands of insulin synthesis and secretion. Therefore, ER homeostasis is crucial to the proper fu...

  9. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells

    Science.gov (United States)

    Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying

    2017-06-01

    As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.

  10. circHIPK2-mediated σ-1R promotes endoplasmic reticulum stress in human pulmonary fibroblasts exposed to silica.

    Science.gov (United States)

    Cao, Zhouli; Xiao, Qingling; Dai, Xiaoniu; Zhou, Zewei; Jiang, Rong; Cheng, Yusi; Yang, Xiyue; Guo, Huifang; Wang, Jing; Xi, Zhaoqing; Yao, Honghong; Chao, Jie

    2017-12-13

    Silicosis is characterized by fibroblast accumulation and excessive deposition of extracellular matrix. Although the roles of SiO 2 -induced chemokines and cytokines released from alveolar macrophages have received significant attention, the direct effects of SiO 2 on protein production and functional changes in pulmonary fibroblasts have been less extensively studied. Sigma-1 receptor, which has been associated with cell proliferation and migration in the central nervous system, is expressed in the lung, but its role in silicosis remains unknown. To elucidate the role of sigma-1 receptor in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Both molecular biological assays and pharmacological techniques, combined with functional experiments, such as migration and proliferation, were applied in human pulmonary fibroblasts from adults to analyze the molecular and functional changes induced by SiO 2 . SiO 2 induced endoplasmic reticulum stress in association with enhanced expression of sigma-1 receptor. Endoplasmic reticulum stress promoted migration and proliferation of human pulmonary fibroblasts-adult exposed to SiO 2 , inducing the development of silicosis. Inhibition of sigma-1 receptor ameliorated endoplasmic reticulum stress and fibroblast functional changes induced by SiO 2 . circHIPK2 is involved in the regulation of sigma-1 receptor in human pulmonary fibroblasts-adult exposed to SiO 2 . Our study elucidated a link between SiO 2 -induced fibrosis and sigma-1 receptor signaling, thereby providing novel insight into the potential use of sigma-1 receptor/endoplasmic reticulum stress in the development of novel therapeutic strategies for silicosis treatment.

  11. Alternagin-C (ALT-C), a disintegrin-like protein from Rhinocerophis alternatus snake venom promotes positive inotropism and chronotropism in fish heart.

    Science.gov (United States)

    Monteiro, D A; Kalinin, A L; Selistre-de-Araujo, H S; Vasconcelos, E S; Rantin, F T

    2016-02-01

    Alternagin-C (ALT-C) is a disintegrin-like protein purified from the venom of the snake, Rhinocerophis alternatus. Recent studies showed that ALT-C is able to induce vascular endothelial growth factor (VEGF) expression, endothelial cell proliferation and migration, angiogenesis and to increase myoblast viability. This peptide, therefore, can play a crucial role in tissue regeneration mechanisms. The aim of this study was to evaluate the effects of a single dose of alternagin-C (0.5 mg kg(-1), via intra-arterial) on in vitro cardiac function of the freshwater fish traíra, Hoplias malabaricus, after 7 days. ALT-C treatment increased the cardiac performance promoting: 1) significant increases in the contraction force and in the rates of contraction and relaxation with concomitant decreases in the values of time to the peak tension and time to half- and 90% relaxation; 2) improvement in the cardiac pumping capacity and maximal electrical stimulation frequency, shifting the optimum frequency curve upward and to the right; 3) increases in myocardial VEGF levels and expression of key Ca(2+)-cycling proteins such as SERCA (sarcoplasmic reticulum Ca(2+)-ATPase), PLB (phospholamban), and NCX (Na(+)/Ca(2+) exchanger); 4) abolishment of the typical negative force-frequency relationship of fish myocardium. In conclusion, this study indicates that ALT-C improves cardiac function, by increasing Ca(2+) handling efficiency leading to a positive inotropism and chronotropism. The results suggest that ALT-C may lead to better cardiac output regulation indicating its potential application in therapies for cardiac contractile dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    Science.gov (United States)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  13. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  14. A postmortem study on indigestible foreign bodies in the rumen and reticulum of ruminants, eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Seifu Negash

    2015-05-01

    Full Text Available A cross-sectional study was conducted on ruminants (cattle, sheep and goats slaughtered at Haramaya University and Haramaya municipal abattoirs from November 2013 to April 2014 in Haramaya, eastern Ethiopia. The objective of the study was to identify types and estimate the prevalence of foreign bodies in the rumen and reticulum of domestic ruminants in the area. From 810 randomly selected study animals, 422 (52.1% were found to have foreign bodies. Of the 332 cattle, 193 sheep and 285 goats examined, 144 (43.4%, 109 (56.5% and 169 (59.3% respectively were found with various types of foreign bodies. The prevalence of foreign bodies was significantly (χ2 = 17.53, p < 0.05 higher in sheep (59.3% and goats (56.7% than in cattle (43.4%. Overall the prevalence of foreign bodies in study animals with poor body condition was significantly higher (χ2 = 38.57, p < 0.05 than in those with medium and good body condition. A higher percentage of foreign bodies occurred in the rumen alone (87.9% than in the reticulum alone (5.0%, with the rest present in both. Significantly higher proportions of foreign bodies were observed in the rumen of cattle (χ2 = 332, p < 0.05, sheep (χ2 = 193, p < 0.05 and goats (χ2 = 285.0, p = 0.000 than in the reticulum. Plastic was the most commonly encountered (79.2% foreign body, followed by cloth (15.3% and rope (12.3%. In addition, metal (0.9% and calcified material and/or stone (1.0% were found in the reticulum of cattle. Lack of a plastic waste disposal system in the area as well as communal/free grazing of livestock in highly waste-polluted areas seemed to be major factors in the high occurrence of foreign bodies in ruminants. To change this, collaborative intervention schemes involving professionals, policy makers, livestock keepers and environmental activists are needed.

  15. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA{sup III})-induced cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Naranmandura, Hua, E-mail: narenman@zju.edu.cn [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Shi [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Koike, Shota [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Pan, Li Qiang [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Bin [Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Wang, Yan Wei; Rehman, Kanwal; Wu, Bin [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Zhe [Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou (China); Suzuki, Noriyuki, E-mail: n-suzuki@p.chiba-u.ac.jp [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan)

    2012-05-01

    The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulum (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ►ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ►Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ►ER-stress and generation of ROS are caused by the increase in

  16. Organization of the cytoplasmic reticulum in the central vacuole of parenchyma cells in Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2015-01-01

    Full Text Available An elaborate and complex cytoplasmic reticulum composed of fine filaments and lamellae ranging from 0.1 to 4 microns in size is revealed by viewing the central vacuole of onion bulb parenchyma cells with the scanning election microscope. The larger cytoplasmic strands, visible with the light microscope, are composed of numerous smaller filaments (some tubular which might explain the observed bidirectional movement of particles in these larger strands. The finely divided cytoplasmic network of filaments is continuous with the parietal cytoplasm inclosing the vacuolar sap. In these highly vacuolated cells the mass of the protoplast is in the form of an intravacuolar reticulum immersed in the cell sap. The probable significance of the vacuolar sap in relation to physiological processes of the cell is discussed.

  17. Effect of endoplasmic reticulum stress on the response of HeLa cells to carbon ion radiation

    International Nuclear Information System (INIS)

    Xia Jiefang; Wang Zhuanzi; Wei Wei; Dang Bingrong; Li Wenjian

    2015-01-01

    To investigate the effect of endoplasmic reticulum stress on HeLa cells to "1"2C"6"+ ion irradiation, HeLa cells were pretreated with 2.5 mmol/L dithiothreitol and irradiated by "1"2C"6"+ ions with different doses. The results showed that, compared with IR alone, dithiothreitol combined with carbon ion irradiation caused HeLa cell survival decreased, and the apoptosis increased. Moreover, dithiothreitol and carbon ion radiation combination treatment led to a significant increase of G_2/M phase, and autophagy was activated obviously in combination treatment group. The results imply that continuous endoplasmic reticulum stress can change the response of HeLa cells to "1"2C"6"+ irradiation, and dithiothreitol may affect HeLa cells through the autophagy cell death pathway. (authors)

  18. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    International Nuclear Information System (INIS)

    Santos, Maria Helena; Silva, Rafael M.; Dumont, Vitor C.; Neves, Juliana S.; Mansur, Herman S.; Heneine, Luiz Guilherme D.

    2013-01-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: ► Type I collagen was obtained from bovine pericardium, an abundant tissue resource. ► A simple and feasible processing technique was developed to purify bovine collagen. ► The appropriate process may be performed on industrial scale. ► The pure collagen presented appropriate morphological and molecular characteristics. ► The purify collagen has shown potential use as a biomaterial in tissue engineering.

  19. Studying the fate of non-volatile organic compounds in a commercial plasma air purifier

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Stefan [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Seiler, Cornelia; Gerecke, Andreas C. [Swiss Federal Laboratories for Material Science and Technology (EMPA), CH-8600 Dübendorf (Switzerland); Hächler, Herbert [University of Zürich, Institute for Food Safety and Hygiene, National Centre for Enteropathogenic Bacteria and Listeria (NENT), CH-8057 Zürich (Switzerland); Hilbi, Hubert [Ludwig-Maximilians-Universität München Max von Pettenkofer-Institut, D-80336 München (Germany); Frey, Joachim [University of Bern, Institute for Veterinary Bacteriology, CH-3001 Bern (Switzerland); Weidmann, Simon; Meier, Lukas; Berchtold, Christian [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Zenobi, Renato, E-mail: zenobi@org.chem.ethz.ch [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland)

    2013-07-15

    Highlights: • Degradation of environmental toxins, a protein, and bioparticles were studied. • A commercial air purifier based on a cold plasma was used. • Passage through the device reduced the concentration of the compounds/particles. • Deposition inside the plasma air purifier was the main removal process. -- Abstract: Degradation of non-volatile organic compounds–environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)–in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0 m s{sup −1} (3200 L min{sup −1}), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10 L min{sup −1}. Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10 Hz or 50 Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative “degradation” efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.

  20. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  1. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  2. Investigating the characteristic strength of flocs formed from crude and purified Hibiscus extracts in water treatment.

    Science.gov (United States)

    Jones, Alfred Ndahi; Bridgeman, John

    2016-10-15

    The growth, breakage and re-growth of flocs formed using crude and purified seed extracts of Okra (OK), Sabdariffa (SB) and Kenaf (KE) as coagulants and coagulant aids was assessed. The results showed floc size increased from 300 μm when aluminium sulphate (AS) was used as a coagulant to between 696 μm and 722 μm with the addition of 50 mg/l of OK, KE and SB crude samples as coagulant aids. Similarly, an increase in floc size was observed when each of the purified proteins was used as coagulant aid at doses of between 0.123 and 0.74 mg/l. The largest floc sizes of 741 μm, 460 μm and 571 μm were obtained with a 0.123 mg/l dose of purified Okra protein (POP), purified Sabdariffa (PSP) and purified Kenaf (PKP) respectively. Further coagulant aid addition from 0.123 to 0.74 mg/l resulted in a decrease in floc size and strength in POP and PSP. However, an increase in floc strength and reduced d50 size was observed in PKP at a dose of 0.74 mg/l. Flocs produced when using purified and crude extract samples as coagulant aids exhibited high recovery factors and strength. However, flocs exhibited greater recovery post-breakage when the extracts were used as a primary coagulant. It was observed that the combination of purified proteins and AS improved floc size, strength and recovery factors. Therefore, the applications of Hibiscus seeds in either crude or purified form increases floc growth, strength, recoverability and can also reduce the cost associated with the import of AS in developing countries. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum.

    Science.gov (United States)

    Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A

    2018-07-02

    We discovered that SU11274, a class I c-Met inhibitor, fluoresces when excited by 488 nm laser light and showed rapid specific accumulation in distinct subcellular compartments. Given that SU11274 reduces cancer cell viability, we exploited these newly identified spectral properties to determine SU11274 intracellular distribution and accumulation in human pancreatic cancer cells. The aim of the studies reported here was to identify organelle(s) to which SU11274 is trafficked. We conclude that SU11274 rapidly and predominantly accumulates in the endoplasmic reticulum. Copyright © 2018. Published by Elsevier Inc.

  4. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  5. Endoplasmic Reticulum (ER Stress and Endocrine Disorders

    Directory of Open Access Journals (Sweden)

    Daisuke Ariyasu

    2017-02-01

    Full Text Available The endoplasmic reticulum (ER is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR, which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI, Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2 are discussed in this article.

  6. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    Science.gov (United States)

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  7. Mechanical performance of HMA-2 modified with purified and unpurified carbon nanotubes and nanofibers

    Directory of Open Access Journals (Sweden)

    Mario Rodrigo Rubio

    2017-05-01

    Full Text Available The present study evaluates the mechanical performance of a Hot Mix Asphalt – Type II (HMA-2 modified with carbon nanotubes and carbon nanofibers (CNTF. CNTF were made by means the Catalytic Vapor Deposition (CVD technique at 700° C using a Nickel, Copper and Aluminum (NiCuAl catalyst with a Cu/Ni molar relation of 0,33. In order to properly assess HMA-2 performance, three different mixtures were analyzed: 1 HMA-2 modified with purified CNTF; 2 HMA-2 modified with non-purified CNTF and, 3 a Conventional HMA-2 (control. Samples manufactured in accordance with the Marshall Mix Design were tested in the laboratory to study rutting, resilient modulus (Mr and fatigue. In addition to the aforementioned dynamic characterization, the effect of CNTF purification on the asphalt mixture’s mechanical properties was analyzed. In short, a comparative study was designed to determine whether or not CNTF should be purified before introduction into the HMA-2. This investigation responds to the growing demand for economical materials capable of withstanding traffic loads while simultaneously enhancing pavement durability and mechanical properties. Although purified CNTF increased HMA-2 stiffness and elastic modulus, non-purified CNTF increased the asphalt mixture’s elastic modulus without considerable increases in stiffness. Thus, the latter modification is deemed to help address fatiguerelated issues and improve the long-term durability of flexible pavements.

  8. Fish sarcoplasmic proteins as a high value marine material for wound dressing applications.

    Science.gov (United States)

    Vieira, Sara; Franco, Albina R; Fernandes, Emanuel M; Amorim, Sara; Ferreira, Helena; Pires, Ricardo A; Reis, Rui L; Martins, Albino; Neves, Nuno M

    2018-07-01

    Fish sarcoplasmic proteins (FSP) constitute around 25-30% of the total fish muscle protein. As the FSP are water soluble, FSP were isolated from fresh cod (Gadus morhua) by centrifugation. By SDS-PAGE, it was possible to determine the composition of FSP extracts (FSP-E). The FSP-E undergo denaturation at 44.12 ± 2.34° C, as characterized by differential scanning calorimetry thermograms (DSC). The secondary structure of FSP-E is mainly composed by α-helix structure, as determined by circular dichroism. The cytocompatibility of FSP-E, at concentrations ranging from 5 to 20 mg/mL, was investigated. Concentrations lower than 10 mg/mL have no cytotoxicity cultures of fibroblasts over 72 h. Further on, FSP membranes (FSP-M) were produced by spin coating to evaluate its properties. FSP-M shown having uniform surface as analyzed by Scanning Electron Microscopy (SEM). The relative amount of α-helix structures is higher when compared with the FSP-E. The FSP-M have higher temperature stability than the FSP-E, since they presented a denaturation temperature of 58.88 ± 3.36° C, according to the DSC analysis. FSP-M shown distinctive mechanical properties, with a stiffness of 16.57 ± 3.95 MPa and a yield strength of 23.85 ± 5.97 MPa. Human lung fibroblasts cell lines (MRC-5) were cultured in direct contact with FSP-M, demonstrating its cytocompatibility for 48 h. Based on these results, FSP can be considered a potential biomaterial recovered from nature, for wound dressing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Tannic Acid Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Prostate Cancer.

    Science.gov (United States)

    Nagesh, Prashanth K B; Hatami, Elham; Chowdhury, Pallabita; Kashyap, Vivek K; Khan, Sheema; Hafeez, Bilal B; Chauhan, Subhash C; Jaggi, Meena; Yallapu, Murali M

    2018-03-07

    Endoplasmic reticulum (ER) stress is an intriguing target with significant clinical importance in chemotherapy. Interference with ER functions can lead to the accumulation of unfolded proteins, as detected by transmembrane sensors that instigate the unfolded protein response (UPR). Therefore, controlling induced UPR via ER stress with natural compounds could be a novel therapeutic strategy for the management of prostate cancer. Tannic acid (a naturally occurring polyphenol) was used to examine the ER stress mediated UPR pathway in prostate cancer cells. Tannic acid treatment inhibited the growth, clonogenic, invasive, and migratory potential of prostate cancer cells. Tannic acid demonstrated activation of ER stress response (Protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme 1 (IRE1)) and altered its regulatory proteins (ATF4, Bip, and PDI) expression. Tannic acid treatment affirmed upregulation of apoptosis-associated markers (Bak, Bim, cleaved caspase 3, and cleaved PARP), while downregulation of pro-survival proteins (Bcl-2 and Bcl-xL). Tannic acid exhibited elevated G₁ population, due to increase in p18 INK4C and p21 WAF1/CIP1 expression, while cyclin D1 expression was inhibited. Reduction of MMP2 and MMP9, and reinstated E-cadherin signifies the anti-metastatic potential of this compound. Altogether, these results demonstrate that tannic acid can promote apoptosis via the ER stress mediated UPR pathway, indicating a potential candidate for cancer treatment.

  10. How are proteins reduced in the endoplasmic reticulum?

    DEFF Research Database (Denmark)

    Ellgaard, Lars; Sevier, Carolyn S.; Bulleid, Neil J.

    2018-01-01

    The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction...... of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here...... why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway....

  11. Osteochondritis dissecans (OCD), an endoplasmic reticulum storage disease?

    DEFF Research Database (Denmark)

    Skagen, Peter Storgaard; Horn, T; Kruse, H A

    2011-01-01

    in chondrocytes and extracellular matrix of cartilage from OCD patients. Abnormal type II collagen heterofibrils in "bundles" and chondrocytes with abnormal accumulation of matrix proteins in distended rough endoplasmic reticulum were typical findings. Further, Von Kossa staining and TEM showed empty lacunae...... close to mineralized "islands" in the cartilage and hypertrophic chondrocytes containing accumulated matrix proteins. Immunostaining revealed: (1) that types I, II, VI and X collagens and aggrecans were deposited intracellulary and (2) co-localization within the islands of types I, II, X collagens...... and aggrecan indicating that hypertrophic chondrocytes express a phenotype of bone cells during endochondral ossification. Types I, VI and X collagens were also present across the entire dissecates suggesting that chondrocytes were dedifferentiated. DNA sequencings were non-conclusive, only single nucleotide...

  12. Prospects of X-ray microanalysis in the study of pathophysiology of myocardial contraction

    International Nuclear Information System (INIS)

    Wendt-Gallitelli, M.F.; Schwegler, M.; Holubarsch, C.; Jacob, R.; Wolburg, H.; Schlote, W.

    1980-01-01

    X-ray microanalysis was used to compare chemically untreated cryosections of quick-frozen myocardial tissue in 'caffeine contracture' with cryosections of normal muscle. Our goal was to find out if it is possible by this method to detect changes in the calcium compartmentalization of the myocardial cell occurring by changes in its functional state. While it is possible to quantitate calcium in the cisternae of sarcoplasmic reticulum of the control muscle preparation, calcium could never be detected in these compartments of caffeine-contracted muscles. In active microsomal fraction of ventricular myocardium it is possible to quantitate calcium and also to distinguish two components on account of their different ability to accumulate this element. The calcium content is different in the two components of the fraction. (orig.) [de

  13. Targeting Cardiomyocyte Ca2+ Homeostasis in Heart Failure

    Science.gov (United States)

    Røe, Åsmund T.; Frisk, Michael; Louch, William E.

    2015-01-01

    Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention: the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic approaches. PMID:25483944

  14. Endoplasmic reticulum-dependent redox reactions control endoplasmic reticulum-associated degradation and pathogen entry.

    Science.gov (United States)

    Walczak, Christopher P; Bernardi, Kaleena M; Tsai, Billy

    2012-04-15

    Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host-pathogen interactions. Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions.

  15. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maria Helena, E-mail: mariahelena.santos@gmail.com [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Silva, Rafael M.; Dumont, Vitor C. [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Neves, Juliana S. [Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Mansur, Herman S. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Belo Horizonte/MG 31270-901 (Brazil); Heneine, Luiz Guilherme D. [Department of Health Science, Ezequiel Dias Foundation-FUNED, Belo Horizonte/MG 30510-010 (Brazil)

    2013-03-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: Black-Right-Pointing-Pointer Type I collagen was obtained from bovine pericardium, an abundant tissue resource. Black-Right-Pointing-Pointer A simple and feasible processing technique was developed to purify bovine collagen. Black-Right-Pointing-Pointer The appropriate process may be performed on industrial scale. Black-Right-Pointing-Pointer The pure collagen presented appropriate morphological and molecular characteristics. Black-Right-Pointing-Pointer The purify

  16. Processing and turnover of the Hedgehog protein in the endoplasmic reticulum

    OpenAIRE

    Chen, Xin; Tukachinsky, Hanna; Huang, Chih-Hsiang; Jao, Cindy; Chu, Yue-Ru; Tang, Hsiang-Yun; Mueller, Britta; Schulman, Sol; Rapoport, Tom A.; Salic, Adrian

    2011-01-01

    The Hedgehog (Hh) signaling pathway has important functions during metazoan development. The Hh ligand is generated from a precursor by self-cleavage, which requires a free cysteine in the C-terminal part of the protein and results in the production of the cholesterol-modified ligand and a C-terminal fragment. In this paper, we demonstrate that these reactions occur in the endoplasmic reticulum (ER). The catalytic cysteine needs to form a disulfide bridge with a conserved cysteine, which is s...

  17. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Directory of Open Access Journals (Sweden)

    Gongbo Li

    Full Text Available The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  18. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Science.gov (United States)

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  19. Process for purifying molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, J.

    1989-01-01

    This patent describes a process for purifying molybdenum containing arsenic and phosphorus. The process comprising: adding to an acidic slurry of molybdenum trioxide, a source of magnesium ions in a solid form, with the amount of magnesium and the magnesium ion concentration in the subsequently formed ammonium molybdate solution being sufficient to subsequently form insoluble compounds containing greater than about 80% by weight of the arsenic and greater than about 80% by weight of the phosphorus, and ammonia in an amount sufficient to subsequently dissolve the molybdenum and subsequently form the insoluble compounds, with the source of magnesium ions being added prior to the addition of the ammonia; digesting the resulting ammoniated slurry at a temperature sufficient to dissolve the molybdenum and form an ammonium molybdate solution while the pH is maintained at from bout 9 to about 10 to form a solid containing the insoluble compounds; and separating the solid from the ammonium molybdate solution

  20. Endoplasmic Reticulum Stress-Mediated Hippocampal Neuron Apoptosis Involved in Diabetic Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    2013-01-01

    Full Text Available Poor management of DM causes cognitive impairment while the mechanism is still unconfirmed. The aim of the present study was to investigate the activation of C/EBP Homology Protein (CHOP, the prominent mediator of the endoplasmic reticulum (ER stress-induced apoptosis under hyperglycemia. We employed streptozotocin- (STZ- induced diabetic rats to explore the ability of learning and memory by the Morris water maze test. The ultrastructure of hippocampus in diabetic rats and cultured neurons in high glucose medium were observed by transmission electron microscopy and scanning electron microscopy. TUNEL staining was also performed to assess apoptotic cells while the expression of CHOP was assayed by immunohistochemistry and Western blot assay in these hippocampal neurons. Six weeks after diabetes induction, the escape latency increased and the average frequency in finding the platform decreased in diabetic rats (P<0.05. The morphology of neuron and synaptic structure was impaired; the number of TUNEL-positive cells and the expression of CHOP in hippocampus of diabetic rats and high glucose medium cultured neurons were markedly altered (P<0.05. The present results suggested that the CHOP-dependent endoplasmic reticulum (ER stress-mediated apoptosis may be involved in hyperglycemia-induced hippocampal synapses and neurons impairment and promote the diabetic cognitive impairment.

  1. Method of purifying phosphoric acid after solvent extraction

    International Nuclear Information System (INIS)

    Kouloheris, A.P.; Lefever, J.A.

    1979-01-01

    A method of purifying phosphoric acid after solvent extraction is described. The phosphoric acid is contacted with a sorbent which sorbs or takes up the residual amount of organic carrier and the phosphoric acid separated from the organic carrier-laden sorbent. The method is especially suitable for removing residual organic carrier from phosphoric acid after solvent extraction uranium recovery. (author)

  2. Model of Ca(2+) Concentration Controlled by Sarcoplasmic Reticulum of Skeletal Muscle, Using the State Transition

    National Research Council Canada - National Science Library

    Yokota, M

    2001-01-01

    ...). This report proposed a model that represents Ca(2+) in a muscle cell controlled by the SR using a state transition probability model in which one state means that protein in the SR is binding ligands, and the other...

  3. 78 FR 69361 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 84 [Docket No. CDC-2013-0017; NIOSH-250] Development of Inward Leakage Standards for Half-Mask Air- Purifying Particulate Respirators AGENCY: Centers... regarding the development of inward leakage performance standards for half-mask air- purifying particulate...

  4. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-01-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining [ 3 H]nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure [ 3 H]nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-[ 3 H]nicotine-binding characteristics

  5. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness

    DEFF Research Database (Denmark)

    Gill, David J; Tham, Keit Min; Chia, Joanne

    2013-01-01

    Invasiveness underlies cancer aggressiveness and is a hallmark of malignancy. Most malignant tumors have elevated levels of Tn, an O-GalNAc glycan. Mechanisms underlying Tn up-regulation and its effects remain unclear. Here we show that Golgi-to-endoplasmic reticulum relocation of polypeptide N-a...

  6. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Keywords: Endoplasmic reticulum stress, High cholesterol, Cardiovascular diseases, Non-alcoholic fatty liver disease, Non-alcoholic steatosis hepatitis

  7. An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells.

    Science.gov (United States)

    Yokota, Etsuo; Ueda, Shunpei; Tamura, Kentaro; Orii, Hidefumi; Uchi, Satoko; Sonobe, Seiji; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2009-01-01

    The involvement of myosin XI in generating the motive force for cytoplasmic streaming in plant cells is becoming evident. For a comprehensive understanding of the physiological roles of myosin XI isoforms, it is necessary to elucidate the properties and functions of each isoform individually. In tobacco cultured BY-2 cells, two types of myosins, one composed of 175 kDa heavy chain (175 kDa myosin) and the other of 170 kDa heavy chain (170 kDa myosin), have been identified biochemically and immunocytochemically. From sequence analyses of cDNA clones encoding heavy chains of 175 kDa and 170 kDa myosin, both myosins have been classified as myosin XI. Immunocytochemical studies using a polyclonal antibody against purified 175 kDa myosin heavy chain showed that the 175 kDa myosin is distributed throughout the cytoplasm as fine dots in interphase BY-2 cells. During mitosis, some parts of 175 kDa myosin were found to accumulate in the pre-prophase band (PPB), spindle, the equatorial plane of a phragmoplast and on the circumference of daughter nuclei. In transgenic BY-2 cells, in which an endoplasmic reticulum (ER)-specific retention signal, HDEL, tagged with green fluorescent protein (GFP) was stably expressed, ER showed a similar behaviour to that of 175 kDa myosin. Furthermore, this myosin was co-fractionated with GFP-ER by sucrose density gradient centrifugation. From these findings, it was suggested that the 175 kDa myosin is a molecular motor responsible for translocating ER in BY-2 cells.

  8. Endoplasmic Reticulum Stress in Reproductive Function

    Directory of Open Access Journals (Sweden)

    Kang-sheng LIU

    2016-09-01

    Full Text Available Normal folding requires that unique conditions should be maintained within the endoplasmic reticulum (ER lumen, and nascent proteins are initially bound to Ca2+dependent chaperone proteins. Proteins synthesized in the ER are properly folded with the assistance of ER chaperones. misfolded proteins are disposed by ER-associated protein degradation. Accumulation of misfolded proteins in the ER triggers an adaptive ER stress response, which leads to activation of the unfolded protein response (UPR, a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cells. It has been shown that ER stress involves in pathophysiological development of many diseases, including neurological diseases. However, nowadays, a few studies have begun to focus on the possibility that the accumulation of misfolded proteins can also contribute to reproductive diseases. In this article, we mainly introduced the involvement of ER stress response in preimplantation embryos, placental development, intrauterine growth restriction (IUGR and testicular germ cells so as to provide important insights for the molecular mechanisms of ER stress-induced apoptosis in reproductive diseases.

  9. Endoplasmic reticulum proteostasis impairment in aging.

    Science.gov (United States)

    Martínez, Gabriela; Duran-Aniotz, Claudia; Cabral-Miranda, Felipe; Vivar, Juan P; Hetz, Claudio

    2017-08-01

    Perturbed neuronal proteostasis is a salient feature shared by both aging and protein misfolding disorders. The proteostasis network controls the health of the proteome by integrating pathways involved in protein synthesis, folding, trafficking, secretion, and their degradation. A reduction in the buffering capacity of the proteostasis network during aging may increase the risk to undergo neurodegeneration by enhancing the accumulation of misfolded proteins. As almost one-third of the proteome is synthetized at the endoplasmic reticulum (ER), maintenance of its proper function is fundamental to sustain neuronal function. In fact, ER stress is a common feature of most neurodegenerative diseases. The unfolded protein response (UPR) operates as central player to maintain ER homeostasis or the induction of cell death of chronically damaged cells. Here, we discuss recent evidence placing ER stress as a driver of brain aging, and the emerging impact of neuronal UPR in controlling global proteostasis at the whole organismal level. Finally, we discuss possible therapeutic interventions to improve proteostasis and prevent pathological brain aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Improved detection of a staphylococcal infection by monomeric and protein A-purified polyclonal human immunoglobulin

    International Nuclear Information System (INIS)

    Calame, W.

    1993-01-01

    The present study was undertaken to compare the technetium-99m labelled non-specific polyclonal human immunoglobulin (Ig) with 99m Tc-labelled monomeric human immunoglobulin (m-Ig), 99m Tc-labelled, protein A-purified, human immunoglobulin (A-IG) and 99m Tc-labelled monomeric, protein A-purified, human immunoglobulin (mA-Ig) as tracer agents for the detection of a thigh infection with Staphylococcus aureus. In vitro the binding of the various tracer agents to bacteria at various intervals was determined. For the in vivo evaluation, mice were infected and received one of the various labelled proteins. Scintigrams were made 0.25, 1, 4 and 24 h later. All 99m Tc-labelled Igs bound to bacteria in vitro: The percentages of binding for the m-Ig (from 1 h onwards) and A-Ig and mA-Ig (from 3 h onwards) were significantly higher than that for Ig. The in vivo target-to-non-target (T/NT) ratios were significantly higher from 4 h onwards for all purified Igs than for Ig. Protein A-purified Ig yielded higher T/NT ratios than m-Ig. Furthermore, the amount of activity in the liver was significantly lower 24 h after administration of m-Ig, A-Ig and mA-Ig than after administration of Ig. It is concluded that in this experimental infection 99m Tc-labelled monomeric Ig localizes a staphylococcal thigh infection better and faster than 99m Tc-labelled unpurified Ig. However, the accumulation obtained with protein A-purified Ig or protein A-purified monomeric Ig was the highest of all tracer agents tested. (orig.)

  11. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  12. CDIP1-BAP31 Complex Transduces Apoptotic Signals from Endoplasmic Reticulum to Mitochondria under Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Takushi Namba

    2013-10-01

    Full Text Available Resolved endoplasmic reticulum (ER stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31 as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent truncated Bid (tBid and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER-stress-mediated apoptosis. Altogether, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a mechanism for establishing an ER-mitochondrial crosstalk for ER-stress-mediated apoptosis signaling.

  13. Aspartic acid racemisation in purified elastin from arteries as basis for age estimation.

    Science.gov (United States)

    Dobberstein, R C; Tung, S-M; Ritz-Timme, S

    2010-07-01

    Aspartic acid racemisation (AAR) results in an age-dependent accumulation of D: -aspartic acid in durable human proteins and can be used as a basis for age estimation. Routinely, age estimation based on AAR is performed by analysis of dentine. However, in forensic practise, teeth are not always available. Non-dental tissues for age estimation may be suitable for age estimation based on AAR if they contain durable proteins that can be purified and analysed. Elastin is such a durable protein. To clarify if purified elastin from arteries is a suitable sample for biochemical age estimation, AAR was determined in purified elastin from arteries from individuals of known age (n = 68 individuals, including n = 15 putrefied corpses), considering the influence of different stages of atherosclerosis and putrefaction on the AAR values. AAR was found to increase with age. The relationship between AAR and age was good enough to serve as basis for age estimation, but worse than known from dentinal proteins. Intravital and post-mortem degradation of elastin may have a moderate effect on the AAR values. Age estimation based on AAR in purified elastin from arteries may be a valuable additional tool in the identification of unidentified cadavers, especially in cases where other methods cannot be applied (e.g., no available teeth and body parts).

  14. Synthesis and characterization of highly purified nanosilica from pyrophyllite ores

    Energy Technology Data Exchange (ETDEWEB)

    Fuad, Abdulloh, E-mail: abdulloh.fuad.fmipa@um.ac.id; Mufti, Nandang; Diantoro, Markus; Subakti,; Septa Kurniawati, S. [Jurusan Fisika FMIPA Universitas Negeri Malang. Jl. Semarang No. 5 Malang, east Java (Indonesia)

    2016-03-11

    A simple method based on alkaline extraction followed by acid precipitation and acid dissolution has been developed to produce highly purified nanosilica from pyrophyllite materials. The reaction parameters such as molar ratio NaOH/SiO{sub 2}, reaction time and reaction temperature are varied for obtaining maximum nanosilica convertion. About 99,45% highly purified precipitated nanosilica measure with ICP, 259 m{sup 2}/gr measure with BET surface area, 97% whiteness and 3 ml/gr oil absorbtion from pyrophyllite materials has been achieved in closed system at 150°C within 180 min. The physicals and chemical properties (such as X-Ray Diffraction from PANalytical, X-Ray Fluorescence Minipal4 from PANanalytical, BET surface area, Forier Transform Infra Red Spectroscopy from Hitachi, and SEM-EDS Inspect-S50 from FEI Company) of the highly purity nanosilica were studied.

  15. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets. These e......Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets...

  16. Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana, v. Indaf 15) bran.

    Science.gov (United States)

    Savitha Prashanth, M R; Shruthi, R R; Muralikrishna, G

    2015-09-01

    Biological activities of alkali extracted (Barium hydroxide: BE-480 kDa, Potassium hydroxide: KE1-1080 and KE2-40 kDa), purified arabinoxylans (AX) from the finger millet bran varying in their molecular weight, phenolic acid content, arabinose to xylose ratios were evaluated for their immune-stimulatory activities using murine lymphocytes and peritoneal exudate macrophages. All three purified AX displayed significant (p 2 fold) and macrophage phagocytosis than KE1 and KE2. The above results clearly documented that the immunostimulatory activity of arabinoxylans is directly proportional to the amount of ferulic acid content (0.11 mg/100 g), whereas molecular weight as well as arabinose/xylose ratio, did not have any bearing. Purified AX from the finger millet bran can be explored as a potent natural immunomodulator.

  17. Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching

    DEFF Research Database (Denmark)

    Martens, Helle; Roberts, Alison G.; Oparka, Karl J.

    2006-01-01

    retrieval along the pathway is an integral component of phloem function. GFP fluorescence was limited to CCs where it was visualized as a well-developed ER network in close proximity to the plasma membrane. ER coupling between CC and SEs was tested in wild-type tobacco using an ER-specific fluorochrome......Transgenic tobacco (Nicotiana tabacum) was studied to localize the activity of phloem loading during development and to establish whether the endoplasmic reticulum (ER) of the companion cell (CC) and the sieve element (SE) reticulum is continuous by using a SUC2 promoter-green fluorescent protein...... and fluorescence redistribution after photobleaching (FRAP), and showed that the ER is continuous via pore-plasmodesma units. ER coupling between CC and SE was quantified by determining the mobile fraction and half-life of fluorescence redistribution and compared with that of other cell types. In all tissues...

  18. Saturation of SERCA's lipid annulus may protect against its thermal inactivation

    International Nuclear Information System (INIS)

    Fajardo, Val Andrew; Trojanowski, Natalie; Castelli, Laura M.; Miotto, Paula M.; Amoye, Foyinsola; Ward, Wendy E.; Tupling, A. Russell; LeBlanc, Paul J.

    2017-01-01

    The sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA) pumps are integral membrane proteins that catalyze the active transport of Ca 2+ into the sarcoplasmic reticulum, thereby eliciting muscle relaxation. SERCA pumps are highly susceptible to oxidative damage, and cytoprotection of SERCA dampens thermal inactivation and is a viable therapeutic strategy in combating diseases where SERCA activity is impaired, such as muscular dystrophy. Here, we sought to determine whether increasing the percent of saturated fatty acids (SFA) within SERCA's lipid annulus through diet could protect SERCA pumps from thermal inactivation. Female Wistar rats were fed either a semi-purified control diet (AIN93G, 7% soybean oil by weight) or a modified AIN93G diet containing high SFA (20% lard by weight) for 17 weeks. Soleus muscles were extracted and SERCA lipid annulus and activity under thermal stress were analyzed. Our results show that SERCA's lipid annulus is abundant with short-chain (12–14 carbon) fatty acids, which corresponds well with SERCA's predicted bilayer thickness of 21 Å. Under control-fed conditions, SERCA's lipid annulus was already highly saturated (79%), and high-fat feeding did not increase this any further. High-fat feeding did not mitigate the reductions in SERCA activity seen with thermal stress; however, correlational analyses revealed significant and strong associations between % SFA and thermal stability of SERCA activity with greater %SFA being associated with lower thermal inactivation and greater % polyunsaturation and unsaturation index being associated with increased thermal inactivation. Altogether, these findings show that SERCA's lipid annulus may influence its susceptibility to oxidative damage, which could have implications in muscular dystrophy and age-related muscle wasting. - Highlights: • SERCA's lipid annulus in rat soleus was measured after immunoconcentration. • Short fatty acid chains surround SERCA and

  19. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  20. Activation of purified calcium channels by stoichiometric protein phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Nunoki, K.; Florio, V.; Catterall, W.A. (Univ. of Washington, Seattle (USA))

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  1. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Nunoki, K.; Florio, V.; Catterall, W.A.

    1989-01-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45 Ca 2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45 Ca 2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd 2+ , Ni 2+ , and Mg 2+ . The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  2. Influence of a highly purified senna extract on colonic epithelium

    NARCIS (Netherlands)

    van Gorkom, B A; Karrenbeld, A; van Der Sluis, T; Koudstaal, J; de Vries, E G; Kleibeuker, J H

    2000-01-01

    BACKGROUND: Chronic use of sennoside laxatives often causes pseudomelanosis coli. A recent study suggested that pseudomelanosis coli is associated with an increased colorectal cancer risk. A single high dose of highly purified senna extract increased proliferation rate and reduced crypt length in

  3. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection [version 2; referees: 1 approved, 3 approved with reservations

    Directory of Open Access Journals (Sweden)

    Peter Wild

    2018-02-01

    Full Text Available Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, “de-envelopment” and “re-envelopment” is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the “primary” envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1 or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1 by transmission and scanning electron microscopy, employing freezing technique protocols. Results:  The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on the cis face. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which  accumulate in the perinuclear space. Therefore, i de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii the process taking place at the outer nuclear

  4. A lentivirally delivered photoactivatable GFP to assess continuity in the endoplasmic reticulum of neurones and glia

    Czech Academy of Sciences Publication Activity Database

    Jones, V. C.; Rodríguez Arellano, Jose Julio; Verkhratsky, Alexei; Jones, O. T.

    2009-01-01

    Roč. 458, č. 4 (2009), s. 809-818 ISSN 0031-6768 R&D Projects: GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390512 Keywords : endoplasmic reticulum * calcium store * neurone Subject RIV: FH - Neurology Impact factor: 3.695, year: 2009

  5. Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Devasena Ponnalagu

    2016-06-01

    Full Text Available Chloride intracellular channel (CLICs proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016 [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.

  6. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  7. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    Science.gov (United States)

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  8. Characterization of product RNAs synthesized in vitro by poliovirus RNA polymerase purified by chromatography on hydroxylapatite or poly(U) Sepharose.

    OpenAIRE

    Young, D C; Tobin, G J; Flanegan, J B

    1987-01-01

    The size of the product RNA synthesized by the poliovirus RNA polymerase and host factor was significantly affected by the type of column chromatography used to purify the polymerase. Dimer length product RNA was synthesized by the polymerase purified by chromatography on hydroxylapatite. This contrasted with the monomer length product RNA synthesized by the polymerase purified by chromatography on poly(U) Sepharose. The poly(U) Sepharose-purified polymerase was shown to contain oligo(U) that...

  9. Calcium exchange, structure, and function in cultured adult myocardial cells

    International Nuclear Information System (INIS)

    Langer, G.A.; Frank, J.S.; Rich, T.L.; Orner, F.B.

    1987-01-01

    Cells digested from adult rat heart and cultured for 14 days demonstrate all the structural elements, in mature form, associated with the process of excitation-contraction (EC) coupling. The transverse tubular (TT) system is well developed with an extensive junctional sarcoplasmic reticulum (JSR). In nonphosphate-containing buffer contraction of the cells is lost as rapidly as zero extracellular Ca concentration ([Ca] 0 ) solution is applied and a negative contraction staircase is produced on increase of stimulation frequency. Structurally and functionally the cells have the characteristics of adult cells in situ. 45 Ca exchange and total 45 Ca measurement in N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES)-buffered perfusate define three components of cellular Ca: 1) a rapidly exchangeable component accounting for 36% of total Ca, 2) a slowly exchangeable component (t/sub 1/2/ 53 min) accounting for 7% total Ca, and 3) the remaining 57% cellular Ca is inexchangeable (demonstrates no significant exchange within 60 min). The slowly exchangeable component can be increased 10-fold within 60 min by addition of phosphate to the perfusate. The Ca distribution and exchange characteristics are little different from those of 3-day cultures of neonatal rat heart previously studied. The results suggest that the cells are representative of adult cells in situ and that both sarcolemmal-bound and sarcoplasmic reticular Ca contribute to the component of Ca that is rapidly exchangeable

  10. Endoplasmic reticulum calcium transport ATPase expression during differentiation of colon cancer and leukaemia cells

    International Nuclear Information System (INIS)

    Papp, Bela; Brouland, Jean-Philippe; Gelebart, Pascal; Kovacs, Tuende; Chomienne, Christine

    2004-01-01

    The calcium homeostasis of the endoplasmic reticulum (ER) is connected to a multitude of cell functions involved in intracellular signal transduction, control of proliferation, programmed cell death, or the synthesis of mature proteins. Calcium is accumulated in the ER by various biochemically distinct sarco/endoplasmic reticulum calcium transport ATPase isoenzymes (SERCA isoforms). Experimental data indicate that the SERCA composition of some carcinoma and leukaemia cell types undergoes significant changes during differentiation, and that this is accompanied by modifications of SERCA-dependent calcium accumulation in the ER. Because ER calcium homeostasis can also influence cell differentiation, we propose that the modulation of the expression of various SERCA isoforms, and in particular, the induction of the expression of SERCA3-type proteins, is an integral part of the differentiation program of some cancer and leukaemia cell types. The SERCA content of the ER may constitute a new parameter by which the calcium homeostatic characteristics of the organelle are adjusted. The cross-talk between ER calcium homeostasis and cell differentiation may have some implications for the better understanding of the signalling defects involved in the acquisition and maintenance of the malignant phenotype

  11. Oxidative Stability of Dispersions Prepared from Purified Marine Phospholipid and the Role of α-Tocopherol

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    , respectively, during 32 days of storage at 2 °C. Nonenzymatic browning was investigated through measurement of Strecker aldehydes, color changes, and pyrrole content. Dispersions containing α-tocopherol or higher levels of purified marine PL showed a lower increment of volatiles after 32 days storage......The objective of this study was to investigate the oxidative stability of dispersions prepared from different levels of purified marine phospholipid (PL) obtained by acetone precipitation, with particular focus on the interaction between α-tocopherol and PL in dispersions. This also included...... the investigation of nonenzymatic browning in purified marine PL dispersions. Dispersions were prepared by high-pressure homogenizer. The oxidative and hydrolytic stabilities of dispersions were investigated by determination of hydroperoxides, secondary volatile oxidation products, and free fatty acids...

  12. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling.

    Science.gov (United States)

    Bannister, Roger A

    2016-01-01

    In skeletal muscle, excitation-contraction (EC) coupling relies on the transmission of an intermolecular signal from the voltage-sensing regions of the L-type Ca(2+) channel (Ca(V)1.1) in the plasma membrane to the channel pore of the type 1 ryanodine receptor (RyR1) nearly 10 nm away in the membrane of the sarcoplasmic reticulum (SR). Even though the roles of Ca(V)1.1 and RyR1 as voltage sensor and SR Ca(2+) release channel, respectively, have been established for nearly 25 years, the mechanism underlying communication between these two channels remains undefined. In the course of this article, I will review current viewpoints on this topic with particular emphasis on recent studies. © 2016. Published by The Company of Biologists Ltd.

  13. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  14. Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle

    DEFF Research Database (Denmark)

    Sahlin, Kent; Nielsen, Jens Steen; Mogensen, Martin

    2006-01-01

    Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2......+) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus...... lateralis. Mitochondria were isolated and respiratory function measured after incubation with H(2)O(2) (HPX) or control medium (Con). Mitochondrial function was not affected by RSC during Con. However, RSC exacerbated mitochondrial dysfunction during HPX, resulting in decreased respiratory control index...

  15. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    Science.gov (United States)

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Air purification by cementitious materials: Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  17. Air purification by cementitious materials : Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  18. High-level water purifying technology. Kodo josui shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H; Tsukiashi, K [Meidensha Corp., Tokyo (Japan)

    1993-07-01

    Research and development have been carried out on a high-level water purifying system using ozone and activated charcoals to supply drinking water free of carcinogenic matters and odors. This system comprises a system to utilize ozone by using silent discharge and oxygen enriching device, and a living organism/activated charcoal treatment system. The latter system utilizes living organisms deposited on activated charcoal surfaces to remove polluting substances including ammonia. The treatment experimenting equipment comprises an ozone generating system, an ozone treating column, an activated charcoal treating column, an ozone/activated charcoal control device, and a water amount and quality measuring system. An experiment was carried out using an experimental plant with a capacity of 20 m[sup 3]/day on water taken from the sedimentation process at an actual water purifying plant. As a result, trihalomethane formation potential was removed at about 40% in the ozone treatment, and at 70% in the whole treatment combining the ozone and living organism/activated charcoal treatments. For parameterization of palatability of water, a method is being studied that utilizes nuclear magnetic resonance to investigate degrees of water cluster. The method is regarded promising. 1 ref., 4 figs.

  19. Biological and Histological Studies of Purified Product from Streptomyces janthinus M7 Metabolites

    Directory of Open Access Journals (Sweden)

    Tawfik Zahira S.

    2015-02-01

    Full Text Available Fifteen clinical samples were taken out from patients suffering cancer, these patients being under the treatment with radio- and/or chemotherapy. The samples were used for the isolation of bacterial cells surrounding tumor; the samples were collected from Center of Cancer Therapy, Ain Shams University, Cairo, Egypt. The clinical bacterial isolates were purified and identified according to Bergey's manual of determinative bacteriology ninth edition (1994. The bacterial isolates were found to be Klebsiella oxytoca m1; Enterobacter cancerogenus m2; P. aeruginosa m3; Citrobacter diversus m4; Enterobacter agglomerans m5; Klebsiella oxytoca m6; Enterobacter dissolvens m7; Serratia fonticola m8; Escherichia coli m9; Citrobacter freundii m10; Staphylococcus aureus m11; Escherichia coli m12; P. aeruginosa m13; Staphylococcus aureus m14; and Bacillus cereus m15. In the present study both primary and secondary screening methods were used to screen the antibacterial activity of St. janthinus M7 against fifteen clinical bacterial isolates. The St. janthinus M7 showed an increase in antibacterial activity against all the tested human bacterial pathogens. In this study Gamma irradiation at dose levels (0.5 and 1.5 kGy was used for the enhancement of the antibacterial activity of Streptomyces strain against the clinical isolates. Several commercial antibiotic discs (Doxorubicin, Augmentin, Norfloxacin, Ofloxacin, Oxacillin, and Cefazolin were used for comparing their antimicrobial activity with purified product. The results declared a significant increase in the antibacterial activity in most cases. The physiochemical properties of the purified product were carried out for determination of Rf, empirical formula, M.W, and chemical structure of product and then analyzed by thin layer chromatography, elemental analysis, UV, Mass, and NMR. The result exhibited brown color, one spot, Rf (0.76, M.W (473, while it recorded 270 nm in UV region and the calculated

  20. Roles of endoplasmic reticulum stress and unfolded protein response associated genes in seed stratification and bud endodormancy during chilling accumulation in Prunus persica.

    Directory of Open Access Journals (Sweden)

    Xi Ling Fu

    Full Text Available Dormancy mechanisms in seeds and buds arrest growth until environmental conditions are optimal for development. A genotype-specific period of chilling is usually required to release dormancy, but the underlying molecular mechanisms are still not fully understood. To discover transcriptional pathways associated with dormancy release common to seed stratification and bud endodormancy, we explored the chilling-dependent expression of 11 genes involved in endoplasmic reticulum stress and the unfolded protein response signal pathways. We propose that endoplasmic reticulum stress and the unfolded protein response impact on seed as well as bud germination and development by chilling-dependent mechanisms. The emerging discovery of similarities between seed stratification and bud endodormancy status indicate that these two processes are probably regulated by common endoplasmic reticulum stress and unfolded protein response signalling pathways. Clarification of regulatory pathways common to both seed and bud dormancy may enhance understanding of the mechanisms underlying dormancy and breeding programs may benefit from earlier prediction of chilling requirements for uniform blooming of novel genotypes of deciduous fruit tree species.

  1. 76 FR 3159 - Purified Carboxymethylcellulose From Finland, Mexico, Netherlands, and Sweden

    Science.gov (United States)

    2011-01-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1084-1087 (Review)] Purified Carboxymethylcellulose From Finland, Mexico, Netherlands, and Sweden AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject reviews. DATES: Effective Date: January 7, 2011. FOR FURTHER...

  2. Endoplasmic reticulum stress causes EBV lytic replication.

    Science.gov (United States)

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K; Rowe, David T; Wadowsky, Robert M; Rosendorff, Adam

    2011-11-17

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)-specific phosphatase inhibitor Salubrinal (SAL) synergized with TG to induce EBV lytic genes; however, TG treatment alone was sufficient to activate EBV lytic replication. SAL showed ER-stress-dependent and -independent antiviral effects, preventing virus release in human LCLs and abrogating gp350 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated B95-8 cells. TG resulted in sustained BCL6 but not BLIMP1 or CD138 expression, which is consistent with maintenance of a germinal center B-cell, rather than plasma-cell, phenotype. Microarray analysis identified candidate genes governing lytic replication in LCLs undergoing ER stress.

  3. Computed tomography of the abdomen in Saanen goats: I.Reticulum, rumen and omasum

    International Nuclear Information System (INIS)

    Braun, U.; Irmer, M.; Augsburger, H.; Jud, R.; Ohlert, S.

    2011-01-01

    Computed tomography (CT) of the reticulum, rumen and omasum was carried out in 30 healthy goats and the images were compared to corresponding body sections obtained at postmortem. A multidetector CT was used to examine goats in sternal recumbency. A setting of 120 KV and 270 mA was used to produce 1.5-mm transverse slices from the fifth thoracic vertebra to the sacrum. Soft tissue structures were assessed in a soft tissue with a window width (W) of 400 Hounsfield Units (HU), and a window level (L) of 40 HU. The layering of the ruminal contents was assessed in an ingesta window with a W of 1500 HU and an L of 30 HU. After subjective evaluation, the size of the rumen and omasum, the thickness of the walls of the reticulum, rumen and omasum and the height of the gas cap and fibre and liquid phases of the rumen were measured. Fifteen goats were euthanised after CT examination, placed in sternal recumbency and frozen at -18 єC for three to 10 days. Thirteen goats were then cut into 1.0- to 1.5-cm-thick transverse slices. One goat was cut in dorsal-plane slices and another in sagittal slices. The structures in the CT images were identified by using the corresponding anatomical slices

  4. AQUAPEAT 95. New methods for purifying the run-offs of peat production areas

    International Nuclear Information System (INIS)

    Selin, P.; Marja-aho, J.; Madekivi, O.

    1994-01-01

    The aim of Aqua Peat 95-project was to develop new methods for purifying the runoff coming from the peat production areas. The national water protection program for the year 1995 (Ympaeristoeministerioe 1988) as well as the level of the requirements and instructions from the authorities will obligate the peat producers to find new and practical methods for water purification. The chemical treatment reduced the load of peat production areas and the quality of treated water was almost equal to the runoffs coming from the natural bog area. The chemicals were the same as used in purifying drinking water. This purifying method is quite expensive and for this reason applicable only in special cases. The transpiration and evaporation and the soil filtering capacity of the forest area was also observed. The purifying capacity was very good, especially for the total nutrients and suspended solids. The changes of the ground water quality were insignificant but the level of the ground water in the field areas was higher than before. The long term changes of the vegetation and the trees could not be seen, yet. The most important water management practice is the detention of the discharge. The capacity of the sedimentation will increase by using the flow regulation in the sedimentation ponds and ditches. The changes in the water biology downstreams the Laeynioensuo peat production area were clearly seen near the main ditch. Because of the suspended solids the bottom sediment changed which lead to impacts to the bottom fauna. The colour of the runoffs as well as the changes in the sediment influenced on the macrophytes

  5. The design and commissioning of cold trap purifying system of hydrogen meter sodium loop

    International Nuclear Information System (INIS)

    Zhao Zhaoyi; Jia Baoshan; Chen Xiaoming; Pan Fengguo

    1993-01-01

    The design feature and parameters of cold trap purifying system of hydrogen meter sodium loop and its commissioning results are reported and discussed. In order to adjust the flow easily,. the cold trap purifying system is arranged in the exit of the electromagnetic pump. It is composed of regenerator and the cold trap. The regenerator is above the cold trap. The high temperature sodium in the main-loop flows through the regenerator, in the entrance of the cold trap, its temperature is reduced to 180 degree C. After entering into the cold trap, the sodium flows to the purifying region by side, when it arrives the bottom of the trap, its temperature is reduced to 110 degree C. The cold trap is cooled by air. The temperature of the clean sodium rises nearby the main-loop's by the regenerator, and then it returns to the entrance of the electromagnetic pump. According to the commissioning results, the sodium's temperature of the cold trap could be reduced to 110 degree C by reducing the flow of the cold trap purifying system and the temperature of the main-loop, or increasing the air flow and cutting off the power supply of its heating. The authors think that the latter is more conformable with the design stipulation and with the requirement of the hydrogen meter experiment, and it can meet the requirements of the operation of the Nuclear Power Plant

  6. Integrated Microchannel Reformer/Hydrogen Purifier for Fuel Cell Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Colorado School of Mines (CSM) propose to develop an integrated hydrogen generator and purifier system for conversion of in-situ...

  7. Consumer Behavior Modeling: Fuzzy Logic Model for Air Purifiers Choosing

    Directory of Open Access Journals (Sweden)

    Oleksandr Dorokhov

    2017-12-01

    Full Text Available At the beginning, the article briefly describes the features of the marketing complex household goods. Also provides an overview of some aspects of the market for indoor air purifiers. The specific subject of the study was the process of consumer choice of household appliances for cleaning air in living quarters. The aim of the study was to substantiate and develop a computer model for evaluating by the potential buyers devices for air purification in conditions of vagueness and ambiguity of their consumer preferences. Accordingly, the main consumer criteria are identified, substantiated and described when buyers choose air purifiers. As methods of research, approaches based on fuzzy logic, fuzzy sets theory and fuzzy modeling were chosen. It was hypothesized that the fuzzy-multiple model allows rather accurately reflect consumer preferences and potential consumer choice in conditions of insufficient and undetermined information. Further, a computer model for estimating the consumer qualities of air cleaners by customers is developed. A proposed approach based on the application of fuzzy logic theory and practical modeling in the specialized computer software MATLAB. In this model, the necessary membership functions and their terms are constructed, as well as a set of rules for fuzzy inference to make decisions on the estimation of a specific air purifier. A numerical example of a comparative evaluation of air cleaners presented on the Ukrainian market is made and is given. Numerical simulation results confirmed the applicability of the proposed approach and the correctness of the hypothesis advanced about the possibility of modeling consumer behavior using fuzzy logic. The analysis of the obtained results is carried out and the prospects of application, development, and improvement of the developed model and the proposed approach are determined.

  8. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  9. Heme oxygenase-1 comes back to endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  10. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  11. Lipid Droplet Formation Is Dispensable for Endoplasmic Reticulum-associated Degradation*

    Science.gov (United States)

    Olzmann, James A.; Kopito, Ron R.

    2011-01-01

    Proteins that fail to fold or assemble in the endoplasmic reticulum (ER) are destroyed by cytoplasmic proteasomes through a process known as ER-associated degradation. Substrates of this pathway are initially sequestered within the ER lumen and must therefore be dislocated across the ER membrane to be degraded. It has been proposed that generation of bicellar structures during lipid droplet formation may provide an “escape hatch” through which misfolded proteins, toxins, and viruses can exit the ER. We have directly tested this hypothesis by exploiting yeast strains defective in lipid droplet formation. Our data demonstrate that lipid droplet formation is dispensable for the dislocation of a plant toxin and the degradation of both soluble and integral membrane glycoproteins. PMID:21693705

  12. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1999-01-01

    .... Two endurance pump tests were conducted with F-16 aircraft hydraulic pumps, using both fresh and purified MIL-PRF-83282 hydraulic fluid, to determine if fluid purification had any adverse effect on pump life...

  13. Occurrence of Conjugated Linolenic Acids in Purified Soybean Oil

    OpenAIRE

    Kinami, Tomohisa; Horii, Naoto; Narayan, Bhaskar; Arato, Shingo; Hosokawa, Masashi; Miyashita, Kazuo; Negishi, Hironori; Ikuina, Junichi; Noda, Ryuji; Shirasawa, Seiichi

    2007-01-01

    A high-performance liquid chromatographic (HPLC) method is described for the determination of conjugated linoleic acids (CLA) and conjugated linolenic acids (CLN). Methyl esters prepared from purified lipid fractions of soybean oil were analyzed using an HPLC system equipped with photodiode-array detector to detect peaks having maximum absorption around 233 and 275 nm. These peaks were concentrated by AgNO3-silicic acid column chromatography and reversed-phase HPLC. The structural analysis, o...

  14. Inference of purifying and positive selection in three subspecies of chimpanzees (Pan troglodytes) from exome sequencing

    DEFF Research Database (Denmark)

    Bataillon, Thomas; Duan, Jinjie; Hvilsom, Christina

    2015-01-01

    of recent gene flow from Western into Eastern chimpanzees. The striking contrast in X-linked vs. autosomal polymorphism and divergence previously reported in Central chimpanzees is also found in Eastern and Western chimpanzees. We show that the direction of selection (DoS) statistic exhibits a strong non......-monotonic relationship with the strength of purifying selection S, making it inappropriate for estimating S. We instead use counts in synonymous vs. non-synonymous frequency classes to infer the distribution of S coefficients acting on non-synonymous mutations in each subspecies. The strength of purifying selection we...... infer is congruent with the differences in effective sizes of each subspecies: Central chimpanzees are undergoing the strongest purifying selection followed by Eastern and Western chimpanzees. Coding indels show stronger selection against indels changing the reading frame than observed in human...

  15. Fabrication of Simple Indoor Air Haze Purifier using Domestic Discarded Substances and Its Haze Removal Performance

    Science.gov (United States)

    Wang, Zhou; Cao, Haoshu; Zhao, Shuang

    2018-01-01

    Based on the concept of circular economy, discarded plastic bottles stuffed with discarded cotton, clothing and sofa cushion were used as pre-filter to remove big particles (dust and coal dust) in air and 4 L tap water in discarded plastic bottle was worked as an absorbing medium to dissolve the water soluble ions in air (SO4 2-, NO3-, NH4+, Cl- and Ca2+). Moreover, the internet control design was used in this homemade indoor air haze purifier to achieve the performance of remote control and intelligent management. The experimental results showed that this indoor air haze purifier can effectively reduce the level of indoor air haze and the air quality after 20 minutes treatment is higher than that of two commercial well-known air haze purifier

  16. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease.

    Science.gov (United States)

    Sarwar, Ambrin; Hassan, Muhammad Nadeem; Imran, Muhammad; Iqbal, Mazhar; Majeed, Saima; Brader, Günter; Sessitsch, Angela; Hafeez, Fauzia Yusuf

    2018-04-01

    The potential of the Bacillus genus to antagonize phytopathogens is associated with the production of cyclic lipopeptides. Depending upon the type of lipopeptide, they may serve as biocontrol agents that are eco-friendly alternatives to chemical fertilizers. This study evaluates the biocontrol activity of surfactin-producing Bacillus (SPB) strains NH-100 and NH-217 and purified surfactin A from these strains against rice bakanae disease. Biologically active surfactin fractions were purified by HPLC, and surfactin A variants with chain lengths from C12 to C16 were confirmed by LCMS-ESI. In hemolytic assays, a positive correlation between surfactin A production and halo zone formation was observed. The purified surfactin A had strong antifungal activity against Fusarium oxysporum, F. moniliforme, F. solani, Trichoderma atroviride and T. reesei. Maximum fungal growth suppression (84%) was recorded at 2000 ppm against F. moniliforme. Surfactin A retained antifungal activity at different pH levels (5-9) and temperatures (20, 50 and 121 °C). Hydroponic and pot experiments were conducted to determine the biocontrol activity of SPB strains and the purified surfactin A from these strains on Super Basmati rice. Surfactin production in the rice rhizosphere was detected by LCMS-ESI at early growth stages in hydroponics experiments inoculated with SPB strains. However, the maximum yield was observed with a consortium of SPB strains (T4) and purified surfactin A (T5) treatments in the pot experiment. The outcomes of the present study revealed that surfactin A significantly reduced rice bakanae disease by up to 80%. These findings suggest that purified surfactin A could be an effective biocontrol agent against bakanae disease in rice and should be incorporated into strategies for disease management. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Marzec, Michal; Eletto, Davide; Argon, Yair

    2012-01-01

    Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94...

  18. [Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis].

    Science.gov (United States)

    Fu, Yong; Lei, Peng; Han, Yu-mei; Yan, Dan

    2010-02-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. Bacteriostasis activity of each parts eluted was evaluated by the mean of cup-plate method. 13.6 mL of the extraction of sapindus saponin (crude drugs 0.01 g/mL) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol, most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying, the elutive ratio of saponins was 93.8% and the purity reached 250.1%. So this process of applying macroporous adsorption resin to adsorb and purify saponins is feasible, and supplies reference to the purification of other types of saponin.

  19. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?

    Science.gov (United States)

    Celli, Jean; Tsolis, Renée M

    2015-02-01

    The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.

  20. Protein-accumulating cells and dilated cisternae of the endoplasmic reticulum in three glucosinolate-containing genera: Armoracia, Capparis, Drypetes.

    Science.gov (United States)

    Jørgensen, L B; Behnke, H D; Mabry, T J

    1977-01-01

    Three glucosinolate-containing species, Armoracia rusticana Gaertner, Meyer et Scherbius (Brassicaceae), Capparis cynophallophora L. (Capparaceae) and Drypetes roxburghii (Wall.) Hurusawa (Euphorbiaceae), are shown by both light and electron microscopy to contain protein-accumulating cells (PAC). The PAC of Armoracia and Copparis (former "myrosin cells") occur as idioblasts. The PAC of Drypetes are usual members among axial phloem parenchyma cells rather than idioblasts. In Drypetes the vacuoles of the PAC are shown ultrastructurally to contain finely fibrillar material and to originate from local dilatations of the endoplasmic reticulum. The vacuoles in PAC of Armoracia and Capparis seem to originate in the same way; but ultrastructurally, their content is finely granular. In addition, Armoracia and Capparis are shown by both light and electron microscopy to contain dilated cisternae (DC) of the endoplasmic reticulum in normal parenchyma cells, in accord with previous findings for several species within Brassicaceae. The relationship of PAC and DC to glucosinolates and the enzyme myrosinase is discussed.

  1. Apparatus and methods for purifying lead

    Science.gov (United States)

    Tunison, Harmon M.

    2016-01-12

    Disclosed is an exemplary method of purifying lead which includes the steps of placing lead and a fluoride salt blend in a container; forming a first fluid of molten lead at a first temperature; forming a second fluid of the molten fluoride salt blend at a second temperature higher than the first temperature; mixing the first fluid and the second fluid together; separating the two fluids; solidifying the molten fluoride salt blend at a temperature above a melting point of the lead; and removing the molten lead from the container. In certain exemplary methods the molten lead is removed from the container by decanting. In still other exemplary methods the molten salt blend is a Lewis base fluoride eutectic salt blend, and in yet other exemplary methods the molten salt blend contains sodium fluoride, lithium fluoride, and potassium fluoride.

  2. Characterization of the functional and anatomical differences in the atrial and ventricular myocardium from three species of elasmobranch fishes

    DEFF Research Database (Denmark)

    Larsen, Julie; Bushnell, Peter; Steffensen, John

    2017-01-01

    We assessed the functional properties in atrial and ventricular myocardium (using isolated cardiac strips) of smooth dogfish (Mustelus canis), clearnose skate (Raja eglanteria), and sandbar shark (Carcharhinus plumbeus) by blocking Ca2+ release from the sarcoplasmic reticulum (SR) with ryanodine...... positive first derivative (i.e., contractility), and increased time to 50 % relaxation in atrial tissue from smooth dogfish at 30 °C. It also increased times to peak force and half relaxation in clearnose skate atrial and ventricular tissue at both temperatures, but only in atrial tissue from sandbar shark...... at 30 °C; indicating that SR involvement in excitation–contraction (EC) coupling is species- and temperature-specific in elasmobranch fishes, as it is in teleost fishes. Atrial and ventricular myocardium from all three species displayed a negative force–frequency relationship, but there was no evidence...

  3. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains.

    Science.gov (United States)

    Pasqualini, Francesco S; Nesmith, Alexander P; Horton, Renita E; Sheehy, Sean P; Parker, Kevin Kit

    2016-01-01

    Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.

  4. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...... on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise...

  5. Compartmentalization of NO signaling cascade in skeletal muscles

    International Nuclear Information System (INIS)

    Buchwalow, Igor B.; Minin, Evgeny A.; Samoilova, Vera E.; Boecker, Werner; Wellner, Maren; Schmitz, Wilhelm; Neumann, Joachim; Punkt, Karla

    2005-01-01

    Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma

  6. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism

    International Nuclear Information System (INIS)

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-01-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca 2+ signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca 2+ homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca 2+ depletion, and to test this idea, we examined the effect of TBT on intracellular Ca 2+ concentration using fura-2 AM, a Ca 2+ fluorescent probe. TBT increased intracellular Ca 2+ concentration in a TBT-concentration-dependent manner, and Ca 2+ increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca 2+ concentration by releasing Ca 2+ from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca 2+ release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca 2+

  7. Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-04-01

    Full Text Available Brain cells expend large amounts of energy sequestering calcium (Ca2+, while loss of Ca2+ compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P, a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum to sequester Ca2+. This led to the hypothesis that G6P regulates Ca2+ accumulation by acting as an endogenous ligand for sarco-endoplasmic reticulum calcium ATPase (SERCA. Whole brain ER microsomes were pooled from adult male Sprague-Dawley rats. Using radio-isotopic assays, 45Ca2+ accumulation was quantified following incubation with increasing amounts of G6P, in the presence or absence of thapsigargin, a potent SERCA inhibitor. To qualitatively assess SERCA activity, the simultaneous release of inorganic phosphate (Pi coupled with Ca2+ accumulation was quantified. Addition of G6P significantly and decreased Ca2+ accumulation in a dose-dependent fashion (1-10 mM. The reduction in Ca2+ accumulation was not significantly different that seen with addition of thapsigargin. Addition of glucose-1-phosphate or fructose-6-phosphate, or other glucose metabolic pathway intermediates, had no effect on Ca2+ accumulation. Further, the release of Pi was markedly decreased, indicating G6P-mediated SERCA inhibition as the responsible mechanism for reduced Ca2+ uptake. Simultaneous addition of thapsigargin and G6P did decrease inorganic phosphate in comparison to either treatment alone, which suggests that the two treatments have different mechanisms of action. Therefore, G6P may be a novel, endogenous regulator of SERCA activity. Additionally, pathological conditions observed during disease states that disrupt glucose homeostasis, may be attributable to Ca2+ dystasis caused by altered G6P regulation of SERCA activity

  8. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Simon, S.; Skůpa, Petr; Viaene, T.; Zwiewka, M.; Tejos, R.; Klíma, Petr; Čarná, Mária; Rolčík, J.; De Rycke, R.; Moreno, I.; Dobrev, Petre; Orellana, A.; Zažímalová, Eva; Friml, J.

    2016-01-01

    Roč. 211, č. 1 (2016), s. 65-74 ISSN 0028-646X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GA16-10948S Institutional support: RVO:61389030 Keywords : auxin * endoplasmic reticulum (ER) * lateral root Subject RIV: ED - Physiology Impact factor: 7.330, year: 2016

  9. Evaluating the Effectiveness of a Commercial Portable Air Purifier in Homes with Wood Burning Stoves: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Julie F. Hart

    2011-01-01

    Full Text Available Wood burning for residential heating is prevalent in the Rocky Mountain regions of the United States. Studies have shown that wood stoves can be a significant source of PM2.5 within homes. In this study, the effectiveness of an electrostatic filter portable air purifier was evaluated (1 in a home where a wood stove was the sole heat source and (2 in a home where a wood stove was used as a supplemental heat source. Particle count concentrations in six particle sizes and particle mass concentrations in two particle sizes were measured for ten 12-hour purifier on and ten purifier off trials in each home. Particle count concentrations were reduced by 61–85 percent. Similar reductions were observed in particle mass concentrations. These findings, although limited to one season, suggest that a portable air purifier may effectively reduce indoor particulate matter concentrations associated with wood combustion during home heating.

  10. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  11. Directed growth of graphene nanomesh in purified argon via chemical vapor deposition.

    Science.gov (United States)

    Sun, Haibin; Fu, Can; Shen, Xia; Yang, Wenchao; Guo, Pengfei; Lu, Yang; Luo, Yongsong; Yu, Benhai; Wang, Xiaoge; Wang, Chunlei; Xu, Junqi; Liu, Jiangfeng; Song, Fengqi; Wang, Guanghou; Wan, Jianguo

    2017-06-16

    Graphene nanomeshes (GNMs), new graphene nanostructures with tunable bandgaps, are potential building blocks for future electronic or photonic devices, and energy storage and conversion materials. In previous works, GNMs have been successfully prepared on Cu foils by the H 2 etching effect. In this paper, we investigated the effect of Ar on the preparation of GNMs, and how the mean density and shape of them vary with growth time. In addition, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM) revealed the typical hexagonal structure of GNM. Atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) indicated that large copper oxide nanoparticles produced by oxidization in purified Ar can play an essential catalytic role in preparing GNMs. Then, we exhibited the key reaction details for each growth process and proposed a growth mechanism of GNMs in purified Ar.

  12. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  13. Creating and purifying an observation instrument using the generalizability theory

    Directory of Open Access Journals (Sweden)

    Elena Rodríguez-Naveiras

    2013-12-01

    Full Text Available The control of quality of data it is one of the most relevant aspects in observational researches. The Generalizability Theory (GT provides a method of analysis that allows us to isolate the various sources of error measurement. At the same time, it helps us to determine the extent to which various factors can change and analyze the effect on the generalizability coefficient. In the work shown here, there are two studies aimed to creating and purifying an observation instrument, Observation Protocol in the Teaching Functions (Protocolo de Funciones Docentes, PROFUNDO, v1 and v2, for behavioral assessment which has been carried out by instructors in a social-affective out-of-school program. The reliability and homogeneity studies are carried out once the instrument has been created and purified. The reliability study will be done through the GT method taking both codes (c and agents (a as differential facets in. The generalization will be done through observers using a crossed multi-faceted design (A × O × C. In the homogeneity study the generalization facet will be done through codes using the same design that the reliability study.

  14. p53-inducible DHRS3 Is an Endoplasmic Reticulum Protein Associated with Lipid Droplet Accumulation*

    Science.gov (United States)

    Deisenroth, Chad; Itahana, Yoko; Tollini, Laura; Jin, Aiwen; Zhang, Yanping

    2011-01-01

    The transcription factor p53 plays a critical role in maintaining homeostasis as it relates to cellular growth, proliferation, and metabolism. In an effort to identify novel p53 target genes, a microarray approach was utilized to identify DHRS3 (also known as retSDR1) as a robust candidate gene. DHRS3 is a highly conserved member of the short chain alcohol dehydrogenase/reductase superfamily with a reported role in lipid and retinoid metabolism. Here, we demonstrate that DHRS3 is an endoplasmic reticulum (ER) protein that is shuttled to the ER via an N-terminal endoplasmic reticulum targeting signal. One important function of the ER is synthesis of neutral lipids that are packaged into lipid droplets whose biogenesis occurs from ER-derived membranes. DHRS3 is enriched at focal points of lipid droplet budding where it also localizes to the phospholipid monolayer of ER-derived lipid droplets. p53 promotes lipid droplet accumulation in a manner consistent with DHRS3 enrichment in the ER. As a p53 target gene, the observations of Dhrs3 location and potential function provide novel insight into an unexpected role for p53 in lipid droplet dynamics with implications in cancer cell metabolism and obesity. PMID:21659514

  15. Hypothyroidism Causes Endoplasmic Reticulum Stress in Adult Rat Hippocampus: A Mechanism Associated with Hippocampal Damage

    Directory of Open Access Journals (Sweden)

    Alejandra Paola Torres-Manzo

    2018-01-01

    Full Text Available Thyroid hormones (TH are essential for hippocampal neuronal viability in adulthood, and their deficiency causes hypothyroidism, which is related to oxidative stress events and neuronal damage. Also, it has been hypothesized that hypothyroidism causes a glucose deprivation in the neuron. This study is aimed at evaluating the temporal participation of the endoplasmic reticulum stress (ERE in hippocampal neurons of adult hypothyroid rats and its association with the oxidative stress events. Adult Wistar male rats were divided into euthyroid and hypothyroid groups. Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism at three weeks postsurgery. Oxidative stress, redox environment, and antioxidant enzyme markers, as well as the expression of the ERE through the pathways of PERK, ATF6, and IRE1, were evaluated at the 3rd and 4th weeks postsurgery. We found a rise in ROS and nitrite production; also, catalase increased and glutathione peroxidase diminished their activities. These events promote an enhancement of the lipoperoxidation, as well as of γ-GT, myeloperoxidase, and caspase 3 activities. With respect to ERE, there were ATF6, IRE1, and GADD153 overexpressions with a reduction in mitochondrial activity and GSH2/GSSG ratio. We conclude that the endoplasmic reticulum stress might play a pivotal role in the activation of hypothyroidism-induced hippocampal cell death.

  16. Composition and potency characterization of Mycobacterium avium subsp. paratuberculosis purified protein derivatives

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis (MAP) purified protein derivatives (PPDs) are immunologic reagents prepared from cultured filtrates of the type strain ATCC 19698. Traditional production consists of floating culture incubation at 37oC, organism inactivation by autoclaving, coarse filtrat...

  17. Taurine Rescues Cisplatin-Induced Muscle Atrophy In Vitro: A Morphological Study

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2014-01-01

    Full Text Available Cisplatin (CisPt is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h–8 h before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.

  18. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji; Koizumi, Nozomu

    2012-01-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  19. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji

    2012-12-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  20. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  1. Mechanisms of Alcohol-Induced Endoplasmic Reticulum Stress and Organ Injuries

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2012-01-01

    Full Text Available Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.

  2. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    Science.gov (United States)

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  3. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt

    Science.gov (United States)

    Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192

  4. A purified inactivated Japanese encephalitis virus vaccine made in Vero cells.

    Science.gov (United States)

    Srivastava, A K; Putnak, J R; Lee, S H; Hong, S P; Moon, S B; Barvir, D A; Zhao, B; Olson, R A; Kim, S O; Yoo, W D; Towle, A C; Vaughn, D W; Innis, B L; Eckels, K H

    2001-08-14

    A second generation, purified, inactivated vaccine (PIV) against Japanese encephalitis (JE) virus was produced and tested in mice where it was found to be highly immunogenic and protective. The JE-PIV was made from an attenuated strain of JE virus propagated in certified Vero cells, purified, and inactivated with formalin. Its manufacture followed current GMP guidelines for the production of biologicals. The manufacturing process was efficient in generating a high yield of virus, essentially free of contaminating host cell proteins and nucleic acids. The PIV was formulated with aluminum hydroxide and administered to mice by subcutaneous inoculation. Vaccinated animals developed high-titered JE virus neutralizing antibodies in a dose dependent fashion after two injections. The vaccine protected mice against morbidity and mortality after challenge with live, virulent, JE virus. Compared with the existing licensed mouse brain-derived vaccine, JE-Vax, the Vero cell-derived JE-PIV was more immunogenic and as effective as preventing encephalitis in mice. The JE-PIV is currently being tested for safety and immunogenicity in volunteers.

  5. Preparation of Silicon by Calcium Reduction of Purified Rice Husk Ash

    International Nuclear Information System (INIS)

    Swe Zin Tun

    2011-12-01

    This research has studied on the possibility of production and preparation of silicon powder from rice husk ash (RHA) as raw material. RHA from gasifier, a waste product of the rice mill is rich in silica which contains 90.43% of silica. RHAs were purified by precipitation method using 1.5N, 2N, 2.5N and 3N of sodium hydroxide solution and 4.5N, 5N, 5.5N and 6.5N of sulphuric acid solution. The highest yield percent of silica was given by using 2.5N sodium hydroxide solution and 5N sulphuric acid solution X-ray fluoresence (XRF), X-rays diffraction (HRD) and Fourier transform infrared (FTRI) spectra were applied for determination of mineral content and chemical bonding in extracted silica and rice husk ash. Metallothermic reduction of purified extracted silica with calcium was investigated within the temperacture range of 700-900 C. The reduction product was characterized by XRD, XRF and scanning electron microcopy (SEM). The effect of temperature and reaction time in which reduction process was studied in this research.

  6. Biochemical Properties and Mechanism of Action of Enterocin LD3 Purified from Enterococcus hirae LD3.

    Science.gov (United States)

    Gupta, Aabha; Tiwari, Santosh Kumar; Netrebov, Victoria; Chikindas, Michael L

    2016-09-01

    Enterocin LD3 was purified using activity-guided multistep chromatography techniques such as cation-exchange and gel-filtration chromatography. The preparation's purity was tested using reverse-phase ultra-performance liquid chromatography. The specific activity was tested to be 187.5 AU µg(-1) with 13-fold purification. Purified enterocin LD3 was heat stable up to 121 °C (at 15 psi pressure) and pH 2-6. The activity was lost in the presence of papain, reduced by proteinase K, pepsin and trypsin, but was unaffected by amylase and lipase, suggesting proteinaceous nature of the compound and no role of carbohydrate and lipid moieties in the activity. MALDI-TOF/MS analysis of purified enterocin LD3 resolved m/z 4114.6, and N-terminal amino acid sequence was found to be H2NQGGQANQ-COOH suggesting a new bacteriocin. Dissipation of membrane potential, loss of internal ATP and bactericidal effect were recorded when indicator strain Micrococcus luteus was treated with enterocin LD3. It inhibited Gram-positive and Gram-negative bacteria including human pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, E. coli (urogenic, a clinical isolate) and Vibrio sp. These properties of purified enterocin LD3 suggest its applications as a food biopreservative and as an alternative to clinical antibiotics.

  7. Polymorphism in the Mr 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes

    International Nuclear Information System (INIS)

    Saboori, A.M.; Smith, B.L.; Agre, P.

    1988-01-01

    A M r 32,000 integral membrane protein has previously been identified on erythrocytes bearing the Rh(D) antigen and is thought to contain the antigenic variations responsible for the different Rh phenotypes. To study it on a biochemical level, a simple large-scale method was developed to purify the M r 32,000 Rh protein from multiple units of Rh(D)-positive and -negative blood. Erythrocyte membrane vesicles were solubilized in NaDodSO 4 , and a tracer of immunoprecipitated 125 I surface-labeled Rh protein was added. The Rh protein was purified to homogeneity by hydroxylapatite chromatography followed by preparative NaDodSO 4 /PAGE. Approximately 25 nmol of pure Rh protein was recovered from each unit of Rh(D)-positive and -negative blood. Rh protein purified from both Rh phenotypes appeared similar by one-dimensional NaDodSO 4 /PAGE, and the N-terminal amino acid sequences for the first 20 residues were identical. Rh proteins purified from Rh(D)-positive and -negative blood were compared by two-dimensional iodopeptide mapping after 125 I-labeling and α-chymotrypsin digestion. The peptide maps were very similar. These data indicate that a similar core Rh protein exists in both Rh(D)-positive and -negative erythrocytes, and the Rh proteins from erythrocytes with different Rh phenotypes contain distinct structural polymorphisms

  8. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.

    Science.gov (United States)

    Pophaly, Saurabh D; Tellier, Aurélien

    2015-12-01

    The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Roles of Endoplasmic Reticulum Stress in NECA-Induced Cardioprotection against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fengmei Xing

    2017-01-01

    Full Text Available Objective. This study aimed to investigate whether the nonselective A2 adenosine receptor agonist NECA induces cardioprotection against myocardial ischemia/reperfusion (I/R injury via glycogen synthase kinase 3β (GSK-3β and the mitochondrial permeability transition pore (mPTP through inhibition of endoplasmic reticulum stress (ERS. Methods and Results. H9c2 cells were exposed to H2O2 for 20 minutes. NECA significantly prevented H2O2-induced TMRE fluorescence reduction, indicating that NECA inhibited the mPTP opening. NECA blocked H2O2-induced GSK-3β phosphorylation and GRP94 expression. NECA increased GSK-3β phosphorylation and decreased GRP94 expression, which were prevented by both ERS inductor 2-DG and PKG inhibitor KT5823, suggesting that NECA may induce cardioprotection through GSK-3β and cGMP/PKG via ERS. In isolated rat hearts, both NECA and the ERS inhibitor TUDCA decreased myocardial infarction, increased GSK-3β phosphorylation, and reversed GRP94 expression at reperfusion, suggesting that NECA protected the heart by inhibiting GSK-3β and ERS. Transmission electron microscopy showed that NECA and TUDCA reduced mitochondrial swelling and endoplasmic reticulum expansion, further supporting that NECA protected the heart by preventing the mPTP opening and ERS. Conclusion. These data suggest that NECA prevents the mPTP opening through inactivation of GSK-3β via ERS inhibition. The cGMP/PKG signaling pathway is responsible for GSK-3β inactivation by NECA.

  10. Association of the golgi UDP-galactose transporter with UDP-galactose: ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum

    NARCIS (Netherlands)

    Sprong, H.; Degroote, S.; Nilsson, T.; Kawakita, M.; Ishida, N.; van der Sluijs, P.; van Meer, G.

    2003-01-01

    UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose: ceramide galactosyltransferase. It is not known how

  11. Characterization of purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro

    International Nuclear Information System (INIS)

    Rubach, Jon K.; Wasik, Brian R.; Rupp, Jonathan C.; Kuhn, Richard J.; Hardy, Richard W.; Smith, Janet L.

    2009-01-01

    The Sindbis virus RNA-dependent RNA polymerase (nsP4) is responsible for the replication of the viral RNA genome. In infected cells, nsP4 is localized in a replication complex along with the other viral non-structural proteins. nsP4 has been difficult to homogenously purify from infected cells due to its interactions with the other replication proteins and the fact that its N-terminal residue, a tyrosine, causes the protein to be rapidly turned over in cells. We report the successful expression and purification of Sindbis nsP4 in a bacterial system, in which nsP4 is expressed as an N-terminal SUMO fusion protein. After purification the SUMO tag is removed, resulting in the isolation of full-length nsP4 possessing the authentic N-terminal tyrosine. This purified enzyme is able to produce minus-strand RNA de novo from plus-strand templates, as well as terminally add adenosine residues to the 3' end of an RNA substrate. In the presence of the partially processed viral replicase polyprotein, P123, purified nsP4 is able to synthesize discrete template length minus-strand RNA products. Mutations in the 3' CSE or poly(A) tail of viral template RNA prevent RNA synthesis by the replicase complex containing purified nsP4, consistent with previously reported template requirements for minus-strand RNA synthesis. Optimal reaction conditions were determined by investigating the effects of time, pH, and the concentrations of nsP4, P123 and magnesium on the synthesis of RNA

  12. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest

    International Nuclear Information System (INIS)

    Wang, Yaoxian; Yu, Hui; Zhang, Jin; Gao, Jing; Ge, Xin; Lou, Ge

    2015-01-01

    Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavanone that is found mainly in citrus fruits and has been shown to have some anti-neoplastic effects. The aim of the present study was to investigate the effect of hesperidin on apoptosis in human cervical cancer HeLa cells and to identify the mechanism involved. Cells were treated with hesperidin (0, 20, 40, 60, 80, and 100 μM) for 24, 48, or 72 h and relative cell viability was assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Hesperidin inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Hesperidin-induced apoptosis in HeLa cells was characterized by increased nuclear condensation and DNA fragmentation. Furthermore, increased levels of GADD153/CHOP and GRP78 indicated hesperidin-induced apoptosis in HeLa cells involved a caspase-dependent pathway, presumably downstream of the endoplasmic reticulum stress pathway. Both of these proteins are hallmarks of endoplasmic reticulum stress. Hesperidin also promoted the formation of reactive oxygen species, mobilization of intracellular Ca 2+ , loss of mitochondrial membrane potential (ΔΨm), increased release of cytochrome c and apoptosis-inducing factor from mitochondria, and promoted capase-3 activation. It also arrested HeLa cells in the G0/G1 phase in the cell cycle by downregulating the expression of cyclinD1, cyclinE1, and cyclin-dependent kinase 2 at the protein level. The effect of hesperidin was also verified on the human colon cancer cell HT-29 cells. We concluded that hesperidin inhibited HeLa cell proliferation through apoptosis involving endoplasmic reticulum stress pathways and cell cycle arrest

  13. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    OpenAIRE

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychologi...

  14. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    OpenAIRE

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2015-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to de...

  15. STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

    Science.gov (United States)

    Carrasco, Silvia; Meyer, Tobias

    2011-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

  16. Endoplasmic Reticulum Stress-Related Factors Protect against Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Wei-Kun Hu

    2012-01-01

    Full Text Available The endoplasmic reticulum (ER is a principal mediator of signal transduction in the cell, and disruption of its normal function (a mechanism known as ER stress has been associated with the pathogenesis of several diseases. ER stress has been demonstrated to contribute to onset and progression of diabetic retinopathy (DR by induction of multiple inflammatory signaling pathways. Recent studies have begun to describe the gene expression profile of ER stress-related genes in DR; moreover, genes that play a protective role against DR have been identified. P58IPK was determined to be able to reduce retinal vascular leakage under high glucose conditions, thus protecting retinal cells. It has also been found by our lab that ER-associated protein degradation factors exhibit significantly different expression patterns in rat retinas under sustained high glucose conditions. Future research based upon these collective genomic findings will contribute to our overall understanding of DR pathogenesis as well as identify potential therapeutic targets.

  17. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase

    DEFF Research Database (Denmark)

    Thastrup, Ole; Cullen, P J; Drøbak, B K

    1990-01-01

    . This hypothesis is strongly supported by the demonstration that thapsigargin causes a rapid inhibition of the Ca2(+)-activated ATPase activity of rat liver microsomes, with an identical dose dependence to that seen in whole cell or isolated microsome Ca2+ discharge. The inhibition of the endoplasmic reticulum...

  18. Endoplasmic reticulum stress is induced in the human placenta during labour.

    Science.gov (United States)

    Veerbeek, J H W; Tissot Van Patot, M C; Burton, G J; Yung, H W

    2015-01-01

    Placental endoplasmic reticulum (ER) stress has been postulated in the pathophysiology of pre-eclampsia (PE) and intrauterine growth restriction (IUGR), but its activation remains elusive. Oxidative stress induced by ischaemia/hypoxia-reoxygenation activates ER stress in vitro. Here, we explored whether exposure to labour represents an in vivo model for the study of acute placental ER stress. ER stress markers, GRP78, P-eIF2α and XBP-1, were significantly higher in laboured placentas than in Caesarean-delivered controls localised mainly in the syncytiotrophoblast. The similarities to changes observed in PE/IUGR placentas suggest exposure to labour can be used to investigate induction of ER stress in pathological placentas. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    Science.gov (United States)

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  20. Cyclosporine A-sensitive, cyclophilin B-dependent endoplasmic reticulum-associated degradation.

    Directory of Open Access Journals (Sweden)

    Riccardo Bernasconi

    2010-09-01

    Full Text Available Peptidyl-prolyl cis/trans isomerases (PPIs catalyze cis/trans isomerization of peptide bonds preceding proline residues. The involvement of PPI family members in protein refolding has been established in test tube experiments. Surprisingly, however, no data is available on the involvement of endoplasmic reticulum (ER-resident members of the PPI family in protein folding, quality control or disposal in the living cell. Here we report that the immunosuppressive drug cyclosporine A (CsA selectively inhibits the degradation of a subset of misfolded proteins generated in the ER. We identify cyclophilin B (CyPB as the ER-resident target of CsA that catalytically enhances disposal from the ER of ERAD-L(S substrates containing cis proline residues. Our manuscript presents the first evidence for enzymatic involvement of a PPI in protein quality control in the ER of living cells.

  1. Cyclosporine A-Sensitive, Cyclophilin B-Dependent Endoplasmic Reticulum-Associated Degradation

    Science.gov (United States)

    Luban, Jeremy; Molinari, Maurizio

    2010-01-01

    Peptidyl-prolyl cis/trans isomerases (PPIs) catalyze cis/trans isomerization of peptide bonds preceding proline residues. The involvement of PPI family members in protein refolding has been established in test tube experiments. Surprisingly, however, no data is available on the involvement of endoplasmic reticulum (ER)-resident members of the PPI family in protein folding, quality control or disposal in the living cell. Here we report that the immunosuppressive drug cyclosporine A (CsA) selectively inhibits the degradation of a subset of misfolded proteins generated in the ER. We identify cyclophilin B (CyPB) as the ER-resident target of CsA that catalytically enhances disposal from the ER of ERAD-LS substrates containing cis proline residues. Our manuscript presents the first evidence for enzymatic involvement of a PPI in protein quality control in the ER of living cells. PMID:20927389

  2. Insulin-like growth factor stimulation increases radiosensitivity of a pancreatic cancer cell line through endoplasmic reticulum stress under hypoxic conditions

    International Nuclear Information System (INIS)

    Isohashi, Fumiaki; Endo, Hiroko; Mukai, Mutsuko; Inoue, Masahiro; Inoue, Takehiro

    2008-01-01

    Tumor hypoxia is an obstacle to radiotherapy. Radiosensitivity under hypoxic conditions is determined by molecular oxygen levels, as well as by various biological cellular responses. The insulin-like growth factor (IGF) signaling pathway is a widely recognized survival signal that confers radioresistance. However, under hypoxic conditions the role of IGF signaling in radiosensitivity is still poorly understood. Here, we demonstrate that IGF-II stimulation decreases clonogenic survival under hypoxic conditions in the pancreatic cancer cell lines AsPC-1 and Panc-1, and in the human breast cancer cell line MCF-7. IGF treatment under hypoxic conditions suppressed increased radiation sensitivity in these cell lines by pharmacologically inhibiting the phosphoinositide 3-kinase-mammalian target of rapamycin pathway, a major IGF signal-transduction pathway. Meanwhile, IGF-II induced the endoplasmic reticulum stress response under hypoxia, including increased protein levels of CHOP and ATF4, mRNA levels of CHOP, GADD34, and BiP as well as splicing levels of XBP-1. The response was suppressed by inhibiting phosphoinositide 3-kinase and mammalian target of rapamycin activity. Overexpression of CHOP in AsPC-1 cells increased radiation sensitivity by IGF-II simulation under hypoxic conditions, whereas suppression of CHOP expression levels with small hairpin RNA or a dominant negative form of a proline-rich extensin-like receptor protein kinase in hypoxia decreased IGF-induced radiosensitivity. IGF-induced endoplasmic reticulum stress contributed to radiosensitization independent of cell cycle status. Taken together, IGF stimulation increased radiosensitivity through the endoplasmic reticulum stress response under hypoxic conditions. (author)

  3. Cyclopiazonic Acid Is Complexed to a Divalent Metal Ion When Bound to the Sarcoplasmic Reticulum Ca2+-ATPase

    DEFF Research Database (Denmark)

    Laursen, Mette; Bublitz, Maike; Moncoq, Karine

    2009-01-01

    is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca2+-ATPases, e. g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing...

  4. The surface activity of purified ocular mucin at the air-liquid interface and interactions with meibomian lipids.

    Science.gov (United States)

    Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam

    2006-01-01

    Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.

  5. Influence of lysozyme complexation with purified Aldrich humic acid on lysozyme activity

    NARCIS (Netherlands)

    Li, Y.; Tan, W.F.; Wang, M.X.; Liu, F.; Weng, L.P.; Norde, W.; Koopal, L.K.

    2012-01-01

    Humic acid is an important component of dissolved organic matter and in two previous papers it has been shown that purified Aldrich humic acid (PAHA) forms strong complexes with the oppositely charged protein lysozyme (LSZ). The complexation and aggregation of enzymes with humic acids may lead to

  6. Characterization of purified bacterial cellulose focused on its use on paper restoration.

    Science.gov (United States)

    Santos, Sara M; Carbajo, José M; Quintana, Ester; Ibarra, David; Gomez, Nuria; Ladero, Miguel; Eugenio, M Eugenia; Villar, Juan C

    2015-02-13

    Bacterial cellulose (BC) synthesized by Gluconacetobacter sucrofermentans CECT 7291 seems to be a good option for the restoration of degraded paper. In this work BC layers are cultivated and purified by two different methods: an alkaline treatment when the culture media contains ethanol and a thermal treatment if the media is free from ethanol. The main goal of these tests was the characterization of BC layers measured in terms of tear and burst indexes, optical properties, SEM, X-ray diffraction, FTIR, degree of polymerization, static and dynamic contact angles, and mercury intrusion porosimetry. The BC layers were also evaluated in the same terms after an aging treatment. Results showed that BC has got high crystallinity index, low internal porosity, good mechanical properties and high stability over time, especially when purified by the alkaline treatment. These features make BC an adequate candidate for degraded paper reinforcement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei.

    Science.gov (United States)

    Ooi, Cher-Pheng; Smith, Terry K; Gluenz, Eva; Wand, Nadina Vasileva; Vaughan, Sue; Rudenko, Gloria

    2018-06-01

    The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi. © 2018 The Authors. Traffic published by John Wiley & Sons Ltd.

  8. Intracellular alkalinization induces cytosolic Ca2+ increases by inhibiting sarco/endoplasmic reticulum Ca2+-ATPase (SERCA.

    Directory of Open Access Journals (Sweden)

    Sen Li

    Full Text Available Intracellular pH (pHi and Ca(2+ regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi. We found that transient pHi rise induced by both organic and inorganic bases, but not acidification induced by acid, produced elevation of cytosolic Ca(2+. The sources of the Ca(2+ increase are from the endoplasmic reticulum (ER Ca(2+ pools as well as from Ca(2+ influx. The store-mobilization component of the Ca(2+ increase induced by the pHi rise was not sensitive to antagonists for either IP(3-receptors or ryanodine receptors, but was due to inhibition of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA, leading to depletion of the ER Ca(2+ store. We further showed that the physiological consequence of depletion of the ER Ca(2+ store by pHi rise is the activation of store-operated channels (SOCs of Orai1 and Stim1, leading to increased Ca(2+ influx. Taken together, our results indicate that intracellular alkalinization inhibits SERCA activity, similar to thapsigargin, thereby resulting in Ca(2+ leak from ER pools followed by Ca(2+ influx via SOCs.

  9. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  10. A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Tapan Kumar; Emeny, Rebecca T.; Gao, Donghong; Ault, Jeffrey G.; Kasten-Jolly, Jane; Lawrence, David A., E-mail: david.lawrence@health.ny.gov

    2015-12-01

    The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2 h, host defenses against bacterial growth are suppressed 2–3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidation (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes. - Highlights: • Cold-restraint (physical/psychological stress) induces early oxidative stress. • The oxidative stress relates to catecholamine signaling beta-adrenoceptors. • Physical/psychological stress combines infection enhancing inflammation. • Endoplasmic reticulum

  11. Kinetic Analysis of Lactose Exchange in Proteoliposomes Reconstituted with Purified lac Permease

    NARCIS (Netherlands)

    Lolkema, Julius S.; Carrasco, Nancy; Kaback, H. Ronald

    1991-01-01

    Lactose exchange catalyzed by purified lac permease reconstituted into proteoliposomes was analyzed with unequal concentrations of lactose on either side of the membrane and at low pH so as to prevent equilibration of the two pools. Exchange with external concentrations below 1.0 mM is a

  12. Effect of purified gambir leaves extract to prevent atherosclerosis in rats

    Directory of Open Access Journals (Sweden)

    Nanang Yunarto

    2016-03-01

    , antiaterosklerosis AbstractBackground: Atherosclerosis is a risk factor for coronary heart disease (CHD. Catechin have highantioxidant activity that can prevent atherosclerosis. Gambir (Uncaria gambir, Roxb. leaves extract havehigh catechin content thereby potentially inhibiting atherosclerosis. This research was aimed to examineeffect of purified gambir leaves extract to prevent atherosclerosis in rats.Methods: The experimental laboratory study was conducted in Pharmacy Laboratory and Animal Laboratory,National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia in 2014.Gambir leaves extract were purified to gain optimum catechin. Afterwards, antioxidant activity was testedusing 2.2-diphenyl-1-picrylhydrazyl (DPPH method, with ascorbic acid as positive control. Thirty six whitemale Sprague Dawley rats aged 2.5 months were randomly divided into six groups, i.e. normal control group,negative control group (aquadest, positive control group (atorvastatin 2 mg/200 g bw,extract dose I (20mg/200 g bw, dose II (40 mg/200 g bw and dose III (80 mg/200 g bw. The rats were given high fat diet andtreatment according to their group for 60 days, except for normal control group.Results: Catechin content in the purified gambir leaves extract was 92,69%. From antioxidant activity test, IC50 wasfound to be 11,76 μg/mL. Anti-atherosclerotic activity study shown that compared to negative control, all three dosesof purified gambir leaves extract were able to prevent atherosclerosis through inhibition of aortic wall thickening andfoam cell formation due to high fat diet (p<0.05. Anti-atherosclerotic activity increased with increasing dose.Conclusion: Gambir leaves purified extract had the effect of preventing the thickening of the walls andfoam cell formation rat aorta. (Health Science Journal of Indonesia 2015;6:105-10Keywords: gambir, catechin, antiatherosclerosis

  13. Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum

    NARCIS (Netherlands)

    Benham, A.M.; Lith, M. van; Sitia, R.; Braakman, I.|info:eu-repo/dai/nl/073923737

    2013-01-01

    The protein folding machinery of the endoplasmic reticulum (ER) ensures that proteins entering the eukaryotic secretory pathway acquire appropriate post-translational modifications and reach a stably folded state. An important component of this protein folding process is the supply of disulfide

  14. Isolation of Highly Purified Fractions of Plasma Membrane and Tonoplast from the Same Homogenate of Soybean Hypocotyls by Free-Flow Electrophoresis 1

    Science.gov (United States)

    Sandelius, Anna Stina; Penel, Claude; Auderset, Guy; Brightman, Andrew; Millard, Merle; Morré, D. James

    1986-01-01

    A procedure is described whereby highly purified fractions of plasma membrane and tonoplast were isolated from hypocotyls of dark-grown soybean (Glycine max L. var Wayne) by the technique of preparative free-flow electrophoresis. Fractions migrating the slowest toward the anode were enriched in thick (10 nanometers) membranes identified as plasma membranes based on ability to bind N-1-naphthylphthalamic acid (NPA), glucan synthetase-II, and K+-stimulated, vanadate-inhibited Mg2+ ATPase, reaction with phosphotungstic acid at low pH on electron microscope sections, and morphological evaluations. Fractions migrating farthest toward the anode (farthest from the point of sample injection) were enriched in membrane vesicles with thick (7-9 nanometers) membranes that did not stain with phosphotungstic acid at low pH, contained a nitrate-inhibited, Cl-stimulated ATPase and had the in situ morphological characteristics of tonoplast including the presence of flocculent contents. These vesicles neither bound NPA nor contained levels of glucan synthetase II above background. Other membranous cell components such as dictyosomes (fucosyltransferase, latent nucleosidediphosphate phosphatase), endoplasmic reticulum vesicles (NADH- and NADPH- cytochrome c reductase), mitochondria (succinate-2(p-indophenyl)-3-p-nitrophenyl)-5-phenyl tetrazolium-reductase and cytochrome oxidase) and plastids (carotenoids and monogalactosyl diglyceride synthetase) were identified on the basis of appropriate marker constituents and, except for plastid thylakoids, had thin (marker activities. From electron microscope morphometry (using both membrane measurements and staining with phosphotungstic acid at low pH) and analysis of marker enzymes, both plasma membrane and tonoplast fractions were estimated to be about 90% pure. Neither fraction appeared to be contaminated by the other by more than 3%. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 9 PMID:16664771

  15. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Irmgard Schuiki

    Full Text Available Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor and mCherry protein driven by a GRP78 promoter (UPR-sensor. Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.

  16. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    OpenAIRE

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and met...

  17. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Robert A.; Datta, Siddhartha A.K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M. (NCI); (Cornell); (CM); (NIST)

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  18. Isoproterenol potentiation of methyl mercury effects in vivo cardiac ATPasees and 3H-dopamine uptake

    International Nuclear Information System (INIS)

    Ahammad-Sahib, K.I.; Moorthy, K.S.; Cameron, J.A.; Desaiah, D.

    1988-01-01

    Isoproterenol, a potent B-adrenergic receptor agonist, has been known to produce infarct-like myocardial lesions in rats characterized by swelling of endoplasmic reticulum. The swelling of this system is interpreted as an influx of large amount of extracellular fluid into myocardial cells by disturbances of the electrolyte metabolism. Isoproterenol is employed clinically as a bronchodilator in respiratory disorders and as a stimulant in heart block and cardiogenic shocks. In spite of its clinical use, possible drug-chemical interactions leading to adverse health effects are obvious when individuals on a regular isoproterenol treatment are exposed to an environmental contaminant such as methyl mercury. Consumption of fish and fish products is by far the most significant route of exposure to environmental mercury. In spite of such a possibility, little is know about isoproterenol-methyl mercury interaction. The present study forms the first of this kind to report such interactions and their effects on cardiac membrane bound enzymes such as Na + -K + and Ca 2+ -ATPases. Since Na + -K + ATPase has been implicated in uptake and release processes of catecholamines, the effects were also studied on 3 H-dopamine uptake by sarcoplasmic reticulum. As a prelude to these proposed long-term chronic studies with non-lethal doses in the present report only single and sub-lethal doses were used for a shorter (48h) duration

  19. ILDR2: an endoplasmic reticulum resident molecule mediating hepatic lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Kazuhisa Watanabe

    Full Text Available Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting "relief" of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time

  20. Kinetics and Thermal Properties of Crude and Purified β-Galactosidase with Potential for the Production of Galactooligosaccharides

    Directory of Open Access Journals (Sweden)

    Anna Rafaela Cavalcante Braga

    2013-01-01

    Full Text Available β-Galactosidase is an enzyme that catalyzes the hydrolysis of lactose. It has potential importance due to various applications in the food and dairy industries, involving lactose-reduced ingredients. The properties of two β-galactosidase enzymes, crude and purified, from different sources, Kluyveromyces marxianus CCT 7082 and Kluyveromyces marxianus ATCC 16045, were analyzed. The pH and temperature optima, deactivation energy, thermal stability and kinetic and thermodynamic parameters were determined, as well as the ability to hydrolyze lactose and produce galactooligosaccharides. Purification process improved the properties of the enzymes, and the results showed that purified enzymes from both strains had a higher optimum temperature, and lower values of Km, thus showing greater affinity for o-nitrophenyl-β-D-galactopiranoside than the crude enzymes. The production of galactooligosaccharides was also greater when using purified enzymes, increasing the synthesis by more than 30 % by both strains.

  1. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    International Nuclear Information System (INIS)

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  2. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress.

    Science.gov (United States)

    Kanemoto, Soshi; Nitani, Ryota; Murakami, Tatsuhiko; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Saito, Atsushi; Imaizumi, Kazunori

    2016-11-11

    The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Dark matter in the Reticulum II dSph: a radio search

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio

    2017-07-01

    We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources. Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.

  4. Dark matter in the Reticulum II dSph: a radio search

    International Nuclear Information System (INIS)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio

    2017-01-01

    We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources. Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.

  5. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    Science.gov (United States)

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  6. C@Fe 3 O 4 /NTA-Ni magnetic nanospheres purify histidine-tagged ...

    African Journals Online (AJOL)

    This study reports synthesis of Ni-nitrilotriacetic acid (Ni-NTA) modified carbon nanospheres containing magnetic Fe3O4 particles (C@Fe3O4), which can act as a general tool to separate and purify histidine-tagged fetidin. In this experiment, C nanospheres are prepared from glucose using the hydrothermal process, ...

  7. On the preparation of as-produced and purified single-walled carbon nanotube samples for standardized X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Allaf, Rula M.; Rivero, Iris V.; Spearman, Shayla S.; Hope-Weeks, Louisa J.

    2011-01-01

    The aim of this research was to specify proper sample conditioning for acquiring representative X-ray diffraction (XRD) profiles for single-walled carbon nanotube (SWCNT) samples. In doing so, a specimen preparation method for quantitative XRD characterization of as-produced and purified arc-discharge SWCNT samples has been identified. Series of powder XRD profiles were collected at different temperatures, states, and points of time to establish appropriate conditions for acquiring XRD profiles without inducing much change to the specimen. It was concluded that heating in the 300-450 deg. C range for 20 minutes, preferably vacuum-assisted, and then sealing the sample is an appropriate XRD specimen preparation technique for purified arc-discharge SWCNT samples, while raw samples do not require preconditioning for characterization. - Graphical Abstract: A sample preparation method for XRD characterization of as-produced and purified arc-discharge SWCNT samples is identified. The preparation technique seeks to acquire representative XRD profiles without inducing changes to the samples. Purified samples required 20 minutes of heating at (300-450)deg. C, while raw samples did not require preconditioning for characterization. Highlights: → Purification routines may induce adsorption onto the SWCNT samples. → Heating a SWCNT sample may result in material loss, desorption, and SWCNTs closing. → Raw arc-discharge samples do not require preparation for XRD characterization. → Heating is appropriate specimen preparation for purified and heat-treated samples. → XRD data fitting is required for structural analysis of SWCNT bundles.

  8. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    Directory of Open Access Journals (Sweden)

    Renata Angeli

    2009-01-01

    Full Text Available A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A and Cratylia mollis (Cramoll 1 and Cramoll 1,4 did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column.

  9. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    Science.gov (United States)

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  10. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Directory of Open Access Journals (Sweden)

    Chin-Soon Chee

    2014-01-01

    Full Text Available Glutathione transferases (GST were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW of 23 kDa. 2-dimensional (2-D gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5 and GST2 (pI 6.2 with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase and F0KKB0 (glutathione S-transferase III of Acinetobacter calcoaceticus strain PHEA-2, respectively.

  11. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    Science.gov (United States)

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  12. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    Science.gov (United States)

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Mitochondrial enzymes and endoplasmic reticulum calcium stores as targets of oxidative stress in neurodegenerative diseases.

    Science.gov (United States)

    Gibson, Gary E; Huang, Hsueh-Meei

    2004-08-01

    Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme alpha-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H(2)O(2), a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, alpha-keto-beta-methyl-n-valeric acid (KMV) diminishes the H(2)O(2) effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H(2)O(2)-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.

  14. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    OpenAIRE

    Mountfort, D O

    1990-01-01

    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding alde...

  15. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

    Science.gov (United States)

    Chen, Shaohua; Zhang, Daohai

    2015-01-01

    The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer. PMID:25709888

  16. 75 FR 6211 - Prospective Grant of Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine...

    Science.gov (United States)

    2010-02-08

    ... Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1,2,3, and 4 AGENCY: National Institutes of Health, Public Health...., ``Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses''-- European Patent...

  17. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  18. Dry fumes purifying system using anhydrous baking soda; Procede chimique d`epuration des fumees au bicarbonate de soude anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-04-01

    UNISYSTEMS has developed the industrial implementation of the chemical process using anhydrous backing soda, patented by SOLVAY, for purifying fumes containing inorganic salts and sulphur oxides as polluting agents. The system can be applied to industrial processes releasing this type of polluting agents in the fumes at a temperature over 160 deg C, as it is specially indicated in purifying fumes coming from ceramic firing kilns. (authors)

  19. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Gleize, Jérôme [Laboratoire de Chimie Physique-Approche Multi-échelle de Milieux Complexes-Université de Lorraine, 1 Bd Arago, 57078 Metz (France); Lamura, Gianrico [CNR-SPIN – Dipartimento di Fisica, via Dodecaneso 33, 16146 Genova (Italy); Hérold, Claire [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Vigolo, Brigitte, E-mail: Brigitte.Vigolo@univ-lorraine.fr [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France)

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel–yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni{sup 2+} ions, belonging to NiCl{sub 2} formed during the Cl-based purification process. In particular, NiCl{sub 2} compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature. - Highlights: • Cl-gas treatment of Ni catalyst of carbon nanotubes leads to NiCl{sub 2} residue. • Magnetic measurements show the transformation of Ni{sup 0} in Ni{sup 2+}through a purification process. • High temperature Cl treatment removes 75% of metallic impurities. • Cl-purification yields to an amount of metal of 1.5% in arc-discharge CNT samples.

  20. CHARACTERIZATION OF THE PARTIALLY PURIFIED PLANTARCIN SR18 PRODUCED BY LACTOBACILLUS PLANTARUM SR18

    Directory of Open Access Journals (Sweden)

    Wagih El-Shouny

    2013-04-01

    Full Text Available The bacteriocin bound to the cells and that secreted into the culture filtrate of Lactobacillus plantarum SR18 were precipitated by 75% ammomium sulphate, dialysed and further purified by Gel filtration on Sephadex G-100. Bacteriocins were purified from proteins bound to the cell of L. plantarum SR18 (plantarcin SR18 a and culture filtrate proteins (plantarcin SR18 b, respectively. The SDS-PAGE of partially purified Plantarcin SR18a showed a molecular weight of 3.5 KDa. While, plantarcin SR18 b had a molecular weight of 10.3 KDa. The antibacterial activity of the tested plantarcin SR18 preparations suffered no measurable loss after 45 min at 80ºC. Whereas, At 100ºC, significant decrease in the activity of bacteriocin preparations (60- 80 % took place by the end of 45 min. At pH ranged from 5-8, the activity of the plantarcin SR18 preparations suffered no measurable loss. Dissociating agents significantly affected the bacteriocin activity. Thus, tween 80 and mercaptoethanol increased the activity of bacteriocin preparations to 1.2-1.4 fold. Sodium dodecyl sulphate (SDS increased the activity of the tested bacteriocin preparations by about 20%.The lowest residual activity (60% was recorded after treatment with Triton X100 for 45 min. Protease completely inhibited the activities of all forms of plantarcin SR18 after 45 min at 37ºC.

  1. Sarco/Endoplasmic reticulum Ca2+-ATPases (SERCA contribute to GPCR-mediated taste perception.

    Directory of Open Access Journals (Sweden)

    Naoko Iguchi

    Full Text Available The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory, bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca(2+ concentration ([Ca(2+](c for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca(2+](c from the cytosol of taste receptor cells (TRCs and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca(2+ clearance in TRCs, we sought the molecules involved in [Ca(2+](c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA family that sequesters cytosolic Ca(2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca(2+ release for signaling. Serca3-knockout (KO mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca(2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception.

  2. 78 FR 78812 - Purified Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-12-27

    ... Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty Administrative Review and Final No... Netherlands. For the final results, we continue to find that sales of subject merchandise by Akzo Nobel... of the AD order on purified CMC from the Netherlands.\\1\\ We invited interested parties to comment on...

  3. Influence of a highly purified senna extract on colonic epithelium.

    Science.gov (United States)

    van Gorkom, B A; Karrenbeld, A; van Der Sluis, T; Koudstaal, J; de Vries, E G; Kleibeuker, J H

    2000-01-01

    Chronic use of sennoside laxatives often causes pseudomelanosis coli. A recent study suggested that pseudomelanosis coli is associated with an increased colorectal cancer risk. A single high dose of highly purified senna extract increased proliferation rate and reduced crypt length in the sigmoid colon compared to historical controls. To evaluate in a controlled study the effects of highly purified senna extract on cell proliferation and crypt length in the entire colon and on p53 and bcl-2 expression. Addition of a senna extract to colonic lavage was studied in 184 consecutive outpatients. From 32 randomised patients, 15 with sennosides (Sen), 17 without (NSen), biopsies were taken. Proliferative activity was studied in 4 areas of the colon, using 5-bromo-2'-deoxyuridine labelling and immunohistochemistry (labelling index, LI). Expression of p53 and bcl-2 in the sigmoid colon was determined immunohistochemically. Crypts were shorter in Sen than in NSen in the transverse and sigmoid colon. LI was higher in Sen than in NSen in the entire colon. No difference in p53 expression was seen. Bcl-2 expression was higher in both groups when crypts were shorter and/or proliferation was increased. Sennosides induce acute massive cell loss probably by apoptosis, causing shorter crypts, and increased cell proliferation and inhibition of apoptosis to restore cellularity. These effects may reflect the mechanism for the suggested cancer-promoting effect of chronic sennoside use. Copyright 2000 S. Karger AG, Basel

  4. Surface plasmon resonance sensing: from purified biomolecules to intact cells.

    Science.gov (United States)

    Su, Yu-Wen; Wang, Wei

    2018-04-12

    Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.

  5. Photovoltaic performance of TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent in dye-sensitized solar cells.

    Science.gov (United States)

    Kwon, Oh Oun; Kim, Eui Jin; Lee, Jae Hyeok; Kim, Tae Young; Park, Kyung Hee; Kim, Sang Yook; Suh, Hwa Jin; Lee, Hyo Jung; Lee, Jae Wook

    2015-02-05

    To improve the photovoltaic conversion efficiency in dye-sensitized solar cells (DSSCs), TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent was successfully formulated on nanoporous TiO2 surface. Adsorption and desorption properties of crude gardenia yellow solution on a macroporous resin, XAD-1600, were investigated to purify gardenia yellow because of its strong adsorption and desorption abilities as well as high selectivity. To this end, adsorption equilibrium and kinetic data were measured and fitted using adsorption isotherms and kinetic models. Adsorption and desorption breakthrough curves in a column packed with XAD-1600 resin was obtained to optimize the separation process of gardenia yellow. The photovoltaic performance of the photo-electrode adsorbed with the crude and purified gardenia yellow in DSSCs was compared from current-voltage measurements. The results showed that the photovoltaic conversion efficiency was highly dependent on how to separate and purify gardenia yellow as a photosensitizer. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

    OpenAIRE

    Lewis, R E; Czech, M P

    1987-01-01

    Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for ...

  7. Tuberculin purified protein derivative-reactive T cells in cord blood lymphocytes.

    OpenAIRE

    Shiratsuchi, H; Tsuyuguchi, I

    1981-01-01

    Lymphocytes obtained from cord blood of newborn babies who were born of healthy mothers were studied in vitro for their responsiveness to purified protein derivative (PPD) of tuberculin. Cord blood lymphocytes proliferated in vitro by stimulation with PPD, despite wide variations in the results. Studies with fractionated lymphocytes revealed that PPD-responding cells belonged to E-rosetting, nylon wool-nonadherent T lymphocytes. Non-E-rosetting B lymphocytes alone did not proliferate at all a...

  8. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    Science.gov (United States)

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets. PMID:21857022

  9. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  10. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    Science.gov (United States)

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  11. Evaluation of monoclonal anti-A and anti-B and affinity-purified Ulex europaeus lectin I for forensic blood grouping.

    Science.gov (United States)

    Gaensslen, R E; Lee, H C; Carroll, J E

    1984-01-01

    Two different monoclonal anti-A and anti-B and several different affinity purified Ulex europaeus lectin I reagents were evaluated and compared with conventional anti-A and anti-B sera and Ulex anti-H for serologic properties, in inhibition tests with secretor salivas, and in elution tests with bloodstains. The monoclonal and purified reagents were found to be comparable to conventional ones, and accordingly suitable for forensic inhibition and elution procedures.

  12. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine to ...

  13. Gamma ray irradiation to semi-purified diet

    International Nuclear Information System (INIS)

    Takigawa, Akihiro; Danbara, Hiroshi; Ohyama, Yoshinobu

    1976-01-01

    Semi-purified diet containing 10% soybean oil was irradiated with gamma rays at levels of 0.6, 3 and 6 Mrad and was fed to chicks. Crude fat contents of the diets decreased and a considerable amount of peroxide was formed with high doses of irradiation. Feed consumption and feed efficiency of the highly irradiated diets were less than those of control. Metabolizable energy and digestibility of the diets, especially of fat, were decreased with the irradiation. The chicks fed with irradiated diets showed marked dilatation of the small intestine and the liver, and their erythrocytes were more fragile than those of control. The same phenomena were found with the chicks fed the diet containing the oil highly oxidized by autoxidation. Irradiation of the diet excluding oil showed little effect on the growth of chicks. It was considered that these phenomena were caused by the peroxide or other oxidation products of fat which were formed with gamma ray irradiation. (auth.)

  14. Subpopulations in purified platelets adhering on glass.

    Science.gov (United States)

    Donati, Alessia; Gupta, Swati; Reviakine, Ilya

    2016-06-22

    Understanding how platelet activation is regulated is important in the context of cardiovascular disorders and their management with antiplatelet therapy. Recent evidence points to different platelet subpopulations performing different functions. In particular, procoagulant and aggregating subpopulations have been reported in the literature in platelets treated with the GPVI agonists. How the formation of platelet subpopulations upon activation is regulated remains unclear. Here, it is shown that procoagulant and aggregating platelet subpopulations arise spontaneously upon adhesion of purified platelets on clean glass surfaces. Calcium ionophore treatment of the adhering platelets resulted in one platelet population expressing both the procoagulant and the adherent population markers phosphatidylserine and the activated form of GPIIb/IIIa, while all of the platelets expressed CD62P independently of the ionophore treatment. Therefore, all platelets have the capacity to express all three activation markers. It is concluded that platelet subpopulations observed in various studies reflect the dynamics of the platelet activation process.

  15. Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; de la Casa-Resino, Irene; Martinez-Ruiz, Antonio; Perez-Lopez, Marcos; Portilla, Juan C; Salido, Gines M; Gonzalez, Antonio

    2016-05-16

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A long-term aging study of honeycomb drift tubes for the HERA-B Outer Tracker using a circulated and purified CF$_{4}$ gas mixture

    CERN Document Server

    Capéans-Garrido, M; Hohlmann, M; Schmidt, B

    2003-01-01

    The Outer Tracker of HERA-B uses a gas mixture containing CF/sub 4/ to obtain high electron drift velocities. The high cost of this gas makes it necessary to circulate the gas mixture which must then be purified to avoid accumulation of air and pollutants. However, the usage of gas purifiers poses the danger of outgassing pollutants from the purifiers themselves into the gas stream. Purifiers could also be attacked chemically by the aggressive products from the cracking of CF/sub 4/ molecules in the plasma avalanches of the detector. This could potentially release further harmful pollutants into the gas stream. To test for such effects, a long-term irradiation study of about 3000 h was carried out with the honeycomb drift tubes that are used in the Outer Tracker. This provided a check of the long-term stability of the gas purifiers before putting them into operation for the full-size detector. We report on the experimental setup, procedures and the results obtained. (8 refs).

  17. Clinical studies of a purified timothy pollen extract: desensitization therapy with a purified timothy pollen preparation compared to a crude timothy pollen extract. II. Results of the tests in vitro and their relation to symptoms and tests in vivo.

    Science.gov (United States)

    Nordvall, S L; Berg, T; Johansson, S G; Lanner, A

    1982-01-01

    Perennial desensitization therapy was given during a period of 3.5 years to 40 children allergic to grass pollen allergens. 20 patients were treated with a crude and another 20 with a purified timothy pollen extract. 8 children served as untreated controls. The concentration of total and specific IgE in the treated groups covaried with those in the control group. Neither a suppression of the seasonal booster effect nor a suppression of IgE synthesis attributable to the treatment was found. The rise of timothy-specific "blocking' IgG antibodies was more pronounced in the group treated with the purified extract than in the group treated with the crude extract. A significant difference was found only after 3.5 years of treatment. The amplitude of rise of IgG antibodies correlated significantly with the effect of the treatment as judged by repeated conjunctival titration test. The results suggest that a good IgG response is an indication of successful therapy and that a better IgG response may be achieved with purified allergen extracts.

  18. Clofibric Acid Increases the Formation of Oleic Acid in Endoplasmic Reticulum of the Liver of Rats

    OpenAIRE

    広瀬, 明彦; 山崎, 研; 坂本, 武史; 須永, 克佳; 津田, 整; 光本, 篤史; 工藤, なをみ; 川嶋, 洋一

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [14C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellul...

  19. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    DEFF Research Database (Denmark)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida

    2016-01-01

    respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections...... reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular...

  20. Functional reconstitution into liposomes of purified human RhCG ammonia channel.

    Directory of Open Access Journals (Sweden)

    Isabelle Mouro-Chanteloup

    Full Text Available BACKGROUND: Rh glycoproteins (RhAG, RhBG, RhCG are members of the Amt/Mep/Rh family which facilitate movement of ammonium across plasma membranes. Changes in ammonium transport activity following expression of Rh glycoproteins have been described in different heterologous systems such as yeasts, oocytes and eukaryotic cell lines. However, in these complex systems, a potential contribution of endogenous proteins to this function cannot be excluded. To demonstrate that Rh glycoproteins by themselves transport NH(3, human RhCG was purified to homogeneity and reconstituted into liposomes, giving new insights into its channel functional properties. METHODOLOGY/PRINCIPAL FINDINGS: An HA-tag introduced in the second extracellular loop of RhCG was used to purify to homogeneity the HA-tagged RhCG glycoprotein from detergent-solubilized recombinant HEK293E cells. Electron microscopy analysis of negatively stained purified RhCG-HA revealed, after image processing, homogeneous particles of 9 nm diameter with a trimeric protein structure. Reconstitution was performed with sphingomyelin, phosphatidylcholine and phosphatidic acid lipids in the presence of the C(12E(8 detergent which was subsequently removed by Biobeads. Control of protein incorporation was carried out by freeze-fracture electron microscopy. Particle density in liposomes was a function of the Lipid/Protein ratio. When compared to empty liposomes, ammonium permeability was increased two and three fold in RhCG-proteoliposomes, depending on the Lipid/Protein ratio (1/300 and 1/150, respectively. This strong NH(3 transport was reversibly inhibited by mercuric and copper salts and exhibited a low Arrhenius activation energy. CONCLUSIONS/SIGNIFICANCE: This study allowed the determination of ammonia permeability per RhCG monomer, showing that the apparent Punit(NH3 (around 1x10(-3 microm(3xs(-1 is close to the permeability measured in HEK293E cells expressing a recombinant human RhCG (1.60x10

  1. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Saelim, Ni-on; Magaraphan, Rathanawan; Sreethawong, Thammanoon

    2011-01-01

    Highlights: → Natural dye from red cabbage was successfully employed in DSSC. → A fast sol-gel method to produce TiO 2 /clay thin film was proposed. → The sol-gel-prepared TiO 2 /clay was applied as the scattering layer on top of TiO 2 electrode. → Thicker sol-gel-prepared TiO 2 /clay electrode showed higher DSSC efficiency. - Abstract: The sol-gel TiO 2 /purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol-gel TiO 2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol-gel TiO 2 /purified Na-bentonite composites because the clay platelets prevented TiO 2 particle agglomeration. The sol-gel TiO 2 /5 mol% Si purified Na-bentonite and sol-gel TiO 2 /10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO 2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.

  2. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eDe Meyer

    2014-09-01

    Full Text Available A wide variety of recombinant proteins has been produced in the dicot model plant, Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of an N terminal endoplasmic reticulum (ER signal peptide. In addition, they can also be designed for ER retention by adding a C terminal H/KDEL-tag. Despite extensive knowledge of the protein trafficking pathways, the final protein destination, especially of such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins are ideal study objects. Microscopy experiments reveal their deposition pattern and characterization of their N-glycans aids in elucidating the trafficking. Here, we combine microscopy and N glycosylation data generated in Arabidopsis leaves and seeds, and highlight the lack of a decent understanding of heterologous protein trafficking.

  3. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling.

    Science.gov (United States)

    Lange, Klaus; Gartzke, Joachim

    2006-11-01

    A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. Copyright 2006 Wiley-Liss, Inc.

  4. Curcumin modulation of Na,K-ATPase: phosphoenzyme accumulation, decreased K+ occlusion, and inhibition of hydrolytic activity

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed

    2005-01-01

    Curcumin, the major constitute of tumeric, is an important nutraceutical that has been shown to be useful in the treatment of many diseases. As an inhibitor of the sarcoplasmic reticulum Ca2+-ATPase, curcumin was shown to correct cystic fibrosis (CF) defects in some model systems, whereas others...... have reported no or little effects on CF after curcumin treatment, suggesting that curcumin effect is not due to simple inhibition of the Ca2+-ATPase. We tested the hypothesis that curcumin may modulate other members of the P2-type ATPase superfamily by studying the effects of curcumin on the activity...... and kinetic properties of the Na,K-ATPase. Curcumin treatment inhibited Na,K-ATPase activity in a dose-dependent manner (K0.514.6 M). Curcumin decreased the apparent affinity of Na,K-ATPase for K+ and increased it for Na+ and ATP. Kinetic analyses indicated that curcumin induces a three-fold reduction...

  5. Cardiac Dysrhythmias and Neurological Dysregulation: Manifestations of Profound Hypomagnesemia

    Directory of Open Access Journals (Sweden)

    Sagger Mawri

    2017-01-01

    Full Text Available Magnesium is the second most common intracellular cation and serves as an important metabolic cofactor to over 300 enzymatic reactions throughout the human body. Among its various roles, magnesium modulates calcium entry and release from sarcoplasmic reticulum and regulates ATP pumps in myocytes and neurons, thereby regulating cardiac and neuronal excitability. Therefore, deficiency of this essential mineral may result in serious cardiovascular and neurologic derangements. In this case, we present the clinical course of a 76-year-old woman who presented with marked cardiac and neurological signs and symptoms which developed as a result of severe hypomagnesemia. The patient promptly responded to magnesium replacement once the diagnosis was established. We herein discuss the clinical presentation, pathophysiology, diagnosis, and management of severe hypomagnesemia and emphasize the implications of magnesium deficiency in the cardiovascular and central nervous systems. Furthermore, this case highlights the importance of having high vigilance for hypomagnesemia in the appropriate clinical setting.

  6. The destiny of Ca(2+) released by mitochondria.

    Science.gov (United States)

    Takeuchi, Ayako; Kim, Bongju; Matsuoka, Satoshi

    2015-01-01

    Mitochondrial Ca(2+) is known to regulate diverse cellular functions, for example energy production and cell death, by modulating mitochondrial dehydrogenases, inducing production of reactive oxygen species, and opening mitochondrial permeability transition pores. In addition to the action of Ca(2+) within mitochondria, Ca(2+) released from mitochondria is also important in a variety of cellular functions. In the last 5 years, the molecules responsible for mitochondrial Ca(2+) dynamics have been identified: a mitochondrial Ca(2+) uniporter (MCU), a mitochondrial Na(+)-Ca(2+) exchanger (NCLX), and a candidate for a mitochondrial H(+)-Ca(2+) exchanger (Letm1). In this review, we focus on the mitochondrial Ca(2+) release system, and discuss its physiological and pathophysiological significance. Accumulating evidence suggests that the mitochondrial Ca(2+) release system is not only crucial in maintaining mitochondrial Ca(2+) homeostasis but also participates in the Ca(2+) crosstalk between mitochondria and the plasma membrane and between mitochondria and the endoplasmic/sarcoplasmic reticulum.

  7. Gene Therapy in Cardiac Arrhythmias

    Directory of Open Access Journals (Sweden)

    Praveen S.V

    2006-04-01

    Full Text Available Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV node mimicking beta blockade can be therapeutic in the management of atrial fibrillation. G protein overexpression to modify the AV node also is experimental. Modification and expression of potassium channel genes altering the delayed rectifier potassium currents may permit better management of congenital long QT syndromes. Arrhythmias in a failing heart are due to abnormal calcium cycling. Potential targets for genetic modulation include the sarcoplasmic reticulum calcium pump, calsequestrin and sodium calcium exchanger.Lastly the ethical concerns need to be addressed.

  8. Exercise-Induced Rhabdomyolysis and Stress-Induced Malignant Hyperthermia Events, Association with Malignant Hyperthermia Susceptibility, and RYR1 Gene Sequence Variations

    Directory of Open Access Journals (Sweden)

    Antonella Carsana

    2013-01-01

    Full Text Available Exertional rhabdomyolysis (ER and stress-induced malignant hyperthermia (MH events are syndromes that primarily afflict military recruits in basic training and athletes. Events similar to those occurring in ER and in stress-induced MH events are triggered after exposure to anesthetic agents in MH-susceptible (MHS patients. MH is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed subjects during general anesthesia, induced by commonly used volatile anesthetics and/or the neuromuscular blocking agent succinylcholine. Triggering agents cause an altered intracellular calcium regulation. Mutations in RYR1 gene have been found in about 70% of MH families. The RYR1 gene encodes the skeletal muscle calcium release channel of the sarcoplasmic reticulum, commonly known as ryanodine receptor type 1 (RYR1. The present work reviews the documented cases of ER or of stress-induced MH events in which RYR1 sequence variations, associated or possibly associated to MHS status, have been identified.

  9. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy.

    Science.gov (United States)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc; Brennen, W Nathaniel; Dalrymple, Susan; Dach, Ingrid; Olesen, Claus; Gurel, Bora; Demarzo, Angelo M; Wilding, George; Carducci, Michael A; Dionne, Craig A; Møller, Jesper V; Nissen, Poul; Christensen, S Brøgger; Isaacs, John T

    2012-06-27

    Heterogeneous expression of drug target proteins within tumor sites is a major mechanism of resistance to anticancer therapies. We describe a strategy to selectively inhibit, within tumor sites, the function of a critical intracellular protein, the sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host. On the basis of these data, a phase 1 dose-escalation clinical trial has been initiated with G202 in patients with advanced cancer.

  10. The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise

    DEFF Research Database (Denmark)

    Aschenbach, W G; Suzuki, Y; Breeden, K

    2001-01-01

    In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase...... that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol....... Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction...

  11. Cartap hydrochloride poisoning: A clinical experience.

    Science.gov (United States)

    Boorugu, Hari K; Chrispal, Anugrah

    2012-01-01

    Cartap hydrochloride, a nereistoxin analog, is a commonly used low toxicity insecticide. We describe a patient who presented to the emergency department with alleged history of ingestion of Cartap hydrochloride as an act of deliberate self-harm. The patient was managed conservatively. To our knowledge this is the first case report of Cartap hydrochloride suicidal poisoning. Cartap toxicity has been considered to be minimal, but a number of animal models have shown significant neuromuscular toxicity resulting in respiratory failure. It is hypothesized that the primary effect of Cartap hydrochloride is through inhibition of the [(3)H]-ryanodine binding to the Ca(2+) release channel in the sarcoplasmic reticulum in a dose-dependent manner and promotion of extracellular Ca(2+) influx and induction of internal Ca(2+) release. This results in tonic diaphragmatic contraction rather than paralysis. This is the basis of the clinical presentation of acute Cartap poisoning as well as the treatment with chelators namely British Anti Lewisite and sodium dimercaptopropane sulfonate.

  12. Process for the winning of a concentrate containing uranium and purified phosphoric acid, as well as the concentrate containing uranium and purified phosphoric acid obtained by this process

    International Nuclear Information System (INIS)

    1980-01-01

    The uranium containing concentrate and purified phosphoric acid are obtained by treating wet phosphoric acid with an inorganic fluorine compound (ammonium fluoride) and an aliphatic ketone (acetone) in the presence of a reducing agent (finely divided iron). The ketone is added first and the formed uranium precipitate is separated from the solution. If the fluorine compound is added first, the yield is lowered by a factor of 2. (Th.P.)

  13. The Endoplasmic Reticulum Coat Protein II Transport Machinery Coordinates Cellular Lipid Secretion and Cholesterol Biosynthesis*

    Science.gov (United States)

    Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.

    2014-01-01

    Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions. PMID:24338480

  14. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  15. Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis

    OpenAIRE

    Infantes-Lorenzo, José Antonio; Moreno, Inmaculada; Risalde, María de los Ángeles; Roy, Álvaro; Villar, Margarita; Romero, Beatriz; Ibarrola, Nieves; de la Fuente, José; Puentes, Eugenia; de Juan, Lucía; Gortázar, Christian; Bezos, Javier; Domínguez, Lucas; Domínguez, Mercedes

    2017-01-01

    Background Bovine purified protein derivative (bPPD) and avian purified protein derivative (aPPD) are widely used for bovine tuberculosis diagnosis. However, little is known about their qualitative and quantitative characteristics, which makes their standardisation difficult. In addition, bPPD can give false-positive tuberculosis results because of sequence homology between Mycobacterium bovis (M. bovis) and M. avium proteins. Thus, the objective of this study was to carry out a proteomic cha...

  16. 75 FR 61700 - Purified Carboxymethylcellulose From Finland, the Netherlands, and Sweden: Final Results of the...

    Science.gov (United States)

    2010-10-06

    ... also referred to as purified sodium CMC, polyanionic cellulose, or cellulose gum, which is a white to....gov/frn . The paper copy and electronic version of the Decision Memo are identical in content. Final...

  17. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    Science.gov (United States)

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  18. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow.

    Science.gov (United States)

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-10-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

  19. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing, E-mail: dmx@mail.hzau.edu.cn

    2014-04-15

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and

  20. In vitro and in vivo inhibitory effects of some fungicides on catalase produced and purified from white-rot fungus Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakçıoğlu, Berna; Tarhan, Leman

    2014-10-01

    In this study, in vitro and in vivo effects of some commonly used fungicides, antibiotics, and various chemicals on isolated and purified catalase from Phanerochaete chrysosporium were investigated. The catalase was purified 129.10-fold by using 60% ammonium sulfate and 60% ethanol precipitations, DEAE-cellulose anion exchange and Sephacryl-S-200 gel filtration chromatographies from P. chrysosporium growth in carbon- and nitrogen-limited medium for 12 days. The molecular weight of native purified catalase from P. chrysosporium was found to be 290 ± 10 kDa, and sodium dodecyl sulfate (SDS)-PAGE results indicated that enzyme consisted of four apparently identical subunits, with a molecular weight of 72.5 ± 2.5 kDa. Kinetic characterization studies showed that optimum pH and temperature, Km and Vmax values of the purified catalase which were stable in basic region and at comparatively high temperatures were 7.5, 30°C, 289.86 mM, and 250,000 U/mg, respectively. The activity of purified catalase from P. chrysosporium was significantly inhibited by dithiothreitol (DTT), 2-mercaptoethanol, iodoacetamide, EDTA, and sodium dodecyl sulfate (SDS). It was found that while antibiotics had no inhibitory effects, 45 ppm benomyl, 144 ppm captan, and 47.5 ppm chlorothalonil caused 14.52, 10.82, and 38.86% inhibition of purified catalase, respectively. The inhibition types of these three fungicides were found to be non-competitive inhibition with the Ki values of 1.158, 0.638, and 0.145 mM and IC50 values of 0.573, 0.158, 0.010 mM, respectively. The results of in vivo experiments also showed that benomyl, captan and chlorothalonil caused 15.25, 1.96, and 36.70% activity decreases after 24-h treatments compared to that of the control.