WorldWideScience

Sample records for purified envelope glycoprotein

  1. Solubilization of glycoproteins of envelope viruses by detergents

    International Nuclear Information System (INIS)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.

    1986-01-01

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-β-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines

  2. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  3. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    The E glycoprotein of dengue virus is responsible for the viral binding to the receptor. The crystal structure of envelope glycoprotein has already been determined. However, where the well-defined Bcell and T-cell epitopes are located is still a question. Because of the large variations among the four dengue genotypes, it is ...

  4. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Directory of Open Access Journals (Sweden)

    Kamel El Omari

    2013-01-01

    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  5. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Science.gov (United States)

    El Omari, Kamel; Iourin, Oleg; Harlos, Karl; Grimes, Jonathan M.; Stuart, David I.

    2013-01-01

    Summary Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1) at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed. PMID:23273918

  6. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  7. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  8. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  9. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope.

    Directory of Open Access Journals (Sweden)

    Nathalie Callens

    2016-03-01

    Full Text Available The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV, a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.

  10. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2014-12-01

    Full Text Available The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  11. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  12. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env in an adjuvant containing monophosphoryl lipid A (MPL and QS21 (AS02A. Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4, gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L, also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D or monomer (gp140-L(M. Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN human monoclonal antibodies (mAbs similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.

  13. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    DEFF Research Database (Denmark)

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C

    2012-01-01

    , and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human m......Abs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81......bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies...

  14. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... residues. The mammalian C-type lectin bovine conglutinin was examined for its ability to interact with recombinant gp160 (rgp160) produced in vaccinia virus-infected BHK21 cells. Specific binding of conglutinin to rgp160 was demonstrated by ELISA. The interaction of bovine conglutinin with rgp160...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  15. Determining the Structure of an Unliganded and Fully Glycosylated SIV gp120 Envelope Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bing; Vogan, Erik M.; Gong, Haiyun; Skehel, John J.; Wiley, Don C.; Harrison, Stephen C. (Harvard-Med); (NIMR)

    2010-07-13

    HIV/SIV envelope glycoproteins mediate the first steps in viral infection. They are trimers of a membrane-anchored polypeptide chain, cleaved into two fragments known as gp120 and gp41. The structure of HIV gp120 bound with receptor (CD4) has been known for some time. We have now determined the structure of a fully glycosylated SIV gp120 envelope glycoprotein in an unliganded conformation by X-ray crystallography at 4.0 {angstrom} resolution. We describe here our experimental and computational approaches, which may be relevant to other resolution-limited crystallographic problems. Key issues were attention to details of beam geometry mandated by small, weakly diffracting crystals, and choice of strategies for phase improvement, starting with two isomorphous derivatives and including multicrystal averaging. We validated the structure by analyzing composite omit maps, averaged among three distinct crystal lattices, and by calculating model-based, SeMet anomalous difference maps. There are at least four ordered sugars on many of the thirteen oligosaccharides.

  16. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    Science.gov (United States)

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  17. Determinants of foamy virus envelope glycoprotein mediated resistance to superinfection

    International Nuclear Information System (INIS)

    Berg, Angelika; Pietschmann, Thomas; Rethwilm, Axel; Lindemann, Dirk

    2003-01-01

    Little is known about the nature of foamy virus (FV) receptor molecules on target cells and their interaction with the viral glycoproteins. Similar to other viruses, cellular expression of the FV Env protein is sufficient to induce resistance to exogenous FV, a phenomenon called superinfection resistance (SIR). In this study we define determinants of the FV Env protein essential for mediating SIR. FV Env requires the extracellular domains of the SU and the TM subunits as well as membrane anchorage, efficient cell surface transport, and most probably correct subunit processing. This is in contrast to murine leukemia virus where secreted proteins comprising the receptor-binding domain in SU are sufficient to induce SIR. Furthermore, we demonstrate that cellular expression of the prototype FV envelope proteins induces SIR against pseudotypes with glycoproteins of other FV species, including of simian, feline, bovine, and equine origin. This implies that all of them use the same receptor molecules for viral entry

  18. Efficacy of soluble glycoprotein fraction from Allium sativum purified by size exclusion chromatography on murine Schistosomiasis mansoni.

    Science.gov (United States)

    Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M

    2017-06-01

    In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Homologous and heterologous antibody responses of mice immunized with purified feline herpesvirus type 1 and canine herpesvirus glycoproteins.

    Science.gov (United States)

    Limcumpao, J A; Horimoto, T; Xuan, X N; Tohya, Y; Azetaka, M; Takahashi, E; Mikami, T

    1991-06-01

    The three glycoproteins each of feline herpesvirus type 1 (FHV-1) and canine herpesvirus (CHV) were purified by affinity chromatography using glycoprotein-specific monoclonal antibodies and used individually or in combination in immunizing mice to determine their relative immunogenicity. All the glycoproteins induced detectable virus neutralizing antibodies to the homologous virus but FHV-1 gp143/108 and its cross-reacting counterpart, CHV gp145/112, elicited the highest titers not only to the homologous virus but to the heterologous virus as well. The production of ELISA antibodies after glycoprotein immunization was variable, while hemagglutination-inhibiting antibodies were produced by only 1 out of 10 FHV-1 gp60-inoculated mice. In general, the antibody titers induced by CHV glycoproteins were lower than those by FHV-1 glycoproteins. These results indicate that these glycoproteins may be useful as subunit vaccines against FHV-1 and CHV infections.

  20. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Directory of Open Access Journals (Sweden)

    Se Chang Park

    2013-01-01

    Full Text Available Cyprinid herpes virus 3 (CyHV-3 diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio. Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116 of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116. In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.

  1. Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Science.gov (United States)

    Han, Jee Eun; Kim, Ji Hyung; Renault, Tristan; Choresca, Casiano; Shin, Sang Phil; Jun, Jin Woo; Park, Se Chang

    2013-01-01

    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies. PMID:23435236

  2. Enhanced Gene Transfer with Fusogenic Liposomes Containing Vesicular Stomatitis Virus G Glycoprotein

    Science.gov (United States)

    Abe, Akihiro; Miyanohara, Atsushi; Friedmann, Theodore

    1998-01-01

    Exposure of Lipofectin-DNA complexes to the partially purified G glycoprotein of the vesicular stomatitis virus envelope (VSV-G) results in loss of serum-mediated inhibition and in enhanced efficiency of gene transfer. Sucrose density gradient sedimentation analysis indicated that the VSV-G associates physically with the DNA-lipid complex to produce a VSV-G liposome. The ability to incorporate surrogate viral or cellular envelope components such as VSV-G into liposomes may allow more-efficient and possibly targeted gene delivery by lipofection, both in vitro and in vivo. PMID:9621082

  3. Envelope proteins of bovine herpesvirus 1: immunological and biochemical studies

    International Nuclear Information System (INIS)

    Rodriguez Roque, L.L.

    1986-01-01

    The authors studied immunological and biochemical properties of the bovid herpesvirus 1 (BHV-1) envelope proteins in order to understand the pathogenesis of BHV-1 infection and to provide basic information for the production of effective subunit vaccines against BHV-1. Ten glycoproteins MW 180, 150, 130, 115, 97, 77, 74, 64, 55, and 45 kilodaltons (K), and a single non-glycosylated 108 K protein were quantitatively removed from purified BHV-1 virions by detergent treatment. These glycoproteins were present on the virion envelope and on the surface of BHV-1 infected cells. The quantitative removal from virions by treatment with nonionic detergents and their presence on the surface of infected cells indicate that 180/97, 150/77, and 130/74/55 K are major components of the BHV-1 envelope and are also the targets of virus neutralizing humoral immune response. Envelope glycoproteins of herpes simplex type 1 (HSV-1) bind immunoglobulin by the Fc end and it is suggested this may increase pathogenicity of this virus. They searched for a similar function in BVH-1 by measuring the ability of BHV-1 infected cells and viral envelope proteins to bind radiolabelled rabbit and bovine IgG. Binding activity for rabbit IgG or bovine IgG-Fc could not be demonstrated by BHV-1 infected MDBK cells, whereas, MDBK cells infected with HSV-1 bound rabbit IgG and bovine IgG-Fc. None of the three major envelope proteins of BHV-1 bound to rabbit or bovine IgG. The results of this study indicate that BHV-1, unlike some other herpesviruses, lack Fc binding activity

  4. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity

    NARCIS (Netherlands)

    Isik, Gözde; van Montfort, Thijs; Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env

  5. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    Energy Technology Data Exchange (ETDEWEB)

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B. (Neuropharmacology Laboratory, National Institute on Drug Abuse, Baltimore, MD (USA))

    1991-05-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-(1-14C) glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection.

  6. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    International Nuclear Information System (INIS)

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B.

    1991-01-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-[1-14C] glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection

  7. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    Science.gov (United States)

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  8. Prediction of exposed domains of envelope glycoprotein in Indian HIV-1 isolates and experimental confirmation of their immunogenicity in humans

    Directory of Open Access Journals (Sweden)

    Mohabatkar H.

    2004-01-01

    Full Text Available We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB. Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET (subtype C were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

  9. Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Silvia A.; Paladino, Monica G. [Laboratorio de Virologia, CONICET-Universidad de Belgrano (UB), Villanueva 1324 (C1426BMJ), Buenos Aires (Argentina); Affranchino, Jose L., E-mail: jose.affranchino@comunidad.ub.edu.ar [Laboratorio de Virologia, CONICET-Universidad de Belgrano (UB), Villanueva 1324 (C1426BMJ), Buenos Aires (Argentina)

    2012-06-20

    The feline immunodeficiency virus (FIV) envelope glycoprotein (Env) possesses a short cytoplasmic domain of 53 amino acids containing four highly conserved cysteines at Env positions 804, 811, 815 and 848. Since palmitoylation of transmembrane proteins occurs at or near the membrane anchor, we investigated whether cysteines 804, 811 and 815 are acylated and analyzed the relevance of these residues for Env functions. Replacement of cysteines 804, 811 and 815 individually or in combination by serine residues resulted in Env glycoproteins that were efficiently expressed and processed. However, mutations C804S and C811S reduced Env fusogenicity by 93% and 84%, respectively, compared with wild-type Env. By contrast, mutant C815S exhibited a fusogenic capacity representing 50% of the wild-type value. Remarkably, the double mutation C804S/C811S abrogated both Env fusion activity and Env incorporation into virions. Finally, by means of Click chemistry assays we demonstrated that the four FIV Env cytoplasmic cysteines are palmitoylated.

  10. Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions

    International Nuclear Information System (INIS)

    González, Silvia A.; Paladino, Mónica G.; Affranchino, José L.

    2012-01-01

    The feline immunodeficiency virus (FIV) envelope glycoprotein (Env) possesses a short cytoplasmic domain of 53 amino acids containing four highly conserved cysteines at Env positions 804, 811, 815 and 848. Since palmitoylation of transmembrane proteins occurs at or near the membrane anchor, we investigated whether cysteines 804, 811 and 815 are acylated and analyzed the relevance of these residues for Env functions. Replacement of cysteines 804, 811 and 815 individually or in combination by serine residues resulted in Env glycoproteins that were efficiently expressed and processed. However, mutations C804S and C811S reduced Env fusogenicity by 93% and 84%, respectively, compared with wild-type Env. By contrast, mutant C815S exhibited a fusogenic capacity representing 50% of the wild-type value. Remarkably, the double mutation C804S/C811S abrogated both Env fusion activity and Env incorporation into virions. Finally, by means of Click chemistry assays we demonstrated that the four FIV Env cytoplasmic cysteines are palmitoylated.

  11. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  12. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    Science.gov (United States)

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is

  13. Co-assembly of viral envelope glycoproteins regulates their polarized sorting in neurons.

    Directory of Open Access Journals (Sweden)

    Rafael Mattera

    2014-05-01

    Full Text Available Newly synthesized envelope glycoproteins of neuroinvasive viruses can be sorted in a polarized manner to the somatodendritic and/or axonal domains of neurons. Although critical for transneuronal spread of viruses, the molecular determinants and interregulation of this process are largely unknown. We studied the polarized sorting of the attachment (NiV-G and fusion (NiV-F glycoproteins of Nipah virus (NiV, a paramyxovirus that causes fatal human encephalitis, in rat hippocampal neurons. When expressed individually, NiV-G exhibited a non-polarized distribution, whereas NiV-F was specifically sorted to the somatodendritic domain. Polarized sorting of NiV-F was dependent on interaction of tyrosine-based signals in its cytosolic tail with the clathrin adaptor complex AP-1. Co-expression of NiV-G with NiV-F abolished somatodendritic sorting of NiV-F due to incorporation of NiV-G•NiV-F complexes into axonal transport carriers. We propose that faster biosynthetic transport of unassembled NiV-F allows for its proteolytic activation in the somatodendritic domain prior to association with NiV-G and axonal delivery of NiV-G•NiV-F complexes. Our study reveals how interactions of viral glycoproteins with the host's transport machinery and between themselves regulate their polarized sorting in neurons.

  14. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Sanders, Rogier W.; Vesanen, Mika; Schuelke, Norbert; Master, Aditi; Schiffner, Linnea; Kalyanaraman, Roopa; Paluch, Maciej; Berkhout, Ben; Maddon, Paul J.; Olson, William C.; Lu, Min; Moore, John P.

    2002-01-01

    The envelope glycoprotein (Env) complex of human immunodeficiency virus type I has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41

  15. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  16. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  17. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    José L. Affranchino

    2014-01-01

    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  18. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Alexander W. Tarr

    2015-07-01

    Full Text Available In the 26 years since the discovery of Hepatitis C virus (HCV a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.

  19. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    International Nuclear Information System (INIS)

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.; Affranchino, Jose L.

    2007-01-01

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions

  20. Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies

    NARCIS (Netherlands)

    Chung, Nancy P. Y.; Matthews, Katie; Kim, Helen J.; Ketas, Thomas J.; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W.; Klasse, Per Johan; Wilson, Ian A.; Ward, Andrew B.; Marozsan, Andre J.; Moore, John P.; Cupo, Albert

    2014-01-01

    Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate

  1. Interaction and inhibition of dengue envelope glycoprotein with mammalian receptor DC-sign, an in-silico approach.

    Directory of Open Access Journals (Sweden)

    Masaud Shah

    Full Text Available Membrane fusion is the central molecular event during the entry of enveloped viruses into cells. The critical agents of this process are viral surface proteins, primed to facilitate cell bilayer fusion. The important role of Dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN in Dengue virus transmission makes it an attractive target to interfere with Dengue virus Propagation. Receptor mediated endocytosis allows the entry of virions due to the presence of endosomal membranes and low pH-induced fusion of the virus. DC-SIGN is the best characterized molecule among the candidate protein receptors and is able to mediate infection with the four serotypes of dengue virus (DENV. Unrestrained pair wise docking was used for the interaction of dengue envelope protein with DC-SIGN and monoclonal antibody 2G12. Pre-processed the PDB coordinates of dengue envelope glycoprotein and other candidate proteins were prepared and energy minimized through AMBER99 force field distributed in MOE software. Protein-protein interaction server, ZDOCK was used to find molecular interaction among the candidate proteins. Based on these interactions it was found that antibody successfully blocks the glycosylation site ASN 67 and other conserved residues present at DC-SIGN-Den-E complex interface. In order to know for certain, the exact location of the antibody in the envelope protein, co-crystallize of the envelope protein with these compounds is needed so that their exact docking locations can be identified with respect to our results.

  2. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  3. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-κB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway.

    Directory of Open Access Journals (Sweden)

    Mingsheng Cai

    Full Text Available The innate immune response plays a critical role in the host defense against invading pathogens, and TLR2, a member of the Toll-like receptor (TLR family, has been implicated in the immune response and initiation of inflammatory cytokine secretion against several human viruses. Previous studies have demonstrated that infectious and ultraviolet-inactivated herpes simplex virus 1 (HSV-1 virions lead to the activation of nuclear factor kappa B (NF-κB and secretion of proinflammatory cytokines via TLR2. However, except for the envelope glycoprotein gH and gL, whether there are other determinants of HSV-1 responsible for TLR2 mediated biological effects is not known yet. Here, we demonstrated that the HSV-1-encoded envelope glycoprotein gB displays as molecular target recognized by TLR2. gB coimmunoprecipitated with TLR2, TLR1 and TLR6 in transfected and infected human embryonic kidney (HEK 293T cells. Treatment of TLR2-transfected HEK293T (HEK293T-TLR2 cells with purified gB results in the activation of NF-κB reporter, and this activation requires the recruitment of the adaptor molecules myeloid differentiation primary-response protein 88 (MyD88 and tumor necrosis factor receptor-associated factor 6 (TRAF6 but not CD14. Furthermore, activation of NF-κB was abrogated by anti-gB and anti-TLR2 blocking antibodies. In addition, the expression of interleukin-8 induced by gB was abrogated by the treatment of the human monocytic cell line THP-1 with anti-TLR2 blocking antibody or by the incubation of gB with anti-gB antibody. Taken together, these results indicate the importance and potency of HSV-1 gB as one of pathogen-associated molecular patterns (PAMPs molecule recognized by TLR2 with immediate kinetics.

  4. Humoral immune response to hypervariable region 1 of the putative envelope glycoprotein (gp70) of hepatitis C virus.

    OpenAIRE

    Kato, N; Sekiya, H; Ootsuyama, Y; Nakazawa, T; Hijikata, M; Ohkoshi, S; Shimotohno, K

    1993-01-01

    We recently found that alterations of amino acids in hypervariable region 1 (HVR1) of the putative envelope glycoprotein (gp70) of hepatitis C virus (HCV) occurred sequentially in the chronic phase of hepatitis at intervals of several months. This finding suggests that mutations in HVR1 are involved in the mechanism of persistent chronic HCV infection involving escape from the immunosurveillance system. To explore this possibility, we examined the humoral immune response to HVR1 with our assa...

  5. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  6. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  7. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    International Nuclear Information System (INIS)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.

    1987-01-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120

  8. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    International Nuclear Information System (INIS)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.

    1987-01-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4 + and T8 + cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4 + cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo

  9. IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Jingyou Yu

    2015-10-01

    Full Text Available The interferon-induced transmembrane (IFITM proteins have been recently shown to restrict HIV-1 and other viruses. Here, we provide evidence that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env, thereby inhibiting viral infection. IFITM proteins interact with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions does not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes leads to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appears to be virus-strain dependent. Overall, our study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection.

  10. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  11. A Molecular Sensor To Characterize Arenavirus Envelope Glycoprotein Cleavage by Subtilisin Kexin Isozyme 1/Site 1 Protease

    Science.gov (United States)

    Oppliger, Joel; da Palma, Joel Ramos; Burri, Dominique J.; Khatib, Abdel-Majid; Spiropoulou, Christina F.

    2015-01-01

    ABSTRACT Arenaviruses are emerging viruses including several causative agents of severe hemorrhagic fevers in humans. The advent of next-generation sequencing technology has greatly accelerated the discovery of novel arenavirus species. However, for many of these viruses, only genetic information is available, and their zoonotic disease potential remains unknown. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P appears, therefore, to be a requirement for efficient zoonotic transmission and human disease potential. Here we implement a newly developed cell-based molecular sensor for SKI-1/S1P to characterize the processing of arenavirus GPC-derived target sequences by human SKI-1/S1P in a quantitative manner. We show that only nine amino acids flanking the putative cleavage site are necessary and sufficient to accurately recapitulate the efficiency and subcellular location of arenavirus GPC processing. In a proof of concept, our sensor correctly predicts efficient processing of the GPC of the newly emergent pathogenic Lujo virus by human SKI-1/S1P and defines the exact cleavage site. Lastly, we employed our sensor to show efficient GPC processing of a panel of pathogenic and nonpathogenic New World arenaviruses, suggesting that GPC cleavage represents no barrier for zoonotic transmission of these pathogens. Our SKI-1/S1P sensor thus represents a rapid and robust test system for assessment of the processing of putative cleavage sites derived from the GPCs of newly discovered arenavirus by the SKI-1/S1P of humans or any other species, based solely on sequence information. IMPORTANCE Arenaviruses are important emerging human pathogens that can cause severe hemorrhagic fevers with high mortality in humans. A crucial step in productive arenavirus

  12. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Agnihothram, Sudhakar S.; Romanowski, Victor; Nunberg, Jack H.

    2005-01-01

    The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins, four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that α-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever

  13. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    ), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  14. Dysfunction of bovine endogenous retrovirus K2 envelope glycoprotein is related to unsuccessful intracellular trafficking.

    Science.gov (United States)

    Nakaya, Yuki; Miyazawa, Takayuki

    2014-06-01

    Endogenous retroviruses (ERVs) are the remnants of retroviral infection of ancestral germ cells. Mutations introduced into ERVs halt the production of infectious agents, but their effects on the function of retroviral proteins are not fully understood. Retroviral envelope glycoproteins (Envs) are utilized in membrane fusion during viral entry, and we recently identified intact coding sequences for bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2 Envs. Amino acid sequences of BERV-K1 Env (also called Fematrin-1) and BERV-K2 Env are similar, and both viruses are classified in the genus Betaretrovirus. While Fematrin-1 plays an important role in cell-to-cell fusion in bovine placenta, the BERV-K2 envelope gene is marginally expressed in vivo, and its recombinant Env protein is defective in membrane fusion due to inefficient cleavage of surface (SU) and transmembrane subunits. Here, we conducted chimeric analyses of Fematrin-1 and BERV-K2 Envs and revealed that defective maturation of BERV-K2 Env contributed to failed intracellular trafficking. Fluorescence microscopy and flow cytometric analysis suggested that in contrast to Fematrin-1 Env, BERV-K2 Env could not be transported from the endoplasmic reticulum to the trans-Golgi network, where cellular proteases required for processing retroviral Envs are localized. We also identified that one of the responsive regions of this phenomenon resided within a 65-amino-acid region of BERV-K2 SU. This is the first report to identify that retroviral Env SU is involved in the regulation of intracellular trafficking, and it may help to elucidate the maturation process of Fematrin-1 and other related Envs. Retroviruses utilize envelope glycoproteins (Envs) to enter host target cells. Mature retroviral Env is a heterodimer, which consists of surface (SU) and transmembrane (TM) subunits that are generated by the cleavage of an Env precursor protein in the trans-Golgi network. SU and TM mediate the recognition of the entry

  15. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    International Nuclear Information System (INIS)

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A.

    2004-01-01

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model. Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function

  16. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer

    Directory of Open Access Journals (Sweden)

    Kwinten Sliepen

    2015-10-01

    Full Text Available Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664 has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2 virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP, a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP. Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry.

  17. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... 1National Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan. 2Department of ..... E glycoprotein and its interaction with antibody with the method of molecular dynamics and molecular model ...

  19. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    Directory of Open Access Journals (Sweden)

    Goldbach Rob W

    2011-07-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections.

  20. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    Martin-Garcia, Julio; Cao, Wei; Varela-Rohena, Angel; Plassmeyer, Matthew L.; Gonzalez-Scarano, Francisco

    2006-01-01

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  1. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Anna-Janina Behrens

    2016-03-01

    Full Text Available The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664 maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens.

  2. Expression, purification and crystallization of the ectodomain of the envelope glycoprotein E2 from Bovine viral diarrhoea virus

    International Nuclear Information System (INIS)

    Iourin, Oleg; Harlos, Karl; El Omari, Kamel; Lu, Weixian; Kadlec, Jan; Iqbal, Munir; Meier, Christoph; Palmer, Andrew; Jones, Ian; Thomas, Carole; Brownlie, Joe; Grimes, Jonathan M.; Stuart, David I.

    2012-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the ectodomain of BVDV E2 are described. Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen which is closely related to Hepatitis C virus. Of the structural proteins, the envelope glycoprotein E2 of BVDV is the major antigen which induces neutralizing antibodies; thus, BVDV E2 is considered as an ideal target for use in subunit vaccines. Here, the expression, purification of wild-type and mutant forms of the ectodomain of BVDV E2 and subsequent crystallization and data collection of two crystal forms grown at low and neutral pH are reported. Native and multiple-wavelength anomalous dispersion (MAD) data sets have been collected and structure determination is in progress

  3. Isolation of allergenically active glycoprotein from Prosopis juliflora pollen.

    Science.gov (United States)

    Thakur, I S

    1989-03-01

    An allergenically active glycoprotein was homogeneously isolated from the aqueous extract of Prosopis juliflora pollen by ConA-Sepharose affinity chromatography. The molecular weight of this glycoprotein was 20,000 dalton, determined by gel filtration and SDS-PAGE. This fraction showed a total carbohydrate concentration of 25%. The purified glycoprotein revealed immunochemically most antigenic or allergenic and demonstrated homogeneous after reaction with P. juliflora pollen antiserum, characterized by gel diffusion, Immunoelectrophoresis and Radioallergosorbent test.

  4. Crystal structure of the pestivirus envelope glycoprotein E(rns) and mechanistic analysis of its ribonuclease activity.

    Science.gov (United States)

    Krey, Thomas; Bontems, Francois; Vonrhein, Clemens; Vaney, Marie-Christine; Bricogne, Gerard; Rümenapf, Till; Rey, Félix A

    2012-05-09

    Pestiviruses, which belong to the Flaviviridae family of RNA viruses, are important agents of veterinary diseases causing substantial economical losses in animal farming worldwide. Pestivirus particles display three envelope glycoproteins at their surface: E(rns), E1, and E2. We report here the crystal structure of the catalytic domain of E(rns), the ribonucleolytic activity of which is believed to counteract the innate immunity of the host. The structure reveals a three-dimensional fold corresponding to T2 ribonucleases from plants and fungi. Cocrystallization experiments with mono- and oligonucleotides revealed the structural basis for substrate recognition at two binding sites previously identified for T2 RNases. A detailed analysis of poly-U cleavage products using (31)P-NMR and size exclusion chromatography, together with molecular docking studies, provides a comprehensive mechanistic picture of E(rns) activity on its substrates and reveals the presence of at least one additional nucleotide binding site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics.

    Directory of Open Access Journals (Sweden)

    Kara G Lassen

    2009-04-01

    Full Text Available Elite suppressors (ES are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor and CCR5 (co-receptor. In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals.

  6. Crystallization and preliminary X-ray analysis of Chandipura virus glycoprotein G

    International Nuclear Information System (INIS)

    Baquero, Eduard; Buonocore, Linda; Rose, John K.; Bressanelli, Stéphane; Gaudin, Yves; Albertini, Aurélie A.

    2012-01-01

    Chandipura virus glycoprotein ectodomain (Gth) was purified and crystallized at pH 7.5. X-ray diffraction data set was collected to a resolution of 3.1 Å. Fusion in members of the Rhabdoviridae virus family is mediated by the G glycoprotein. At low pH, the G glycoprotein catalyzes fusion between viral and endosomal membranes by undergoing a major conformational change from a pre-fusion trimer to a post-fusion trimer. The structure of the G glycoprotein from vesicular stomatitis virus (VSV G), the prototype of Vesiculovirus, has recently been solved in its trimeric pre-fusion and post-fusion conformations; however, little is known about the structural details of the transition. In this work, a soluble form of the ectodomain of Chandipura virus G glycoprotein (CHAV G th ) was purified using limited proteolysis of purified virus; this soluble ectodomain was also crystallized. This protein shares 41% amino-acid identity with VSV G and thus its structure could provide further clues about the structural transition of rhabdoviral glycoproteins induced by low pH. Crystals of CHAV G th obtained at pH 7.5 diffracted X-rays to 3.1 Å resolution. These crystals belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 150.3, b = 228.2, c = 78.8 Å. Preliminary analysis of the data based on the space group and the self-rotation function indicated that there was no trimeric association of the protomers. This unusual oligomeric status could result from the presence of fusion intermediates in the crystal

  7. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan

    2010-11-01

    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  8. Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Nicotiana alata.

    Science.gov (United States)

    Jahnen, W; Batterham, M P; Clarke, A E; Moritz, R L; Simpson, R J

    1989-05-01

    S-Gene-associated glycoproteins (S-glycoproteins) from styles of Nicotiana alata, identified by non-equilibrium two-dimensional electrophoresis, were purified by cation exchange fast protein liquid chromatography with yields of 0.5 to 8 micrograms of protein per style, depending on the S-genotype of the plant. The method relies on the highly basic nature of the S-glycoproteins. The elution profiles of the different S-glycoproteins from the fast protein liquid chromatography column were characteristic of each S-glycoprotein, and could be used to establish the S-genotype of plants in outbreeding populations. In all cases, the S-genotype predicted from the style protein profile corresponded to that predicted from DNA gel blot analysis using S-allele-specific DNA probes and to that established by conventional breeding tests. Amino-terminal sequences of five purified S-glycoproteins showed a high degree of homology with the previously published sequences of N. alata and Lycopersicon esculentum S-glycoproteins.

  9. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    International Nuclear Information System (INIS)

    Shang Liang; Hunter, Eric

    2010-01-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.

  10. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  11. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    International Nuclear Information System (INIS)

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-01-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B

  12. The pestivirus Erns glycoprotein interacts with E2 in both infected cells and mature virions

    International Nuclear Information System (INIS)

    Lazar, Catalin; Zitzmann, Nicole; Dwek, Raymond A.; Branza-Nichita, Norica

    2003-01-01

    E rns is a pestivirus envelope glycoprotein indispensable for virus attachment and infection of target cells. Unlike the other two envelope proteins E1 and E2, E rns lacks a transmembrane domain and a vast quantity is secreted into the medium of infected cells. The protein is also present in fractions of pure pestivirus virions, raising the important and intriguing question regarding the mechanism of its attachment to the pestivirus envelope. In this study a direct interaction between E rns and E2 glycoproteins was demonstrated in both pestivirus-infected cells and mature virions. By co- and sequential immunoprecipitation we showed that an E rns -E2 heterodimer is assembled very early after translation of the viral polyprotein and before its processing is completed. Our results suggest that E rns is attached to the pestivirus envelope via a direct interaction with E2 and explain the role of E rns in the initial virus-target cell interaction

  13. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  14. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibalpha

    DEFF Research Database (Denmark)

    Bergmeier, W; Bouvard, D; Eble, J A

    2001-01-01

    Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from the v...

  15. Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion

    International Nuclear Information System (INIS)

    Garg, Himanshu; Fuller, Frederick J.; Tompkins, Wayne A.F.

    2004-01-01

    Feline immunodeficiency virus (FIV) shares remarkable homology to primate lentiviruses, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). The process of lentiviral env glycoprotein-mediated fusion of membranes is essential for viral entry and syncytia formation. A detailed understanding of this phenomenon has helped identify new targets for antiviral drug development. Using a model based on syncytia formation between FIV env-expressing cells and a feline CD4+ T cell line we have studied the mechanism of FIV env-mediated fusion. Using this model we show that FIV env-mediated fusion mechanism and kinetics are similar to HIV env. Syncytia formation could be blocked by CXCR4 antagonist AMD3100, establishing the importance of this receptor in FIV gp120 binding. Interestingly, CXCR4 alone was not sufficient to allow fusion by a primary isolate of FIV, as env glycoprotein from FIV-NCSU 1 failed to induce syncytia in several feline cell lines expressing CXCR4. Syncytia formation could be inhibited at a post-CXCR4 binding step by synthetic peptide T1971, which inhibits interaction of heptad repeat regions of gp41 and formation of the hairpin structure. Finally, using site-directed mutagenesis, we also show that a conserved tryptophan-rich region in the membrane proximal ectodomain of gp41 is critical for fusion, possibly at steps post hairpin structure formation

  16. Isolation and characterization of two antigenic glycoproteins from the pollen of Prosopis juliflora.

    Science.gov (United States)

    Thakur, I S

    1991-03-01

    Two antigenically active glycoprotein fractions were isolated from crude extract of the pollen of Prosopis juliflora using DEAE-cellulose ion exchange chromatography. The glycoproteins gave single band on polyacrylamide gel electrophoresis. The molecular weight of these two glycoprotein was 20,000 and 10,000 as determined by gel filtration on Sephadex G-75. With the help of crossed immunoelectrophoresis and gel diffusion crude extract exhibited twelve and three precipitating antigens suggesting its heterogeneous nature; and the purified glycoprotein fractions however formed single precipitin band on gel diffusion test and immunoelectrophoresis. As tested by ELISA the polyclonal antisera raised in rabbit showed strong binding affinity with glycoprotein of MW 20,000. These result indicates that the two glycoprotein fractions are not antigenically identical.

  17. Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Vahlenkamp, T.W.; Ronde, A. de; Schuurman, N.M.P.; Vliet, A.L.W. van; Drunen, J. van; Egberink, H.F.

    1999-01-01

    The envelope is of cardinal importance for the entry of feline immunodeficiency virus (FIV) into its host cells, which consist of cells of the immune system including macrophages. To characterize the envelope glycoprotein determinants involved in macrophage tropism, chimeric infectious molecular

  18. HIV-1 neutralizing antibodies induced by native-like envelope trimers

    NARCIS (Netherlands)

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C.; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; Labranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505

  19. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    Science.gov (United States)

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  20. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  1. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2016-12-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  2. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2017-02-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of pMHC formation or TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  3. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Marija [Northwestern Univ., Evanston, IL (United States); Longnecker, Richard [Northwestern Univ., Chicago, IL (United States); Jardetzky, Theodore S [Northwestern Univ., Evanston, IL (United States)

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  4. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S; Goossens, Vera

    2008-01-01

    monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...

  5. Preparation of 131I-asialo-α1-acid glycoprotein

    International Nuclear Information System (INIS)

    Rijk, P.P. van

    1975-01-01

    α 1 -Acid glycoprotein (orosomucoid) was prepared from a byproduct of the ethanol plasma fractionation by means of ion-exchange procedures. Immunoelectrophoresis suggested a high degree of purity; the purified protein contained 13.5% sialic acid and 17.8% hexose. The α 1 -acid glycoprotein was modified by removal of sialic acid with neurominidase (E.C. 3.2.1.18) followed by iodination with 131 I. The purpose of the preparation, its potential use as a pharmacon for liver-function studies in nuclear medicine, is the subject of further study

  6. Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry

    Science.gov (United States)

    Moller-Tank, Sven; Kondratowicz, Andrew S.; Davey, Robert A.; Rennert, Paul D.

    2013-01-01

    The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence. PMID:23698310

  7. Purification and characterization of the glycoprotein allergen from Prosopis juliflora pollen.

    Science.gov (United States)

    Thakur, I S

    1991-02-01

    Highly active glycoprotein allergens have been isolated from pollen of Prosopis juliflora by a combination of Sephadex G-100 gel filtration and Sodium dodecyl sulphate-Poly-acrylamide gel electrophoresis. The glycoprotein fraction was homogeneous, and had molecular weight 20,000. The purified glycoprotein allergen contained 20% carbohydrate, mainly arabinose and galactose. Enzymatic digestion of glycoprotein with protease released glycopeptides of molecular weight ranging from less than 1,000 to more than 5,000 on Sephadex G-25 gel filtration. Antigenicity or allergenicity testing of these glycopeptides by immunodiffusion, immunoelectrophoresis, and radioallergosorbent test indicated complete loss of allergenic activity after digestion with protease whereas incubation with beta-D-galactosidase and periodate oxidation had little affect on the allergenic activity of the glycoprotein fraction. But incubation with alpha-D-glucosidase did not affect the allergenic activity significantly. All these tests indicated that protein played significant role in allergenicity of P. juliflora pollen.

  8. A Strategy for O-Glycoproteomics of Enveloped Viruses-the O-Glycoproteome of Herpes Simplex Virus Type 1

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2015-01-01

    present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B...

  9. Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells.

    OpenAIRE

    Puddington, L; Woodgett, C; Rose, J K

    1987-01-01

    The envelope glycoprotein (G protein) of vesicular stomatitis virus (VSV) is transported to the basolateral plasma membrane of polarized epithelial cells, whereas the hemagglutinin glycoprotein (HA protein) of influenza virus is transported to the apical plasma membrane. To determine if the cytoplasmic domain of VSV G protein might be important in directing G protein to the basolateral membrane, we derived polarized Madin-Darby canine kidney cell lines expressing G protein or G protein with i...

  10. A Method for Determining the Content of Glycoproteins in Biological Samples

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2016-11-01

    Full Text Available The glycoprotein purified from the mycelium extract of Tremella fuciformis was marked with iodine through the iodine substitution reaction. The content of iodine, which is indicative of the amount of the marked tremella glycoprotein (ITG, was detected with Inductively coupled plasma mass spectrometry (ICP-MS. The method was found to be stable, sensitive, and accurate at detecting the content of iodine-substituted glycoprotein, and was used in the quantitative analysis of biological samples, including blood and organs. Different biological samples were collected from rats after oral administration of ITG, and were tested for iodine content by ICP-MS to calculate the amount of ITG in the samples. The results suggested that ICP-MS is a sensitive, stable, and accurate method for detection of iodinated glycoproteins in blood and organs.

  11. Viral membrane fusion: is glycoprotein G of rhabdoviruses a representative of a new class of viral fusion proteins?

    Directory of Open Access Journals (Sweden)

    A.T. Da Poian

    2005-06-01

    Full Text Available Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.

  12. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S.; Goossens, Vera

    2008-01-01

    The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human...... monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...... neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a...

  13. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  14. Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity

    NARCIS (Netherlands)

    Sliepen, Kwinten; Ozorowski, Gabriel; Burger, Judith A.; van Montfort, Thijs; Stunnenberg, Melissa; Labranche, Celia; Montefiori, David C.; Moore, John P.; Ward, Andrew B.; Sanders, Rogier W.

    2015-01-01

    Background: Presenting vaccine antigens in particulate form can improve their immunogenicity by enhancing B cell activation. Findings: We describe ferritin-based protein nanoparticles that display multiple copies of native-like HIV-1 envelope glycoprotein trimers (BG505 SOSIP.664). Trimer-bearing

  15. Ninety-five- and 25-kDa fragments of the human immunodeficiency virus envelope glycoprotein gp120 bind to the CD4 receptor

    International Nuclear Information System (INIS)

    Nygren, A.; Bergman, T.; Matthews, T.; Joernvall, H.; Wigzell, H.

    1988-01-01

    Iodine-125-labeled gp120 (120-kDa envelope glycoprotein) from the BH10 isolate of human immunodeficiency virus is cleaved to a limited extend with the glutamate-specific protease from Staphylococcus aureus. After disulfide bond reduction, fragments with approximate molecular masses of 95, 60, 50, and 25 kDa are produced. Tests for binding to CD4-positive cells show that only two fragments, the 95- and 25- kDa peptides, are observed in cleavage products that retain the selective binding capacity of gp120. Radiosequence analysis of the fragments after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electroblotting demonstrates that the 95-kDa fragment lacks the N-terminal region of gp120 and starts at position 143 of the mature envelope protein. The 50-kDa fragment starts at the same position. The 25-kDa binding fragment was similarly deduced to be generated as a small fragment from a cleavage site in the C-terminal part of gp120. The identifications of these fragments demonstrate that radiosequence analysis utilizing 125 I-labeled tyrosine residues can function as a useful and reliable method for small-scale determination of cleavage sites in proteins. Combined, the data suggest domain-like subdivisions of gp120, define at least two intervening segments especially sensitive to proteolytic cleavage, and demonstrate the presence of a functional region for receptor binding in the C-terminal part of the molecule

  16. Functional reconstitution into liposomes of purified human RhCG ammonia channel.

    Directory of Open Access Journals (Sweden)

    Isabelle Mouro-Chanteloup

    Full Text Available BACKGROUND: Rh glycoproteins (RhAG, RhBG, RhCG are members of the Amt/Mep/Rh family which facilitate movement of ammonium across plasma membranes. Changes in ammonium transport activity following expression of Rh glycoproteins have been described in different heterologous systems such as yeasts, oocytes and eukaryotic cell lines. However, in these complex systems, a potential contribution of endogenous proteins to this function cannot be excluded. To demonstrate that Rh glycoproteins by themselves transport NH(3, human RhCG was purified to homogeneity and reconstituted into liposomes, giving new insights into its channel functional properties. METHODOLOGY/PRINCIPAL FINDINGS: An HA-tag introduced in the second extracellular loop of RhCG was used to purify to homogeneity the HA-tagged RhCG glycoprotein from detergent-solubilized recombinant HEK293E cells. Electron microscopy analysis of negatively stained purified RhCG-HA revealed, after image processing, homogeneous particles of 9 nm diameter with a trimeric protein structure. Reconstitution was performed with sphingomyelin, phosphatidylcholine and phosphatidic acid lipids in the presence of the C(12E(8 detergent which was subsequently removed by Biobeads. Control of protein incorporation was carried out by freeze-fracture electron microscopy. Particle density in liposomes was a function of the Lipid/Protein ratio. When compared to empty liposomes, ammonium permeability was increased two and three fold in RhCG-proteoliposomes, depending on the Lipid/Protein ratio (1/300 and 1/150, respectively. This strong NH(3 transport was reversibly inhibited by mercuric and copper salts and exhibited a low Arrhenius activation energy. CONCLUSIONS/SIGNIFICANCE: This study allowed the determination of ammonia permeability per RhCG monomer, showing that the apparent Punit(NH3 (around 1x10(-3 microm(3xs(-1 is close to the permeability measured in HEK293E cells expressing a recombinant human RhCG (1.60x10

  17. Global identification of prokaryotic glycoproteins based on an Escherichia coli proteome microarray.

    Directory of Open Access Journals (Sweden)

    Zong-Xiu Wang

    Full Text Available Glycosylation is one of the most abundant protein posttranslational modifications. Protein glycosylation plays important roles not only in eukaryotes but also in prokaryotes. To further understand the roles of protein glycosylation in prokaryotes, we developed a lectin binding assay to screen glycoproteins on an Escherichia coli proteome microarray containing 4,256 affinity-purified E.coli proteins. Twenty-three E.coli proteins that bound Wheat-Germ Agglutinin (WGA were identified. PANTHER protein classification analysis showed that these glycoprotein candidates were highly enriched in metabolic process and catalytic activity classes. One sub-network centered on deoxyribonuclease I (sbcB was identified. Bioinformatics analysis suggests that prokaryotic protein glycosylation may play roles in nucleotide and nucleic acid metabolism. Fifteen of the 23 glycoprotein candidates were validated by lectin (WGA staining, thereby increasing the number of validated E. coli glycoproteins from 3 to 18. By cataloguing glycoproteins in E.coli, our study greatly extends our understanding of protein glycosylation in prokaryotes.

  18. Venezuelan equine encephalitis emergence: Enhanced vector infection from a single amino acid substitution in the envelope glycoprotein

    Science.gov (United States)

    Brault, Aaron C.; Powers, Ann M.; Ortiz, Diana; Estrada-Franco, Jose G.; Navarro-Lopez, Roberto; Weaver, Scott C.

    2004-01-01

    In 1993 and 1996, subtype IE Venezuelan equine encephalitis (VEE) virus caused epizootics in the Mexican states of Chiapas and Oaxaca. Previously, only subtype IAB and IC VEE virus strains had been associated with major outbreaks of equine and human disease. The IAB and IC epizootics are believed to emerge via adaptation of enzootic (sylvatic, equine-avirulent) strains for high titer equine viremia that results in efficient infection of mosquito vectors. However, experimental equine infections with subtype IE equine isolates from the Mexican outbreaks demonstrated neuro-virulence but little viremia, inconsistent with typical VEE emergence mechanisms. Therefore, we hypothesized that changes in the mosquito vector host range might have contributed to the Mexican emergence. To test this hypothesis, we evaluated the susceptibility of the most abundant mosquito in the deforested Pacific coastal locations of the VEE outbreaks and a proven epizootic vector, Ochlerotatus taeniorhynchus. The Mexican epizootic equine isolates exhibited significantly greater infectivity compared with closely related enzootic strains, supporting the hypothesis that adaptation to an efficient epizootic vector contributed to disease emergence. Reverse genetic studies implicated a Ser → Asn substitution in the E2 envelope glycoprotein as the major determinant of the increased vector infectivity phenotype. Our findings underscore the capacity of RNA viruses to alter their vector host range through minor genetic changes, resulting in the potential for disease emergence. PMID:15277679

  19. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  20. N-terminal sequence of human leukocyte glycoprotein Mo1: conservation across species and homology to platelet IIb/IIIa.

    Science.gov (United States)

    Pierce, M W; Remold-O'Donnell, E; Todd, R F; Arnaout, M A

    1986-12-12

    Mo1 and gp160-gp93 are two surface membrane glycoprotein heterodimers present on granulocytes and monocytes derived from humans and guinea pigs, respectively. We purified both antigens and found that their alpha subunits had identical N-termini which were significantly homologous to the alpha subunit of the human adhesion platelet glycoprotein IIb/IIIa.

  1. A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Anurag Sethi

    Full Text Available The HIV-1 envelope (Env spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.

  2. Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry

    International Nuclear Information System (INIS)

    Kvaratskhelia, Mamuka; Clark, Patrick K.; Hess, Sonja; Melder, Deborah C.; Federspiel, Mark J.; Hughes, Stephen H.

    2004-01-01

    We used enzymatic digestion and mass spectrometry to identify the sites of glycosylation on the SU component of the Avian Sarcoma/Leukosis virus (ASLV) Envelope Glycoprotein (Subgroup A). The analysis was done with an SU(A)-rIgG fusion protein that binds the cognate receptor (Tva) specifically. PNGase F removed all the carbohydrate from the SU(A)-rIgG fusion. PNGase F is specific for N-linked carbohydrates; this shows that all the carbohydrate on SU(A) is N-linked. There are 10 modified aspargines in SU(A) (N17, N59, N80, N97, N117, N196, N230, N246, N254, and N330). All conform to the consensus site for N-linked glycosylation NXS/T. There is one potential glycosylation site (N236) that is not modified. Removing most of the carbohydrate from the mature SU(A)-rIgG by PNGase F treatment greatly reduces the ability of the protein to bind Tva, suggesting that carbohydrate may play a direct role in receptor binding

  3. Mucus glycoprotein secretion by tracheal explants: effects of pollutants

    International Nuclear Information System (INIS)

    Last, J.A.; Kaizu, T.

    1980-01-01

    Tracheal slices incubated with radioactive precursors in tissue culture medium secrete labeled mucus glycoproteins into the culture medium. We have used an in vivtro approach, a combined method utilizing exposure to pneumotoxins in vivo coupled with quantitation of mucus secretion rates in vitro, to study the effects of inhaled pollutants on mucus biosynthesis by rat airways. In addition, we have purified the mucus glycoproteins secreted by rat tracheal explants in order to determine putative structural changes that might by the basis for the observed augmented secretion rates after exposure of rats to H2SO4 aerosols in combination with high ambient levels of ozone. After digestion with papain, mucus glycoproteins secreted by tracheal explants may be separated into five fractions by ion-exchange chromatography, with recovery in high yield, on columns of DEAE-cellulose. Each of these five fractions, one neutral and four acidic, migrates as a single unique spot upon cellulose acetate electrophoresis at pH values of 8.6 and 1.2. The neutral fraction, which is labeled with [3H] glucosamine, does not contain radioactivity when Na2 35SO4 is used as the precursor. Acidic fractions I to IV are all labeled with either 3H-glucosamine or Na2 35SO4 as precursor. Acidic fraction II contains sialic acid as the terminal sugar on its oligosaccharide side chains, based upon its chromatographic behavior on columns of wheat-germ agglutinin-Agarose. Treatment of this fraction with neuraminidase shifts its elution position in the gradient to a lower salt concentration, coincident with acidic fraction I. After removal of terminal sialic acid residues with either neuraminidase or low pH treatment, the resultant terminal sugar on the oligosaccharide side chains is fucose. These results are identical with those observed with mucus glycoproteins secreted by cultured human tracheal explants and purified by these same techniques

  4. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections

    NARCIS (Netherlands)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost|info:eu-repo/dai/nl/338018328; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao|info:eu-repo/dai/nl/411296272; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan|info:eu-repo/dai/nl/273306049; Veesler, David

    2017-01-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to

  5. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard

    2007-01-01

    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  6. Evidence for a novel coding sequence overlapping the 5'-terminal ~90 codons of the Gill-associated and Yellow head okavirus envelope glycoprotein gene

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2009-12-01

    Full Text Available Abstract The genus Okavirus (order Nidovirales includes a number of viruses that infect crustaceans, causing major losses in the shrimp industry. These viruses have a linear positive-sense ssRNA genome of ~26-27 kb, encoding a large replicase polyprotein that is expressed from the genomic RNA, and several additional proteins that are expressed from a nested set of 3'-coterminal subgenomic RNAs. In this brief report, we describe the bioinformatic discovery of a new, apparently coding, ORF that overlaps the 5' end of the envelope glycoprotein encoding sequence, ORF3, in the +2 reading frame. The new ORF has a strong coding signature and, in fact, is more conserved at the amino acid level than the overlapping region of ORF3. We propose that translation of the new ORF initiates at a conserved AUG codon separated by just 2 nt from the ORF3 AUG initiation codon, resulting in a novel 86 amino acid protein.

  7. Glycoprotein of the wall of sycamore tissue-culture cells.

    Science.gov (United States)

    Heath, M F; Northcote, D H

    1971-12-01

    1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.

  8. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  9. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    Science.gov (United States)

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  10. B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of Rhesus macaques

    Science.gov (United States)

    Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutr...

  11. [Research progress on ebola virus glycoprotein].

    Science.gov (United States)

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  12. Characterization of the Fusion and Attachment Glycoproteins of Human Metapneumovirus and Human Serosurvey to Determine Reinfection Rates

    Science.gov (United States)

    2007-06-27

    Metapneumovirus genus. The Paramyxoviridae are in the taxonomical order Mononegavirales which includes Bornaviridae, Rhabdoviridae and Filoviridae which... Rhabdoviridae plant virus, replicate in the cytoplasm (66). The Paramyxoviridae are enveloped viruses and have been defined by the fusion glycoprotein

  13. The impact of envelope glycoprotein cleavage on the antigenicity, infectivity, and neutralization sensitivity of Env-pseudotyped human immunodeficiency virus type 1 particles

    International Nuclear Information System (INIS)

    Herrera, Carolina; Klasse, Per Johan; Michael, Elizabeth; Kake, Shivani; Barnes, Kelly; Kibler, Christopher W.; Campbell-Gardener, Lila; Si, Zhihai; Sodroski, Joseph; Moore, John P.; Beddows, Simon

    2005-01-01

    Endoproteolytic processing of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoproteins is an obligate part of the biosynthetic pathway that generates functional, fusion-competent Env complexes, which are then incorporated into infectious virions. We have examined the influence of cleavage on Env-specific antibody reactivity, Env incorporation into pseudovirions, and the infectivity and neutralization sensitivity of Env-pseudotyped viruses. To do so, we have used both incompletely processed wild-type (Wt) Env and engineered, cleavage-defective Env mutants. We find that there is no simple association between antibody reactivity to cell surface-expressed Env, and the ability of the same antibody to neutralize virus pseudotyped with the same Env proteins. One explanation for the absence of such an association is the diverse array of Env species present on the surface of transiently transfected cells. We also confirm that cleavage-defective mutants are antigenically different from Wt Env. These findings have implications for the use of Env binding assays as predictors of neutralizing activity, and for the development of cleavage-defective Env trimers for use as subunit immunogens

  14. Purification and characterization of a soluble glycoprotein from garlic (Allium sativum) and its in vitro bioactivity.

    Science.gov (United States)

    Wang, Yan; Zou, Tingting; Xiang, Minghui; Jin, Chenzhong; Zhang, Xuejiao; Chen, Yong; Jiang, Qiuqing; Hu, Yihong

    2016-10-02

    A soluble glycoprotein was purified to homogeneity from ripe garlic (Allium sativum) bulbs using ammonium sulfate precipitation, Sephadex G-100 gel filtration, and diethylaminoethyl-52 cellulose anion-exchange chromatography. A native mass of 55.7 kDa estimated on gel permeation chromatography and a molecular weight of 13.2 kDa observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported that the glycoprotein is a homotetramer. β-Elimination reaction result suggested that the glycoprotein is an N-linked type. Fourier-transform infrared spectroscopy proved that it contains sugar. Gas chromatography-mass spectrometer analysis showed that its sugar component was galactose. The glycoprotein has 1,1-diphenyl-2-picrylhydrazil free radical scavenging activity and the peroxidation inhibition ability to polyunsaturated fatty acid. These results indicated that the glycoprotein has potential for food additives, functional foods, and even biotechnological and medical applications.

  15. Study on the extraction and purification of glycoprotein from the yellow seahorse, Hippocampus kuda Bleeker

    Science.gov (United States)

    Su, Yuting; Xu, Yongjian

    2015-01-01

    The optimum parameters of extraction for glycoprotein from seahorse were examined and determined by Box-Behnken combined with ultrasonic extraction technology. Column chromatography of glycoprotein was used for further purification. The optimal extraction conditions of seahorse glycoprotein were extracting time 4.3 h, salt concentration 0.08 mol/L, extracting temperature 73°C, raw material, and water ratio 1:6. At the optimal conditions, the yield of saccharide reached to 1.123%, and the yield of protein reached to 5.898%. For purifying the crude glycoprotein, the stage renounces of DEAE-52 column chromatography were done, respectively, with 0.05, 0.1, 0.5 mol/L NaHCO3 solution, and further purification was done with Sephadex G-100 column chromatography. Finally, two pieces of seahorse glycoprotein were obtained by the column chromatography, that is, HG-11 and HG-21. The saccharide content was 56.7975% and 39.479%, the protein content was 30.5475% and 51.747%, respectively. PMID:26288722

  16. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Ye Chen

    Full Text Available The classical swine fever virus (CSFV, circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA and translational selection-correlation analysis between the general average hydropathicity (Gravy and aromaticity (Aroma, and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s. Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  17. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    International Nuclear Information System (INIS)

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-01-01

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  18. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    Science.gov (United States)

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2014-02-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  19. Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Leberer, E.; Charuk, J.H.M.; MacLennan, D.H.; Green, N.M.

    1989-01-01

    Antibody screening was used to isolate a cDNA encoding the 160-kDa glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. The cDNA is identical to that encoding the 53-kDa glycoprotein except that it contains an in-frame insertion of 1,308 nucleotides near its 5' end, apparently resulting from alternative splicing. The protein encoded by the cDNA would contain a 19-residue NH 2 -terminal signal sequence and a 453-residue COOH-terminal sequence identical to the 53-kDa glycoprotein. It would also contain a 436-amino acid insert between these sequences. This insert would be highly acidic, suggesting that it might bind Ca 2+ . The purified 160-kDa glycoprotein and the glycoprotein expressed in COS-1 cells transfected with cDNA encoding the 160-kDa glycoprotein were shown to bind 45 C 2+ in a gel overlay assay. The protein was shown to be located in the lumen of the sarcoplasmic reticulum and to be associated through Ca 2+ with the membrane. The authors propose that this lumenal Ca 2+ binding glycoprotein of the sarcoplasmic reticulum be designated sarcalumenin

  20. Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    Full Text Available A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an

  1. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    Science.gov (United States)

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  2. Canine Distemper Virus Matrix Protein Influences Particle Infectivity, Particle Composition, and Envelope Distribution in Polarized Epithelial Cells and Modulates Virulence ▿

    OpenAIRE

    Dietzel, Erik; Anderson, Danielle E.; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-01-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis o...

  3. Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins.

    Science.gov (United States)

    Weir, Dawn L; Smith, Ina L; Bossart, Katharine N; Wang, Lin-Fa; Broder, Christopher C

    2013-09-01

    Australian bat lyssavirus (ABLV) is a rhabdovirus of the lyssavirus genus capable of causing fatal rabies-like encephalitis in humans. There are two variants of ABLV, one circulating in pteropid fruit bats and another in insectivorous bats. Three fatal human cases of ABLV infection have been reported with the third case in 2013. Importantly, two equine cases also arose in 2013; the first occurrence of ABLV in a species other than bats or humans. We examined the host cell entry of ABLV, characterizing its tropism and exploring its cross-species transmission potential using maxGFP-encoding recombinant vesicular stomatitis viruses that express ABLV G glycoproteins. Results indicate that the ABLV receptor(s) is conserved but not ubiquitous among mammalian cell lines and that the two ABLV variants can utilize alternate receptors for entry. Proposed rabies virus receptors were not sufficient to permit ABLV entry into resistant cells, suggesting that ABLV utilizes an unknown alternative receptor(s). Published by Elsevier Inc.

  4. Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5.

    Science.gov (United States)

    Weir, Dawn L; Laing, Eric D; Smith, Ina L; Wang, Lin-Fa; Broder, Christopher C

    2014-02-27

    Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.

  5. The expression and serological reactivity of recombinant canine herpesvirus 1 glycoprotein D

    Directory of Open Access Journals (Sweden)

    MarkéŽta Vaňkov‡á

    2016-01-01

    Full Text Available The aim of this work was to express recombinant glycoprotein D of canine herpesvirus 1 in bacterial cells and to evaluate its diagnostic sensitivity and specificity when compared to traditional serological methods. The gene fragment coding glycoprotein D of canine herpesvirus 1 was amplified by polymerase chain reaction, cloned into plasmid vector and expressed in Escherichia coli cells. Recombinant protein was then purified and used as an antigen in immunoblot for a detection of canine herpesvirus 1 specific antibodies. Antibody testing was performed on the panel of 100 canine sera by immunoblot with recombinant glycoprotein D as antigen and compared with indirect immunofluorescence assay. Serum samples were collected from 83 dogs with no history of canine herpesvirus 1 or reproductive disorders, and from 17 dogs from breeding kennels with a history of canine herpesvirus 1 related reproductive disorders. Sensitivity of glycoprotein D based immunoblot was 89.2% and specificity was 93%. Kappa value was calculated to be 0.8 between immunoblot and indirect immunofluorescence assay. Antibodies against canine herpesvirus 1 infection were detected in 33% of samples by immunoblot assay. Our study confirms that recombinant glycoprotein D expressed in bacterial cells could be used as a suitable and sensitive antigen for immunological tests and that herpesvirus infection seems to be common among the canine population in the Czech Republic.

  6. Use of whole genome deep sequencing to define emerging minority variants in virus envelope genes in herpesvirus treated with novel antimicrobial K21.

    Science.gov (United States)

    Tweedy, Joshua G; Prusty, Bhupesh K; Gompels, Ursula A

    2017-10-01

    New antivirals are required to prevent rising antimicrobial resistance from replication inhibitors. The aim of this study was to analyse the range of emerging mutations in herpesvirus by whole genome deep sequencing. We tested human herpesvirus 6 treatment with novel antiviral K21, where evidence indicated distinct effects on virus envelope proteins. We treated BACmid cloned virus in order to analyse mechanisms and candidate targets for resistance. Illumina based next generation sequencing technology enabled analyses of mutations in 85 genes to depths of 10,000 per base detecting low prevalent minority variants (<1%). After four passages in tissue culture the untreated virus accumulated mutations in infected cells giving an emerging mixed population (45-73%) of non-synonymous SNPs in six genes including two envelope glycoproteins. Strikingly, treatment with K21 did not accumulate the passage mutations; instead a high frequency mutation was selected in envelope protein gQ2, part of the gH/gL complex essential for herpesvirus infection. This introduced a stop codon encoding a truncation mutation previously observed in increased virion production. There was reduced detection of the glycoprotein complex in infected cells. This supports a novel pathway for K21 targeting virion envelopes distinct from replication inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Nunberg, Jack H.

    2007-01-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although position - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease

  8. Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.

    Science.gov (United States)

    Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P

    1997-11-01

    A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.

  9. Characterization of an apically derived epithelial membrane glycoprotein from bovine milk, which is expressed in capillary endothelia in diverse tissues

    OpenAIRE

    1985-01-01

    A glycoprotein (PAS IV) of apparent Mr 76,000 was purified from bovine milk-fat-globule membrane and partially characterized. PAS IV contained mannose, galactose, and sialic acid as principal sugars (approximately 5.3% total carbohydrate [wt/wt]) and existed in milk in at least four isoelectric variants. The glycoprotein appeared to be an integral membrane protein by several criteria. PAS IV was recovered in the detergent phase of Triton X-114 extracts of milk-fat-globule membrane at room tem...

  10. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  11. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    Science.gov (United States)

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  12. Structural analysis of herpes simplex virus by optical super-resolution imaging

    Science.gov (United States)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  13. Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain.

    Science.gov (United States)

    González, Silvia A; Affranchino, José L

    2016-07-01

    The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.

  14. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  15. Replacement of the murine leukemia virus (MLV) envelope gene with a truncated HIV envelope gene in MLV generates a virus with impaired replication capacity

    International Nuclear Information System (INIS)

    Nack, Ursula; Schnierle, Barbara S.

    2003-01-01

    Murine leukemia virus (MLV) capsid particles can be efficiently pseudotyped with a variant of the HIV-1 envelope protein (Env) containing the surface glycoprotein gp120-SU and a carboxyl-terminally truncated transmembrane (TM) protein, with only seven cytoplasmic amino acids. MLV/HIV pseudotyped vector particles acquire the natural host tropism of HIV-1 and their entry is dependent on the presence of CD4 and an appropriate co-receptor on the surface of the target cell. We describe here the construction of chimeric MLV/HIV proviruses containing the truncated HIV envelope gene. The MLV/HIV provirus was generated by direct replacement of the MLV envelope gene with HIV Env coding sequences either with or without the additional inclusion of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Chimeric MLV/HIV particles could be generated from transfected 293T cells and were able to infect CD4/CXCR4-positive target cells. However, the second round of infection of target cells was severely impaired, despite the fact that the WPRE element enhanced the amount of viral mRNA detected. Viral particles released from infected cells showed reduced HIV Env incorporation, indicating that additional factors required for efficient replication of MLV/HIV pseudotyped viruses are missing

  16. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen

    2013-08-01

    Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as \\'self\\' to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis. © 2013 Future Medicine Ltd.

  17. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    Science.gov (United States)

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  18. A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction

    Directory of Open Access Journals (Sweden)

    Samman Ayman

    2008-08-01

    Full Text Available Abstract Feline immunodeficiency virus (FIV targets helper T cells by attachment of the envelope glycoprotein (Env to CD134, a subsequent interaction with CXCR4 then facilitating the process of viral entry. As the CXCR4 binding site is not exposed until CD134-binding has occurred then the virus is protected from neutralising antibodies targeting the CXCR4-binding site on Env. Prototypic FIV vaccines based on the FL4 strain of FIV contain a cell culture-adapted strain of FIV Petaluma, a CD134-independent strain of FIV that interacts directly with CXCR4. In addition to a characteristic increase in charge in the V3 loop homologue of FIVFL4, we identified two mutations in potential sites for N-linked glycosylation in the region of FIV Env analogous to the V1–V2 region of HIV and SIV Env, T271I and N342Y. When these mutations were introduced into the primary GL8 and CPG41 strains of FIV, the T271I mutation was found to alter the nature of the virus-CD134 interaction; primary viruses carrying the T271I mutation no longer required determinants in cysteine-rich domain (CRD 2 of CD134 for viral entry. The T271I mutation did not confer CD134-independent infection upon GL8 or CPG41, nor did it increase the affinity of the CXCR4 interaction, suggesting that the principal effect was targeted at reducing the complexity of the Env-CD134 interaction.

  19. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry.

    Directory of Open Access Journals (Sweden)

    Rachid Sougrat

    2007-05-01

    Full Text Available The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV, are heterodimers of a transmembrane glycoprotein (usually gp41, and a surface glycoprotein (gp120, which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.

  20. Use of λgt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    International Nuclear Information System (INIS)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-01-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector λgt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the λgt11 vector, the cloned proteins were expressed in Escherichia coli as β-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of [ 14 C]glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX; gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved

  1. Purification and partial characterization of low molecular weight vicilin-like glycoprotein from the seeds of Citrullus lanatus.

    Science.gov (United States)

    Yadav, Sushila; Tomar, Anil Kumar; Jithesh, O; Khan, Meraj Alam; Yadav, R N; Srinivasan, A; Singh, Tej P; Yadav, Savita

    2011-12-01

    The watermelon (Citrullus lanatus) seeds are highly nutritive and contain large amount of proteins and many beneficial minerals such as magnesium, calcium, potassium, iron, phosphorous, zinc etc. In various parts of the world, C. lanatus seed extracts are used to cure cancer, cardiovascular diseases, hypertension, and blood pressure. C. lanatus seed extracts are also used as home remedy for edema and urinary tract problems. In this study, we isolated protein fraction of C. lanatus seeds using various protein separation methods. We successfully purified a low molecular weight vicilin-like glycoprotein using chromatographic methods followed by SDS-PAGE and MALDI-TOF/MS identification. This is the first report of purification of a vicilin like polypeptide from C. lanatus seeds. In next step, we extracted mRNA from immature seeds and reverse transcribed it using suitable forward and reverse primers for purified glycoprotein. The PCR product was analysed on 1% agarose gel and was subsequently sequenced by Dideoxy DNA sequencing method. An amino acid translation of the gene is in agreement with amino acid sequences of the identified peptides.

  2. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Directory of Open Access Journals (Sweden)

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  3. Comparative Profiling of Triple-Negative Breast Carcinomas Tissue Glycoproteome by Sequential Purification of Glycoproteins and Stable Isotope Labeling

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available Background: Women with triple negative breast cancers (TNBCs have a poor prognosis due to lack of suitable targeted therapies. Changes in the protein glycosylation are increasingly being recognized as an important modification associated with cancer etiology. Methods: In an attempt to identify TNBC biomarkers with greater diagnostic and prognostic capabilities, hydrazide- based chemistry method combined with LC-MS/MS were used to purify and identify N-linked glycopeptides or glycoproteins of tissues from TNBC patients. Results: A total of 550 unique N-linked glycoproteins were identified, among these proteins, 72 unique N-linked glycoproteins were significantly regulated in tumor tissues, of which 56 proteins were upregulated and 16 proteins were downregulated. To assess the validity of the results, three selected proteins including Vascular endothelial growth factor receptor 1, Insulin receptor, Tissue factor pathway inhibitor were selected for western blot analysis, and these proteins were found as potential biomarkers of TNBC. The top three pathways of differentially expressed glycoproteins participated in were caveolar-mediated endocytosis signaling, agrin interactions at neuromuscular junction and LXR/RXR activation. Conclusion: This work provides potential glycoprotein markers to function as a novel tissue-based biomarker for TNBC.

  4. Conservation of the egg envelope digestion mechanism of hatching enzyme in euteleostean fishes.

    Science.gov (United States)

    Kawaguchi, Mari; Yasumasu, Shigeki; Shimizu, Akio; Sano, Kaori; Iuchi, Ichiro; Nishida, Mutsumi

    2010-12-01

    We purified two hatching enzymes, namely high choriolytic enzyme (HCE; EC 3.4.24.67) and low choriolytic enzyme (LCE; EC 3.4.24.66), from the hatching liquid of Fundulus heteroclitus, which were named Fundulus HCE (FHCE) and Fundulus LCE (FLCE). FHCE swelled the inner layer of egg envelope, and FLCE completely digested the FHCE-swollen envelope. In addition, we cloned three Fundulus cDNAs orthologous to cDNAs for the medaka precursors of egg envelope subunit proteins (i.e. choriogenins H, H minor and L) from the female liver. Cleavage sites of FHCE and FLCE on egg envelope subunit proteins were determined by comparing the N-terminal amino acid sequences of digests with the sequences deduced from the cDNAs for egg envelope subunit proteins. FHCE and FLCE cleaved different sites of the subunit proteins. FHCE efficiently cleaved the Pro-X-Y repeat regions into tripeptides to dodecapeptides to swell the envelope, whereas FLCE cleaved the inside of the zona pellucida domain, the core structure of egg envelope subunit protein, to completely digest the FHCE-swollen envelope. A comparison showed that the positions of hatching enzyme cleavage sites on egg envelope subunit proteins were strictly conserved between Fundulus and medaka. Finally, we extended such a comparison to three other euteleosts (i.e. three-spined stickleback, spotted halibut and rainbow trout) and found that the egg envelope digestion mechanism was well conserved among them. During evolution, the egg envelope digestion by HCE and LCE orthologs was established in the lineage of euteleosts, and the mechanism is suggested to be conserved. © 2010 The Authors Journal compilation © 2010 FEBS.

  5. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    International Nuclear Information System (INIS)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-01-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  6. Dominant-negative effect of hetero-oligomerization on the function of the human immunodeficiency virus type 1 envelope glycoprotein complex

    International Nuclear Information System (INIS)

    Herrera, Carolina; Klasse, Per Johan; Kibler, Christopher W.; Michael, Elizabeth; Moore, John P.; Beddows, Simon

    2006-01-01

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivative of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R 2 > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer

  7. Recombinant pestivirus E2 glycoproteins prevent viral attachment to permissive and non permissive cells with different efficiency.

    Science.gov (United States)

    Asfor, A S; Wakeley, P R; Drew, T W; Paton, D J

    2014-08-30

    Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mutational analysis of the hepatitis C virus E1 glycoprotein in retroviral pseudoparticles and cell-culture-derived H77/JFH1 chimeric infectious virus particles

    DEFF Research Database (Denmark)

    Russell, R S; Kawaguchi, K; Meunier, J-C

    2009-01-01

    Cell entry by enveloped viruses is mediated by viral glycoproteins, and generally involves a short hydrophobic peptide (fusion peptide) that inserts into the cellular membrane. An internal hydrophobic domain within E1 (aa262-290) of hepatitis C virus (HCV) may function as a fusion peptide. Retrov...

  9. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ib alpha and alpha(IIb)beta(3)

    NARCIS (Netherlands)

    De Haas, C. J. C.; Weeterings, C.; Vughs, M. M.; De Groot, P. G.; Van Strijp, J. A.; Lisman, T.

    2009-01-01

    Objectives: Staphylococcal superantigen-like 5 (SSL5) is an exoprotein secreted by Staphylococcus aureus that has been shown to inhibit neutrophil rolling over activated endothelial cells via a direct interaction with P-selectin glycoprotein ligand 1 (PSGL-1). Methods and Results: When purified

  10. Molecular Characterization of the Processing of Arenavirus Envelope Glycoprotein Precursors by Subtilisin Kexin Isozyme-1/Site-1 Protease

    Science.gov (United States)

    Burri, Dominique J.; Pasqual, Giulia; Rochat, Cylia; Seidah, Nabil G.

    2012-01-01

    A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates. PMID:22357276

  11. Characterization of an apically derived epithelial membrane glycoprotein from bovine milk, which is expressed in capillary endothelia in diverse tissues.

    Science.gov (United States)

    Greenwalt, D E; Mather, I H

    1985-02-01

    A glycoprotein (PAS IV) of apparent Mr 76,000 was purified from bovine milk-fat-globule membrane and partially characterized. PAS IV contained mannose, galactose, and sialic acid as principal sugars (approximately 5.3% total carbohydrate [wt/wt]) and existed in milk in at least four isoelectric variants. The glycoprotein appeared to be an integral membrane protein by several criteria. PAS IV was recovered in the detergent phase of Triton X-114 extracts of milk-fat-globule membrane at room temperature. When bound to membrane, PAS IV was resistant to digestion by a number of proteinases, although after solubilization with non-ionic detergents, the protein was readily degraded. Amino acid analysis of the purified protein revealed a high percentage of amino acids with nonpolar residues. The location of PAS IV was determined in bovine tissues by using immunofluorescence techniques. In mammary tissue, PAS IV was located on both the apical surfaces of secretory epithelial cells and endothelial cells of capillaries. This glycoprotein was also detected in endothelial cells of heart, liver, spleen, pancreas, salivary gland, and small intestine. In addition to mammary epithelial cells, PAS IV was also located in certain other epithelial cells, most notably the bronchiolar epithelial cells of lung. The potential usefulness of this protein as a specific marker of capillary endothelial cells in certain tissues is discussed.

  12. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    Science.gov (United States)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  13. Structure of a Venezuelan equine encephalitis virus assembly intermediate isolated from infected cells

    International Nuclear Information System (INIS)

    Lamb, Kristen; Lokesh, G.L.; Sherman, Michael; Watowich, Stanley

    2010-01-01

    Venezuelan equine encephalitis virus (VEEV) is a prototypical enveloped ssRNA virus of the family Togaviridae. To better understand alphavirus assembly, we analyzed newly formed nucleocapsid particles (termed pre-viral nucleocapsids) isolated from infected cells. These particles were intermediates along the virus assembly pathway, and ultimately bind membrane-associated viral glycoproteins to bud as mature infectious virus. Purified pre-viral nucleocapsids were spherical with a unimodal diameter distribution. The structure of one class of pre-viral nucleocapsids was determined with single particle reconstruction of cryo-electron microscopy images. These studies showed that pre-viral nucleocapsids assembled into an icosahedral structure with a capsid stoichiometry similar to the mature nucleocapsid. However, the individual capsomers were organized significantly differently within the pre-viral and mature nucleocapsids. The pre-viral nucleocapsid structure implies that nucleocapsids are highly plastic and undergo glycoprotein and/or lipid-driven rearrangements during virus self-assembly. This mechanism of self-assembly may be general for other enveloped viruses.

  14. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    Science.gov (United States)

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  15. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    Science.gov (United States)

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  16. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  17. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Science.gov (United States)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. PMID:24725935

  18. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  19. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Science.gov (United States)

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  20. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  1. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode

    OpenAIRE

    Haag, Lars; Garoff, Henrik; Xing, Li; Hammar, Lena; Kan, Sin-Tau; Cheng, R.Holland

    2002-01-01

    In the icosahedral (T = 4) Semliki Forest virus, the envelope protomers, i.e. E1–E2 heterodimers, make one-to-one interactions with capsid proteins below the viral lipid bilayer, transverse the membrane and form an external glycoprotein shell with projections. The shell is organized by protomer domains interacting as hexamers and pentamers around shell openings at icosahedral 2- and 5-fold axes, respectively, and the projections by other domains associating as trimers at 3- and quasi 3-fold a...

  2. Production of polyclonal antiserum specific to the 27.5 kDa envelope protein of white spot syndrome virus

    NARCIS (Netherlands)

    You, Z.O.; Nadala, E.C.B.; Yang, J.S.; Hulten, van M.C.W.; Loh, P.C.

    2002-01-01

    A truncated version of the white spot syndrome virus (WSSV) 27.5 kDa envelope protein was expressed as a histidine tag fusion protein in Escherichia coli. The bacterial expression system allowed the production of up to 10 mg of purified recombinant protein per liter of bacterial culture. Antiserum

  3. Screening of extraction methods for glycoproteins from jellyfish ( Rhopilema esculentum) oral-arms by high performance liquid chromatography

    Science.gov (United States)

    Ren, Guoyan; Li, Bafang; Zhao, Xue; Zhuang, Yongliang; Yan, Mingyan; Hou, Hu; Zhang, Xiukun; Chen, Li

    2009-03-01

    In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish ( Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotein. The results showed that the calibration curves for peak area plotted against concentration for TGP were linear ( r = 0.9984, y = 4.5895 x+47.601) over concentrations ranging from 50 to 400 mgL-1. The mean extraction recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish ( R. esculentum) oral-arms by four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water extraction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophilized extract was dissolved in Milli-Q water and analyzed directly on a short TSK-GEL G4000PWXL (7.8 mm×300 mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.

  4. AcEST: BP913599 [AcEST

    Lifescience Database Archive (English)

    Full Text Available VGP_MABVO Envelope glycoprotein OS=Lake Victoria marburgvirus (strain Ozolin-75) ...s) Value sp|Q6UY66|VGP_MABVO Envelope glycoprotein OS=Lake Victoria marbu... 31 2...P_MABVO Envelope glycoprotein OS=Lake Victoria marburgvirus (strain Ozolin-75) GN

  5. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    International Nuclear Information System (INIS)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  6. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function

    International Nuclear Information System (INIS)

    Hollier, Mark J.; Dimmock, Nigel J.

    2005-01-01

    In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, β-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules - those destined for incorporation into virions - has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell

  7. Use of radioactive glucosamine in the perfused rat liver to prepare α1-acid glycoprotein (orosomucoid) with 3H- or 14C-labelled sialic acid and N-acetylglucosamine residues

    International Nuclear Information System (INIS)

    Aronson, N.N. Jr.

    1982-01-01

    A method was developed whereby [1- 14 C]glucosamine was used in a perfused rat liver system to prepare over 2 mg of α 1 -acid glycoprotein with highly radioactive sialic acid and glucosamine residues. The liver secreted radioactive α 1 -acid glycoprotein over a 4-6 h period, and this glycoprotein was purified from the perfusate by chromatography on DEAE-cellulose at pH3.6. The sialic acid on the isolated glycoprotein had a specific radioactivity of 3.1 Ci/mol, whereas the glucosamine-specific radioactivity was 4.3 Ci/mole. The latter amino-sugar residues on the isolated protein were only 13-fold less radioactive than the initially added [1- 14 C]glucosamine. Orosomucoid with a specific radioactivity of 31.3 μCi/mg of protein was obtainable by using [6- 3 H]glucosamine. Many other radioactive glycoproteins were found to be secreted into the perfusate by the liver. Thus this experimental system should prove useful for obtaining other serum glycoproteins with highly radioactive sugar moieties. (author)

  8. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  9. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Directory of Open Access Journals (Sweden)

    Anna Maisa

    2009-06-01

    Full Text Available Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication.We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor.Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  10. Ca 125 and Ca 19-9: two cancer-associated sialylsaccharide antigens on a mucus glycoprotein from human milk.

    Science.gov (United States)

    Hanisch, F G; Uhlenbruck, G; Dienst, C; Stottrop, M; Hippauf, E

    1985-06-03

    The cancer-associated antigens Ca 125 and Ca 19-9 were demonstrated by radioimmunoassay to form structural units of a mucus glycoprotein in human milk taken from healthy women four days after parturition. The glycoprotein precipitated with the casein fraction at pH 4.6 and was completely absent in the whey as judged from Ca 19-9 assay. It could be effectively enriched by phenol-saline extraction from soluble milk proteins and further purified by gel filtration on Sephacryl S300 and Sephacryl S400. The active component with a bouyant density of 1.41 g/ml in isopycnic density gradient centrifugation (CsCl) shared common physico-chemical and chemical characteristics of mucus glycoproteins. Carbohydrates representing about 68% by weight were conjugated to protein by alkali-labile linkages, exclusively and were essentially free of D-mannose. Activities of Ca 125 and Ca 19-9 were both destroyed by treatment with periodate, mild alkali or neuraminidase suggesting the antigens are sialylated saccharides bound to protein by alkali-labile linkages. The fraction of monosialylated saccharide alditols isolated after reductive beta-elimination from the mucus glycoprotein was shown to inhibit monoclonal antibodies anti-(Ca 125) and anti-(Ca 19-9) in radioimmunoassay.

  11. Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Denicar Lina Nascimento Fabris Maeda

    2017-09-01

    Full Text Available The heat-labile toxins (LT produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV envelope glycoprotein domain III (EDIII, which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

  12. Rescue of Infectious Particles from Preassembled Alphavirus Nucleocapsid Cores▿†

    Science.gov (United States)

    Snyder, Jonathan E.; Azizgolshani, Odisse; Wu, Bingbing; He, Yingpei; Lee, Aih Cheun; Jose, Joyce; Suter, Daniel M.; Knobler, Charles M.; Gelbart, William M.; Kuhn, Richard J.

    2011-01-01

    Alphaviruses are small, spherical, enveloped, positive-sense, single-stranded, RNA viruses responsible for considerable human and animal disease. Using microinjection of preassembled cores as a tool, a system has been established to study the assembly and budding process of Sindbis virus, the type member of the alphaviruses. We demonstrate the release of infectious virus-like particles from cells expressing Sindbis virus envelope glycoproteins following microinjection of Sindbis virus nucleocapsids purified from the cytoplasm of infected cells. Furthermore, it is shown that nucleocapsids assembled in vitro mimic those isolated in the cytoplasm of infected cells with respect to their ability to be incorporated into enveloped virions following microinjection. This system allows for the study of the alphavirus budding process independent of an authentic infection and provides a platform to study viral and host requirements for budding. PMID:21471237

  13. Differential Recognition of Old World and New World Arenavirus Envelope Glycoproteins by Subtilisin Kexin Isozyme 1 (SKI-1)/Site 1 Protease (S1P)

    Science.gov (United States)

    Burri, Dominique J.; Ramos da Palma, Joel; Seidah, Nabil G.; Zanotti, Giuseppe; Cendron, Laura

    2013-01-01

    The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic “signature residue” at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket. PMID:23536681

  14. Single-Particle Discrimination of Retroviruses from Extracellular Vesicles by Nanoscale Flow Cytometry.

    Science.gov (United States)

    Tang, Vera A; Renner, Tyler M; Fritzsche, Anna K; Burger, Dylan; Langlois, Marc-André

    2017-12-19

    Retroviruses and small EVs overlap in size, buoyant densities, refractive indices and share many cell-derived surface markers making them virtually indistinguishable by standard biochemical methods. This poses a significant challenge when purifying retroviruses for downstream analyses or for phenotypic characterization studies of markers on individual virions given that EVs are a major contaminant of retroviral preparations. Nanoscale flow cytometry (NFC), also called flow virometry, is an adaptation of flow cytometry technology for the analysis of individual nanoparticles such as extracellular vesicles (EVs) and retroviruses. In this study we systematically optimized NFC parameters for the detection of retroviral particles in the range of 115-130 nm, including viral production, sample labeling, laser power and voltage settings. By using the retroviral envelope glycoprotein as a selection marker, and evaluating a number of fluorescent dyes and labeling methods, we demonstrate that it is possible to confidently distinguish retroviruses from small EVs by NFC. Our findings make it now possible to individually phenotype genetically modified retroviral particles that express a fluorescent envelope glycoprotein without removing EV contaminants from the sample.

  15. A glycoprotein with anti-inflammatory properties secreted by an Aspergillus nidulans modified strain

    Directory of Open Access Journals (Sweden)

    J. C. F. Queiroz

    2007-01-01

    Full Text Available Total RNA from lipopolysaccharide (LPS-stimulated rat macrophages used to treat protoplasts from an Aspergillus nidulans strain originated the RT2 regenerated strain, whose culture supernatant showed anti-inflammatory activity in Wistar rats. The protein fraction presenting such anti-inflammatory activity was purified and biochemically identified. The screening of the fraction responsible for such anti-inflammatory property was performed by evaluating the inhibition of carrageenan-induced paw edema in male Swiss mice. Biochemical analyses of the anti-inflammatory protein used chromatography, carbohydrates quantification of the protein sample, amino acids content analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Total sugar quantification revealed 32% glycosylation of the protein fraction. Amino acid analysis of such fraction showed a peculiar pattern presenting 29% valine. SDS-PAGE revealed that the protein sample is pure and its molecular weight is about 40kDa. Intravenous injection of the isolated substance into mice significantly inhibited carrageenan-induced paw edema. The isolated glycoprotein decreased carrageenan-induced paw edema in a prostaglandin-dependent phase, suggesting an inhibitory effect of the isolated glycoprotein on prostaglandin synthesis.

  16. A novel method for analysis of membrane microdomains: vesicular stomatitis virus glycoprotein microdomains change in size during infection, and those outside of budding sites resemble sites of virus budding

    International Nuclear Information System (INIS)

    Brown, Erica L.; Lyles, Douglas S.

    2003-01-01

    Membrane proteins, including viral envelope glycoproteins, may be organized into areas of locally high concentration, commonly referred to as membrane microdomains. Some viruses bud from detergent-resistant microdomains referred to as lipid rafts. However, vesicular stomatitis virus (VSV) serves as a prototype for viruses that bud from areas of plasma membrane that are not detergent resistant. We developed a new analytical method for immunoelectron microscopy data to determine whether the VSV envelope glycoprotein (G protein) is organized into plasma membrane microdomains. This method was used to quantify the distribution of the G protein in microdomains in areas of plasma membrane that did not contain budding sites. These microdomains were compared to budding virus envelopes to address the question of whether G protein-containing microdomains were formed only at the sites of budding. At early times postinfection, most of the G protein was organized into membrane microdomains outside of virus budding sites that were approximately 100-150 nm, with smaller amounts distributed into larger microdomains. In contrast to early times postinfection, the increased level of G protein in the host plasma membrane at later times postinfection led to distribution of G protein among membrane microdomains of a wider variety of sizes, rather than a higher G protein concentration in the 100- to 150-nm microdomains. VSV budding occurred in G protein-containing microdomains with a range of sizes, some of which were smaller than the virus envelope. These microdomains extended in size to a maximum of 300-400 nm from the tip of the budding virion. The data support a model for virus assembly in which G protein organizes into membrane microdomains that resemble virus envelopes prior to formation of budding sites, and these microdomains serve as the sites of assembly of internal virion components

  17. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Science.gov (United States)

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  18. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  19. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions

    International Nuclear Information System (INIS)

    Kunz, Stefan; Edelmann, Kurt H.; Torre, Juan-Carlos de la; Gorney, Robert; Oldstone, Michael B.A.

    2003-01-01

    The glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) serves as virus attachment protein to its receptor on host cells and is a key determinant for cell tropism, pathogenesis, and epidemiology of the virus. The GP of LCMV is posttranslationally cleaved by the subtilase SKI-1/S1P into two subunits, the peripheral GP1, which is implicated in receptor binding, and the transmembrane GP2 that is structurally similar to the fusion active membrane proximal portions of the glycoproteins of other enveloped viruses. The present study shows that cleavage by SKI-1/S1P is not required for cell surface expression of LCMVGP on infected cells but is essential for its incorporation into virions and for the production of infectious virus particles. In absence of SKI-1/S1P cleavage, cell-to-cell propagation of the virus was markedly reduced. Further, proteolytic processing of LCMVGP depends on the presence of a cluster of basic amino acids at the C-terminus of the cytoplasmic domain of GP2, a structural motif that is conserved in Old World arenaviruses. The effect of the truncation of the cytoplasmic tail on cleavage suggests a structural interdependence between the cytoplasmic domain and the ectodomains of LCMVGP

  20. Genomic clone encoding the α chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules

    International Nuclear Information System (INIS)

    Cosgrove, L.J.; Sandrin, M.S.; Rajasekariah, P.; McKenzie, I.F.C.

    1986-01-01

    LFA-1, an antigen involved in cytolytic T lymphocyte-mediated killing, and Mac-1, the receptor for complement component C3bi, constitute a family of structurally and functionally related cell surface glycoproteins involved in cellular interactions. In both mouse and man, Mac-1 (OKM1) and LFA-1 share a common 95-kDa β subunit but are distinguished by their α chains, which have different cellular distributions, apparent molecular masses (165 and 177 kDa, respectively), and peptide maps. The authors report the isolation of a genomic clone from a human genomic library that on transfection into mouse fibroblasts produced a molecule(s) reactive with monoclonal antibodies to OKM1, to LFA-1, and to platelet glycoprotein IIb-IIIa. This gene was cloned by several cycles of transfection of L cells with a human genomic library cloned in λ phase Charon 4A and subsequent rescue of the λ phage. Transfection with the purified recombinant λ DNA yielded a transfectant that expressed the three human α chains of OKM1, LFA-1, and glycoprotein IIb-IIIa, presumably in association with the murine β chain

  1. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of Pseudomonas syringae.

    Science.gov (United States)

    Palaiomylitou, M A; Kalimanis, A; Koukkou, A I; Drainas, C; Anastassopoulos, E; Panopoulos, N J; Ekateriniadou, L V; Kyriakidis, D A

    1998-08-01

    Ice nucleation protein was partially purified from the membrane fraction of E. coli carrying inaZ from Pseudomonas syringae. The ice nucleation protein was totally localized in the bacterial envelope and was extracted by either salt (0.25 M NH4Cl) or the nonionic detergent Tween 20. The extracted protein was partially purified by sequential passage through DEAE-52 cellulose and Sephacryl-S400 columns. The activity of the purified protein was lost after treatment with phospholipase C, and its activity was subsequently restored by addition of the naturally occurring lipid phosphatidylethanolamine. These results suggest that ice nucleation proteins have a requirement for lipids that reconstitute a physiological hydrophobic environment similar to the one existing in vivo, to attain and maintain a structure that enables ice catalysis. Copyright 1998 Academic Press.

  2. Specific interaction of CXCR4 with CD4 and CD8α: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion

    International Nuclear Information System (INIS)

    Basmaciogullari, Stephane; Pacheco, Beatriz; Bour, Stephan; Sodroski, Joseph

    2006-01-01

    We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8α in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8α/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8α molecules

  3. The albumin of the brown trout (Salmo trutta) is a glycoprotein.

    Science.gov (United States)

    Metcalf, V J; Brennan, S O; Chambers, G K; George, P M

    1998-07-28

    The albumin from an Atlantic salmonid, the brown trout (Salmo trutta), is 1730 Da higher in molecular mass than the albumin from a Pacific salmonid, the chinook salmon (Oncorhynchus tshawytscha), at 65230 Da. Digestion with neuraminidase revealed that purified brown trout albumin contained sialic acid while chinook salmon albumin did not. Concanavalin A-sepharose affinity chromatography was used to purify a glycopeptide from a total tryptic digest of brown trout albumin. The mass of this glycopeptide (3815 Da) was determined by mass spectrometry, and the sequence largely confirmed by N-terminal sequencing. The identified sequence of IAHCCNQSYSM-, contains an Asn-Gln-Ser glycosylation site and is identical to residues 475-485 derived from the cDNA of the albumin from the Atlantic salmon, the closest relative of the brown trout. Glycosylation of albumin is very unusual, and has not been identified in either reptilian or mammalian albumins. The finding of a glycoalbumin in salmonids, ancient members of the teleost fish subclass, coupled with evidence of albumin glycosylation in the oldest vertebrates, agnathans, as well as amphibians, suggests that albumin was originally a glycoprotein, but lost this modification sometime between the divergence of amphibians and reptiles.

  4. Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma.

    Science.gov (United States)

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-07-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers.

  5. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  6. Species-specific deletion of the viral attachment glycoprotein of avian metapneumovirus.

    Science.gov (United States)

    Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N

    2008-03-01

    The avian metapneumovirus (AMPV) genome encodes the fusion (F), small hydrophobic (SH), and attachment glycoprotein (G) as envelope glycoproteins. The F and G proteins mainly function to allow viral entry into host cells during the early steps of the virus life cycle. The highly variable AMPV G protein is a major determinant for distinguishing virus subtypes. Sequence analysis was used to determine if any differences between avian or mammalian cell propagated subtype C AMPV could be detected for the 1.8kb G gene. As a result, the complete 1.8kb G gene was found to be present when AMPV was propagated in our immortal turkey turbinate (TT-1) cell line regardless of passage number. Surprisingly, AMPV propagated for 15 or more passages in mammalian Vero cells revealed an essentially deleted G gene in the viral genome, resulting in no G gene mRNA expression. Although the Vero cell propagated AMPV genome contained a small 122 nucleotide fragment of the G gene, no other mRNA variants were detected from either mammalian or avian propagated AMPV. The G gene truncation might be caused by cellular molecular mechanisms that are species-specific. The lack of viral gene deletions suggests that avian cell propagated AMPV will provide a better alternative host for live recombinant vaccine development based on a reverse genetics system.

  7. Cell wall O-glycoproteins and N-glycoproteins: biosynthesis and some functional aspects.

    Directory of Open Access Journals (Sweden)

    Eric eNguema-Ona

    2014-10-01

    Full Text Available Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensin, the O-glycan chains of arabinogalactan proteins are highly heterogeneous consisting mostly of (i a short oligo-arabinoside chain of three to four residues, and (ii a larger -1,3-linked galactan backbone with -1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core 1,2-xylose, core 1,3-fucose residues and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins only extensin and arabinogalactan proteins are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

  8. NF-κB and p53 Are the Dominant Apoptosis-inducing Transcription Factors Elicited by the HIV-1 Envelope

    OpenAIRE

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-01-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-κB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor κB (NF-κB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p5...

  9. Retention and topology of the bovine viral diarrhea virus glycoprotein E2.

    Science.gov (United States)

    Radtke, Christina; Tews, Birke Andrea

    2017-10-01

    Pestiviruses are enveloped viruses that bud intracellularly. They have three envelope glycoproteins, E rns , E1, and E2. E2 is the receptor binding protein and the main target for neutralizing antibodies. Both E rns and E2 are retained intracellularly. Here, E2 of the bovine viral diarrhea virus (BVDV) strain CP7 was used to study the membrane topology and intracellular localization of the protein. E2 is localized in the ER and there was no difference between E2 expressed alone or in the context of the viral polyprotein. The mature E2 protein was found to possess a single span transmembrane anchor. For the mapping of a retention signal CD72-E2 fusion proteins, as well as E2 alone were analysed. This confirmed the importance of the transmembrane domain and arginine 355 for intracellular retention, but also revealed a modulating effect on retention through the cytoplasmic tail of the E2 protein, especially through glutamine 370. Mutants with a strong impact on retention were tested in the viral context and we were able to rescue BVDV with certain mutations that in E2 alone impaired intracellular retention and lead to export of E2 to the cells surface.

  10. Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Barchi, R.L.; Tanaka, J.C.

    1984-01-01

    In excitable membranes, the voltage-dependent sodium channel controls the primary membrane conductance change necessary for the generation of an action potential. Over the past four decades, the time- and voltage-dependent sodium currents gated by this channel have been thoroughly documented with increasingly sophisticated voltage-clamp techniques. Recent advances in the biochemistry of membrane proteins have led to the solubilization and purification of this channel protein from nerve (6) and from muscle (4) or muscle-derived (1) membranes, and have provided an approach to the correlation of the channel's molecular structure with its functional properties. Each of these sodium channel preparations appears to contain a large glycoprotein either as its sole component (2) or in association with several small subunits (6, 3). Evidence that these purified proteins represent the excitable membrane sodium channel is presented. 8 refs., 1 fig., 1 tab

  11. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry

    International Nuclear Information System (INIS)

    Giannecchini, Simone; Bonci, Francesca; Pistello, Mauro; Matteucci, Donatella; Sichi, Olimpia; Rovero, Paolo; Bendinelli, Mauro

    2004-01-01

    The mechanisms whereby feline immunodeficiency virus (FIV) adsorbs and enters into susceptible cells are poorly understood. Here, we investigated the role exerted in such functions by the tryptophan (Trp)-rich motif present membrane-proximally in the ectodomain of the FIV transmembrane glycoprotein. Starting from p34TF10, which encodes the entire genome of FIV Petaluma, we produced 11 mutated clones having the Trp-rich motif scrambled or variously deleted or substituted. All mutated progenies adsorbed normally to cells, but the ones with severe disruptions of the motif failed to generate proviral DNA. In the latter mutants, proviral DNA formation was restored by providing an independent source of intact FIV envelope glycoproteins or by addition of the fusing agent polyethylene glycol, thus clearly indicating that their defect resided primarily at the level of cell entry. In addition, the replication-competent mutants exhibited a generally enhanced susceptibility to selected entry inhibitory synthetic peptides, suggestive of a reduced efficiency of the entry step

  12. Enveloping Aerodynamic Decelerator

    Science.gov (United States)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)

    2018-01-01

    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  13. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  14. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  15. The inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant, carbohydrate chains, and proteinaceous components are all responsible for the cross-reactivity of trypanosome variant surface glycoproteins.

    Science.gov (United States)

    Escalona, José L; Uzcanga, Graciela L; Carrasquel, Liomary M; Bubis, José

    2018-01-24

    Salivarian trypanosomes evade the host immune system by continually swapping their protective variant surface glycoprotein (VSG) coat. Given that VSGs from various trypanosome stocks exhibited cross-reactivity (Camargo et al., Vet. Parasitol. 207, 17-33, 2015), we analyzed here which components are the antigenic determinants for this cross-reaction. Soluble forms of VSGs were purified from four Venezuelan animal trypanosome isolates: TeAp-N/D1, TeAp-ElFrio01, TeAp-Mantecal01, and TeGu-Terecay323. By using the VSG soluble form from TeAp-N/D1, we found that neither the inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant nor the carbohydrate chains were exclusively responsible for its cross-reactivity. Then, all four purified glycoproteins were digested with papain and the resulting peptides were separated by high-performance liquid chromatography. Dot blot evaluation of the fractions using sera from trypanosome-infected animals yielded peptides that possessed cross-reaction activity, demonstrating for the first time that proteinaceous epitopes are also responsible for the cross-reactivity of trypanosome VSGs.

  16. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence.

    Science.gov (United States)

    Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-07-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.

  17. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    International Nuclear Information System (INIS)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed

  18. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  19. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure.

    Directory of Open Access Journals (Sweden)

    Nicole Haese

    Full Text Available Andes virus (ANDV and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000. Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50. Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8, or no-treatment (n=8, developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral

  20. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    International Nuclear Information System (INIS)

    Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu; Denda-Nagai, Kaori; Takada, Ayato; Irimura, Tatsuro

    2011-01-01

    Highlights: → Ebola virus infection is mediated by binding to and fusion with the target cells. → Structural feature of the viral glycoprotein determines the infectivity. → Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. → GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. → There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  1. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Katsuaki [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Matsuno, Keita; Igarashi, Manabu [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Denda-Nagai, Kaori [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Takada, Ayato [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Irimura, Tatsuro, E-mail: irimura@mol.f.u-tokyo.ac.jp [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  2. Evaluation of envelope glycoprotein E(rns) of an atypical bovine pestivirus as antigen in a microsphere immunoassay for the detection of antibodies against bovine viral diarrhea virus 1 and atypical bovine pestivirus.

    Science.gov (United States)

    Vijayaraghavan, Balaje; Xia, Hongyan; Harimoorthy, Rajiv; Liu, Lihong; Belák, Sándor

    2012-11-01

    Atypical bovine pestiviruses are related antigenically and phylogenetically to bovine viral diarrhea viruses (BVDV-1 and BVDV-2), and may cause the same clinical manifestations in animals. Glycoprotein E(rns) of an atypical bovine pestivirus Th/04_KhonKaen was produced in a baculovirus expression system and was purified by affinity chromatography. The recombinant E(rns) protein was used as an antigen in a microsphere immunoassay for the detection of antibodies against BVDV-1 and atypical bovine pestivirus. The diagnostic performance of the new method was evaluated by testing a total of 596 serum samples, and the assay was compared with enzyme-linked immunosorbent assay (ELISA). Based on the negative/positive cut-off median fluorescence intensity (MFI) value of 2800, the microsphere immunoassay had a sensitivity of 100% and specificity of 100% compared to ELISA. The immunoassay was able to detect antibodies against both BVDV-1 and the atypical pestivirus. This novel microsphere immunoassay has the potential to be multiplexed for simultaneous detection of antibodies against different bovine pathogens in a high-throughput and economical way. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Dimers of beta 2-glycoprotein I mimic the in vitro effects of beta 2-glycoprotein I-anti-beta 2-glycoprotein I antibody complexes

    NARCIS (Netherlands)

    Lutters, B. C.; Meijers, J. C.; Derksen, R. H.; Arnout, J.; de Groot, P. G.

    2001-01-01

    Anti-beta(2)-glycoprotein I antibodies are thought to cause lupus anticoagulant activity by forming bivalent complexes with beta(2)-glycoprotein I (beta(2)GPI). To test this hypothesis, chimeric fusion proteins were constructed of the dimerization domain (apple 4) of factor XI and beta(2)GPI. Both a

  4. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

    Science.gov (United States)

    Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.

    2013-06-01

    In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.

  5. The major surface glycoprotein (gp63) from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells

    DEFF Research Database (Denmark)

    Hey, A S; Theander, T G; Hviid, L

    1994-01-01

    The effect of Leishmania major and L. donovani surface protease gp63 on surface markers on human T cells was studied using fluorescence-activated flow cytometry. Purified gp63 (63,000 m.w. glycoprotein) at concentrations above 10 micrograms/ml completely inhibited binding of six different anti-CD4......-expression of CD4, reaching 50% of the initial level after 72 h of incubation in medium. Preincubation of cells with live promastigotes showed an inhibitory effect on CD4 comparable to that seen with purified gp63. The binding of Abs directed against other surface markers present on human T-cells--CD2, CD3, CD5......, CD8, CD11A, CD25, CD45RO, CD45RA, CD58, TCR-alpha, TCR-gamma, and HLA DQ--was not inhibited by gp63. These data suggest that gp63, both in its purified form and in the form anchored to the parasite membrane, cleaves CD4 on human T cells. The cleavage of CD4 by the protease might play a role...

  6. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  7. Identification of oligo-N-glycolylneuraminic acid residues in mammal-derived glycoproteins by a newly developed immunochemical reagent and biochemical methods.

    Science.gov (United States)

    Sato, C; Kitajima, K; Inoue, S; Inoue, Y

    1998-01-30

    The occurrence of the alpha2-->8-linked oligomeric form of N-glycolylneuraminic acid (oligo-Neu5Gc) residues in mammalian glycoproteins was unequivocally demonstrated using a newly developed anti-oligo/poly-Neu5Gc monoclonal antibody as well as by chemical and biochemical methods. First, the antibody, designated mAb.2-4B, which specifically recognized oligo/poly-Neu5Gc with a degree of polymerization of >2, was developed by establishing a hybridoma cell line from P3U1 myeloma cells fused with splenocytes from an MRL autoimmune mouse immunized with dipalmitoylphosphatidylethanolamine-conjugated oligo/poly-Neu5Gc. Second, oligo-Neu5Gc was shown to occur in glycoproteins derived from pig spleen by Western blot analysis using mAb.2-4B, which was also confirmed by fluorometric high performance liquid chromatographic analysis of the product of periodate oxidation/reduction/acid hydrolysis of the purified glycopeptide fractions and by TLC and 600-MHz 1H NMR spectroscopic analysis of their mild acid hydrolysates. Finally, the ubiquitous occurrence of oligo-Neu5Gc chains as glycoproteinaceous components in Wistar rat tissue was immunochemically indicated. This is the first example demonstrating the diversity in oligo/poly-Sia structure in mammalian glycoproteins, where only poly-N-acetylneuraminic acid is known to occur. Such diversity in oligo/poly-Sia structure also implicates a diverged array of biological functions of this glycan unit in glycoproteins.

  8. Storage envelopes or sleeves

    International Nuclear Information System (INIS)

    Freshwater, J.R.; Wagman, P.I.

    1980-01-01

    A storage envelope or sleeve particularly for processed X-ray films is described. It consists of front and back panels joined together at a hinge line and connected along the intermediate sides by connecting flaps. An inner pocket is formed from a third flap which is folded to lie against the inner face of the back panel. The panels may have additional score lines parallel to the closed sides of the envelope and the inner pocket so that the envelope and the inner pocket can accommodate bulky contents. The free edge of the pocket is inset from the open side of the envelope, and finger cut-outs may be provided to facilitate access to the contents of the envelope and the pocket. (author)

  9. Protective plasma envelope

    International Nuclear Information System (INIS)

    Bocharov, V.N.; Konstantinov, S.G.; Kudryavtsev, A.M.; Myskin, O.K.; Panasyuk, V.M.; Tsel'nik, F.A.

    1984-06-01

    A method of creating an annular plasma envelope used to protect the hot plasma from flows of impurities and gases from the walls of the vacuum chamber is described. The diameter of the envelope is 30 cm, the thickness of the wall is 1.5 cm, the length is 2.5 m, and its density is from 10 13 to 10 14 cm -3 . The envelope attenuates the incident (from outside) flow of helium 10-fold and the low of hydrogen 20-fold

  10. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  11. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    International Nuclear Information System (INIS)

    Russell, D.L.; Consigli, R.A.

    1986-01-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure

  12. TIM1 (HAVCR1 Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions

    Directory of Open Access Journals (Sweden)

    Anshuman Das

    2017-09-01

    Full Text Available Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1 is widely accepted to be the receptor for hepatitis A virus (HAV, an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer residues on the eHAV membrane. Both Tim1−/− Ifnar1−/− and Tim4−/− Ifnar1−/− double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT elevations similar to those in Ifnar1−/− mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1−/−Ifnar1−/− mice compared to Ifnar1−/− mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice.

  13. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  14. Biomimetic Envelopes

    OpenAIRE

    Ilaria Mazzoleni

    2010-01-01

    How to translate the lessons learned from the analysis and observation of the animal world is the design learning experience presented in this article. Skin is a complex and incredibly sophisticated organ that performs various functions, including protection, sensation and heat and water regulation. In a similar way building envelopes serve multiple roles, as they are the interface between the building inhabitants and environmental elements. The resulting architectural building envelopes prot...

  15. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  16. The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway.

    Science.gov (United States)

    Zhou, Tao; Dang, Ying; Zheng, Yong-Hui

    2014-03-01

    The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins

  17. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2007-12-01

    Full Text Available Abstract Background CCR5-restricted (R5 human immunodeficiency virus type 1 (HIV-1 variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA and AIDS (A R5 Envs, respectively. Results Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362, a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. Conclusion Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.

  18. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  19. Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain α-Helical Bundle†

    Science.gov (United States)

    Harrison, Joseph S.; Koellhoffer, Jayne F.; Chandran, Kartik; Lai, Jonathan R.

    2012-01-01

    Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV is required for fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔGunf H2O, of 33.4 ± 2.5 kcal/mol and melting temperature, Tm, of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH with higher stability under lower pH conditions (Tm values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. Based on these results, we hypothesize that pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism to control conformational preferences such that the six-helix bundle ‘post-fusion’ state is preferred under conditions of appropriately matured endosomes. PMID:22369502

  20. AcEST: DK961456 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 74EF isoform B OS... 32 4.1 sp|P35253|VGP_MABVM Envelope glycoprotein OS=Lake Victoria...S VT Sbjct: 62 SPVT 65 >sp|P35253|VGP_MABVM Envelope glycoprotein OS=Lake Victoria marburgvirus (strain Muso

  1. Building envelope

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-01-01

    Full Text Available for use in the building. This is done through photovoltaic and solar water heating panels and wind turbines. Ideally these are integrated in the design of the building envelope to improve the aesthetic quality of the building and minimise material... are naturally ventilated. Renewable energy The building envelope includes renewable energy generation such as photovoltaics, wind turbines and solar water heaters and 10% of the building’s energy requirements are generated from these sources. Views All...

  2. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  3. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain.

    Science.gov (United States)

    Ou, Wu; Delisle, Josie; Jacques, Jerome; Shih, Joanna; Price, Graeme; Kuhn, Jens H; Wang, Vivian; Verthelyi, Daniela; Kaplan, Gerardo; Wilson, Carolyn A

    2012-01-25

    The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2) is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD). We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD) would induce cross-species immunity by making more conserved regions accessible to the immune system. To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs) bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP) that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  4. The LHC on an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays ...

  5. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  6. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN

    Science.gov (United States)

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E.; Huante, Matthew B.; Slack, Olga A.L.; Carpio, Victor H.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)–any amino acid (X)–serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: “Gc-large” and “Gc-small”, and N1077 was responsible for “Gc-large” band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN. PMID:27223297

  7. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    International Nuclear Information System (INIS)

    Hoetzel, Isidro; Cheevers, William P.

    2005-01-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain β-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding

  8. The LHC in an envelope

    CERN Multimedia

    2007-01-01

    The series of envelopes featuring CERN issued this summer was a huge success. The French postal services of the Pays de Gex will shortly be launching the second set of pre-paid envelopes issued in collaboration with the Laboratory this year, this time highlighting the LHC. Five thousand envelopes describing the accelerator’s capabilities will go on sale on 12 November, and some of the packs will even contain a small sample of the cables from the heart of the LHC magnets. The sets of ten pre-paid envelopes will tell you everything about CERN’s flagship accelerator, from its astounding technical capabilities to its spin-offs in the fields of technology and human resources. Each envelope will feature a different attribute or spin-off of the LHC. People will be invited to consult CERN’s public website for more detailed explanations if they want to know more. The new envelopes will be available from five post offices in the Pays de Gex (Ferney-Voltaire, Prévessin...

  9. Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins.

    Science.gov (United States)

    Del Prete, Gregory Q; Ailers, Braiden; Moldt, Brian; Keele, Brandon F; Estes, Jacob D; Rodriguez, Anthony; Sampias, Marissa; Oswald, Kelli; Fast, Randy; Trubey, Charles M; Chertova, Elena; Smedley, Jeremy; LaBranche, Celia C; Montefiori, David C; Burton, Dennis R; Shaw, George M; Markowitz, Marty; Piatak, Michael; KewalRamani, Vineet N; Bieniasz, Paul D; Lifson, Jeffrey D; Hatziioannou, Theodora

    2014-09-10

    Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology.

    Science.gov (United States)

    Aricescu, A Radu; Owens, Raymond J

    2013-06-01

    Mammalian cells are rapidly becoming the system of choice for the production of recombinant glycoproteins for structural biology applications. Their use has enabled the structural investigation of a whole new set of targets including large, multi-domain and highly glycosylated eukaryotic cell surface receptors and their supra-molecular assemblies. We summarize the technical advances that have been made in mammalian expression technology and highlight some of the structural insights that have been obtained using these methods. Looking forward, it is clear that mammalian cell expression will provide exciting and unique opportunities for an integrative approach to the structural study of proteins, especially of human origin and medically relevant, by bridging the gap between the purified state and the cellular context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    Science.gov (United States)

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  12. AcEST: BP921779 [AcEST

    Lifescience Database Archive (English)

    Full Text Available rotein D OS=Bos tauru... 31 1.7 sp|Q66810|VGP_EBOIC Envelope glycoprotein OS=Ivory Coast ebolavi... 30 3.8 s...p|Q66810|VGP_EBOIC Envelope glycoprotein OS=Ivory Coast ebolavirus (strain Cote d'Ivoire-94) GN=GP PE=1 SV=1

  13. An improved radioimmunoassay for urinary Tamm-Horsfall glycoprotein

    International Nuclear Information System (INIS)

    Dawnay, A.B. St. J.; Thornley, C.; Cattell, W.R.

    1982-01-01

    A rapid specific radioimmunoassay has been used to measure Tamm-Horsfall glycoprotein (TH glycoprotein) in urine, and the method described. The apparent concentration increased with increasing dilution of urine in water, reaching a plateau at 1 in 20. This increase was greater the higher the osmolality and TH glycoprotein concentration and the lower the pH of the original sample. The apparent concentration of TH glycoprotein in neat or diluted urine was not affected by freezing or by storage at 4 0 C or room temperature for at least 2 days. A physiological range for the urinary excretion rate was established as 22-56 mg/24h, (considerably higher than the amount present in serum) based on samples from 29 individuals with normal renal function, as defined by their creatinine clearance. There was no significant correlation between serum concentrations of TH glycoprotein and its urinary excretion rate, nor between urinary excretion rate and creatinine clearance. (author)

  14. Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2016-01-01

    Viral pseudotyped particles (pp) are enveloped virus particles, typically derived from retroviruses or rhabdoviruses, that harbor heterologous envelope glycoproteins on their surface and a genome lacking essential genes. These synthetic viral particles are safer surrogates of native viruses and acquire the tropism and host entry pathway characteristics governed by the heterologous envelope glycoprotein used. They have proven to be very useful tools used in research with many applications, such as enabling the study of entry pathways of enveloped viruses and to generate effective gene-delivery vectors. The basis for their generation lies in the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins of other viruses into a pseudotyped virus particle. These can be engineered to contain reporter genes such as luciferase, enabling quantification of virus entry events upon pseudotyped particle infection with susceptible cells. Here, we detail a protocol enabling generation of MLV-based pseudotyped particles, using the Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) as an example of a heterologous envelope glycoprotein to be incorporated. We also describe how these particles are used to infect susceptible cells and to perform a quantitative infectivity readout by a luciferase assay. PMID:28018942

  15. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike.

    Directory of Open Access Journals (Sweden)

    Thomas A Bowden

    Full Text Available The genus Orthobunyavirus within the family Bunyaviridae constitutes an expanding group of emerging viruses, which threaten human and animal health. Despite the medical importance, little is known about orthobunyavirus structure, a prerequisite for understanding virus assembly and entry. Here, using electron cryo-tomography, we report the ultrastructure of Bunyamwera virus, the prototypic member of this genus. Whilst Bunyamwera virions are pleomorphic in shape, they display a locally ordered lattice of glycoprotein spikes. Each spike protrudes 18 nm from the viral membrane and becomes disordered upon introduction to an acidic environment. Using sub-tomogram averaging, we derived a three-dimensional model of the trimeric pre-fusion glycoprotein spike to 3-nm resolution. The glycoprotein spike consists mainly of the putative class-II fusion glycoprotein and exhibits a unique tripod-like arrangement. Protein-protein contacts between neighbouring spikes occur at membrane-proximal regions and intra-spike contacts at membrane-distal regions. This trimeric assembly deviates from previously observed fusion glycoprotein arrangements, suggesting a greater than anticipated repertoire of viral fusion glycoprotein oligomerization. Our study provides evidence of a pH-dependent conformational change that occurs during orthobunyaviral entry into host cells and a blueprint for the structure of this group of emerging pathogens.

  16. Structural and Antigenic Definition of Hepatitis C Virus E2 Glycoprotein Epitopes Targeted by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Giuseppe Sautto

    2013-01-01

    Full Text Available Hepatitis C virus (HCV is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2 is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.

  17. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Dimitar B. Nikolov

    2012-02-01

    Full Text Available The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G and class I fusion (F envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  18. Chimeric rabies viruses for trans-species comparison of lyssavirus glycoprotein ectodomain functions in virus replication and pathogenesis.

    Science.gov (United States)

    Genz, Berit; Nolden, Tobias; Negatsch, Alexandra; Teifke, Jens-Peter; Conzelmann, Karl-Klaus; Finke, Stefan

    2012-01-01

    The glycoprotein G of lyssaviruses is the major determinant of virus pathogenicity and serves as a target for immunological responses to virus infections. However, assessment of the exact contribution of lyssavirus G proteins to observed differences in the pathogenicity of lyssavirus species is challenging, since the direct comparison of natural lyssaviruses does not allow specific ascription to individual virus proteins or domains. Here we describe the generation and characterization of recombinant rabies viruses (RABV) that express chimeric G proteins comprising of a RABV cytoplasma domain fused to transmembrane and ectodomain G sequences of a virulent RABV (challenge virus standard; CVS-11) or two European bat lyssaviruses (EBLV- and EBLV-2). These "envelope-switched" recombinant viruses were recovered from cDNAs. Similar growth kinetics and protein expression in neuroblastoma cell cultures and successful targeting of primary neurons showed that the chimeric G proteins were able to replace the authentic G protein in a RABV based virus vector. Inoculation of six week old CD-1 mice by the intracranial (i. c.) route of infection further demonstrated that all recombinant viruses were able to spread in the brain and to induce disease. The "envelope-switched" RABV therefore represent an important tool to further investigate the influence of lyssavirus ectodomains on virus tropism, and pathogenicity.

  19. Cortical processing of dynamic sound envelope transitions.

    Science.gov (United States)

    Zhou, Yi; Wang, Xiaoqin

    2010-12-08

    Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.

  20. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  1. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    International Nuclear Information System (INIS)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-01

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  2. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  3. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain

    Directory of Open Access Journals (Sweden)

    Ou Wu

    2012-01-01

    Full Text Available Abstract Background The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2 is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD. We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD would induce cross-species immunity by making more conserved regions accessible to the immune system. Methods To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Results Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Conclusion Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  4. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  5. β2-glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model

    Science.gov (United States)

    Arad, Ariela; Proulle, Valerie; Furie, Richard A.; Furie, Barbara C.

    2011-01-01

    Antiphospholipid syndrome is characterized by thrombosis, recurrent fetal loss, and the presence of the lupus anticoagulant, anticardiolipin antibodies, or anti–β2-glycoprotein-1 (anti–β2-GP1) antibodies. Although anti–β2-GP1 antibodies have been documented as a biomarker for diagnosis of antiphospholipid syndrome, their direct role in the pathogenesis of thrombosis is unknown. We have demonstrated using intravital microscopy that anti–β2-GP1 autoantibodies purified from the sera of patients with antiphospholipid syndrome complicated by thrombosis greatly amplify thrombus size after laser-induced vessel wall injury in live mice. Anti–β2-GP1 autoantibodies from 3 patients with antiphospholipid syndrome were affinity-purified using human β2-GP1 bound to agarose. The effects of purified anti–β2-GP1 IgG autoantibodies, of anti–β2-GP1–depleted IgG, and of IgG from normal human sera on thrombus formation were measured in mice after arterial injury in the cremaster muscle. Before injury, purified anti–β2-GP1 IgG autoantibodies, anti–β2-GP1 antibody–depleted IgG, or IgG from normal human sera were infused. Increasing amounts of purified anti–β2-GP1 autoantibodies increased thrombus size in a dose-dependent manner, whereas neither anti–β2-GP1 antibody-depleted IgG nor IgG from normal serum affected thrombus size. These results indicate that anti–β2-GP1 IgG autoantibodies in antiphospholipid syndrome patient sera are not only a marker of antiphospholipid syndrome but are directly involved in the pathogenesis of thrombosis. PMID:21245481

  6. All the Universe in an envelope

    CERN Multimedia

    2007-01-01

    Do you know which force is hidden in an envelope or how many billions of years old are the atoms it contains? You will find the answers to these (curious) questions in a post office in the Pays de Gex. The French postal services of the Pays de Gex are again issuing pre-paid envelopes in collaboration with CERN (see Bulletin No. 24/2006). The new series presents some of the concepts of modern physics in an amazing way by showing what you can learn about the Universe with a single envelope. Packets of ten pre-stamped envelopes, each carrying a statement on fundamental physics, will be on sale from 7 July onwards. To learn more about the physics issues presented on the envelopes, people are invited to go to the CERN Web site where they will find the explanations. Five thousand envelopes will be put on sale in July and five thousand more during the French "Fête de la science" in October. They will be available from five post offices in the Pays de Gex (F...

  7. Nerve growth factor-inducible large external (NILE) glycoprotein: studies of a central and peripheral neuronal marker.

    Science.gov (United States)

    Salton, S R; Richter-Landsberg, C; Greene, L A; Shelanski, M L

    1983-03-01

    The PC12 clone of pheochromocytoma cells undergoes neuronal differentiation in the presence of nerve growth factor (NGF). Concomitant with this is a significant induction in the incorporation of radiolabeled fucose or glucosamine into a 230,000-dalton cell surface glycoprotein named the NGF-Inducible Large External, or NILE, glycoprotein (GP) (McGuire, J. C., L. A. Greene, and A. V. Furano (1978) Cell 15: 357-365). In the current studies NILE GP was purified from PC12 cells using wheat germ agglutinin-agarose affinity chromatography and SDS-polyacrylamide gel electrophoresis (PAGE). Polyclonal antisera were raised against purified NILE GP and were found to selectively immunoprecipitate a single 230,000-dalton protein from detergent extracts of PC12 cells metabolically labeled with either [3H]fucose, [3H]glucosamine, or [35S]methionine. These antisera stained the surfaces of PC12 cells by indirect immunofluorescence and were cytotoxic to PC12 cells in the presence of complement. Limited treatment of PC12 cells with either trypsin or pronase produced a fucosylated 90,000-dalton immunoreactive fragment of NILE GP which remained in the membrane. Using quantitative immunoelectrophoresis, the action of NGF on NILE GP was represent an increase in the amount of protein, rather than a selective increase in carbohydrate incorporation. Immunofluorescent staining of primary cell cultures and tissue whole mounts revealed that immunologically cross-reactive NILE GP appears to be expressed on the cell surfaces (somas and neurites) of most if not all peripheral and central neurons examined. Immunoprecipitation of radiolabeled cultures showed that the cross-reactive material had an apparent molecular weight by SDS-PAGE of 225,000 to 230,000 in the peripheral nervous system and 200,000 to 210,000 in the central nervous system. NILE-cross-reactive material was also found to a small extent on Schwann cell surfaces, but not at all on a variety of other cell types. These results suggest

  8. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    International Nuclear Information System (INIS)

    Liu, Shun-Wei; Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien; Lin, Chun-Feng

    2013-01-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm 2 /V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm 2 /V s. • The discontinuity of grain boundary may cause the shift of threshold voltage

  9. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shun-Wei, E-mail: swliu@mail.mcut.edu.tw [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan, ROC (China); Lin, Chun-Feng [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China)

    2013-05-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm{sup 2}/V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm{sup 2}/V s. • The discontinuity of grain boundary may cause the shift of threshold voltage.

  10. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C M; Nielsen, C

    1989-01-01

    The binding of 13 different lectins to gp120 partially purified from two HIV-1 isolates and one HIV-2 isolate was studied by in situ staining on electrophoretically separated and electroblotted HIV antigens. The lectins concanavalin A, wheat germ agglutinin, Lens culinaris agglutinin, Vicia faba...

  11. The hydroxyapatite-binding regions of a rat salivary glycoprotein.

    Science.gov (United States)

    Embery, G; Green, D R

    1989-09-01

    The regions of a salivary sulphated glycoprotein which are involved in its attachment to hydroxyapatite (Biogel HTP) have been characterised. The sulphated glycoprotein, a 35S-labelled preparation from mixed palatal and buccal minor gland secretions of the rat was bound onto hydroxyapatite and the resultant glycoprotein-hydroxyapatite complex was sequentially digested with pronase E and alpha-L-fucosidase, a treatment which released 86.8% +/- 1.7% of the radioactivity of the initially bound glycoprotein. The fragments which remained attached to the hydroxyapatite after enzymic digestion were fractionated on Sephadex G-25 and analysed for carbohydrate and amino acid components. A range of amino acids were detected which could reflect both glycosylated and non-glycosylated-binding regions. Sialic acid, although considered to be involved in the attachment process was not detected in any of the fragments remaining after enzymic digestion, a finding which provides indirect evidence that the enzymically liberated products do not subsequently re-attach to the hydroxyapatite surface. The notable feature of the fractions with average Mr estimated at 1000 or less is the high proportion of N-acetylhexosamine and N-acetylgalactosamine. It is apparent that the hexosamine residues, which normally bear the ester sulphate moieties of sulphated glycoproteins, play an important role in the attachment of sulphated glycoproteins to hydroxyapatite.

  12. The RSV F and G glycoproteins interact to form a complex on the surface of infected cells

    International Nuclear Information System (INIS)

    Low, Kit-Wei; Tan, Timothy; Ng, Ken; Tan, Boon-Huan; Sugrue, Richard J.

    2008-01-01

    In this study, the interaction between the respiratory syncytial virus (RSV) fusion (F) protein, attachment (G) protein, and small hydrophobic (SH) proteins was examined. Immunoprecipitation analysis suggested that the F and G proteins exist as a protein complex on the surface of RSV-infected cells, and this conclusion was supported by ultracentrifugation analysis that demonstrated co-migration of surface-expressed F and G proteins. Although our analysis provided evidence for an interaction between the G and SH proteins, no evidence was obtained for a single protein complex involving all three of the virus proteins. These data suggest the existence of multiple virus glycoprotein complexes within the RSV envelope. Although the stimulus that drives RSV-mediated membrane fusion is unknown, the association between the G and F proteins suggest an indirect role for the G protein in this process

  13. Radiative transfer in spherical circumstellar dust envelopes. III. Dust envelope models of some well known infrared stars

    International Nuclear Information System (INIS)

    Apruzese, J.P.

    1975-01-01

    The radiative transfer techniques described elsewhere by the author have been employed to construct dust envelope models of several well known infrared stars. The resulting calculations indicate that the infrared emissivity of circumstellar grains generally must be higher than that which many calculations of small nonsilicate grains yield. This conclusion is dependent to some degree on the (unknown) size of the stellar envelopes considered, but is quite firm in the case of the spatially resolved envelope of IRC+10216. Further observations of the spatial distribution of the infrared radiation from stellar envelopes will be invaluable in deciphering the properties of the circumstellar grains

  14. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...... immunogenic structures inaccessible on the envelope oligomer. The limited ability of recombinant gp120 vaccines to induce neutralizing antibodies against primary isolates may thus not exclusively reflect genetic variation....

  15. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins.

    Science.gov (United States)

    Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta

    2017-07-01

    Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections.

    Science.gov (United States)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan; Veesler, David

    2017-11-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to initiate infection. The S protein is a major determinant of the zoonotic potential of coronaviruses and is also the main target of the host humoral immune response. We report here the 3.5 Å resolution cryo-electron microscopy structure of the S glycoprotein trimer from the pathogenic porcine deltacoronavirus (PDCoV), which belongs to the recently identified delta genus. Structural and glycoproteomics data indicate that the glycans of PDCoV S are topologically conserved when compared with the human respiratory coronavirus HCoV-NL63 S, resulting in similar surface areas being shielded from neutralizing antibodies and implying that both viruses are under comparable immune pressure in their respective hosts. The structure further reveals a shortened S 2 ' activation loop, containing a reduced number of basic amino acids, which participates to rendering the spike largely protease-resistant. This property distinguishes PDCoV S from recently characterized betacoronavirus S proteins and suggests that the S protein of enterotropic PDCoV has evolved to tolerate the protease-rich environment of the small intestine and to fine-tune its fusion activation to avoid premature triggering and reduction of infectivity. IMPORTANCE Coronaviruses use transmembrane spike (S) glycoprotein trimers to promote host attachment and fusion of the viral and cellular membranes. We determined a near-atomic resolution cryo-electron microscopy structure of the S ectodomain trimer from the pathogenic porcine deltacoronavirus (PDCoV), which is responsible for diarrhea in piglets and has had devastating consequences for the swine industry worldwide. Structural and glycoproteomics data reveal that PDCoV S is

  17. Intracellular localization of hydroxyproline-rich glycoprotein biosynthesis

    International Nuclear Information System (INIS)

    Robinson, D.G.; Andreae, M.; Glas, A.R.; Sauer, A.

    1984-01-01

    The structural proteins of plant cell walls are glycoproteins characterized by O-glucosidic linkages to hydroxyproline or serine. Proline, not hydroxyproline, is the translatable amino acid in hydroxyproline-rich glycoproteins (HRGP). Hydroxylation and arabinosylation of proline are sequential, post-translational events. Because of this, there is no a priori reason for expecting HRGP synthesis to follow the well-established route for secretory and plasma membrane (PM) glycoproteins, i.e., from endoplasmic reticulum (ER) via the Golgi apparatus (GA) to the PM. In this paper, two plausible alternatives for HRGO secretion are examined. Because a feature of the majority of dicotyledons is overlapping GA and PM regions in sucrose density gradients, the authors have used two monocotyledonous systems to determine the distribution of HRGP and enzyme activity

  18. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method.

    Science.gov (United States)

    Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki

    2006-02-17

    Capillary electrophoresis (CE) is an effective tool to analyze carbohydrate mixture derived from glycoproteins with high resolution. However, CE has a disadvantage that a few nanoliters of a sample solution are injected to a narrow capillary. Therefore, we have to prepare a sample solution of high concentration for CE analysis. In the present study, we applied head column field-amplified sample stacking method to the analysis of N-linked oligosaccharides derived from glycoprotein separated by two-dimensional gel electrophoresis. Model studies demonstrated that we achieved 60-360 times concentration effect on the analysis of carbohydrate chains labeled with 3-aminobenzoic acid (3-AA). The method was applied to the analysis of N-linked oligosaccharides from glycoproteins separated and detected on PAGE gel. Heterogeneity of alpha1-acid glycoprotein (AGP), i.e. glycoforms, was examined by 2D-PAGE and N-linked oligosaccharides were released by in-gel digestion with PNGase F. The released oligosaccharides were derivatized with 3-AA and analyzed by CE. The results showed that glycoforms having lower pI values contained a larger amount of tetra- and tri-antennary oligosaccharides. In contrast, glycoforms having higher pI values contained bi-antennary oligosaccharides abundantly. The result clearly indicated that the spot of a glycoprotein glycoform detected by Coomassie brilliant blue staining on 2D-PAGE gel is sufficient for quantitative profiling of oligosaccharides.

  19. Methods for Purifying Enzymes for Mycoremediation

    Science.gov (United States)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  20. Humanizing recombinant glycoproteins from Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Anders Holmgaard; Amann, Thomas; Kol, Stefan

    With new tools for gene-editing like zinc-fingers, TALENS and CRISPR, it is now feasible totailor-make the N-Glycoforms for therapeutic glycoproteins that have previously been almost impossible. We here demonstrate a case of humanizing a recombinant human glycoprotein that in Wild type (WT) Chinese...

  1. Creating a Lunar EVA Work Envelope

    Science.gov (United States)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  2. Determination of P-Glycoprotein Expression by Flow Cytometry in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Berkay Saraymen

    2016-03-01

    Full Text Available Objective: Determination the expression of P-glycoprotein is especially problematic for normal tissues because immuno­logical methods are limited in terms of sensitivity. We aimed to determine the expression of P-glycoprotein and CD34 by flow cytometry, and to evaluate the level of expression of P-glycoprotein and CD34 with unresponsive to treatment in pa­tients diagnosed with hematologic malignancy. Methods: Our study included fifty patients diagnosed with acute myeloblastic leukemia and acute lymphoblastic leuke­mia, and twenty healthy controls who were admitted to Erci­yes University Hematology-Oncology Hospital. The suspend­ed cells from bone marrow samples of patients and the pe­ripheral blood samples of healthy people were marked with P-glycoprotein phycoerythrin and CD34 FITC or PerCP Cy 5.5; and then surface expression was measured by means of flow cytometry. Results: In 6 of 30 acute myeloblastic leukemia patients P-glycoprotein and CD34 expression, in 6 of 20 acute lympho­blastic leukemia patients P-glycoprotein, in 5 of them CD34 expression were determined. A significant relation between P-glycoprotein and CD34 expressions in acute myeloblas­tic leukemia and acute lymphoblastic leukemia bone marrow samples was reported. Conclusion: Our data indicate that flow cytometry is more reliable, precise and faster than molecular methods for mea­suring P-glycoprotein expression and suggests the pos­sibility of a significant relationship between P-glycoprotein and CD34 expressions in acute myeloblastic leukemia and acute lymphoblastic leukemia bone marrow samples. The blast cells expressing CD34 on their surface along with P-glycoprotein simultaneously show that multi drug resistance 1 gene is mostly active in immature cells.

  3. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    DEFF Research Database (Denmark)

    Horvat, B; Multhaupt, H A; Damjanov, I

    1993-01-01

    We used lectin overlay blotting and SDS-PAGE to analyze the estrous cycle-specific expression of mouse vaginal epithelial glycoproteins. Seven lectins chosen for their differential carbohydrate-binding specificity revealed 15 glycoproteins that showed cycle-related expression. Each lectin had...... in proestrus, coincident with the transformation of two superficial layers of vaginal squamous epithelium into mucinous cuboidal cells. Electron microscopic lectin histochemistry revealed the glycoproteins in the mucinous granules of surface cuboidal cells and in the lumen of the vagina. Our results illustrate...... the complexity of glycoconjugate synthesis in mouse vagina and reveal the distinct cycle-specific patterns of individual glycoprotein expression. These cyclic glycoproteins could serve as vaginal biochemical markers for the specific phases of the estrous cycle....

  4. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  5. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    Green, E.D.; Baenziger, J.U.

    1988-01-01

    The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB[ 3 H] 4 . The 3 H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species

  6. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    Science.gov (United States)

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.

  7. 14 CFR 29.87 - Height-velocity envelope.

    Science.gov (United States)

    2010-01-01

    ... Category A engine isolation requirements, the height-velocity envelope for complete power failure must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-velocity envelope. 29.87 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.87 Height-velocity envelope. (a...

  8. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production

    International Nuclear Information System (INIS)

    Jarvis, Donald L.

    2003-01-01

    The baculovirus-insect cell expression system is widely used to produce recombinant glycoproteins for many different biomedical applications. However, due to the fundamental nature of insect glycoprotein processing pathways, this system is typically unable to produce recombinant mammalian glycoproteins with authentic oligosaccharide side chains. This minireview summarizes our current understanding of insect protein glycosylation pathways and our recent efforts to address this problem. These efforts have yielded new insect cell lines and baculoviral vectors that can produce recombinant glycoproteins with humanized oligosaccharide side chains

  9. Functional and structural analysis of GP64, the major envelope glycoprotein of the Budded Virus phenotype of Autographa californica and Orgyia pseudotsugata Multicapsid Nucleopolyhedroviruses

    NARCIS (Netherlands)

    Oomens, A.G.P.

    1999-01-01

    The Baculoviridae are a family of large, enveloped, double-stranded DNA viruses, that cause severe disease in the larvae of mostly lepidopteran insects. Baculoviruses have been studied with the aim of developing alternatives to chemical pest control, and later for their potential as systems

  10. Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Kerstin Gnirß

    2014-04-01

    Full Text Available The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.

  11. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2017-01-01

    Full Text Available Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector’s range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.

  12. Solitary Alfven wave envelopes and the modulational instability

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1987-06-01

    The derivative nonlinear Schroedinger equation describes the modulational instability of circularly polarized dispersive Alfven wave envelopes. It also may be used to determine the properties of finite amplitude localized stationary wave envelopes. Such envelope solitons exist only in conditions of modulational stability. This leaves open the question of whether, and if so, how, the modulational instability produces envelope solitons. 12 refs

  13. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  14. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  15. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  16. Regulation of glycoprotein synthesis in yeast by mating pheromones

    International Nuclear Information System (INIS)

    Tanner, W.

    1984-01-01

    In Saccharomyces cerevisiae, glycosylated proteins amount to less than 2% of the cell protein. Two intensively studied examples of yeast glycoproteins are the external cell wall - associated invertase and the vacuolar carboxypeptidase Y. Recently, it was shown that the mating pheromone, alpha factor, specifically and strongly inhibits the synthesis of N-glycosylated proteins in haploid a cells, whereas O-glycosylated proteins are not affected. In this paper, the pathways of glycoprotein biosynthesis are summarized briefly, and evidence is presented that mating pheomones have a regulatory function in glycoprotein synthesis

  17. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferas...

  18. 14 CFR 27.87 - Height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... applicable power failure condition in paragraph (b) of this section, a limiting height-speed envelope must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Height-speed envelope. 27.87 Section 27.87... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.87 Height-speed envelope. (a) If there is any...

  19. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    Science.gov (United States)

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  20. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  1. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    Full Text Available Antibody-enhanced replication (AER of dengue type-2 virus (DENV-2 strains and production of antibody-enhanced disease (AED was tested in out-bred mice. Polyclonal antibodies (PAbs generated against the nonstructural-1 (NS1 glycoprotein candidate vaccine of the New Guinea-C (NG-C or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀ of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS, displayed by diffuse alveolar damage (DAD resulting from i dramatic interstitial alveolar septa-thickening with mononuclear cells, ii some hyperplasia of alveolar type-II pneumocytes, iii copious intra-alveolar protein secretion, iv some hyaline membrane-covered alveolar walls, and v DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  2. Alpha1-acid glycoprotein post-translational modifications: a comparative two dimensional electrophoresis based analysis

    Directory of Open Access Journals (Sweden)

    P. Roncada

    2010-04-01

    Full Text Available Alpha1-acid glycoprotein (AGP is an immunomodulatory protein expressed by hepatocytes in response to the systemic reaction that follows tissue damage caused by inflammation, infection or trauma. A proteomic approach based on two dimensional electrophoresis, immunoblotting and staining of 2DE gels with dyes specific for post-translational modifications (PTMs such as glycosylation and phosphorylation has been used to evaluate the differential interspecific protein expression of AGP purified from human, bovine and ovine sera. By means of these techniques, several isoforms have been identified in the investigated species: they have been found to change both with regard to the number of isoforms expressed under physiological condition and with regard to the quality of PTMs (i.e. different oligosaccharidic chains, presence/absence of phosphorilations. In particular, it is suggested that bovine serum AGP may have one of the most complex pattern of PTMs among serum proteins of mammals studied so far.

  3. Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120.

    Science.gov (United States)

    Ponomarenko, Natalia A; Vorobiev, Ivan I; Alexandrova, Elena S; Reshetnyak, Andrew V; Telegin, Georgy B; Khaidukov, Sergey V; Avalle, Bérangère; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    We have induced a polyclonal IgG that degrades the HIV-1 surface antigen, glycoprotein gp120, by taking advantage of the susceptibility of SJL mice to a peptide-induced autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). Specific pathogen-free SJL mice were immunized with structural fragments of gp120, fused in-frame with encephalitogenic peptide MBP(85-101). It has resulted in a pronounced disease-associated immune response against antigens. A dramatic increase of gp120 degradation level by purified polyclonal IgG from immunized versus nonimmunized mice has been demonstrated by a newly developed fluorescence-based assay. This activity was inhibited by anti-mouse immunoglobulin antibodies as well as by Ser- and His-reactive covalent inhibitors. A dominant proteolysis site in recombinant gp120 incubated with purified polyclonal IgG from immunized mice was shown by SDS-PAGE. The SELDI-based mass spectrometry revealed that these antibodies exhibited significant specificity toward the Pro484-Leu485 peptide bond. The sequence surrounding this site is present in nearly half of the HIV-I variants. This novel strategy can be generalized for creating a catalytic vaccine against viral pathogens.

  4. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    Science.gov (United States)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  5. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  6. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  7. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  8. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    International Nuclear Information System (INIS)

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio; Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I.; Hutt-Fletcher, Lindsey M.

    2016-01-01

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  9. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    Energy Technology Data Exchange (ETDEWEB)

    Changotra, Harish; Turk, Susan M. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Artigues, Antonio [Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS (United States); Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Hutt-Fletcher, Lindsey M., E-mail: lhuttf@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2016-02-15

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  10. Envelope Protection for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.

    2010-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  11. Thermal Activated Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Pasold, Anke

    2015-01-01

    The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary......, environmental dynamics and occupancy dynamics. Lastly, a physical prototype is created, which illustrates the physical expression of the bi-materials and the problems related to manufacturing of these composite structures.......The research studies the making of a responsive architectural envelope based on bi-materials. The bi-materials are organized according to a method that combines different isotropic metals and plastic into an active composite structure that reacts to temperature variations. Through an evolutionary...

  12. Analysis of Building Envelope Construction in 2003 CBECS

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

    2007-06-01

    The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOE’s Reference Buildings .

  13. The amino-terminus of the hepatitis C virus (HCV p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types.

    Directory of Open Access Journals (Sweden)

    Solène Denolly

    2017-12-01

    Full Text Available Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP. HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.

  14. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  15. The South Carolina bridge-scour envelope curves

    Science.gov (United States)

    Benedict, Stephen T.; Feaster, Toby D.; Caldwell, Andral W.

    2016-09-30

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations to evaluate historical, riverine bridge scour in the Piedmont and Coastal Plain regions of South Carolina. These investigations included data collected at 231 riverine bridges, which lead to the development of bridge-scour envelope curves for clear-water and live-bed components of scour. The application and limitations of the South Carolina bridge-scour envelope curves were documented in four reports, each report addressing selected components of bridge scour. The current investigation (2016) synthesizes the findings of these previous reports into a guidance manual providing an integrated procedure for applying the envelope curves. Additionally, the investigation provides limited verification for selected bridge-scour envelope curves by comparing them to field data collected outside of South Carolina from previously published sources. Although the bridge-scour envelope curves have limitations, they are useful supplementary tools for assessing the potential for scour at riverine bridges in South Carolina.

  16. Evolution of envelope solitons of ionization waves

    International Nuclear Information System (INIS)

    Ohe, K.; Hashimoto, M.

    1985-01-01

    The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)

  17. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection.

    Directory of Open Access Journals (Sweden)

    Takuya Kanno

    Full Text Available Therapeutic agents to the central nervous system (CNS need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316, as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS. One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG and hemopexin (HPX, requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.

  18. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism.

    Science.gov (United States)

    Vitiello, Giuseppe; Falanga, Annarita; Petruk, Ariel Alcides; Merlino, Antonello; Fragneto, Giovanna; Paduano, Luigi; Galdiero, Stefania; D'Errico, Gerardino

    2015-04-21

    A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.

  19. Labelled antibody techniques in glycoprotein estimation

    International Nuclear Information System (INIS)

    Hazra, D.K.; Ekins, R.P.; Edwards, R.; Williams, E.S.

    1977-01-01

    The problems in the radioimmunoassay of the glycoprotein hormones (pituitary LH, FSH and TSH and human chlorionic gonadotrophin HGG) are reviewed viz: limited specificity and sensitivity in the clinical context, interpretation of disparity between bioassay and radioimmunoassay, and interlaboratory variability. The advantages and limitations of the labelled antibody techniques - classical immonoradiometric methods and 2-site or 125 I-anti-IgG indirect labelling modifications are reviewed in general, and their theoretical potential in glycoprotein assays examined in the light of previous work. Preliminary experiments in the development of coated tube 2-site assay for glycoproteins using 125 I anti-IgG labelling are described, including conditions for maximizing solid phase extraction of the antigen, iodination of anti-IgG, and assay conditions such as effects of temperature of incubation with antigen 'hormonefree serum', heterologous serum and detergent washing. Experiments with extraction and antigen-specific antisera raised in the same or different species are described as exemplified by LH and TSH assay systems, the latter apparently promising greater sensitivity than radioimmunoassay. Proposed experimental and mathematical optimisation and validation of the method as an assay system is outlined, and the areas for further work delineated. (orig.) [de

  20. TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions.

    Science.gov (United States)

    Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga; Rhein, Bethany; Moller-Tank, Sven; Brouillette, Rachel; Hensley, Lucinda; Misumi, Ichiro; Lovell, William; Cullen, John M; Whitmire, Jason K; Maury, Wendy; Lemon, Stanley M

    2017-09-05

    Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1) is widely accepted to be the receptor for hepatitis A virus (HAV), an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV) virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV) attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer) residues on the eHAV membrane. Both Tim1 -/- Ifnar1 -/- and Tim4 -/- Ifnar1 -/- double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT) elevations similar to those in Ifnar1 -/- mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1 -/- Ifnar1 -/- mice compared to Ifnar1 -/- mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice. IMPORTANCE T cell immunoglobulin and mucin-containing domain protein 1 (TIM1) was reported more than

  1. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  2. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  3. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    Science.gov (United States)

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  4. Glycoprotein expression by adenomatous polyps of the colon

    Science.gov (United States)

    Roney, Celeste A.; Xie, Jianwu; Xu, Biying; Jabour, Paul; Griffiths, Gary; Summers, Ronald M.

    2008-03-01

    Colon cancer is the second leading cause of cancer related deaths in the United States. Specificity in diagnostic imaging for detecting colorectal adenomas, which have a propensity towards malignancy, is desired. Adenomatous polyp specimens of the colon were obtained from the mouse model of colorectal cancer called adenomatous polyposis coli-multiple intestinal neoplasia (APC Min). Histological evaluation, by the legume protein Ulex europaeus agglutinin I (UEA-1), determined expression of the glycoprotein α-L-fucose. FITC-labelled UEA-1 confirmed overexpression of the glycoprotein by the polyps on fluorescence microscopy in 17/17 cases, of which 13/17 included paraffin-fixed mouse polyp specimens. In addition, FITC-UEA-1 ex vivo multispectral optical imaging of 4/17 colonic specimens displayed over-expression of the glycoprotein by the polyps, as compared to non-neoplastic mucosa. Here, we report the surface expression of α-L-fucosyl terminal residues by neoplastic mucosal cells of APC specimens of the mouse. Glycoprotein expression was validated by the carbohydrate binding protein UEA-1. Future applications of this method are the development of agents used to diagnose cancers by biomedical imaging modalities, including computed tomographic colonography (CTC). UEA-1 targeting to colonic adenomas may provide a new avenue for the diagnosis of colorectal carcinoma by CT imaging.

  5. 200 Area Deactivation Project Facilities Authorization Envelope Document

    International Nuclear Information System (INIS)

    DODD, E.N.

    2000-01-01

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation

  6. Variant surface glycoproteins from Venezuelan trypanosome isolates are recognized by sera from animals infected with either Trypanosoma evansi or Trypanosoma vivax.

    Science.gov (United States)

    Camargo, Rocío; Izquier, Adriana; Uzcanga, Graciela L; Perrone, Trina; Acosta-Serrano, Alvaro; Carrasquel, Liomary; Arias, Laura P; Escalona, José L; Cardozo, Vanessa; Bubis, José

    2015-01-15

    Salivarian trypanosomes sequentially express only one variant surface glycoprotein (VSG) on their cell surface from a large repertoire of VSG genes. Seven cryopreserved animal trypanosome isolates known as TeAp-ElFrio01, TEVA1 (or TeAp-N/D1), TeGu-N/D1, TeAp-Mantecal01, TeGu-TerecayTrino, TeGu-Terecay03 and TeGu-Terecay323, which had been isolated from different hosts identified in several geographical areas of Venezuela were expanded using adult albino rats. Soluble forms of predominant VSGs expressed during the early infection stages were purified and corresponded to concanavalin A-binding proteins with molecular masses of 48-67 kDa by sodium dodecyl sulfate-polyacrylamide gel electropohoresis, and pI values between 6.1 and 7.5. The biochemical characterization of all purified soluble VSGs revealed that they were dimers in their native form and represented different gene products. Sequencing of some of these proteins yielded peptides homologous to VSGs from Trypanosoma (Trypanozoon) brucei and Trypanosoma (Trypanozoon) evansi and established that they most likely are mosaics generated by homologous recombination. Western blot analysis showed that all purified VSGs were cross-reacting antigens that were recognized by sera from animals infected with either T. evansi or Trypanosoma (Dutonella) vivax. The VSG glycosyl-phosphatidylinositol cross-reacting determinant epitope was only partially responsible for the cross-reactivity of the purified proteins, and antibodies appeared to recognize cross-reacting conformational epitopes from the various soluble VSGs. ELISA experiments were performed using infected bovine sera collected from cattle in a Venezuelan trypanosome-endemic area. In particular, soluble VSGs from two trypanosome isolates, TeGu-N/D1 and TeGu-TeracayTrino, were recognized by 93.38% and 73.55% of naturally T. vivax-infected bovine sera, respectively. However, approximately 70% of the sera samples did not recognize all seven purified proteins. Hence, the

  7. Histochemical and structural analysis of mucous glycoprotein secreted by the gill of Mytilus edulis

    International Nuclear Information System (INIS)

    Ahn, Hae-Young.

    1988-01-01

    Studies were carried out to characterized various mucous cells in the gill filament, to ascertain structural characteristics of the secreted mucous glycoproteins, and to determine the ability of the gill epithelium to incorporate [ 14 C]glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins. Using histochemical staining techniques, mucous cells containing neutral and acidic mucins were found in the lateral region, whereas mucous cells containing primarily neutral or sulfated mucins were found in the postlateral region. Serotonin, but not dopamine, stimulated the mucous secretion. In tissues pretreated with [ 14 C]glucosamine, the secreted glycoproteins contain incorporated radiolabel. Analysis by column chromatography using Bio-Gel P-2 and P-6 shows that the secretion contains two glycoprotein populations. Glycoprotein II has a molecular weight of 2.3 x 10 4 daltons. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of glycoprotein I, about 70% of the radiolabel was removed from the protein. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contains N-acetylglucosamine (GluNAc), N-acetylgalactosamine (GalNAc), and galactose, fucose and mannose. Amino acid analysis shows that the glycoproteins are rich in serine, threonine and proline

  8. Monoclonal antibody to an external epitope of the human mdr1 P-glycoprotein

    NARCIS (Netherlands)

    Arceci, R. J.; Stieglitz, K.; Bras, J.; Schinkel, A.; Baas, F.; Croop, J.

    1993-01-01

    A membrane glycoprotein, termed P-glycoprotein, has been shown to be responsible for cross-resistance to a broad range of structurally and functionally distinct cytotoxic agents. P-glycoprotein, encoded in humans by the mdr1 gene, functions as an energy-dependent efflux pump to exclude these

  9. THE ROLE OF P-GLYCOPROTEIN IN RATIONAL PHARMACOTHERAPY IN CARDIOLOGY

    Directory of Open Access Journals (Sweden)

    A. V. Shulkin

    2015-09-01

    Full Text Available On the basis of the analysis of published data the role of P-glycoprotein, carrier protein, in rational pharmacotherapy in cardiology was shown on the example of its substrates – digoxin, antiplatelet agents and anticoagulants. Determination of C3435T polymorphism of multidrug resistance gene (MDR1, encoding P-glycoprotein, in pharmacotherapy with digoxin, antiplatelet drugs (clopidogrel tikagrelol, prasugrel and anticoagulants (dabigatran etexilate, rivaroxaban, edoxaban is not feasible in routine practice. Drug in- teractions have clinical implications for the efficacy and safety of pharmacotherapy in coadministration of these drugs with P-glycoprotein substrates, inducers and inhibitors.

  10. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    Science.gov (United States)

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  11. Infectious Entry Pathway Mediated by the Human Endogenous Retrovirus K Envelope Protein.

    Science.gov (United States)

    Robinson, Lindsey R; Whelan, Sean P J

    2016-01-20

    Endogenous retroviruses (ERVs), the majority of which exist as degraded remnants of ancient viruses, comprise approximately 8% of the human genome. The youngest human ERVs (HERVs) belong to the HERV-K(HML-2) subgroup and were endogenized within the past 1 million years. The viral envelope protein (ENV) facilitates the earliest events of endogenization (cellular attachment and entry), and here, we characterize the requirements for HERV-K ENV to mediate infectious cell entry. Cell-cell fusion assays indicate that a minimum of two events are required for fusion, proteolytic processing by furin-like proteases and exposure to acidic pH. We generated an infectious autonomously replicating recombinant vesicular stomatitis virus (VSV) in which the glycoprotein was replaced by HERV-K ENV. HERV-K ENV imparts an endocytic entry pathway that requires dynamin-mediated membrane scission and endosomal acidification but is distinct from clathrin-dependent or macropinocytic uptake pathways. The lack of impediments to the replication of the VSV core in eukaryotic cells allowed us to broadly survey the HERV-K ENV-dictated tropism. Unlike extant betaretroviral envelopes, which impart a narrow species tropism, we found that HERV-K ENV mediates broad tropism encompassing cells from multiple mammalian and nonmammalian species. We conclude that HERV-K ENV dictates an evolutionarily conserved entry pathway and that the restriction of HERV-K to primate genomes reflects downstream stages of the viral replication cycle. Approximately 8% of the human genome is of retroviral origin. While many of those viral genomes have become inactivated, some copies of the most recently endogenized human retrovirus, HERV-K, can encode individual functional proteins. Here, we characterize the envelope protein (ENV) of the virus to define how it mediates infection of cells. We demonstrate that HERV-K ENV undergoes a proteolytic processing step and triggers membrane fusion in response to acidic pH--a strategy

  12. Featured Image: Orbiting Stars Share an Envelope

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  13. Mechanism of protein import across the chloroplast envelope.

    Science.gov (United States)

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  14. The performance of energy efficient residential building envelope systems

    Energy Technology Data Exchange (ETDEWEB)

    Proskiw, G.

    1996-08-01

    The adequacy and durability of residential building envelope systems under actual field conditions were evaluated. A building envelope offers protection from cold, heat, moisture, wind and noise. However, they are exposed to thermal, structural, and moisture stresses and their performance can degrade over time. Envelope performance was evaluated at 20 energy efficient and four conventional, detached modern homes in Winnipeg, Canada. The three complementary measurement tools were wood moisture content (WMC) of framing members, thermographic examinations, and airtightness tests. As expected, energy efficient building envelope systems performed better than the conventional systems. No evidence of envelope degradation was found in any of the energy efficient houses. The building envelopes using polyethylene air barriers performed slightly better than those which used the airtight drywall approach, although both were considered satisfactory. WMC levels were a bit lower in the polyethylene-clad house. 1 ref., 1 tab.

  15. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function.

    Science.gov (United States)

    Wang, Bin; Wang, Yujie; Frabutt, Dylan A; Zhang, Xihe; Yao, Xiaoyu; Hu, Dan; Zhang, Zhuo; Liu, Chaonan; Zheng, Shimin; Xiang, Shi-Hua; Zheng, Yong-Hui

    2017-04-07

    The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP 1 and the fusion-mediating GP 2 subunits and incorporated into virions to initiate infection. GP 1 and GP 2 form heterodimers that have 15 or two N -glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N -glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP 1 NGSs are not critical, the two GP 2 NGSs, Asn 563 and Asn 618 , are essential for GP function. Further analysis uncovered that Asn 563 and Asn 618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn 563 and Asn 618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Implementation of an Improved Safe Operating Envelope

    International Nuclear Information System (INIS)

    Prime, Robyn; McIntyre, Mark; Reeves, David

    2008-01-01

    This paper is a continuation of the paper presented at IYNC 2004 on 'The Definition of a Safe Operating Envelope'. The current paper concentrates on the implementation process of the Safe Operating Envelope employed at the Point Lepreau Generating Station. (authors)

  17. Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing.

    Directory of Open Access Journals (Sweden)

    Douglas E H Hartley

    Full Text Available Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs. In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps was assessed in response to dichotically-presented i sinusoidal amplitude-modulated (SAM and ii half-wave rectified (HWR tones (100-ms duration; 70 dB SPL presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli

  18. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Rafael Simó

    Full Text Available Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes and in vivo (C57BL6/mice experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not

  19. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Science.gov (United States)

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  20. Methods for purifying carbon materials

    Science.gov (United States)

    Dailly, Anne [Pasadena, CA; Ahn, Channing [Pasadena, CA; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  1. Safe operating envelope

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, N [Ontario Hydro, Toronto, ON (Canada)

    1997-12-01

    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs.

  2. Safe operating envelope

    International Nuclear Information System (INIS)

    Oliva, N.

    1997-01-01

    Safe Operating Envelope is described representing: The outer bound of plant conditions within which day-to-day plant operation must be maintained in order to comply with regulatory requirements, associated safety design criteria and corporate nuclear safety goals. Figs

  3. Comparative Proteomics of Human Monkeypox and Vaccinia Intracellular Mature and Extracellular Enveloped Virions

    Energy Technology Data Exchange (ETDEWEB)

    Manes, Nathan P.; Estep, Ryan D.; Mottaz, Heather M.; Moore, Ronald J.; Clauss, Therese RW; Monroe, Matthew E.; Du, Xiuxia; Adkins, Joshua N.; Wong, Scott; Smith, Richard D.

    2008-03-07

    Orthopoxviruses are the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, virulent (monkeypox virus) and benign (vaccinia virus) orthopoxviruses were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest™ surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by reversed-phase LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST® and X! Tandem resulted in the identification of hundreds of monkeypox, vaccinia, and copurified host proteins. The unfractionated samples were additionally analyzed by LC-MS on an LTQ-Orbitrap™, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially expressed orthopoxvirus genes are discussed.

  4. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  5. Safeguards Envelope Progress FY08

    International Nuclear Information System (INIS)

    Bean, Robert; Metcalf, Richard; Bevill, Aaron

    2008-01-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  6. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  7. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  8. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  9. Implementation of an Improved Safe Operating Envelope

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Robyn; McIntyre, Mark [NB Power Nuclear, P.O. Box 600, Lepreau, NB (Canada); Reeves, David [Atlantic Nuclear Services Ltd., PO Box 1268 Fredericton, NB (Canada)

    2008-07-01

    This paper is a continuation of the paper presented at IYNC 2004 on 'The Definition of a Safe Operating Envelope'. The current paper concentrates on the implementation process of the Safe Operating Envelope employed at the Point Lepreau Generating Station. (authors)

  10. Binding properties of a blood group Le(a+) active sialoglycoprotein, purified from human ovarian cyst, with applied lectins.

    Science.gov (United States)

    Wu, A M; WU, J H; Watkins, W M; Chen, C P; Tsai, M C

    1996-06-07

    Studies on the structures and binding properties of the glycoproteins, purified from human ovarian cyst fluids, will aid the understanding of the carbohydrate alterations occurring during the biosynthesis of blood group antigens and neoplasm formation. These glycoproteins can also serve as important biological materials to study blood group A, B, H, Le(a), Le(b), Le(x), Le(y), T and Tn determinants, precursor type I and II sequences and cold agglutinin I and i epitopes. In this study, the binding property of a cyst glycoprotein from a human blood group Le(a+) nonsecretor individual, that contains an unusually high amount (18%) of sialic acid (HOC 350) was characterized by quantitative precipitin assay with a panel of lectins exhibiting a broad range of carbohydrate-binding specificities. Native HOC 350 reacted well only with three out of nineteen lectins tested. It precipitated about 80% of Ricinus communis (RCA1), 50% of Triticum vulgaris (WGA) and 37% of Bauhinia purpurea aba (BPA) agglutinins, respectively. However, its asialo product had dramatically enhanced reactivity and reacted well with many I/II (Gal beta1 --> 3/4GcNAc), T(Gal beta1 --> 3GalNAc) and Tn(GaNIAc alphaI --> Ser/Thr) active lectins. It bound best to Jacalin, BPA, and abrin-a and completely precipitated all the lectins added. Asialo-HOC 350 also reacted strongly with Wistaria floribunda, Abrus precatorius agglutinin, ricin and RCA1 and precipitated over 75% of the lectin nitrogen added, and moderately with Arachis hypogaea, Maclura pomifera, WGA, Vicia viosa-B4, Codium fragile tomentosoides and Ulex europaeus-II. But native HOC 350 and its asialo product reacted not at all or poorly with Dolichos biflorus, Helix pomatia, Lotus tetra-gonolobus, Ulex europaeus-I, Lens culinaris lectins and Con A. The lectin-glycoform interactions through bioactive sugars were confirmed by precipitin inhibition assay. Mapping the precipitation profiles of the interactions have led to the conclusion that HOC 350

  11. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein

    DEFF Research Database (Denmark)

    Keck, Zhenyong; Wang, Wenyan; Wang, Yong

    2013-01-01

    A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While...... at higher concentrations. However, the overall effect was additive neutralization. A similar pattern was observed when these antibodies were combined to block E2 binding to the HCV coreceptor, CD81. These findings demonstrate that both of these E2 regions participate in epitopes mediating virus...... (HCVcc) with various activities. Although nonneutralizing HC33 HMAbs were isolated, they had lower binding affinities than neutralizing HC33 HMAbs. These antibodies could be converted to neutralizing antibodies by affinity maturation. Unidirectional competition for binding to E2 was observed between HC33...

  12. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  13. Full waveform inversion using envelope-based global correlation norm

    Science.gov (United States)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-05-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.

  14. RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope.

    Science.gov (United States)

    Marin, Virna; Stornaiuolo, Anna; Piovan, Claudia; Corna, Stefano; Bossi, Sergio; Pema, Monika; Giuliani, Erica; Scavullo, Cinzia; Zucchelli, Eleonora; Bordignon, Claudio; Rizzardi, Gian Paolo; Bovolenta, Chiara

    2016-01-01

    To date, gene therapy with transiently derived lentivectors has been very successful to cure rare infant genetic diseases. However, transient manufacturing is unfeasible to treat adult malignancies because large vector lots are required. By contrast, stable manufacturing is the best option for high-incidence diseases since it reduces the production cost, which is the major current limitation to scale up the transient methods. We have previously developed the proprietary RD2-MolPack technology for the stable production of second-generation lentivectors, based on the RD114-TR envelope. Of note, opposite to vesicular stomatitis virus glycoprotein (VSV-G) envelope, RD114-TR does not need inducible expression thanks to lack of toxicity. Here, we present the construction of RD2- and RD3-MolPack cells for the production of self-inactivating lentivectors expressing green fluorescent protein (GFP) as a proof-of-concept of the feasibility and safety of this technology before its later therapeutic exploitation. We report that human T lymphocytes transduced with self-inactivating lentivectors derived from RD3-MolPack cells or with self-inactivating VSV-G pseudotyped lentivectors derived from transient transfection show identical T-cell memory differentiation phenotype and comparable transduction efficiency in all T-cell subsets. RD-MolPack technology represents, therefore, a straightforward tool to simplify and standardize lentivector manufacturing to engineer T-cells for frontline immunotherapy applications.

  15. Study of hot corrosion of flakes of non purified graphite and of purified graphite

    International Nuclear Information System (INIS)

    Boule, Michel

    1967-01-01

    The author reports the study of hot corrosion of the Ticonderoga graphite. He reports the study of the defects of graphite flakes (structure defects due to impurities), the dosing of these impurities, and then their removal by purification. Flakes have then been oxidised by means of a specially designed apparatus. Based on photographs taken by optical and electronic microscopy, the author compares the oxidation features obtained in dry air and in humid air, between purified and non purified flakes. He also reports the study of the evolution of oxidation with respect to the initial rate of impurities, and the study of the evolution of oxidation features in humid air during oxidation. All these comparisons are made while taking the oxidation rate into account [fr

  16. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  17. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  18. Moisture accumulation in a building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Forest, T.W.; Checkwitch, K.

    1988-09-01

    In a large number of cases, the failure of a building envelope can be traced to the accumulation of moisture. In a cold winter climate, characteristic of the Canadian prairies, moisture is deposited in the structure by the movement of warm, moist air through the envelope. Tests on the moisture accumulation in a building envelope were initiated in a test house at an Alberta research facility during the 1987/88 heating season. The indoor moisture generation rate was measured and compared with the value inferred from the measured air infiltration rate. With the flue open, the moisture generation rate was approximately 5.5 kg/d of which 0.7 kg/d entered the building envelope; the remainder was exhausted through the flue. With the flue blocked, the moisture generation rate decreased to 3.4 kg/d, while the amount of moisture migrating through the envelope increased to 4.0 kg/d. The moisture accumulation in wall panels located on the north and south face of the test house was also monitored. Moisture was allowed to enter the wall cavity via a hole in the drywall. The fiberglass insulation remained dry throughout the test period. The moisture content of the exterior sheathing of the north panel increased to a maximum of 18% wt in the vicinity of the hole, but quickly dried when the ambient temperatures increased towards the end of the season. The south panel showed very little moisture accumlation due to the effects of solar radiation. 14 refs., 9 figs.

  19. Glycoprotein and proteoglycan techniques

    International Nuclear Information System (INIS)

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  20. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    Science.gov (United States)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  1. An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding

    Directory of Open Access Journals (Sweden)

    Emily A. Byrd

    2017-11-01

    Full Text Available Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.

  2. Light aging of reactive fuels purified by various methods

    Energy Technology Data Exchange (ETDEWEB)

    Khodzhaeva, M G; Burtyshev, N Ya; Molodozhenyuk, T B; Ryabovda, N D

    1976-01-01

    A study of the effect of uv-radiation on aging of Fergana fuel TS-1 has been extended to the uv-effect on alkali-purified fuels (e.g., Krasnovodsk, Omsk, and Orsk TS-1), on hydro-purified (Syzran T-8, Syzran T-7, and Novokuybyshev T-7) and on adsorption-purified Fergana TS-1. The PRK-4 lamp was employed. Aging criteria were formation of insoluble gums, soluble gums separable on silicagel, acidity, and optical density. Fuels purified in the same manner aged practically identically; after 6 months storage the greatest gum formation was seen in the fuels Orsk TS-1 and Syzran T-8. 3 references, 1 figure, 1 table.

  3. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  4. Moisture dynamics in building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Peuhkuri, R.

    2003-07-01

    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  5. Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein.

    Science.gov (United States)

    Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena

    2014-06-15

    Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Common envelope evolution

    NARCIS (Netherlands)

    Taam, Ronald E.; Ricker, Paul M.

    2010-01-01

    The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major features of this evolutionary phase, focusing on the

  7. Synthetic glycopeptides and glycoproteins with applications in biological research

    Directory of Open Access Journals (Sweden)

    Ulrika Westerlind

    2012-05-01

    Full Text Available Over the past few years, synthetic methods for the preparation of complex glycopeptides have been drastically improved. The need for homogenous glycopeptides and glycoproteins with defined chemical structures to study diverse biological phenomena further enhances the development of methodologies. Selected recent advances in synthesis and applications, in which glycopeptides or glycoproteins serve as tools for biological studies, are reviewed. The importance of specific antibodies directed to the glycan part, as well as the peptide backbone has been realized during the development of synthetic glycopeptide-based anti-tumor vaccines. The fine-tuning of native chemical ligation (NCL, expressed protein ligation (EPL, and chemoenzymatic glycosylation techniques have all together enabled the synthesis of functional glycoproteins. The synthesis of structurally defined, complex glycopeptides or glyco-clusters presented on natural peptide backbones, or mimics thereof, offer further possibilities to study protein-binding events.

  8. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    Science.gov (United States)

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  9. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment.

    Science.gov (United States)

    Dietz, Andrea N; Villinger, Clarissa; Becker, Stefan; Frick, Manfred; von Einem, Jens

    2018-01-01

    lead to life-threatening infections in immunocompromised hosts. Current antiviral treatments target viral genome replication and are increasingly overcome by viral mutations. Therefore, identifying new targets for antiviral therapy is important for future development of novel treatment options. A detailed molecular understanding of the complex virus morphogenesis will identify potential viral as well as cellular targets for antiviral intervention. Secondary envelopment is an important viral process through which infectious virus particles are generated and which involves the action of several viral proteins, such as tegument protein pUL71. Targeting of pUL71 to the site of secondary envelopment appears to be crucial for its function during this process and is regulated by utilizing host trafficking mechanisms that are commonly exploited by viral glycoproteins. Thus, intracellular trafficking, if targeted, might present a novel target for antiviral therapy. Copyright © 2017 American Society for Microbiology.

  10. MHTGR thermal performance envelopes: Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion

  11. The limited role of recombination energy in common envelope removal

    Science.gov (United States)

    Grichener, Aldana; Sabach, Efrat; Soker, Noam

    2018-05-01

    We calculate the outward energy transport time by convection and photon diffusion in an inflated common envelope and find this time to be shorter than the envelope expansion time. We conclude therefore that most of the hydrogen recombination energy ends in radiation rather than in kinetic energy of the outflowing envelope. We use the stellar evolution code MESA and inject energy inside the envelope of an asymptotic giant branch star to mimic energy deposition by a spiraling-in stellar companion. During 1.7 years the envelope expands by a factor of more than 2. Along the entire evolution the convection can carry the energy very efficiently outwards, to the radius where radiative transfer becomes more efficient. The total energy transport time stays within several months, shorter than the dynamical time of the envelope. Had we included rapid mass loss, as is expected in the common envelope evolution, the energy transport time would have been even shorter. It seems that calculations that assume that most of the recombination energy ends in the outflowing gas might be inaccurate.

  12. Three-dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation

    OpenAIRE

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W. Andy

    2016-01-01

    Glycoproteins have vast structural diversity which plays an important role in many biological processes and have great potential as disease biomarkers. Here we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase GlycoProtein Array (polyGPA), to specifically capture and profile glycoproteomes, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture pre-oxidized glycan...

  13. Filamentous fungi as production organisms for glycoproteins of bio-medical interest

    NARCIS (Netherlands)

    Maras, M.; Die, I. van; Contreras, R.; Hondel, C.A.M.J.J. van den

    1999-01-01

    Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20-40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but

  14. A new strategy for full-length Ebola virus glycoprotein expression in E.coli.

    Science.gov (United States)

    Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming

    2016-12-01

    Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.

  15. Isoforms of purified methyltransferase from human blood platelets ...

    African Journals Online (AJOL)

    ... purification from normal human blood platelets have not been investigated, hence, the aim of this study was to purify, characterise the enzyme from human blood platelets and determine its possible role in phospholipid transmethylation. The plasma membranes were purified by velocity and sucrose gradient centrifugation ...

  16. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

    Directory of Open Access Journals (Sweden)

    Mahsa Mohseni

    2016-03-01

    Results: Combination treatment of the cells with docetaxel and vinblastine decreased the IC50 values for docetaxel from (30±3.1 to (15±2.6 nM and for vinblastine from (30±5.9 to (5±5.6 nM (P≤0.05.               P-glycoprotein mRNA expression level showed a significant up-regulation in the cells incubated with each drug alone (P≤0.001. Incubation of the cells with combined concentrations of both agents neutralized P-glycoprotein overexpression (P≤0.05. Adding verapamil, a P-glycoprotein inhibitor caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents.  Conclusion:Our results suggest that combination therapy along with P-glycoprotein inhibition can be considered as a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression.

  17. Characterization of a New Cell Envelope Proteinase PrtP from Lactobacillus rhamnosus CGMCC11055.

    Science.gov (United States)

    Guo, Tingting; Ouyang, Xudong; Xin, Yongping; Wang, Yue; Zhang, Susu; Kong, Jian

    2016-09-21

    Cell envelope proteinases (CEPs) play essential roles in lactic acid bacteria growth in milk and health-promoting properties of fermented dairy products. The genome of Lactobacillus rhamnosus CGMCC11055 possesses two putative CEP genes prtP and prtR2, and the PrtP displays the distinctive domain organization from PrtR2 reported. The PrtP was purified and biochemically characterized. The results showed that the optimal activity occurred at 44 °C, pH 6.5. p-Amidinophenylmethylsulfonyl fluoride obviously inhibited enzymatic activity, suggesting PrtP was a member of serine proteinases. Under the optimal conditions, β-casein was a favorite substrate over αS1- and κ-casein, and 35 oligopeptides were identified in the β-casein hydrolysate, including the phosphoserine peptide and bioactive isoleucine-proline-proline. By analysis of the amino acid sequences of those oligopeptides, proline was the preferred residue at the breakdown site. Therefore, we speculated that PrtP was a new type of CEPs from Lb. rhamnosus.

  18. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A.

    Science.gov (United States)

    Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel

    2007-02-23

    Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional

  19. Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament-membrane interactions

    International Nuclear Information System (INIS)

    Georgatos, S.D.; Weber, K.; Geisler, N.; Blobel, G.

    1987-01-01

    Using solution binding assays, the authors found that a 45-kDa fragment of 125 I-labelled desmin, lacking 67 residues from the N terminus, could specifically associate with avian erythrocyte nuclear envelopes but not with plasma membranes from the same cells. It was also observed that a 50-kDa desmin peptide, missing 27 C-terminal residues, retained the ability to bind to both membrane preparations. Displacement experiments with an excess of purified vimentin suggested that the two desmin derivatives were interacting with a previously identified vimentin receptor at the nuclear envelope, the protein lamin B. Additional analysis by affinity chromatography confirmed this conclusion. Employing an overlay assay, they demonstrated that the 50-kDa fragment, but not the 45-kDa desmin peptide, was capable of interacting with the plasma membrane polypeptide ankyrin (a known vimentin attachment site), as was intact vimentin. Conversely, the nuclear envelope protein lamin B was recognized by both fragments but not by a chymotryptic peptide composed solely of the helical rod domain of desmin. These data imply that the lamin B-binding site on desmin resides within the 21 residues following its helical rod domain, whereas the ankyrin-associating region is localized within its N-terminal head domain, exactly as in the case of vimentin

  20. Spectral Envelopes and Additive + Residual Analysis/Synthesis

    Science.gov (United States)

    Rodet, Xavier; Schwarz, Diemo

    The subject of this chapter is the estimation, representation, modification, and use of spectral envelopes in the context of sinusoidal-additive-plus-residual analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function, which may be obtained from the envelope of a short-time spectrum (Rodet et al., 1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spectrum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis method is based on a representation of signals in terms of a sum of time-varying sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many musical sound signals may be described as a combination of a nearly periodic waveform and colored noise. The nearly periodic part of the signal can be viewed as a sum of sinusoidal components, called partials, with time-varying frequency and amplitude. Such sinusoidal components are easily observed on a spectral analysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

  1. Reproducible in vitro regeneration system for purifying sugarcane ...

    African Journals Online (AJOL)

    This procedure may be considered as one of the best ever published report on regeneration from in vitro grown plants to purify clones without subjecting the plants to field conditions and harvesting the mature cane. This technique was used to purify transgenic sugarcane plants carrying Bacillus thuringiensis gene.

  2. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  3. Preserving Envelope Efficiency in Performance Based Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A. [Thornton Energy Consulting (United States); Sullivan, Greg P. [Efficiency Solutions (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-20

    The City of Seattle 2012 Energy Code (Seattle 2014), one of the most progressive in the country, is under revision for its 2015 edition. Additionally, city personnel participate in the development of the next generation of the Washington State Energy Code and the International Energy Code. Seattle has pledged carbon neutrality by 2050 including buildings, transportation and other sectors. The United States Department of Energy (DOE), through Pacific Northwest National Laboratory (PNNL) provided technical assistance to Seattle in order to understand the implications of one potential direction for its code development, limiting trade-offs of long-lived building envelope components less stringent than the prescriptive code envelope requirements by using better-than-code but shorter-lived lighting and heating, ventilation, and air-conditioning (HVAC) components through the total building performance modeled energy compliance path. Weaker building envelopes can permanently limit building energy performance even as lighting and HVAC components are upgraded over time, because retrofitting the envelope is less likely and more expensive. Weaker building envelopes may also increase the required size, cost and complexity of HVAC systems and may adversely affect occupant comfort. This report presents the results of this technical assistance. The use of modeled energy code compliance to trade-off envelope components with shorter-lived building components is not unique to Seattle and the lessons and possible solutions described in this report have implications for other jurisdictions and energy codes.

  4. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat

    International Nuclear Information System (INIS)

    Sorrell, M.F.; Nauss, J.M.; Donohue, T.M. Jr.; Tuma, D.J.

    1983-01-01

    The effects of chronic ethanol feeding on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Liver slices from rats fed ethanol for 4-5 wk showed a decreased ability to incorporate [ 14 C]glucosamine into medium trichloracetic acid-precipitable proteins when compared to the pair-fed controls; however, the labeling of hepatocellular glycoproteins was unaffected by chronic ethanol treatment. Immunoprecipitation of radiolabeled secretory (serum) glycoproteins with antiserum against rat serum proteins showed a similar marked inhibition in the appearance of glucosamine-labeled proteins in the medium of slices from ethanol-fed rats. Minimal effects, however, were noted in the labeling of intracellular secretory glycoproteins. Protein synthesis, as determined by measuring [ 14 C]leucine incorporation into medium and liver proteins, was decreased in liver slices from ethanol-fed rats as compared to the pair-fed controls. This was the case for both total proteins as well as immunoprecipitable secretory proteins, although the labeling of secretory proteins retained in the liver slices was reduced to a lesser extent than total radiolabeled hepatic proteins. When the terminal sugar, [ 14 C]fucose, was employed as a precursor in order to more closely focus on the final steps of hepatic glycoprotein secretion, liver slices obtained from chronic ethanol-fed rats exhibited impaired secretion of fucose-labeled proteins into the medium. When ethanol (5 or 10 mM) was added to the incubation medium containing liver slices from the ethanol-fed rats, the alterations in protein and glycoprotein synthesis and secretion caused by the chronic ethanol treatment were further potentiated. The results of this study indicate that liver slices prepared from chronic ethanol-fed rats exhibit both impaired synthesis and secretion of proteins and glycoproteins, and these defects are further potentiated by acute ethanol administration

  5. AcEST: BP915793 [AcEST

    Lifescience Database Archive (English)

    Full Text Available glycoprotein OS=Ivory Coast ebolavi... 30 8.4 >sp|Q21338|SPT5H_CAEEL Transcription elongation factor SPT5 O...LFQRTT 119 >sp|Q66810|VGP_EBOIC Envelope glycoprotein OS=Ivory Coast ebolavirus (strain Cote d'Ivoire-94) GN

  6. Transmembrane-sequence-dependent overexpression and secretion of glycoproteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Schuster, M; Wasserbauer, E; Aversa, G; Jungbauer, A

    2001-02-01

    Protein expression using the secretory pathway in Saccharomyces cerevisiae can lead to high amounts of overexpressed and secreted proteins in culture supernatants in a short period of time. These post-translational modified expression products can be purified up to >90% in a single step. The overexpression and secretion of the transmembrane glycoprotein signaling lymphocytic activation molecule (SLAM) was studied. SLAM belongs to the immunoglobulin superfamily and its engagement results in T-cell expansion and INF-gamma production. The molecule is composed of an extracellular, a single-span transmembrane and a cytoplasmatic domain. The extracellular part may be relevant for stimulation studies in vitro since SLAM is a high-affinity self-ligand. Therefore several fragments of this region have been expressed as Flag-fusions in S. cerevisiae: a full-length fragment containing the transmembrane region and the autologous signal sequence, another without the transmembrane region, and two fragments without the autologous signal sequence with and without the transmembrane region. By molecular cloning, the different deletion mutants of the cDNA encoding the full-length construct have been inserted in a yeast episomal plasmid. Upstream of the cDNA, the alpha-leader sequence of a yeast mating pheromone has been cloned to direct the fusion proteins into the secretory protein maturation pathway. All four fragments were expressed but yield, location, and maturation were highly influenced by the transmembrane domain and the autologous signal sequence. Only the fragment without autologous signal sequence and transmembrane domain could be efficiently secreted. High-mannose glycosylation was analyzed by lectin mapping and digestion with specific glycosidases. After enzyme treatment, a single band product with the theoretical size could be detected and identified as SLAM by a specific monoclonal antibody. The fusion protein concentration in the supernatant was 30 microg/ml. The

  7. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Morrison, A.I.; Keeble, S.; Watt, F.M.

    1988-01-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of [ 14 C]galactose- or [ 14 C]mannose- and [ 14 C]glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification

  8. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  9. DATA ENVELOPMENT ANALYSIS OF BANKING SECTOR IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Md. Rashedul Hoque

    2012-05-01

    Full Text Available Banking sector of Bangladesh is flourishing and contributing to its economy. In this aspect measuring efficiency is important. Data Envelopment Analysis technique is used for this purpose. The data are collected from the annual reports of twenty four different banks in Bangladesh. Data Envelopment Analysis is mainly of two types - constant returns to scale and variable returns to scale. Since this study attempts to maximize output, so the output oriented Data Envelopment Analysis is used. The most efficient bank is one that obtains the highest efficiency score.

  10. Saturation Mutagenesis of the HIV-1 Envelope CD4 Binding Loop Reveals Residues Controlling Distinct Trimer Conformations.

    Directory of Open Access Journals (Sweden)

    Maria Duenas-Decamp

    2016-11-01

    Full Text Available The conformation of HIV-1 envelope (Env glycoprotein trimers is key in ensuring protection against waves of neutralizing antibodies generated during infection, while maintaining sufficient exposure of the CD4 binding site (CD4bs for viral entry. The CD4 binding loop on Env is an early contact site for CD4 while penetration of a proximal cavity by CD4 triggers Env conformational changes for entry. The role of residues in the CD4 binding loop in regulating the conformation of the trimer and trimer association domain (TAD was investigated using a novel saturation mutagenesis approach. Single mutations identified, resulted in distinct trimer conformations affecting CD4bs exposure, the glycan shield and the TAD across diverse HIV-1 clades. Importantly, mutations that improve access to the CD4bs without exposing the immunodominant V3 loop were identified. The different trimer conformations identified will affect the specificity and breadth of nabs elicited in vivo and are important to consider in design of Env immunogens for vaccines.

  11. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  12. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  13. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever

    Science.gov (United States)

    Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John

    2016-01-01

    mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. PMID:26792737

  14. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  15. Spatial Localization of the Ebola Virus Glycoprotein Mucin-Like Domain Determined by Cryo-Electron Tomography

    OpenAIRE

    Tran, Erin E. H.; Simmons, James A.; Bartesaghi, Alberto; Shoemaker, Charles J.; Nelson, Elizabeth; White, Judith M.; Subramaniam, Sriram

    2014-01-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function.

  16. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang; Abu Samra, Dina Bashir Kamil; Merzaban, Jasmeen; Khashab, Niveen M.

    2013-01-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug

  17. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  18. Membrane-bound SIV envelope trimers are immunogenic in ferrets after intranasal vaccination with a replication-competent canine distemper virus vector.

    Science.gov (United States)

    Zhang, Xinsheng; Wallace, Olivia; Wright, Kevin J; Backer, Martin; Coleman, John W; Koehnke, Rebecca; Frenk, Esther; Domi, Arban; Chiuchiolo, Maria J; DeStefano, Joanne; Narpala, Sandeep; Powell, Rebecca; Morrow, Gavin; Boggiano, Cesar; Zamb, Timothy J; Richter King, C; Parks, Christopher L

    2013-11-01

    We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination. © 2013 Elsevier Inc. All rights reserved.

  19. Genetic Signatures of HIV-1 Envelope-mediated Bystander Apoptosis

    Science.gov (United States)

    Joshi, Anjali; Lee, Raphael T. C.; Mohl, Jonathan; Sedano, Melina; Khong, Wei Xin; Ng, Oon Tek; Maurer-Stroh, Sebastian; Garg, Himanshu

    2014-01-01

    The envelope (Env) glycoprotein of HIV is an important determinant of viral pathogenesis. Several lines of evidence support the role of HIV-1 Env in inducing bystander apoptosis that may be a contributing factor in CD4+ T cell loss. However, most of the studies testing this phenomenon have been conducted with laboratory-adapted HIV-1 isolates. This raises the question of whether primary Envs derived from HIV-infected patients are capable of inducing bystander apoptosis and whether specific Env signatures are associated with this phenomenon. We developed a high throughput assay to determine the bystander apoptosis inducing activity of a panel of primary Envs. We tested 38 different Envs for bystander apoptosis, virion infectivity, neutralizing antibody sensitivity, and putative N-linked glycosylation sites along with a comprehensive sequence analysis to determine if specific sequence signatures within the viral Env are associated with bystander apoptosis. Our studies show that primary Envs vary considerably in their bystander apoptosis-inducing potential, a phenomenon that correlates inversely with putative N-linked glycosylation sites and positively with virion infectivity. By use of a novel phylogenetic analysis that avoids subtype bias coupled with structural considerations, we found specific residues like Arg-476 and Asn-425 that were associated with differences in bystander apoptosis induction. A specific role of these residues was also confirmed experimentally. These data demonstrate for the first time the potential of primary R5 Envs to mediate bystander apoptosis in CD4+ T cells. Furthermore, we identify specific genetic signatures within the Env that may be associated with the bystander apoptosis-inducing phenotype. PMID:24265318

  20. Antibodies specific for hypervariable regions 3 to 5 of the feline immunodeficiency virus envelope glycoprotein are not solely responsible for vaccine-induced acceleration of challenge infection in cats

    NARCIS (Netherlands)

    W. Huisman (Willem); E.J.A. Schrauwen (Eefje); S.D. Pas (Suzan); J.A. Karlas (Jos); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    2004-01-01

    textabstractIn a previous vaccination study in cats, the authors reported on accelerated feline immunodeficiency virus (FIV) replication upon challenge in animals vaccinated with a candidate envelope subunit vaccine. Plasma transfer studies as well as antibody profiles in vaccinated cats indicated a

  1. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc.

    Directory of Open Access Journals (Sweden)

    Pablo Guardado-Calvo

    2016-10-01

    Full Text Available Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS or of hantavirus pulmonary syndrome (HPS, depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single "fusion loop". We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal "tail" that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens.

  2. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  3. Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIVmac251 Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial

    Science.gov (United States)

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F.; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S. Munir; Fenizia, Claudio; Lifson, Jeffrey D.; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David

    2013-01-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines. PMID:23175374

  4. Method and device for feeding purified water to a pressure vessel

    International Nuclear Information System (INIS)

    Hirato, Miharu.

    1982-01-01

    Purpose: To prevent thermal wear at the junction of feedwater pipes and purified water pipes, as well as maintain the function of the purified water feeding system by stopping the introduction of purified water to the heated water feeding system and introducing purified water to the recycling water system upon transient operation or start-up. Constitution: Since a feedwater heater does not function well during transient operation or upon start-up, the temperature of heated water flowing through the feedwater pipe is reduced to produce a temperature difference relative to the set temperature for the purified water feeding system. The temperature difference is detected by a temperature sensor and, when it arrives at a predetermined difference, an operation valve is switched to interrupt the feed of the purified water to the heated water feeding system and it is sent to a water recycling system. Then, the purified water is sent from the water recycling system by way of the discharge portion to the inside of a pressure vessel. Thus, since only the heated water flows to the junction between the cleaned water pipes and the heated water pipes, neither shocks are generated nor the performance of the purified water feeding system is impaired. (Moriyama, K.)

  5. Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral

    Science.gov (United States)

    Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.

    2018-04-01

    The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.

  6. Glycoproteins of axonal transport: affinity chromatography on fucose-specific lectins

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, S.; Ohlson, C.; Karlsson, J.O.

    1982-03-01

    Rapidly transported fucose-labeled glycoproteins from axons of rabbit retinal ganglion cells were solubilized with nonionic detergents. The solubilized components were subjected to affinity chromatography on three different fucose-specific lectins. A recently characterized fucose-specific lectin from Aleuria aurantia bound reversibly approximately 60% of the applied protein-bound radioactivity. The lectins from Lotus tetragonolobus and Ulex europaeus bound are very small proportions of the labeled rapidly transported glycoproteins.

  7. Novel Real-Time Flight Envelope Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  8. Pre-paid envelopes commemorating the 2013 Open Days

    CERN Multimedia

    2013-01-01

    The post office on CERN's Prévessin site is still selling pre-paid envelopes commemorating the 2013 Open Days. Hurry while stocks last!   The special envelopes, which are valid in France for non-priority letters weighing up to 20 grams, are ideal for your Christmas and New Year correspondence. A set of ten envelopes, each featuring a different image, costs € 8.70 or 10 CHF. The post office is located in Building 866 on the Prévessin site and is open Mondays to Thursdays from 9.30 a.m. to 12.30 p.m.

  9. Development of a radioimmunoassay for 'Tamm-Horsfall-like' glycoprotein in serum and cerebrospinal fluid

    International Nuclear Information System (INIS)

    Hartmann, L.; Bringuier, A.-F.; Schuller, E.

    1983-01-01

    Affinity chromatography purification was combined with a radioimmunoassay for 'Tamm-Horsfall-like' glycoprotein. This enabled serum comcentrations to be established and to demonstrate its presence in cerebrospinal fluid for the first time. This assay method used in different circumstances suggests a multifocal synthesis. Nevertheless, urinary Tamm-Horsfall glycoprotein so far must be distinguished from the serum or cerebrospinal fluid Tamm-Horsfall-like glycoprotein. (Auth.)

  10. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  11. Partially purified polygalacturonase from Aspergillus niger (SA6 ...

    African Journals Online (AJOL)

    Polygalacturonase (PG) was isolated from Aspergillus niger (A. niger) (SA6), partially purified and characterized. The PG showed two bands on SDS-PAGE suggesting an “endo and exo PG with apparent molecular weights of 35 and 40 KDa, respectively. It was purified 9-fold with a yield of 0.18% and specific activity of 246 ...

  12. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    Science.gov (United States)

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Potent neutralizing serum immunoglobulin A (IgA) in human immunodeficiency virus type 2-exposed IgG-seronegative individuals

    DEFF Research Database (Denmark)

    Lizeng, Q; Nilsson, C; Sourial, S

    2004-01-01

    Links Potent neutralizing serum immunoglobulin A (IgA) in human immunodeficiency virus type 2-exposed IgG-seronegative individuals.Lizeng Q, Nilsson C, Sourial S, Andersson S, Larsen O, Aaby P, Ehnlund M, Bjorling E. Research Center, South Hospital, Stockholm, Sweden. The mechanisms behind...... the resistance to human immunodeficiency virus type 2 (HIV-2) infection are still not fully understood. In the present study, we explored the HIV-2-specific humoral serum immunoglobulin A (IgA) immune response in HIV-2-exposed IgG-seronegative (EGSN) individuals. Serum samples from heterosexual EGSN individuals...... and their known HIV-2-infected partners, as well as controls originating from Guinea-Bissau in Africa, were studied. Antibody reactivity to native and recombinant envelope glycoproteins was investigated, and the capacity of purified serum IgA to neutralize HIV-2(SBL6669) was tested. Our results showed that 16...

  14. Global Envelope Tests for Spatial Processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    2017-01-01

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed d......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  15. Global envelope tests for spatial processes

    DEFF Research Database (Denmark)

    Myllymäki, Mari; Mrkvička, Tomáš; Grabarnik, Pavel

    Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed......) the construction of envelopes for a deviation test. These new tests allow the a priori selection of the global α and they yield p-values. We illustrate these tests using simulated and real point pattern data....

  16. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Science.gov (United States)

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  17. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    Full Text Available Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  18. Characteristics between the meshing pairs with different envelope profile in single screw compressors

    Science.gov (United States)

    Huang, R.; Liu, F.; Li, T.; Feng, Q.

    2017-08-01

    Single screw compressors have been used in various industrial fields. However, because the star-wheel teeth are easy to wear, the market for the development of single screw compressors is limited. In order to extend the service life of the star-wheel, researchers have developed different kinds of star-wheel tooth profile, such as single line envelope profile, single column envelope profile, and multi-column envelope profile. These profiles greatly affect the lubrication characteristics between the star-wheel teeth and the screw grooves. In this article, the lubrication characteristics between the meshing pairs with different envelope profiles are analyzed. Results show that the pressure peak of the single line envelope profile, single column envelope profile, and multi-column envelope profile are 3.23×105Pa, 3.38×105Pa, and 4.31×105Pa, respectively. This means that the multi-column enveloped meshing pair can resist the biggest external impact load. The deviation angle (γ) of the single line envelope profile, single column envelope profile, and multi-column envelope profile are 0.0139°~0.0286°, 0.0225°~0.0306° and 0.0122°~0.0262°, respectively. Thus, the self-balancing ability of the multi-column enveloped meshing pair is the strongest, and the oil film thickness on both sides of the multi-column enveloped star-wheel tooth is the most reasonable, which indicates a good lubrication state during operation, that is, longer operation life of the star-wheel teeth.

  19. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  20. Development of a recombinant poxvirus expressing bovine herpesvirus-1 glycoprotein D

    International Nuclear Information System (INIS)

    Ruiz Saenz, Julian; Osorio, Jorge E; Vera, Victor J.

    2012-01-01

    Bovine herpesvirus-1 is a DNA virus belonging to the family herpesviridae, which affects cattle, causing a wide spectrum of clinical manifestations and economic losses. The main immunogenic component is its envelope glycoprotein d (GD), which has been characterized and used as immunogen in different expression systems. The aim of this work was to generate a recombinant poxvirus (raccoonpox [RCN]) expressing a truncated version of BHV-1 GD to be used as a vaccine. to do this, it was amplified the gene for a truncated version of GD which subsequently was cloned in transfer plasmid PTK/IRES/TPA which has homology to sites of poxvirus thymidine kinase, an internal site of ribosome entry (IRES) and a secretory signal (TPA), generating the construct PTK/GD/IRES/TPA. to generate the recombinant RCN, we took BSC-1 cells and we infected with a wild type RCN (CDC/v71-i-85a) at a multiplicity of infection of 0.05, then cells were transfected with the construct PTK/GD/IRES/TPA, generating different viral populations with and without the gene of interest. To select recombinant viruses expressing the gene of interest, we performed a selection of recombinant thymidine kinase negative and positive for GD by three rounds of plaque purification on rat-2 cells monolayers which are thymidine kinase null and using bromodeoxyuridine. Recombinant viruses were recovered and confirmed by PCR and nucleotide sequencing and so called RCN-GD.

  1. Stability charts for uniform slopes in soils with nonlinear failure envelopes

    OpenAIRE

    Eid, Hisham T.

    2014-01-01

    Based on the results of an extensive parametric study, charts were developed for assessment of the stability of uniform slopes in soils with nonlinear shear strength failure envelopes. The study was conducted using envelopes formed to represent the realistic shapes of soil nonlinear drained strength envelopes and the associated different degrees of nonlinearity. The introduction of a simple methodology to describe the nonlinear envelopes and a stability parameter, the value of which depends o...

  2. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). The AGIS Group, and l'Agence Nationale de Recherche sur le SIDA.

    Science.gov (United States)

    Pialoux, G; Excler, J L; Rivière, Y; Gonzalez-Canali, G; Feuillie, V; Coulaud, P; Gluckman, J C; Matthews, T J; Meignier, B; Kieny, M P

    1995-03-01

    The safety and the immunogenicity of a recombinant canarypox live vector expressing the human immunodeficiency virus type 1 (HIV-1) gp160 gene from the MN isolate, ALVAC-HIV (vCP125), followed by booster injections of a soluble recombinant hybrid envelope glycoprotein MN/LAI (rgp160), were evaluated in vaccinia-immune, healthy adults at low risk for acquiring HIV-1 infection. Volunteers (n = 20) received vCP125 (10(6) TCID50) at 0 and 1 month, followed randomly by rgp160 formulated in alum or in Freund's incomplete adjuvant (FIA) at 3 and 6 months. Local and systemic reactions were mild or moderate and resolved within the first 72 hr after immunization. No significant biological changes in routine tests were observed in any volunteer. Two injections of vCP125 did not elicit antibodies. Neutralizing antibodies (NA) against the HIV-1 MN isolate were detected in 65 and 90% of the subjects after the first and the second rgp 160 booster injections, respectively. Six months after the last boost, only 55% were still positive. Seven of 14 sera with the highest NA titers against MN weakly cross-neutralized the HIV-1 SF2 isolate; none had NA against the HIV-1 LAI or against a North American primary isolate. Specific lymphocyte T cell proliferation to rgp 160 was detected in 25% of the subjects after vCP125 and in all subjects after the first booster injection and 12 months after the first injection. An envelope-specific cytotoxic lymphocyte activity was found in 39% of the volunteers and characterized for some of them as CD3+, CD8+, MHC class I restricted. The adjuvant formulation did not influence significantly the immune responses.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial.

    Science.gov (United States)

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S Munir; Fenizia, Claudio; Lifson, Jeffrey D; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David; Franchini, Genoveffa

    2013-02-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.

  4. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...

  6. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    International Nuclear Information System (INIS)

    Metcalf, Richard; Bevill, Aaron; Charlton, William; Bean, Robert

    2008-01-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of 'non-traditional' operating data, and exploration of new methods of identifying subtle events in transient processes

  7. The nuclear envelope from basic biology to therapy.

    Science.gov (United States)

    Worman, Howard J; Foisner, Roland

    2010-02-01

    The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.

  8. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  9. Torsin Mediates Primary Envelopment of Large Ribonucleoprotein Granules at the Nuclear Envelope

    Directory of Open Access Journals (Sweden)

    Vahbiz Jokhi

    2013-04-01

    Full Text Available A previously unrecognized mechanism through which large ribonucleoprotein (megaRNP granules exit the nucleus is by budding through the nuclear envelope (NE. This mechanism is akin to the nuclear egress of herpes-type viruses and is essential for proper synapse development. However, the molecular machinery required to remodel the NE during this process is unknown. Here, we identify Torsin, an AAA-ATPase that in humans is linked to dystonia, as a major mediator of primary megaRNP envelopment during NE budding. In torsin mutants, megaRNPs accumulate within the perinuclear space, and the messenger RNAs contained within fail to reach synaptic sites, preventing normal synaptic protein synthesis and thus proper synaptic bouton development. These studies begin to establish the cellular machinery underlying the exit of megaRNPs via budding, offer an explanation for the “nuclear blebbing” phenotype found in dystonia models, and provide an important link between Torsin and the synaptic phenotypes observed in dystonia.

  10. Inversion of Auditory Spectrograms, Traditional Spectrograms, and Other Envelope Representations

    DEFF Research Database (Denmark)

    Decorsière, Remi Julien Blaise; Søndergaard, Peter Lempel; MacDonald, Ewen

    2015-01-01

    Envelope representations such as the auditory or traditional spectrogram can be defined by the set of envelopes from the outputs of a filterbank. Common envelope extraction methods discard information regarding the fast fluctuations, or phase, of the signal. Thus, it is difficult to invert, or re...... to the framework is proposed, which leads to a more accurate inversion of traditional spectrograms...

  11. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  12. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  13. 14 CFR 29.1517 - Limiting height-speed envelope.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limiting height-speed envelope. 29.1517... Operating Limitations § 29.1517 Limiting height-speed envelope. For Category A rotorcraft, if a range of... following power failure, the range of heights and its variation with forward speed must be established...

  14. Protein composition of the hepatitis A virus quasi-envelope.

    Science.gov (United States)

    McKnight, Kevin L; Xie, Ling; González-López, Olga; Rivera-Serrano, Efraín E; Chen, Xian; Lemon, Stanley M

    2017-06-20

    The Picornaviridae are a diverse family of RNA viruses including many pathogens of medical and veterinary importance. Classically considered "nonenveloped," recent studies show that some picornaviruses, notably hepatitis A virus (HAV; genus Hepatovirus) and some members of the Enterovirus genus, are released from cells nonlytically in membranous vesicles. To better understand the biogenesis of quasi-enveloped HAV (eHAV) virions, we conducted a quantitative proteomics analysis of eHAV purified from cell-culture supernatant fluids by isopycnic ultracentrifugation. Amino acid-coded mass tagging (AACT) with stable isotopes followed by tandem mass spectrometry sequencing and AACT quantitation of peptides provided unambiguous identification of proteins associated with eHAV versus unrelated extracellular vesicles with similar buoyant density. Multiple peptides were identified from HAV capsid proteins (53.7% coverage), but none from nonstructural proteins, indicating capsids are packaged as cargo into eHAV vesicles via a highly specific sorting process. Other eHAV-associated proteins ( n = 105) were significantly enriched for components of the endolysosomal system (>60%, P hepatitis A. No LC3-related peptides were identified by mass spectrometry. RNAi depletion studies confirmed that ESCRT-III proteins, particularly CHMP2A, function in eHAV biogenesis. In addition to identifying surface markers of eHAV vesicles, the results support an exosome-like mechanism of eHAV egress involving endosomal budding of HAV capsids into multivesicular bodies.

  15. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    Science.gov (United States)

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  16. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita

    2011-01-01

    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  17. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    International Nuclear Information System (INIS)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D.

    1989-01-01

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the α-glucosidase amyloglucosidase (50% inhibition at 5.8 μM), but it did not inhibit β-glucosidase, α- or β-mannosidase, or α- or β-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc 3 Man 7-9 (GlcNAc) 2 -oligosaccharides

  18. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  19. Boundaries, injective envelopes, and reduced crossed products

    DEFF Research Database (Denmark)

    Bryder, Rasmus Sylvester

    In this dissertation, we study boundary actions, equivariant injective envelopes, as well as theideal structure of reduced crossed products. These topics have recently been linked to thestudy of C-simple groups, that is, groups with simple reduced group C-algebras.In joint work with Matthew Kennedy......, we consider reduced twisted crossed products overC-simple groups. For any twisted C-dynamical system over a C-simple group, we provethat there is a one-to-one correspondence between maximal invariant ideals in the underlyingC-algebra and maximal ideals in the reduced crossed product. When......*-algebras, and relate the intersection property for group actions on unital C*-algebras to the intersection property for theequivariant injective envelope. Moreover, we also prove that the equivariant injective envelopeof the centre of the injective envelope of a unital C*-algebra can be regarded as a C...

  20. Solar envelope concepts: moderate density building applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, R.L.; Berry, R.D.

    1980-04-01

    Solar energy utilization in urban areas requires public guarantees that all property owners have direct access to the sun. The study examines the implications of this premise in relation to the need for cities to also encourage or accommodate rebuilding and future development. The public policy mechanism for guaranteeing solar access is conceptualized as a solar zoning envelope that allows the largest possible building bulk on a land parcel without shadowing neighboring properties during specified times. Step-by-step methods for generating solar envelopes are described with extensive drawings, showing a variety of urban platting and lot configurations. Development and design possibilities are examined on a selected set of Los Angeles sites with typically diverse urban characteristics. Envelope attributes suitable for encouraging moderate-density commercial and residential building are examined in the context of two hypothetical but realistic development programs: one for speculative office buildings and one for condominium housing. Numerous illustrations of envelope forms and prototypical building designs are provided. The results of development simulation studies on all test sites are tabulated to show building bulk, density, land-coverage and open space characteristics obtainable under the hypothesized envelopes.

  1. The Arabidopsis Nuclear Pore and Nuclear Envelope

    OpenAIRE

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities...

  2. Global site-specific analysis of glycoprotein N-glycan processing.

    Science.gov (United States)

    Cao, Liwei; Diedrich, Jolene K; Ma, Yuanhui; Wang, Nianshuang; Pauthner, Matthias; Park, Sung-Kyu Robin; Delahunty, Claire M; McLellan, Jason S; Burton, Dennis R; Yates, John R; Paulson, James C

    2018-06-01

    N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.

  3. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.

    Science.gov (United States)

    Ferro, Myriam; Brugière, Sabine; Salvi, Daniel; Seigneurin-Berny, Daphné; Court, Magali; Moyet, Lucas; Ramus, Claire; Miras, Stéphane; Mellal, Mourad; Le Gall, Sophie; Kieffer-Jaquinod, Sylvie; Bruley, Christophe; Garin, Jérôme; Joyard, Jacques; Masselon, Christophe; Rolland, Norbert

    2010-06-01

    Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further

  4. Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers.

    Science.gov (United States)

    Chen, I-Hsuan; Aguilar, Hillary Andaluz; Paez Paez, J Sebastian; Wu, Xiaofeng; Pan, Li; Wendt, Michael K; Iliuk, Anton B; Zhang, Ying; Tao, W Andy

    2018-05-15

    Glycoproteins comprise more than half of current FDA-approved protein cancer markers, but the development of new glycoproteins as disease biomarkers has been stagnant. Here we present a pipeline to develop glycoproteins from extracellular vesicles (EVs) through integrating quantitative glycoproteomics with a novel reverse phase glycoprotein array and then apply it to identify novel biomarkers for breast cancer. EV glycoproteomics show promise in circumventing the problems plaguing current serum/plasma glycoproteomics and allowed us to identify hundreds of glycoproteins that have not been identified in blood. We identified 1,453 unique glycopeptides representing 556 glycoproteins in EVs, among which 20 were verified significantly higher in individual breast cancer patients. We further applied a novel glyco-specific reverse phase protein array to quantify a subset of the candidates. Together, this study demonstrates the great potential of this integrated pipeline for biomarker discovery.

  5. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    Science.gov (United States)

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition

  6. Neutrophil glycoprotein Mo1 is an integral membrane protein of plasma membranes and specific granules

    International Nuclear Information System (INIS)

    Stevenson, K.B.; Nauseef, W.M.; Clark, R.A.

    1987-01-01

    The glucoprotein Mo1 has previously been demonstrated to be on the cell surface and in the specific granule fraction of neutrophils and to be translocated to the cell surface during degranulation. It is not known, however, whether Mo1 is an integral membrane protein or a soluble, intragranular constituent loosely associated with the specific granule membrane. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions enriched for azurophilic granules, specific granules, plasma membrane, and cytosol, respectively. The glycoproteins in these fractions were labeled with 3 H-borohydride reduction, extracted with Triton X-114, and immunoprecipitated with 60.3, an anti-Mo1 monoclonal antibody. Mo1 was detected only in the specific granule and plasma membrane fractions and partitioned exclusively into the detergent-rich fraction consistent with Mo1 being an integral membrane protein. In addition, treatment of specific granule membranes with a high salt, high urea buffer to remove adsorbed or peripheral proteins failed to dissociate Mo1. These data support the hypothesis that Mo1 is an integral membrane protein of plasma and specific granule membranes in human neutrophils

  7. An Experiment with Air Purifiers in Delhi during Winter 2015-2016.

    Science.gov (United States)

    Vyas, Sangita; Srivastav, Nikhil; Spears, Dean

    2016-01-01

    Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi's during the winter.

  8. A new insight into opaque envelopes in a passive solar house: Properties and roles

    International Nuclear Information System (INIS)

    Long, Linshuang; Ye, Hong; Liu, Minghou

    2016-01-01

    Highlights: • A new insight into the opaque envelopes of a passive solar house was gained. • Five parts of envelopes, i.e., roof, south/east/west/north walls, were discussed. • Each part of envelopes were analyzed separately rather than treated as a whole. • Ideal properties of materials for each envelope are diverse from one another. • Differences are related to the envelopes’ leading roles as a heater or a cooler. - Abstract: Passive solar houses are effective solutions for minimizing the operating energy of buildings. The building envelopes of passive solar houses exert a significant influence on the degree of indoor thermal comfort. The focus of this study was the construction of high-performance opaque envelopes, i.e., the roof and walls, for a passive solar house, and a new conception of the envelopes from the perspective of the relation between the properties and roles was provided. The discussion was conducted based on a comprehensive range of envelope materials that were distinguished by the thermal conductivity and volumetric heat capacity. For the first time, each part of the envelopes was analyzed separately rather than considered as an entire envelope. By analyzing each envelope individually, the optimum properties of each envelope were found to be distinct from each other. The distinctions are determined by the dominant role of each envelope, which is associated with the location and absorbed solar irradiation. For summer or hot climate applications, when the dominant role is a cooler, the envelope, e.g., the south wall, should consist of materials with high thermal conductivity and large heat capacity; if a heater is the dominant role, the envelope, e.g., the roof, should consist of materials with low thermal conductivity. For winter or cold climate applications, the envelopes with a leading role of a heater or a cooler require materials with high or low thermal conductivity, respectively. Under the guidance of the results, a discussion

  9. The haemagglutination activity of equine herpesvirus type 1 glycoprotein C.

    Science.gov (United States)

    Andoh, Kiyohiko; Hattori, Shiho; Mahmoud, Hassan Y A H; Takasugi, Maaya; Shimoda, Hiroshi; Bannai, Hiroshi; Tsujimura, Koji; Matsumura, Tomio; Kondo, Takashi; Kirisawa, Rikio; Mochizuki, Masami; Maeda, Ken

    2015-01-02

    Equine herpesvirus type 1 (EHV-1) has haemagglutination (HA) activity toward equine red blood cells (RBCs), but the identity of its haemagglutinin is unknown. To identify the haemagglutinin of EHV-1, the major glycoproteins of EHV-1 were expressed in 293T cells, and the cells or cell lysates were mixed with equine RBCs. The results showed that only EHV-1 glycoprotein C (gC)-producing cells adsorbed equine RBCs, and that the lysate of EHV-1 gC-expressing cells agglutinated equine RBCs. EHV-1 lacking gC did not show HA activity. HA activity was inhibited by monoclonal antibodies (MAbs) specific for gC, but not by antibodies directed against other glycoproteins. In addition, HA activity was not inhibited by the addition of heparin. These results indicate that EHV-1 gC can bind equine RBCs irrespective of heparin, in contrast to other herpesvirus gC proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  11. Amino acid differences in glycoproteins B (gB, C (gC, H (gH and L(gL are associated with enhanced herpes simplex virus type-1 (McKrae entry via the paired immunoglobulin-like type-2 receptor α

    Directory of Open Access Journals (Sweden)

    Chowdhury Sona

    2012-06-01

    Full Text Available Abstract Background Herpes simplex virus type-1 (HSV-1 enters into cells via membrane fusion of the viral envelope with plasma or endosomal membranes mediated by viral glycoproteins. HSV-1 virions attach to cell surfaces by binding of viral glycoproteins gC, gD and gB to specific cellular receptors. Here we show that the human ocular and highly neurovirulent HSV-1 strain McKrae enters substantially more efficiently into cells via the gB-specific human paired immunoglobulin-like type-2 receptor-α (hPILR-α. Comparison of the predicted amino acid sequences between HSV-1(F and McKrae strains indicates that amino acid changes within gB, gC, gH and gL may cause increased entry via the hPILR- α receptor. Results HSV-1 (McKrae entered substantially more efficiently than viral strain F in Chinese hamster ovary (CHO cells expressing hPIRL-α but not within CHO-human nectin-1, -(CHO-hNectin-1, CHO-human HVEM (CHO-hHVEM or Vero cells. The McKrae genes encoding viral glycoproteins gB, gC, gD, gH, gL, gK and the membrane protein UL20 were sequenced and their predicted amino acid (aa sequences were compared with virulent strains F, H129, and the attenuated laboratory strain KOS. Most aa differences between McKrae and F were located at their gB amino termini known to bind with the PILRα receptor. These aa changes included a C10R change, also seen in the neurovirulent strain ANG, as well as redistribution and increase of proline residues. Comparison of gC aa sequences revealed multiple aa changes including an L132P change within the 129-247 aa region known to bind to heparan sulfate (HS receptors. Two aa changes were located within the H1 domain of gH that binds gL. Multiple aa changes were located within the McKrae gL sequence, which were preserved in the H129 isolate, but differed for the F strain. Viral glycoproteins gD and gK and the membrane protein UL20 were conserved between McKrae and F strains. Conclusions The results indicate that the observed

  12. EXPRESSION OF GLYCOPROTEIN gD AND EVALUATION OF IMMUNE RESPONSE OF BOVINE HERPES VIRUS TYPE-1 IN BUFFALO

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2012-12-01

    Full Text Available Bovine Herpes Virus type-1 (BoHV-1 causes a multitude of clinical symptoms in cattle, buffaloes and small ruminants. No effective live attenuated or killed vaccine is currently available and extensive research work in progress towards the development of the subunit and genetically engineered vaccine. Since DNA vaccine is currently regarded as most important breakthrough in vaccinology, the present work was aimed at construction of DNA vaccine using most immunogenic glycoprotein gD and studying its immune response and protection in buffalo. gD specific DIG labelled probe was used to screen gD specific clones from cDNA library. The gD specific cloned plasmid was purified for eukaryotic expression. The SDS-PAGE & Western blot analysis showed the transient expression of the expected 71 kDa gD following transfection in COS-7 cells. Four seronegative buffalo calves were immunized at 0, 30 and 60 days with recombinant purified plasmid and two calves were kept as control. The result of SNT, ELISA and MTT indicate gene specific seroconversion and CMI response following immunization with plasmid. At 86 days of post first vaccination, animals were challenged with virulent BoHV-1 (216/IBR. Hematological picture of the control animals showed leucopenia and that was due to destruction of lymphocytes shown by TLC and apoptosis study. Vaccinated animals showed reduced virus shedding in terms of days post challenge as well as titers compared to the controls. Based on the above findings, we concluded that DNA based vaccine induces specific and protective immune responses to the buffalo.

  13. The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa.

    Science.gov (United States)

    Linardi, R L; Stokes, A M; Andrews, F M

    2013-02-01

    Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo. © 2012 Blackwell Publishing Ltd.

  14. [Pregnancy-specific beta-glycoprotein in the serum of women with a complicated early pregnancy].

    Science.gov (United States)

    Radikov, N

    1989-01-01

    The author determined pregnancy specific beta 1-glycoprotein in 109 women with threatened early pregnancy as 32 of the women suffered from abortus imminens with several unsuccessful pregnancies in the past as well as 67 women with abortus incipiens with bleeding ex utero. The author established that 87% of women with abortus imminens and preserved pregnancies had values of beta 1-glycoprotein close to those of normal pregnancy for the respective gestational week. 93% of women with abortus incipiens preserved pregnancies till term, but the specific glycoprotein was with in normal ranges. Spontaneous abortion occurred in 7% of women with low values under the 10th percentile. The present study show that examination of pregnancy specific beta 1-glycoprotein in women with threatened early pregnancy is of prognostic significance for the outcome of pregnancy.

  15. Improved radioimmunoassay for urinary Tamm-Horsfall glycoprotein. Investigation and resolution of factors affecting its quantification

    Energy Technology Data Exchange (ETDEWEB)

    Dawney, A B.St.J.; Thornley, C; Cattell, W R [Saint Bartholomew' s Hospital, London (UK)

    1982-09-15

    A rapid specific radioimmunoassay has been used to measure Tamm-Horsfall glycoprotein (TH glycoprotein) in urine, and the method described. The apparent concentration increased with increasing dilution of urine in water, reaching a plateau at 1 in 20. This increase was greater the higher the osmolality and TH glycoprotein concentration and the lower the pH of the original sample. The apparent concentration of TH glycoprotein in neat or diluted urine was not affected by freezing or by storage at 4/sup 0/C or room temperature for at least 2 days. A physiological range for the urinary excretion rate was established as 22-56 mg/24h, (considerably higher than the amount present in serum) based on samples from 29 individuals with normal renal function, as defined by their creatinine clearance. There was no significant correlation between serum concentrations of TH glycoprotein and its urinary excretion rate, nor between urinary excretion rate and creatinine clearance.

  16. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever.

    Science.gov (United States)

    Golden, Joseph W; Maes, Piet; Kwilas, Steven A; Ballantyne, John; Hooper, Jay W

    2016-01-20

    severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. A novel PET imaging protocol identifies seizure-induced regional overactivity of P-glycoprotein at the blood-brain barrier

    Science.gov (United States)

    Bankstahl, Jens P.; Bankstahl, Marion; Kuntner, Claudia; Stanek, Johann; Wanek, Thomas; Meier, Martin; Ding, Xiao-Qi; Müller, Markus; Langer, Oliver; Löscher, Wolfgang

    2013-01-01

    About one third of epilepsy patients are pharmacoresistant. Overexpression of P-glycoprotein and other multidrug transporters at the blood-brain barrier is thought to play an important role in drug-refractory epilepsy. Thus, quantification of regionally different P-glycoprotein activity in the brain in vivo is essential to identify P-glycoprotein overactivity as the relevant mechanism for drug-resistance in an individual patient. Using the radiolabeled P-glycoprotein substrate (R)-[11C]verapamil and different doses of co-administered tariquidar, which is an inhibitor of P-glycoprotein, we evaluated whether small-animal positron emission tomography (PET) can quantify regional changes in transporter function in the rat brain at baseline and 48 h after a pilocarpine-induced status epilepticus. P-glycoprotein expression was additionally quantified by immunohistochemistry. To reveal putative seizure-induced changes in blood-brain barrier integrity, we performed gadolinium-enhanced magnetic resonance scans on a 7.0 Tesla small-animal scanner. Before P-glycoprotein modulation, brain uptake of (R)-[11C]verapamil was low in all regions investigated in control and post-status epilepticus rats. After administration of 3 mg/kg tariquidar, which inhibits P-glycoprotein only partially, we observed increased regional differentiation in brain activity uptake in post-status epilepticus versus control rats, which diminished after maximal P-glycoprotein inhibition. Regional increases in the efflux rate constant k2, but not in distribution volume VT or influx rate constant K1, correlated significantly with increases in P-glycoprotein expression measured by immunohistochemistry. This imaging protocol proves to be suitable to detect seizure-induced regional changes in P-glycoprotein activity and is readily applicable to humans, with the aim to detect relevant mechanisms of pharmacoresistance in epilepsy in vivo. PMID:21677164

  18. Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshiki; Hirao, Takeshi; Sakata, Eri; Kamiya, Yukiko; Kurimoto, Eiji; Yoshida, Yukiko; Suzuki, Tadashi; Tanaka, Keiji; Kato, Koichi

    2007-01-01

    Fbs1 is a cytosolic lectin putatively operating as a chaperone as well as a substrate-recognition subunit of the SCF Fbs1 ubiquitin ligase complex. To provide structural and functional basis of preferential binding of Fbs1 to unfolded glycoproteins, we herein characterize the interaction of Fbs1 with a heptapeptide carrying Man 3 GlcNAc 2 by nuclear magnetic resonance (NMR) spectroscopy and other biochemical methods. Inspection of the NMR data obtained by use of the isotopically labeled glycopeptide indicated that Fbs1 interacts with sugar-peptide junctions, which are shielded in native glycoprotein, in many cases, but become accessible to Fbs1 in unfolded glycoproteins. Furthermore, Fbs1 was shown to inhibit deglycosylation of denatured ribonuclease B by a cytosolic peptide:N-glycanase (PNGase). On the basis of these data, we suggest that Fbs1 captures malfolded glycoproteins, protecting them from the attack of PNGase, during the chaperoning or ubiquitinating operation in the cytosol

  19. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  20. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope.

    Science.gov (United States)

    Wu, Yan; Zhu, Yaohua; Gao, Feng; Jiao, Yongjun; Oladejo, Babayemi O; Chai, Yan; Bi, Yuhai; Lu, Shan; Dong, Mengqiu; Zhang, Chang; Huang, Guangmei; Wong, Gary; Li, Na; Zhang, Yanfang; Li, Yan; Feng, Wen-Hai; Shi, Yi; Liang, Mifang; Zhang, Rongguang; Qi, Jianxun; Gao, George F

    2017-09-05

    Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.

  1. Asymmetry of the SN 1987A envelope

    International Nuclear Information System (INIS)

    Chugaj, N.N.

    1991-01-01

    The origin of the peculiar structure in the profiles of the emission lines observed in the spectrum of SN 1987A, namely, (1) redshift of maxima, and (2) fine structure of hydrogen lines, is considered. Among the three proposed hypothesis for the redshift, at least two (electron scattering in the spherically-symmetric envelope, and geometrical effects in the fragmented envelope) have serious drawbacks. More favorable is the third hypothesis which invokes asymmetric distribution of 56 Ni and of the iron-peak elements

  2. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell envelope gene murG.

    Science.gov (United States)

    Salmond, G P; Lutkenhaus, J F; Donachie, W D

    1980-01-01

    We report the identification, cloning, and mapping of a new cell envelope gene, murG. This lies in a group of five genes of similar phenotype (in the order murE murF murG murC ddl) all concerned with peptidoglycan biosynthesis. This group is in a larger cluster of at least 10 genes, all of which are involved in some way with cell envelope growth. Images PMID:6998962

  3. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  4. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  5. Annotating Human P-Glycoprotein Bioassay Data.

    Science.gov (United States)

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-08-01

    Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.

  6. Early Site Permit Demonstration Program: Plant parameters envelope report

    International Nuclear Information System (INIS)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  7. Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time.

    Directory of Open Access Journals (Sweden)

    Maximilian Wei-Lin Popp

    Full Text Available The influenza virus uses the hemagglutinin (HA and neuraminidase (NA glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging.

  8. Intestinal mucus and juice glycoproteins have a liquid crystalline structure

    International Nuclear Information System (INIS)

    Denisova, E.A.; Lazarev, P.I.; Vazina, A.A.; Zheleznaya, L.A.

    1985-01-01

    X-ray diffraction patterns have been obtained from the following components of canine gastrointestinal tract: (1) native small intestine mucus layer; (2) the precipitate of the flocks formed in the duodenal juice with decreasing pH; (3) concentrated solutions of glycoproteins isolated from the duodenal juice. The X-ray patterns consist of a large number of sharp reflections of spacings between about 100 and 4 A. Some reflections are common for all components studied. All the patterns are interpreted as arising from the glycoprotein molecules ordered into a liquid crystalline structure. (author)

  9. Beam envelope profile of non-centrosymmetric polygonal phase space

    International Nuclear Information System (INIS)

    Chen Yinbao; Xie Xi

    1984-01-01

    The general theory of beam envelope profile of non-centrosymmetric polygonal phase space is developed. By means of this theory the beam envelope profile of non-centrosymmetric polygonal phase space can be calculated directly. An example is carried out in detail to show the practical application of the theory

  10. Lack of correlation between virus barosensitivity and the presence of a viral envelope during inactivation of human rotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressure processing.

    Science.gov (United States)

    Lou, Fangfei; Neetoo, Hudaa; Li, Junan; Chen, Haiqiang; Li, Jianrong

    2011-12-01

    High-pressure processing (HPP) is a nonthermal technology that has been shown to effectively inactivate a wide range of microorganisms. However, the effectiveness of HPP on inactivation of viruses is relatively less well understood. We systematically investigated the effects of intrinsic (pH) and processing (pressure, time, and temperature) parameters on the pressure inactivation of a nonenveloped virus (human rotavirus [HRV]) and two enveloped viruses (vesicular stomatitis virus [VSV] and avian metapneumovirus [aMPV]). We demonstrated that HPP can efficiently inactivate all tested viruses under optimal conditions, although the pressure susceptibilities and the roles of temperature and pH substantially varied among these viruses regardless of the presence of a viral envelope. We found that VSV was much more stable than most food-borne viruses, whereas aMPV was highly susceptible to HPP. When viruses were held for 2 min under 350 MPa at 4°C, 1.1-log, 3.9-log, and 5.0-log virus reductions were achieved for VSV, HRV, and aMPV, respectively. Both VSV and aMPV were more susceptible to HPP at higher temperature and lower pH. In contrast, HRV was more easily inactivated at higher pH, although temperature did not have a significant impact on inactivation. Furthermore, we demonstrated that the damage of virion structure by disruption of the viral envelope and/or capsid is the primary mechanism underlying HPP-induced viral inactivation. In addition, VSV glycoprotein remained antigenic although VSV was completely inactivated. Taken together, our findings suggest that HPP is a promising technology to eliminate viral contaminants in high-risk foods, water, and other fomites.

  11. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries

    Directory of Open Access Journals (Sweden)

    Johansson Ingegerd

    2007-06-01

    Full Text Available Abstract Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries, harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19 or low (n = 19 caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively. The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37 and saliva adhesion of S. mutans Ingbritt (VIP = 1.47. The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries

  12. Platelet Glycoprotein Ib-IX and Malignancy

    Science.gov (United States)

    2010-09-01

    provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin - rich network produced by coagulation...process and can initiate the formation of a platelet - rich thrombus by tethering the platelet to a thrombogenic surface. Several ligands binding to GP Ib... Platelet Glycoprotein Ib-IX and Malignancy PRINCIPAL INVESTIGATOR: Jerry Ware, Ph.D

  13. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus.

    Science.gov (United States)

    Han, Jun; Chadha, Pooja; Meckes, David G; Baird, Nicholas L; Wills, John W

    2011-09-01

    The UL11 tegument protein of herpes simplex virus plays a critical role in the secondary envelopment; however, the mechanistic details remain elusive. Here, we report a new function of UL11 in the budding process in which it directs efficient acquisition of glycoprotein E (gE) via a direct interaction. In vitro binding assays showed that the interaction required only the first 28, membrane-proximal residues of the cytoplasmic tail of gE, and the C-terminal 26 residues of UL11. A second, weaker binding site was also found in the N-terminal half of UL11. The significance of the gE-UL11 interaction was subsequently investigated with viral deletion mutants. In the absence of the gE tail, virion packaging of UL11, but not other tegument proteins such as VP22 and VP16, was reduced by at least 80%. Reciprocally, wild-type gE packaging was also drastically reduced by about 87% in the absence of UL11, and this defect could be rescued in trans by expressing U(L)11 at the U(L)35 locus. Surprisingly, a mutant that lacks the C-terminal gE-binding site of UL11 packaged nearly normal amounts of gE despite its strong interaction with the gE tail in vitro, indicating that the interaction with the UL11 N terminus may be important. Mutagenesis studies of the UL11 N terminus revealed that the association of UL11 with membrane was not required for this function. In contrast, the UL11 acidic cluster motif was found to be critical for gE packaging and was not replaceable with foreign acidic clusters. Together, these results highlight an important role of UL11 in the acquisition of glycoprotein-enriched lipid bilayers, and the findings may also have important implications for the role of UL11 in gE-mediated cell-to-cell spread.

  14. The quality control of glycoprotein folding in the endoplasmic reticulum, a trip from trypanosomes to mammals

    Directory of Open Access Journals (Sweden)

    A.J. Parodi

    1998-05-01

    Full Text Available The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyltransferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.

  15. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-10-01

    Full Text Available Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing.

  16. Intelligent building envelopes. Architectural concept and applications for daylighting quality

    Energy Technology Data Exchange (ETDEWEB)

    Wyckmans, Annemie

    2005-11-15

    How does an intelligent building envelope manage the variable and sometimes conflictive occupant requirements that arise in a day lit indoor environment. This is the research question that provides the basis for this Ph.D. work. As it touches upon several fields of application, the research question is untangled into four steps, each of which corresponds to a chapter of the thesis. 1) What characterises intelligent behaviour for a building envelope. 2) What characterises indoor day lighting quality. 3) Which functions can an intelligent building envelope be expected to perform in the context of day lighting quality. 4) How are the materials, components and composition of an intelligent building envelope designed to influence this performance. The emphasis is on design, environmental aspects, energy conservation, functional analysis and physical applications.

  17. Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry

    Science.gov (United States)

    Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.

    2014-01-01

    ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral

  18. Steroidogenesis in amlodipine treated purified Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Rabia, E-mail: rabialatif08@hotmail.com [Department of Physiology, Army Medical College, National University of Sciences and Technology, Islamabad (Pakistan); Lodhi, Ghulam Mustafa, E-mail: drmustafa786@gmail.com [Department of Physiology, Wah Medical College, Wah (Pakistan); Hameed, Waqas, E-mail: waqham@hotmail.com [Department of Physiology, Rehman Medical College, Peshawar (Pakistan); Aslam, Muhammad, E-mail: professormaslam@yahoo.com [Department of Physiology, Shifa College of Medicine, Islamabad (Pakistan)

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  19. Suppressive effect on polyclonal B-cell activation of a synthetic peptide homologous to a transmembrane component of oncogenic retroviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, M.; Cianciolo, G.J.; Snyderman, R.; Yasuda, M.; Good, R.A.; Day, N.K.

    1987-01-01

    Purified feline leukemia virus, UV light-inactivated feline leukemia virus, and a synthetic peptide (CKS-17) homologous to a well-conserved region of the transmembrane components of several human and animal retroviruses were each studied for their effect on IgG production by feline peripheral blood lymphocytes. Using a reverse hemolytic plaque assay, both the viable virus and the UV-inactivated feline leukemia virus, but not the CKS-17, activated B lymphocytes to secrete IgG. When staphylococcal protein A, a polyclonal B-cell activator, was used to stimulate IgG synthesis by feline lymphocytes, the viable virus, the UV-inactivated virus, and the CKS-17 peptide each strongly suppressed IgG secretion without compromising viability of the lymphocytes. These finding suggest that the immunosuppressive influences of feline leukemia virus on immunoglobulin synthesis may reside in a conserved portion of the envelope glycoprotein that includes the region homologous to CKS-17.

  20. Suppressive effect on polyclonal B-cell activation of a synthetic peptide homologous to a transmembrane component of oncogenic retroviruses

    International Nuclear Information System (INIS)

    Mitani, M.; Cianciolo, G.J.; Snyderman, R.; Yasuda, M.; Good, R.A.; Day, N.K.

    1987-01-01

    Purified feline leukemia virus, UV light-inactivated feline leukemia virus, and a synthetic peptide (CKS-17) homologous to a well-conserved region of the transmembrane components of several human and animal retroviruses were each studied for their effect on IgG production by feline peripheral blood lymphocytes. Using a reverse hemolytic plaque assay, both the viable virus and the UV-inactivated feline leukemia virus, but not the CKS-17, activated B lymphocytes to secrete IgG. When staphylococcal protein A, a polyclonal B-cell activator, was used to stimulate IgG synthesis by feline lymphocytes, the viable virus, the UV-inactivated virus, and the CKS-17 peptide each strongly suppressed IgG secretion without compromising viability of the lymphocytes. These finding suggest that the immunosuppressive influences of feline leukemia virus on immunoglobulin synthesis may reside in a conserved portion of the envelope glycoprotein that includes the region homologous to CKS-17

  1. Functional incorporation of green fluorescent protein into hepatitis B virus envelope particles

    International Nuclear Information System (INIS)

    Lambert, Carsten; Thome, Nicole; Kluck, Christoph J.; Prange, Reinhild

    2004-01-01

    The envelope of hepatitis B virus (HBV), containing the L, M, and S proteins, is essential for virus entry and maturation. For direct visualization of HBV, we determined whether envelope assembly could accommodate the green fluorescent protein (GFP). While the C-terminal addition of GFP to S trans-dominant negatively inhibited empty envelope particle secretion, the N-terminal GFP fusion to S (GFP.S) was co-integrated into the envelope, giving rise to fluorescent particles. Microscopy and topogenesis analyses demonstrated that the proper intracellular distribution and folding of GFP.S, required for particle export were rescued by interprotein interactions with wild-type S. Thereby, a dual location of GFP, inside and outside the envelope, was observed. GFP.S was also efficiently packaged into the viral envelope, and these GFP-tagged virions retained the capacity for attachment to HBV receptor-positive cells in vitro. Together, GFP-tagged virions should be suitable to monitor HBV uptake and egress in live hepatocytes

  2. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins associated with either early or chronic infections.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    2011-09-01

    Full Text Available Here we have identified HIV-1 B clade Envelope (Env amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.

  3. Development of a biogas purifier for rural areas in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Hinata, T. [Hokkaido Central Agricultural Experiment Station, Hokkaido (Japan); Yasui, S. [Zukosha Co. Ltd., Obihiro, Hokkaido (Japan); Noguchi, N. [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tsukamoto, T. [IHI Shibaura. Co. Ltd., Obihiro, Hokkaido (Japan); Imai, T. [Green Plan Co. Ltd., Sapporo, Hokkaido (Japan); Kanai, M. [Air Water Co. Ltd, Sakai, Osaka (Japan); Matsuda, Z. [Hokuren Agricultural Research Center, Sapporo, Hokkaido (Japan)

    2010-07-01

    Although the biogas that is currently produced for dairy farms in Japan is a carbon-neutral energy, its use is restricted to farming areas only because there is no effective method of transporting unused biogas. There is a need for establishing practical methods for biogas removal from operating systems. In this study, a gas separation membrane was used in order to modify biogas to city gas 12A specifications, and to develop a biogas purifier equipped with a device to fill high pressure purified gas into cylinders to be taken outside the farming area. The objective was to expand the use of biogas produced from stand-alone gas plants. The amount of purified gas produced at a newly created refining-compression-filling (RCF) facility was approximately 97.0 Nm{sup 3}/day, for a raw material amount of about 216.0 Nm{sup 3}/day. The heat quantity of the purified gas was 38.9 MJ/Nm{sup 3}, which was within city gas 12A specifications. A total of 14.3 cylinders were filled each day with the manufactured purified gas. Test calculations along with a simulation exercise revealed that it would be possible to provide purified gas to approximately 6 per cent of common residences in a town in northern Japan. It was concluded that the newly created RCF facility allowed the modification of carbon-neutral biogas to conform to city gas 12A specifications, and allowed the transport of this gas out of the farming area.

  4. Method for purifying bidentate organophosphorus compounds

    International Nuclear Information System (INIS)

    Schulz, W.W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds

  5. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  6. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  7. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  8. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  9. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    International Nuclear Information System (INIS)

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.; Wang, W.-K.

    2007-01-01

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  10. Glycan structures contain information for the spatial arrangement of glycoproteins in the plasma membrane.

    Directory of Open Access Journals (Sweden)

    M Kristen Hall

    Full Text Available Glycoconjugates at the cell surface are crucial for cells to communicate with each other and the extracellular microenvironment. While it is generally accepted that glycans are vectorial biopolymers, their information content is unclear. This report provides evidence that distinct N-glycan structures influence the spatial arrangement of two integral membrane glycoproteins, Kv3.1 and E-cadherin, at the adherent membrane which in turn alter cellular properties. Distinct N-glycan structures were generated by heterologous expression of these glycoproteins in parental and glycosylation mutant Chinese hamster ovary cell lines. Unlike the N-linked glycans, the O-linked glycans of the mutant cell lines are similar to those of the parental cell line. Western and lectin blots of total membranes and GFP immunopurified samples, combined with glycosidase digestion reactions, were employed to verify the glycoproteins had predominantly complex, oligomannose, and bisecting type N-glycans from Pro(-5, Lec1, and Lec10B cell lines, respectively. Based on total internal reflection fluorescence and differential interference contrast microscopy techniques, and cellular assays of live parental and glycosylation mutant CHO cells, we propose that glycoproteins with complex, oligomannose or bisecting type N-glycans relay information for localization of glycoproteins to various regions of the plasma membrane in both a glycan-specific and protein-specific manner, and furthermore cell-cell interactions are required for deciphering much of this information. These distinct spatial arrangements also impact cell adhesion and migration. Our findings provide direct evidence that N-glycan structures of glycoproteins contribute significantly to the information content of cells.

  11. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  12. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Khare, Pranay D.; Russell, Stephen J.; Federspiel, Mark J.

    2003-01-01

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  13. Membrane fusion activity of vesicular stomatitis virus glycoprotein G is induced by low pH but not by heat or denaturant

    International Nuclear Information System (INIS)

    Yao Yi; Ghosh, Kakoli; Epand, Raquel F.; Epand, Richard M.; Ghosh, Hara P.

    2003-01-01

    The fusogenic envelope glycoprotein G of the rhabdovirus vesicular stomatitis virus (VSV) induces membrane fusion at acidic pH. At acidic pH the G protein undergoes a major structural reorganization leading to the fusogenic conformation. However, unlike other viral fusion proteins, the low-pH-induced conformational change of VSV G is completely reversible. As well, the presence of an α-helical coiled-coil motif required for fusion by a number of viral and cellular fusion proteins was not predicted in VSV G protein by using a number of algorithms. Results of pH dependence of the thermal stability of G protein as determined by intrinsic Trp fluorescence and circular dichroism (CD) spectroscopy show that the G protein is equally stable at neutral or acidic pH. Destabilization of G structure at neutral pH with either heat or urea did not induce membrane fusion or conformational change(s) leading to membrane fusion. Taken together, these data suggest that the mechanism of VSV G-induced fusion is distinct from the fusion mechanism of fusion proteins that involve a coiled-coil motif

  14. Purifying oils

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-15

    Gasoline, lamp oils, and lubricating or other mineral or shale oils are refined by contacting the vapor with a hot aqueous solution of salts of zinc, cadmium, or mercury, or mixtures thereof which may contain 0-5-3-0 percent of oxide or hydroxide in solution or suspension. Chlorides, bromides, iodides, sulfates, nitrates, and sulfonates of benzol, toluol, xylol, and petroleum are specified. Washing with a solution of sodium or potassium hydroxide or carbonate of calcium hydroxide may follow. The oil may first be purified by sulfuric acid or other known agent, or afterwards caustic alkali and sulfuric acid. The Specification as open to inspection under Sect. 91 (3) (a) describes also the use of salts of copper, iron, chromium, manganese, aluminum, nickel, or cobalt, with or without their oxides or hydroxides. This subject-matter does not appear in the Specification as accepted.

  15. Design and synthesis of an antigenic mimic of the Ebola glycoprotein

    OpenAIRE

    Rutledge, Ryan D.; Huffman, Brian J.; Cliffel, David E.; Wright, David W.

    2008-01-01

    An antigenic mimic of the Ebola glycoprotein was synthesized and tested for its ability to be recognized by an anti-Ebola glycoprotein antibody. Epitope-mapping procedures yielded a suitable epitope that, when presented on the surface of a nanoparticle, forms a structure that is recognized by an antibody specific for the native protein. This mimic-antibody interaction has been quantitated through ELISA and QCM-based methods and yielded an affinity (Kd = 12 × 10−6 M) within two orders of magni...

  16. High frequency vibration analysis by the complex envelope vectorization.

    Science.gov (United States)

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  17. Aspherical Dust Envelopes Around Oxygen-Rich AGB Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2006-12-01

    Full Text Available We model the aspherical dust envelopes around O-rich AGB stars. We perform the radiative transfer model calculations for axisymmetric dust distributions. We simulate what could be observed from the aspherical dust envelopes around O-rich AGB stars by presenting the model spectral energy distributions and images at various wavelengths for different optical depths and viewing angles. The model results are very different from the ones with spherically symmetric geometry.

  18. Condensins Exert Force on Chromatin-Nuclear Envelope Tethers to Mediate Nucleoplasmic Reticulum Formation in Drosophila melanogaster

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni

    2014-01-01

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604

  19. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni

    2014-12-30

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.

  20. Involvement of Leishmania donovani major surface glycoprotein ...

    Indian Academy of Sciences (India)

    The major surface glycoprotein gp63 of the kinetoplastid protozoal parasite Leishmania is implicated as a ligand mediating uptake of the parasite into, and survival within, the host macrophage. By expressing gp63 antisense RNA from an episomal vector in L. donovani promastigotes, gp63-deficient transfectants were ...

  1. Impossibility criterion for obtaining pure entangled states from mixed states by purifying protocols

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    Purifying noisy entanglement is a protocol that can increase the entanglement of a mixed state (as a source) at the expense of the entanglement of others (such as an ancilla) by collective measurement. A protocol with which one can get a pure entangled state from a mixed state is defined as purifying mixed states. We address a basic question: can one get a pure entangled state from a mixed state? We give a necessary and sufficient condition of purifying a mixed state by fit local operations and classical communication and show that for a class of source states and ancilla states in arbitrary bipartite systems purifying mixed states is impossible by finite rounds of purifying protocols. For 2x2 systems, it is proved that arbitrary states cannot be purified by individual measurement. The possible application and meaning of the conclusion are discussed

  2. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  3. Spectral envelope sensitivity of musical instrument sounds.

    Science.gov (United States)

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.

  4. The cell envelope glycoconjugates of Mycobacterium tuberculosis

    Science.gov (United States)

    Angala, Shiva Kumar; Belardinelli, Juan Manuel; Huc-Claustre, Emilie; Wheat, William H.; Jackson, Mary

    2015-01-01

    Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last ten years in the discovery and development of novel inhibitors targeting their biogenesis. PMID:24915502

  5. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Verne, Wesley, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu [Department of Computer Science, Princeton University, Princeton, NJ 08544 (United States)

    2014-06-01

    Many exoplanets have been discovered with radii of 1-4 R {sub ⊕}, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H{sub 2}-He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H{sub 2}-He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  6. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    International Nuclear Information System (INIS)

    Howe, Alex R.; Burrows, Adam; Verne, Wesley

    2014-01-01

    Many exoplanets have been discovered with radii of 1-4 R ⊕ , between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H 2 -He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H 2 -He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  7. Solar envelope zoning: application to the city planning process. Los Angeles case study

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Solar envelope zoning represents a promising approach to solar access protection. A solar envelope defines the volume within which a building will not shade adjacent lots or buildings. Other solar access protection techniques, such as privately negotiated easements, continue to be tested and implemented but none offer the degree of comprehensiveness evident in this approach. Here, the City of Los Angeles, through the Mayor's Energy Office, the City Planning Department, and the City Attorney's Office, examine the feasibility of translating the concept of solar envelopes into zoning techniques. They concluded that envelope zoning is a fair and consistent method of guaranteeing solar access, but problems of complexity and uncertainty may limit its usefulness. Envelope zoning may be inappropriate for the development of high density centers and for more restrictive community plans. Aids or tools to administer envelope zoning need to be developed. Finally, some combination of approaches, including publicly recorded easements, subdivision approval and envelope zoning, need to be adopted to encourage solar use in cities. (MHR)

  8. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    Science.gov (United States)

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  9. Investigation of the function of the putative self-association site of Epstein-Barr virus (EBV) glycoprotein 42 (gp42)

    International Nuclear Information System (INIS)

    Rowe, Cynthia L.; Matsuura, Hisae; Jardetzky, Theodore S.; Longnecker, Richard

    2011-01-01

    The Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a type II membrane protein essential for entry into B cells but inhibits entry into epithelial cells. X-ray crystallography suggests that gp42 may form dimers when bound to human leukocyte antigen (HLA) class II receptor (Mullen et al., 2002) or multimerize when not bound to HLA class II (Kirschner et al., 2009). We investigated this self-association of gp42 using several different approaches. We generated soluble mutants of gp42 containing mutations within the self-association site and found that these mutants have a defect in fusion. The gp42 mutants bound to gH/gL and HLA class II, but were unable to bind wild-type gp42 or a cleavage mutant of gp42. Using purified gp42, gH/gL, and HLA, we found these proteins associate 1:1:1 by gel filtration suggesting that gp42 dimerization or multimerization does not occur or is a transient event undetectable by our methods.

  10. Conservation of the glycoprotein B homologs of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) and Old World primate rhadinoviruses of chimpanzees and macaques

    Science.gov (United States)

    Bruce, A. Gregory; Horst, Jeremy A.; Rose, Timothy M.

    2016-01-01

    The envelope-associated glycoprotein B (gB) is highly conserved within the Herpesviridae and plays a critical role in viral entry. We analyzed the evolutionary conservation of sequence and structural motifs within the Kaposi’s sarcoma-associated herpesvirus (KSHV) gB and homologs of Old World primate rhadinoviruses belonging to the distinct RV1 and RV2 rhadinovirus lineages. In addition to gB homologs of rhadinoviruses infecting the pig-tailed and rhesus macaques, we cloned and sequenced gB homologs of RV1 and RV2 rhadinoviruses infecting chimpanzees. A structural model of the KSHV gB was determined, and functional motifs and sequence variants were mapped to the model structure. Conserved domains and motifs were identified, including an “RGD” motif that plays a critical role in KSHV binding and entry through the cellular integrin αVβ3. The RGD motif was only detected in RV1 rhadinoviruses suggesting an important difference in cell tropism between the two rhadinovirus lineages. PMID:27070755

  11. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.

    Science.gov (United States)

    Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth

    2017-08-09

    Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate

  12. High pressure treatment under subfreezing temperature results in drastic inactivation of enveloped and non-enveloped viruses.

    Science.gov (United States)

    Kishida, T; Cui, F-D; Ohgitani, E; Gao, F; Hayakawa, K; Mazda, O

    2013-08-01

    Some viruses are sensitive to high pressure. The freeze-pressure generation method (FPGM) applies pressure as high as 250 MPa on a substance, simply by freezing a pressure-resistant reservoir in which the substance is immersed in water. Here we examined whether the FPGM successfully inactivates herpes simplex virus type 1 (HSV-1), an enveloped DNA virus belonging to the human Herpesviridae, and encephalomyocarditis virus (EMCV), an envelope-free RNA virus belonging to the Picornaviridae. After the treatment, HSV-1 drastically reduced the ability to form plaque in Vero cells in vitro as well as to kill mice in vivo. EMCV that had been pressurized failed to proliferate in HeLa cells and induce interferon response. The results suggest that the FPGM provides a feasible procedure to inactivate a broad spectrum of viruses.

  13. A study of some Be star envelopes

    International Nuclear Information System (INIS)

    Kitchen, C.R.

    1976-01-01

    The envelope model and emission region radius of six Be stars have been determined from 36 lines on 15 spectra taken with the Isaac Newton telescope. The results have been compared with earlier determinations to search for changes with the time. No definite evidence for such changes has been found, although there may be an indication of a change in phi Per. A re-determination of the errors involved in the method of analysis shows that these are smaller than previously estimated and range from about 9% to 35% for both envelope model and emission region radius. (Auth.)

  14. Affinity selection of Nipah and Hendra virus-related vaccine candidates from a complex random peptide library displayed on bacteriophage virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Peabody, David S.; Chackerian, Bryce; Ashley, Carlee; Carnes, Eric; Negrete, Oscar

    2017-01-24

    The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referred to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.

  15. A controlled trial of envelope colour for increasing response rates in older women.

    Science.gov (United States)

    Mitchell, Natasha; Hewitt, Catherine E; Torgerson, David J

    2011-06-01

    Postal questionnaires are widely used in health research to provide measurable outcomes in areas such as quality of life. Participants who fail to return postal questionnaires can introduce non-response bias. Previous studies within populations over the age of 65 years have shown that response rates amongst older people can be 60% or less. The current study sought to investigate whether envelope colour affected response rates in a study about the effectiveness of screening older women for osteoporosis. A total of 2803 eligible female participants aged between 70 and 85 were sent an invitation pack from their GP practice. The invitation was either in a brown or white envelope and contained a matching pre-paid reply envelope. A study questionnaire was also sent out in brown or white envelopes 1 week after consenting to participate in the trial. The overall response rate was 78%. There was little evidence of an effect of envelope colour on response to the invitation to participate in the trial (OR 1.04, 95% CI 0.87-1.24). Similarly, there was no influence of envelope colour on the number of participants returning their questionnaires (OR 0.99, 95% CI 0.60-1.63). There was weak evidence of an effect of envelope colour on the response rates of the consent process (OR 0.86, 95% CI 0.74-1.00). When we updated a recent meta-analysis with the results of this study, there was a non-statistically- significant trend for greater response rates with brown envelopes compared with white envelopes (OR 1.19, 95% CI 0.86-1.64, I2=92%). However, the results where influenced by one study and when this study was excluded the pooled estimate was 0.98 (95% CI 0.89-1.08, I2=0%). This study found no evidence to suggest envelope colour has an effect on response to participate in a trial or questionnaire returns. There is weak evidence to suggest envelope colour may affect consent into a trial.

  16. The psychic envelopes in psychoanalytic theories of infancy.

    Directory of Open Access Journals (Sweden)

    Denis eMellier

    2014-07-01

    Full Text Available This paper aims to review the topic of psychic envelopes and to sketch the main outlines of this concept in infancy. We first explore the origins of the concept in Freud's 'protective shield' and then its development in adult psychoanalysis before going on to see how this fits in infancy with post-Bionian psychoanalysis and development. Four central notions guide this review:1 Freud's protective shield describes a barrier to protect the psychic apparatus against potentially overflowing trauma. It is a core notion which highlights a serious clinical challenge for patients for whom the shield is damaged or faulty: the risk of confusion of borders between the internal/external world, conscious/unconscious, mind/body, or self-conservation/sexuality.2 Anzieu's Skin-Ego is defined by the different senses of the body. The different layers of experienced sensation, of this body-ego, go on to form the psychic envelope. This theory contributes to our understanding of how early trauma, due to the failures of maternal care, can continue to have an impact in adult life. 3 Bick's psychic skin establishes the concept in relation to infancy. The mother’s containing functions allow a first psychic skin to develop, which then defines an infant’s psychic space and affords the infant a degree of self-containment. Houzel then conceptualized this process as a stabilization of drive forces.4 Stern's narrative envelope derives from the intersection between psychoanalysis and neuroscience. It gives us another way to conceptualise the development of pre-verbal communication. It may also pave the way for a finer distinction of different types of envelopes.Ultimately, in this review we find that psychic envelopes in infancy can be viewed from four different perspectives (economic, topographical, dynamic and genetic and recommend further investigation.

  17. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    Science.gov (United States)

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Handbook on data envelopment analysis

    CERN Document Server

    Cooper, William W; Zhu, Joe

    2011-01-01

    Focusing on extensively used Data Envelopment Analysis topics, this volume aims to both describe the state of the field and extend the frontier of DEA research. New chapters include DEA models for DMUs, network DEA, models for supply chain operations and applications, and new developments.

  19. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

    International Nuclear Information System (INIS)

    Sawakuchi, Gabriel O; Titt, Uwe; Mirkovic, Dragan; Ciangaru, George; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T; Mohan, Radhe

    2010-01-01

    Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

  20. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility.

    Science.gov (United States)

    Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D

    2010-01-19

    The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.