WorldWideScience

Sample records for purified enzyme displayed

  1. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.

    Science.gov (United States)

    Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio

    2017-11-28

    The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes

  2. Effect of partially purified angiotensin converting enzyme inhibitory ...

    African Journals Online (AJOL)

    This study evaluated the effect of partially-purified angiotensin converting enzyme (ACE) inhibitory proteins obtained from the leaves of Moringa oleifera on blood glucose, serum ACE activity and lipid profile of alloxaninduced diabetic rats. Twenty-five apparently healthy male albino rats were divided into five groups of five ...

  3. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection.

  4. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Öztekin, Aykut, E-mail: aoztekin@agri.edu.tr [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey); Agri Ibrahim Cecen University Faculty of Arts and Sciences, Department of Chemistry, 04100-Agri (Turkey); Almaz, Züleyha, E-mail: zturkoglu-2344@hotmail.com [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey); Mus Alparslan University Faculty of Sciences, Department of Moleculer Biology, 49250-Mus (Turkey); Özdemir, Hasan, E-mail: hozdemir@atauni.edu.tr [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey)

    2016-04-18

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC{sub 50} values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  5. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    Science.gov (United States)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-04-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  6. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    International Nuclear Information System (INIS)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-01-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC_5_0 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  7. Methods for Purifying Enzymes for Mycoremediation

    Science.gov (United States)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  8. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF

    Directory of Open Access Journals (Sweden)

    Blewett Ann

    2008-12-01

    Full Text Available Abstract Background To develop antibacterial agents having novel modes of action against bacterial cell wall biosynthesis, we targeted the essential MurF enzyme of the antibiotic resistant pathogen Pseudomonas aeruginosa. MurF catalyzes the formation of a peptide bond between D-Alanyl-D-Alanine (D-Ala-D-Ala and the cell wall precursor uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid (UDP-MurNAc-Ala-Glu-meso-A2pm with the concomitant hydrolysis of ATP to ADP and inorganic phosphate, yielding UDP-N-acetylmuramyl-pentapeptide. As MurF acts on a dipeptide, we exploited a phage display approach to identify peptide ligands having high binding affinities for the enzyme. Results Screening of a phage display 12-mer library using purified P. aeruginosa MurF yielded to the identification of the MurFp1 peptide. The MurF substrate UDP-MurNAc-Ala-Glumeso-A2pm was synthesized and used to develop a sensitive spectrophotometric assay to quantify MurF kinetics and inhibition. MurFp1 acted as a weak, time-dependent inhibitor of MurF activity but was a potent inhibitor when MurF was pre-incubated with UDP-MurNAc-Ala-Glu-meso-A2pm or ATP. In contrast, adding the substrate D-Ala-D-Ala during the pre-incubation nullified the inhibition. The IC50 value of MurFp1 was evaluated at 250 μM, and the Ki was established at 420 μM with respect to the mixed type of inhibition against D-Ala-D-Ala. Conclusion MurFp1 exerts its inhibitory action by interfering with the utilization of D-Ala-D-Ala by the MurF amide ligase enzyme. We propose that MurFp1 exploits UDP-MurNAc-Ala-Glu-meso-A2pm-induced structural changes for better interaction with the enzyme. We present the first peptide inhibitor of MurF, an enzyme that should be exploited as a target for antimicrobial drug development.

  9. Identification of novel inhibitors of Pseudomonas aeruginosa MurC enzyme derived from phage-displayed peptide libraries.

    Science.gov (United States)

    El Zoeiby, Ahmed; Sanschagrin, François; Darveau, André; Brisson, Jean-Robert; Levesque, Roger C

    2003-03-01

    The machinery of peptidoglycan biosynthesis is an ideal site at which to look for novel antimicrobial targets. Phage display was used to develop novel peptide inhibitors for MurC, an essential enzyme involved in the early steps of biosynthesis of peptidoglycan monomer. We cloned and overexpressed the murA, -B and -C genes from Pseudomonas aeruginosa in the pET expression vector, adding a His-tag to their C termini. The three proteins were overproduced in Escherichia coli and purified to homogeneity in milligram quantities. MurA and -B were combinatorially used to synthesize the MurC substrate UDP-N-acetylmuramate, the identity of which was confirmed by mass spectrometry and nuclear magnetic resonance analysis. Two phage-display libraries were screened against MurC in order to identify peptide ligands to the enzyme. Three rounds of biopanning were carried out, successively increasing elution specificity from round 1 to 3. The third round was accomplished with both non-specific elution and competitive elution with each of the three MurC substrates, UDP-N-acetylmuramic acid (UNAM), ATP and L-alanine. The DNA of 10 phage, selected randomly from each group, was extracted and sequenced, and consensus peptide sequences were elucidated. Peptides were synthesized and tested for inhibition of the MurC-catalysed reaction, and two peptides were shown to be inhibitors of MurC activity with IC(50)s of 1.5 and 0.9 mM, respectively. The powerful selection technique of phage display allowed us to identify two peptide inhibitors of the essential bacterial enzyme MurC. The peptide sequences represent the basis for the synthesis of inhibitory peptidomimetic molecules.

  10. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.

    Science.gov (United States)

    Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim

    2014-10-01

    Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

  11. Studies on cell-free metabolism: ethanol production by a yeast glycolytic system reconstituted from purified enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Welch, P; Scopes, R K

    1985-07-01

    A reconstituted glycolytic system has been established from individually purified enzymes to simulate the conversion of glucose to ethanol plus CO/sub 2/ by yeast. Sustained and extensive conversion occurred provided that input of glucose matched the rate of ATP degradation appropriately. ATPase activity could be replaced by arsenate, which uncoupled ATP synthesis from glycolysis. The mode of uncoupling was investigated, and it was concluded that the artificial intermediate, 1-arseno-3-phosphoglycerate, has a half-life of no more than a few milliseconds. Arsenate at 4 mM concentration could simulate the equivalent of 10 ..mu..mol/ml min. of ATPase activity. The reconstituted enzyme system was capable of totally degrading one M (18% w/v) glucose in 8 hours giving 9% (w/v) ethanol. The levels of metabolites during metabolism were measured to detect rate-limiting steps. The successful operation of the reconstituted enzyme system demonstrates that it is possible to carry out complex chemical transformations with multiple enzyme systems in vitro. 36 references.

  12. Generating and Purifying Fab Fragments from Human and Mouse IgG Using the Bacterial Enzymes IdeS, SpeB and Kgp.

    Science.gov (United States)

    Sjögren, Jonathan; Andersson, Linda; Mejàre, Malin; Olsson, Fredrik

    2017-01-01

    Fab fragments are valuable research tools in various areas of science including applications in imaging, binding studies, removal of Fc-mediated effector functions, mass spectrometry, infection biology, and many others. The enzymatic tools for the generation of Fab fragments have been discovered through basic research within the field of molecular bacterial pathogenesis. Today, these enzymes are widely applied as research tools and in this chapter, we describe methodologies based on bacterial enzymes to generate Fab fragments from both human and mouse IgG. For all human IgG subclasses, the IdeS enzyme from Streptococcus pyogenes has been applied to generate F(ab')2 fragments that subsequently can be reduced under mild conditions to generate a homogenous pool of Fab' fragments. The enzyme Kgp from Porphyromonas gingivalis has been applied to generate intact Fab fragments from human IgG1 and the Fab fragments can be purified using a CH1-specific affinity resin. The SpeB protease, also from S. pyogenes, is able to digest mouse IgGs and has been applied to digest antibodies and Fab fragments can be purified on light chain affinity resins. In this chapter, we describe methodologies that can be used to obtain Fab fragments from human and mouse IgG using bacterial proteases.

  13. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    Science.gov (United States)

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.

    Science.gov (United States)

    Wendel, Sofie; Fischer, Emil C; Martínez, Virginia; Seppälä, Susanna; Nørholm, Morten H H

    2016-05-03

    Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay for evaluating and developing surface display systems is missing. Using a single domain antibody (also called nanobody) with high affinity for green fluorescent protein (GFP), we constructed a system that allows for fast, fluorescence-based detection of displayed proteins. The outer membrane hybrid protein LppOmpA and the autotransporter C-IgAP exposed the nanobody on the surface of Escherichia coli with very different efficiency. Both anchors were capable of functionally displaying the enzyme Chitinase A as a fusion with the nanobody, and this considerably increased expression levels compared to displaying the nanobody alone. We used flow cytometry to analyse display capability on single-cell versus population level and found that the signal peptide of the anchor has great effect on display efficiency. We have developed an inexpensive and easy read-out assay for surface display using nanobody:GFP interactions. The assay is compatible with the most common fluorescence detection methods, including multi-well plate whole-cell fluorescence detection, SDS-PAGE in-gel fluorescence, microscopy and flow cytometry. We anticipate that the platform will facilitate future in-depth studies on the mechanism of protein transport to the surface of living cells, as well as the optimisation of applications in industrial biotech.

  15. Isoforms of purified methyltransferase from human blood platelets ...

    African Journals Online (AJOL)

    ... purification from normal human blood platelets have not been investigated, hence, the aim of this study was to purify, characterise the enzyme from human blood platelets and determine its possible role in phospholipid transmethylation. The plasma membranes were purified by velocity and sucrose gradient centrifugation ...

  16. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.

    1986-01-01

    of ADP. The nucleotide sequence of the E. coli prs gene has been determined and the coding segment established. The deduced amino acid sequence of P-Rib-PP synthetase contained 314 amino acid residues and the molecular weight was calculated as 34,060. The initiation site of transcription was determined......Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...

  17. Identification of interleukin-8 converting enzyme as cathepsin L.

    Science.gov (United States)

    Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko

    2003-06-26

    IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.

  18. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  19. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Wieczorek Andrew S

    2010-09-01

    Full Text Available Abstract Background The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. Results Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA. Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase, and were

  20. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: Implications for cell proliferation control

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Razvan T., E-mail: ratura@gmx.net [Molecular Concepts Research (MCR), Muenster (Germany); Duckworth, William C. [Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ (United States); Levy, Jennifer L. [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States); Fawcett, Janet, E-mail: janet.fawcett@va.gov [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States)

    2010-04-30

    Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.

  1. Purifying capability, enzyme activity, and nitrification potentials in December in integrated vertical flow constructed wetland with earthworms and different substrates.

    Science.gov (United States)

    Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui

    2016-01-01

    The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.

  2. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.

    1986-01-01

    Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...... the UAA translation stop codon, within a Thy-rich region following an inverted repeat sequence, indicative of an rho-independent transcription terminator....

  3. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes.

    Science.gov (United States)

    Selig, Michael J; Vinzant, Todd B; Himmel, Michael E; Decker, Stephen R

    2009-05-01

    Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

  5. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  6. Kinetics and Thermal Properties of Crude and Purified β-Galactosidase with Potential for the Production of Galactooligosaccharides

    Directory of Open Access Journals (Sweden)

    Anna Rafaela Cavalcante Braga

    2013-01-01

    Full Text Available β-Galactosidase is an enzyme that catalyzes the hydrolysis of lactose. It has potential importance due to various applications in the food and dairy industries, involving lactose-reduced ingredients. The properties of two β-galactosidase enzymes, crude and purified, from different sources, Kluyveromyces marxianus CCT 7082 and Kluyveromyces marxianus ATCC 16045, were analyzed. The pH and temperature optima, deactivation energy, thermal stability and kinetic and thermodynamic parameters were determined, as well as the ability to hydrolyze lactose and produce galactooligosaccharides. Purification process improved the properties of the enzymes, and the results showed that purified enzymes from both strains had a higher optimum temperature, and lower values of Km, thus showing greater affinity for o-nitrophenyl-β-D-galactopiranoside than the crude enzymes. The production of galactooligosaccharides was also greater when using purified enzymes, increasing the synthesis by more than 30 % by both strains.

  7. Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy.

    Science.gov (United States)

    Kikani, B A; Singh, S P

    2015-11-01

    An amylase of a thermophilic bacterium, Bacillus sp. TSSC-3 (GenBank Number, EU710557) isolated from the Tulsi Shyam hot spring reservoir (Gujarat, India) was purified to the homogeneity in a single step on phenyl sepharose 6FF. The molecular weight of the enzyme was 25kD, while the temperature and pH optima for the enzyme catalysis were 80°C and 7, respectively. The purified enzyme was highly thermostable with broad pH stability and displayed remarkable resistance against surfactants, chelators, urea, guanidine HCl and various solvents as well. The stability and changes in the secondary structure of the enzyme under various extreme conditions were determined by the circular dichroism (CD) spectroscopy. The stability trends and the changes in the α-helices and β-sheets were analyzed by Mean Residual Ellipticity (MRE) and K2D3. The CD data confirmed the structural stability of the enzyme under various harsh conditions, yet it indicated reduced α-helix content and increased β-sheets upon denaturation. The thermodynamic parameters; deactivation rate constant, half-life, changes in entropy, enthalpy, activation energy and Gibb's free energy indicated that the enzyme-substrate reactions were highly stable. The overall profile of the enzyme: high thermostability, alkalitolerance, calcium independent nature, dextrose equivalent values and resistance against chemical denaturants, solvents and surfactants suggest its commercial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  9. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    - 1. We have investigated the formation and utilization of malonyl-CoA in fatty acid synthesis catalysed by preparations of partially purified acetyl-CoA carboxylase and purified fatty acid synthetase from lactating-rabbit mammary gland. - 2. Carboxylation of [1-14C]acetyl-CoA was linked to fatty...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl......-CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...

  10. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  11. Human cytosolic thymidine kinase: purification and physical characterization of the enzyme from HeLa cells

    International Nuclear Information System (INIS)

    Sherley, J.L.; Kelly, T.J.

    1988-01-01

    The mammalian cytosolic thymidine kinase is one of a number of enzymes involved in DNA replication whose activities increase dramatically during S phase of the cell cycle. As a first step in defining the mechanisms that control the S phase induction of thymidine kinase activity, the authors have purified the human enzyme from HeLa cells and raised a specific immune serum against the purified protein. The enzyme was isolated from cells arrested in S phase by treatment with methotrexate and purified to near homogeneity by ion-exchange and affinity chromatography. Stabilization of the purified enzyme was achieved by the addition of digitonin. An electrophoretic R/sub m/ of 0.2 in nondenaturing gels characterizes the purified enzyme activity as cytosolic thymidine kinase. The enzyme has a Stoke's radius of 40 A determined by gel filtration and a sedimentation coefficient of 5.5 S determined by glycerol gradient sedimentation. Based on these hydrodynamic values, a native molecular weight of 96,000 was calculated for the purified enzyme. When electrophoresed in denaturing sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, the most purified enzyme fraction was found to contain one predominant polypeptide of M/sub r/ = 24,000. Several lines of evidence indicate that this polypeptide is responsible for thymidine kinase enzymatic activity

  12. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  13. Commercial Milk Enzyme-Linked Immunosorbent Assay (ELISA) Kit Reactivities to Purified Milk Proteins and Milk-Derived Ingredients.

    Science.gov (United States)

    Ivens, Katherine O; Baumert, Joseph L; Taylor, Steve L

    2016-07-01

    Numerous commercial enzyme-linked immunosorbent assay (ELISA) kits exist to quantitatively detect bovine milk residues in foods. Milk contains many proteins that can serve as ELISA targets including caseins (α-, β-, or κ-casein) and whey proteins (α-lactalbumin or β-lactoglobulin). Nine commercially-available milk ELISA kits were selected to compare the specificity and sensitivity with 5 purified milk proteins and 3 milk-derived ingredients. All of the milk kits were capable of quantifying nonfat dry milk (NFDM), but did not necessarily detect all individual protein fractions. While milk-derived ingredients were detected by the kits, their quantitation may be inaccurate due to the use of different calibrators, reference materials, and antibodies in kit development. The establishment of a standard reference material for the calibration of milk ELISA kits is increasingly important. The appropriate selection and understanding of milk ELISA kits for food analysis is critical to accurate quantification of milk residues and informed risk management decisions. © 2016 Institute of Food Technologists®

  14. Definition of purified enzyme-linked immunosorbent assay antigens from the culture filtrate protein of Mycobacterium bovis by proteomic analysis.

    Science.gov (United States)

    Cho, Yun Sang; Lee, Sang-Eun; Ko, Young Joon; Cho, Donghee; Lee, Hyang Shim; Hwang, Inyeong; Nam, Hyangmi; Heo, Eunjung; Kim, Jong Man; Jung, Sukchan

    2009-01-01

    Enzyme-linked immunosorbent assay (ELISA) has been developed as the ancillary diagnosis of bovine tuberculosis at ante-mortem to overcome the disadvantages of intradermal skin test. In this study, the antigenic proteins were purified, applied to bTB ELISA, and identified through proteomic analysis. Culture filtrate protein of Mycobacterium bovis was fractionated by MonoQ column chromatography, and examined the antigenicity by immunoblotting. The antigenic 20 kDa protein was in-gel digested and identified the antigenome by LTQ mass spectrometer and peptide match fingerprinting, which were MPB64, MPB70, MPB83, Fas, Smc, Nrp, RpoC, Transposase, LeuA, and MtbE. The 20 kDa protein exhibited the highest antigenicity to bTB positive cattle in ELISA and would be useful for bTB serological diagnosis.

  15. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    OpenAIRE

    Mountfort, D O

    1990-01-01

    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding alde...

  16. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  17. Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate:amino acid ligase activity.

    Science.gov (United States)

    Hesse, Lars; Bostock, Julieanne; Dementin, Sebastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Chopra, Ian

    2003-11-01

    Chlamydiae are unusual obligate intracellular bacteria that cause serious infections in humans. Chlamydiae contain genes that appear to encode products with peptidoglycan biosynthetic activity. The organisms are also susceptible to antibiotics that inhibit peptidoglycan synthesis. However, chlamydiae do not synthesize detectable peptidoglycan. The paradox created by these observations is known as the chlamydial anomaly. The MurC enzyme of chlamydiae, which is synthesized as a bifunctional MurC-Ddl product, is expected to possess UDP-N-acetylmuramate (UDP-MurNAc):L-alanine ligase activity. In this paper we demonstrate that the MurC domain of the Chlamydia trachomatis bifunctional protein is functionally expressed in Escherichia coli, since it complements a conditional lethal E. coli mutant possessing a temperature-sensitive lesion in MurC. The recombinant MurC domain was overexpressed in and purified from E. coli. It displayed in vitro ATP-dependent UDP-MurNAc:L-alanine ligase activity, with a pH optimum of 8.0 and dependence upon magnesium ions (optimum concentration, 20 mM). Its substrate specificity was studied with three amino acids (L-alanine, L-serine, and glycine); comparable Vmax/Km values were obtained. Our results are consistent with the synthesis of a muramic acid-containing polymer in chlamydiae with UDP-MurNAc-pentapeptide as a precursor molecule. However, due to the lack of specificity of MurC activity in vitro, it is not obvious which amino acid is present in the first position of the pentapeptide.

  18. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  19. Studies on a novel peptide isolated and purified from rat insulinoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Al-Akhras, G N

    1987-01-01

    Rat insulinoma peptide (RIP) which appears to be either a fragment of, or an altered rat C-peptide was isolated and purified by dialysis. The purity of this peptide was investigated using polyacrylamide gel electrophoresis with sodium dodecyl sulfate, isoelectric focusing, and high performance liquid chromatography. RIP may contain two peptides similar to each other but differing in their isoelectric points. The molecular weight of RIP was found to be 1982 daltons by fast atoms bombardment mass spectrometry giving a chain length of approximately 22 amino acid residues. From information obtained using radioimmunoassay employing antiserum R901, RIP appears to share a common C-terminus with rat C-peptide. A radioimmunoassay for RIP was developed using the purified RIP as immunogen and for standards and tracers. An indirect enzyme linked immunosorbent assay (ELISA) for rat insulinoma peptide was developed using purified RIP for immunogen and semi-purified RIP as a standard.

  20. Nitrile-synthesizing enzyme: Screening, purification and characterization.

    Science.gov (United States)

    Kumano, Takuto; Suzuki, Takahisa; Shimizu, Sakayu; Kobayashi, Michihiko

    2016-09-12

    Cyanide is known as a toxic compound for almost all living organisms. We have searched for cyanide-resistant bacteria from the soil and stock culture collection of our laboratory, and have found the existence of a lot of microorganisms grown on culture media containing 10 mM potassium cyanide. Almost all of these cyanide-resistant bacteria were found to show β-cyano-L-alanine (β-CNAla) synthetic activity. β-CNAla synthase is known to catalyze nitrile synthesis: the formation of β-CNAla from potassium cyanide and O-acetyl-L-serine or L-cysteine. We found that some microorganisms were able to detoxify cyanide using O-methyl-DL-serine, O-phospho-L-serine and β-chloro-DL-alanine. In addition, we purified β-CNAla synthase from Pseudomonas ovalis No. 111 in nine steps, and characterized the purified enzyme. This enzyme has a molecular mass of 60,000 and appears to consist of two identical subunits. The purified enzyme exhibits a maximum activity at pH 8.5-9.0 at an optimal temperature of 40-50°C. The enzyme is specific for O-acetyl-L-serine and β-chloro-DL-alanine. The Km value for O-acetyl-L-serine is 10.0 mM and Vmax value is 3.57 μmol/min/mg.

  1. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    Science.gov (United States)

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A vanadium-dependent bromoperoxidase in the marine red alga Kappaphycus alvarezii (Doty) Doty displays clear substrate specificity.

    Science.gov (United States)

    Kamenarska, Zornitsa; Taniguchi, Tomokazu; Ohsawa, Noboru; Hiraoka, Masanori; Itoh, Nobuya

    2007-05-01

    Bromoperoxidase activity was initially detected in marine macroalgae belonging to the Solieriaceae family (Gigartinales, Rhodophyta), including Solieria robusta (Greville) Kylin, Eucheuma serra J. Agardh and Kappaphycus alvarezii (Doty) Doty, which are important industrial sources of the polysaccharide carrageenan. Notably, the purification of bromoperoxidase was difficult because due to the coexistence of viscoid polysaccharides. The activity of the partially purified enzyme was dependent on the vanadate ion, and displayed a distinct substrate spectrum from that of previously reported vanadium-dependent bromoperoxidases of marine macroalgae. The enzyme was specific for Br- and I- ions and inactive toward F- and Cl-. The K(m) values for Br- and H2O2 were 2.5x10(-3) M and 8.5x10(-5) M, respectively. The halogenated product, dibromoacetaldehyde, that accumulated in K. alvarezii was additionally determined.

  3. Influence of lysozyme complexation with purified Aldrich humic acid on lysozyme activity

    NARCIS (Netherlands)

    Li, Y.; Tan, W.F.; Wang, M.X.; Liu, F.; Weng, L.P.; Norde, W.; Koopal, L.K.

    2012-01-01

    Humic acid is an important component of dissolved organic matter and in two previous papers it has been shown that purified Aldrich humic acid (PAHA) forms strong complexes with the oppositely charged protein lysozyme (LSZ). The complexation and aggregation of enzymes with humic acids may lead to

  4. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    Science.gov (United States)

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Production of a phage-displayed single chain variable fragment ...

    African Journals Online (AJOL)

    Purpose: To develop specific single chain variable fragments (scFv) against infectious bursal disease virus (IBDV) via phage display technology. Methods: Purified viruses were initially applied for iterative panning rounds of scFv phage display libraries. The binding ability of the selected scFv antibody fragments against the ...

  6. Production of rabbit antibodies against purified Glucose oxidase

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia

    2012-02-01

    Full Text Available Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex G-200 column for gel filtration chromatography. It was observed that enzyme achieved 59.37 U mg-1of specific activity with 27.08 fold purity and 64.36% recovery. Purified glucose oxidase was injected into rabbits through intravenous route, to raise the glucose oxidase antibodies. After 30 days incubation period, the rabbits were slaughtered and serum was separated from blood. The antibodies were isolated by ammonium sulfate precipitation and confirmed by agar gel precipitation test. This could be a convenient and low cost alternate assay for the estimation of glucose oxidase in biological fluids. Moreover, such antibodies against the said enzyme could be used in various therapeutic and diagnostic applications.

  7. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available The widely used insecticide beta-cypermethrin has become a public concern because of its environmental contamination and toxic effects on mammals. In this study, a novel beta-cypermethrin degrading enzyme designated as CMO was purified to apparent homogeneity from a Streptomyces sp. isolate capable of utilizing beta-cypermethrin as a growth substrate. The native enzyme showed a monomeric structure with a molecular mass of 41 kDa and pI of 5.4. The enzyme exhibited the maximal activity at pH 7.5 and 30°C. It was fairly stable in the pH range from 6.5-8.5 and at temperatures below 10°C. The enzyme activity was significantly stimulated by Fe(2+, but strongly inhibited by Ag(+, Al(3+, and Cu(2+. The enzyme catalyzed the degradation of beta-cypermethrin to form five products via hydroxylation and diaryl cleavage. A novel beta-cypermethrin detoxification pathway was proposed based on analysis of these products. The purified enzyme was identified as a monooxygenase by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis (MALDI-TOF-MS and N-terminal protein sequencing. Given that all the characterized pyrethroid-degrading enzymes are the members of hydrolase family, CMO represents the first pyrethroid-degrading monooxygenase identified from environmental microorganisms. Taken together, our findings depict a novel pyrethroid degradation mechanism and indicate that the purified enzyme may be a promising candidate for detoxification of beta-cypermethrin and environmental protection.

  8. The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump.

    Science.gov (United States)

    Moriyama, Y; Nelson, N

    1987-07-05

    The proton-ATPase of chromaffin granules was purified so as to maintain its proton-pumping activity when reconstituted into phospholipid vesicles. The purification procedure involved solubilization with polyoxyethylene 9 lauryl ether, hydroxylapatite column, precipitation by ammonium sulfate, and glycerol gradient centrifugation. The protease inhibitor mixture used in previous studies inhibited the proton-pumping activity of the enzyme; therefore, the protein was stabilized by pepstatin A and leupeptin. The enzyme was purified at least 50-fold with respect to both ATPase and proton-pumping activity. The ATP-dependent proton uptake activity of the reconstituted enzyme was absolutely dependent on the presence of Cl- or Br- outside the vesicles, whereas sulfate, acetate, formate, nitrate, and thiocyanate were inhibitory. Sulfate inhibition seems to be due to competition with Cl- on the anion-binding site outside the vesicles, whereas nitrate and thiocyanate inhibited only from the internal side. As with the inhibition by N-ethylmaleimide, the proton-pumping activity was much more sensitive to nitrate than the ATPase activity. About 20 mM nitrate were sufficient for 90% inhibition of the proton-pumping activity while 100 mM inhibited only 50% of the ATPase activity both in situ and in the reconstituted enzyme. The possible regulatory effect of anions on the ATP-dependent proton uptake in secretory granules is discussed.

  9. Purification and Characterization of Melanogenic Enzyme Tyrosinase from Button Mushroom

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.

  10. A phage display selected 7-mer peptide inhibitor of the Tannerella forsythia metalloprotease-like enzyme Karilysin can be truncated to Ser-Trp-Phe-Pro.

    Science.gov (United States)

    Skottrup, Peter Durand; Sørensen, Grete; Ksiazek, Miroslaw; Potempa, Jan; Riise, Erik

    2012-01-01

    Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18) by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15), shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP) was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG) could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48). Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin.

  11. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    Science.gov (United States)

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  12. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  13. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity

    DEFF Research Database (Denmark)

    Wendel, Sofie; Christian Fischer, Emil; Martinez, Virginia

    2016-01-01

    Background: Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay...... to displaying the nanobody alone. We used flow cytometry to analyse display capability on single-cell versus population level and found that the signal peptide of the anchor has great effect on display efficiency.Conclusions: We have developed an inexpensive and easy read-out assay for surface display using...... nanobody: GFP interactions. The assay is compatible with the most common fluorescence detection methods, including multi-well plate whole-cell fluorescence detection, SDS-PAGE in-gel fluorescence, microscopy and flow cytometry. We anticipate that the platform will facilitate future in-depth studies...

  14. Removal of Bound Triton X-100 from Purified Bovine Heart Cytochrome bc1

    OpenAIRE

    Varhač, Rastislav; Robinson, Neal C.; Musatov, Andrej

    2009-01-01

    Cytochrome bc1 isolated from Triton X-100 solubilized mitochondrial membranes contains up to 120 nmol of Triton X-100 bound per nmol of the enzyme. Purified cytochrome bc1 is fully active; however, protein bound Triton X-100 significantly interferes with structural studies of the enzyme. Removal of Triton X-100 bound to bovine cytochrome bc1 was accomplished by incubation with Bio-Beads SM-2 in presence of sodium cholate. Sodium cholate is critical since it does not interfere with the adsorpt...

  15. Production of saccharifying enzyme using the wastewater of a shochu distillery

    Energy Technology Data Exchange (ETDEWEB)

    Morimura, S.; Kida, K.; Yakita, Y.; Sonoda, Y. (Kumamoto University, Kumamoto (Japan). Faculty of Engineering); Myoga, H. (Organo Co. LTd., Tokyo (Japan))

    1991-05-25

    A saccharifying enzyme was produced using wastewater from a shochu distillery. Since the wastewater contained highly concentrated volatile fatty acids and those severely inhibited cell growth at low pH as converted to their free forms, the initial pH ranging from 4.5 to 6.0 was optimum. It was suggested that cell autolysis facilitated the release of the saccharifying enzyme, however, a released protease digested the enzyme with a subsequent decrease in activity. The enzyme was purified easily, and the purified enzyme was homogeneous as analyzed by disc electrophoresis. The enzyme was characterized by a molecular weight of 54,000 Da, an isoelectric point of pH 3.6, and the optimum reaction temperature and pH of 50-55{degree}C and 4.5-5.5, respectively. The enzyme could digest no raw starch, and the hydrolyzate of soluble starch by the enzyme was composed of two to four oligosaccharides. Based on above results and the amino acid sequence in a N-terminal, the enzyme produced was concluded to be {alpha}-amylase. 11 refs., 8 figs., 6 tabs.

  16. Studies on Ganoderma lucidum III. production of pectolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.S.; Tseng, T.C.

    1986-07-01

    Pectolytic enzymes produced by Ganoderma lucidum B in culture and polypropylene bags were investigated. Two pectolytic enzymes, i.e., endo-polygalacturonase (endo-PG) and endo-pectic methyl trans-eliminase (endo-PMTE) were obtained from crude enzymes of G. lucidum B extract from mycelia polypropylene bags. The endo-PMTE has to optimal pH at 4.5 and 8.0. The enzyme stimulated by Ca/sup + +/ ion and preferred only pectin; the enzyme activity decreased at temperature above 50/sup 0/C. The endo-PMTE a and endo-PMTE b, obtained from polypropylene bag with mycelia of G. lucidum B, were purified by 60-80% ammonium sulfate fractionation, Sephadex G-100 gel filtration, DEAE-cellulose ion exchange column chromatography and isoelectric focusing, showing pI at 8.2 and 5.5. Disc gel electrophoresis confirmed two peaks corresponding to endo-PMTE a and b as isoenzymes. Pectolytic enzymes purified by 60-80% ammonium sulfate fraction macerated potato disc and it was more active than the crude enzyme. At pH 4.5, maceration of potato disc by pectolytic enzymes more effective than those at pH 8.0 or 7.0. At pH 8.0, Ca/sup + +/ ion stimulate pectolytic enzyme activities and accelerated maceration.

  17. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  18. Purification and Characterisation of a Fibrinolytic Enzyme from Rhizopus micro sporus var. tuberosus

    Directory of Open Access Journals (Sweden)

    Shuli Zhang

    2015-01-01

    Full Text Available Extracellular fibrinolytic enzyme from Rhizopus microsporus var. tuberosus was purified and characterised. The microorganism was isolated in a distillery from daqu, a fermentative agent used in the production of Chinese liquor and vinegar at diff erent temperatures. The fibrinolytic enzyme was partially purifi ed by ammonium sulphate precipitation, dialysis, DEAE Sepharose® Fast Flow ion exchange chromatography and Sephadex G-75 gel filtration chromatography. The molecular mass of the fi brinolytic enzyme was estimated to be 24.5 kDa by SDS-PAGE. The purified enzyme showed optimal activity at pH=7.0 and 37 °C by fibrin plate method. It showed stronger resistance to the inhibition by trypsin and was stable at 37 °C retaining 96.1 % residual activity aft er 4 h of incubation. The fibrinolytic activity of the enzyme was enhanced by Na+, Ca2+, Mg2+ and Mn2+. Conversely, Zn2+ and Cu2+ partly inhibited enzymatic activity. Using fibrin plate method, we found that the enzyme not only degrades fibrin directly, but also activates plasminogen into plasmin to degrade fibrin. The results indicate that the pure enzyme has a potential in dissolving blood clot, and the possibility for application in the treatment of thrombosis.

  19. Purification and Physico-Chemical Properties of Milk Clotting Enzyme Produced by Mucor Lamprosporus Comparable with Calf Rennet

    International Nuclear Information System (INIS)

    Moussa, L.A.; El-Fouly, M.Z.; El-Kabbany, H.; Kamel, Z.M.; Moubasher, M.H.

    1999-01-01

    Fractional precipitation of the crude enzyme produced by Mucor Lamprosporus fungus using 70% ammonium sulfate gave the highest MCA at 40 degree. Further purification of the partially purified enzyme was achieved by using Sephadex G-100 and rechromatographed on DEAE Sephadex A-50 and gave 22.5 fold then the crude enzyme with 301% enzyme recovery. Addition of NaCl to the skim milk caused pronounced decline in MCA of the enzyme while addition of 160 ppm of NaCl increased the MCA from 26.6 su/ml to 200 su/ml. The optimum temperature of the skin milk which induced the maximum activity of the purified enzyme in skim milk was found to be 40 degree while preheating the enzyme at 50 degree for 10 min caused a complete inhibition. Mild acidic condition did not affect the activity of the purified enzyme which remained almost stable till pH 6.0 while at pH 7.0 or more, the enzyme completely lost its clotting activity. The present data also showed that Mucor Lamprosporus rennin like enzyme exhibited higher activity than calf rennet

  20. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  1. Purification and characterization of sheep platelet cyclo-oxygenase. Acetylation by aspirin prevents haemin binding to the enzyme.

    Science.gov (United States)

    Boopathy, R; Balasubramanian, A S

    1986-01-01

    Arachidonate cyclo-oxygenase (prostaglandin synthetase; prostaglandin endoperoxide synthetase; EC 1.14.99.1) was purified from sheep platelets. The purification procedure involved hydrophobic column chromatography using either Ibuprofen-Sepharose, phenyl-Sepharose or arachidic acid-Sepharose as the first step followed by metal-chelate Sepharose and haemin-Sepharose affinity chromatography. The purified enzyme (Mr approximately 65,000) was homogeneous as observed by SDS/polyacrylamide-gel electrophoresis and silver staining. The enzyme was a glycoprotein with mannose as the neutral sugar. Haemin or haemoglobin was essential for activity. The purified enzyme could bind haemin exhibiting a characteristic absorption maximum at 410 nm. The enzyme after metal-chelate column chromatography could undergo acetylation by [acetyl-3H]aspirin. The labelled acetylated enzyme could not bind to haemin-Sepharose, presumably due to acetylation of a serine residue involved in the binding to haemin. The acetylated enzyme also failed to show its characteristic absorption maximum at 410 nm when allowed to bind haemin. Images Fig. 1. Fig. 4. PMID:3101664

  2. Mammalian folylpoly-γ-glutamate synthetase. 1. Purification and general properties of the hog liver enzyme

    International Nuclear Information System (INIS)

    Cichowicz, D.J.; Shane, B.

    1987-01-01

    Folylpolyglutamate synthetase was purified 30,000-150,000-fold from hog liver. Purification required the use of protease inhibitors, and the protein was purified to homogeneity in two forms. Both forms of the enzyme were monomers of M/sub r/ 62,000 and had similar specific activities. The specific activity of the homogeneous protein was over 2000-fold higher than reported for partially purified folylpolyglutamate synthetases from other mammalian sources. Enzyme activity was absolutely dependent on the presence of a reducing agent and a monovalent cation, of which K + was most effective. The purified enzyme catalyzed a MgATP-dependent addition of glutamate to tetrahydrofolate with the concomitant stoichiometric formation of MgADP and phosphate. Under conditions that resembled the expected substrate and enzyme concentrations in hog liver, tetrahydrofolate was metabolized to long glutamate chain length derivatives with the hexaglutamate, the major in vivo folate derivative, predominating. Enzyme activity was maximal at about pH 9.5. The high-pH optimum was primarily due to an increase in the K/sub m/ value for the L-glutamate substrate at lower pH values, and the reaction proceeded effectively at physiological pH provided high levels of glutamate were supplied

  3. Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana, v. Indaf 15) bran.

    Science.gov (United States)

    Savitha Prashanth, M R; Shruthi, R R; Muralikrishna, G

    2015-09-01

    Biological activities of alkali extracted (Barium hydroxide: BE-480 kDa, Potassium hydroxide: KE1-1080 and KE2-40 kDa), purified arabinoxylans (AX) from the finger millet bran varying in their molecular weight, phenolic acid content, arabinose to xylose ratios were evaluated for their immune-stimulatory activities using murine lymphocytes and peritoneal exudate macrophages. All three purified AX displayed significant (p 2 fold) and macrophage phagocytosis than KE1 and KE2. The above results clearly documented that the immunostimulatory activity of arabinoxylans is directly proportional to the amount of ferulic acid content (0.11 mg/100 g), whereas molecular weight as well as arabinose/xylose ratio, did not have any bearing. Purified AX from the finger millet bran can be explored as a potent natural immunomodulator.

  4. Novel β-lactamase-random peptide fusion libraries for phage display selection of cancer cell-targeting agents suitable for enzyme prodrug therapy

    Science.gov (United States)

    Shukla, Girja S.; Krag, David N.

    2010-01-01

    Novel phage-displayed random linear dodecapeptide (X12) and cysteine-constrained decapeptide (CX10C) libraries constructed in fusion to the amino-terminus of P99 β-lactamase molecules were used for identifying β-lactamase-linked cancer cell-specific ligands. The size and quality of both libraries were comparable to the standards of other reported phage display systems. Using the single-round panning method based on phage DNA recovery, we identified severalβ-lactamase fusion peptides that specifically bind to live human breast cancer MDA-MB-361 cells. The β-lactamase fusion to the peptides helped in conducting the enzyme activity-based clone normalization and cell-binding screening in a very time- and cost-efficient manner. The methods were suitable for 96-well readout as well as microscopic imaging. The success of the biopanning was indicated by the presence of ~40% cancer cell-specific clones among recovered phages. One of the binding clones appeared multiple times. The cancer cell-binding fusion peptides also shared several significant motifs. This opens a new way of preparing and selecting phage display libraries. The cancer cell-specific β-lactamase-linked affinity reagents selected from these libraries can be used for any application that requires a reporter for tracking the ligand molecules. Furthermore, these affinity reagents have also a potential for their direct use in the targeted enzyme prodrug therapy of cancer. PMID:19751096

  5. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents

    Science.gov (United States)

    Sasmita, I. R. A.; Sutrisno, A.; Zubaidah, E.; Wardani, A. K.

    2018-03-01

    Tempeh is one of Indonesia’s traditional foods that contain fibrinolytic enzymes. Tempeh bongkrek shows very strong activity among various tempeh. The fibrinolytic enzymes of bongkrek tempeh are obtained by steps of purification i.e, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The fibrinolytic enzymes has been successfully purified with a yield of 4.37%, specific activity of 3,361 U / mg and purification fold of 44.02. SDS PAGE analysis showed that the enzyme was purified in to single band with estimated molecular mass of 75.82 kDa. The purified enzyme has optimum pH of 7 and optimum temperature of 50°C and pH stability between pH 4 - 7 with temperature stability from 30°-50°C. The fibrinolytic activity is increased with addition of CaCl2 but inhibited with CuSO4, phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), and ethylenediaminetetraacetic acid (EDTA).

  6. A phage display selected 7-mer peptide inhibitor of the Tannerella forsythia metalloprotease-like enzyme Karilysin can be truncated to Ser-Trp-Phe-Pro.

    Directory of Open Access Journals (Sweden)

    Peter Durand Skottrup

    Full Text Available Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18 by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15, shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48. Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin.

  7. Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate

    NARCIS (Netherlands)

    Ramos, A.; Raven, N.; Sharp, R.J.; Bartolucci, S.; Rossi, M.; Cannio, R.; Lebbink, J.; Oost, van der J.; Vos, de W.M.; Santos, H.

    1997-01-01

    2-O-(beta)-Mannosylglycerate, a solute that accumulates in some (hyper)thermophilic organisms, was purified from Pyrococcus furiosus cells, and its effect on enzyme stabilization in vitro was assessed. Enzymes from hyperthermophilic, thermophilic, and mesophilic sources were examined. The

  8. Development of intelligent monitoring purifier for indoor PM 2.5

    Science.gov (United States)

    Lou, Guanting; Zhu, Rong; Guo, Jiangwei; Wei, Yongqing

    2018-03-01

    The particulate matter 2.5 (PM2.5) refers to tiny particles or droplets in the air that are two and one half microns or less in width. PM2.5 is an air pollutant that is a concern for people’s health when levels in air are high. The intelligent monitoring purifier was developed to detect indoor PM2.5 concentration before and after purification and the monitoring data could be displayed on the LCD screen, displaying different color patterns according to the concentrations. Through the Bluetooth transport module, real-time values could also display on the mobile phone and voice broadcast PM2.5 concentration level in the air. When PM2.5 concentration is higher than the setting threshold, the convection fan rotation and the speed can be remote controlled with mobile phone through the Bluetooth transport. Therefore, the efficiency and scope of the purification could be enhanced and further better air quality could be achieved.

  9. Purification and properties of amylolytic enzyme from Aspergillus oryzae MIBA316

    OpenAIRE

    仮屋, 麻紀子; 矢野, めぐむ; 瀧井, 幸男; Makiko, Kariya; Megumu, Yano; Yukio, Takii

    2003-01-01

    Amylolytic enzyme was purified to electrophoretically homogeneous state from culture broth of Aspergillus oryzae MIBA316. This enzyme hydrolyzed preferentially amylopectin, starch and glycogen. Approaches to complete breakdown of starch to its components and their utilization in food processing were discussed.

  10. Characterization of the cytochrome c oxidase in isolated and purified plasma membranes from the cyanobacterium Anacystis nidulans

    International Nuclear Information System (INIS)

    Peschek, G.A.; Wastyn, M.; Trnka, M.; Molitor, V.; Fry, I.V.; Packer, L.

    1989-01-01

    Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [ 35 S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min -1 (mg of protein) -1 , respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa 3 -type enzyme from the properties of its redox-active and EDTA-resistant Cu 2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa 3 -type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa 3 -type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme

  11. Isolation and characterization of an insulin-degrading enzyme from Drosophila melanogaster

    International Nuclear Information System (INIS)

    Garcia, J.V.; Fenton, B.W.; Rosner, M.R.

    1988-01-01

    An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent K/sub m/ for porcine insulin of 3 μM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min x mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [ 125 I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 0 C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [ 125 I]insulin at comparable concentrations (approximately 10 -6 M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggest an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila

  12. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  14. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    Science.gov (United States)

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  15. An Aspergillus oryzae acetyl xylan esterase: molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris.

    Science.gov (United States)

    Koseki, Takuya; Miwa, Yozo; Akao, Takeshi; Akita, Osamu; Hashizume, Katsumi

    2006-02-10

    We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.

  16. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.

    Science.gov (United States)

    Melissis, S; Labrou, N E; Clonis, Y D

    2006-07-28

    The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.

  17. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus Waste: A Potential Low Cost of the Enzyme

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-01-01

    Full Text Available The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent Km and Vmax of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0. The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe2+ and Zn2+, while protease activity was increased in the presence of Ca2+ and Mg2+ and Cu2+ by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA. The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.

  18. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  19. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella.

    Science.gov (United States)

    Wilson, M E; Consigli, R A

    1985-06-01

    A cyclic-nucleotide independent protein kinase activity has been demonstrated in highly purified preparations of the granulosis virus infecting the Indian meal moth, Plodia interpunctella. A divalent cation was required for activity. Manganese was the preferred cation and a pH of 8.0 resulted in optimal incorporation of 32P radiolabel into acid-precipitable protein. Although both ATP and GTP could serve as phosphate donors, ATP was utilized more efficiently by the enzyme. The kinase activity was localized to purified capsids; and the basic, internal core protein, VP12, was found to be the predominant viral acceptor. Histones and protamine sulfate could also serve as acceptors for the capsid-associated kinase activity. Using acid hydrolysis and phosphoamino acid analysis of phosphorylated nucleocapsid protein and nuclear magnetic resonance of phosphorylated VP12, it was determined that the enzyme catalyzes the transfer of phosphate to both serine and arginine residues of acceptor proteins. We believe this kinase activity may play a significant role in the viral replication cycle.

  20. Photoreactivating enzyme from Escherichia coli

    International Nuclear Information System (INIS)

    Snapka, R.M.; Fuselier, C.O.

    1977-01-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm. (author)

  1. Photoreactivating enzyme from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Snapka, R M; Fuselier, C O [California Univ., Irvine (USA)

    1977-05-01

    Escherichia coli photoreactivating enzyme (PRE) has been purified in large amounts from an E.coli strain lysogenic for a defective lambda bacteriophage carrying the phr gene. The resulting enzyme had a pH optimum of 7.2 and an ionic strength optimum of 0.18. It consisted of an apoprotein and cofactor, both of which were necessary for catalytic activity. The apoprotein had a monomer molecular weight of 35,200 and showed stable aggregates under denaturing conditions. The amino acid analysis of the E.coli enzyme was very similar to that of the photoreactivating enzyme from orchid seedlings (Cattelya aurantiaca). Both had arginine at the amino terminus. The cofactor, like the holoenzyme, showed absorption, magnetic circular dichroism, and emission properties indicative of an adenine moiety. Although the isolated enzyme had an action spectrum which peaked at about 360 nm, neither the cofactor, apoenzyme nor holoenzyme showed any detectable absorption between 300 and 400 nm.

  2. Phage display selects for amylases with improved low pH starch-binding

    NARCIS (Netherlands)

    Verhaert, RMD; Beekwilder, J; Olsthoorn, R; Quax, WJ; Duin, Jan van

    2002-01-01

    Directed evolution of secreted industrial enzymes is hampered by the lack of powerful selection techniques. We have explored surface display to select for enzyme variants with improved binding performance on complex polymeric substrates. By a combination of saturation mutagenesis and phage display

  3. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  4. Thermal Characterization of Purified Glucose Oxidase from A Newly Isolated Aspergillus Niger UAF-1

    Science.gov (United States)

    Anjum Zia, Muhammad; Khalil-ur-Rahman; K. Saeed, Muhammad; Andaleeb, Fozia; I. Rajoka, Muhammad; A. Sheikh, Munir; A. Khan, Iftikhar; I. Khan, Azeem

    2007-01-01

    An intracellular glucose oxidase was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger UAF-1. The enzyme was purified to a yield of 28.43% and specific activity of 135 U mg−1 through ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The enzyme showed high affinity for D-glucose with a Km value of 2.56 mM. The enzyme exhibited optimum catalytic activity at pH 5.5. Temperature optimum for glucose oxidase, catalyzed D-glucose oxidation was 40°C. The enzyme showed a high thermostability having a half-life 30 min, enthalpy of denaturation 99.66 kJ mol−1 and free energy of denaturation 103.63 kJ mol−1. These characteristics suggest the use of glucose oxidase from Aspergillus niger UAF-1 as an analytical reagent and in the design of biosensors for clinical, biochemical and diagnostic assays. PMID:18193107

  5. Production of Extracellular Anti-leukaemic Enzyme Lasparaginase ...

    African Journals Online (AJOL)

    Production of L-asparaginase was carried out in three different media, namely, solid-state media, Tryptone Glucose Yeast extract (TGY) broth and Tryptone Fructose Yeast extract (TFY) broth.. The enzyme was purified to near homogeneity by ammonium sulphate precipitation, dialysis, gel filtration on Sephadex G-100 ...

  6. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  7. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.

    Science.gov (United States)

    Petrat-Melin, B; Andersen, P; Rasmussen, J T; Poulsen, N A; Larsen, L B; Young, J F

    2015-01-01

    Genetic polymorphisms of bovine milk proteins affect the protein profile of the milk and, hence, certain technological properties, such as casein (CN) number and cheese yield. However, reports show that such polymorphisms may also affect the health-related properties of milk. Therefore, to gain insight into their digestion pattern and bioactive potential, β-CN was purified from bovine milk originating from cows homozygous for the variants A(1), A(2), B, and I by a combination of cold storage, ultracentrifugation, and acid precipitation. The purity of the isolated β-CN was determined by HPLC, variants were verified by mass spectrometry, and molar extinction coefficients at λ=280nm were determined. β-Casein from each of the variants was subjected to in vitro digestion using pepsin and pancreatic enzymes. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory capacities of the hydrolysates were assessed at 3 stages of digestion and related to that of the undigested samples. Neither molar extinction coefficients nor overall digestibility varied significantly between these 4 variants; however, clear differences in digestion pattern were indicated by gel electrophoresis. In particular, after 60min of pepsin followed by 5min of pancreatic enzyme digestion, one ≈4kDa peptide with the N-terminal sequence (106)H-K-E-M-P-F-P-K- was absent from β-CN variant B. This is likely a result of the (122)Ser to (122)Arg substitution in variant B introducing a novel trypsin cleavage site, leading to the changed digestion pattern. All investigated β-CN variants exhibited a significant increase in antioxidant capacity upon digestion, as measured by the Trolox-equivalent antioxidant capacity assay. After 60min of pepsin + 120min of pancreatic enzyme digestion, the accumulated increase in antioxidant capacity was ≈1.7-fold for the 4 β-CN variants. The ACE inhibitory capacity was also significantly increased by digestion, with the B variant reaching the highest inhibitory

  8. Changes in activity of industrial enzyme preparations irradiated with sterilizing doses. Part of a coordinated programme on factors influencing the utilization of food irradiation process

    International Nuclear Information System (INIS)

    Bachman, S.

    1984-03-01

    Experiments were carried out to investigate the efficacy of irradiation to sterilize enzyme preparations. Irradiation doses up to 25 kGy caused no changes in basic organoleptic properties of commercial rennin preparations. Dose rate (from 0.5 to 13.5 kGy/hr) has no influence on the changes in enzyme activity during the storage period of 3 months. Doses ranging from 8 to 12 kGy are sufficient to sterilize commercial enzyme preparations. Non-purified, crude rennin preparations appear to be more resistant to radiation than purified samples. Rennin preparations purified by dialysis and treated with 25 kGy resulted in a reduction of activity of 20%. The activity of preparations purified by gel filtration was reduced to 50% when treated with the same dose

  9. A novel lactone-forming carboxylesterase: molecular identification of a tuliposide A-converting enzyme in tulip.

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-06-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.

  10. Crystallization of Hevamine, an Enzyme with Lysozyme/Chitinase Activity from Hevea brasiliensis Latex

    NARCIS (Netherlands)

    ROZEBOOM, HJ; BUDIANI, A; BEINTEMA, JJ

    1990-01-01

    Hevamine, an enzyme with both lysozyme and chitinase activity, was isolated and purified from Hevea brasiliensis (rubber tree) latex. The enzyme (molecular weight 29,000) is homologous to certain “pathogenesis-related” proteins from plants, but not to hen egg-white or phage T4 lysozyme. To

  11. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  12. Microencapsulation of Purified Amylase Enzyme from Pitaya (Hylocereus polyrhizus Peel in Arabic Gum-Chitosan using Freeze Drying

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-03-01

    Full Text Available Amylase is one of the most important enzymes in the world due to its wide application in various industries and biotechnological processes. In this study, amylase enzyme from Hylocereus polyrhizus was encapsulated for the first time in an Arabic gum-chitosan matrix using freeze drying. The encapsulated amylase retained complete biocatalytic activity and exhibited a shift in the optimum temperature and considerable increase in the pH and temperature stabilities compared to the free enzyme. Encapsulation of the enzyme protected the activity in the presence of ionic and non-ionic surfactants and oxidizing agents (H2O2 and enhanced the shelf life. The storage stability of amylase is found to markedly increase after immobilization and the freeze dried amylase exhibited maximum encapsulation efficiency value (96.2% after the encapsulation process. Therefore, the present study demonstrated that the encapsulation of the enzyme in a coating agent using freeze drying is an efficient method to keep the enzyme active and stable until required in industry.

  13. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria.

    Science.gov (United States)

    Moreadith, R W; Lehninger, A L

    1984-05-25

    The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria.

  14. Kinetic Characterisation of Phosphofructokinase Purified from Setaria cervi: A Bovine Filarial Parasite

    Directory of Open Access Journals (Sweden)

    Bechan Sharma

    2011-01-01

    Full Text Available Phosphofructokinase (PFK, a regulatory enzyme in glycolytic pathway, has been purified to electrophoretic homogeneity from adult female Setaria cervi and partially characterized. For this enzyme, the Lineweaver-Burk's double reciprocal plots of initial rates and D-fructose-6-phosphate (F-6-P or Mg-ATP concentrations for varying values of cosubstrate concentration gave intersecting lines indicating that Km values for F-6-P (1.05 mM and ATP (3 μM were independent of each other. S. cervi PFK, when assayed at inhibitory concentration of ATP (>0.1 mM, exhibited sigmoidal behavior towards binding with F-6-P with a Hill coefficient (n value equal to 1.8 and 1.7 at 1.0 and 0.33 mM ATP, respectively. D-fructose-1,6-diphosphate (FDP competitively inhibited the filarial enzyme: Ki and Hill coefficient values being 0.18 μM and 2.0, respectively. Phosphoenolpyruvate (PEP also inhibited the enzyme competitively with the Ki value equal to 0.8 mM. The Hill coefficient values (>1.5 for F-6-P (at inhibitory concentration of ATP and FDP suggested its positive cooperative kinetics towards F-6-P and FDP, showing presence of more than one binding sites for these molecules in enzyme protein and allosteric nature of the filarial enzyme. The product inhibition studies gave us the only compatible mechanism of random addition process with a probable orientation of substrates and products on the enzyme surface.

  15. Potential Therapeutic Applications of Mucuna pruriens Peptide Fractions Purified by High-Performance Liquid Chromatography as Angiotensin-Converting Enzyme Inhibitors, Antioxidants, Antithrombotic and Hypocholesterolemic Agents.

    Science.gov (United States)

    Herrera-Chalé, Francisco; Ruiz-Ruiz, Jorge Carlos; Betancur-Ancona, David; Segura-Campos, Maira Rubi

    2016-02-01

    A Mucuna pruriens protein concentrate was hydrolyzed with a digestive (pepsin-pancreatin) enzymatic system. The soluble portion of the hydrolysate was fractionated by ultrafiltration and the ultrafiltered peptide fraction (PF) with lower molecular weight was purified by reversed-phase high-performance liquid chromatography. The PF obtained were evaluated by testing the biological activity in vitro. Fractions showed that the ability to inhibit the angiotensin-converting enzyme had IC50 values that ranged from 2.7 to 6.2 μg/mL. Trolox equivalent antioxidant capacity values ranged from 132.20 to 507.43 mM/mg. The inhibition of human platelet aggregation ranged from 1.59% to 11.11%, and the inhibition of cholesterol micellar solubility ranged from 0.24% to 0.47%. Hydrophobicity, size, and amino acid sequence could be factors in determining the biological activity of peptides contained in fractions. This is the first report that M. pruriens peptides act as antihypertensives, antioxidants, and inhibitors for human platelet aggregation and cholesterol micellar solubility in vitro.

  16. Purification and characterization of angiotensin-1 converting enzyme

    African Journals Online (AJOL)

    The Nemopilema nomurai hydrolysate was produced by the reaction of papain, and an angiotensin-Ι converting enzyme (ACE)-inhibitory peptide was purified by ... The infrared (IR), proton nuclear magnetic resonance spectroscopy (1H NMR), carbon nuclear magnetic resonance (13C NMR) and mass spectrometry (MS) ...

  17. Bi-functional fusion enzyme EG-M-Xyn displaying endoglucanase and xylanase activities and its utility in improving lignocellulose degradation.

    Science.gov (United States)

    Chen, Chin-Chung; Gao, Guo-Jhan; Kao, Ai-Ling; Tsai, Zheng-Chia

    2018-05-01

    In this study, the gene fusion of endoglucanase (EG, one of cellulases) from Teleogryllus emma and xylanase (Xyn, one of hemicellulases) from Thermomyces lanuginosus was constructed to generate a fusion enzyme (EG-M-Xyn). Through the expression and purification by ultrafiltration and size-exclusion chromatography, the purified EG-M-Xyn had a molecular weight of 75.5 kDa and exhibited the specific activity of CMCase and xylanase as 306.8 U/mg and 1227.3 U/mg, respectively. The K m values (CMC and beechwood xylan) were 6.8 and 60.6 mg mL -1 while catalytic efficiency (k cat /K m ) values of CMCase and xylanase were 3280 and 38,797 min -1  mg -1  mL, respectively. EG-M-Xyn exerted great properties for its great potential in improving the enzymatic hydrolysis of lignocellulosics to produce fermentable sugars. First, EG-M-Xyn showed mild reaction pH and temperature of 5.5 and 50 °C, respectively. Secondly, EG-M-Xyn exhibited great heat tolerance of T 1/2 values of 173 (CMCase) and 693 min (xylanase). Lastly and most importantly, application of EG-M-Xyn in combination with Ctec2 (commercial enzyme) in the saccharification led to a 10-20% net increase in fermentable sugars liberated from pretreated rice straw in comparison to the Ctec2 alone group. In conclusion, EG-M-Xyn had great potential in generating fermentable sugars from renewable agro-residues for biofuel and fine chemical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Porcine pulmonary angiotensin I-converting enzyme--biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron microscopic reconstruction.

    OpenAIRE

    Chen, Hui-Ling; Lünsdorf, Heinrich; Hecht, Hans-Jürgen; Tsai, Hsin

    2010-01-01

    The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional elect...

  19. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    Science.gov (United States)

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  20. A Novel Lactone-Forming Carboxylesterase: Molecular Identification of a Tuliposide A-Converting Enzyme in Tulip1[W

    Science.gov (United States)

    Nomura, Taiji; Ogita, Shinjiro; Kato, Yasuo

    2012-01-01

    Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification. PMID:22474185

  1. Expression, purification, crystallization and preliminary X-ray analysis of two arginine-biosynthetic enzymes from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Moradian, Fatemeh; Garen, Craig; Cherney, Leonid; Cherney, Maia; James, Michael N. G.

    2006-01-01

    Two enzymes responsible for arginine biosynthesis in M. tuberculosis were expressed in Escherichia coli, then purified to homogeneity. Preliminary X-ray analysis of diffraction-quality crystals grown from each enzyme are reported. The gene products of two open reading frames from Mycobacterium tuberculosis (Mtb) have been crystallized using the sitting-drop vapour-diffusion method. Rv1652 encodes a putative N-acetyl-γ-glutamyl-phosphate reductase (MtbAGPR), while the Rv1656 gene product is annotated as ornithine carbamoyltransferase (MtbOTC). Both MtbAGPR and MtbOTC were expressed in Escherichia coli, purified to homogeneity and crystallized. Native data for each crystal were collected to resolutions of 2.15 and 2.80 Å, respectively. Preliminary X-ray data are presented for both enzymes

  2. The industrial applicability of purified cellulase complex indigenously produced by Trichoderma viride through solid-state bio-processing of agro-industrial and municipal paper wastes

    Directory of Open Access Journals (Sweden)

    Muhammad Irshad

    2013-02-01

    Full Text Available An indigenous strain of Trichoderma viride produced high titers of cellulase complex in solid-state bio-processing of agro-industrial orange peel waste, which was used as the growth-supporting substrate. When the conditions of the SSF medium containing 15 g orange peel (50% w/w moisture inoculated with 5 mL of inoculum were optimal, the maximum productions of endoglucanase (655 ± 5.5 U/mL, exoglucanase (412 ± 4.3 U/mL, and β-glucosidase (515 ± 3.7 U/mL were recorded after 4 days of incubation at pH 5 and 35 °C. The enzyme with maximum activity (endoglucanase was purified by ammonium sulfate fractionation and Sephadex G-100 column gel filtration chromatographic technique. Endoglucanase was 5.5-fold purified with specific activity of 498 U/mg in comparison to the crude enzyme. The enzyme was shown to have a molecular weight of 58 kDa by sodium dodecyl sulphate poly-acrylamide gel electrophoresis (SDS-PAGE. The shelf life profile revealed that the enzyme could be stored at room temperature (30 °C for up to 45 days without losing much of its activity.

  3. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  4. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    International Nuclear Information System (INIS)

    Liu, Shun-Wei; Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien; Lin, Chun-Feng

    2013-01-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm 2 /V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm 2 /V s. • The discontinuity of grain boundary may cause the shift of threshold voltage

  5. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shun-Wei, E-mail: swliu@mail.mcut.edu.tw [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan, ROC (China); Lin, Chun-Feng [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China)

    2013-05-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm{sup 2}/V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm{sup 2}/V s. • The discontinuity of grain boundary may cause the shift of threshold voltage.

  6. Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme

    International Nuclear Information System (INIS)

    Abbotts, J.; SenGupta, D.N.; Zmudzka, B.; Widen, S.G.; Notario, V.; Wilson, S.H.

    1988-01-01

    The coding region of a human β-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with β-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as β-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural β-polymerases. The purified enzyme was free of nuclease activity. The authors studied detailed catalytic properties of the recombinant β-polymerase using defined template-primer systems. The results indicate that this β-polymerase is essentially identical with natural β-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and a double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N 3 -methyl-dT or O 6 -methyl-dG

  7. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    Science.gov (United States)

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  8. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi

    NARCIS (Netherlands)

    Wang, C.T.; Ji, B.P.; Li, B.; Nout, M.J.R.; Li, P.L.; Ji, H.; Chen, L.F.

    2006-01-01

    Bacillus subtilis DC33 producing a novel fibrinolytic enzyme was isolated from Ba-bao Douchi, a traditional soybean-fermented food in China. The strong fibrin-specific enzyme subtilisin FS33 was purified to electrophoretic homogeneity using the combination of various chromatographic steps. The

  10. Enzyme activity and allosteric characteristics of gamma-irradiated solid aspartate transcarbamylase

    International Nuclear Information System (INIS)

    Bigler, W.N.; Tolbert, B.M.

    1977-01-01

    Aspartate transcarbamylase purified from E. coli was lyophilized, irradiated in vacuo with γ radiation from a cesium-137 source, redissolved in buffer under a nitrogen atmosphere, and assayed for enzyme activity. Lyophilized and redissolved enzyme had normal catalytic and allosteric kinetic characteristics. The average D 37 observed with saturating substrate, 25 mM aspartate, was 4.1 Mrad. With less than saturating substrate, 5 mM aspartate, the activity increases from zero to 1.6 Mrad and then decreases with a D 37 of 7.2 Mrad. Inclusion of 1 mM CTP, an allosteric inhibitor, in the 5 mM aspartate assays results in a more pronounced maximum in the activity curve occurring at slightly higher dose, 2.2 Mrad. Inhibitability by CTP has a D 37 of 2.3 Mrad with doses below the activity maximum. Enzyme lyophilized in the presence of 1 mM CTP has a D 37 of 2.9 Mrad. ATCase activity changes caused by irradiation of lyophylized bacteria were qualitatively like the changes observed in the detailed studies with the purified enzyme. Apparent radiation sensitivities of ATCase in lyophilized bacteria were observed to vary with the technique used to disrupt the resuspended bacteria

  11. Some factors including radiation affecting the productivity of proteinase enzymes by mucor lamprosporus

    International Nuclear Information System (INIS)

    El-Kabbany, H.M.I.

    1996-01-01

    In the present time, great attention has been focused on the production of milk clotting enzymes from microbial source for use as remain substitute due to the increasing demands on rennin for cheese making and the prohibition of the slaughter of small calves. The present investigation included the isolation and identification of remin-like enzyme fungal producers from different egyptian food and soil samples. Different factors including gamma radiation affecting the capability of selected isolate to produce the enzyme was also included. Special attention has also given to study the effect of different purification methods of the produced enzyme. The properties of the purified enzyme were also investigated

  12. A new versatile microarray-based method for high-throughput screening of carbohydrate-active enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia; Pedersen, Henriette Lodberg; Schückel, Julia

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing, together with associated bioinformatic tools have identified vast numbers of putative carbohydrate degrading and modifying enzymes including glycoside hydrolases...... that the technique can be used to analyse both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified un-characterised enzymes...

  13. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  14. Purification, biochemical, and structural characterization of a novel fibrinolytic enzyme from Mucor subtilissimus UCP 1262.

    Science.gov (United States)

    Nascimento, Thiago Pajeú; Sales, Amanda Emmanuelle; Porto, Tatiana Souza; Costa, Romero Marcos Pedrosa Brandão; Breydo, Leonid; Uversky, Vladimir N; Porto, Ana Lúcia Figueiredo; Converti, Attilio

    2017-08-01

    Fibrinolytic proteases are enzymes that degrade fibrin. They provide a promising alternative to existing drugs for thrombolytic therapy. A protease isolated from the filamentous fungus Mucor subtilissimus UCP 1262 was purified in three steps by ammonium sulfate fractionation, ion exchange, and molecular exclusion chromatographies, and characterized biochemically and structurally. The purified protease exhibited a molecular mass of 20 kDa, an apparent isoelectric point of 4.94 and a secondary structure composed mainly of α-helices. Selectivity for N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as substrate suggests that this enzyme is a chymotrypsin-like serine protease, whose activity was enhanced by the addition of Cu 2+ , Mg 2+ , and Fe 2+ . The enzyme showed a fibrinolytic activity of 22.53 U/mL at 40 °C and its contact with polyethylene glycol did not lead to any significant alteration of its secondary structure. This protein represents an important example of a novel fibrinolytic enzyme with potential use in the treatment of thromboembolic disorders such as strokes, pulmonary emboli, and deep vein thrombosis.

  15. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of lactobacillus reuteri strain 180

    NARCIS (Netherlands)

    Leeuwen, S.S. van; Kralj, S.; Eeuwema, W.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P.

    2009-01-01

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith

  16. Structural Characterization of Bioengineered alpha-D-Glucans Produced by Mutant Glucansucrase GTF180 Enzymes of Lactobacillus reuteri Strain 180

    NARCIS (Netherlands)

    van Leeuwen, Sander S.; Kralj, Slavko; Eeuwema, Wieger; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith

  17. Non-complexed four cascade enzyme mixture: simple purification and synergetic co-stabilization.

    Directory of Open Access Journals (Sweden)

    Suwan Myung

    Full Text Available Cell-free biosystems comprised of synthetic enzymatic pathways would be a promising biomanufacturing platform due to several advantages, such as high product yield, fast reaction rate, easy control and access, and so on. However, it was essential to produce (purified enzymes at low costs and stabilize them for a long time so to decrease biocatalyst costs. We studied the stability of the four recombinant enzyme mixtures, all of which originated from thermophilic microorganisms: triosephosphate isomerase (TIM from Thermus thermophiles, fructose bisphosphate aldolase (ALD from Thermotoga maritima, fructose bisphosphatase (FBP from T. maritima, and phosphoglucose isomerase (PGI from Clostridium thermocellum. It was found that TIM and ALD were very stable at evaluated temperature so that they were purified by heat precipitation followed by gradient ammonia sulfate precipitation. In contrast, PGI was not stable enough for heat treatment. In addition, the stability of a low concentration PGI was enhanced by more than 25 times in the presence of 20 mg/L bovine serum albumin or the other three enzymes. At a practical enzyme loading of 1000 U/L for each enzyme, the half-life time of free PGI was prolong to 433 h in the presence of the other three enzymes, resulting in a great increase in the total turn-over number of PGI to 6.2×10(9 mole of product per mole of enzyme. This study clearly suggested that the presence of other proteins had a strong synergetic effect on the stabilization of the thermolabile enzyme PGI due to in vitro macromolecular crowding effect. Also, this result could be used to explain why not all enzymes isolated from thermophilic microorganisms are stable in vitro because of a lack of the macromolecular crowding environment.

  18. Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.

    Science.gov (United States)

    Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena

    2015-01-01

    Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Gas Vesicle Nanoparticles for Antigen Display

    Directory of Open Access Journals (Sweden)

    Shiladitya DasSarma

    2015-09-01

    Full Text Available Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs. GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.

  20. Measuring Intracellular Enzyme Concentrations: Assessing the Effect of Oxidative Stress on the Amount of Glyoxalase I

    Science.gov (United States)

    Miranda, Hugo Vicente; Ferreira, Antonio E. N.; Quintas, Alexandre; Cordeiro, Carlos; Freire, Ana Ponces

    2008-01-01

    Enzymology is one of the fundamental areas of biochemistry and involves the study of the structure, kinetics, and regulation of enzyme activity. Research in this area is often conducted with purified enzymes and extrapolated to "in vivo" conditions. The specificity constant, k[subscript S], is the ratio between k[subscript cat] (the catalytic…

  1. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  2. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø

    1997-01-01

    . Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...... with respect to host background in three different Escherichia coli strains, i.e. an isogenic set of K-12 strains, differing in the presence of an indigenous fim gene cluster, as well as a wild-type isolate. Immunization of rabbits with purified chimeric fimbriae resulted in serum which specifically recognized...

  3. DETERMINATION of OPTIMUM CONDITION of PAPAIN ENZYME FROM PAPAYA VAR JAVA (Carica papaya

    Directory of Open Access Journals (Sweden)

    Aline Puspita Kusumadjaja

    2010-06-01

    Full Text Available A study to investigate the optimum condition of papain enzyme has been carried out. The condition that are investigated are pH and temperature, based on measurement of enzyme activity which is defined as mmole tyrosin that are released in reaction between papain enzyme and casein as substrat per minute. In this research, the papain enzyme was isolated from pepaya burung varietas Java. The enzyme was partially purified by precipitation method using 30% - 50% saturated acetone. The result showed that the optimum conditions of papain enzyme are in pH 6 with activity 2,606 U/mL, and temperature at 50 oC with activity 2,469 U/mL. Keywords : Papaya var Java, papain, optimum condition, enzymatic activity

  4. Characterization of purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro

    International Nuclear Information System (INIS)

    Rubach, Jon K.; Wasik, Brian R.; Rupp, Jonathan C.; Kuhn, Richard J.; Hardy, Richard W.; Smith, Janet L.

    2009-01-01

    The Sindbis virus RNA-dependent RNA polymerase (nsP4) is responsible for the replication of the viral RNA genome. In infected cells, nsP4 is localized in a replication complex along with the other viral non-structural proteins. nsP4 has been difficult to homogenously purify from infected cells due to its interactions with the other replication proteins and the fact that its N-terminal residue, a tyrosine, causes the protein to be rapidly turned over in cells. We report the successful expression and purification of Sindbis nsP4 in a bacterial system, in which nsP4 is expressed as an N-terminal SUMO fusion protein. After purification the SUMO tag is removed, resulting in the isolation of full-length nsP4 possessing the authentic N-terminal tyrosine. This purified enzyme is able to produce minus-strand RNA de novo from plus-strand templates, as well as terminally add adenosine residues to the 3' end of an RNA substrate. In the presence of the partially processed viral replicase polyprotein, P123, purified nsP4 is able to synthesize discrete template length minus-strand RNA products. Mutations in the 3' CSE or poly(A) tail of viral template RNA prevent RNA synthesis by the replicase complex containing purified nsP4, consistent with previously reported template requirements for minus-strand RNA synthesis. Optimal reaction conditions were determined by investigating the effects of time, pH, and the concentrations of nsP4, P123 and magnesium on the synthesis of RNA

  5. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel.

    Science.gov (United States)

    Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin

    2014-01-01

    The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  7. Construction of a photoactivatable profluorescent enzyme via propinquity labeling.

    Science.gov (United States)

    Lee, Hsien-Ming; Xu, Weichen; Lawrence, David S

    2011-03-02

    A strategy for the construction of a profluorescent caged enzyme is described. An active site-directed peptide-based affinity label was designed, synthesized, and employed to covalently label a nonactive site residue in the cAMP-dependent protein kinase. The modified kinase displays minimal catalytic activity and low fluorescence. Photolysis results in partial cleavage of the enzyme-bound affinity label, restoration of enzymatic activity (60-80%) and a strong fluorescent response (10-20 fold). The caged kinase displays analogous behavior in living cells, inducing a light-dependent loss of stress fibers that is characteristic of cAMP action. This strategy furnishes molecularly engineered enzymes that can be remotely controlled in time, space, and total activity.

  8. Purification and characterization of sheep platelet cyclo-oxygenase. Acetylation by aspirin prevents haemin binding to the enzyme.

    OpenAIRE

    Boopathy, R; Balasubramanian, A S

    1986-01-01

    Arachidonate cyclo-oxygenase (prostaglandin synthetase; prostaglandin endoperoxide synthetase; EC 1.14.99.1) was purified from sheep platelets. The purification procedure involved hydrophobic column chromatography using either Ibuprofen-Sepharose, phenyl-Sepharose or arachidic acid-Sepharose as the first step followed by metal-chelate Sepharose and haemin-Sepharose affinity chromatography. The purified enzyme (Mr approximately 65,000) was homogeneous as observed by SDS/polyacrylamide-gel elec...

  9. Application of decolourized and partially purified polygalacturonase and α-amylase in apple juice clarification

    Directory of Open Access Journals (Sweden)

    Tapati Bhanja Dey

    2014-01-01

    Full Text Available Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103 using wheat bran by solid state fermentation (SSF process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL and 0.4% α-amylase (899 U/mL, maximum clarity (%T660nm = 97.0% of juice was attained after 2 h of incubation at 50 ºC in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property.

  10. Application of decolourized and partially purified polygalacturonase and α-amylase in apple juice clarification.

    Science.gov (United States)

    Dey, Tapati Bhanja; Banerjee, Rintu

    2014-01-01

    Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi) peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103) using wheat bran by solid state fermentation (SSF) process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL) and 0.4% α-amylase (899 U/mL), maximum clarity (%T(660 nm) = 97.0%) of juice was attained after 2 h of incubation at 50 °C in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property.

  11. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst

    2015-01-01

    and adhesion behaviour tests. Comparative studies with a surfactant, protein, purified enzyme, enzyme stabiliser using n-decane (as a model for the oil) have also been carried out in order to verify experimental results. The enzymes that have the highest effect on the wettability have been identified. Those...... action has been found to be replacement of oil at the solid surface by the enzyme. Other mechanisms (modification of the surface tension or catalytic modification of hydrocarbons resulting in reducing the oil viscosity) have shown to be much less pronounced from the measurements reported here....

  12. In vitro effects of policosanol (Saccharum officinarum L wax alcohols on the 5-lipooxygenase enzyme

    Directory of Open Access Journals (Sweden)

    Yohani Pérez Guerra

    Full Text Available Introduction: policosanol, a mixture of high molecular weight aliphatic alcohols purified from sugarcane with octacosanol as the main component, shows cholesterol-lowering and antiplatelet effects in addition to an inhibitory effect on type I cicloxygenase. Objective: to determine whether policosanol may inhibit 5-LOX enzyme activity in vitro. Methods: effects on 5-LOX enzyme activities were assessed in rat blood polymorphonuclear leukocytes. Vehicle or Policosanol suspensions (0.6 to 6 000 µg/mL were added to tubes containing the reaction mix and then absorbance changes at 234 nm were measured. Results: added Policosanol inhibited in vitro 5-LOX activity by 30 %, which was not a significant figure but depended on the concentration(r= 0.992; p< 0.05; it was 1 250 µg/mL. Conclusions: policosanol did not significantly inhibit 5-LOX enzyme activity in rat PMNL preparations, so that it does not seem to be a dual inhibitor of COX and-LOX enzymes. This result differs from that found for beeswax alcohols and underlines the different effects of the mixtures of long-chain fatty alcohols purified from the sugarcane and the beeswax.

  13. Characterization of purified and Xerogel immobilized Novel Lignin Peroxidase produced from Trametes versicolor IBL-04 using solid state medium of Corncobs

    Directory of Open Access Journals (Sweden)

    Asgher Muhammad

    2012-08-01

    Full Text Available Abstract Background Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP, this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology. Results A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF medium of corn cobs and maximum LiP activity of 592 ± 6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30 kDa homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS and proplytetramethoxysilane (PTMS and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants Km and Vmax were 70 and 56 μM and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu2+, Mn2+ and Fe2+ whereas, Cystein, EDTA and Ag+ showed inhibitory effects

  14. Measurement and purification of Alanine aminotransferase (ALT enzyme activity in patients with celiac disease

    Directory of Open Access Journals (Sweden)

    Taghreed U. Mohammed

    2017-09-01

    Full Text Available Celiac disease (CD is the most common genetically - based disease in correlation with food intolerance. The aim of this study is to measure the activity of ALT enzyme and purify enzyme from sera women with celiac disease. Alanine aminotransferase (ALT activity has been assayed in (30 women serum samples with celiac disease, age range between (20-40 year and (30 serum of healthy women as control group, age range between (22-38 year. In the present study, the mean value of ALT activity was significantly higher in patients with celiac disease than healthy group (p<0.01. The ALT enzyme was partial purified from sera women with celiac disease by dialysis, gel filtration using Sephadex G- 50 and ion exchange chromatography using DEAE- cellulose A-50 . The results showed a single peak by using gel filtration and the activity reached 31-15 U/L .Two isoenzymes were obtained by using ion exchange chromatography and the purity degree of isoenzymse (I, II were (5.7 and (5.53 fold respectively

  15. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis

    OpenAIRE

    Zhou, Zijuan; Wang, Liang; Feng, Panpan; Yin, Lianhong; Wang, Chen; Zhi, Shengxu; Dong, Jianyi; Wang, Jingyu; Lin, Yuan; Chen, Dapeng; Xiong, Yongjian; Peng, Jinyong

    2017-01-01

    Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracol...

  16. Carbamoyl-phosphate synthase (ammonia) of rat and axolotl liver: determination of immunological cross-reactivity without purification of the axolotl enzyme

    NARCIS (Netherlands)

    Lamers, W. H.; de Graaf, A.; Mooren, P. G.; Moorman, A. F.; Charles, R.

    1982-01-01

    A method has been developed to establish the degree of cross-reactivity of an antiserum raised against purified carbamoyl-phosphate synthase (ammonia) from adult rat liver, toward a homologous enzyme from another species without purification of the latter enzyme. For that purpose the ratio between

  17. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    Algal cell wall polysaccharides, and their derived oligosaccharides, display a range of health beneficial bioactive properties. Enzymes capable of degrading algal polysaccharides into oligosaccharides may be used to produce biomolecules with new functionalities for the food and pharma industry....... Some marine bacteria are specialized in degrading algal biomass and secrete enzymes that can decompose the complex algal cell wall polysaccharides. In order to identify such bacteria and enzymatic activities, we have used a combination of traditional cultivation and isolation methods, bioinformatics...... and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  19. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes.

    Science.gov (United States)

    Duan, Cheng-Jie; Huang, Ming-Yue; Pang, Hao; Zhao, Jing; Wu, Chao-Xing; Feng, Jia-Xun

    2017-07-01

    In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat /K M ) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.

  20. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  1. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media.

    Science.gov (United States)

    Taneja, Kapila; Bajaj, Bijender Kumar; Kumar, Sandeep; Dilbaghi, Neeraj

    2017-07-01

    Intravascular thrombosis is one of the major causes of variety of cardiovascular disorders leading to high mortality worldwide. Fibrinolytic enzymes from microbial sources possess ability to dissolve these clots and help to circumvent these problems in more efficient and safer way. In the present study, fibrinolytic protease with higher fibrinolytic activity than plasmin was obtained from Serratia sp. KG-2-1 isolated from garbage dump soil. Response surface methodology was used to study the interactive effect of concentration of maltose, yeast extract + peptone (1:1), incubation time, and pH on enzyme production and biomass. Maximum enzyme production was achieved at 33 °C after 24 h at neutral pH in media containing 1.5% Maltose, 4.0% yeast extract + peptone and other trace elements resulting in 1.82 folds increased production. The enzyme was purified from crude extract using ammonium sulfate precipitation and DEAE-Sephadex chromatography resulting in 12.9 fold purification with 14.9% yield. The purified enzyme belongs to metalloprotease class and had optimal activity in conditions similar to physiological environment with temperature optima of 40 °C and pH optima of 8. The enzyme was found to be stable in various solvents and its activity was enhanced in presence of Na + , K + , Ba 2+ , Cu 2+ , Mn 2+ , Hg 2+ but inhibited by Ca 2+ and Fe 3+ . Hence, the obtained enzyme may be used as potential therapeutic agent in combating various thrombolytic disorders.

  2. Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase.

    Science.gov (United States)

    Shim, Jae-Hoon; Seo, Nam-Seok; Roh, Sun-Ah; Kim, Jung-Wan; Cha, Hyunju; Park, Kwan-Hwa

    2007-06-13

    A bread-baking process was developed using a potential novel enzyme, cyclodextrin glucanotransferase[3-18] (CGTase[3-18]), that had previously been engineered to have enhanced hydrolyzing activity with little cyclodextrin (CD) formation activity toward starch. CGTase[3-18] was primarily manipulated to be displayed on the cell surface of Saccharomyces cerevisiae. S. cerevisiae carrying pdeltaCGT integrated into the chromosome exhibited starch-hydrolyzing activity at the same optimal pH and temperature as the free enzyme. Volumes of the bread loaves and rice cakes prepared using S. cerevisiae/pdeltaCGT increased by 20% and 45%, respectively, with no detectable CD. Retrogradation rates of the bread and rice cakes decreased significantly during storage. In comparison to the wild type, S. cerevisiae/pdeltaCGT showed improved viability during four freeze-thaw cycles. The results indicated that CGTase[3-18] displayed on the surface of yeast hydrolyzed starch to glucose and maltose that can be used more efficiently for yeast fermentation. Therefore, display of an antistaling enzyme on the cell surface of yeast has potential for enhancing the baking process.

  3. Crosslinked enzyme aggregates of hydroxynitrile lyase partially purified from Prunus dulcis seeds and its application for the synthesis of enantiopure cyanohydrins.

    Science.gov (United States)

    Yildirim, Deniz; Tükel, S Seyhan; Alagöz, Dilek

    2014-01-01

    Hydroxynitrile lyases are powerful catalysts in the synthesis of enantiopure cyanohydrins which are key synthons in the preparations of a variety of important chemicals. The response surface methodology including three-factor and three-level Box-Behnken design was applied to optimize immobilization of hydroxynitrile lyase purified partially from Prunus dulcis seeds as crosslinked enzyme aggregates (PdHNL-CLEAs). The quadratic model was developed for predicting the response and its adequacy was validated with the analysis of variance test. The optimized immobilization parameters were initial glutaraldehyde concentration, ammonium sulfate saturation concentration, and crosslinking time, and the response was relative activity of PdHNL-CLEA. The optimal conditions were determined as initial glutaraldehyde concentration of 25% w/v, ammonium sulfate saturation concentration of 43% w/v, and crosslinking time of 18 h. The preparations of PdHNL-CLEA were examined for the synthesis of (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile from their corresponding aldehydes and hydrocyanic acid. After 96-h reaction time, the yield-enantiomeric excess values (%) were 100-99, 100-21, 100-99, 83-91, 100-99, 100-72, and 100-14%, respectively, for (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile. The results show that PdHNL-CLEA offers a promising potential for the preparation of enantiopure (R)-mandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, and (R)-4-bromomandelonitrile with a high yield and enantiopurity. © 2014 American Institute of Chemical Engineers.

  4. Recent advances in enzyme extraction strategies: A comprehensive review.

    Science.gov (United States)

    Nadar, Shamraja S; Pawar, Rohini G; Rathod, Virendra K

    2017-08-01

    The increasing interest of industrial enzymes demands for development of new downstream strategies for maximizing enzyme recovery. The significant efforts have been focused on the development of newly adapted technologies to purify enzymes in catalytically active form. Recently, an aqueous two phase system (ATPS) is emerged as powerful tools for efficient extraction and purification of enzymes due to their versatility, lower cost, process integration capability and easy scale-up. The present review gives an overview of effect of parameters such as tie line length, pH, neutral salts, properties of polymer and salt involved in traditional polymer/polymer and polymer/salt ATPS for enzyme recovery. Further, advanced ATPS have been developed based on alcohols, surfactants, micellar compounds to avoid tedious recovery steps for getting desired enzyme. In order to improve the selectivity and efficiency of ATPS, recent approaches of conventional ATPS combined with different techniques like affinity ligands, ionic liquids, thermoseparating polymers and microfluidic device based ATPS have been reviewed. Moreover, three phase partitioning is also highlighted for enzymes enrichment as a blooming technology for efficiently integrated bioseparation techniques. At the end, it includes an overview of CLEAs technology and organic-inorganic nanoflowers preparation as novel strategies for simultaneous extraction, purification and immobilization of enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Porcine pulmonary angiotensin I-converting enzyme--biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron microscopic reconstruction.

    Science.gov (United States)

    Chen, Hui-Ling; Lünsdorf, Heinrich; Hecht, Hans-Jürgen; Tsai, Hsin

    2010-08-01

    The somatic angiotensin I-converting enzyme (sACE; peptidyl-dipeptidase A; EC 3.4.15.1) was isolated from pig lung and purified to homogeneity. The purified enzyme has a molecular mass of about 180 kDa. Upon proteolytic cleavage, two approximately 90 kDa fragments were obtained and identified by amino-terminal sequence analysis as the N- and C-domains of sACE. Both purified domains were shown to be catalytically active. A 2.3 nm resolution model of sACE was obtained by three-dimensional electron microscopic reconstruction of negatively stained sACE particles, based on atomic X-ray data fitting. Our model shows for the first time the relative orientation of the sACE catalytically active domains and their spatial distance. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Optimization of Freeze Drying Conditions for Purified Pectinase from Mango (Mangifera indica cv. Chokanan Peel

    Directory of Open Access Journals (Sweden)

    Abdul Manap Mohd Yazid

    2012-03-01

    Full Text Available Response surface methodology (RSM along with central composite design (CCD was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan peel. The effect of pectinase content (−2.66, 62.66 mg/mL, Arabic gum (−1.21, 10.21%, w/v, and maltodextrin (0.73, 7.26%, w/v as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05 effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v of Arabic gum, and 4 (%, w/v of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL, yield (86.4% and storage stability (84.2% of encapsulated pectinase were achieved.

  7. Optimization of Freeze Drying Conditions for Purified Pectinase from Mango (Mangifera indica cv. Chokanan) Peel

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2012-01-01

    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (−2.66, 62.66 mg/mL), Arabic gum (−1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05) effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved. PMID:22489134

  8. (Hyper)thermophilic enzymes: production and purification.

    Science.gov (United States)

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  9. Production of Antimicrobial Films by Incorporation of Partially Purified Lysozyme into Biodegradable Films of Crude Exopolysaccharides Obtained from Aureobasidium pullulans Fermentation

    Directory of Open Access Journals (Sweden)

    Nilay Kandemir

    2005-01-01

    Full Text Available Antimicrobial films were produced by incorporating partially purified lysozyme into films of crude exopolysaccharides (59 % pullulan obtained from Aureobasidium pullulans fermentation. After film making, the films containing lysozyme at 100, 260, 520 and 780 μg/cm2 showed 23 to 70 % of their expected enzyme activities. The highest recovery of enzyme activity (65–70 % after the film making was obtained in films prepared by incorporating lysozyme at 260 μg/cm2 (1409 U/cm2. The incorporation of disodium EDTA×2H2O and sucrose did not affect the initial lysozyme activity of the films significantly. With or without the presence of disodium EDTA×2H2O at 52 or 520 μg/cm2, lysozyme activity showed sufficient stability in the films during 21 days of cold storage. However, the presence of sucrose at 10 mg/cm2 in the films caused the destabilization of part of enzyme activity (almost 35 % at the end of storage. The combinational incorporation of lysozyme at 780 μg/cm2 (4227 U/cm2 and disodium EDTA×2H2O at 520 μg/cm2 gave antimicrobial films effective on Escherichia coli. However, in the studied lysozyme concentration range the films did not show any antimicrobial activity against Lactobacillus plantarum. This study clearly showed that the partially purified lysozyme and crude exopolysaccharides from Aureobasidium pullulans may be used to obtain antimicrobial films to increase the safety of foods.

  10. Characterization and mode of action of xylanases ␁and some accessory enzymes

    NARCIS (Netherlands)

    Kormelink, F.J.M.

    1992-01-01

    Three endo-(l,4)-β-D-xylanases; (Endo I, Endo II, and Endo III), a (1,4)-β-xylosidase and an (1,4)-β-D-arabinoxylan arabinofuranohydrolase (AXH) were purified from a culture filtrate produced by Aspergillus awamori CMI 142717. In addition to these enzymes, an acetyl

  11. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  12. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection.

    Science.gov (United States)

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita; Chaudhary, Vijay K

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.

  13. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal.

    Science.gov (United States)

    Khatri, Bhim Prakash; Bhattarai, Tribikram; Shrestha, Sangita; Maharjan, Jyoti

    2015-01-01

    Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain MCAS2 was isolated from soil of Manaslu Conservation Area (MCA), Gorkha, Nepal. The optimum production of pectinase enzyme was observed at 48 h of fermentation. The pectinase enzyme was partially purified by cold acetone treatment followed by Sephadex G-75 gel filtration chromatography. The partially purified enzyme exhibited maximum activity 60 U/mg which was almost 8.5-fold higher than the crude pectinase. The approximate molecular weight of the enzyme was found to be 66 kDa as observed from SDS-PAGE. The pectinase enzyme was active at broad range of temperature (30-70 °C) and pH (6.2-9.2). Optimum temperature and pH of the pectinase enzyme were 50 °C and 8.2 respectively. The enzyme was stable up to 70 °C and about 82 % of pectinase activity was still observed at 100 °C. The thermostable and alkaline nature of this pectinase can meet the demand of various industrial processes like paper and pulp industry, in textile industry, fruit juice industry, plant tissue maceration and wastewater treatment. In addition, the effect of different metal ions on pectinase activity was also studied.

  14. Characterisation of a novel proteolytic enzyme localised to goblet cells in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    A proteolytic enzyme, ingobsin , purified from rat duodenal extracts is shown to be localised to intestinal goblet cells of both man and rat. Enzyme positive cells decrease in number from duodenum to colon. The enzyme is a 33 000 Mr protein with an isoelectric point of 5.1. The pH optimum...... for enzymatic activity is 7.4-8.0. Based on substrate specificity for arg-x, lys-x and to a lesser degree tyr-x, on the effect of diisopropylphosphorofluoride , Trasylol and phenylmethylsulfonylfluoride and on proteolytic activity towards intact proteins, ingobsin is classified as a serine proteinase...

  15. Purification and characterization of recombinant high pI Barley α-Glucosidase

    DEFF Research Database (Denmark)

    Næsted, Henrik; Bojsen, Kirsten; Svensson, Birte

    (MACGREGOR & sissons). recently expression and characterization of the recombinant full length and fully functional barley high pi α-glucosidase in pichia pastoris has been achieved. in order to facilitate protein yield in the mg range, a clone representing an n-terminal hexa histidine tagged recombinant...... form of the enzyme was grown under high cell-density fermentation conditions. this approach enabled a successful protein expression profile under the highly sensitive methanol utilization phase using a biotatb 5 l reactor for the fermentation procedure. the enzyme was purified from 3.5 liter α...... of the native enzyme indicates a possible post-translational glycosylation of the recombinant α-glucosidase. preliminary enzyme kinetic analysis has demonstrated that the purified α-glucosidase displayed high stability during the 5 day long fermenentation and exhibited a specific activity in the range...

  16. Optimization of freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2012-01-01

    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (-2.66, 62.66 mg/mL), Arabic gum (-1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved.

  17. Methods for purifying carbon materials

    Science.gov (United States)

    Dailly, Anne [Pasadena, CA; Ahn, Channing [Pasadena, CA; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  18. Application of aqueous biphasic systems as strategy to purify tannase from Aspergillus tamarii URM 7115.

    Science.gov (United States)

    de Sena, Amanda Reges; Barros Oliveira, Flávio Manoel; Campos Leite, Tonny Cley; Evaristo da Silva Nascimento, Talita Camila; Moreira, Keila Aparecida; de Assis, Sandra Aparecida

    2017-10-21

    The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 2 4 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67 h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (M PEG 600; 4,000 and 8,000 g/ mol), and PEG (C PEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (C CIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) M PEG , 24% (w/w) C PEG , 15% (w/w) C CIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.

  19. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    International Nuclear Information System (INIS)

    Ahmed, O.E.A.M.S

    2010-01-01

    Due to continuous demand for manufacture of high quality, low coast industrial detergents containing lipolytic enzymes and due to continuous accumulation of enviro-agro-industrial wastes which are good and suitable conditions for growth and reproduction of pathogenic microorganisms, our study aims at isolating thermoalkalophilic lipase producer microorganisms from enviro-agro-industrial wastes and selection of the most potent isolate for studying physiological conditions controlling enzyme formation also purification characterization and some applications on purified and crude enzyme as bio-detergent. Some environmental and industrial wastes were collected from different places. The industrial wastes include, cotton seed, soyabean, sun flower, lin seed and olive oil wastes. Environmental wastes include poultry and fish wastes, all these wastes were dried at 70 degree C, grounded and used for isolation of microorganisms and lipase(s) production.Nine thermoalkalophilic bacterial isolates were isolated from enviro-agro-industrial wastes at ph 11.5 and 70 degree C. They were purified and screening for their ability of thermoalkalo-stable lipase(s) formation, this is followed by examining the effect of different nutritional media and exposure of bacterial isolates to different doses of gamma irradiation and the influence of these radiation on lipase(s) productivity by these isolates. From the results it was found that.1- The most potent lipase(s) forming bacterial isolates were isolates number B 2 and B 3 which cultivated on medium A amended with fish-wastes as being the best nutritional medium for enzyme formation. 2-Bacterial isolate B 2 finally was selected as being the most potent lipase(s) forming bacterial isolate cultivated on fish-wastes and yeast extract (in tap water) and identified according to key's of Bergey Manual of Systematic Bacteriology (1984) as being Bacillus brevis B 2 .The optimum culture conditions for maximum biosynthesis of extracellular lipase

  20. Gene-enzyme relationships in somatic cells and their organismal derivatives in higher plants. Progress report

    International Nuclear Information System (INIS)

    Jensen, R.A.

    1983-01-01

    Several enzymes involved in the biosynthesis of aromatic amino acids have been isolated from Nicotiana silvestris. Isozymes of chlorismate mutase were isolated, partially purified and subjected to enzyme kinetic analysis. In addition, studies investigating the role of 5-enolpyruvyl-shikimate-3-phosphate synthetase, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase, shikimate dehydrogenase, prephenate aminotransferase, arogenate dehydrogenase and phenylalanine ammonia-lyase in regulation of aromatic amino acids levels in tobacco are reported

  1. Electron Microscopic Analysis and Structural Characterization of Novel NADP(H)-Containing Methanol : N,N'-Dimethyl-4-Nitrosoaniline Oxidoreductases from the Gram-Positive Methylotrophic Bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19

    NARCIS (Netherlands)

    Bystrykh, Leonid V.; Vonck, Janet; Bruggen, Ernst F.J. van; Beeumen, Jozef van; Samyn, Bart; Govorukhina, Natalya I.; Arfman, Nico; Duine, Johannis A.; Dijkhuizen, Lubbert

    The quaternary protein structure of two methanol:N,N'-dimethyl-4-nitrosoaniline (NDMA) oxidoreductases purified from Amycolatopsis methanolica and Mycobacterium gastri MB19 was analyzed by electron microscopy and image processing. The enzymes are decameric proteins (displaying fivefold symmetry)

  2. Characterization of purified α-amylase produced by Aspergillus terreus NCFT 4269.10 using pearl millet as substrate

    Directory of Open Access Journals (Sweden)

    Bijay Kumar Sethi

    2016-12-01

    Full Text Available α-amylase was produced by Aspergillus terreus NCFT 4269.10 using both liquid static surface (LSSF and solid-state fermentation using pearl millet residues as substrate. The maximum production of α-amylase was noticed at 30°C incubated for 96h. The crude α-amylase was purified to electrophoretic homogeneity and characterized. Characterization of amylase confirmed that the purified α-amylase was found to be most stable at pH 5.0, 60°C temperature, and a substrate concentration of 1.25%. The enzyme was active for 40 min at 70°C with an optimum enzyme–substrate reaction time of 60 min. Amylase was compatible with all detergents tested having highest activity with Surf excel followed by Henko and Ariel. SDS and Tween 20 reduced the activity. Among the metal ions tested, the maximum α-amylase activity was attained in the presence of Ca2+, followed by Mg2+ and Mn2+. The activity of α-amylase was not considerably affected in the presence of ethylenediaminetetraacetic acid and Triton X-100. Amylase activity was accelerated in the presence of sodium lauryl sulfate and phenylmethylsulfonyl fluoride did not significantly (or slightly affect the activity and stability. Tween 20, urea (5%, and the reducing agent, β-mercaptoethanol significantly inhibited the activity of α-amylase. Owing to its noteworthy stability in the presence of detergents, additives, inhibitors, and metal ions, this α-amylase could be an impending enzyme for significant industrial exploitations.

  3. Hydrolytic enzymes in the central vacuole of plant cells.

    Science.gov (United States)

    Boller, T; Kende, H

    1979-06-01

    The hydrolase content of vacuoles isolated from protoplasts of suspension-cultured tobacco cells, of tulip petals, and of pineapple leaves, and the sedimentation behavior of tobacco tonoplasts were studied. Three precautions were found to be important for the analysis of vacuolar hydrolases and of the tonoplast. (a) Purification of protoplasts in a Ficoll gradient was necessary to remove cell debris which contained contaminating hydrolases adsorbed from the fungal cell-wall-degrading enzyme preparation. (b) Hydrolase activities in the homogenates of the intact cells or the tissue used and of the purified protoplasts had to be compared to verify the absence of contaminating hydrolases in the protoplast preparation. (c) Vacuoles obtained from the protoplasts by an osmotic shock had to be purified from the lysate in a Ficoll gradient. Since the density of the central vacuole approximates that of the protoplasts, about a 10% contamination of the vacuolar preparation by surviving protoplasts could not be eliminated and had to be taken into account when the distribution of enzymes and of radioactivity was calculated.THE INTRACELLULAR ACTIVITIES OF THE FOLLOWING ACID HYDROLASES WERE PRIMARILY LOCALIZED IN THE VACUOLE OF TOBACCO CELLS: alpha-mannosidase, beta-N-acetylglucosaminidase, beta-fructosidase, nuclease, phosphatase, phosphodiesterase. A similar composition of acid hydrolases was found in vacuoles obtained from protoplasts of tulip petals. Proteinase, a hydrolase with low activity in tobacco cells and tulip petals and therefore difficult to localize unequivocally, was found to be vacuolar in pineapple leaves, a tissue containing high levels of this enzyme. Our data support the hypothesis that the central vacuole of higher plant cells has an enzyme composition analogous to that of the animal lysosome.None of the vacuolar enzymes investigated was found to be bound to the tonoplast. When vacuoles were isolated from cells labeled with radioactive choline, the vacuolar

  4. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability.

    Science.gov (United States)

    Weegman, Bradley P; Kumar Sajja, Venkata Sunil; Suszynski, Thomas M; Rizzari, Michael D; Scott Iii, William E; Kitzmann, Jennifer P; Mueller, Kate R; Hanley, Thomas R; Kennedy, David J; Todd, Paul W; Balamurugan, Appakalai N; Hering, Bernhard J; Papas, Klearchos K

    2016-01-01

    Islet transplantation (ITx) is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG), all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS) of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL) and the combined connecting/duodenal lobes (CDL), for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs) that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p < 0.03) and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.

  5. Continuous Quadrupole Magnetic Separation of Islets during Digestion Improves Purified Porcine Islet Viability

    Directory of Open Access Journals (Sweden)

    Bradley P. Weegman

    2016-01-01

    Full Text Available Islet transplantation (ITx is an emerging and promising therapy for patients with uncontrolled type 1 diabetes. The islet isolation and purification processes require exposure to extended cold ischemia, warm-enzymatic digestion, mechanical agitation, and use of damaging chemicals for density gradient separation (DG, all of which reduce viable islet yield. In this paper, we describe initial proof-of-concept studies exploring quadrupole magnetic separation (QMS of islets as an alternative to DG to reduce exposure to these harsh conditions. Three porcine pancreata were split into two parts, the splenic lobe (SPL and the combined connecting/duodenal lobes (CDL, for paired digestions and purifications. Islets in the SPL were preferentially labeled using magnetic microparticles (MMPs that lodge within the islet microvasculature when infused into the pancreas and were continuously separated from the exocrine tissue by QMS during the collection phase of the digestion process. Unlabeled islets from the CDL were purified by conventional DG. Islets purified by QMS exhibited significantly improved viability (measured by oxygen consumption rate per DNA, p<0.03 and better morphology relative to control islets. Islet purification by QMS can reduce the detrimental effects of prolonged exposure to toxic enzymes and density gradient solutions and substantially improve islet viability after isolation.

  6. Study of hot corrosion of flakes of non purified graphite and of purified graphite

    International Nuclear Information System (INIS)

    Boule, Michel

    1967-01-01

    The author reports the study of hot corrosion of the Ticonderoga graphite. He reports the study of the defects of graphite flakes (structure defects due to impurities), the dosing of these impurities, and then their removal by purification. Flakes have then been oxidised by means of a specially designed apparatus. Based on photographs taken by optical and electronic microscopy, the author compares the oxidation features obtained in dry air and in humid air, between purified and non purified flakes. He also reports the study of the evolution of oxidation with respect to the initial rate of impurities, and the study of the evolution of oxidation features in humid air during oxidation. All these comparisons are made while taking the oxidation rate into account [fr

  7. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-11-15

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae. (orig.)

  8. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates.

    Directory of Open Access Journals (Sweden)

    Dheeraj Verma

    Full Text Available In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG, in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis.

  9. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  10. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell

  11. Spatial characterization of proteolytic enzyme activity in the foregut region of the adult necrophagous fly, Protophormia terraenovae.

    Science.gov (United States)

    Rivers, David B; Acca, Gillian; Fink, Marc; Brogan, Rebecca; Schoeffield, Andrew

    2014-08-01

    The spatial distribution of proteolytic enzymes in the adult foregut of Protophormia terraenovae was studied in the context of protein digestion and regurgitation. Based on substrate specificity, pH optima, and use of specific protease inhibitors, all adults tested displayed enzyme activity in the foregut consistent with pepsin, trypsin and chymotrypsin. Chymotrypsin-like and trypsin-like enzyme activity were detected in all gut fluids and tissues tested, with chymotrypsin displaying the highest activity in saliva and salivary gland tissue, whereas maximal trypsin activity was evident in the crop. Pepsin-like activity was only evident in crop fluids and tissues. The activity of all three enzymes was low or undetectable (pepsin) in the fluids and tissue homogenates derived from the esophagus and cardia of any of the adults assayed. Fed adult females displayed higher enzyme activities than fed males, and the activity of all three enzymes were much more prevalent in fed adults than starved. The pH optimum of the trypsin-like enzyme was between pH 7.0 and 8.0; chymotrypsin was near pH 8.0; and maximal pepsin-like activity occurred between pH 1.0 and 2.0. Regurgitate from fed adult females displayed enzyme activity consistent with the proteolytic enzymes detected in crop gut fluids. Enzymes in regurgitate were not derived from food sources based on assays of bovine liver samples. These latter observations suggest that adult flies release fluids from foregut when encountering dry foods, potentially as a means to initiate extra-oral digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Light aging of reactive fuels purified by various methods

    Energy Technology Data Exchange (ETDEWEB)

    Khodzhaeva, M G; Burtyshev, N Ya; Molodozhenyuk, T B; Ryabovda, N D

    1976-01-01

    A study of the effect of uv-radiation on aging of Fergana fuel TS-1 has been extended to the uv-effect on alkali-purified fuels (e.g., Krasnovodsk, Omsk, and Orsk TS-1), on hydro-purified (Syzran T-8, Syzran T-7, and Novokuybyshev T-7) and on adsorption-purified Fergana TS-1. The PRK-4 lamp was employed. Aging criteria were formation of insoluble gums, soluble gums separable on silicagel, acidity, and optical density. Fuels purified in the same manner aged practically identically; after 6 months storage the greatest gum formation was seen in the fuels Orsk TS-1 and Syzran T-8. 3 references, 1 figure, 1 table.

  13. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35

    OpenAIRE

    Akutsu, Yukie; Nakajima-Kambe, Toshiaki; Nomura, Nobuhiko; Nakahara, Tadaatsu

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR este...

  14. Rv2131c gene product: An unconventional enzyme that is both inositol monophosphatase and fructose-1,6-bisphosphatase

    International Nuclear Information System (INIS)

    Gu Xiaoling; Chen Mao; Shen Hongbo; Jiang Xin; Huang Yishu; Wang Honghai

    2006-01-01

    Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K m of 0.22 ± 0.03 mM for inositol-1-phosphate and K m of 0.45 ± 0.05 mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC 5 ∼ 60 mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV)

  15. Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

    Directory of Open Access Journals (Sweden)

    Stefanie Berger

    2012-01-01

    Full Text Available The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PPi and was only moderately inhibited by PPi. The breakdown of PPi was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PPi (KM=0.27±0.05 mM that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PPi. However, it cannot be excluded that other PPi-dependent enzymes take advantage of the remaining PPi and contribute to the energy balance of the cell.

  16. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger.

    Science.gov (United States)

    Siddiqui; Saqib; Rashid; Rajoka

    2000-10-01

    Carboxymethylcellulase (CMCase) from Aspergillus niger NIAB280 was purified by a combination of ammonium sulphate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography on FPLC with 9-folds increase in specific activity. Native and subunit molecular weights were found to be 36 kDa each. The purified CMCase was modified by 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) in the presence of glycinamide for 15 min (GAM15) and glycinamide plus cellobiose for 75 min (GAM75). Similarly, the enzyme was modified by EDC in the presence of ethylenediamine dihydrochloride plus cellobiose for 75 min (EDAM75). The neutralization (GAM15 and GAM75) and reversal (EDAM75) of negative charges of carboxyl groups of CMCase had profound effect on the specificity constant (k(cat)/K(m)), pH optima, pK(a)'s of the active-site residues and thermodynamic parameters of activation. The specificity constants of native, GAM15, GAM75, and EDAM75 were 143, 340, 804, and 48, respectively. The enthalpy of activation (DeltaH(#)) of Carboxymethylcellulose (CMC) hydrolysis of native (50 and 15 kJ mol(-1)) and GAM15 (41 and 16 kJ mol(-1)) were biphasic whereas those of GAM75 (43 kJ mol(-1)) and EDAM75 (41 k J mol(-1)) were monophasic. Similarly, the entropy of activation (DeltaS(#)) of CMC hydrolysis of native (-61 and -173 J mol(-1) K(-1)) and GAM15 (-91 and -171 J mol(-1) K(-1)) were biphasic whereas those of GAM75 (-82 J mol(-1) K(-1)) and EDAM75 (-106 J mol(-1) K(-1)) were monophasic. The pH optima/pK(a)'s of both acidic and basic limbs of charge neutralized CMCases increased compared with those of native enzyme. The CMCase modification in the presence of glycinamide and absence of cellobiose at different pH's periodically activated and inhibited the enzyme activity indicating conformational changes. We believe that the alteration of the surface charges resulted in gross movement of loops that surround the catalytic pocket, thereby inducing changes in the vicinity

  17. Synthèses enzymatiques de néoglucoconjugués catalysées par l'alpha-glucosidase purifiée de la blatte Periplaneta americana (Linnaeus

    Directory of Open Access Journals (Sweden)

    Kamenan A.

    2005-01-01

    Full Text Available Enzymatic synthesis of neoglucoconjugates by purified α-glucosidase from cockroach Periplaneta americana (Linnaeus. Cockroach Periplaneta americana (Linnaeus contains in his digestive tract an acid (pH 5,0 and mesophile (50°C α-glucosidase. This enzyme, purified to homogeneity, hydrolyses highly maltose, sucrose and p-nitrophenyl-α-Dglucopyranoside. The ability of α-glucosidase from cockroach purified to homogeneity to catalyse transglucosylation reactions was tested using maltose and saccharose as glucosyl donors and 2-phenylethanol and phenol as acceptors. The experimental conditions were optimized in relation to the time course of the reaction, pH and concentrations of glucosyl donors and acceptors. The yields in transglucosylation reactions at 37 °C were very high and could attain 67% and 48% with 2-phenylethanol and phenol respectively as glucosyl acceptors. This α-glucosidase hydrolyzed the products formed. It seems that the products formed were the phenylethyl-α-D-glucoside and phenyl-α-D-glucoside. These results suggest that α- glucosidase from cockroach is an exoglucosidase which catalyse the splitting of the α-glucosyl residue from the non reducing terminal of the substrate to liberate α-glucose. This comportment indicates that this enzyme operated by a mechanism involving the retention of the anomeric configuration. On the basis of this work, α-glucosidase from P. americana appears to be a valuable tool for the preparation of α-neoglucoconjugates.

  18. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes.

    Science.gov (United States)

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    2016-01-15

    The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Direct Competitive Enzyme-Linked Immunosorbent Assay (ELISA).

    Science.gov (United States)

    Kohl, Thomas O; Ascoli, Carl A

    2017-07-05

    The competitive enzyme-linked immunosorbent assay (ELISA) (cELISA; also called an inhibition ELISA) is designed so that purified antigen competes with antigen in the test sample for binding to an antibody that has been immobilized in microtiter plate wells. The same concept works if the immobilized molecule is antigen and the competing molecules are purified labeled antibody versus antibody in a test sample. Direct cELISAs incorporate labeled antigen or antibody, whereas indirect assay configurations use reporter-labeled secondary antibodies. The cELISA is very useful for determining the concentration of small-molecule antigens in complex sample mixtures. In the direct cELISA, antigen-specific capture antibody is adsorbed onto the microtiter plate before incubation with either known standards or unknown test samples. Enzyme-linked antigen (i.e., labeled antigen) is also added, which can bind to the capture antibody only when the antibody's binding site is not occupied by either the antigen standard or antigen in the test samples. Unbound labeled and unlabeled antigens are washed away and substrate is added. The amount of antigen in the standard or the test sample determines the amount of reporter-labeled antigen bound to antibody, yielding a signal that is inversely proportional to antigen concentration within the sample. Thus, the higher the antigen concentration in the test sample, the less labeled antigen is bound to the capture antibody, and hence the weaker is the resultant signal. © 2017 Cold Spring Harbor Laboratory Press.

  20. Purification and properties of a thermostable pullulanase from Clostridium thermosulfurgenes EM1 which hydrolyses both. alpha. -1,6 and. alpha. -1,4-glycosidic linkages

    Energy Technology Data Exchange (ETDEWEB)

    Spreinat, A [Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie; Antranikian, G [Technische Univ. Hamburg-Harburg, Hamburg (Germany, F. R.). Arbeitsbereich Biotechnologie 1

    1990-08-01

    A novel thermostable pullulanase, secreted by the thermophilic anaerobic bacterium Clostridium thermosulfurogenes EM1, was purified and characterized. Applying anion exchange chromatography and gel filtration the enzyme was purified 47-fold and had a specific activity of 200 units/mg. The molecular mass of this thermostable enzyme was determined to be 102 000 daltons and consisted of a single subunit. The enzyme was able to attack specifically the {alpha}-1,6-glycosidic linkages in pullulan and caused its complete hydrolysis to maltotriose. Surprisingly and unlike the enzyme from Klebsiella pneumoniae, the purified enzyme from this anaerobic thermophile exhibited, in addition to its debranching and pullulanase activity, an {alpha}-1,4 hydrolysing activity as well. By the action of this single polypeptide chain various branched and linear polysaccharides were completely converted to two major products, namely maltose and maltotriose. The K{sub m} values of this enzyme for pullulan and amylose were determined to be 1.33 mg/ml and 0.38 mg/ml, respectively. This debranching enzyme displays a temperature optimum at 60deg-65deg C and a pH optimum at 5.5-6.0. The application of this new class of pullulanase (pullulanase type II) in industry will significantly enhance the starch saccharification process. (orig.).

  1. Chronic ethanol feeding modulates the synthesis of digestive enzymes

    International Nuclear Information System (INIS)

    Ponnappa, B.C.; Hoek, J.B.; Rubin, E.

    1987-01-01

    The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of 3 H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding induced an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas

  2. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    Directory of Open Access Journals (Sweden)

    Shazia Rehman

    2014-12-01

    Full Text Available Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE, in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase using a novel substrate, Banana Peels (BP for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  3. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    Science.gov (United States)

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  4. An appraisal of the enzyme stability-activity trade-off.

    Science.gov (United States)

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175.

    Science.gov (United States)

    Hanphakphoom, Srisuda; Maneewong, Narisara; Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2014-01-01

    Eleven strains of poly(L-lactide) (PLLA)-degrading thermophilic bacteria were isolated from forest soils and selected based on clear zone formation on an emulsified PLLA agar plate at 50°C. Among the isolates, strain LP175 showed the highest PLLA-degrading ability. It was closely related to Laceyella sacchari, with 99.9% similarity based on the 16S rRNA gene sequence. The PLLA-degrading enzyme produced by the strain was purified to homogeneity by 48.1% yield and specific activity of 328 U·mg-protein-1 with a 15.3-fold purity increase. The purified enzyme was strongly active against specific substrates such as casein and gelatin and weakly active against Suc-(Ala)₃-pNA. Optimum enzyme activity was exhibited at a temperature of 60°C with thermal stability up to 50°C and a pH of 9.0 with pH stability in a range of 8.5-10.5. Molecular weight of the enzyme was approximately 28.0 kDa, as determined by gel filtration and SDS-PAGE. The inhibitors phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) strongly inhibited enzyme activity, but the activity was not inhibited by 1 mM 1,10-phenanthroline (1,10-phen). The N-terminal amino acid sequences had 100% homology with thermostable serine protease (thermitase) from Thermoactinomyces vulgaris. The results obtained suggest that the PLLA-degrading enzyme produced by L. sacchari strain LP175 is serine protease.

  6. In vitro and in vivo inhibitory effects of some fungicides on catalase produced and purified from white-rot fungus Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakçıoğlu, Berna; Tarhan, Leman

    2014-10-01

    In this study, in vitro and in vivo effects of some commonly used fungicides, antibiotics, and various chemicals on isolated and purified catalase from Phanerochaete chrysosporium were investigated. The catalase was purified 129.10-fold by using 60% ammonium sulfate and 60% ethanol precipitations, DEAE-cellulose anion exchange and Sephacryl-S-200 gel filtration chromatographies from P. chrysosporium growth in carbon- and nitrogen-limited medium for 12 days. The molecular weight of native purified catalase from P. chrysosporium was found to be 290 ± 10 kDa, and sodium dodecyl sulfate (SDS)-PAGE results indicated that enzyme consisted of four apparently identical subunits, with a molecular weight of 72.5 ± 2.5 kDa. Kinetic characterization studies showed that optimum pH and temperature, Km and Vmax values of the purified catalase which were stable in basic region and at comparatively high temperatures were 7.5, 30°C, 289.86 mM, and 250,000 U/mg, respectively. The activity of purified catalase from P. chrysosporium was significantly inhibited by dithiothreitol (DTT), 2-mercaptoethanol, iodoacetamide, EDTA, and sodium dodecyl sulfate (SDS). It was found that while antibiotics had no inhibitory effects, 45 ppm benomyl, 144 ppm captan, and 47.5 ppm chlorothalonil caused 14.52, 10.82, and 38.86% inhibition of purified catalase, respectively. The inhibition types of these three fungicides were found to be non-competitive inhibition with the Ki values of 1.158, 0.638, and 0.145 mM and IC50 values of 0.573, 0.158, 0.010 mM, respectively. The results of in vivo experiments also showed that benomyl, captan and chlorothalonil caused 15.25, 1.96, and 36.70% activity decreases after 24-h treatments compared to that of the control.

  7. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center

    International Nuclear Information System (INIS)

    Alpert, C.A.; Frank, R.; Stueber, K.D.; Deutscher, J.; Hengstenberg, W.

    1985-01-01

    Enzyme I, the phosphoenolpyruvate:protein phosphotransferase (EC 2.7.3.9), which is part of the bacterial phosphoenolpyruvate-(PEP) dependent phosphotransferase system, has been purified from Streptococcus faecalis by using a large-scale preparation. Size exclusion chromatography revealed a molecular weight of 140,000. On sodium dodecyl sulfate gels, enzyme I gave one band with a molecular weight of 70,000, indicating that enzyme I consists of two identical subunits. The first 59 amino acids of the amino-terminal part of the protein have been sequenced. It showed some similarities with enzyme I of Salmonella typhimurium. The active center of enzyme I has also been determined. After phosphorylation with [ 32 P]PEP, the enzyme was cleaved by using different proteases. Labeled peptides were isolated by high-performance liquid chromatography on a reversed-phase column. The amino acid composition or amino acid sequence of the peptides has been determined. The largest labeled peptide was obtained with Lys-C protease and had the following sequence: -Ala-Phe-Val-Thr-Asp-Ile-Gly- Gly-Arg-Thr-Ser-His*-Ser-Ala-Ile-Met-Ala-Arg-Ser-Leu-Glu-Ile-Pro-Ala- Ile-Val-Gly-Thr-Lys-. It has previously been shown that the phosphoryl group is bound to the N-3 position of a histidyl residue in phosphorylated enzyme I. The single His in position 12 of the above peptide must therefore carry the phosphoryl group

  8. Reproducible in vitro regeneration system for purifying sugarcane ...

    African Journals Online (AJOL)

    This procedure may be considered as one of the best ever published report on regeneration from in vitro grown plants to purify clones without subjecting the plants to field conditions and harvesting the mature cane. This technique was used to purify transgenic sugarcane plants carrying Bacillus thuringiensis gene.

  9. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    Science.gov (United States)

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  10. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  11. Microcystin-LR nanobody screening from an alpaca phage display nanobody library and its expression and application.

    Science.gov (United States)

    Xu, Chongxin; Yang, Ying; Liu, Liwen; Li, Jianhong; Liu, Xiaoqin; Zhang, Xiao; Liu, Yuan; Zhang, Cunzheng; Liu, Xianjin

    2018-04-30

    Microcystin-LR (MC-LR) is a type of biotoxin that pollutes the ecological environment and food. The study aimed to obtain new nanobodies from phage nanobody library for determination of MC-LR. The toxin was conjugated to keyhole limpet haemocyanin (KLH) and bovine serum albumin (BSA), respectively, then the conjugates were used as coated antigens for enrichment (coated MC-LR-KLH) and screening (coated MC-LR-BSA) of MC-LR phage nanobodies from an alpaca phage display nanobody library. The antigen-specific phage particles were enriched effectively with four rounds of biopanning. At the last round of enrichment, total 20 positive monoclonal phage nanobodies were obtained from the library, which were analyzed after monoclonal phage enzyme linked immunosorbent assay (ELISA), colony PCR and DNA sequencing. The most three positive nanobody genes, ANAb12, ANAb9 and ANAb7 were cloned into pET26b vector, then the nanobodies were expressed in Escherichia coli BL21 respectively. After being purified, the molecular weight (M.W.) of all nanobodies were approximate 15kDa with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified nanobodies, ANAb12, ANAb9 and ANAb7 were used to establish the indirect competitive ELISA (IC-ELISA) for MC-LR, and their half-maximum inhibition concentrations (IC 50 ) were 0.87, 1.17 and 1.47μg/L, their detection limits (IC 10 ) were 0.06, 0.08 and 0.12μg/L, respectively. All of them showed strong cross-reactivity (CRs) of 82.7-116.9% for MC-RR, MC-YR and MC-WR, and weak CRs of less than 4.56% for MC-LW, less than 0.1% for MC-LY and MC-LF. It was found that all the IC-ELISAs for MC-LR spiked in tap water samples detection were with good accuracy, stability and repeatability, their recoveries were 84.0-106.5%, coefficient of variations (CVs) were 3.4-10.6%. These results showed that IC-ELISA based on the nanobodies from the alpaca phage display antibody library were promising for high sensitive determination of multiple

  12. The purification and steady-state kinetic behaviour of rabbit heart mitochondrial NAD(P)+ malic enzyme.

    OpenAIRE

    Davisson, V J; Schulz, A R

    1985-01-01

    The mitochondrial NAD(P)+ malic enzyme [EC 1.1.1.39, L-malate:NAD+ oxidoreductase (decarboxylating)] was purified from rabbit heart to a specific activity of 7 units (mumol/min)/mg at 23 degrees C. A study of the reductive carboxylation reaction indicates that this enzymic reaction is reversible. The rate of the reductive carboxylation reaction appears to be completely inhibited at an NADH concentration of 0.92 mM. A substrate saturation curve of this reaction with NADH as the varied substrat...

  13. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  14. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes

    Science.gov (United States)

    2017-01-01

    Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that display a wide variety of biological activities, from antimicrobial to antiallodynic. Lanthipeptides that display antimicrobial activity are called lantibiotics. The post-translational modification reactions of lanthipeptides include dehydration of Ser and Thr residues to dehydroalanine and dehydrobutyrine, a transformation that is carried out in three unique ways in different classes of lanthipeptides. In a cyclization process, Cys residues then attack the dehydrated residues to generate the lanthionine and methyllanthionine thioether cross-linked amino acids from which lanthipeptides derive their name. The resulting polycyclic peptides have constrained conformations that confer their biological activities. After installation of the characteristic thioether cross-links, tailoring enzymes introduce additional post-translational modifications that are unique to each lanthipeptide and that fine-tune their activities and/or stability. This review focuses on studies published over the past decade that have provided much insight into the mechanisms of the enzymes that carry out the post-translational modifications. PMID:28135077

  15. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    Science.gov (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  16. Purification and Antithrombotic Potential of a Fibrinolytic Enzyme from Shiitake Culinary- Medicinal Mushroom, Lentinus edodes GNA01 (Agaricomycetes).

    Science.gov (United States)

    Choi, Jun-Hui; Kim, Kyung-Je; Kim, Seung

    2018-01-01

    We purified Lentinus edodes GNA01 fibrinolytic enzyme (LEFE) and identified it as a novel metalloprotease. LEFE was purified to homogeneity through a 2-step procedure, with an 8.28-fold increase in specific activity and 5.3% recovery. The molecular mass of LEFE was approximately 38 kDa, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its optimal pH, optimal temperature, pH stability, and thermal stability were 5, 30°C, 6-7, and 40°C, respectively. LEFE was inhibited by zinc and magnesium ions, and by EDTA and EGTA, indicating that LEFE is a metalloprotease. The protease exhibited fibrinolytic activity and a degradative effect on clot formation and blood clots. The protease prolonged activated partial thromboplastin time, prothrombin time, and coagulation time as induced by platelet aggregators (collagen and epinephrine). Taken together, our results indicate that L. edodes GNA01 produces a metalloprotease/fibrinolytic enzyme and that this enzyme might be applied as a new thrombolytic and antithrombotic agent for thrombosis-related cardiovascular disorders.

  17. Core signalling motif displaying multistability through multi-state enzymes

    DEFF Research Database (Denmark)

    Feng, Song; Saez Cornellana, Meritxell; Wiuf, Carsten Henrik

    2016-01-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology....... Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee...... the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number...

  18. Hydrolytic enzymes in the central vacuole of plant cells

    International Nuclear Information System (INIS)

    Boller, T.; Kende, H.

    1979-01-01

    The hydrolase content of vacuoles isolated from protoplasts of suspension-cultured tobacco cells, of tulip petals, and pineapple leaves, and the sedimentation behavior of tobacco tonoplasts were studied. Three precautions were found to be important for the analysis of vacuolar hydrolases and of the tonoplast: (a) purification of protoplasts in a Ficoll gradient was necessary to remove cell debris which contained contaminating hydrolases adsorbed from the fungal cell-wall-degrading enzyme preparation; (b) hydrolase activities in the homogenates of the intact cells or the tissue used and of the purified protoplasts had to be compared to verify the absence of contaminating hydrolases in the protoplast preparation; and (c) vacuoles obtained from the protoplasts by an osmotic shock had to be purified from the lysate in a Ficoll gradient. Since the density of the central vacuole approximates that of the protoplasts, about a 10% contamination of the vacuolar preparation by surviving protoplasts could not be eliminated. The intracellular activities of the following acid hydrolases were primarily localized in the vacuole of tobacco cells: α-mannosidase, β-N-acetylglucosaminidase, β-fructosidase, nuclease, phosphatase, phosphodiesterase. A similar composition of acid hydrolases was found in vacuoles obtained from protoplasts of tulip petals. Proteinase, a hydrolase with low activity in tobacco cells and tulip petals was found to be vacuolar in pineapple leaves, a tissue containing high levels of this enzyme. None of the vacuolar enzymes investigated ws found to be bound to the tonoplast. When vacuoles were isolated from cells labeled with radioactive choline, the vacuolar membrane was found to contain radioactivity. On sucrose gradients, the label incorporated into tonoplasts banded around a density of 1.10 grams per cubic centimeter

  19. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  20. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins.

    Science.gov (United States)

    Yousr, Marwa; Howell, Nazlin

    2015-12-07

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  1. Method and device for feeding purified water to a pressure vessel

    International Nuclear Information System (INIS)

    Hirato, Miharu.

    1982-01-01

    Purpose: To prevent thermal wear at the junction of feedwater pipes and purified water pipes, as well as maintain the function of the purified water feeding system by stopping the introduction of purified water to the heated water feeding system and introducing purified water to the recycling water system upon transient operation or start-up. Constitution: Since a feedwater heater does not function well during transient operation or upon start-up, the temperature of heated water flowing through the feedwater pipe is reduced to produce a temperature difference relative to the set temperature for the purified water feeding system. The temperature difference is detected by a temperature sensor and, when it arrives at a predetermined difference, an operation valve is switched to interrupt the feed of the purified water to the heated water feeding system and it is sent to a water recycling system. Then, the purified water is sent from the water recycling system by way of the discharge portion to the inside of a pressure vessel. Thus, since only the heated water flows to the junction between the cleaned water pipes and the heated water pipes, neither shocks are generated nor the performance of the purified water feeding system is impaired. (Moriyama, K.)

  2. Partially purified polygalacturonase from Aspergillus niger (SA6 ...

    African Journals Online (AJOL)

    Polygalacturonase (PG) was isolated from Aspergillus niger (A. niger) (SA6), partially purified and characterized. The PG showed two bands on SDS-PAGE suggesting an “endo and exo PG with apparent molecular weights of 35 and 40 KDa, respectively. It was purified 9-fold with a yield of 0.18% and specific activity of 246 ...

  3. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse.

    Science.gov (United States)

    Kücükgöze, Gökhan; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke

    2017-08-01

    Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N 1 -methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde ( p- DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p- DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N 1 -methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different K M and k cat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Immunoglobulin G1 enzyme-linked Immunosorbent assay for diagnosis of Johne's disease in red deer (Cervus elaphus)

    NARCIS (Netherlands)

    Griffin, J.F.T.; Spittle, E.; Rodgers, C.R.; Liggett, S.; Cooper, M.; Bakker, D.; Bannantine, J.P.

    2005-01-01

    This study was designed to develop a customized enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of Johne's disease (JD) in farmed deer. Two antigens were selected on the basis of their superior diagnostic readouts: denatured purified protein derivative (PPDj) and undenatured

  5. Enzyme and methodology for the treatment of a biomass

    Science.gov (United States)

    Thompson, Vicki S.; Thompson, David N.; Schaller, Kastli D.; Apel, William A.

    2010-06-01

    An enzyme isolated from an extremophilic microbe, and a method for utilizing same is described, and wherein the enzyme displays optimum enzymatic activity at a temperature of greater than about 80.degree. C., and a pH of less than about 2, and further may be useful in methodology including pretreatment of a biomass so as to facilitate the production of an end product.

  6. Identification, purification, and localization of tissue kallikrein in rat heart.

    OpenAIRE

    Xiong, W; Chen, L M; Woodley-Miller, C; Simson, J A; Chao, J

    1990-01-01

    A tissue kallikrein has been isolated from rat heart extracts by DEAE-Sepharose and aprotinin-affinity column chromatography. The purified cardiac enzyme has both N-tosyl-L-arginine methyl ester esterolytic and kinin-releasing activities, and displays parallelism with standard curves in a kallikrein radioimmunoassay, indicating it to have immunological identity with tissue kallikrein. The enzyme is inhibited by aprotinin, antipain, leupeptin and by high concentrations of soybean trypsin inhib...

  7. Purification and Characterization of Enzymes from Yeast: An Extended Undergraduate Laboratory Sequence for Large Classes

    Science.gov (United States)

    Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…

  8. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  9. Rapid Isolation of a Single-Chain Antibody against the Cyanobacterial Toxin Microcystin-LR by Phage Display and Its Use in the Immunoaffinity Concentration of Microcystins from Water

    Science.gov (United States)

    McElhiney, Jacqui; Drever, Mathew; Lawton, Linda A.; Porter, Andy J.

    2002-01-01

    A naïve (unimmunized) human semisynthetic phage display library was employed to isolate recombinant antibody fragments against the cyanobacterial hepatotoxin microcystin-LR. Selected antibody scFv genes were cloned into a soluble expression vector and expressed in Escherichia coli for characterization against purified microcystin-LR by competition enzyme-linked immunosorbent assay (ELISA). The most sensitive single-chain antibody (scAb) isolated was capable of detecting microcystin-LR at levels below the World Health Organization limit in drinking water (1 μg liter−1) and cross-reacted with three other purified microcystin variants (microcystin-RR, -LW, and -LF) and the related cyanotoxin nodularin. Extracts of the cyanobacterium Microcystis aeruginosa were assayed by ELISA, and quantifications of microcystins in toxic samples showed good correlation with analysis by high-performance liquid chromatography. Immobilized scAb was also used to prepare immunoaffinity columns, which were assessed for the ability to concentrate microcystin-LR from water for subsequent analysis by high-performance liquid chromatography. Anti-microcystin-LR scAb was immobilized on columns via a hexahistidine tag, ensuring maximum exposure of antigen binding sites, and the performance of the columns was evaluated by directly applying 150 ml of distilled water spiked with 4 μg of purified microcystin-LR. The procedure was simple, and a recovery rate of 94% was achieved following elution in 1 ml of 100% methanol. Large-scale, low-cost production of anti-microcystin-LR scAb in E. coli is an exciting prospect for the development of biosensors and on-line monitoring systems for microcystins and will also facilitate a range of immunoaffinity applications for the cleanup and concentration of these toxins from environmental samples. PMID:12406716

  10. Sensitization to epithelial antigens in chronic mucosal inflammatory disease. Characterization of human intestinal mucosa-derived mononuclear cells reactive with purified epithelial cell-associated components in vitro.

    OpenAIRE

    Roche, J K; Fiocchi, C; Youngman, K

    1985-01-01

    To explore the auto-reactive potential of cells infiltrating the gut mucosa in idiopathic chronic inflammatory bowel disease, intestinal lamina propria mononuclear cells (LPMC) were isolated, characterized morphologically and phenotypically, and evaluated for antigen-specific reactivity. The last was assessed by quantitating LPMC cytotoxic capabilities against purified, aqueous-soluble, organ-specific epithelial cell-associated components (ECAC) characterized previously. Enzyme-isolated infla...

  11. Screening and Characterization of Polygalacturonase as Potential Enzyme for Keprok Garut Orange (Citrus nobilis var. chrysocarpa) Juice Clarification

    Science.gov (United States)

    Widowati, E.; Utami, R.; Kalistyatika, K.

    2017-11-01

    Use of thermostable enzyme from bacilli for industrial application is significant. This research aimed to isolate thermophilic pectinolytic bacteria from orange peel and vegetable waste which produced thermostable polygalacturonase, to investigate the polygalacturonase ability in clarifying keprok Garut orange juice, and to characterize polygalacturonase based on pH optimum, temperature optimum, enzyme stability, enzyme kinetics KM, and Vmax. Obtained, 14 isolates that further selected to 4 best isolates based on highest polygalacturonase activity and keprok Garut orange juice clarification ability. Four selected enzyme isolates were AR 2, AR 4, KK 4, and KK 5 had ability to increase juice transmittance, decrease juice viscosity and also reduce total soluble solid. Furthermore 4 selected isolates were partially purified by ammonium sulphate precipitation and dialysis method. Four partially purified enzymes were known that enzyme character of AR 2 optimum at pH 6; AR 4 optimum at pH 5.5; KK 4 optimum at pH 6; and KK 5 optimum at pH 4.5. Four enzymes were optimum at temperature 60°C thus stable at temperature 50-60°C, this characteristic indicate that enzymes were thermostable. AR 2 showed active activity stable at pH 4-7; AR 4 showed active activity stable at pH 6-7; KK 4 showed active activity stable at pH 4-6; however KK 5 stable at pH 4-5. Enzyme AR 2 and KK 4 was getting inactive at pH 11, thus AR 4 and KK 5 inactive at pH 12. KM value of AR 2, AR 4, KK 4, and KK 5 was 0.0959; 0.0974; 0.0966; and 0.178 mg/ml respectively. Vmax of AR 2, AR 4, KK 4, and KK 5 was 0.0203; 0.0202; 0.0185; and 0.0229 U/ml respectively. Enzyme AR 2 was the most compatible enzyme to be applied in keprok Garut orange juice clarification for it had the lowest KM value.

  12. Studies on a photoreactivating enzyme from Drosophila melanogaster cultured cells

    International Nuclear Information System (INIS)

    Beck, L.A.

    1982-01-01

    A photoreactivating enzyme was purified from Schneider's Line No. 2 Drosophila melanogaster cultured cells. DEAE cellulose chromatography with high potassium phosphate buffer conditions was used to separate nucleic acids from the protein component of the crude cell extract. The protein pass-through fraction from DEAE cellulose was chromatographed on phosphocellulose followed by hydroxylapatite, using linear potassium phosphate gradients to elute the enzyme. Gel filtration chromatography on Sephacryl S-200 resulted in a 4500-fold purification of the enzyme with a final recovery of 4%. The enzyme has an apparent gel filtration molecular weight of 32,900 (+/- 1350 daltons) and an isoelectric pH of 4.9. Optimum ionic strength for activity is 0.17 at pH 6.5 in potassium phosphate buffer. The action spectrum for photoreactivation in Drosophila has an optimum at 365 nm with a response to wavelengths in the range of 313 to 465 nm. Drosophila photoreactivating enzyme contains an essential RNA that is necessary for activity in vitro. The ability of the enzyme to photoreactivate dimers in vitro is abolished by treatment of the enzyme with ribonucleases, or by disruption of the enzyme-RNA complex by electrophoresis or adsorption to DEAE cellulose. The essential RNA is heterogeneous in size but contains a 10-12 base region that may interact with the active site of the enzyme, and thus is protected from degradation by contaminating RNase activities during purification. The RNA is thought to stabilize the photoreactivating enzyme by maintaining the enzyme in the proper configuration for binding to dimer-containing DNA. It is not known whether this RNA is essential for in vivo photoreactivation

  13. Stability Test of Partially Purified Bromelain from Pineapple (Ananas comosus (L.) Merr) Core Extract in Artificial Stomach Fluid

    Science.gov (United States)

    Setiasih, S.; Adimas, A. Ch. D.; Dzikria, V.; Hudiyono, S.

    2018-01-01

    This study aimed to isolate and purify bromelain from pineapple core (Ananascomosus (L.) Merr) accompanied by a stability test of its enzyme activity in artificial gastric juice. Purification steps start with fractionation by a precipitation method were carried out stepwise using several concentration of ammonium sulfate salt, followed by dialysis prosess and ion exchange chromatography on DEAE-cellulose column. Each step of purification produced an increasing specific activity in enzyme fraction, starting with crude extract, respectively: 0.276 U/mg; 14.591 U/mg; and 16.05 U/mg. Bromelain fraction with the highest level of purity was obtained in 50-80% ammonium sulphate fraction after dialyzed in the amount of 58.15 times compared to the crude extract. Further purification of the enzyme by DEAE-cellulose column produced bromelain which had a purity level 160-fold compared to crude enzyme. The result of bromelain stability test in artificial stomach juice by milk clotting units assay bromelain fraction have proteolytic activity in clotting milk substrate. Exposing bromelain fraction in artificial stomach juice which gave the highest core bromelain proteolytic activity was achieved at estimated volume of 0.4-0.5 mL. Exposure in a period of reaction time to artificial stomach juice that contained pepsin showed relatively stable proteolytic activity in the first 4 hours.

  14. From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Okazaki, Fumiyoshi; Djohan, Apridah Cameliawati; Hara, Kiyotaka Y; Asai-Nakashima, Nanami; Teramura, Hiroshi; Andriani, Ade; Tominaga, Masahiro; Wakai, Satoshi; Kahar, Prihardi; Yopi; Prasetya, Bambang; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.

  15. Effects of proteolytic enzymes and neuraminidase on the I and i erythrocyte antigen sites

    International Nuclear Information System (INIS)

    Doinel, C.; Ropars, C.; Salmon, C.

    1978-01-01

    Homogeneous cold agglutinins, purified and labelled with 125 I, have been used in a study of the effects of neuraminidase and proteolytic enzymes on the I and i reactivities of human adult erythrocytes. Measurements were made of antigen site numbers, equilibrium constants and thermodynamic parameters. There was enhanced reactivity after enzyme treatment as well as after the release of N-acetylneuraminic acid. Steric factors were shown to be of primary importance in the accessibility of the I and i antigenic determinant. After enzyme treatment, the antigenic structures became more homogeneous in their reaction with antibodies. The heterogeneity of binding constants observed with antigenic determinants of non-treated erythrocytes is probably due to the wide range of spatial distribution of these receptors within the membrane. (author)

  16. An Experiment with Air Purifiers in Delhi during Winter 2015-2016.

    Science.gov (United States)

    Vyas, Sangita; Srivastav, Nikhil; Spears, Dean

    2016-01-01

    Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi's during the winter.

  17. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Goornavar, Virupaxi [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States); Jeffers, Robert [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Luna Innovations, Inc., 706 Forest St., Suite A, Charlottesville, VA 22902 (United States); Biradar, Santoshkumar [RICE University, 6100 Main St, Houston, TX 77251 (United States); Ramesh, Govindarajan T., E-mail: gtramesh@nsu.edu [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States)

    2014-07-01

    In this work we report the improved performance an electrochemical glucose sensor based on a glassy carbon electrode (GCE) that has been modified with highly purified single wall carbon nanotubes (SWCNTs) dispersed in polyethyleneimine (PEI), polyethylene glycol (PEG) and polypyrrole (PPy). The single wall carbon nanotubes were purified by both thermal and chemical oxidation to achieve maximum purity of ∼ 98% with no damage to the tubes. The SWCNTs were then dispersed by sonication in three different organic polymers (1.0 mg/ml SWCNT in 1.0 mg/ml of organic polymer). The stable suspension was coated onto the GCE and electrochemical characterization was performed by Cyclic Voltammetry (CV) and Amperometry. The electroactive enzyme glucose oxidase (GOx) was immobilized on the surface of the GCE/(organic polymer–SWCNT) electrode. The amperometric detection of glucose was carried out at 0.7 V versus Ag/AgCl. The GCE/(SWCNT–PEI, PEG, PPY) gave a detection limit of 0.2633 μM, 0.434 μM, and 0.9617 μM, and sensitivities of 0.2411 ± 0.0033 μA mM{sup −1}, r{sup 2} = 0.9984, 0.08164 ± 0.001129 μA mM{sup −1}, r{sup 2} = 0.9975, 0.04189 ± 0.00087 μA mM{sup −1}, and r{sup 2} = 0.9944 respectively and a response time of less than 5 s. The use of purified SWCNTs has several advantages, including fast electron transfer rate and stability in the immobilized enzyme. The significant enhancement of the SWCNT modified electrode as a glucose sensor can be attributed to the superior conductivity and large surface area of the well dispersed purified SWCNTs. - Highlights: • Purification method employed here use cheap and green oxidants. • The method does not disrupt the electronic structure of nanotubes. • This method removes nearly < 2% metallic impurities. • Increases the sensitivity and performance of glassy carbon electrode • This system can detect as low as 0.066 μM of H{sub 2}O{sub 2} and 0.2633 μM of glucose.

  18. Purification of PON1 from human serum and assessment of enzyme kinetics against metal toxicity.

    Science.gov (United States)

    Ekinci, Deniz; Beydemir, Sükrü

    2010-06-01

    Paraoxonase-1 (PON1) is an organophosphate hydrolyser enzyme which has also antioxidant properties in metabolism. Due to its crucial functions, inhibition of the enzyme is undesirable and very dangerous. PON1 enzyme activity should not be altered in any case. Inhibitory investigations of this enzyme are therefore important and useful. Metal toxicology of enzymes has become popular in the recent years. Here, we report the in vitro inhibitory effects of some metal ions, including Pb(+2), Cr(+2), Fe(+2), and Zn(+2), on the activity of human serum PON1 (hPON1; EC 3.1.8.1.). For this purpose, we purified the enzyme from human serum and analyzed the alterations in the enzyme activity in the presence of metal ions. The results show that metal ions exhibit inhibitory effects on hPON1 at low concentrations with IC (50) values ranging from 0.838 to 7.410 mM. Metal ions showed different inhibition mechanisms: lead and iron were competitive, chrome was noncompetitive, and zinc was uncompetitive. Lead was determined to be the most effective inhibitor.

  19. An analysis of the repair processes in ultraviolet-irradiated Micrococcus luteus using purified ultraviolet-endonuclease

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Zherebtsov, S.V.

    1982-01-01

    The measurement of the frequency of endonucleolytic incisions in ultraviolet-irradiated DNA serves as the test for the presence of pyrimidine dimers. In accordance with this approach, the lysates of three Micrococcus luteus strains containing radioactively labeled chromosomes were treated with purified M. luteus ultraviolet-endonuclease to trace segregation of dimers amongst parental and newly synthesized DNA and their removal during postreplication and excision DNA repair. A considerable proportion of the dimers in all strains tested proved to be insensitive to the action of exogenous incising enzyme. The use of chloramphenicol as an inhibitor of postirradiation protein synthesis in combination with ultraviolet-endonuclease treatment of DNA allowed to reveal at least two alternative pathways of postreplication repair: constitutively active recombinational pathway and inducible nonrecombinational one. (Auth.)

  20. Characterization of endo-β-mannanase from Enterobacter ludwigii MY271 and application in pulp industry.

    Science.gov (United States)

    Yang, Miao; Cai, Jun; Wang, Changgao; Du, Xin; Lin, Jianguo

    2017-01-01

    β-Mannanases are the second most important enzymes for the hydrolysis of hemicelluloses. An endo-β-mannanase from Enterobacter ludwigii MY271 was purified at 11.7 ± 0.2-fold to homogeneity with a final recovery of 15.2 ± 0.2 %. Using purified β-mannanase protein and SDS-PAGE, the molecular mass was found to be 43.16 kDa. The optimal pH and temperature of the enzyme was found to be 7.0 and 55 °C, respectively. The β-mannanase activity was stable over a broad pH range of pH 2.0-10.0. In addition, the purified enzyme was highly activated by several metal ions and chemical reagents, such as Mg 2+ , L-cysteine, glutathione (GSH) and β-mercaptoethanol. Whereas the enzyme was strongly inhibited by Hg 2+ , Cu 2+ , N-bromosuccinimide (NBS), 1-ethyl-3-(3-dimethyl-amino-propyl)-carbodiimide (EDC), phenylmethanesulfonyl fluoride (PMSF), and sodium dodecyl sulfate (SDS). The β-mannanase was highly active towards glucomannan, and showed endo-activity by producing a mixture of oligosaccharides. Moreover, the enzyme displayed a classical endo-type mode on mannooligosaccharides. The β-mannanase coupled with xylanase significantly improved the brightness of kraft pulp, whereas it has no remarkable effect on the tensile strength of the pulp. Our functional studies of the purified β-mannanase indicate that the enzyme is beneficial to industrial applications, in particular, biotechnological processes, such as food, feed and pulp industry.

  1. Properties of purified cytosolic isoenzyme I of Cu,Zn-superoxide dismutase from Nicotiana plumbaginifolia leaves.

    Science.gov (United States)

    Ragusa, S; Cambria, M T; Scarpa, M; Di Paolo, M L; Falconi, M; Rigo, A; Cambria, A

    2001-11-01

    The isoenzyme I of cytosolic Cu,Zn-superoxide dismutase (SOD) from Nicotiana plumbaginifolia (tobacco) leaves has been purified to apparent homogeneity. The relative molecular mass of the native isoenzyme, determined by gel filtration chromatography, is about 33.2 kDa. SDS-polyacrylamide gel electrophoresis shows that the enzyme is composed of two equal subunits of 16.6 kDa The isolectric point, assayed by isoelectric focusing, in the pH range of 3.5-6.5, is 4.3. The enzyme stability was tested at different temperatures, pH, and concentration of inhibitors (KCN and H(2)O(2)). The catalytic constant (k(cat)) was 1.17 +/- 0.14 x 10(9) M(-1) s(-1) at pH 9.9 and 0.1 M ionic strength. The activation energy of the thermal denaturation process is 263 kJ mol(-1). The electrostatic surface potential of the modeled tobacco Cu,Zn-SOD I was calculated showing that the functional spatial network of charges on the protein surface has been maintained, independently of the amino acid substitution around the active sites. Copyright 2001 Academic Press.

  2. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria

    DEFF Research Database (Denmark)

    Kieffer, Dorothy A.; Piccolo, Brian D.; Marco, Maria L.

    2016-01-01

    ) associated with specific microbes may be involved. Objective: The objective of this study was to characterize ETWB-driven shifts in the cecal microbiome and to identify correlates between microbial changes and diet-related differences in liver metabolism in diet-induced obese mice that typically display......Background: Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites...... steatosis. Methods: Five-week-old male C57BL/6J mice fed a 45%-lard based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were...

  3. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises.

    Science.gov (United States)

    Gong, Jin-Song; Shi, Jin-Song; Lu, Zhen-Ming; Li, Heng; Zhou, Zhe-Min; Xu, Zheng-Hong

    2017-02-01

    Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.

  4. Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis

    OpenAIRE

    Phelps, Jamie P.; Dang, Nghiep; Rasochova, Lada

    2007-01-01

    Chimeric cowpea mosaic virus (CPMV) particles displaying foreign peptide antigens on the particle surface are suitable for development of peptide-based vaccines. However, commonly used PEG precipitation-based purification methods are not sufficient for production of high quality vaccine candidates because they do not allow for separation of chimeric particles from cleaved contaminating species. Moreover, the purified particles remain infectious to plants. To advance the CPMV technology furthe...

  5. Extracellular lipase of an entomopathogenic fungus effecting larvae of a scale insect.

    Science.gov (United States)

    Ali, Shaukat; Ren, Shunxiang; Huang, Zhen

    2014-11-01

    Lipases play an important role in the infection process of entomopathogenic fungi by hydrolyzing the ester bonds of lipoproteins, fats and waxes present on the insect surface and in the body. Here we report the purification and characterization of an extracellular lipase from Isaria fumosorosea. The enzyme was purified (138.46-fold) in three steps using (NH4 )2 SO4 precipitation followed by DEAE-cellulose and Sephadex G-100 column chromatography. The molecular weight of purified enzyme was determined to be 31 KDa by SDS-PAGE. The optimum temperature and pH for enzyme activity were 35 °C and 7.0, respectively, using p-nitrophenylpalmitate as the substrate. Lipolytic activity was enhanced in the presence of Ca(+2) , Mg(+2) , Na(+) , and NH4 (+) salts, while Zn(+2) , Fe(+2) , and Cu(+2) inhibited enzyme activity. The enzyme displayed broad substrate specificity with the highest activity observed for coconut oil and p-nitrophenyl carprate. Topical co-application of purified lipase with fungal conidial suspensions decreased the median survival time (ST50 ) of Dysmicoccus neobrevipes nymphs as compared to the fungus alone. Our results indicate that an extracellular lipase produced by I. fumosorosea can be exploited for development of enzyme-based insect management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phospholipase B activity of a purified phospholipase A from Vipera palestinae venom.

    Science.gov (United States)

    Shiloah, J; Klibansky, C; de Vries, A; Berger, A

    1973-05-01

    Phospholipase was isolated (in two fractions) from Vipera palestinae venom and it was shown to possess phospholipase A activity (hydrolyzing diacyl-sn-glycerophosphorylcholines, e.g., lecithin, in the 2-position) as well as lysophospholipase (phospholipase B) activity (hydrolyzing 1-monoacyl-sn-glycerophosphorylcholines, e.g., lysolecithin, yielding free fatty acid and glycerophosphorylcholine). Each of the two purified enzyme fractions was homogeneous as judged by electrophoresis on acrylamide gel and by immunodiffusion and immunoelectrophoresis, and both had essentially equal activities. The ratio of the specific activity, at various purification stages, to the specific activity of the whole venom was the same for A activity (substrate lecithin) as for B activity (substrate lysolecithin). The enzyme has a molecular weight of 16,000, six S-S bridges, and no free thiol groups. At pH 7, dimerization was observed in the ultracentrifuge. A dissociation constant of about 10(-5) m was estimated. The amino acid composition for both fractions (140 amino acid residues) was found to be essentially the same. The A activity had a pH optimum at 9; B activity was low at this pH but increased steadily beyond pH 10.5. For the hydrolysis of lysolecithin the Lineweaver-Burk plot was found to be linear, giving K(m) = 1.1 mm and k(cat) = 0.55 sec(-1) at 37 degrees C and pH 10. 2-Deoxylysolecithin was also hydrolyzed by the enzyme at pH 10, with k(cat) = 0.01 sec(-1) (zero-order kinetics in the range 0.5-2.5 mm). For lecithin these constants could not be determined, but at 0.25 mm substrate the hydrolysis rate (at pH 9) of lecithin was about 1000 times the hydrolysis rate of lysolecithin (at pH 10).

  7. Phosphoenolpyruvate-Dependent Fructose Phosphotransferase System of Rhodopseudomonas sphaeroides : Purification and Physicochemical and Immunochemical Characterization of a Membrane-Associated Enzyme I

    NARCIS (Netherlands)

    Brouwer, Marius; Elferink, Marieke G.L.; Robillard, George T.

    1982-01-01

    The phosphotransferase system (PTS) of the phototrophic bacterium Rhodopseudomonas sphaeroides consists of a component located in the cytoplasmic membrane and a membrane-associated enzyme called “soluble factor” (SF). SF has been partially purified by a combination of hydrophobic interaction and

  8. Purification and Partial Characterization of Catalase from Chicken Erythrocytes and the Effect of Various Inhibitors on Enzyme Activity

    OpenAIRE

    AYDEMİR, Tülin; KURU, Kevser

    2003-01-01

    Catalase plays a major role in the protection of tissues from the toxic effects of H2O2 and partially reduced oxygen species. A nearly 136-fold enzyme purification was obtained from chicken erythrocyte by acetone precipitation, ethanol-chloroform treatment, CM-cellulose and Sephadex G-200 chromatography. The specific activity of purified enzyme was 42,556 U/mg. The molecular weight of the native chicken erythrocyte catalase was estimated at 240 kDa by gel filtration. SDS-gel electr...

  9. Plant cell-wall hydrolyzing enzymes from indigenously isolated fungi grown on conventional and novel natural substrates

    International Nuclear Information System (INIS)

    Kumari, D.; Sohail, M.; Jahangeer, S.; Abideen, Z.; Khan, M.A.

    2017-01-01

    Fungi elaborate a variety of plant-hydrolyzing enzymes including cellulases, xylanases, pectinases and amylases. Although these enzymes have potential biotechnological applications, their production at industrial level is limited because of higher costs of the purified substrates. Hence, the present study was aimed to explore the novel, natural and cheaper substrates for enzyme production. Indigenously isolated fungal strains of Aspergillus sp. were grown on banana-peels, grapefruit-peels, pomegranate-peels, sugarcane bagasse, Eucalyptus camaldulensis-leaves and shoots of two halophytic plants including Halopyrum mucronatum and Desmostachya bipinnata under solid-state fermentation (SSF) and submerged fermentation (Smf) conditions. The crude enzyme preparation was screened for cellulase (endoglucanase, beta-glucosidase and filter-paperase), hemicellulase (xylanase), pectinase and amylase production. The results revealed that among all investigated enzymes, the xylanase titers were highest using D. bipinnata- shoots and H. mucronatum- shoots as substrates under solid state fermentation conditions, suggesting their exploitation at commercial scale. (author)

  10. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    OpenAIRE

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-01-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna,...

  11. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae: effects of insert position and host background

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, B; Pallesen, L; Jensen, LB

    1997-01-01

    . Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...... with respect to host background in three different Escherichia coli strains, i.e. an isogenic set of K-12 strains, differing in the presence of an indigenous fim gene cluster, as well as a wild-type isolate. Immunization of rabbits with purified chimeric fimbriae resulted in serum which specifically recognized...

  12. Steroidogenesis in amlodipine treated purified Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Rabia, E-mail: rabialatif08@hotmail.com [Department of Physiology, Army Medical College, National University of Sciences and Technology, Islamabad (Pakistan); Lodhi, Ghulam Mustafa, E-mail: drmustafa786@gmail.com [Department of Physiology, Wah Medical College, Wah (Pakistan); Hameed, Waqas, E-mail: waqham@hotmail.com [Department of Physiology, Rehman Medical College, Peshawar (Pakistan); Aslam, Muhammad, E-mail: professormaslam@yahoo.com [Department of Physiology, Shifa College of Medicine, Islamabad (Pakistan)

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  13. Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii.

    OpenAIRE

    Konisky, J; Michels, P C; Clark, D S

    1995-01-01

    The application of 50-MPa pressure did not increase the thermostabilities of adenylate kinases purified from four related mesophilic and thermophilic marine methanogens. Thus, while it has been reported that some thermophilic enzymes are stabilized by pressure (D. J. Hei and D. S. Clark, Appl. Environ. Microbiol. 60:932-939, 1994), hyperbaric stabilization is not an intrinsic property of all enzymes from deep-sea thermophiles.

  14. In vitro Fab display: a cell-free system for IgG discovery

    Science.gov (United States)

    Stafford, Ryan L.; Matsumoto, Marissa L.; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D.; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R.; Baliga, Ramesh; Murray, Christopher J.; Thanos, Christopher D.; Hallam, Trevor J.; Sato, Aaron K.

    2014-01-01

    Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF. PMID:24586053

  15. Development of a biogas purifier for rural areas in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Hinata, T. [Hokkaido Central Agricultural Experiment Station, Hokkaido (Japan); Yasui, S. [Zukosha Co. Ltd., Obihiro, Hokkaido (Japan); Noguchi, N. [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tsukamoto, T. [IHI Shibaura. Co. Ltd., Obihiro, Hokkaido (Japan); Imai, T. [Green Plan Co. Ltd., Sapporo, Hokkaido (Japan); Kanai, M. [Air Water Co. Ltd, Sakai, Osaka (Japan); Matsuda, Z. [Hokuren Agricultural Research Center, Sapporo, Hokkaido (Japan)

    2010-07-01

    Although the biogas that is currently produced for dairy farms in Japan is a carbon-neutral energy, its use is restricted to farming areas only because there is no effective method of transporting unused biogas. There is a need for establishing practical methods for biogas removal from operating systems. In this study, a gas separation membrane was used in order to modify biogas to city gas 12A specifications, and to develop a biogas purifier equipped with a device to fill high pressure purified gas into cylinders to be taken outside the farming area. The objective was to expand the use of biogas produced from stand-alone gas plants. The amount of purified gas produced at a newly created refining-compression-filling (RCF) facility was approximately 97.0 Nm{sup 3}/day, for a raw material amount of about 216.0 Nm{sup 3}/day. The heat quantity of the purified gas was 38.9 MJ/Nm{sup 3}, which was within city gas 12A specifications. A total of 14.3 cylinders were filled each day with the manufactured purified gas. Test calculations along with a simulation exercise revealed that it would be possible to provide purified gas to approximately 6 per cent of common residences in a town in northern Japan. It was concluded that the newly created RCF facility allowed the modification of carbon-neutral biogas to conform to city gas 12A specifications, and allowed the transport of this gas out of the farming area.

  16. Method for purifying bidentate organophosphorus compounds

    International Nuclear Information System (INIS)

    Schulz, W.W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds

  17. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution

    International Nuclear Information System (INIS)

    Elegheert, Jonathan; Hemel, Debbie van den; Dix, Ina; Stout, Jan; Van Beeumen, Jozef; Brigé, Ann; Savvides, Savvas N.

    2009-01-01

    Of the four old yellow enzyme homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Shewanella oneidensis is an environmentally versatile Gram-negative γ-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex

  18. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  19. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal

    2010-04-01

    Full Text Available It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized.Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity.Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be important to counter-balance the multiple rounds of

  20. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation.

    Science.gov (United States)

    Ngo, Dai-Hung; Ryu, BoMi; Kim, Se-Kwon

    2014-01-15

    Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  2. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  3. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  4. Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: characterization of the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors.

    Science.gov (United States)

    Li, Wenjin; Ulm, Hannah; Rausch, Marvin; Li, Xue; O'Riordan, Katie; Lee, Jean C; Schneider, Tanja; Müller, Christa E

    2014-11-01

    Polysaccharide capsules significantly contribute to virulence of invasive pathogens, and inhibition of capsule biosynthesis may offer a valuable strategy for novel anti-infective treatment. We purified and characterized the enzymes CapD and CapE of the Staphylococcus aureus serotype 5 biosynthesis cluster, which catalyze the first steps in the synthesis of the soluble capsule precursors UDP-D-FucNAc and UDP-L-FucNAc, respectively. CapD is an integral membrane protein and was obtained for the first time in a purified, active form. A capillary electrophoresis (CE)-based method applying micellar electrokinetic chromatography (MEKC) coupled with UV detection at 260 nm was developed for functional characterization of the enzymes using a fused-silica capillary, electrokinetic injection, and dynamic coating with polybrene at pH 12.4. The limits of detection for the CapD and CapE products UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose and UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose, respectively, were below 1 μM. Using this new, robust and sensitive method we performed kinetic studies for CapD and CapE and screened a compound library in search for enzyme inhibitors. Several active compounds were identified and characterized, including suramin (IC50 at CapE 1.82 μM) and ampicillin (IC50 at CapD 40.1 μM). Furthermore, the cell wall precursors UDP-D-MurNAc-pentapeptide and lipid II appear to function as inhibitors of CapD enzymatic activity, suggesting an integrated mechanism of regulation for cell envelope biosynthesis pathways in S. aureus. Corroborating the in vitro findings, staphylococcal cells grown in the presence of subinhibitory concentrations of ampicillin displayed drastically reduced CP production. Our studies contribute to a profound understanding of the capsule biosynthesis in pathogenic bacteria. This approach may lead to the identification of novel anti-virulence and antibiotic drugs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Bitistatin-functionalized fluorescent nanodiamond particles specifically bind to purified human platelet integrin receptor αIIbβ3 and activated platelets.

    Science.gov (United States)

    Marcinkiewicz, Cezary; Gerstenhaber, Jonathan A; Sternberg, Mark; Lelkes, Peter I; Feuerstein, Giora

    2017-01-01

    Thromboembolic events (TEE) underwrite key causes of death in developed countries. While advanced imaging technologies such as computed tomography scans serve to diagnose blood clots during acute cardiovascular events, no such technology is available in routine primary care for TEE risk assessment. Here, we describe an imaging platform technology based on bioengineered fluorescent nanodiamond particles (F-NDPs) functionalized with bitistatin (Bit), a disintegrin that specifically binds to the α IIb β 3 integrin, platelet fibrinogen receptor (PFR) on activated platelets. Covalent linkage of purified Bit to F-NDP was concentration-dependent and saturable, as validated by enzyme-linked immunosorbent assay using specific anti-Bit antibodies. F-NDP-Bit interacted with purified PFR, either in immobilized or soluble form. Lotrafiban, a nonpeptide, α IIb β 3 receptor antagonist, specifically blocked F-NDP-Bit-PFR complex formation. Moreover, F-NDP-Bit specifically binds to activated platelets incorporated into a clot generated by thrombin-activated rat platelet-rich plasma (PRP). Our results suggest that engineered F-NDP-Bit particles could serve as noninvasive, "real-time" optical diagnostics for clots present in blood vessels.

  6. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme

    DEFF Research Database (Denmark)

    de Rond, Tristan; Stow, Parker; Eigl, Ian

    2017-01-01

    Prodiginines, which are tripyrrole alkaloids displaying a wide array of bioactivities, occur as linear and cyclic congeners. Identification of an unclustered biosynthetic gene led to the discovery of the enzyme responsible for catalyzing the regiospecific C–H activation and cyclization of prodigi...... of prodigiosin to cycloprodigiosin in Pseudoalteromonas rubra. This enzyme is related to alkylglycerol monooxygenase and unrelated to RedG, the Rieske oxygenase that produces cyclized prodiginines in Streptomyces, implying convergent evolution....

  7. Purifying oils

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-15

    Gasoline, lamp oils, and lubricating or other mineral or shale oils are refined by contacting the vapor with a hot aqueous solution of salts of zinc, cadmium, or mercury, or mixtures thereof which may contain 0-5-3-0 percent of oxide or hydroxide in solution or suspension. Chlorides, bromides, iodides, sulfates, nitrates, and sulfonates of benzol, toluol, xylol, and petroleum are specified. Washing with a solution of sodium or potassium hydroxide or carbonate of calcium hydroxide may follow. The oil may first be purified by sulfuric acid or other known agent, or afterwards caustic alkali and sulfuric acid. The Specification as open to inspection under Sect. 91 (3) (a) describes also the use of salts of copper, iron, chromium, manganese, aluminum, nickel, or cobalt, with or without their oxides or hydroxides. This subject-matter does not appear in the Specification as accepted.

  8. Cohnella amylopullulanases: Biochemical characterization of two recombinant thermophilic enzymes.

    Directory of Open Access Journals (Sweden)

    Fatemeh Zebardast Roodi

    Full Text Available Some industries require newer, more efficient recombinant enzymes to accelerate their ongoing biochemical reactions in harsh environments with less replenishment. Thus, the search for native enzymes from extremophiles that are suitable for use under industrial conditions is a permanent challenge for R & D departments. Here and toward such discoveries, two sequences homologous to amylopullulanases (EC 3.2.1.41, GH57 from an endogenous Cohnella sp., [Coh00831 (KP335161; 1998 bp and Coh01133 (KP335160: 3678 bp] were identified. The genes were heterologously expressed in E. coli to both determine their type and further characterize their properties. The isolated DNA was PCR amplified with gene specific primers and cloned in pET28a, and the recombinant proteins were expressed in E. coli BL21 (DE3. The temperatures and pH optima of purified recombinants Coh 01133 and Coh 00831 enzymes were 70°C and 8, and 60°C and 6, respectively. These enzymes are stable more than 90% in 60°C and 50°C for 90 min respectively. The major reactions released sugars which could be fractionated by HPLC analysis, from soluble starch were mainly maltose (G2, maltotriose (G3 and maltotetraose (G4. The enzymes hydrolyzed pullulan to maltotriose (G3 only. Enzyme activities for both proteins were improved in the availability of Mn2+, Ba2+, Ca2+, and Mg2+ and reduced in the presence of Fe2+, Li2+, Na2+, Triton X100 and urea. Moreover, Co2+, K+, and Cu2+ had a negative effect only on Coh 01133 enzyme.

  9. Cohnella amylopullulanases: Biochemical characterization of two recombinant thermophilic enzymes.

    Science.gov (United States)

    Zebardast Roodi, Fatemeh; Aminzadeh, Saeed; Farrokhi, Naser; Karkhane, AliAsghar; Haghbeen, Kamahldin

    2017-01-01

    Some industries require newer, more efficient recombinant enzymes to accelerate their ongoing biochemical reactions in harsh environments with less replenishment. Thus, the search for native enzymes from extremophiles that are suitable for use under industrial conditions is a permanent challenge for R & D departments. Here and toward such discoveries, two sequences homologous to amylopullulanases (EC 3.2.1.41, GH57) from an endogenous Cohnella sp., [Coh00831 (KP335161; 1998 bp) and Coh01133 (KP335160: 3678 bp)] were identified. The genes were heterologously expressed in E. coli to both determine their type and further characterize their properties. The isolated DNA was PCR amplified with gene specific primers and cloned in pET28a, and the recombinant proteins were expressed in E. coli BL21 (DE3). The temperatures and pH optima of purified recombinants Coh 01133 and Coh 00831 enzymes were 70°C and 8, and 60°C and 6, respectively. These enzymes are stable more than 90% in 60°C and 50°C for 90 min respectively. The major reactions released sugars which could be fractionated by HPLC analysis, from soluble starch were mainly maltose (G2), maltotriose (G3) and maltotetraose (G4). The enzymes hydrolyzed pullulan to maltotriose (G3) only. Enzyme activities for both proteins were improved in the availability of Mn2+, Ba2+, Ca2+, and Mg2+ and reduced in the presence of Fe2+, Li2+, Na2+, Triton X100 and urea. Moreover, Co2+, K+, and Cu2+ had a negative effect only on Coh 01133 enzyme.

  10. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    Science.gov (United States)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  11. Tumour Microenvironments Induce Expression of Urokinase Plasminogen Activator Receptor (uPAR) and Concomitant Activation of Gelatinolytic Enzymes

    Science.gov (United States)

    Magnussen, Synnøve; Hadler-Olsen, Elin; Latysheva, Nadezhda; Pirila, Emma; Steigen, Sonja E.; Hanes, Robert; Salo, Tuula; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjørg

    2014-01-01

    Background The urokinase plasminogen activator receptor (uPAR) is associated with poor prognosis in oral squamous cell carcinoma (OSCC), and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells’ expression level of uPAR affected the activity of gelatinolytic enzymes. Methods The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM) proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography. Results We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes. Conclusions Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the

  12. Tumour microenvironments induce expression of urokinase plasminogen activator receptor (uPAR and concomitant activation of gelatinolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Synnøve Magnussen

    Full Text Available The urokinase plasminogen activator receptor (uPAR is associated with poor prognosis in oral squamous cell carcinoma (OSCC, and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells' expression level of uPAR affected the activity of gelatinolytic enzymes.The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography.We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes.Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the regulation of posttranslational

  13. Impossibility criterion for obtaining pure entangled states from mixed states by purifying protocols

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    Purifying noisy entanglement is a protocol that can increase the entanglement of a mixed state (as a source) at the expense of the entanglement of others (such as an ancilla) by collective measurement. A protocol with which one can get a pure entangled state from a mixed state is defined as purifying mixed states. We address a basic question: can one get a pure entangled state from a mixed state? We give a necessary and sufficient condition of purifying a mixed state by fit local operations and classical communication and show that for a class of source states and ancilla states in arbitrary bipartite systems purifying mixed states is impossible by finite rounds of purifying protocols. For 2x2 systems, it is proved that arbitrary states cannot be purified by individual measurement. The possible application and meaning of the conclusion are discussed

  14. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    Science.gov (United States)

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  15. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  16. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    Science.gov (United States)

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  17. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  18. Crystallization and preliminary X-ray analysis of ZHE1, a hatching enzyme from the zebrafish Danio rerio

    International Nuclear Information System (INIS)

    Okada, Akitoshi; Nagata, Koji; Sano, Kaori; Yasumasu, Shigeki; Kubota, Keiko; Ohtsuka, Jun; Iuchi, Ichiro; Tanokura, Masaru

    2009-01-01

    The hatching enzyme of zebrafish, ZHE1, was expressed, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal belonged to space group P2 1 2 1 2 1 and diffracted X-rays to a resolution of 1.14 Å. The hatching enzyme of the zebrafish, ZHE1 (29.3 kDa), is a zinc metalloprotease that catalyzes digestion of the egg envelope (chorion). ZHE1 was heterologously expressed in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant. Two diffraction data sets with resolution ranges 50.0–1.80 and 50.0–1.14 Å were independently collected from two crystals and were merged to give a highly complete data set over the full resolution range 50.0–1.14 Å. The space group was assigned as primitive orthorhombic P2 1 2 1 2 1 , with unit-cell parameters a = 32.9, b = 62.5, c = 87.4 Å. The crystal contained one ZHE1 molecule in the asymmetric unit

  19. Microbial and biochemical studies on phytase enzyme in some microorganisms

    International Nuclear Information System (INIS)

    Abdelbary, N.A.

    1997-01-01

    Mixed calcium and magnesium salts of phytic acid myoinositol hexa phosphoric acid are widely distributed in food stuffs of plant origin, they may bind essential proteins, phospholipids and microelements to form indigestible compounds. In this concern, destruction of phytic acid and its salts by different methods is very important, one of them is by using microbial phytase. This study aims to produce phytase enzyme from microorganisms and study the best conditions of production and purification and also the properties of the partially purified phytase. 22 figs., 29 tabs., 61 refs

  20. Perfusion chromatography separation of the tomato fruit-specific pectin methylesterase from a semipurified commercial enzyme preparation.

    Science.gov (United States)

    Savary, B J

    2001-08-01

    A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.

  1. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Mohtar

    2016-12-01

    Full Text Available The glycogen branching enzyme (EC 2.4.1.18, which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.

  2. An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: downstream processing and biochemical characterization

    Directory of Open Access Journals (Sweden)

    Deepali Bisht

    2013-12-01

    Full Text Available An extracellular alkaline lipase from Pseudomonas aeruginosa mutant has been purified to homogeneity using acetone precipitation followed by anion exchange and gel filtration chromatography and resulted in 27-fold purification with 19.6% final recovery. SDS-PAGE study suggested that the purified lipase has an apparent molecular mass of 67 kDa. The optimum temperature and pH for the purified lipase were 45°C and 8.0, respectively. The enzyme showed considerable stability in pH range of 7.0-11.0 and temperature range 35-55 °C. The metal ions Ca2+, Mg2+ and Na+ tend to increase the enzyme activity, whereas, Fe2+ and Mn2+ ions resulted in discreet decrease in the activity. Divalent cations Ca+2 and Mg+2 seemed to protect the enzyme against thermal denaturation at high temperatures and in presence of Ca+2 (5 mM the optimum temperature shifted from 45°C to 55°C. The purified lipase displayed significant stability in the presence of several hydrophilic and hydrophobic organic solvents (25%, v/v up to 168 h. The pure enzyme preparation exhibited significant stability and compatibility with oxidizing agents and commercial detergents as it retained 40-70% of its original activities. The values of Km and Vmax for p-nitrophenyl palmitate (p-NPP under optimal conditions were determined to be 2.0 mg.mL-1 and 5000 μg.mL-1.min-1, respectively.

  3. Tellurite and Tellurate Reduction by the Aerobic Anoxygenic Phototroph Erythromonas ursincola, Strain KR99 Is Carried out by a Novel Membrane Associated Enzyme

    Directory of Open Access Journals (Sweden)

    Chris Maltman

    2017-04-01

    Full Text Available Erythromonas ursincola, strain KR99 isolated from a freshwater thermal spring of Kamchatka Island in Russia, resists and reduces very high levels of toxic tellurite under aerobic conditions. Reduction is carried out by a constitutively expressed membrane associated enzyme, which was purified and characterized. The tellurite reductase has a molecular weight of 117 kDa, and is comprised of two subunits (62 and 55 kDa in a 1:1 ratio. Optimal activity occurs at pH 7.0 and 28 °C. Tellurite reduction has a Vmax of 5.15 µmol/min/mg protein and a Km of 3.36 mM. The enzyme can also reduce tellurate with a Vmax and Km of 1.08 µmol/min/mg protein and 1.44 mM, respectively. This is the first purified membrane associated Te oxyanion reductase.

  4. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  5. Purification of Angiotensin Converting Enzyme Inhibitory Peptide Derived From Kacang Goat Meat Protein Hydrolysate

    OpenAIRE

    Jamhari, J; Yusiati, L.M; Suryanto, E; Cahyanto, M.N; Erwanto, Y; Muguruma, M

    2013-01-01

    The objective of this study was to identify the Angiotensin Converting Enzyme (ACE) inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC usi...

  6. Studies on the Catalytic Properties of Partially Purified Alkaline Proteases from Some Selected Microorganisms

    Directory of Open Access Journals (Sweden)

    Titilayo Olufunke Femi-Ola

    2012-09-01

    Full Text Available Aims: The research was done to study the conditions enhancing catalytic activities of alkaline proteases from Vibro sp., Lactobacillus brevis, Zymomonas sp., Athrobacter sp., Corynebacterium sp. and Bacillus subtilis.Methodology and Results: The proteolytic enzymes were purified in 2-step procedures involving ammonium sulphate precipitation and sephadex G-150 gel permeation chromatography. The upper and lower limits for the specific activities of proteases from the selected microorganisms were estimated at 20.63 and 47.51 units/mg protein with Zymomonas protease having the highest specific activity towards casein as its substrate and purification fold of 3.46, while that ofLactobacillus brevis protease was 8.06. The native molecular weights of these active proteins ranged from 30.4 to 45.7 kDa with Athrobacter sp. protease having the highest weight for its subunits. The proteolytic enzymes had optimum pH range of 8 to 10 and temperature range of 50 to 62 ºC accounting for the percentage relative activity range of 75 to 94% and 71 to 84 % respectively. The activities of Lactobacillus brevis and Bacillus subtilis proteases were maximum at pH 9 and 10 respectively. Lactobacillus brevis protease activity was maximum at temperature of 62 ºC, while beyond this value, a general thermal instability of these active proteins was observed. At above 70 ºC, the catalytic activities of Corynebacterium sp., Vibrio sp., Zymomonas sp. and Arthrobacter sp. proteases were progressively reduced over a period of 120 min of incubation, while Bacillus subtlis and Lactobacillus brevis proteases were relatively stable. Effect of metal ions was investigated on the catalytic activity of protease from the microorganisms. Lactobacillus brevis,Zymomonas sp., Arthrobacter sp., Corynebacterium sp. and Bacillus subtilis protease activities were strongly activated by metal ions such as Ca+2 and Mg+2. Enzyme activities were inhibited strongly by Cu2+ and Hg2+ but were not

  7. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish.

    Science.gov (United States)

    Banerjee, Goutam; Nandi, Ankita; Ray, Arun Kumar

    2017-01-01

    In the present investigation, probiotic potential (antagonistic activity, enzyme production, hemolytic activity, biosafety, antibiotic sensitivity and bile tolerance level) of Bacillus subtilis LR1 was evaluated. Bacteriocin produced by the bacterial strain B. subtilis LR1 isolated from the gastrointestinal tract of Labeo rohita was purified and characterized. The molecular weight of the purified bacteriocin was ~50 kDa in 12 % Native PAGE and showed inhibitory activity against four fish pathogens such as Bacillus mycoides, Aeromonas salmonicida, Pseudomonas fluorescens and Aeromonas hydrophila. The purified bacteriocin was maximally active at temperature 40 °C and pH 7.0, while none of the tested surfactants affect the bacteriocin activity. Extracellular enzyme activity of the selected bacterial strain was also evaluated. Amylase activity was estimated to be highest (38.23 ± 1.15 µg of maltose liberated mg -1  protein ml -1 of culture filtrate) followed by cellulase and protease activity. The selected bacterium was sensitive to most of the antibiotics used in this experiment, can tolerate 0.25 % bile salt and non-hemolytic in nature. Finally, the efficiency of the proposed probiotic candidate was evaluated in in vivo condition. It was detected that the bacterial strain can effectively reduce bacterial pathogenicity in Indian major carps.

  8. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts.

    Directory of Open Access Journals (Sweden)

    Andrew G McDonald

    2016-04-01

    Full Text Available O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4, four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms.

  9. Imminent angiotensin-converting enzyme inhibitor from microbial source for cancer therapy

    Directory of Open Access Journals (Sweden)

    Lida Ebrahimi

    2017-01-01

    Full Text Available Background: Drugs targeting Angiotensin I-converting enzyme (ACE have been used broadly in cancer chemotherapy. The recent past coupled with our results demonstrates the effective use of ACE inhibitors (ACEi as anticancer agents, and they are potentially relevant in deriving new inhibitors. Methods: Bacterial strains were isolated from cow milk collected in Coimbatore, Tamil Nadu, India and plated on nutrient agar medium. The identity of the strain was ascertained by 16s rRNA gene sequencing method and was submitted to the NCBI GenBank nucleotide database. Various substrates were screened for ACEi production by the fermentation with the isolated strain. ACEi was purified by sequential steps of ethanol precipitation, ion exchange column chromatography and gel filtration column chromatography. The apparent molecular mass was determined by SDS-PAGE. The anticancer property was analyzed by studying the cytotoxicity effects of ACEi using Breast cancer MCF-7 cell lines Results: The isolate coded as BUCTL09 was selected and identified as Micrococcus luteus. Among the seven substrates, only beef extract fermented broth showed an inhibition of 79% and was reported as the best substrate. The peptide was purified and molecular mass was determined. The IC50 value of peptide was found to be 59.5 μg/ ml. The purified peptide has demonstrated to induce apoptosis of cancer cell.Conclusions: The results of this study revealed that Peptide has been determined as an active compound that inhibited the activity of ACE. These properties indicate the possibilities of the use of purified protein as a potent anticancer agent.

  10. Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements

    Science.gov (United States)

    Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew

    2015-01-01

    Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme

  11. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements.

    Directory of Open Access Journals (Sweden)

    George Janssen

    Full Text Available Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP.Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1 enzyme assays and 2 mass spectrometric identification. Gluten epitope degradation was monitored by 1 R5 ELISA, 2 mass spectrometric analysis of the degradation products and 3 T cell proliferation assays.The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.Currently available digestive enzyme supplements are ineffective in

  12. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties.

    Science.gov (United States)

    Ogata, Makoto; Kameshima, Yumiko; Hattori, Takeshi; Michishita, Kousuke; Suzuki, Tomohiro; Kawagishi, Hirokazu; Totani, Kazuhide; Hiratake, Jun; Usui, Taichi

    2010-12-10

    Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Development of highly sensitive detection method for toxins and other pathogenic factors by phage-displayed monoclonal antibody using radioisotopes

    International Nuclear Information System (INIS)

    Izumiya, Hidemasa; Watanabe, Haruo

    2000-01-01

    To prepare anti-Shiga toxin (Stx) antibody, a recombinant strain of E coli that can produce the subunit B of Stx was constructed. DNA fragment coding the Stx subunit B, about 0.2 kb in length was amplified using a plasmid containing Stx gene as the template by PCR. After digesting with a restriction enzyme, the DNA fragment was inserted into pmal-c2 vector (New England Biolabs) to produce a fusion protein with maltose binding protein (MBP). E.coli K12 (DH5α) including the pmal-stx plasmid was cultured in the presence of isopropylthiogalactoside (IPTG) and thus, MBP-stx fusion protein was obtained. After purification by Millipore membrane filter, this fusion protein was used as the antigen. Then, mice BALB/c were immunized by intraperitoneal injection of the suspension of MBP-stx and adjuvant. The antibody purified from the spleen was submitted to phage display system. The phage specifically binding to the antigen was proliferated through repeated infection to E coli and the anti-Stx antibody was obtained from the culture of its colony grown on IPTG plate. Three different colonies specifically responding to the recombinant Stx antigen were obtained. In near future, labeled antibody would be produced by addition of 35 S compound in to the culture medium. (M.N.)

  14. Home drinking-water purifiers

    International Nuclear Information System (INIS)

    Pizzichini, Massimo; Pozio, Alfonso; Russo, Claudio

    2005-01-01

    To salve the widespread problem of contaminated drinking water, home purifiers are now sold in Italy as well as other countries. This article describes how these devices work, how safe they are to use and how safe the water they produce, in the broad context of regulations on drinking water and mineral water. A new device being developed by ENEA to treat municipal water and ground water could provide greater chemical and bacteriological safety. However, the appearance of these new systems makes it necessary to update existing regulations [it

  15. The Use of Recombinant Hemagglutinine Protein of Rinderpest Virus in Enzyme Immunoassay

    OpenAIRE

    BULUT, Hakan; BOLAT, Yusuf

    2003-01-01

    In this study, Rinderpest virus (RPV) recombinant hemagglutinine protein (rH) fused with protein A region of Staphylococcus aureus was expressed in Escherichia coli and purified by IgG affinity chromatography. rH protein was also used to establish enzyme immunoassay. Therefore, to prevent IgG binding to the protein A the wells coated with the rH proteins were blocked by human serum. Afterwards, RPV antigens were added to the wells to evaluate this assay. To this end, serum from mice immunized...

  16. Hydrolysis of triolein in phospholipid vesicles and microemulsions by a purified rat liver acid lipase.

    Science.gov (United States)

    Burrier, R E; Brecher, P

    1983-10-10

    An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.

  17. Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia: the first member of a novel enzyme family.

    Science.gov (United States)

    Ma, Xueyan; Koepke, Juergen; Fritzsch, Günter; Diem, Ralf; Kutchan, Toni M; Michel, Hartmut; Stöckigt, Joachim

    2004-10-01

    Strictosidine synthase is a central enzyme involved in the biosynthesis of almost all plant monoterpenoid indole alkaloids. Strictosidine synthase from Rauvolfia serpentina was heterologously expressed in Escherichia coli. Crystals of the purified recombinant enzyme have been obtained by the hanging-drop technique at 303 K with potassium sodium tartrate tetrahydrate as precipitant. The crystals belong to the space group R3 with cell dimensions of a=b=150.3 A and c=122.4 A. Under cryoconditions (120 K), the crystals diffract to about 2.95 A.

  18. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    Science.gov (United States)

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  19. Leukotriene formation by purified 5-lipoxygenase from rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Hogaboom, G.K.; Cook, M.; Sarau, H.M.; Newton, J.F.; Crooke, S.T.

    1986-01-01

    Arachidonate 5-lipoxygenase (5-LO) from rat basophilic leukemia (RBL-1) cell high speed (105,000 x g for 60 min) supernatants was purified to electrophoretic homogeneity by gel filtration and anion-exchange protein-high pressure liquid chromatography (HPLC). The 5-LO rapidly converted [ 14 C]arachidonate at 20 0 C to [ 14 C]5-hydroperoxyeicosate-traenoic acid (HPETE) as determined by reversed phase-HPLC, scanning spectrophotometry and radiochemical detection. In addition, 5-LO converted both 5-HPETE and arachidonate to 5,12-dihydroxyeicosatetraenoic acids (diHETEs). The 5,12-diHETEs were identified as 6-trans-leukotriene (LT) B4 and 6-trans-12-epi-LTB4 as determined by reversed phase HPLC, scanning spectrophotometry and gas chromatography-mass spectrometry. These data indicate that the RBL-1 5-LO and LTA4 synthetase activities reside on the same protein and that it catalyzes the bioconversion of arachidonate to not only 5-HPETE but also to LTA4. The results suggest that a critical regulatory step in LT biosynthesis in mammalian systems involves the intricate coupling of the enzymes 5-LO and LTA4 synthetase and the interactions of their respective cofactors, substrates and reaction products

  20. Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism.

    Science.gov (United States)

    Ettema, Thijs J G; Makarova, Kira S; Jellema, Gera L; Gierman, Hinco J; Koonin, Eugene V; Huynen, Martijn A; de Vos, Willem M; van der Oost, John

    2004-11-01

    Despite the fact that phosphoenolpyruvate carboxylase (PEPC) activity has been measured and in some cases even purified from some Archaea, the gene responsible for this activity has not been elucidated. Using sensitive sequence comparison methods, we detected a highly conserved, uncharacterized archaeal gene family that is distantly related to the catalytic core of the canonical PEPC. To verify the predicted function of this archaeal gene family, we cloned a representative from the hyperthermophilic acidophile Sulfolobus solfataricus and functionally produced the corresponding enzyme as a fusion with the Escherichia coli maltose-binding protein. The purified fusion protein indeed displayed highly thermostable PEPC activity. The structural and biochemical properties of the characterized archaeal-type PEPC (atPEPC) from S. solfataricus are in good agreement with previously reported biochemical analyses of other archaeal PEPC enzymes. The newly identified atPEPC, with its distinct properties, constitutes yet another example of the versatility of the enzymes of the central carbon metabolic pathways in the archaeal domain.

  1. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  2. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    International Nuclear Information System (INIS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-01-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they

  3. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope.

    Directory of Open Access Journals (Sweden)

    Nathalie Callens

    2016-03-01

    Full Text Available The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV, a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.

  4. Structure/activity relationship of thapsigargin inhibition on the purified Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a)

    DEFF Research Database (Denmark)

    Chen, Jialin; De Raeymaecker, Joren; Hovgaard, Jannik Brondsted

    2017-01-01

    SPCA1a displays a higher apparent Ca2+ affinity and lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linole-/oleamide and phosphatidyl ethanolamine inhibit, whereas phosphatidic acid and sphingomyelin enhance SPCA1a...... activity. Moreover, SPCA1a is blocked by μM concentrations of commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid (CPA) and 2,5-di-tert-butyl hydroquinone (BHQ). Since tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a...

  5. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    Science.gov (United States)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  6. Surface display for metabolic engineering of industrially important acetic acid bacteria

    Directory of Open Access Journals (Sweden)

    Marshal Blank

    2018-04-01

    Full Text Available Acetic acid bacteria have unique metabolic characteristics that suit them for a variety of biotechnological applications. They possess an arsenal of membrane-bound dehydrogenases in the periplasmic space that are capable of regiospecific and enantioselective partial oxidations of sugars, alcohols, and polyols. The resulting products are deposited directly into the medium where they are easily recovered for use as pharmaceutical precursors, industrial chemicals, food additives, and consumer products. Expression of extracytoplasmic enzymes to augment the oxidative capabilities of acetic acid bacteria is desired but is challenging due to the already crowded inner membrane. To this end, an original surface display system was developed to express recombinant enzymes at the outer membrane of the model acetic acid bacterium Gluconobacter oxydans. Outer membrane porin F (OprF was used to deliver alkaline phosphatase (PhoA to the cell surface. Constitutive high-strength p264 and moderate-strength p452 promoters were used to direct expression of the surface display system. This system was demonstrated for biocatalysis in whole-cell assays with the p264 promoter having a twofold increase in PhoA activity compared to the p452 promoter. Proteolytic cleavage of PhoA from the cell surface confirmed proper delivery to the outer membrane. Furthermore, a linker library was constructed to optimize surface display. A rigid (EAAAK1 linker led to the greatest improvement, increasing PhoA activity by 69%. This surface display system could be used both to extend the capabilities of acetic acid bacteria in current biotechnological processes, and to broaden the potential of these microbes in the production of value-added products.

  7. Engineering yeast consortia for surface-display of complex cellulosome structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wilfred [University of Delaware

    2014-03-31

    As our society marches toward a more technologically advanced future, energy and environmental sustainability are some of the most challenging problems we face today. Biomass is one of the most abundant renewable-feedstock for sustainable production of biofuels. However, the main technological obstacle to more widespread uses of this resource is the lack of low-cost technologies to overcome the recalcitrant nature of the cellulosic structure, especially the hydrolysis step on highly ordered celluloses. In this proposal, we successfully engineered several efficient and inexpensive whole-cell biocatalysts in an effort to produce economically compatible and sustainable biofuels, namely cellulosic ethanol. Our approach was to display of a highly efficient cellulolytic enzyme complex, named cellulosome, on the surface of a historical ethanol producer Saccharomyces cerevisiae for the simultaneous and synergistic saccharification and fermentation of cellulose to ethanol. We first demonstrated the feasibility of assembling a mini-cellulosome by incubating E. coli lysates expressing three different cellulases. Resting cells displaying mini-cellulosomes produced 4-fold more ethanol from phosphoric acid-swollen cellulose (PASC) than cultures with only added enzymes. The flexibility to assemble the mini-cellulosome structure was further demonstrated using a synthetic yeast consortium through intracellular complementation. Direct ethanol production from PASC was demonstrated with resting cell cultures. To create a microorganism suitable for a more cost-effective process, called consolidated bioprocessing (CBP), a synthetic consortium capable of displaying mini-cellulosomes on the cell surface via intercellular complementation was created. To further improve the efficiency, a new adaptive strategy of employing anchoring and adaptor scaffoldins to amplify the number of enzymatic subunits was developed, resulting in the creation of an artificial tetravalent cellulosome on the

  8. Development of two murine antibodies against Neospora caninum using phage display technology and application on the detection of N. caninum.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Neosporosis, caused by an intracellular parasite, Neospora caninum, is an infectious disease primarily of cattle and dogs. It occurs worldwide and causes huge damages to dairy farms. In this study, we immunized mice with recombinant surface-associated protein 1 of N. caninum (rNcSAG1 and developed two novel monoclonal antibodies, A10 and H3, against NcSAG1 using phage-display technology. Both clones bound to purified rNcSAG1 and the half maximal inhibitory concentrations of A10 and H3 are 50 and 72 nM of rNcSAG1, respectively. In immunofluorescence assays, both A10 and H3 Fabs bound to N. caninum parasites. Direct detection of N. caninum parasites was developed firstly using an enzyme-linked immunosorbent assay (ELISA with A10 and H3. Binding of A10 and H3 antibodies to rNcSAG1 was also inhibited by some certain anti-N. caninum antibodies in the neosporosis-positive cattle sera, suggesting they might bind to the same epitopes of NcSAG1 with those anti-N. caninum antibodies of bovine. These antibodies were demonstrated to have a potential for monitoring the N. caninum parasites in a dairy farm, which may lead to protect livestock from parasite-infection.

  9. Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes

    Science.gov (United States)

    Gagaoua, Mohammed; Hafid, Kahina; Hoggas, Naouel

    2016-01-01

    This paper describes data related to a research article titled “Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes” (Gagaoua et al., 2015) [1]. Zingibain (EC 3.4.22.67), is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach. PMID:26909379

  10. Binding of phage displayed Bacillus subtilis lipase A to a phosphonate suicide inhibitor

    NARCIS (Netherlands)

    Dröge, M.J; Ruggeberg, C.J.; van der Sloot, Almer Martinus; Schimmel, J.; Dijkstra, Durk; Verhaert, R.M D; Reetz, M.T.; Quax, Wim; Droge, MJ; Dijkstra, DS

    2003-01-01

    Phage display can be used as a protein engineering tool to select proteins with desirable binding properties from a library of randomly constructed mutants. Here, we describe the development of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has marked properties

  11. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  12. Home Air Purifiers Eradicate Harmful Pathogens

    Science.gov (United States)

    2014-01-01

    Marshall Space Flight Center funded the University of Madison-Wisconsin to develop ethylene scrubbers to keep produce fresh in space. Akida Holdings of Jacksonville, Florida, licensed the technology and developed Airocide, an air purifier that can kill airborne pathogens. Previously designed for industrial spaces, there is now a specially designed unit for home use.

  13. Metabolism of benzene and phenol by a reconstituted purified phenobarbital induced rat liver mixed function oxidase system

    International Nuclear Information System (INIS)

    Griffiths, J.C.

    1986-01-01

    Cytochrome P-450 and the electron-donor, NADPH-cytochrome c reductase were isolated from phenobarbital induced rat liver microsomes. Both benzene and its primary metabolite phenol, were substrates for the reconstituted purified phenobarbital induced rat liver mixed function oxidase system. Benzene was metabolized to phenol and the polyhydroxylated metabolites; catechol, hydroquinone and 1,2,4 benzenetriol. Benzene elicited a Type I spectral change upon its interaction with the cytochrome P-450 while phenol's interaction with the cytochrome P-450 produced a reverse Type I spectra. The formation of phenol showed a pH optimum of 7.0 compared with 6.6-6.8 for the production of the polyhyrdoxylated metabolites. Cytochrome P-450 inhibitors, such as metyrapone and SKF 525A, diminished the production of phenol from benzene but not the production of the polyhydroxylated metabolites from phenol. The radical trapping agents, DMSO, KTBA and mannitol, decreased the recovery of polyhydroxylated metabolites, from 14 C-labeled benzene and/or phenol. As KTBA and DMSO interacted with OH. There was a concomitant release of ethylene and methane, which was measured. Desferrioxamine, an iron-chelator and catalase also depressed the recovery of polyhydroxylated metabolites. In summary, benzene and phenol were both substrates for this reconstituted purified enzyme system, but they differed in binding to cytochrome P-450, pH optima and mode of hydroxylation

  14. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.

    Science.gov (United States)

    Walton, Jonathan; Banerjee, Goutami; Car, Suzana

    2011-10-24

    The high cost of enzymes for biomass deconstruction is a major impediment to the economic conversion of lignocellulosic feedstocks to liquid transportation fuels such as ethanol. We have developed an integrated high throughput platform, called GENPLAT, for the discovery and development of novel enzymes and enzyme cocktails for the release of sugars from diverse pretreatment/biomass combinations. GENPLAT comprises four elements: individual pure enzymes, statistical design of experiments, robotic pipeting of biomass slurries and enzymes, and automated colorimeteric determination of released Glc and Xyl. Individual enzymes are produced by expression in Pichia pastoris or Trichoderma reesei, or by chromatographic purification from commercial cocktails or from extracts of novel microorganisms. Simplex lattice (fractional factorial) mixture models are designed using commercial Design of Experiment statistical software. Enzyme mixtures of high complexity are constructed using robotic pipeting into a 96-well format. The measurement of released Glc and Xyl is automated using enzyme-linked colorimetric assays. Optimized enzyme mixtures containing as many as 16 components have been tested on a variety of feedstock and pretreatment combinations. GENPLAT is adaptable to mixtures of pure enzymes, mixtures of commercial products (e.g., Accellerase 1000 and Novozyme 188), extracts of novel microbes, or combinations thereof. To make and test mixtures of ˜10 pure enzymes requires less than 100 μg of each protein and fewer than 100 total reactions, when operated at a final total loading of 15 mg protein/g glucan. We use enzymes from several sources. Enzymes can be purified from natural sources such as fungal cultures (e.g., Aspergillus niger, Cochliobolus carbonum, and Galerina marginata), or they can be made by expression of the encoding genes (obtained from the increasing number of microbial genome sequences) in hosts such as E. coli, Pichia pastoris, or a filamentous fungus such

  15. Display of a β-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts.

    Science.gov (United States)

    Nguyen, Hoang-Minh; Mathiesen, Geir; Stelzer, Elena Maria; Pham, Mai Lan; Kuczkowska, Katarzyna; Mackenzie, Alasdair; Agger, Jane W; Eijsink, Vincent G H; Yamabhai, Montarop; Peterbauer, Clemens K; Haltrich, Dietmar; Nguyen, Thu-Ha

    2016-10-04

    Lactobacillus plantarum is considered as a potential cell factory because of its GRAS (generally recognized as safe) status and long history of use in food applications. Its possible applications include in situ delivery of proteins to a host, based on its ability to persist at mucosal surfaces of the human intestine, and the production of food-related enzymes. By displaying different enzymes on the surface of L. plantarum cells these could be used as whole-cell biocatalysts for the production of oligosaccharides. In this present study, we aimed to express and display a mannanase and a chitosanase on the cell surface of L. plantarum. ManB, a mannanase from Bacillus licheniformis DSM13, and CsnA, a chitosanase from Bacillus subtilis ATCC 23857 were fused to different anchoring motifs of L. plantarum for covalent attachment to the cell surface, either via an N-terminal lipoprotein anchor (Lp_1261) or a C-terminal cell wall anchor (Lp_2578), and the resulting fusion proteins were expressed in L. plantarum WCFS1. The localization of the recombinant proteins on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest mannanase and chitosanase activities obtained for displaying L. plantarum cells were 890 U and 1360 U g dry cell weight, respectively. In reactions with chitosan and galactomannans, L. plantarum CsnA- and ManB-displaying cells produced chito- and manno-oligosaccharides, respectively, as analyzed by high performance anion exchange chromatography (HPAEC) and mass spectrometry (MS). Surface-displayed ManB is able to break down galactomannan (LBG) into smaller manno-oligosaccharides, which can support growth of L. plantarum. This study shows that mannanolytic and chitinolytic enzymes can be anchored to the cell surface of L. plantarum in active forms. L. plantarum chitosanase- and mannanase-displaying cells should be of interest for the production of potentially 'prebiotic' oligosaccharides. This approach

  16. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  17. Baculovirus display of functional antibody Fab fragments.

    Science.gov (United States)

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  18. Guanine nucleotide regulatory protein co-purifies with the D2-dopamine receptor

    International Nuclear Information System (INIS)

    Senogles, S.E.; Caron, M.G.

    1986-01-01

    The D 2 -dopamine receptor from bovine anterior pituitary was purified ∼1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with 3 H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D 2 receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 μM NPA. 35 S-GTPγS binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D 2 -dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D 2 -dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes

  19. Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits.

    Science.gov (United States)

    Lopez-Huertas, Eduardo; del Río, Luis A

    2014-10-15

    The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate-glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    Directory of Open Access Journals (Sweden)

    Paulo S. Monteiro

    2015-03-01

    Full Text Available An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The KM for sodium phytate hydrolysis was 30.9 mM, while the kcat and kcat/KM were 1.46 ×105 s−1 and 4.7 × 106s−1.M−1, respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg2+, Cd2+, K+ and Ca2+, and it was drastically inhibited by F−. The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.

  1. Inhibition of partially purified K+/H+-ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles.

    Science.gov (United States)

    Beil, W.; Sewing, K. F.

    1984-01-01

    The cellular and subcellular distributions of adenosinetriphosphatases (ATPases) were examined in guinea-pig gastric mucosal cells. All cell types displayed Mg2+-ATPase and bicarbonate (HCO3-)-stimulated ATPase activity. K+-ATPase was located only in fractions derived from parietal cells. Differential and density-gradient centrifugation of material prepared from parietal cells revealed that K+-ATPase activity was located in a tubulo-vesicular membrane fraction. Enzyme activity was ten fold greater in this fraction than in a crude parietal cell homogenate. The substituted benzimidazoles, omeprazole and picoprazole, inhibited K+-ATPase (IC50 1.8 +/- 0.5 mumol l-1 and 3.1 +/- 0.4 mumol l-1, respectively). Detailed kinetic analysis indicated that these compounds were non-competitive and reversible inhibitors of the enzyme. In contrast cimetidine and verapamil were without effect on the enzyme. The relevance of the inhibition of K+-ATPase to the antisecretory activity of the benzimidazoles, in experimental animals and man, is discussed. PMID:6146367

  2. Mine water purify from radium

    International Nuclear Information System (INIS)

    Lebecka, J.

    1996-01-01

    The article describes purification of radium containing water in coal mines. Author concludes that water purification is relatively simple and effective way to decrease environmental pollution caused by coal mining. The amount of radium disposed with type A radium water has been significantly decreased. The results of investigations show that it will be soon possible to purify also type B radium water. Article compares the amounts of radium disposed by coal mines in 1990, 1995 and forecast for 2000

  3. Simultaneous purifying of Hg0, SO2, and NOx from flue gas by Fe3+/H2O2: the performance and purifying mechanism.

    Science.gov (United States)

    Xing, Yi; Li, Liuliu; Lu, Pei; Cui, Jiansheng; Li, Qianli; Yan, Bojun; Jiang, Bo; Wang, Mengsi

    2018-03-01

    Hg 0 , SO 2 , and NOx result in heavily global environmental pollution and serious health hazards. Up to now, how to efficiently remove mercury with SO 2 and NOx from flue gas is still a tough task. In this study, series of high oxidizing Fenton systems were employed to purify the pollutants. The experimental results showed that Fe 3+ /H 2 O 2 was more suitable to purify Hg 0 than Fe 2+ /H 2 O 2 and Cu 2+ /H 2 O 2. The optimal condition includes Fe 3+ concentration of 0.008 mol/L, Hg 0 inlet concentration of 40 μg/m 3 , solution temperature of 50 °C, pH of 3, H 2 O 2 concentration of 0.7 mol/L, and O 2 percentage of 6%. When SO 2 and NOx were taken into account under the optimal condition, Hg 0 removal efficiency could be enhanced to 91.11% while the removal efficiency of both NOx and SO 2 was slightly declined, which was consistent to the analysis of purifying mechanism. The removal efficiency of Hg 0 was stimulated by accelerating the conversion of Fe 2+ to Fe 3+ , which resulted from the existence of SO 2 and NOx. The results of this study suggested that simultaneously purifying Hg 0 , SO 2 , and NOx from flue gas is feasible.

  4. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation

    International Nuclear Information System (INIS)

    Odessey, R.

    1980-01-01

    The branched-chain 2-oxo-acid dehydrogenase (BCOAD) from mitochondria of several different rat tissues is inactivated by ATP and can be reactivated by incubation in Mg 2+ -containing buffers. Work carried out on the system from skeletal muscle mitochondria has shown that inactivation requires the cleavage of the γ-phosphate group of ATP and that modification is covalent. The non-metabolized ATP analog, p[NH]ppA, can block the inhibitory effect of ATP when added prior to ATP addition, but cannot reverse the inhibition of the inactivated dehydrogenase. These and other data raise the possibility that BCOAD may be regulated by enzyme phosphorylation. This hypothesis is supported by the finding that various procedures which separate the enzyme from its mitochondrial environment (e.g. detergent treatment, ammonium sulfate precipitation and freeze-thawing) do not alter the degree of inhibition induced by ATP in the mitochondrial preincubation. These experiments suggested the feasibility of labelling the enzyme with 32 P and purifying it. (Auth.)

  5. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  6. Screen-printable sol-gel enzyme-containing carbon inks.

    Science.gov (United States)

    Wang, J; Pamidi, P V; Park, D S

    1996-08-01

    Enzymes usually cannot withstand the high-temperature curing associated with the thick-film fabrication process and require a separate immobilization step in connection with the production of single-use biosensors. We report on the development of sol-gel-derived enzyme-containing carbon inks that display compatibility with the screen-printing process. Such coupling of sol-gel and thick-film technologies offers a one-step fabrication of disposable enzyme electrodes, as it obviates the need for thermal curing. The enzyme-containing sol-gel carbon ink, prepared by dispersing the biocatalyst, along with the graphite powder and a binder, within the sol-gel precursors, is cured very rapidly (10 min) at low temperature (4 °C). The influence of the ink preparation conditions is explored, and the sensor performance is evaluated in connection with the incorporation of glucose oxidase or horseradish peroxidase. The resulting strips are stable for at least 3 months. Such sol-gel-derived carbon inks should serve as hosts for other heat-sensitive biomaterials in connection with the microfabrication of various thick-film biosensors.

  7. A new factor from enteric bacteria of rats amplifying induction of liver enzyme by glucocorticoid. Pt. 2

    International Nuclear Information System (INIS)

    Kido, Hiroshi; Higashi, Takao; Katanuma, Nobuhiko

    1977-01-01

    1) An amplifier of the action of glucocorticoid was purified from Proteus mirabilis as described previously. It was found that it amplified the induction of liver tyrosine aminotransferase by dexamethasone markedly with doses of dexamethasone that caused minimal enzyme induction, but had little effect with doses that caused maximal induction. Thus the amplification may represent a saving of glucocorticoid. The amplification of enzyme activity was brought about by increase in amount of enzyme. 2) The amplification was observed when the amplifier was administered before or with dexamethasone, but not when it was given 2 h after dexamethasone. These results and the finding that actinomycin D inhibited the amplification indicate that the amplifier does not act on the translational level of enzyme induction. 3) It was found that the amplifier increased both incorporation of [ 3 H]dexamethasone into the cytosol and binding of [ 3 H]dexamethasone to cytosol protein and that it decreased decay of the [ 3 H]dexamethasone protein complex. (orig.) [de

  8. Antibody-based enzyme-linked lectin assay (ABELLA) for the sialylated recombinant human erythropoietin present in culture supernatant.

    Science.gov (United States)

    Kim, Hyoung Jin; Lee, Seung Jae; Kim, Hong-Jin

    2008-11-04

    The terminal sialic acid of human erythropoietin (hEPO) is essential for in vivo activity. The current resorcinol and HPLC methods for analyzing alpha2,3-linked sialic acid require more than a microgram of purified rhEPO, and purification takes a great deal of time and labor. In this study, we assessed the use of an antibody-based enzyme-linked lectin assay (ABELLA) for analyzing non-purified recombinant hEPO (rhEPO). The major problem of this method was the high background due to terminal sialylation of components of the assay (antibody and bovine serum albumin) other than rhEPO. To solve this problem, we used a monoclonal antibody (Mab 287) to capture the rhEPO, and oxidized the bovine serum albumin used for blocking with meta-periodate. The sialic acid content of non-purified rhEPO measured by ABELLA was similar to that obtained by the resorcinol method on purified rhEPO. ABELLA has advantages such as adaptability and need for minimal amounts of rhEPO (40 ng/ml). Our observations suggest that ABELLA should reduce the time and labor needed to improve culture conditions so as to increase protein sialylation, and also facilitate the study of sialylation mechanisms.

  9. Detection of eosinophil cationic protein (ECP) by an enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Reimert, C M; Venge, P; Kharazmi, A

    1991-01-01

    Eosinophil cationic protein (ECP) is a highly basic and potent cytotoxic single-chain zinc-containing protein present in the granules of the eosinophilic granulocytes. ECP appears to be involved in defence against parasites and in the tissue damage seen in subjects with allergic and inflammatory...... disease. To investigate ECP release from in vitro activated human eosinophils and to study the involvement of eosinophils in health and disease, we have developed a sensitive and specific enzyme immunoassay. ECP was purified from normal human peripheral blood eosinophils and polyclonal antibodies to ECP...

  10. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.

    Directory of Open Access Journals (Sweden)

    Wenwen Yang

    Full Text Available Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s(-1, and 78.2 U mg(-1, respectively. The catalytic efficiency (kcat/Km value of Fcs was 193.4 mM(-1 s(-1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.

  11. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.

    Science.gov (United States)

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s(-1), and 78.2 U mg(-1), respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM(-1) s(-1) for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.

  12. Practical screening of purified cellobiohydrolases and endoglucanases with α-cellulose and specification of hydrodynamics

    Directory of Open Access Journals (Sweden)

    Jäger Gernot

    2010-08-01

    Full Text Available Abstract Background It is important to generate biofuels and society must be weaned from its dependency on fossil fuels. In order to produce biofuels, lignocellulose is pretreated and the resulting cellulose is hydrolyzed by cellulases such as cellobiohydrolases (CBH and endoglucanases (EG. Until now, the biofuel industry has usually applied impractical celluloses to screen for cellulases capable of degrading naturally occurring, insoluble cellulose. This study investigates how these cellulases adsorb and hydrolyze insoluble α-cellulose − considered to be a more practical substrate which mimics the alkaline-pretreated biomass used in biorefineries. Moreover, this study investigates how hydrodynamics affects cellulase adsorption and activity onto α-cellulose. Results First, the cellulases CBH I, CBH II, EG I and EG II were purified from Trichoderma reesei and CBH I and EG I were utilized in order to study and model the adsorption isotherms (Langmuir and kinetics (pseudo-first-order. Second, the adsorption kinetics and cellulase activities were studied under different hydrodynamic conditions, including liquid mixing and particle suspension. Third, in order to compare α-cellulose with three typically used celluloses, the exact cellulase activities towards all four substrates were measured. It was found that, using α-cellulose, the adsorption models fitted to the experimental data and yielded parameters comparable to those for filter paper. Moreover, it was determined that higher shaking frequencies clearly improved the adsorption of cellulases onto α-cellulose and thus bolstered their activity. Complete suspension of α-cellulose particles was the optimal operating condition in order to ensure efficient cellulase adsorption and activity. Finally, all four purified cellulases displayed comparable activities only on insoluble α-cellulose. Conclusions α-Cellulose is an excellent substrate to screen for CBHs and EGs. This current investigation

  13. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  14. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  15. Vitellin- and hemoglobin-digesting enzymes in Rhipicephalus (Boophilus) microplus larvae and females.

    Science.gov (United States)

    Estrela, Andréia Bergamo; Seixas, Adriana; Teixeira, Vivian de Oliveira Nunes; Pinto, Antônio Frederico Michel; Termignoni, Carlos

    2010-12-01

    The aim of the present study was to address the involvement of Rhipicephalus microplus larval cysteine endopeptidase (RmLCE) in protein digestion in R. microplus larvae and adult females. In this work, an improved purification protocol for native RmLCE was developed. Partial amino acid sequence of the purified enzyme indicates that it is the same enzyme as Boophilus microplus cathepsin-L1 (BmCL1). When vitellin (Vt) degradation by egg and larval enzymes was analyzed, stage-specific differences for RmLCE activity in comparison to vitellin-degrading cysteine endopeptidase (VTDCE) were observed. RmLCE is also able to degrade host hemoglobin (Hb). In agreement, an acidic cysteine endopeptidase activity was detected in larval gut. It was shown that cysteine and aspartic endopeptidases are involved in Vt and Hb digestion in R. microplus larvae and females. Interestingly, we observed that the aspartic endopeptidase Boophilus yolk cathepsin (BYC) is associated with a cysteine endopeptidase activity, in larvae. Synergic hemoglobin digestion by BYC and RmLCE was observed and indicates the presence of an Hb-degrading enzymatic cascade involving these enzymes. Our results suggest that RmLCE/BmCL1 has a continued role in vitellin and hemoglobin digestion during tick development. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The metabolism of Tay-Sachs ganglioside: catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue

    Science.gov (United States)

    Tallman, John F.; Johnson, William G.; Brady, Roscoe O.

    1972-01-01

    The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with 14C in the N-acetylgalactosaminyl portion or 3H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease. Images PMID:4639018

  17. Cooling performance of R510A in domestic water purifiers

    International Nuclear Information System (INIS)

    Park, Ki Jung; Lee, Yo Han; Jung, Dong Soo

    2010-01-01

    Cooling performance of R510A is examined both numerically and experimentally in an effort to replace HFC134a in the refrigeration system of domestic water purifiers. Although the use of HFC134a is currently dominant, it is being phased out in Europe and most developed countries due to its high potential contribution to global warming. To solve this problem, cycle simulation and experimental measurements are conducted with a new refrigerant mixture of 88%RE170/12%R600a using actual domestic water purifiers. This mixture has been recently numbered and listed as R510A by ASHRAE. Test results show that, due to the small internal volume of the refrigeration system of the domestic water purifiers, system performance with R510A is greatly influenced by the amount of charge. With the optimum charge amount of 20 to 21 g, approximately 50% that of HFC134a, the energy consumption of R510A is 22.3% lower than that of HFC134a. The compressor discharge temperature of R510A is 3.7 .deg. C lower than that of HFC134a at the optimum charge. Overall, R510A, a new, long term, and environmentally safe refrigerant, is a good alternative for HFC134a. Furthermore, it requires only minor changes in the refrigeration system of the domestic water purifiers

  18. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35.

    Science.gov (United States)

    Akutsu, Y; Nakajima-Kambe, T; Nomura, N; Nakahara, T

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR esterase was a monomer with a molecular mass of about 62,000 Da. This enzyme, which is a kind of esterase, degraded solid polyester PUR, with diethylene glycol and adipic acid released as the degradation products. The optimum pH for this enzyme was 6.5, and the optimum temperature was 45 degrees C. PUR degradation by the PUR esterase was strongly inhibited by the addition of 0.04% deoxy-BIGCHAP. On the other hand, deoxy-BIGCHAP did not inhibit the activity when p-nitrophenyl acetate, a water-soluble compound, was used as a substrate. These observations indicated that this enzyme degrades PUR in a two-step reaction: hydrophobic adsorption to the PUR surface and hydrolysis of the ester bond of PUR.

  19. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    International Nuclear Information System (INIS)

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-01-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with [ 3 H]DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating

  20. Development of cathepsin-L cysteine proteinase based Dot-enzyme-linked immunosorbent assay for the diagnosis of Fasciola gigantica infection in buffaloes.

    Science.gov (United States)

    Varghese, Anju; Raina, O K; Nagar, Gaurav; Garg, Rajat; Banerjee, P S; Maharana, B R; Kollannur, Justin D

    2012-02-10

    Native cathepsin-L cysteine proteinase (28 kDa) was purified from the excretory secretory products of Fasciola gigantica and was used for sero-diagnosis of F. gigantica infection in buffaloes by Dot-enzyme-linked immunosorbent assay (Dot-ELISA). The test detected F. gigantica field infection in these animals with a sensitivity of ∼ 90%. No specific IgG antibody binding was displayed by sera obtained from 76 buffaloes considered to be Fasciola and other parasite-free by microscopic examination of faeces and necropsy examination of liver, rumen and intestine. Additionally, sera from 156 Fasciola-free buffaloes, yet infected with Gigantocotyle explanatum, Paramphistomum epiclitum, Gastrothylax spp., Strongyloides papillosus and hydatid cyst were all negative, indicating that F. gigantica cathepsin-L cysteine proteinase does not cross-react with these helminth parasites in natural infection of the host. The data indicated that cathepsin-L cysteine proteinase based Dot-ELISA reached ∼ 90% sensitivity and 100% specificity with relation to above parasites in the detection of bubaline fasciolosis. The present Dot-ELISA diagnostic assay is relevant to the field diagnosis of F. gigantica infection in buffaloes. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Evaluation of the organophosphorus hydrolase enzyme activity in creams and investigation of its stability

    Directory of Open Access Journals (Sweden)

    Mariye Rajaie

    2016-06-01

    Full Text Available The main purpose of this project is investigation of the organophosphorus hydrolase (OPH enzyme activity in water in oil (w/o and oil in water (o/w creams and investigation of the OPH enzyme stability in formulated creams. OPH enzyme was extracted and purified from strain flavobacterium. The w/o and o/w creams were prepared using different formulations. In order to achieve an emulsion with maximum stability, appropriate percentage of the cream components was selected by studying different formulations and the physical and chemical stability of the produced cream were considered. 5Uenzyme/90gcream enzyme was used for each formulation. To measure the enzyme activity in creams, extraction method was used and enzyme activity was determined based on parathion hydrolysis. The thermal stability of OPH in both types of w/o and o/w creams was studied at 4 and 30  °C for various time periods. The average enzyme activity was about 0.0065 U/gcream and 0.018 U/gcream for w/o and o/w creams respectivly. According to the results, the relative activity at 4 °C was reduced to 50% after 26 and 45 days in w/o and o/w creams, respectivly. The results showed that the OPH enzyme activity in o/w cream was 2.6 times more than that of w/o cream, because of the higher hydrophobicity of o/w cream compared to w/o. The OPH enzyme stability in o/w cream was greater in comparison to w/o cream. The OPH enzyme was active for nearly 2 months on o/w creams at 4 °C .

  2. In Vitro Effects of Imidacloprid and Lambda-cyhalothrin on Capoeta capoeta umbla Kidney Glucose 6-Phosphate Dehydrogenase Enzyme

    Directory of Open Access Journals (Sweden)

    Mahinur KIRICI

    2015-03-01

    Full Text Available Pesticide toxicity causes oxidative damage such as DNA damage, enhanced lipid peroxidation, the oxidation of protein sulfydryl groups and enzyme inactivation in the metabolism. In this study, we investigated the in vitro effects on glucose 6-phosphate dehydrogenase (E.C.1.1.49; G6PD from Capoeta capoeta umbla kidney of imidacloprid and lambda-cyhalothrin. For this purpose, the enzymewas purified from kidney of C. c. umbla with a specific activity of 11.26 EU mg-1 proteins and 22.7% yield using hemolysate preparation, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity gel chromatography methods. In order to control the enzyme purification sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE was done. SDS-PAGE showed a single band for the enzyme. The results of this study suggested that imidacloprid and lambda-cyhalothrin have significant inhibition effect on the activity of G6PD in in vitro. In conclusion, lambda-cyhalothrin inhibits the enzyme activity more than imidacloprid.

  3. Exploring Virtual Worlds With Head-Mounted Displays

    Science.gov (United States)

    Chung, James C.; Harris, Mark R.; Brooks, Frederick P.; Fuchs, Henry; Kelley, Michael T.; Hughes, John W.; Ouh-Young, Ming; Cheung, Clement; Holloway, Richard L.; Pique, Michael

    1989-09-01

    For nearly a decade the University of North Carolina at Chapel Hill has been conducting research in the use of simple head-mounted displays in "real-world" applications. Such units provide the user with non-holographic true three-dimensional information, since the kinetic depth effect, stereoscopy, and other visual cues combine to immerse the user in a "virtual world" which behaves like the real world in some respects. UNC's head-mounted display was built inexpensively from commercially available off-the-shelf components. Tracking of the the user's head position and orientation is performed by a Polhemus Navigation Sciences' 3SPACE* tracker. The host computer uses the tracking information to generate updated images corresponding to the user's new left eye and right eye views. The images are broadcast to two liquid crystal television screens (220x320 pixels) mounted on a horizontal shelf at the user's forehead. The user views these color screens through half-silvered mirrors, enabling the computer-generated image to be superimposed upon the user's real physical environment. The head-mounted display has been incorporated into existing molecular modeling and architectural applications being developed at UNC. In molecular structure studies, chemists are presented with a room-sized molecule with which they can interact in a manner more intuitive than that provided by conventional two-dimensional displays and dial boxes. Walking around and through the large molecule may provide quicker understanding of its structure, and such problems as drug-enzyme docking may be approached with greater insight. In architecture, the head-mounted display enables clients to better appreciate three-dimensional designs, which may be misinterpreted in their conventional two-dimensional form by untrained eyes. The addition of a treadmill to the system provides additional kinesthetic input into the understanding of building size and scale.

  4. Characterization and treatment of cyanide in MGP purifier wastes

    Energy Technology Data Exchange (ETDEWEB)

    Theis, T.L. [Clarkson University, Potsdam, NY (United States). Dept. of Civil and Environmental Engineering

    1995-12-31

    Purifier wastes were generated from the clean-up gaseous impurities, principally hydrogen sulfide and hydrogen cyanide, contained in raw gas from MGP operations through retention by iron oxide solids. These materials were generated at a rate of about 10-20 kg/1000 m{sup 3} of gas produced, and although regeneration was sometimes practised, eventual disposal as fill material, usually on site, was eventually necessary. The remediation of MGP sites generally requires that the disposition of these waste solids be addressed. The effective treatment of purifier wastes presents special problems due to the acid-base properties of the material, its elevated sulfur content, and the significant quantities of carbon both added as wood shavings and present as compounds generated as a result of gas manufacture. In broad terms, treatment approaches can be divided into two classes, those aimed at destroying the cyanide and objectionable carbon compounds and otherwise disposing of the residual, and those which attempt to isolate the waste from its surroundings. The latter approach attempts to take advantage of the natural insolubility of most of the constituents of concern found in purifier wastes, while destructive technologies limit potential liability. 9 refs.

  5. Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria.

    Science.gov (United States)

    Kawasaki, Shinji; Ishikura, Jun; Chiba, Daisuke; Nishino, Tomoko; Niimura, Youichi

    2004-04-01

    Clostridium aminovalericum, an obligate anaerobe, is unable to form colonies on PYD agar plates in the presence of 1% O(2). When grown anaerobically in PYD liquid medium, the strain can continue normal growth after the shift from anoxic (sparged with O(2)-free N(2) carrier-gas) to microoxic (sparged with 3% O(2)/97% N(2) mixed carrier-gas) growth conditions in the mid exponential phase (OD(660)=1.0). When the strain grew under 3% O(2)/97% N(2), the medium remains anoxic. Thirty minutes after beginning aeration with 3% O(2), the activity of NADH oxidase in cell-free extracts increased more than five-fold from the level before aeration. We purified NADH oxidase to determine the characteristics of this enzyme in an obligate anaerobe. The purified NADH oxidase dominated the NADH oxidase activity detected in cell-free extracts. The enzyme is a homotetramer composed of a subunit with a molecular mass of 45 kDa. The enzyme shows a spectrum typical of a flavoprotein, and flavin adenine dinucleotide (FAD) was identified as a cofactor. The final product of NADH oxidation was H(2)O, and the estimated K(m) for oxygen was 61.9 microM. These data demonstrate that an O(2)-response enzyme that is capable of detoxifying oxygen to water exists in C. aminovalericum.

  6. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  7. 3D display system using monocular multiview displays

    Science.gov (United States)

    Sakamoto, Kunio; Saruta, Kazuki; Takeda, Kazutoki

    2002-05-01

    A 3D head mounted display (HMD) system is useful for constructing a virtual space. The authors have researched the virtual-reality systems connected with computer networks for real-time remote control and developed a low-priced real-time 3D display for building these systems. We developed a 3D HMD system using monocular multi-view displays. The 3D displaying technique of this monocular multi-view display is based on the concept of the super multi-view proposed by Kajiki at TAO (Telecommunications Advancement Organization of Japan) in 1996. Our 3D HMD has two monocular multi-view displays (used as a visual display unit) in order to display a picture to the left eye and the right eye. The left and right images are a pair of stereoscopic images for the left and right eyes, then stereoscopic 3D images are observed.

  8. Circular displays: control/display arrangements and stereotype strength with eight different display locations.

    Science.gov (United States)

    Chan, Alan H S; Hoffmann, Errol R

    2015-01-01

    Two experiments are reported that were designed to investigate control/display arrangements having high stereotype strengths when using circular displays. Eight display locations relative to the operator and control were tested with rotational and translational controls situated on different planes according to the Frame of Reference Transformation Tool (FORT) model of Wickens et al. (2010). (Left. No, Right! Development of the Frame of Reference Transformation Tool (FORT), Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting, 54: 1022-1026). In many cases, there was little effect of display locations, indicating the importance of the Worringham and Beringer (1998. Directional stimulus-response compatibility: a test of three alternative principles. Ergonomics, 41(6), 864-880) Visual Field principle and an extension of this principle for rotary controls (Hoffmann and Chan (2013). The Worringham and Beringer 'visual field' principle for rotary controls. Ergonomics, 56(10), 1620-1624). The initial indicator position (12, 3, 6 and 9 o'clock) had a major effect on control/display stereotype strength for many of the six controls tested. Best display/control arrangements are listed for each of the different control types (rotational and translational) and for the planes on which they are mounted. Data have application where a circular display is used due to limited display panel space and applies to space-craft, robotics operators, hospital equipment and home appliances. Practitioner Summary: Circular displays are often used when there is limited space available on a control panel. Display/control arrangements having high stereotype strength are listed for four initial indicator positions. These arrangements are best for design purposes.

  9. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    International Nuclear Information System (INIS)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [ 3 H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [ 3 H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [ 3 H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  10. Full scale demonstration of air-purifying pavement

    NARCIS (Netherlands)

    Ballari, M.; Brouwers, H.J.H.

    2013-01-01

    Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO2 over a length of 150 m ("DeNOx street"). Another part of the street, about 100 m, was paved with

  11. Enzymatic conversion of all-trans-β-carotene to retinal by a cytosolic enzyme from rabbit and rat intestinal mucosa

    International Nuclear Information System (INIS)

    Lakshman, M.R.; Mychkovsky, I.; Attlesey, M.

    1989-01-01

    Enzymatic conversion of all-trans-β-carotene to retinal by a partially purified enzyme from rabbit and rat intestinal mucosa was demonstrated. The enzymatic product was characterized based on the following evidence: (i) the product gave rise to its O-ethyloxime by treatment with O-ethylhydroxylamine with an absorption maximum at 363 nm in ethanol characteristics of authentic retinal O-ethyloxime. High-pressure liquid chromatography (HPLC) of this derivative yielded a sharp peak with a retention time of 7.99 min corresponding to the authentic compound; (ii) the mass spectrum of the O-ethyloxime of the enzymatic product was identical to that of authentic retinal O-ethyloxime; (iii) the specific activity of the enzymatically formed [ 14 C]retinal O-ethyloxime remained constant even after repeated crystallization; (iv) the enzymatic product exhibited an absorption maximum at 370 nm in light petroleum characteristic of authentic retinal. This retinol was enzymatically esterified to retinyl palmitate by rat pancreatic esterase with a retention time of 10 min on HPLC corresponding to authentic retinyl palmitate. Thus, the enzymatic product of β-carotene cleavage by the partially purified intestinal enzyme was unequivocally confirmed to be retinal

  12. [Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].

    Science.gov (United States)

    Zhang, Yi; Yan, Dan; Han, Yumei

    2005-10-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.

  13. 76 FR 29191 - Purified Carboxymethylcellulose From Finland and the Netherlands: Continuation of Antidumping...

    Science.gov (United States)

    2011-05-20

    ... Carboxymethylcellulose From Finland and the Netherlands: Continuation of Antidumping Duty Orders AGENCY: Import... antidumping duty orders on purified carboxymethylcellulose from Finland and the Netherlands would likely lead...) from Finland and the Netherlands. See Notice of Antidumping Duty Orders: Purified...

  14. 78 FR 9884 - Purified Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-02-12

    ... Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty Administrative Review and Final No... carboxymethylcellulose (purified CMC) from the Netherlands.\\1\\ This review covers two respondents, Akzo Nobel Functional... Review'' section of this notice. \\1\\ See Purified Carboxymethylcellulose From the Netherlands...

  15. Gene expression for peroxisome-associated enzymes in hepatocellular carcinomas induced by ciprofibrate, a hypolipidemic compound

    International Nuclear Information System (INIS)

    Rao, M.S.; Nemali, M.R.; Reddy, J.K.

    1986-01-01

    Administration of hypolipidemic compounds leads to marked proliferation of peroxisomes and peroxisome-associated enzymes (PAE) in the livers of rodents and non-rodent species. The increase peroxisome-associated enzymes such as fatty acid β-oxidation system and catalase is shown to be due to an increase in the levels of mRNA. In this experiment they have examined hepatocellular carcinomas (HCC), induced in male F-344 rats by ciprofibrate (0.025%, w/w for 60 weeks), for gene expression of PAE. Total RNA was purified from HCC as well as from control and ciprofibrate (0.025% for 2 weeks) fed rat livers. Northern blot analysis was performed using [32/sub p/]cDNA probes for albumin, fatty acetyl-CoA oxidase, enoyl-CoA hydratase 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and catalase. mRNA levels in HCC for albumin, fatty acid β-oxidation enzymes and catalase were comparable with those levels observed in the livers of rats given ciprofibrate for 2 weeks. In control livers the mRNAs for β-oxidation enzymes were low. Albumin mRNA levels in all the 3 groups were comparable. Additional studies are necessary to determine whether the increased level of mRNAs for the β-oxidation enzymes in HCC is due to the effect of ciprofibrate or to the gene amplification

  16. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Kimura, Keisuke; Ninh, Pham Huynh; Taniguchi, Hironori; Okano, Kenji; Ohtake, Hisao

    2017-09-01

    Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD + regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL -1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Acidic-alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Tong, Xiaoxue; Pilgaard, Bo

    2016-01-01

    A novel ferulic acid esterase encoding gene CtFae, was successfully cloned from a highly esterase active strain of the thermophile ascomycetous fungus Chaetomium thermophilum var. dissitum; the gene was heterologously expressed in Pichia pastoris KM71H. The recombinant enzyme (CtFae) was purified...... to homogeneity and subsequently characterized. CtFae was active towards synthetic esters of ferulic, p-coumaric, and caffeic acids, as well as towards wide range of p-nitrophenyl substrates. Its temperature and pH optima were 55 °C and pH 6.0, respectively. Enzyme rare features were broad pH optimum, high...

  18. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-12-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with (/sup 3/H)DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating.

  19. Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles.

    Science.gov (United States)

    Kamble, Ashwini L; Banoth, Linga; Meena, Vachan Singh; Singh, Amit; Chisti, Yusuf; Banerjee, U C

    2013-08-01

    The intracellular cobalt-type nitrile hydratase was purified from the bacterium Rhodococcuserythropolis. The pure enzyme consisted of two subunits of 29 and 30 kDa. The molecular weight of the native enzyme was estimated to be 65 kDa. At 25 °C the enzyme had a half-life of 25 h. The Michaelis-Menten constants K m and v max for the enzyme were 0.624 mM and 5.12 μmol/min/mg, respectively, using 3-cyanopyridine as the substrate. The enzyme-containing freely-suspended bacterial cells and the cells immobilized within alginate beads were evaluated for converting the various nitriles to amides. In a packed bed reactor, alginate beads (2 % alginate; 3 mm bead diameter) containing 200 mg/mL of cells, achieved a conversion of >90 % for benzonitrile and 4-cyanopyridine in 38 h (25 °C, pH 7.0) at a feed substrate concentration of 100 mM. The beads could be reused for up to six reaction cycles.

  20. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    Science.gov (United States)

    Monteiro, Paulo S.; Guimarães, Valéria M.; de Melo, Ricardo R.; de Rezende, Sebastião T.

    2015-01-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 5 s −1 and 4.7 × 10 6 s −1 .M −1 , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg 2+ , Cd 2+ , K + and Ca 2+ , and it was drastically inhibited by F − . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  1. Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle.

    Science.gov (United States)

    Visessanguan, Wonnop; Benjakul, Soottawat; An, Haejung

    2003-03-01

    A predominant, heat-activated proteinase in muscle extract of arrowtooth flounder (Atheresthes stomias) was purified to 55-fold by heat treatment, followed by a series of chromatographic separations. The apparent molecular mass of the purified enzyme was 27 kDa by size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteinase had high affinity and activity toward Z-Phe-Arg-NMec with K(m) and k(cat) values of 8.2 microM and 12.2/s, respectively. Activity was inhibited by sulfhydryl reagents and activated by reducing agents. The purified proteinase displayed optimal activity at pH 5.0-5.5 and 60 degrees C, respectively. Consistent with the properties of proteases from other species, the heat-activated proteinase in arrowtooth flounder can be identified as cathepsin L.

  2. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    Science.gov (United States)

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent K m, k cat, and V max values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (k cat/K m) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation. PMID:23840666

  3. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  4. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library.

    Science.gov (United States)

    Dong, Sa; Bo, Zongyi; Zhang, Cunzheng; Feng, Jianguo; Liu, Xianjin

    2018-04-01

    Single-chain variable fragment (scFv) is a kind of antibody that possess only one chain of the complete antibody while maintaining the antigen-specific binding abilities and can be expressed in prokaryotic system. In this study, scFvs against Cry1 toxins were screened out from an immunized mouse phage displayed antibody library, which was successfully constructed with capacity of 6.25 × 10 7  CFU/mL. Using the mixed and alternative antigen coating strategy and after four rounds of affinity screening, seven positive phage-scFvs against Cry1 toxins were selected and characterized. Among them, clone scFv-3H9 (MG214869) showing relative stable and high binding abilities to six Cry1 toxins was selected for expression and purification. SDS-PAGE indicated that the scFv-3H9 fragments approximately 27 kDa were successfully expressed in Escherichia coli HB2151 strain. The purified scFv-3H9 was used to establish the double antibody sandwich enzyme-linked immunosorbent assay method (DAS-ELISA) for detecting six Cry1 toxins, of which the lowest detectable limits (LOD) and the lowest quantitative limits (LOQ) were 3.14-11.07 and 8.22-39.44 ng mL -1 , respectively, with the correlation coefficient higher than 0.997. The average recoveries of Cry1 toxins from spiked rice leaf samples were ranged from 84 to 95%, with coefficient of variation (CV) less than 8.2%, showing good accuracy for the multi-residue determination of six Cry1 toxins in agricultural samples. This research suggested that the constructed phage display antibody library based on the animal which was immunized with the mixture of several antigens under the same category can be used for the quick and effective screening of generic antibodies.

  5. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Li, Liang; Liang, Bo; Tang, Xiangjiang; Kong, Lingrang; Mascini, Marco; Liu, Aihua

    2013-06-18

    The display of glucose oxidase (GOx) on yeast cell surface using a-agglutinin as an anchor motif was successfully developed. Both the immunochemical analysis and enzymatic assay showed that active GOx was efficiently expressed and translocated on the cell surface. Compared with conventional GOx, the yeast cell surface that displayed GOx (GOx-yeast) demonstrated excellent enzyme properties, such as good stability within a wide pH range (pH 3.5-11.5), good thermostability (retaining over 94.8% enzyme activity at 52 °C and 84.2% enzyme activity at 56 °C), and high d-glucose specificity. In addition, direct electrochemistry was achieved at a GOx-yeast/multiwalled-carbon-nanotube modified electrode, suggesting that the host cell of yeast did not have any adverse effect on the electrocatalytic property of the recombinant GOx. Thus, a novel electrochemical glucose biosensor based on this GOx-yeast was developed. The as-prepared biosensor was linear with the concentration of d-glucose within the range of 0.1-14 mM and a low detection limit of 0.05 mM (signal-to-noise ratio of S/N = 3). Moreover, the as-prepared biosensor is stable, specific, reproducible, simple, and cost-effective, which can be applicable for real sample detection. The proposed strategy to construct robust GOx-yeast may be applied to explore other oxidase-displaying-system-based whole-cell biocatalysts, which can find broad potential application in biosensors, bioenergy, and industrial catalysis.

  6. [Establishment of chemiluminescent enzyme immunoassay for detecting antibodies against foot-and-mouth disease virus serotype O in swine].

    Science.gov (United States)

    Cui, Chen; Huang, Ligang; Li, Jing; Zou, Xingqi; Zhu, Yuanyuan; Xie, Lei; Zhao, Qizu; Yang, Limin; Liu, Wenjun

    2016-11-25

    Recombinant structural protein VP1 of foot-and-mouth disease virus serotype O was expressed in Escherichia coli and then purified using Nickel affinity chromatography. A chemiluminescent enzyme immunoassay (CLEIA) method was established using the purified recombinant protein as coating antigen to detect antibody of foot-and-mouth disease virus serotype O in swine. The specificity of VP1-CLEIA method is 100%. The coefficients of variation in the plate and between plates are 1.10%-6.70% and 0.66%-4.80%, respectively. Comparing with the commercial indirect ELISA kit or liquid phase block ELISA kit, the calculated coincidence rate is 93.50% or 94.00%. The high specificity and stability suggested this detection method can be used to monitor the antibody level of foot-and-mouth disease virus serotype O in swine.

  7. Nucleic acids digestion by enzymes in the stomach of snakehead (Channa argus) and banded grouper (Epinephelus awoara).

    Science.gov (United States)

    Liu, Yu; Zhang, Yanfang; Jiang, Wei; Wang, Jing; Pan, Xiaoming; Wu, Wei; Cao, Minjie; Dong, Ping; Liang, Xingguo

    2017-02-01

    Dietary nucleic acids (NAs) were important nutrients. However, the digestion of NAs in stomach has not been studied. In this study, the digestion of NAs by enzymes from fish stomach was investigated. The snakehead pepsins (SP) which were the main enzymes in stomach were extracted and purified. The purity of SP was evaluated by SDS-PAGE and HPLC. The snakehead pepsin 2 (SP2) which was the main component in the extracts was used for investigating the protein and NAs digestion activity. SP2 could digest NAs, including λ DNA and salmon sperm DNA. Interestingly, the digestion could be inhibited by treatment of alkaline solution at pH 8.0 and pepstatin A, and the digestion could happen either in the presence or absence of hemoglobin (Hb) and BSA as the protein substrates. Similarly, the stomach enzymes of banded grouper also showed the NAs digestion activity. NAs could be digested by the stomach enzymes of snakehead and banded grouper. It may be helpful for understanding both animal nutrition and NAs metabolic pathway.

  8. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production.

    Science.gov (United States)

    Tataruch, M; Heider, J; Bryjak, J; Nowak, P; Knack, D; Czerniak, A; Liesiene, J; Szaleniec, M

    2014-12-20

    The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    Science.gov (United States)

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The effect of display movement angle, indicator type and display location on control/display stereotype strength.

    Science.gov (United States)

    Hoffmann, Errol R; Chan, Alan H S

    2017-08-01

    Much research on stereotype strength relating display and control movements for displays moving in the vertical or horizontal directions has been reported. Here we report effects of display movement angle, where the display moves at angles (relative to the vertical) of between 0° and 180°. The experiment used six different controls, four display locations relative to the operator and three types of indicator. Indicator types were included because of the strong effects of the 'scale-side principle' that are variable with display angle. A directional indicator had higher stereotype strength than a neutral indicator, and showed an apparent reversal in control/display stereotype direction beyond an angle of 90°. However, with a neutral indicator this control reversal was not present. Practitioner Summary: The effects of display moving at angles other than the four cardinal directions, types of control, location of display and types of indicator are investigated. Indicator types (directional and neutral) have an effect on stereotype strength and may cause an apparent control reversal with change of display movement angle.

  11. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis.

    Science.gov (United States)

    Gong, Jin-Song; Li, Wei; Zhang, Dan-Dan; Xie, Min-Feng; Yang, Biao; Zhang, Rong-Xian; Li, Heng; Lu, Zhen-Ming; Xu, Zheng-Hong; Shi, Jin-Song

    2015-12-17

    In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-L-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba(2+). This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  12. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Jin-Song Gong

    2015-12-01

    Full Text Available In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-l-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba2+. This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  13. Arylsulfotransferase from Clostridium innocuum-A new enzyme catalyst for sulfation of phenol-containing compounds.

    Science.gov (United States)

    Mozhaev, Vadim V; Khmelnitsky, Yuri L; Sanchez-Riera, Fernando; Maurina-Brunker, Julie; Rosson, Reinhardt A; Grund, Alan D

    2002-06-05

    Arylsulfotransferase (AST, EC 2.8.2.22), an enzyme capable of sulfating a wide range of phenol-containing compounds was purified from a Clostridium innocuum isolate (strain 554). The enzyme has a molecular weight of 320 kDa and is composed of four subunits. Unlike many mammalian and plant arylsulfotransferases, AST from Clostridium utilizes arylsulfates, including p-nitrophenyl sulfate, as sulfate donors, and is not reactive with 3-phosphoadenosine-5'-phosphosulfate (PAPS). The enzyme possesses broad substrate specificity and is active with a variety of phenols, quinones and flavonoids, but does not utilize primary and secondary alcohols and sugars as substrates. Arylsulfotransferase tolerates the presence of 10 vol% of polar cosolvents (dimethyl formamide, acetonitrile, methanol), but loses significant activity at higher solvent concentrations of 30-40 vol%. The enzyme retains high arylsulfotransferase activity in biphasic systems composed of water and nonpolar solvents, such as cyclohexane, toluene and chloroform, while in biphasic systems with more polar solvents (ethyl acetate, 2-pentanone, methyl tert-butyl ether, and butyl acetate) the enzyme activity is completely lost. High yields of AST-catalyzed sulfation were achieved in reactions with several phenols and tyrosine-containing peptides. Overall, AST studied in this work is a promising biocatalyst in organic synthesis to afford efficient sulfation of phenolic compounds under mild reaction conditions. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 567-575, 2002.

  14. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.

    Science.gov (United States)

    Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai

    2017-09-01

    An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.

  15. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet air purifier. 880.6500 Section 880.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... to ultraviolet radiation. (b) Classification. Class II (performance standards). ...

  16. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  17. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  18. Effect of streamer plasma air purifier on sbs symptoms and performance of office work

    DEFF Research Database (Denmark)

    Zhang, X.J.; Fang, Lei; Wargocki, Pawel

    2011-01-01

    Subjective experiments were conducted to evaluate the effect of a streamer plasma air purifier on perceived air quality, SBS symptoms and performance of office work during 5-hour exposure of 32 recruited subjects in field laboratory in which real materials were used to establishing a realistic...... level of air pollution. Intensity of SBS symptoms were indicated using visual-analogue scales. Subjects’ performance was evaluated with several computer tasks. The results show that operation of the air purifiers improved perceived air quality and reduced the odor intensity of indoor air. Eye dryness...... symptom was found significantly improved when the air purifiers were used but no other SBS symptoms or performance of office work were improved when the air purifiers were in operation compared to the condition when they were off....

  19. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores

    Directory of Open Access Journals (Sweden)

    De Felice Maurilio

    2010-01-01

    Full Text Available Abstract Background The bacterial endospore (spore has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections. Results We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 × 103 recombinant molecules per spore, whereas when fused to CotC, although most efficiently expressed (7-15 × 103 recombinant molecules per spore and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed. Conclusion UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface.

  20. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores.

    Science.gov (United States)

    Hinc, Krzysztof; Isticato, Rachele; Dembek, Marcin; Karczewska, Joanna; Iwanicki, Adam; Peszyńska-Sularz, Grazyna; De Felice, Maurilio; Obuchowski, Michał; Ricca, Ezio

    2010-01-18

    The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections. We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 x 10(3) recombinant molecules per spore), whereas when fused to CotC, although most efficiently expressed (7-15 x 10(3) recombinant molecules per spore) and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed. UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface.

  1. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Science.gov (United States)

    Sammond, Deanne W; Kastelowitz, Noah; Himmel, Michael E; Yin, Hang; Crowley, Michael F; Bomble, Yannick J

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  2. Differential display of abundantly expressed genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots.

    Science.gov (United States)

    Mehrabi-Koushki, Mehdi; Rouhani, Hamid; Mahdikhani-Moghaddam, Esmat

    2012-11-01

    The identification of Trichoderma genes whose expression is altered during early stages of interaction with developing roots of germinated seeds is an important step toward understanding the rhizosphere competency of Trichoderma spp. The potential of 13 Trichoderma strains to colonize tomato root and promote plant growth has been evaluated. All used strains successfully propagated in spermosphere and continued their growth in rhizoplane simultaneously root enlargement while the strains T6 and T7 were the most abundant in the apical segment of roots. Root colonization in most strains associated with promoting the roots and shoots growth while they significantly increased up to 43 and 40 % roots and shoots dry weights, respectively. Differential display reverse transcriptase-PCR (DDRT-PCR) has been developed to detect differentially expressed genes in the previously selected strain, Trichoderma harzianum T7, during colonization stages of tomato-germinating seeds and roots. Amplified DDRT-PCR products were analyzed on gel agarose and 62 differential bands excised, purified, cloned, and sequenced. Obtained ESTs were submit-queried to NCBI database by BLASTx search and gene ontology hierarchy. Most of transcripts (29 EST) corresponds to known and hypothetical proteins such as secretion-related small GTPase, 40S ribosomal protein S3a, 3-hydroxybutyryl-CoA dehydrogenase, DNA repair protein rad50, lipid phosphate phosphatase-related protein type 3, nuclear essential protein, phospholipase A2, fatty acid desaturase, nuclear pore complex subunit Nup133, ubiquitin-activating enzyme, and 60S ribosomal protein L40. Also, 13 of these sequences showed no homology (E > 0.05) with public databases and considered as novel genes. Some of these ESTs corresponded to genes encodes enzymes potentially involved in nutritional support of microorganisms which have obvious importance in the establishment of Trichoderma in spermosphere and rhizosphere, via potentially functioning in

  3. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    Science.gov (United States)

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Epitope selection from an uncensored peptide library displayed on avian leukosis virus

    International Nuclear Information System (INIS)

    Khare, Pranay D.; Rosales, Ana G.; Bailey, Kent R.; Russell, Stephen J.; Federspiel, Mark J.

    2003-01-01

    Phage display libraries have provided an extraordinarily versatile technology to facilitate the isolation of peptides, growth factors, single chain antibodies, and enzymes with desired binding specificities or enzymatic activities. The overall diversity of peptides in phage display libraries can be significantly limited by Escherichia coli protein folding and processing machinery, which result in sequence censorship. To achieve an optimal diversity of displayed eukaryotic peptides, the library should be produced in the endoplasmic reticulum of eukaryotic cells using a eukaryotic display platform. In the accompanying article, we presented experiments that demonstrate that polypeptides of various sizes could be efficiently displayed on the envelope glycoproteins of a eukaryotic virus, avian leukosis virus (ALV), and the displayed polypeptides could efficiently attach to cognate receptors without interfering with viral attachment and entry into susceptible cells. In this study, methods were developed to construct a model library of randomized eight amino acid peptides using the ALV eukaryotic display platform and screen the library for specific epitopes using immobilized antibodies. A virus library with approximately 2 x 10 6 different members was generated from a plasmid library of approximately 5 x 10 6 diversity. The sequences of the randomized 24 nucleotide/eight amino acid regions of representatives of the plasmid and virus libraries were analyzed. No significant sequence censorship was observed in producing the virus display library from the plasmid library. Different populations of peptide epitopes were selected from the virus library when different monoclonal antibodies were used as the target. The results of these two studies clearly demonstrate the potential of ALV as a eukaryotic platform for the display and selection of eukaryotic polypeptides libraries

  5. Response Surface Methodology Modelling of an Aqueous Two-Phase System for Purification of Protease from Penicillium candidum (PCA 1/TT031) under Solid State Fermentation and Its Biochemical Characterization

    Science.gov (United States)

    Alhelli, Amaal M.; Abdul Manap, Mohd Yazid; Mohammed, Abdulkarim Sabo; Mirhosseini, Hamed; Suliman, Eilaf; Shad, Zahra; Mohammed, Nameer Khairulla; Meor Hussin, Anis Shobirin

    2016-01-01

    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500–10,000 g/mol), PEG concentration (9%–20%), concentrations of NaCl (0%–10%) and the citrate buffer (8%–16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R2). Similarly, the predicted and observed values displayed no significant (p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening. PMID:27845736

  6. Response Surface Methodology Modelling of an Aqueous Two-Phase System for Purification of Protease from Penicillium candidum (PCA 1/TT031 under Solid State Fermentation and Its Biochemical Characterization

    Directory of Open Access Journals (Sweden)

    Amaal M. Alhelli

    2016-11-01

    Full Text Available Penicillium candidum (PCA 1/TT031 synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG/citrate based on an aqueous two-phase system (ATPS and Response Surface Methodology (RSM to purify protease from Penicillium candidum (PCA 1/TT031. The effects of different PEG molecular weights (1500–10,000 g/mol, PEG concentration (9%–20%, concentrations of NaCl (0%–10% and the citrate buffer (8%–16% on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05 response which was fit for the variables that were studied as well as a high coefficient of determination (R2. Similarly, the predicted and observed values displayed no significant (p > 0.05 differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031 produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening.

  7. Efficacy of soluble glycoprotein fraction from Allium sativum purified by size exclusion chromatography on murine Schistosomiasis mansoni.

    Science.gov (United States)

    Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M

    2017-06-01

    In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protozoan ALKBH8 Oxygenases Display both DNA Repair and tRNA Modification Activities

    DEFF Research Database (Denmark)

    Zdżalik, Daria; Vågbø, Cathrine B; Kirpekar, Finn

    2014-01-01

    The ALKBH family of Fe(II) and 2-oxoglutarate dependent oxygenases comprises enzymes that display sequence homology to AlkB from E. coli, a DNA repair enzyme that uses an oxidative mechanism to dealkylate methyl and etheno adducts on the nucleobases. Humans have nine different ALKBH proteins, ALKBH......1-8 and FTO. Mammalian and plant ALKBH8 are tRNA hydroxylases targeting 5-methoxycarbonylmethyl-modified uridine (mcm5U) at the wobble position of tRNAGly(UCC). In contrast, the genomes of some bacteria encode a protein with strong sequence homology to ALKBH8, and robust DNA repair activity...... was previously demonstrated for one such protein. To further explore this apparent functional duality of the ALKBH8 proteins, we have here enzymatically characterized a panel of such proteins, originating from bacteria, protozoa and mimivirus. All the enzymes showed DNA repair activity in vitro, but...

  9. Selected Enzyme Inhibitory Effects of Euphorbia characias Extracts

    Directory of Open Access Journals (Sweden)

    Antonella Fais

    2018-01-01

    Full Text Available Extracts of aerial part of Euphorbia characias were examined to check potential inhibitors for three selected enzymes involved in several metabolic disorders. Water and ethanol extracts from leaves and flowers showed in vitro inhibitory activity toward α-amylase, α-glucosidase, and xanthine oxidase. IC50 values were calculated for all the extracts and the ethanolic extracts were found to exert the best effect. In particular, for the α-glucosidase activity, the extracts resulted to be 100-fold more active than the standard inhibitor. The inhibition mode was investigated by Lineweaver-Burk plot analysis. E. characias extracts display different inhibition behaviors toward the three enzymes acting as uncompetitive, noncompetitive, and mixed-type inhibitors. Moreover, ethanolic extracts of E. characias showed no cytotoxic activity and exhibited antioxidant capacity in a cellular model. The LC-DAD metabolic profile was also performed and it showed that leaves and flowers extracts contain high levels of quercetin derivatives. The results suggest that E. characias could be a promising source of natural inhibitors of the enzymes involved in carbohydrate uptake disorders and oxidative stress.

  10. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    Science.gov (United States)

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.

  11. BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom.

    Science.gov (United States)

    Sant' Ana, Carolina D; Ticli, Fabio K; Oliveira, Leandro L; Giglio, Jose R; Rechia, Carem G V; Fuly, André L; Selistre de Araújo, Heloisa S; Franco, João J; Stabeli, Rodrigo G; Soares, Andreimar M; Sampaio, Suely V

    2008-11-01

    A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.

  12. Rapid and Direct VHH and Target Identification by Staphylococcal Surface Display Libraries

    Directory of Open Access Journals (Sweden)

    Marco Cavallari

    2017-07-01

    Full Text Available Unbiased and simultaneous identification of a specific antibody and its target antigen has been difficult without prior knowledge of at least one interaction partner. Immunization with complex mixtures of antigens such as whole organisms and tissue extracts including tumoral ones evokes a highly diverse immune response. During such a response, antibodies are generated against a variety of epitopes in the mixture. Here, we propose a surface display design that is suited to simultaneously identify camelid single domain antibodies and their targets. Immune libraries of single-domain antigen recognition fragments from camelid heavy chain-only antibodies (VHH were attached to the peptidoglycan of Gram-positive Staphylococcus aureus employing its endogenous housekeeping sortase enzyme. The sortase transpeptidation reaction covalently attached the VHH to the bacterial peptidoglycan. The reversible nature of the reaction allowed the recovery of the VHH from the bacterial surface and the use of the VHH in downstream applications. These staphylococcal surface display libraries were used to rapidly identify VHH as well as their targets by immunoprecipitation (IP. Our novel bacterial surface display platform was stable under harsh screening conditions, allowed fast target identification, and readily permitted the recovery of the displayed VHH for downstream analysis.

  13. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Wargocki, Pawel

    2010-01-01

    The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... as well as when it was off. Operation of the purifier significantly improved PAQ in the rooms polluted by building materials (used carpet, old linoleum, and old chip-board), and a used ventilation filter as well as a mixture of building materials, used ventilation filter and cathode-ray tube computer...... monitors. The effect cor-responded to approximately doubling the outdoor air supply rate. Operation of the purifier significantly worsened the PAQ in rooms with human bioeffluents, probably due to incomplete oxidation of alcohols which are one of the main pollutants emitted by humans. Present results show...

  14. Are spontaneous conformational interconversions a molecular basis for long-period oscillations in enzyme activity?

    Science.gov (United States)

    Queiroz-Claret, C; Valon, C; Queiroz, O

    1988-01-01

    An unconventional hypothesis to the molecular basis of enzyme rhythms is that the intrinsic physical instability of the protein molecules which, in an aqueous medium, tend to move continuously from one conformational state to another could lead, in the population of enzyme molecules, to sizeable long-period oscillations in affinity for substrate and sensitivity to ligands and regulatory effects. To investigate this hypothesis, malate dehydrogenase was extracted and purified from leaves of the plant Kalanchoe blossfeldiana. The enzyme solutions were maintained under constant conditions and sampled at regular intervals for up to 40 or 70 h for measurements of activity as a function of substrate concentration, Km for oxaloacetic acid and sensitivity to the action of 2,3-butanedione, a modifier of active site arginyl residues. The results show that continuous slow oscillations in the catalytic capacity of the enzyme occur in all the extracts checked, together with fluctuations in Km. Apparent circadian periodicities were observed in accordance with previous data established during long run (100 h) experiments. The saturation curves for substrate showed multiple kinetic functions, with various pronounced intermediary plateaus and "bumps" depending on the time of sampling. Variation in the response to the effect of butanedione indicated fluctuation in the accessibility to the active site. Taken together, the results suggest that, under constant conditions, the enzyme in solution shifts continuously and reversibly between different configurations. This was confirmed by parallel studies on the proton-NMR spectrum of water aggregates in the enzyme solution and proton exchange rates.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Thermostable amylolytic enzymes from a cellulolytic fungus Myceliophthora thermophila D14 (ATCC 48 104)

    Energy Technology Data Exchange (ETDEWEB)

    Sadhukhan, R K; Manna, S; Roy, S K; Chakrabarty, S L [Bose Research Inst., Calcutta (India). Dept. of Microbiology

    1990-09-01

    The production of amylolytic enzymes by a thermophilic cellulolytic fungus, Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45deg C. Among various nitrogenous compounds used, NaNO{sub 3} and KNO{sub 3} were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50deg C-60deg C) and displayed activity optima at 60deg C and pH 5.6. (orig.).

  16. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides.

    Directory of Open Access Journals (Sweden)

    Jingquan Li

    Full Text Available Acetylcholinesterase (AChE is commonly used for the detection of organophosphate (OP and carbamate (CB insecticides. However, the cost of this commercially available enzyme is high, making high-throughput insecticide detection improbable. In this study we constructed a new AChE yeast expression system in Saccharomyces cerevisiae for the expression of a highly reactive recombinant AChE originating from Drosophila melanogaster (DmAChE. Specifically, the coding sequence of DmAChE was fused with the 3'-terminal half of an α-agglutinin anchor region, along with an antigen tag for the detection of the recombinant protein. The target sequence was cloned into the yeast expression vector pYes-DEST52, and the signal peptide sequence was replaced with a glucoamylase secretion region for induced expression. The resultant engineered vector was transformed into S. cerevisiae. DmAChE was expressed and displayed on the cell surface after galactose induction. Our results showed that the recombinant protein displayed activity comparable to the commercial enzyme. We also detected different types of OP and CB insecticides through enzyme inhibition assays, with the expressed DmAChE showing high sensitivity. These results show the construction of a new yeast expression system for DmAChE, which can subsequently be used for detecting OP and CB insecticides with reduced economic costs.

  17. Structure characteristics of an acidic polysaccharide purified from banana (Musa nana Lour.) pulp and its enzymatic degradation.

    Science.gov (United States)

    Liu, Huiling; Jiang, Yueming; Yang, Hongshun; Yang, Bao

    2017-08-01

    Banana is one of the most important fruits over the world. The chemical composition is critical for the organoleptic properties and health benefits. As one of the leading bioactive components in banana pulp, the polysaccharides may contribute to the beneficial health effects. However, their precise structure information remains unknown. A leading acidic polysaccharide (ABPP) of banana pulp was purified and identified by nuclear magnetic resonnance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS). →4-α-d-GalpA-1→ and →4-α-d-GalpAMe-1→ constituted the backbone. No branch chains were detected. The molecular weight was determined to be 8.9kDa by gel permeation chromatography, which was smaller than previously reported fruit-derived polygalacturonic acids. The precise structure was identified as below. Digestion by enzyme would lead to production of oligogalacturonic acids and quick accumulation of 5000-7000Da fraction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library

    Directory of Open Access Journals (Sweden)

    Goldman Ellen R

    2007-11-01

    Full Text Available Abstract Background Shark heavy chain antibody, also called new antigen receptor (NAR, consists of one single Variable domain (VH, containing only two complementarity-determining regions (CDRs. The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. Results A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB, ricin, and botulinum toxin A (BoNT/A complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. Conclusion We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.

  19. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  20. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by 14C putrescine method

    International Nuclear Information System (INIS)

    Fogel, W.A.; Bieganski, T.; Wozniak, J.; Maslinski, C.

    1978-01-01

    The Δ 1 pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi 14 C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation Δ 1 pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced Δ 1 pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on Δ 1 pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme. (author)

  1. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and β-glucosidase.

    Science.gov (United States)

    Tozakidis, Iasson E P; Brossette, Tatjana; Lenz, Florian; Maas, Ruth M; Jose, Joachim

    2016-06-10

    The production and employment of cellulases still represents an economic bottleneck in the conversion of lignocellulosic biomass to biofuels and other biocommodities. This process could be simplified by displaying the necessary enzymes on a microbial cell surface. Such an approach, however, requires an appropriate host organism which on the one hand can withstand the rough environment coming along with lignocellulose hydrolysis, and on the other hand does not consume the generated glucose so that it remains available for subsequent fermentation steps. The robust soil bacterium Pseudomonas putida showed a strongly reduced uptake of glucose above a temperature of 50 °C, while remaining structurally intact hence recyclable, which makes it suitable for cellulose hydrolysis at elevated temperatures. Consequently, three complementary, thermophilic cellulases from Ruminiclostridium thermocellum were displayed on the surface of the bacterium. All three enzymes retained their activity on the cell surface. A mixture of three strains displaying each one of these enzymes was able to synergistically hydrolyze filter paper at 55 °C, producing 20 μg glucose per mL cell suspension in 24 h. We could establish Pseudomonas putida as host for the surface display of cellulases, and provided proof-of-concept for a fast and simple cellulose breakdown process at elevated temperatures. This study opens up new perspectives for the application of P. putida in the production of biofuels and other biotechnological products.

  2. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    Science.gov (United States)

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2012-10-09

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A)) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  3. Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum

    Science.gov (United States)

    Adney, William S.; Baker, John O.; Decker, Stephen R.; Chou, Yat-Chen; Himmel, Michael E.; Ding, Shi-You

    2008-11-11

    Purified cellobiohydrolase I (glycosyl hydrolase family 7 (Cel7A) enzymes from Penicillium funiculosum demonstrate a high level of specific performance in comparison to other Cel7 family member enzymes when formulated with purified EIcd endoglucanase from A. cellulolyticus and tested on pretreated corn stover. This result is true of the purified native enzyme, as well as recombinantly expressed enzyme, for example, that enzyme expressed in a non-native Aspergillus host. In a specific example, the specific performance of the formulation using purified recombinant Cel7A from Penicillium funiculosum expressed in A. awamori is increased by more than 200% when compared to a formulation using purified Cel7A from Trichoderma reesei.

  4. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    International Nuclear Information System (INIS)

    Santos, Maria Helena; Silva, Rafael M.; Dumont, Vitor C.; Neves, Juliana S.; Mansur, Herman S.; Heneine, Luiz Guilherme D.

    2013-01-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: ► Type I collagen was obtained from bovine pericardium, an abundant tissue resource. ► A simple and feasible processing technique was developed to purify bovine collagen. ► The appropriate process may be performed on industrial scale. ► The pure collagen presented appropriate morphological and molecular characteristics. ► The purify collagen has shown potential use as a biomaterial in tissue engineering.

  5. Studying the fate of non-volatile organic compounds in a commercial plasma air purifier

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Stefan [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Seiler, Cornelia; Gerecke, Andreas C. [Swiss Federal Laboratories for Material Science and Technology (EMPA), CH-8600 Dübendorf (Switzerland); Hächler, Herbert [University of Zürich, Institute for Food Safety and Hygiene, National Centre for Enteropathogenic Bacteria and Listeria (NENT), CH-8057 Zürich (Switzerland); Hilbi, Hubert [Ludwig-Maximilians-Universität München Max von Pettenkofer-Institut, D-80336 München (Germany); Frey, Joachim [University of Bern, Institute for Veterinary Bacteriology, CH-3001 Bern (Switzerland); Weidmann, Simon; Meier, Lukas; Berchtold, Christian [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Zenobi, Renato, E-mail: zenobi@org.chem.ethz.ch [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland)

    2013-07-15

    Highlights: • Degradation of environmental toxins, a protein, and bioparticles were studied. • A commercial air purifier based on a cold plasma was used. • Passage through the device reduced the concentration of the compounds/particles. • Deposition inside the plasma air purifier was the main removal process. -- Abstract: Degradation of non-volatile organic compounds–environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)–in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0 m s{sup −1} (3200 L min{sup −1}), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10 L min{sup −1}. Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10 Hz or 50 Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative “degradation” efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.

  6. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  7. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  8. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  9. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries

    Science.gov (United States)

    Schoene, Christopher; Bennett, S. Paul; Howarth, Mark

    2016-01-01

    Enzymes catalyze reactions with exceptional selectivity and rate acceleration but are often limited by instability. Towards a generic route to thermo-resilience, we established the SpyRing approach, cyclizing enzymes by sandwiching between SpyTag and SpyCatcher (peptide and protein partners which lock together via a spontaneous isopeptide bond). Here we first investigated the basis for this resilience, comparing alternative reactive peptide/protein pairs we engineered from Gram-positive bacteria. Both SnoopRing and PilinRing cyclization gave dramatic enzyme resilience, but SpyRing cyclization was the best. Differential scanning calorimetry for each ring showed that cyclization did not inhibit unfolding of the inserted β-lactamase. Cyclization conferred resilience even at 100 °C, where the cyclizing domains themselves were unfolded. Phytases hydrolyze phytic acid and improve dietary absorption of phosphate and essential metal ions, important for agriculture and with potential against human malnutrition. SpyRing phytase (PhyC) resisted aggregation and retained catalytic activity even following heating at 100 °C. In addition, SpyRing cyclization made it possible to purify phytase simply by heating the cell lysate, to drive aggregation of non-cyclized proteins. Cyclization via domains forming spontaneous isopeptide bonds is a general strategy to generate resilient enzymes and may extend the range of conditions for isolation and application of enzymes. PMID:26861173

  10. Investigating the characteristic strength of flocs formed from crude and purified Hibiscus extracts in water treatment.

    Science.gov (United States)

    Jones, Alfred Ndahi; Bridgeman, John

    2016-10-15

    The growth, breakage and re-growth of flocs formed using crude and purified seed extracts of Okra (OK), Sabdariffa (SB) and Kenaf (KE) as coagulants and coagulant aids was assessed. The results showed floc size increased from 300 μm when aluminium sulphate (AS) was used as a coagulant to between 696 μm and 722 μm with the addition of 50 mg/l of OK, KE and SB crude samples as coagulant aids. Similarly, an increase in floc size was observed when each of the purified proteins was used as coagulant aid at doses of between 0.123 and 0.74 mg/l. The largest floc sizes of 741 μm, 460 μm and 571 μm were obtained with a 0.123 mg/l dose of purified Okra protein (POP), purified Sabdariffa (PSP) and purified Kenaf (PKP) respectively. Further coagulant aid addition from 0.123 to 0.74 mg/l resulted in a decrease in floc size and strength in POP and PSP. However, an increase in floc strength and reduced d50 size was observed in PKP at a dose of 0.74 mg/l. Flocs produced when using purified and crude extract samples as coagulant aids exhibited high recovery factors and strength. However, flocs exhibited greater recovery post-breakage when the extracts were used as a primary coagulant. It was observed that the combination of purified proteins and AS improved floc size, strength and recovery factors. Therefore, the applications of Hibiscus seeds in either crude or purified form increases floc growth, strength, recoverability and can also reduce the cost associated with the import of AS in developing countries. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  12. Enzyme-linked immunosorbent assays for insulin-like growth factor-I using six-histidine tag fused proteins

    International Nuclear Information System (INIS)

    Huang Yong; Shi Ruina; Zhong Xuefei; Wang Dan; Zhao Meiping; Li Yuanzong

    2007-01-01

    The fusion proteins of insulin-like growth factor-I (IGF-I) and six-histidine tag (IGF-I-6H, 6H-IGF-I-6H) were cloned, expressed, purified and renatured, with their immunoreaction properties and biological activities intact. The binding kinetics between these fusion proteins and anti-IGF-I antibody or anti-6H antibody were studied using surface plasmon resonance (SPR). Two enzyme-linked immunosorbent assay (ELISA) modes, which proved feasible in the measurement of human serum samples, were used to detect IGF-I with the help of the six-histidine tagged proteins. Furthermore, combining the production technique of the six-histidine tagged fusion protein with the competitive sandwich ELISA mode, using an enzyme labeled anti-6H antibody as a tracer, can be a universal immunochemical method to quantitate other polypeptides or proteins

  13. Endochitinase 1 (Tv-ECH1) from Trichoderma virens has high subsite specificities for acetylated units when acting on chitosans.

    Science.gov (United States)

    Bußwinkel, Franziska; Goñi, Oscar; Cord-Landwehr, Stefan; O'Connell, Shane; Moerschbacher, Bruno M

    2018-03-15

    Chitosans with defined characteristics have been shown to possess reproducible bioactivities for numerous applications. A promising approach for producing chitosans with defined degrees of polymerization (DP), degrees of acetylation (DA), and patterns of acetylation (PA) involves using chitin-modifying enzymes. One such enzyme, the chitinase Tv-ECH1 belonging to the glycoside hydrolase (GH) family 18, seems to have an important role in the biocontrol properties of the fungus Trichoderma virens, suggesting its potential in generating novel chitosans for plant health applications. In this study, the Tv-ECH1 enzyme was overexpressed in the methylotrophic yeast Pichia pastoris, yielding large amounts (up to 2mgmL -1 ) of purified recombinant enzyme of high activity, high purity, and high stability, making the system promising for industrial production of Tv-ECH1. The purified Tv-ECH1 chitinase displayed a wide optimal pH range from 4.5 to 6 and an optimal temperature of 37°C. Detailed subsite specificity analyses revealed high preference for acetylated residues at all four subsites analyzed (-2, -1, +1, +2), making Tv-ECH1 a promising candidate for the biotechnological production of specific chitosan oligomers and for the characterization of chitosan polymers via enzymatic fingerprinting. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Uracil phosphoribosyltransferase from the extreme thermoacidophilic archaebacterium Sulfolobus shibatae is an allosteric enzyme, activated by GTP and inhibited by CTP

    DEFF Research Database (Denmark)

    Linde, Lise; Jensen, Kaj Frank

    1996-01-01

    Uracil phosphoribosyltransferase, which catalyses the formation of UMP and pyrophosphate from uracil and 5-phosphoribosyl a-1-pyrophosphate (PRPP), was partly purified from the extreme thermophilic archaebacterium Sulfolobus shibatae. The enzyme required divalent metal ions for activity...... and it showed the highest activity at pH 6.4. The specific activity of the enzyme was 50-times higher at 95°C than at 37°C, but the functional half-life was short at 95°C. The activity of uracil phosphoribosyltransferase was strongly activated by GTP, which increased Vmax of the reaction by approximately 20......-fold without much effect on Km for the substrates. The concentration of GTP required for half-maximal activation was about 80 µM. CTP was a strong inhibitor and acted by raising the concentration of GTP needed for half-maximal activation of the enzyme. We conclude that uracil phosphoribosyltransferase...

  15. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Parinaz Ghadam

    2017-05-01

    Full Text Available Objective(s: Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. Materials and Methods: The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. Results: Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. Conclusion: In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.

  16. Mechanical performance of HMA-2 modified with purified and unpurified carbon nanotubes and nanofibers

    Directory of Open Access Journals (Sweden)

    Mario Rodrigo Rubio

    2017-05-01

    Full Text Available The present study evaluates the mechanical performance of a Hot Mix Asphalt – Type II (HMA-2 modified with carbon nanotubes and carbon nanofibers (CNTF. CNTF were made by means the Catalytic Vapor Deposition (CVD technique at 700° C using a Nickel, Copper and Aluminum (NiCuAl catalyst with a Cu/Ni molar relation of 0,33. In order to properly assess HMA-2 performance, three different mixtures were analyzed: 1 HMA-2 modified with purified CNTF; 2 HMA-2 modified with non-purified CNTF and, 3 a Conventional HMA-2 (control. Samples manufactured in accordance with the Marshall Mix Design were tested in the laboratory to study rutting, resilient modulus (Mr and fatigue. In addition to the aforementioned dynamic characterization, the effect of CNTF purification on the asphalt mixture’s mechanical properties was analyzed. In short, a comparative study was designed to determine whether or not CNTF should be purified before introduction into the HMA-2. This investigation responds to the growing demand for economical materials capable of withstanding traffic loads while simultaneously enhancing pavement durability and mechanical properties. Although purified CNTF increased HMA-2 stiffness and elastic modulus, non-purified CNTF increased the asphalt mixture’s elastic modulus without considerable increases in stiffness. Thus, the latter modification is deemed to help address fatiguerelated issues and improve the long-term durability of flexible pavements.

  17. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst.

    Science.gov (United States)

    Tavassoli, Setareh; Hinc, Krzysztof; Iwanicki, Adam; Obuchowski, Michal; Ahmadian, Gholamreza

    2013-03-01

    The production of highly efficient, recyclable and cost-effective enzymes is one of the most important goals in industrial biotechnology. Bacterial spores are highly resistant to harsh environmental conditions, easy to produce and are suitable for manipulation of genetic materials. These features make them a very efficient tool for biotechnology. Here, we show the use bacterial spores for presentation of functional enzyme. Spore coat display was used to produce a biocatalyst, which expresses β-galactiosidase (LacA). This enzyme is commonly used to produce lactose-free milk for lactose intolerant individuals. The lacA gene from Bacillus subtilis strain 168 was expressed on the surface of B. subtilis RH101(ΔcotC) spores using CotC as protein carrier. Presence of LacA protein is verified by western blotting. Results of β-galactiosidase assay show that the expressed enzyme retained its activity in condition of freezing and drying, as well as after recovery from the reaction's mixture.

  18. Fructose 2,6-bisphosphate and its phosphorothioate analogue. Comparison of their hydrolysis and action on glycolytic and gluconeogenic enzymes.

    OpenAIRE

    Rider, M H; Kuntz, D A; Hue, L

    1988-01-01

    Purified chicken liver 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was phosphorylated either from fructose 2,6-bis[2-32P]phosphate or fructose 2-phosphoro[35S]thioate 6-phosphate. The turnover of the thiophosphorylated enzyme intermediate as well as the overall phosphatase reaction was four times faster than with authentic fructose 2,6-bisphosphate. Fructose 2-phosphorothioate 6-phosphate was 10-100-fold less potent than authentic fructose 2,6-bisphosphate in stimulating 6-phosphofru...

  19. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  20. European display scene

    Science.gov (United States)

    Bartlett, Christopher T.

    2000-08-01

    The manufacture of Flat Panel Displays (FPDs) is dominated by Far Eastern sources, particularly in Active Matrix Liquid Crystal Displays (AMLCD) and Plasma. The United States has a very powerful capability in micro-displays. It is not well known that Europe has a very active research capability which has lead to many innovations in display technology. In addition there is a capability in display manufacturing of organic technologies as well as the licensed build of Japanese or Korean designs. Finally, Europe has a display systems capability in military products which is world class.

  1. Effect of display location on control-display stereotype strength for translational and rotational controls with linear displays.

    Science.gov (United States)

    Chan, Alan H S; Hoffmann, Errol R

    2015-01-01

    Experiments were designed to investigate the effects of control type and display location, relative to the operator, on the strength of control/display stereotypes. The Worringham and Beringer Visual Field principle and an extension of this principle for rotary controls (Hoffmann E.R., and Chan A.H.S. 2013). "The Worringham and Beringer 'Visual Field' Principle for Rotary Controls. Ergonomics." 56 (10): 1620-1624) indicated that, for a number of different control types (rotary and lever) on different planes, there should be no significant effect of the display location relative to the seated operator. Past data were surveyed and stereotype strengths listed. Experiments filled gaps where data are not available. Six different control types and seven display locations were used, as in the Frame of Reference Transformation Tool (FORT) model of Wickens et al. (Wickens, C.D., Keller, J.W., and Small, R.L. (2010). "Left. No, Right! Development of the Frame of Reference Transformation Tool (FORT)." Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting September 2010, 54: 1022-1026). Control/display arrangements with high stereotype strengths were evaluated yielding data for designers of complex control/display arrangements where the control and display are in different planes and for where the operator is moving. It was found possible to predict display/control arrangements with high stereotype strength, based on past data. Practitioner Summary: Controls and displays in complex arrangements need to have high compatibility. These experiments provide arrangements for six different controls (rotary and translational) and seven different display locations relative to the operator.

  2. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Directory of Open Access Journals (Sweden)

    Judit Ribera

    Full Text Available A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  3. Bacillus sp. JR3 esterase LipJ: A new mesophilic enzyme showing traces of a thermophilic past.

    Science.gov (United States)

    Ribera, Judit; Estupiñán, Mónica; Fuentes, Alba; Fillat, Amanda; Martínez, Josefina; Diaz, Pilar

    2017-01-01

    A search for extremophile enzymes from ancient volcanic soils in El Hierro Island (Canary Islands, Spain) allowed isolation of a microbial sporulated strain collection from which several enzymatic activities were tested. Isolates were obtained after sample cultivation under several conditions of nutrient contents and temperature. Among the bacterial isolates, supernatants from the strain designated JR3 displayed high esterase activity at temperatures ranging from 30 to 100°C, suggesting the presence of at least a hyper-thermophilic extracellular lipase. Sequence alignment of known thermophilic lipases allowed design of degenerated consensus primers for amplification and cloning of the corresponding lipase, named LipJ. However, the cloned enzyme displayed maximum activity at 30°C and pH 7, showing a different profile from that observed in supernatants of the parental strain. Sequence analysis of the cloned protein showed a pentapeptide motif -GHSMG- distinct from that of thermophilic lipases, and much closer to that of esterases. Nevertheless, the 3D structural model of LipJ displayed the same folding as that of thermophilic lipases, suggesting a common evolutionary origin. A phylogenetic study confirmed this possibility, positioning LipJ as a new member of the thermophilic family of bacterial lipases I.5. However, LipJ clusters in a clade close but separated from that of Geobacillus sp. thermophilic lipases. Comprehensive analysis of the cloned enzyme suggests a common origin of LipJ and other bacterial thermophilic lipases, and highlights the most probable divergent evolutionary pathway followed by LipJ, which during the harsh past times would have probably been a thermophilic enzyme, having lost these properties when the environment changed to more benign conditions.

  4. Bitistatin-functionalized fluorescent nanodiamond particles specifically bind to purified human platelet integrin receptor αIIbβ3 and activated platelets

    Directory of Open Access Journals (Sweden)

    Marcinkiewicz C

    2017-05-01

    Full Text Available Cezary Marcinkiewicz,1,2 Jonathan A Gerstenhaber,1 Mark Sternberg,2 Peter I Lelkes,1 Giora Feuerstein1,2 1Department of Bioengineering, College of Engineering, Temple University, Philadelphia, 2Debina Diagnostic, Inc., Newton Square, PA, USA Abstract: Thromboembolic events (TEE underwrite key causes of death in developed countries. While advanced imaging technologies such as computed tomography scans serve to diagnose blood clots during acute cardiovascular events, no such technology is available in routine primary care for TEE risk assessment. Here, we describe an imaging platform technology based on bioengineered fluorescent nanodiamond particles (F-NDPs functionalized with bitistatin (Bit, a disintegrin that specifically binds to the αIIbβ3 integrin, platelet fibrinogen receptor (PFR on activated platelets. Covalent linkage of purified Bit to F-NDP was concentration-dependent and saturable, as validated by enzyme-linked immunosorbent assay using specific anti-Bit antibodies. F-NDP–Bit interacted with purified PFR, either in immobilized or soluble form. Lotrafiban, a nonpeptide, αIIbβ3 receptor antagonist, specifically blocked F-NDP–Bit–PFR complex formation. Moreover, F-NDP–Bit specifically binds to activated platelets incorporated into a clot generated by thrombin-activated rat platelet-rich plasma (PRP. Our results suggest that engineered F-NDP–Bit particles could serve as noninvasive, “real-time” optical diagnostics for clots present in blood vessels. Keywords: carbon nanoparticles, blood clots, imaging, platelet fibrinogen receptor, fluorescence, disintegrin, thromboembolic complications, thrombosis

  5. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maria Helena, E-mail: mariahelena.santos@gmail.com [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Silva, Rafael M.; Dumont, Vitor C. [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Neves, Juliana S. [Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Mansur, Herman S. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Belo Horizonte/MG 31270-901 (Brazil); Heneine, Luiz Guilherme D. [Department of Health Science, Ezequiel Dias Foundation-FUNED, Belo Horizonte/MG 30510-010 (Brazil)

    2013-03-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: Black-Right-Pointing-Pointer Type I collagen was obtained from bovine pericardium, an abundant tissue resource. Black-Right-Pointing-Pointer A simple and feasible processing technique was developed to purify bovine collagen. Black-Right-Pointing-Pointer The appropriate process may be performed on industrial scale. Black-Right-Pointing-Pointer The pure collagen presented appropriate morphological and molecular characteristics. Black-Right-Pointing-Pointer The purify

  6. Displays in scintigraphy

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.E.; Pizer, S.M.

    1977-01-01

    Displays have several functions: to transmit images, to permit interaction, to quantitate features and to provide records. The main characteristics of displays used for image transmission are their resolution, dynamic range, signal-to-noise ratio and uniformity. Considerations of visual acuity suggest that the display element size should be much less than the data element size, and in current practice at least 256X256 for a gamma camera image. The dynamic range for image transmission should be such that at least 64 levels of grey (or equivalent) are displayed. Scanner displays are also considered, and in particular, the requirements of a whole-body camera are examined. A number of display systems and devices are presented including a 'new' heated object colour display system. Interaction with displays is considered, including background subtraction, contrast enhancement, position indication and region-of-interest generation. Such systems lead to methods of quantitation, which imply knowledge of the expected distributions. Methods for intercomparing displays are considered. Polaroid displays, which have for so long dominated the field, are in the process of being replaced by stored image displays, now that large cheap memories exist which give an equivalent image quality. The impact of this in nuclear medicine is yet to be seen, but a major effect will be to enable true quantitation. (author)

  7. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger.

    Science.gov (United States)

    van der Kaaij, R M; Yuan, X-L; Franken, A; Ram, A F J; Punt, P J; van der Maarel, M J E C; Dijkhuizen, L

    2007-07-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed.

  8. [A case of hypothyroidism displaying "dropped head" syndrome].

    Science.gov (United States)

    Furutani, Rikiya; Ishihara, Kenji; Miyazawa, Yumi; Suzuki, Yoshio; Shiota, Jun-Ichi; Kawamur, Mitsuru

    2007-01-01

    We describe a patient with hypothyroidism displaying "dropped head" syndrome. A 50-year-old man visited our clinic because he was unable to hold his head in the natural position. He had weakness and hypertrophy of the neck extensor muscles. Tendon reflexes were diminished or absent in all limbs. Mounding phenomena were observed in the bilateral upper extremities. Blood biochemical analysis revealed hypothyroidism, hyperlipidemia, and elevated levels of muscle-derived enzymes. Magnetic resonance imaging (MRI) of the neck demonstrated swelling and hyperintensity of the neck extensor muscles on T2-weighted images. The result of biopsy of the right biceps brachii muscle suggested mild atrophy of type 2 fibers. The diameters of the muscle fibers exhibited mild variation. No inflammatory changes were observed. We diagnosed hin as having "dropped head" syndrome due to hypothyroidism. Administration of thyroid hormone agent gradually improved his condition, and he became able to hold his head in the natural position. Levels of muscle-derived enzymes normalized and his hyperlipidemia remitted. Neck MRI also revealed improvement. Our findings suggest that hypothyroidism should be considered in the differential diagnosis of "dropped head" syndrome, although only a few cases like ours have been reported.

  9. Prolidase is a critical enzyme for complete gliadin digestion in Tenebrio molitor larvae.

    Science.gov (United States)

    Tereshchenkova, Valeriia F; Goptar, Irina A; Zhuzhikov, Dmitry P; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N

    2017-08-01

    Prolidase is a proline-specific metallopeptidase that cleaves imidodipeptides with C-terminal Pro residue. Prolidase was purified and characterized from the Tenebrio molitor larval midgut. The enzyme was localized in the soluble fraction of posterior midgut tissues, corresponding to a predicted cytoplasmic localization of prolidase according to the structure of the mRNA transcript. Expression of genes encoding prolidase and the major digestive proline-specific peptidase (PSP)-dipeptidyl peptidase 4-were similar. The pH optimum of T. molitor prolidase was 7.5, and the enzyme was inhibited by Z-Pro, indicating that it belongs to type I prolidases. In mammals, prolidase is particularly important in the catabolism of a proline-rich protein-collagen. We propose that T. molitor larval prolidase is a critical enzyme for the final stages of digestion of dietary proline-rich gliadins, providing hydrolysis of imidodipeptides in the cytoplasm of midgut epithelial cells. We propose that the products of hydrolysis are absorbed from the luminal contents by peptide transporters, which we have annotated in the T. molitor larval gut transcriptome. The origin of prolidase substrates in the insect midgut is discussed in the context of overall success of grain feeding insects. © 2017 Wiley Periodicals, Inc.

  10. Interference of aldehyde metabolizing enzyme with diamine oxidase/histaminase/activity as determined by /sup 14/C putrescine method

    Energy Technology Data Exchange (ETDEWEB)

    Fogel, W A [Polish Academy of Sciences, Cracow (Poland). Inst. of Pharmacology; Bieganski, T; Wozniak, J; Maslinski, C

    1978-01-01

    The ..delta../sup 1/ pyrroline formation, as an indicator of diamine oxidase activity according to Okuyama and Kobayashi /sup 14/C putrescine test (1961, Archs Biochem. Biophys., vol.95, 242), has been investigated in several tissue homogenates. When guinea pig liver homogenate was used as a source of enzyme in the presence of aldehyde dehydrogenase inhibitors chlorate hydrate and acetaldehyde the level of formation ..delta../sup 1/ pyrroline was strongly increased in a dose-dependent manner. Also inhibition of aldehyde reductase by phenobarbital enhanced ..delta../sup 1/ pyrroline formation, but to a lesser degree. In other tissues, with very high initial diamine oxidase activity (rat intestine, dog kidney) or with very low diamine oxidase activity (guinea pig skin, dog liver) the influence of these inhibitors was only slight. Pyrazole, an inhibitor of alcohol dehydrogenase exerted only a small effect on ..delta../sup 1/ pyrroline formation. All aldehyde-metabolizing enzymes inhibitors, except pyrazole, were without effect on purified pea seddling and hog kidney diamine oxidases. The use of aldehyde-metabolizing enzymes inhibitors may help to reveal the real values of diamine oxidase activity, when tissues homogenates are used as a source of enzyme.

  11. Branching enzyme assay: selective quantitation of the alpha 1,6-linked glucosyl residues involved in the branching points.

    Science.gov (United States)

    Krisman, C R; Tolmasky, D S; Raffo, S

    1985-06-01

    Methods previously described for glycogen or amylopectin branching enzymatic activity are insufficiently sensitive and not quantitative. A new, more sensitive, specific, and quantitative one was developed. It is based upon the quantitation of the glucose residues joined by alpha 1,6 bonds introduced by varying amounts of branching enzyme. The procedure involved the synthesis of a polysaccharide from Glc-1-P and phosphorylase in the presence of the sample to be tested. The branched polysaccharide was then purified and the glucoses involved in the branching points were quantitated after degradation with phosphorylase and debranching enzymes. This method appeared to be useful, not only in enzymatic activity determinations but also in the study of the structure of alpha-D-glucans when combined with those of total polysaccharide quantitation, such as iodine and phenol-sulfuric acid.

  12. Process for purifying molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, J.

    1989-01-01

    This patent describes a process for purifying molybdenum containing arsenic and phosphorus. The process comprising: adding to an acidic slurry of molybdenum trioxide, a source of magnesium ions in a solid form, with the amount of magnesium and the magnesium ion concentration in the subsequently formed ammonium molybdate solution being sufficient to subsequently form insoluble compounds containing greater than about 80% by weight of the arsenic and greater than about 80% by weight of the phosphorus, and ammonia in an amount sufficient to subsequently dissolve the molybdenum and subsequently form the insoluble compounds, with the source of magnesium ions being added prior to the addition of the ammonia; digesting the resulting ammoniated slurry at a temperature sufficient to dissolve the molybdenum and form an ammonium molybdate solution while the pH is maintained at from bout 9 to about 10 to form a solid containing the insoluble compounds; and separating the solid from the ammonium molybdate solution

  13. Characterisation of purified parvalbumin from five fish species and nucleotide sequencing of this major allergen from Pacific pilchard, Sardinops sagax.

    Science.gov (United States)

    Beale, Janine E; Jeebhay, Mohamed F; Lopata, Andreas L

    2009-09-01

    IgE-mediated allergic reaction to seafood is a common cause of food allergy including anaphylactic reactions. Parvalbumin, the major fish allergen, has been shown to display IgE cross-reactivity among fish species consumed predominantly in Europe and the Far East. However, cross-reactivity studies of parvalbumin from fish species widely consumed in the Southern hemisphere are limited as is data relating to immunological and molecular characterisation. In this study, antigenic cross-reactivity and the presence of oligomers and isomers of parvalbumin from five highly consumed fish species in Southern Africa were assessed by immunoblotting using purified parvalbumin and crude fish extracts. Pilchard (Sardinops sagax) parvalbumin was found to display the strongest IgE reactivity among 10 fish-allergic consumers. The cDNA sequence of the beta-form of pilchard parvalbumin was determined and designated Sar sa 1.0101 (accession number FM177701 EMBL/GenBank/DDBJ databases). Oligomeric forms of parvalbumin were observed in all fish species using a monoclonal anti-parvalbumin antibody and subject's sera. Isoforms varied between approximately 10-13 kDa. A highly cross-reactive allergenic isoform of parvalbumin was identified and sequenced, providing a successful primary step towards the generation of a recombinant form that could be used for diagnostic and potential therapeutic use in allergic individuals.

  14. Method of purifying phosphoric acid after solvent extraction

    International Nuclear Information System (INIS)

    Kouloheris, A.P.; Lefever, J.A.

    1979-01-01

    A method of purifying phosphoric acid after solvent extraction is described. The phosphoric acid is contacted with a sorbent which sorbs or takes up the residual amount of organic carrier and the phosphoric acid separated from the organic carrier-laden sorbent. The method is especially suitable for removing residual organic carrier from phosphoric acid after solvent extraction uranium recovery. (author)

  15. Monocular display unit for 3D display with correct depth perception

    Science.gov (United States)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-11-01

    A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  16. 78 FR 69361 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 84 [Docket No. CDC-2013-0017; NIOSH-250] Development of Inward Leakage Standards for Half-Mask Air- Purifying Particulate Respirators AGENCY: Centers... regarding the development of inward leakage performance standards for half-mask air- purifying particulate...

  17. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-01-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining [ 3 H]nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure [ 3 H]nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-[ 3 H]nicotine-binding characteristics

  18. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    Energy Technology Data Exchange (ETDEWEB)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-06-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  19. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    International Nuclear Information System (INIS)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-01-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into 14 C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV

  20. Fiscal 2000 project of inviting proposals for international joint research - invitation for international proposal (Power generation No.18). Achievement report on development of device for monitoring biomass decomposing enzyme gene expression; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (hatsuden No.18). Biomass bunkai koso idenshi hatsugen monitoring device no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A fuel production system is under development to supply fuel for power generation, in which biomass is efficiently fermented. In this connection, based on biomass decomposing enzyme related gene information provided by Japan and the U.S., a DNA (deoxyribonucleic acid) chip is built, wherein biomass decomposing enzymes, control factors, and enzyme secretion enhancing genes are densely deposited. Efforts are made, using the chip for the monitoring of the enzyme production process during the culture of mold, to develop technologies for collecting information simultaneously and comprehensively concerning the expression of great numbers of biomass decomposing enzyme genes and concerning other genes that control the production or enhance the secretion of enzymes. In concrete terms, approximately 2000 types of genes are selected out of the Aspergillus EST database held by the Japanese and U.S. members, and cDNA from the original clones is amplified and purified for each DNA of the 2000 genes. The purified DNA is spotted and fixed on the glass plate for a DNA chip and applied to the mRNA pool whose gene expression profile is known, and the detection conditions are studied for the DNA chip and specifications are optimized. (NEDO)

  1. Development of a Portable Blood Sugar Apparatus and GOD Enzyme Strip.

    Science.gov (United States)

    Zhen-Cheng, Chen; Yu-Qian, Zhao; Jing-Tian, Tang; Ling-Yun, Li

    2005-01-01

    A pocket blood sugar apparatus tested by enzyme electrode, which was designed using carbon and silver plasma as conducting materials. Both the work and reference electrodes are applied to the parts of enzyme electrode. The glucose oxidase is taken as the medium of blood sugar measuring. And the range of measuring glucose is about 50mg/dL - 500mgl/dL. It has better linear for the results and fit coefficient arrives at 0.985. Its sensitivity of measurement is higher than current glucose biosensor obviously. A single chip microcomputer, AD mu C812, is used for central control processor of the instrument parts. It measures the output of microampere level currency, which is conduced by blood sugar reacting with the glucose oxidase on the enzyme electrode. And at the same time, the microampere level currency is amplified, processed. Then the results are displayed on LCD. The apparatus are better for measuring blood sugar, and the results are consistent with what the large biochemical instruments get.

  2. Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Adolph, Sidsel Kramshøj; Subramanian, Arun Kumar

    2010-01-01

    The design of retinoid phospholipid prodrugs is described based on molecular dynamics simulations and cytotoxicity studies of synthetic retinoid esters. The prodrugs are degradable by secretory phospholipase A(2) IIA and have potential in liposomal drug delivery targeting tumors. We have synthesi...... displayed IC50 values in the range of 3-19 mu M toward HT-29 and Colo205 colon cancer cells in the presence of phospholipase A(2), while no significant cell death was observed in the absence of the enzyme....

  3. THE SPOROZOITE ENZYME-LINKED IMMUNOSORBENT ASSAY : APPLICATION IN MALARIA EPIDEMIOLOGY

    Directory of Open Access Journals (Sweden)

    Michael J. Bangs

    2012-09-01

    Full Text Available Recent biotechnological breakthroughs have led to the development of various methods for detection and identification of human pathogens in their vectors. Monoclonal antibodies produced against malaria sporozoite antigens have permitted the development of several sensitive, species specific immunological tests (IFA, IRMA, ELIS A. One of these, a two-site enzyme-linked immunosorbent assay (ELIS A has been developed as a useful epidemiological tool in the identification of malaria-infected mosquitoes. This method employs highly species specific monoclonal antibodies that recognize the repetitive immunodominant epitope of the circumsporozoite (CS protein. Monoclonal antibodies have been developed for all four species of human malaria The key feature of the ELISA technique is the use of an enzyme indicator for an immunological reaction. The antigen capture or "sandwich" ELISA configuration uses the purified monoclonal both as the solid phase and, conjugated to enzyme, as a marker for the presence of CS protein in a mosquito homogenate incubated in the wells of a microtitration plate. This technology has shown advantages over other methods for epidemiological data collection. Mosquitoes can be caught, dried and stored until a time convenient for examination. The sporozoite rate by Plasmodium species can be identified easily, and when combined with the man-biting rate provides the sporozoite inoculation rate, an important entomologic estimate of the number of potential infective bites a person could expect over a given period of time. Presently, mosquitoes can be tested individually or pooled up to 20 anophe lines. The assay is sensitive enough to detect 1 infected mosquito per pool or as few as 25 sporozoites per 50 pi of mosquito extract. Basic principles and procedures are covered concerning solid substrate, adsorption to solid substrate, buffers and wash solutions, conjugates and enzyme substrates. The advantages and limitations of this technique

  4. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  5. Improved detection of a staphylococcal infection by monomeric and protein A-purified polyclonal human immunoglobulin

    International Nuclear Information System (INIS)

    Calame, W.

    1993-01-01

    The present study was undertaken to compare the technetium-99m labelled non-specific polyclonal human immunoglobulin (Ig) with 99m Tc-labelled monomeric human immunoglobulin (m-Ig), 99m Tc-labelled, protein A-purified, human immunoglobulin (A-IG) and 99m Tc-labelled monomeric, protein A-purified, human immunoglobulin (mA-Ig) as tracer agents for the detection of a thigh infection with Staphylococcus aureus. In vitro the binding of the various tracer agents to bacteria at various intervals was determined. For the in vivo evaluation, mice were infected and received one of the various labelled proteins. Scintigrams were made 0.25, 1, 4 and 24 h later. All 99m Tc-labelled Igs bound to bacteria in vitro: The percentages of binding for the m-Ig (from 1 h onwards) and A-Ig and mA-Ig (from 3 h onwards) were significantly higher than that for Ig. The in vivo target-to-non-target (T/NT) ratios were significantly higher from 4 h onwards for all purified Igs than for Ig. Protein A-purified Ig yielded higher T/NT ratios than m-Ig. Furthermore, the amount of activity in the liver was significantly lower 24 h after administration of m-Ig, A-Ig and mA-Ig than after administration of Ig. It is concluded that in this experimental infection 99m Tc-labelled monomeric Ig localizes a staphylococcal thigh infection better and faster than 99m Tc-labelled unpurified Ig. However, the accumulation obtained with protein A-purified Ig or protein A-purified monomeric Ig was the highest of all tracer agents tested. (orig.)

  6. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  7. Aspartic acid racemisation in purified elastin from arteries as basis for age estimation.

    Science.gov (United States)

    Dobberstein, R C; Tung, S-M; Ritz-Timme, S

    2010-07-01

    Aspartic acid racemisation (AAR) results in an age-dependent accumulation of D: -aspartic acid in durable human proteins and can be used as a basis for age estimation. Routinely, age estimation based on AAR is performed by analysis of dentine. However, in forensic practise, teeth are not always available. Non-dental tissues for age estimation may be suitable for age estimation based on AAR if they contain durable proteins that can be purified and analysed. Elastin is such a durable protein. To clarify if purified elastin from arteries is a suitable sample for biochemical age estimation, AAR was determined in purified elastin from arteries from individuals of known age (n = 68 individuals, including n = 15 putrefied corpses), considering the influence of different stages of atherosclerosis and putrefaction on the AAR values. AAR was found to increase with age. The relationship between AAR and age was good enough to serve as basis for age estimation, but worse than known from dentinal proteins. Intravital and post-mortem degradation of elastin may have a moderate effect on the AAR values. Age estimation based on AAR in purified elastin from arteries may be a valuable additional tool in the identification of unidentified cadavers, especially in cases where other methods cannot be applied (e.g., no available teeth and body parts).

  8. Synthesis and characterization of highly purified nanosilica from pyrophyllite ores

    Energy Technology Data Exchange (ETDEWEB)

    Fuad, Abdulloh, E-mail: abdulloh.fuad.fmipa@um.ac.id; Mufti, Nandang; Diantoro, Markus; Subakti,; Septa Kurniawati, S. [Jurusan Fisika FMIPA Universitas Negeri Malang. Jl. Semarang No. 5 Malang, east Java (Indonesia)

    2016-03-11

    A simple method based on alkaline extraction followed by acid precipitation and acid dissolution has been developed to produce highly purified nanosilica from pyrophyllite materials. The reaction parameters such as molar ratio NaOH/SiO{sub 2}, reaction time and reaction temperature are varied for obtaining maximum nanosilica convertion. About 99,45% highly purified precipitated nanosilica measure with ICP, 259 m{sup 2}/gr measure with BET surface area, 97% whiteness and 3 ml/gr oil absorbtion from pyrophyllite materials has been achieved in closed system at 150°C within 180 min. The physicals and chemical properties (such as X-Ray Diffraction from PANalytical, X-Ray Fluorescence Minipal4 from PANanalytical, BET surface area, Forier Transform Infra Red Spectroscopy from Hitachi, and SEM-EDS Inspect-S50 from FEI Company) of the highly purity nanosilica were studied.

  9. Enhancement of fungal pectinolytic enzymes production using gamma radiation under solid state fermentation

    International Nuclear Information System (INIS)

    Ibrahim, Sh.A.

    2013-01-01

    fungal species were screened for their ability to produce pectinases on sugar-beet pulp medium. The highest producer strain was identified as Penicillium citrinum. The optimum conditions for polygalacturonases production were achieved by growing the fungus on sugar beet pulp mineral salts medium and incubation for 7 days at 250 degree C, ph 5.5 and 0.04 g N/g dry SBP by using the conventional method and 1.2 % of nitrogen source by using the factorial design method and surfactant of 0.1% Tween 40. The use of gamma irradiation at a dose of 0.7% kGy yields the highest increase of production of PGase. Polygalacturonases were precipitated from culture supernatant using ammonium sulphate then purified by gel filtration chromatography on sephadex G-100. The optimum ph and temperature of the enzyme activity production were found to be 6.0 and 40°C respectively. The enzyme was found to be stable at ph rang 4 – 8 and showed high stability at temperature rang 20°C -60°C. Mg +2 and Zn +2 stimulated PGase activity.

  10. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  11. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom.

    Science.gov (United States)

    Lazo, Fanny; Vivas-Ruiz, Dan E; Sandoval, Gustavo A; Rodríguez, Edith F; Kozlova, Edgar E G; Costal-Oliveira, F; Chávez-Olórtegui, Carlos; Severino, Ruperto; Yarlequé, Armando; Sanchez, Eladio F

    2017-12-01

    An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is a homodimeric glycosylated flavoprotein with molecular mass of ∼65 kDa under reducing conditions and ∼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca 2+ , Mg 2+ and Mn 2+ did not alter Bpic-LAAO activity; however, Zn 2+ is an inhibitor. Some reagents such as β-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 μg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets. These e......Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets...

  13. Isolation and screening of strains producing high amounts of rutin degrading enzymes from Fagopyrum tataricum seeds.

    Science.gov (United States)

    Zheng, Ya-Di; Luo, Qing-Lin; Zhou, Mei-Liang; Wang, De-Zhou; Zhang, Ye-Dong; Shao, Ji-Rong; Zhu, Xue-Mei; Tang, Yu

    2013-02-01

    The rutin degrading enzyme (RDE) was isolated and purified from tartary buckwheat seeds. The RDE was purified about 11.34-fold and its final yield was 3.5%, which was very low, due to our purification strategy of giving priority to purity over yield. The RDE molecular weight was estimated to be about 60 kDa. When rutin was used as substrate, an optimal enzyme activity was seen at around pH 5.0 and 40 °C. Strains isolation strategy characterized by the use of rutin as sole carbon source in enrichment cultures was used to isolate RDE-producing strains. Then the active strains were identified by morphology characterization and 18s rDNA-ITS (Internal Transcribed Spacer) gene sequencing. Three isolates coded as B3, W2, Y2 were successfully isolated from fusty Fagopyrum tataricum flour cultures. Strain B3 possessed the highest unit activity among these three strains, and its total activity reached up to 171.0 Unit. The active isolate (B3) could be assigned to Penicillium farinosum. When the Penicillium farinosum strains were added to tartary buckwheat flour cultures at pH 5.0, 30 °C after 5 days fermentation, the quercetin production raised up to 1.78 mg/l, almost 5.1 times higher than the fermentation without the above active strains. Hence, a new approach was available to utilize microorganism-aided fermentation for effective quercetin extraction from Fagopyrum tataricum seeds. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Scaling of oxidative and glycolytic enzymes in mammals.

    Science.gov (United States)

    Emmett, B; Hochachka, P W

    1981-09-01

    The catalytic activities of several oxidative and glycolytic enzymes were determined in the gastrocnemius muscle of 10 mammalian species differing in body weight by nearly 6 orders of magnitude. When expressed in terms of units gm-1, the activities of enzymes functioning in oxidative metabolism (citrate synthase, beta-hydroxybutyrylCoA dehydrogenase, and malate dehydrogenase) decrease as body weight increases. Log-log plots (activity gm-1 vs body mass) yield straight lines with negative slopes that are less than the allometric exponent (-0.25) typically observed for basal metabolic rates. Since the amount of power a muscle can generate depends upon the catalytic potential of its enzyme machinery (the higher the catalytic potential the higher the maximum rate of energy generation), these data predict that the scope for aerobic activity in large mammals should be greater than in small mammals if nothing else becomes limiting, a result in fact recently obtained by Taylor et al. (Respir. Physiol., 1981). In contrast to the scaling of oxidative enzymes, the activities of enzymes functioning in anaerobic glycogenolysis (glycogen phosphorylase, pyruvate kinase, and lactate dehydrogenase) increase as body size increases. Log-log plots (activity gm-1 vs body mass) display a positive slope indicating that the larger the animal the higher the glycolytic potential of its skeletal muscles. This unexpected result may indicate higher relative power costs for burst type locomotion in larger mammals, which is in fact observed in within-species studies of man. However, the scaling of anaerobic muscle power has not been closely assessed in between-species comparisons of mammals varying greatly in body size.

  15. Native gel electrophoresis of human telomerase distinguishes active complexes with or without dyskerin

    Science.gov (United States)

    Gardano, Laura; Holland, Linda; Oulton, Rena; Le Bihan, Thierry; Harrington, Lea

    2012-01-01

    Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3′ terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was ‘supershifted’ with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions. PMID:22187156

  16. Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment.

    Science.gov (United States)

    Brouns, Stan J J; Walther, Jasper; Snijders, Ambrosius P L; van de Werken, Harmen J G; Willemen, Hanneke L D M; Worm, Petra; de Vos, Marjon G J; Andersson, Anders; Lundgren, Magnus; Mazon, Hortense F M; van den Heuvel, Robert H H; Nilsson, Peter; Salmon, Laurent; de Vos, Willem M; Wright, Phillip C; Bernander, Rolf; van der Oost, John

    2006-09-15

    The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for D-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to be differentially expressed compared with growth on D-glucose. These genes were heterologously overexpressed in Escherichia coli, and the recombinant proteins were purified and biochemically studied. This showed that D-arabinose is oxidized to 2-oxoglutarate by the consecutive action of a number of previously uncharacterized enzymes, including a D-arabinose dehydrogenase, a D-arabinonate dehydratase, a novel 2-keto-3-deoxy-D-arabinonate dehydratase, and a 2,5-dioxopentanoate dehydrogenase. Promoter analysis of these genes revealed a palindromic sequence upstream of the TATA box, which is likely to be involved in their concerted transcriptional control. Integration of the obtained biochemical data with genomic context analysis strongly suggests the occurrence of pentose oxidation pathways in both Archaea and Bacteria, and predicts the involvement of additional enzyme components. Moreover, it revealed striking genetic similarities between the catabolic pathways for pentoses, hexaric acids, and hydroxyproline degradation, which support the theory of metabolic pathway genesis by enzyme recruitment.

  17. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  18. Bitterness in sodium caseinate hydrolysates: role of enzyme preparation and degree of hydrolysis.

    Science.gov (United States)

    O'Sullivan, Dara; Nongonierma, Alice B; FitzGerald, Richard J

    2017-10-01

    Enzymatic hydrolysis of sodium caseinate (NaCas) may lead to the development of bitterness. Careful selection of hydrolysis conditions (i.e. enzyme preparation and duration) yielding different degrees of hydrolysis (DH) may aid in the development of low bitterness. Eighteen NaCas hydrolysates were generated with four enzyme preparations (Alcalase 2.4L, Prolyve 1000, FlavorPro Whey and pepsin) to different DH values. Hydrolysate bitterness score, assessed using a trained panel (ten assessors), generally increased at higher DH values for Alcalase, Prolyve and pepsin hydrolysates. However, all FlavorPro Whey hydrolysates (DH 0.38-10.62%) displayed low bitterness score values ( 0.05). Enzyme preparation and DH affect the bitterness of NaCas hydrolysates. The results are relevant for the generation of NaCas hydrolysates with reduced bitterness. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  20. Identification and Characterisation of a Pectinolytic Enzyme from Paenibacillus xylanolyticus

    Directory of Open Access Journals (Sweden)

    Simona Giacobbe

    2014-06-01

    Full Text Available Pectinolytic enzymes play an important role in the processing of lignocellulosic materials because of their ability to improve the access of cellulases to their substrate by removing pectins. The strain Paenibacillus xylanolyticus 2-6L3 was isolated from mature compost obtained from agro-industrial wastes, and the enzyme pectate lyase from P. xylanolyticus 2-6L3, named PaenxylPel, was partially purified and subjected to structural and functional characterisation. The enzyme exhibited an optimum temperature between 60 and 70 °C and optimal pH value of 9.0 for its pectinase activity on pectin from citrus fruit. PaenxylPel showed a thermoresistance and pH resistance higher than those of other pectate lyases so far described, with half-lives of 48 and 24 h at 60 and 70 °C, respectively, a retention of around 80% of activity after 96 h at 40 and 50 °C, and a half-life of about 15 days at pH 8.0. PaenxylPel followed Michaelis-Menten kinetics toward pectin from citrus fruit, pectin from sugar beet pulp, high-ester pectin extracted from citrus peel (> 50% esterified, and polygalacturonic acid (PLA. The ability to act on both PLA and highly methylated pectins, together with a double peak in the graph of optimum pH at pH 5 and 9, suggest that pectate lyase from P. xylanolyticus shows an unusual activity, combining traits of pectate lyase and pectin lyase. This is the first manuscript on the pectinolytic activity of P. xylanolyticus.

  1. Preparation of progenin III from total steroidal saponins of Dioscorea nipponica Makino using a crude enzyme from Aspergillus oryzae strain.

    Science.gov (United States)

    Liu, Tingqiang; Yu, Hongshan; Liu, Chunying; Bao, Yongming; Hu, Xiangchun; Wang, Yuanhao; Liu, Bing; Fu, Yaoyao; Tang, Sihui; Jin, Fengxie

    2013-05-01

    Progenin III, one of the most active spirostanol saponins, is a potential candidate for anti-cancer therapy due to its strong antitumor activity and low hemolytic activity. However, the concentration of progenin III is extremely low in natural Dioscorea plants. In this paper, the progenin III production from total steroidal saponins of Dioscorea nipponica Makino was studied using the crude enzyme from Aspergillus oryzae DLFCC-38. The crude enzyme converting total steroidal saponins into progenin III was obtained from the A. oryzae DLFCC-38 culture. For enzyme production, the strain was cultured for 72 h at 30 °C with shaking at 150 rpm in 5 % (w/v) malt extract medium containing 2 % (v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for 9 h at 50 °C and pH 5.0 with the 20 mg/ml of substrate. In the preparation of progenin III, 117 g of crude progenin III was obtained from 160 g of substrate, and the crude product was purified with silica gel column to obtain 60.3 g progenin III of 93.4 % purity.

  2. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    Science.gov (United States)

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.

    Science.gov (United States)

    Muro, Silvia; Schuchman, Edward H; Muzykantov, Vladimir R

    2006-01-01

    Enzyme replacement therapy, a state-of-the-art treatment for many lysosomal storage disorders, relies on carbohydrate-mediated binding of recombinant enzymes to receptors that mediate lysosomal delivery via clathrin-dependent endocytosis. Suboptimal glycosylation of recombinant enzymes and deficiency of clathrin-mediated endocytosis in some lysosomal enzyme-deficient cells limit delivery and efficacy of enzyme replacement therapy for lysosomal disorders. We explored a novel delivery strategy utilizing nanocarriers targeted to a glycosylation- and clathrin-independent receptor, intercellular adhesion molecule (ICAM)-1, a glycoprotein expressed on diverse cell types, up-regulated and functionally involved in inflammation, a hallmark of many lysosomal disorders. We targeted recombinant human acid sphingomyelinase (ASM), deficient in types A and B Niemann-Pick disease, to ICAM-1 by loading this enzyme to nanocarriers coated with anti-ICAM. Anti-ICAM/ASM nanocarriers, but not control ASM or ASM nanocarriers, bound to ICAM-1-positive cells (activated endothelial cells and Niemann-Pick disease patient fibroblasts) via ICAM-1, in a glycosylation-independent manner. Anti-ICAM/ASM nanocarriers entered cells via CAM-mediated endocytosis, bypassing the clathrin-dependent pathway, and trafficked to lysosomes, where delivered ASM displayed stable activity and alleviated lysosomal lipid accumulation. Therefore, lysosomal enzyme targeting using nanocarriers targeted to ICAM-1 bypasses defunct pathways and may improve the efficacy of enzyme replacement therapy for lysosomal disorders, such as Niemann-Pick disease.

  4. Activation of purified calcium channels by stoichiometric protein phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Nunoki, K.; Florio, V.; Catterall, W.A. (Univ. of Washington, Seattle (USA))

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  5. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Nunoki, K.; Florio, V.; Catterall, W.A.

    1989-01-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45 Ca 2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45 Ca 2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd 2+ , Ni 2+ , and Mg 2+ . The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  6. Influence of a highly purified senna extract on colonic epithelium

    NARCIS (Netherlands)

    van Gorkom, B A; Karrenbeld, A; van Der Sluis, T; Koudstaal, J; de Vries, E G; Kleibeuker, J H

    2000-01-01

    BACKGROUND: Chronic use of sennoside laxatives often causes pseudomelanosis coli. A recent study suggested that pseudomelanosis coli is associated with an increased colorectal cancer risk. A single high dose of highly purified senna extract increased proliferation rate and reduced crypt length in

  7. Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

    Directory of Open Access Journals (Sweden)

    Maximiliano J. Amenábar

    2012-02-01

    Full Text Available Glutamate dehydrogenase from axenic bacterial cultures of anew microorganism, called GWE1, isolated from the interior ofa sterilization drying oven, was purified by anion-exchange andmolecular-exclusion liquid chromatography. The apparent molecularmass of the native enzyme was 250.5 kDa and wasshown to be an hexamer with similar subunits of molecularmass 40.5 kDa. For glutamate oxidation, the enzyme showedan optimal pH and temperature of 8.0 and 70oC, respectively.In contrast to other glutamate dehydrogenases isolated frombacteria, the enzyme isolated in this study can use both NAD+and NADP+ as electron acceptors, displaying more affinity forNADP+ than for NAD+. No activity was detected with NADHor NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionallythermostable, maintaining more than 70% of activityafter incubating at 100oC for more than five hours suggestingbeing one of the most thermoestable enzymes reported inthe family of dehydrogenases. [BMB reports 2012; 45(2: 91-95

  8. Advanced Colorimetry of Display Systems: Tetra-Chroma3 Display Unit

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2005-06-01

    Full Text Available High-fidelity color image reproduction is one of the key issues invisual telecommunication systems, for electronic commerce,telemedicine, digital museum and so on. All colorimetric standards ofdisplay systems are up to the present day trichromatic. But, from theshape of a horseshoe-area of all existing colors in the CIE xychromaticity diagram it follows that with three real reproductivelights, the stated area in the CIE xy chromaticity diagram cannot beoverlaid. The expansion of the color gamut of a display device ispossible in a few ways. In this paper, the way of increasing the numberof primaries is studied. The fourth cyan primary is added to threeconventional ones to enlarge the color gamut of reproduction towardscyans and yellow-oranges. The original method of color management forthis new display unit is introduced. In addition, the color gamut ofthe designed additive-based display is successfully compared with thecolor gamut of a modern subtractive-based system. A display with morethan three primary colors is called a multiprimary color display. Thevery advantageous property of such display is the possibility todisplay metameric colors.

  9. Influence of iodinated contrast media on the activities of histamine inactivating enzymes diamine oxidase and histamine N-methyltransferase in vitro.

    Science.gov (United States)

    Kuefner, M A; Feurle, J; Petersen, J; Uder, M; Schwelberger, H G

    2014-01-01

    Iodinated contrast media can cause pseudoallergic reactions associated with histamine release in significant numbers of patients. To clarify whether these adverse reactions may be aggravated by a compromised histamine catabolism we asked if radiographic contrast agents in vitro inhibit the histamine inactivating enzymes diamine oxidase (DAO) and histamine N-methyltransferase (HMT). Nine iodinated contrast agents were tested in vitro. Following pre-incubation of purified porcine kidney DAO and recombinant human HMT with 0.1-10mM of the respective contrast medium (H2O and specific inhibitors of DAO and HMT as controls) enzyme activities were determined by using radiometric micro assays. None of the contrast media irrespective of their structure showed significant inhibition of the activities of DAO and HMT. Pre-incubation of the enzymes with specific inhibitors led to complete inhibition of the respective enzymatic activity. The iodinated contrast media tested in vitro did not exhibit inhibition of histamine converting enzymes at physiologically relevant concentrations. However due to the in vitro character of this study these results do not directly reflect the in vivo situation. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  10. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    Science.gov (United States)

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay; Singh, Sukh Mahendra

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  11. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    Directory of Open Access Journals (Sweden)

    Saveg Yadav

    Full Text Available Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP, with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA and propionic acid (PA, with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  12. Angiotensin converting enzyme in the brain, testis, epididymis, pituitary gland and adrenal gland

    International Nuclear Information System (INIS)

    Strittmatter, S.M.

    1986-01-01

    [ 3 H]Captopril binds to angiotensin converting enzyme (ACE) in rat tissue homogenates. The pharmacology, regional distribution and copurification of [ 3 H]captopril binding with enzymatic activity demonstrate the selectivity of [ 3 H]captopril labeling of ACE. [ 3 H]Captopril binding to purified ACE reveals differences in cationic dependence and anionic regulation between substrate catalysis and inhibitor recognition. [ 3 H]Captopril association with ACE is entropically driven. The selectivity of [ 3 H]captopril binding permits autoradiographic localization of the ACE in the brain, male reproductive system, pituitary gland and adrenal gland. In the brain, ACE is visualized in a striatonigral neuronal pathway which develops between 1 and 7 d after birth. In the male reproductive system, [ 3 H]captopril associated silver grains are found over spermatid heads and in the lumen of seminiferous tubules in stages I-VIII and XII-XIV. In the pituitary gland, ACE is localized to the posterior lobe and patches of the anterior lobe. The adrenal medulla contains moderate ACE levels while low levels are found in the adrenal cortex. Adrenal medullary ACE is increased after hypophysectomy and after reserpine treatment. The general of ligand binding techniques for the study of enzymes is demonstrated by the specific labeling of another enzyme, enkephaline convertase, in crude tissue homogenates by the inhibitor [ 3 H]GEMSA

  13. Characterization of product RNAs synthesized in vitro by poliovirus RNA polymerase purified by chromatography on hydroxylapatite or poly(U) Sepharose.

    OpenAIRE

    Young, D C; Tobin, G J; Flanegan, J B

    1987-01-01

    The size of the product RNA synthesized by the poliovirus RNA polymerase and host factor was significantly affected by the type of column chromatography used to purify the polymerase. Dimer length product RNA was synthesized by the polymerase purified by chromatography on hydroxylapatite. This contrasted with the monomer length product RNA synthesized by the polymerase purified by chromatography on poly(U) Sepharose. The poly(U) Sepharose-purified polymerase was shown to contain oligo(U) that...

  14. Fabrication of Propeller-Shaped Supra-amphiphile for Construction of Enzyme-Responsive Fluorescent Vesicles.

    Science.gov (United States)

    Li, Jie; Liu, Kaerdun; Han, Yuchun; Tang, Ben Zhong; Huang, Jianbin; Yan, Yun

    2016-10-04

    Propeller-shaped molecules have been recognized to display fantastic AIE (aggregation induced emission), but they can hardly self-assemble into nanostructures. Herein, we for the first time report that ionic complexation between a water-soluble tetrapheneyl derivative and an enzyme substrate in aqueous media produces a propeller-shaped supra-amphiphile that self-assembles into enzyme responsive fluorescent vesicles. The supra-amphiphile was fabricated upon complexation between a water-soluble propeller-shaped AIE luminogen TPE-BPA and myristoylcholine chloride (MChCl) in aqueous media. MChCl filled in the intramolecular voids of propeller-shaped TPE-BPA upon supra-amphiphile formation, which endows the supra-amphiphile superior self-assembling ability to the component molecules thus leading to the formation of fluorescent vesicles. Because MChCl is the substrate of cholinesterases, the vesicles dissemble in the presence of cholinesterases, and the fluorescent intensity can be correlated to the level of enzymes. The resulting fluorescent vesicles may be used to recognize the site of Alzheimer's disease, to encapsulate the enzyme inhibitor, and to release the inhibitor at the disease site.

  15. Identification of a recombinant inulin fructotransferase (difructose dianhydride III forming) from Arthrobacter sp. 161MFSha2.1 with high specific activity and remarkable thermostability.

    Science.gov (United States)

    Wang, Xiao; Yu, Shuhuai; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2015-04-08

    Difructose dianhydride III (DFA III) is a functional carbohydrate produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). In this work, an IFTase gene from Arthrobacter sp. 161MFSha2.1 was cloned and expressed in Escherachia coli. The recombinant enzyme was purified by metal affinity chromatography. It showed significant inulin hydrolysis activity, and the produced main product from inulin was determined as DFA III by nuclear magnetic resonance analysis. The molecular mass of the purified protein was calculated to be 43 and 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively, suggesting the native enzyme might be a homotrimer. The recombinant enzyme showed maximal activity as 2391 units/mg at pH 6.5 and 55 °C. It displayed the highest thermostability among previously reported IFTases (DFA III forming) and was stable up to 80 °C for 4 h of incubation. The smallest substrate was determined as nystose. The conversion ratio of inulin to DFA III reached 81% when 100 g/L inulin was catalyzed by 80 nM recombinant enzyme for 20 min at pH 6.5 and 55 °C. All of these data indicated that the IFTase (DFA III forming) from Arthrobacter sp. 161MFSha2.1 had great potential for industrial DFA III production.

  16. Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK71 and its application in raw starch hydrolysis for bioethanol production.

    Science.gov (United States)

    Yu, Hui-Ying; Li, Xin

    2014-01-01

    A halophilic bacterium Halolactibacillus sp. SK71 producing extracellular glucoamylase was isolated from saline soil of Yuncheng Salt Lake, China. Enzyme production was strongly influenced by the salinity of growth medium with maximum in the presence of 5% NaCl. The glucoamylase was purified to homogeneity with a molecular mass of 78.5 kDa. It showed broad substrate specificity and raw starch hydrolyzing activity. Analysis of hydrolysis products from soluble starch by thin-layer chromatography revealed that glucose was the sole end-product, indicating the enzyme was a true glucoamylase. Optimal enzyme activity was found to be at 70°C, pH 8.0, and 7.5% NaCl. In addition, it was highly active and stable over broad ranges of temperature (0-100°C), pH (7.0-12.0), and NaCl concentration (0-20%), showing excellent thermostable, alkali stable, and halotolerant properties. Furthermore, it displayed high stability in the presence of hydrophobic organic solvents. The purified glucoamylase was applied for raw corn starch hydrolysis and subsequent bioethanol production using Saccharomyces cerevisiae. The yield in terms of grams of ethanol produced per gram of sugar consumed was 0.365 g/g, with 71.6% of theoretical yield from raw corn starch. This study demonstrated the feasibility of using enzymes from halophiles for further application in bioenergy production. © 2014 American Institute of Chemical Engineers.

  17. Microlaser-based displays

    Science.gov (United States)

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.

    1997-07-01

    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  18. Gene cloning, expression, and characterization of a new carboxylesterase from Serratia sp. SES-01: comparison with Escherichia coli BioHe enzyme.

    Science.gov (United States)

    Kwon, Min-A; Kim, Hyun Suk; Oh, Joon Young; Song, Bong Keun; Song, Jae Kwang

    2009-02-01

    The carboxylesterase-encoding gene (bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity (91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures (20-40 degrees ) and alkaline pHs (7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.

  19. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan.

    Science.gov (United States)

    Fujita, M; Nomura, K; Hong, K; Ito, Y; Asada, A; Nishimuro, S

    1993-12-30

    A strong fibrinolytic enzyme (nattokinase) was purified from the vegetable cheese natto. Nattokinase was extracted from natto with saline and isolated by sequential use of hydrophobic chromatography on Butyl-Toyopearl, ion-exchange chromatography on CM-Toyopearl, and gel-filtration on Sephadex G-50. The isolated protein gave a single sharp band on SDS-PAGE either before or after reduction. The sequence, as determined by automated Edman degradation of the uncleaved molecule and its enzymatically derived peptide, consisted of a total 275 amino acid residues (M.W = 27,728) and exhibited a high homology with the subtilisins. The purified nattokinase digested not only fibrin but also several synthetic substrates. Among the synthetic substrates, the most sensitive substrate was Suc-Ala-Ala-Pro-Phe-pNA for subtilisin. PMSF inhibited both the fibrinolytic activity and the amidolytic activity. The results indicate that nattokinase is a subtilisin-like serine protease.

  20. Oxidative Stability of Dispersions Prepared from Purified Marine Phospholipid and the Role of α-Tocopherol

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    , respectively, during 32 days of storage at 2 °C. Nonenzymatic browning was investigated through measurement of Strecker aldehydes, color changes, and pyrrole content. Dispersions containing α-tocopherol or higher levels of purified marine PL showed a lower increment of volatiles after 32 days storage......The objective of this study was to investigate the oxidative stability of dispersions prepared from different levels of purified marine phospholipid (PL) obtained by acetone precipitation, with particular focus on the interaction between α-tocopherol and PL in dispersions. This also included...... the investigation of nonenzymatic browning in purified marine PL dispersions. Dispersions were prepared by high-pressure homogenizer. The oxidative and hydrolytic stabilities of dispersions were investigated by determination of hydroperoxides, secondary volatile oxidation products, and free fatty acids...

  1. A Novel Aqueous Micellar Two-Phase System Composed of Surfactant and Sorbitol for Purification of Pectinase Enzyme from Psidium guajava and Recycling Phase Components

    Science.gov (United States)

    Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme. PMID:25756051

  2. A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.

  3. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-01-01

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  4. Purification and characterization of endo-xylanases from Aspergillus Niger. III. An enzyme of PL 365

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, R.A.; Frederick, M.M.; Frederick, J.R.; Reilly, P.J.

    1985-04-01

    An endo-xylanase (1,4-..beta..-D-xylan xylanohydrolase, EC 3.2.1.8) from Aspergillus niger was purified to homogeneity by chromatography with Ultrogel AcA 54, SP-Sephadex C-25 at pH 4.5, DEAE-Sephadex A-25 at pH 5.4, Sephadex G-50, and DEAE-Sephadex A-25 at pH 5.15. The enzyme was active on soluble xylan, on insoluble xylan only after arabinosyl-initiated branch points were removed, and on xylooligosaccharides longer than xylotetraose. There was slight activity on carboxymethyl-cellulose, arabinogalactan, glucomannan, and p-nitrophenyl-..beta..-D- glucopyranoside. The main products of the hydrolysis of soluble and insoluble xylan were oligosaccharides of intermediate length, especially the tri- and pentasaccharides. The isolectric point of the enzyme was 3.65. It had a molecular weight of 2.8 x 10/sup 4/ by SDS-gel electrophoresis, and was high in acidic amino acids but low in those containing sulfur. Highest activity in a 20-min assay at pH 5 was between 40 and 45 degrees C, with an activation energy up to 40 degrees C of 11.1 kJ/mol. The optimum pH for activity was at 5.0. The enzyme was strongly activated by Ca/sup 2 +/. 15 references.

  5. Handbook of display technology

    CERN Document Server

    Castellano, Joseph A

    1992-01-01

    This book presents a comprehensive review of technical and commercial aspects of display technology. It provides design engineers with the information needed to select proper technology for new products. The book focuses on flat, thin displays such as light-emitting diodes, plasma display panels, and liquid crystal displays, but it also includes material on cathode ray tubes. Displays include a large number of products from televisions, auto dashboards, radios, and household appliances, to gasoline pumps, heart monitors, microwave ovens, and more.For more information on display tech

  6. An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification.

    Science.gov (United States)

    Gao, Feng; Courjean, Olivier; Mano, Nicolas

    2009-10-15

    A key objective in any bioelectrochemical systems is to improve the current densities and mass transport limitation. Most of the work is focused on increasing the specific surface of the electrodes or improving the electron transfer between enzymes and electrodes. However, nothing is said about the comparison of purified and non-purified enzyme and their effects on the biosensor efficiency. To illustrate the effect of the enzyme purity, we studied the widely used commercial Glucose Oxidase (GOx) from Aspergillus niger that we are using in our miniature membrane-less biofuel cell. Our results indicate that even if additional compounds contained in the lyophilized enzyme powder do not interfere with its intrinsic catalytic properties, they could prevent a good electron transfer between the enzyme and the electrode surface. By introducing a purified glucose oxidase into a bioelectrocatalyst immobilized on an electrode surface, we show that we can increase the interaction between the enzyme and the redox polymer, forming a better homogenous, leather like gel. At 5mM glucose concentration and under oxygen atmosphere, the current is three-fold higher when using a purified enzyme than it is when using a non-purified enzyme. Built with this novel anode, we showed that a miniature implantable membrane-less glucose-O(2) biofuel cell could produce, under air, twice the power density that is usually obtained when using a non-purified GOx.

  7. Air purification by cementitious materials: Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  8. Air purification by cementitious materials : Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  9. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  10. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR).

    Science.gov (United States)

    Yonggang, Tan; Yiming, Meng; Heying, Zhang; Cheng, Sun; Qiushi, Wang; Xianghong, Yang; Wei, Zheng; Huawei, Zhou; Shan, Fengping

    2012-10-01

    The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.

  11. Liquid crystal display

    International Nuclear Information System (INIS)

    Takami, K.

    1981-01-01

    An improved liquid crystal display device is described which can display letters, numerals and other necessary patterns in the night time using a minimized amount of radioactive material. To achieve this a self-luminous light source is placed in a limited region corresponding to a specific display area. (U.K.)

  12. INFORMATION DISPLAY: CONSIDERATIONS FOR DESIGNING COMPUTER-BASED DISPLAY SYSTEMS

    International Nuclear Information System (INIS)

    O'HARA, J.M.; PIRUS, D.; BELTRATCCHI, L.

    2004-01-01

    This paper discussed the presentation of information in computer-based control rooms. Issues associated with the typical displays currently in use are discussed. It is concluded that these displays should be augmented with new displays designed to better meet the information needs of plant personnel and to minimize the need for interface management tasks (the activities personnel have to do to access and organize the information they need). Several approaches to information design are discussed, specifically addressing: (1) monitoring, detection, and situation assessment; (2) routine task performance; and (3) teamwork, crew coordination, collaborative work

  13. [Purification, characterization and partial primary structure analysis of rutin-degrading enzyme in tartary buckwheat seeds].

    Science.gov (United States)

    Zhang, Yuwei; Li, Jie; Yuan, Yong; Gu, Jijuan; Chen, Peng

    2017-05-25

    Rutin-degrading enzymes (RDE) can degrade rutin into poorly water soluble compound, quercetin, and cause the bitter taste in tartary buckwheat. In the present study RDE from Yu 6-21 tartary buckwheat seeds was purified by ammonium sulphate precipitation, followed by hydrophobic interaction chromatography on Phenyl Sepharose CL-4B, ion exchange chromatography on CM-Cellulose and gel filtration chromatography on Sephadex G-150. Purified RDE showed single band with molecular weight of 66 kDa on SDS-PAGE. The optimum pH and temperature of RDE were 5.0 and 50 ℃ respectively. The Km was 0.27 mmol/L, and the Vmax was 39.68 U/mg. The RDE activity could be inhibited by Cu²⁺, Zn²⁺, Mn²⁺ and EDTA, and showed tolerance to 50% methanol (V/V). The N terminal sequence (TVSRSSFPDGFLFGL) was obtained by Edman degradation method and 15 internal peptide sequences were determined by MALDI-TOF-MS (matrix-assisted laser desorption ionization time of flight mass spectrometry). These results established the foundations for identification of the candidate gene of RDE via transcriptome data and further studying RDE biological function.

  14. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.

    Science.gov (United States)

    Sun, Fubao Fuebiol; Hong, Jiapeng; Hu, Jinguang; Saddler, Jack N; Fang, Xu; Zhang, Zhenyu; Shen, Song

    2015-11-01

    The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Quantitation of pulmonary surfactant protein SP-B in the absence or presence of phospholipids by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Oviedo, J M; Valiño, F; Plasencia, I

    2001-01-01

    We have developed an enzyme-linked immunosorbent assay (ELISA) that uses polyclonal or monoclonal anti-surfactant protein SP-B antibodies to quantitate purified SP-B in chloroform/methanol and in chloroform/methanol extracts of whole pulmonary surfactant at nanogram levels. This method has been...... used to explore the effect of the presence of different phospholipids on the immunoreactivity of SP-B. Both polyclonal and monoclonal antibodies produced reproducible ELISA calibration curves for methanolic SP-B solutions with protein concentrations in the range of 20-1000 ng/mL. At these protein...

  16. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  17. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2017-09-01

    Full Text Available Multifunctional factor progranulin (PGRN plays an important role in lysosomes, and its mutations and insufficiency are associated with lysosomal storage diseases, including neuronal ceroid lipofuscinosis and Gaucher disease (GD. The first breakthrough in understanding the molecular mechanisms of PGRN as regulator of lysosomal storage diseases came unexpectedly while investigating the role of PGRN in inflammation. Challenged PGRN null mice displayed typical features of GD. In addition, GRN gene variants were identified in GD patients and the serum levels of PGRN were significantly lower in GD patients. PGRN directly binds to and functions as a chaperone of the lysosomal enzyme β-glucocerebrosidase (GCaase, whose mutations cause GD. In addition, its C-terminus containing granulin E domain, termed Pcgin (PGRN C-terminus for GCase Interaction, is required for the association between PGRN and GCase. The concept that PGRN acts as a chaperone of lysosomal enzymes was further supported and extended by a recent article showing that PGRN acts as a chaperone molecule of lysosomal enzyme cathepsin D (CSTD, and the association between PGRN and CSTD is also mediated by PGRN's C-terminal granulin E domain. Collectively, these reports suggest that PGRN may act as a shared chaperone and regulates multiple lysosomal enzymes.

  18. Aquifex aeolicus membrane hydrogenase for hydrogen biooxidation: Role of lipids and physiological partners in enzyme stability and activity

    Energy Technology Data Exchange (ETDEWEB)

    Infossi, Pascale; Lojou, Elisabeth; Giudici-Orticoni, Marie-Therese [Unite de Bioenergetique et Ingenierie des Proteines, UPR 9036, Institut de Microbiologie de la Mediterranee - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 (France); Chauvin, Jean-Paul [Institut de Biologie du developpement de Marseille Luminy, UMR 6216, Parc Scientifique de Luminy, 163 Avenue de Luminy, BP 907, 13009 Marseille (France); Herbette, Gaetan [Spectropole FI 1739, Aix-Marseille Universite case 511, Faculte de St Jerome Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France); Brugna, Myriam [Unite de Bioenergetique et Ingenierie des Proteines, UPR 9036, Institut de Microbiologie de la Mediterranee - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 (France); Universite de Provence, 3 Place Victor Hugo, 13331 Marseille Cedex 03 (France)

    2010-10-15

    Hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus is a good candidate for biotechnological devices thanks to its ability to oxidize hydrogen at high temperature, even in the presence of oxygen and CO. In order to enhance the enzyme stability and the catalytic efficiency, we investigated the hydrogen oxidation process with hydrogenase I embedded in a physiological-like environment. Hydrogenase I partners in the metabolic chain, namely membrane quinone and cytochrome b, were purified and fully characterized. The complex hydrogenase I-cytochrome b was inserted into liposomes. Surface Plasmon Resonance revealed that quinone took part in the stabilization of the complex. By use of molecular modelization and electrochemistry analysis, enzyme stability has been demonstrated to be stronger and enzymatic efficiency to be five times higher when hydrogenase is embedded into the liposomes. This result raises the possibility of using hydrogenases as biocatalysts in fuel cells. (author)

  19. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Cindy [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Mueller, Uwe [Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Sun, Lianli [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Zhao, Yu [Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China)

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  20. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    International Nuclear Information System (INIS)

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222 1 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å

  1. Effect of degradation of xylan constituent in Mitsumata (Edgeworthia papyrifera Sieb. et Zucc. ) bast on its pulping by pectinolytic enzymes form Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroyuki; Matsuo, Ryukichi; Kobayashi, Yoshinari

    1988-01-01

    Pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by the crude enzyme from a bacterium Erwinia carotovora FERM P-7576, was more effective by a stepwise treatment at pH 6.5 and subsequently at pH 9.5 and eluted greater amount of xylose constituent than a constant pH treatment at pH 9.5 where only the maceration enzymes, endo-pectate lyase and endo-pectin lyase, among the crude enzyme are operative. The crude enzymes obtained from the cultivation of this bacterial strain on mitsumata bast fibers were more effective for the stepwise pH pulping method than those from the cultivation on soluble pectin. Xylanase activity in the mitsumata bast-induced enzyme at pH 6.5 was twice as high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, however, independent on the inducing materials. Purified exo-type xylanase prepared from the crude enzyme acted comparably to the entire crude enzyme in the first step of the combination pulping, but the xylanase per se showed no maceration activity. These results suggests that the degradation of xylan constituent within the bast fibers effects the acceleration of the subsequent enzymatic pulping by the pectinolytic maceration enzymes. The maceration mechanism involving xylan degradation was also discussed.

  2. Construction of Potent Recombinant Strain Through Intergeneric Protoplast Fusion in Endophytic Fungi for Anticancerous Enzymes Production Using Rice Straw.

    Science.gov (United States)

    El-Gendy, Mervat Morsy Abbas Ahmed; Al-Zahrani, Salha Hassan Mastour; El-Bondkly, Ahmed Mohamed Ahmed

    2017-09-01

    Among all fungal endophytes isolates derived from different ethno-medical plants, the hyper-yield L-asparaginase and L-glutaminase wild strains Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20 using rice straw under solid-state fermentation (SSF) were selected. The selected strains were used as parents for the intergeneric protoplast fusion program to construct recombinant strain for prompt improvement production of these enzymes in one recombinant strain. Among 21 fusants obtained, the recombinant strain AYA 20-1, with 2.11-fold and 2.58-fold increase in L-asparaginase and L-glutaminase activities more than the parental isolates Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20, respectively, was achieved using rice straw under SSF. Both therapeutic enzymes L-asparaginase and L-glutaminase were purified and characterized from the culture supernatant of the recombinant AYA 20-1 strain with molecular weights of 50.6 and 83.2 kDa, respectively. Both enzymes were not metalloenzymes. Whereas thiol group blocking reagents such as p-chloromercurybenzoate and iodoacetamide totally inhibited L-asparaginase activity, which refer to sulfhydryl groups and cysteine residues involved in its catalytic activity, they have no effect toward L-glutaminase activity. Interestingly, potent anticancer, antioxidant, and antimicrobial activities were detected for both enzymes.

  3. High-level water purifying technology. Kodo josui shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H; Tsukiashi, K [Meidensha Corp., Tokyo (Japan)

    1993-07-01

    Research and development have been carried out on a high-level water purifying system using ozone and activated charcoals to supply drinking water free of carcinogenic matters and odors. This system comprises a system to utilize ozone by using silent discharge and oxygen enriching device, and a living organism/activated charcoal treatment system. The latter system utilizes living organisms deposited on activated charcoal surfaces to remove polluting substances including ammonia. The treatment experimenting equipment comprises an ozone generating system, an ozone treating column, an activated charcoal treating column, an ozone/activated charcoal control device, and a water amount and quality measuring system. An experiment was carried out using an experimental plant with a capacity of 20 m[sup 3]/day on water taken from the sedimentation process at an actual water purifying plant. As a result, trihalomethane formation potential was removed at about 40% in the ozone treatment, and at 70% in the whole treatment combining the ozone and living organism/activated charcoal treatments. For parameterization of palatability of water, a method is being studied that utilizes nuclear magnetic resonance to investigate degrees of water cluster. The method is regarded promising. 1 ref., 4 figs.

  4. Low-temperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18.

    Science.gov (United States)

    You, Jia; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2016-02-01

    A low-temperature-active and salt-tolerant β-mannanase produced by a novel mannanase-producer, Enterobacter sp. strain N18, was isolated, purified and then evaluated for its potential application as a gel-breaker in relation to viscosity reduction of guar-based hydraulic fracturing fluids used in oil field. The enzyme could lower the viscosity of guar gum solution by more than 95% within 10 min. The purified β-mannanase with molecular mass of 90 kDa displayed high activity in a broad range of pH and temperature: more than 70% of activity was retained in the pH range of 3.0-8.0 with the optimal pH 7.5, about 50% activity at 20°C with the optimal temperature 50°C. Furthermore, the enzyme retained >70% activity in the presence of 0.5-4.0 M NaCl. These properties implied that the enzyme from strain N18 had potential for serving as a gel-breaker for low temperature oil wells and other industrial fields, where chemical gel breakers were inactive due to low temperature. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Biological and Histological Studies of Purified Product from Streptomyces janthinus M7 Metabolites

    Directory of Open Access Journals (Sweden)

    Tawfik Zahira S.

    2015-02-01

    Full Text Available Fifteen clinical samples were taken out from patients suffering cancer, these patients being under the treatment with radio- and/or chemotherapy. The samples were used for the isolation of bacterial cells surrounding tumor; the samples were collected from Center of Cancer Therapy, Ain Shams University, Cairo, Egypt. The clinical bacterial isolates were purified and identified according to Bergey's manual of determinative bacteriology ninth edition (1994. The bacterial isolates were found to be Klebsiella oxytoca m1; Enterobacter cancerogenus m2; P. aeruginosa m3; Citrobacter diversus m4; Enterobacter agglomerans m5; Klebsiella oxytoca m6; Enterobacter dissolvens m7; Serratia fonticola m8; Escherichia coli m9; Citrobacter freundii m10; Staphylococcus aureus m11; Escherichia coli m12; P. aeruginosa m13; Staphylococcus aureus m14; and Bacillus cereus m15. In the present study both primary and secondary screening methods were used to screen the antibacterial activity of St. janthinus M7 against fifteen clinical bacterial isolates. The St. janthinus M7 showed an increase in antibacterial activity against all the tested human bacterial pathogens. In this study Gamma irradiation at dose levels (0.5 and 1.5 kGy was used for the enhancement of the antibacterial activity of Streptomyces strain against the clinical isolates. Several commercial antibiotic discs (Doxorubicin, Augmentin, Norfloxacin, Ofloxacin, Oxacillin, and Cefazolin were used for comparing their antimicrobial activity with purified product. The results declared a significant increase in the antibacterial activity in most cases. The physiochemical properties of the purified product were carried out for determination of Rf, empirical formula, M.W, and chemical structure of product and then analyzed by thin layer chromatography, elemental analysis, UV, Mass, and NMR. The result exhibited brown color, one spot, Rf (0.76, M.W (473, while it recorded 270 nm in UV region and the calculated

  6. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  7. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    Science.gov (United States)

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 76 FR 3159 - Purified Carboxymethylcellulose From Finland, Mexico, Netherlands, and Sweden

    Science.gov (United States)

    2011-01-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1084-1087 (Review)] Purified Carboxymethylcellulose From Finland, Mexico, Netherlands, and Sweden AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject reviews. DATES: Effective Date: January 7, 2011. FOR FURTHER...

  9. Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38

    International Nuclear Information System (INIS)

    Aksoy, Pinar; Escande, Carlos; White, Thomas A.; Thompson, Michael; Soares, Sandra; Benech, Juan Claudio; Chini, Eduardo N.

    2006-01-01

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1 enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes

  10. Purification and characterization of rat liver minoxidil sulphotransferase.

    Science.gov (United States)

    Hirshey, S J; Falany, C N

    1990-01-01

    Minoxidil (Mx), a pyrimidine N-oxide, is used therapeutically as an antihypertensive agent and to induce hair growth in patients with male pattern baldness. Mx NO-sulphate has been implicated as the agent active in producing these effects. This paper describes the purification of a unique sulphotransferase (ST) from rat liver cytosol that is capable of catalysing the sulphation of Mx. By using DEAE-Sepharose CL-6B chromatography, hydroxyapatite chromatography and ATP-agarose affinity chromatography, Mx-ST activity was purified 240-fold compared with the activity in cytosol. The purified enzyme was also capable of sulphating p-nitrophenol (PNP) at low concentrations (less than 10 microM). Mx-ST was purified to homogeneity, as evaluated by SDS/PAGE and reverse-phase h.p.l.c. The active form of the enzyme had a molecular mass of 66,000-68,000 Da as estimated by gel exclusion chromatography and a subunit molecular mass of 35,000 Da. The apparent Km values for Mx, 3'-phosphoadenosine 5'-phosphosulphate and PNP were 625 microM, 5.0 microM and 0.5 microM respectively. However, PNP displayed potent substrate inhibition at concentrations above 1.2 microM. Antibodies raised in rabbits to the pure enzyme detected a single band in rat liver cytosol with a subunit molecular mass of 35,000 Da, as determined by immunoblotting. The anti-(rat Mx-ST) antibodies also reacted with the phenol-sulphating form of human liver phenol sulphotransferase, suggesting some structural similarity between these proteins. Images Fig. 5. Fig. 6. Fig. 7. PMID:2241904

  11. Liquid Crystal Airborne Display

    Science.gov (United States)

    1977-08-01

    Cum.nings, J. P., et al., Properties and Limitations oe Liquid Crystals for Aircraft Displays, Honeywell Corporate Researc ."I Center, Final Report HR-72...basic module could be used to build displays for both the commercial and military! 157- marhecs, and so would establi sh a broad and sizable market ... market for the display becomes a reality; therein lies, f TABLE 16 THE COURSE OF FUTURE DISPLAY DEVELOPMENT Today 1976-77 1980 1985 Display Size 2" 1 3.2

  12. Conservation of the egg envelope digestion mechanism of hatching enzyme in euteleostean fishes.

    Science.gov (United States)

    Kawaguchi, Mari; Yasumasu, Shigeki; Shimizu, Akio; Sano, Kaori; Iuchi, Ichiro; Nishida, Mutsumi

    2010-12-01

    We purified two hatching enzymes, namely high choriolytic enzyme (HCE; EC 3.4.24.67) and low choriolytic enzyme (LCE; EC 3.4.24.66), from the hatching liquid of Fundulus heteroclitus, which were named Fundulus HCE (FHCE) and Fundulus LCE (FLCE). FHCE swelled the inner layer of egg envelope, and FLCE completely digested the FHCE-swollen envelope. In addition, we cloned three Fundulus cDNAs orthologous to cDNAs for the medaka precursors of egg envelope subunit proteins (i.e. choriogenins H, H minor and L) from the female liver. Cleavage sites of FHCE and FLCE on egg envelope subunit proteins were determined by comparing the N-terminal amino acid sequences of digests with the sequences deduced from the cDNAs for egg envelope subunit proteins. FHCE and FLCE cleaved different sites of the subunit proteins. FHCE efficiently cleaved the Pro-X-Y repeat regions into tripeptides to dodecapeptides to swell the envelope, whereas FLCE cleaved the inside of the zona pellucida domain, the core structure of egg envelope subunit protein, to completely digest the FHCE-swollen envelope. A comparison showed that the positions of hatching enzyme cleavage sites on egg envelope subunit proteins were strictly conserved between Fundulus and medaka. Finally, we extended such a comparison to three other euteleosts (i.e. three-spined stickleback, spotted halibut and rainbow trout) and found that the egg envelope digestion mechanism was well conserved among them. During evolution, the egg envelope digestion by HCE and LCE orthologs was established in the lineage of euteleosts, and the mechanism is suggested to be conserved. © 2010 The Authors Journal compilation © 2010 FEBS.

  13. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production.

    Science.gov (United States)

    Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir

    2009-05-01

    L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.

  14. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  15. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  16. The regulation and catalytic mechanism of the NADP-malic enzyme from tobacco leaves

    Directory of Open Access Journals (Sweden)

    VERONIKA DOUBNEROVÁ

    2009-08-01

    Full Text Available The non-photosynthetic NADP-malic enzyme EC 1.1.1.40 (NADP-ME, which catalyzes the oxidative decarboxylation of L-malate and NADP+ to produce pyruvate and NADPH, respectively, and which could be involved in plant defense responses, was isolated from Nicotiana tabacum L. leaves. The mechanism of the enzyme reaction was studied by the initial rate method and was found to be an ordered sequential one. Regulation possibilities of purified cytosolic NADP-ME by cell metabolites were tested. Intermediates of the citric acid cycle (a-ketoglutarate, succinate, fumarate, metabolites of glycolysis (pyruvate, phosphoenolpyruvate, glucose-6-phosphate, compounds connected with lipogenesis (coenzyme A, acetyl-CoA, palmitoyl-CoA and some amino acids (glutamate, glutamine, aspartate did not significantly affect the NADP-ME activity from tobacco leaves. In contrast, macroergic compounds (GTP, ATP and ADP were strong inhibitors of NADP-ME; the type of inhibition and the inhibition constants were determined in the presence of the most effective cofactors (Mn2+ or Mg2+, required by NADP-ME. Predominantly non-competitive type of inhibitions of NADP-ME with respect to NADP+ and mixed type to L-malate were found.

  17. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability, wher....... This is compatible with a negative modulating effect of the less-stable alpha-T171 ETF variant in this group of VLCAD patients that harbor missense mutations in at least one allele and therefore potentially display residual levels of VLCAD enzyme activity. Udgivelsesdato: 1999-Jun...

  18. Characterization of oil-palm trunk residue degradation enzymes derived from the isolated fungus, Penicillium rolfsii c3-2(1) IBRL.

    Science.gov (United States)

    Lee, Kok Chang; Arai, Takamitsu; Ibrahim, Darah; Deng, Lan; Murata, Yoshinori; Mori, Yutaka; Kosugi, Akihiko

    2016-01-01

    This study characterizes crude enzymes derived from Penicillium rolfsii c3-2(1) IBRL, a mesophilic fungus isolated from the local soil of Malaysia. Prior to enzyme activity evaluation, P. rolfsii c3-2(1) IBRL was inoculated into a broth medium containing oil-palm trunk residues for the preparation of crude enzymes. Oil-palm trunk residues were optimally hydrolysed at pH5.0 and 50°C. P. rolfsii c3-2(1) IBRL-derived crude enzymes displayed higher thermal stability compared with the commercial enzymes, Celluclast 1.5 L and Acellerase 1500. Moreover, the hydrolysing activities of the P. rolfsii c3-2(1) IBRL-derived crude enzymes (xylan, arabinan, and laminarin) were superior compared to that of Celluclast 1.5 L and Acellerase 1500, and exhibit 2- to 3-fold and 3- to 4-fold higher oil-palm trunk residues-hydrolysing specific activity, respectively. This higher hydrolysis efficiency may be attributed to the weak 'lignin-binding' ability of the P. rolfsii c3-2(1) IBRL-derived enzymes compared to the commercial enzymes.

  19. Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    2016-10-01

    Full Text Available Dengue virus (DENV is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus. While several live-attenuated tetravalent dengue virus vaccines display partial efficacy, it has been challenging to induce balanced protective immunity to all 4 serotypes. Instead of using whole-virus formulations, we are exploring the potentials for a particulate subunit vaccine, based on DENV E-protein displayed on nanoparticles that have been precisely molded using Particle Replication in Non-wetting Template (PRINT technology. Here we describe immunization studies with a DENV2-nanoparticle vaccine candidate. The ectodomain of DENV2-E protein was expressed as a secreted recombinant protein (sRecE, purified and adsorbed to poly (lactic-co-glycolic acid (PLGA nanoparticles of different sizes and shape. We show that PRINT nanoparticle adsorbed sRecE without any adjuvant induces higher IgG titers and a more potent DENV2-specific neutralizing antibody response compared to the soluble sRecE protein alone. Antigen trafficking indicate that PRINT nanoparticle display of sRecE prolongs the bio-availability of the antigen in the draining lymph nodes by creating an antigen depot. Our results demonstrate that PRINT nanoparticles are a promising platform for delivering subunit vaccines against flaviviruses such as dengue and Zika.

  20. JAVA Stereo Display Toolkit

    Science.gov (United States)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.