Collisional redistribution effects on x-ray laser saturation behavior
International Nuclear Information System (INIS)
Koch, J.A.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.J.; Lee, R.W.; London, R.A.; Mrowka, S.; Underwood, J.H.; Batson, P.J.
1994-06-01
We recently published a detailed summary of our experimental and theoretical research on Ne-like Se x-ray laser line widths, and one of our conclusions was that collisional redistribution rates are likely to have an effect on the saturation behavior of the 206.4 angstrom Se x-ray laser. In this paper we focus on the effects of collisional redistribution on x-ray laser gain coefficients, and discuss ways of including these effects in existing laser line- transfer models
Asteroid collisional history - Effects on sizes and spins
International Nuclear Information System (INIS)
Davis, D.R.; Weidenschilling, S.J.; Farinella, P.; Paolicchi, P.; Binzel, R.P.
1989-01-01
The effects of asteroid collisional history on sizes and spins of present-day objects are discussed. Collisional evolution studies indicate that collisions have altered the spin-rates of small bodies, but that the largest asteroids may have retained their primordial rotation rates. Most asteroids larger than 100 km diam have probably been shattered, but have gravitationally recaptured their fragments to form a rubble-pile structure. Large angular momentum asteroids appear to have Maclaurian spheroidal or Jacobi-ellipsoid-like shapes; some of them may have fissioned into binaries. An integrated size and spin collisional evolution model is presented, with two critical parameters: one which determines the spin rates for small fragments resulting from a shattering collision, and the other determines the fraction of impact angular momentum that is retained by the target. 36 refs
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.S.
1985-01-01
A new set of two-fluid equations which are valid from collisional to weakly collisional limits are derived. Starting from gyrokinetic equations in flux coordinates with no zeroth order drifts, a set of moment equations describing plasma transport along the field lines of a space and time dependent magnetic field are derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii while in the weakly collisional limit, they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations. The new transport equations are used to study the effects of collisionality, magnetic field structure, and plasma anisotropy on plasma parallel transport. Numerical examples comparing these equations with conventional transport equations show that the conventional equations may contain large errors near the sound speed (M approx. = 1). It is also found that plasma anisotropy, which is not included in the conventional equations, is a critical parameter in determining plasma transport in varying magnetic field. The new transport equations are also used to study axial confinement in multiple mirror devices from the strongly to weakly collisional regime. A new ion conduction model was worked out to extend the regime of validity of the transport equations to the low density multiple mirror regime
The relationship between collisional phase defect distribution and cascade collapse efficiency
International Nuclear Information System (INIS)
Morishita, K.; Heinisch, H.L.; Ishino, S.; Sekimura, N.
1994-01-01
Defect distributions after the collisional phase of cascade damage processes were calculated using the computer simulation code MARLOWE, which is based on the binary collision approximation. The densities of vacant sites were evaluated in defect-dense regions at the end of the collisional phase in simulated ion irradiations of several pure metals (Au, Ag, Cu, Ni, Fe, Mo and W). The vacancy density distributions were compared to the measured cascade collapse efficiencies obtained from low-dose ion irradiations of thin foils reported in the literature to identify the minimum or ''critical'' values of the vacancy densities during the collisional phase corresponding to cascade collapse. The critical densities are generally independent of the cascade energy in the same metal. The relationships between physical properties of the target elements and the critical densities are discussed within the framework of the cascade thermal spike model. ((orig.))
Investigation of collisional effects within the bending magnet region of a DIII-D neutral beamline
International Nuclear Information System (INIS)
Kessler, D.N.; Hong, R.; Kellman, D.H.
1993-10-01
The region between the pole faces of the DIII-D neutral beamline residual ion bending magnets is an area of transient high gas pressure which may cause beam defocusing and increased heating of beamline internal components due to collisional effects. An investigation of these effects helps in understanding residual ion trajectories and in providing information for studying in the beamline capability for operation with increased pulse duration. Examination of collisional effects, and of the possible existence of space charge blow-up, was carried out by injecting deuterium gas into the region between the magnet pole faces with rates varying from 0 to 18 torr-ell/sec. Thermocouple and waterflow calorimetry data were taken to measure the beamline component heating and beam powder deposition on the magnet pole shields, magnet louvers, ion dump, beam collimators, and calorimeter. Data was also taken at gas flow rates varying from 0 to 25 torr-ell/sec into the neutralizer cell and is compared with the magnet region gas injection data obtained. Results show that both collisional effects and space charge blow-up play a role in magnet region component heating and that neutralizer gas flow sufficiently reduces component heating without incurring unacceptable power losses through collisional effects
Collisional effects in He I lines and helium abundances in planetary nebulae
International Nuclear Information System (INIS)
Clegg, R.E.S.
1987-01-01
Attention is drawn to new, 19-state quantal calculations for collisional excitation by electron impact in neutral helium. Recommended empirical formulae are given for the collisional contribution to HeI recombination lines such as λλ4471, 5876 A in gaseous nebulae. Collisional ionization of metastable (2 3 S) He I is significant for high-temperature nebulae. Collisional transfers provide significant cooling in nebulae with low heavy-element abundances. Revised mean He/H ratios for three large samples of planetary nebulae are given. (author)
Collisional properties of weakly bound heteronuclear dimers
Marcelis, B.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.; Petrov, D.S.
2008-01-01
We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating
Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy
van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.
2018-02-01
Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.
Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect
International Nuclear Information System (INIS)
Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.
1996-01-01
Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics
The effect of collisionality and diamagnetism on the plasma dynamo
International Nuclear Information System (INIS)
Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.
1995-01-01
Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs
Degenerate four-wave mixing and phase conjugation in a collisional plasma
International Nuclear Information System (INIS)
Federici, J.F.; Mansfield, D.K.
1986-06-01
Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10μm. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed
Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects
International Nuclear Information System (INIS)
Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe
2008-01-01
The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.
The limits of the Bohm criterion in collisional plasmas
International Nuclear Information System (INIS)
Valentini, H.-B.; Kaiser, D.
2015-01-01
The sheath formation within a low-pressure collisional plasma is analysed by means of a two-fluid model. The Bohm criterion takes into account the effects of the electric field and the inertia of the ions. Numerical results yield that these effects contribute to the space charge formation, only, if the collisionality is lower than a relatively small threshold. It follows that a lower and an upper limit of the drift speed of the ions exist where the effects treated by Bohm can form a sheath. This interval becomes narrower as the collisionality increases and vanishes at the mentioned threshold. Above the threshold, the sheath is mainly created by collisions and the ionisation. Under these conditions, the sheath formation cannot be described by means of Bohm like criteria. In a few references, a so-called upper limit of the Bohm criterion is stated for collisional plasmas where the momentum equation of the ions is taken into account, only. However, the present paper shows that this limit results in an unrealistically steep increase of the space charge density towards the wall, and, therefore, it yields no useful limit of the Bohm velocity
Energy Technology Data Exchange (ETDEWEB)
Park, G.; Jeon, Y.; Kim, J., E-mail: gypark@nfri.re.kr [NFRI, Daejeon (Korea, Republic of); Chang, C. [Princeton Plasma Physics Laboratory, Princeton (United States)
2012-09-15
Full text: Control of the edge localized modes (ELMs) is one of the most critical issues for a more successful operation of ITER and the future tokamak fusion reactors. This paper reports ITER relevant simulation results from the XGC0 drift-kinetic code, with respect to the collisionality, plasma density, and rotation dependence of the RMP penetration and the RMP-driven transport in diverted DIII-D geometry with neutral recycling. The simulation results are consistent with the experimental results, and contribute to the physics understanding needed for more confident extrapolation of the present RMP experiments to ITER. It is found that plasma-responded stochasticity becomes weaker as the collisionality gets higher and RMP-driven transport (i.e., density pump-out) is much weaker in the high collisionality case compared with that in the low collisionality one, which is consistent with the recent experimental results on DIII-D and ASDEX-U tokamaks. As for rotation effect, low rotation is found not to affect the stochasticity much in the edge region, while high rotation significantly suppresses the RMPs in the core. The clear difference in RMP behavior between the low and high collisionality regimes can be understood by examining the perturbed current Fourier amplitude profiles within the range of resonant poloidal mode numbers (m = 8 - 15, n = 3). It can be seen that primary shielding currents are strongly concentrated around the steep pedestal region just inside the separatrix, which naturally produces very strong suppression of RMPs there, in low collisionality case. However, in high collisionality case, primary shielding currents are very weak and accumulating toward inner radii leading to the shielding of RMPs further into the plasma. Our kinetic simulation method is also applied to the modeling of RMP ELM control experiments on KSTAR tokamak and the results will be presented together. (author)
IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT
International Nuclear Information System (INIS)
Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.
2011-01-01
The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r ∼ 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.
Transition from Collisionless to Collisional MRI
International Nuclear Information System (INIS)
Sharma, Prateek; Hammett, Gregory W.; Quataert, Eliot
2003-01-01
Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper, we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2*/k(sub)||. In the weak magnetic field regime where the Alfven and MRI frequencies w are small compared to the sound wave frequency k(sub)||c(sub)0, the dynamics are still effectively collisionless even if omega << v, so long as the collision frequency v << k(sub)||c(sub)0; for an accretion flow this requires n less than or approximately equal to *(square root of b). The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI
Sigmund, P
2003-01-01
Collisional electronic energy-loss straggling has been treated theoretically on the basis of the binary theory of electronic stopping. In view of the absence of a Bloch correction in straggling the range of validity of the theory includes both the classical and the Born regime. The theory incorporates Barkas effect and projectile screening. Shell correction and electron bunching are added on. In the absence of shell corrections the Barkas effect has a dominating influence on straggling, but much of this is wiped out when the shell correction is included. Weak projectile screening tends to noticeably reduce collisional straggling. Sizable bunching effects are found in particular for heavy ions. Comparisons are made with selected results of the experimental and theoretical literature. (authors)
Collisional shifts in optical-lattice atom clocks
International Nuclear Information System (INIS)
Band, Y. B.; Vardi, A.
2006-01-01
We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of π between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts
Nonadiabatic effects in inelastic collisional processes
International Nuclear Information System (INIS)
Belyaev, Andrey K
2009-01-01
The standard adiabatic Born-Oppenheimer approach to inelastic collisional processes is revised. It is shown that the widely used standard interpretation of this approach has fundamental limitations leading to physical artefacts or to uncertainties in numerical calculations due to neglecting the electron translation problem. It is demonstrated that the Born-Oppenheimer approach itself does not have such limitations. The particular full quantum solution of the electron translation problem within the Born-Oppenheimer approach by means of the reprojection procedure is discussed in the paper together with the practical applications.
Collisional damping rates for plasma waves
Energy Technology Data Exchange (ETDEWEB)
Tigik, S. F., E-mail: sabrina.tigik@ufrgs.br; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.; Najmabadi, F.; Conn, R.W.
1986-01-01
A new set of two-fluid equations that are valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates with no zero-order drifts, a set of moment equations describing plasma transport along the field lines of a space- and time-dependent magnetic field is derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii, while in the weakly collisional limit they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations [Proc. R. Soc. London, Ser. A 236, 112 (1956)]. The new set of equations also exhibits a physical singularity at the sound speed. This singularity is used to derive and compute the sound speed. Numerical examples comparing these equations with conventional transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the magnetic field gradient L/sub B/ approaches zero, there is no significant difference between the solution of the new and conventional transport equations. However, conventional fluid equations, ordinarily expected to be correct to the order (lambda/L/sub B/) 2 , are found to have errors of order (lambda/L/sub u/) 2 = (lambda/L/sub B/) 2 /(1-M 2 ) 2 , where L/sub u/ is the scale length of the flow velocity gradient and M is the Mach number. As such, the conventional equations may contain large errors near the sound speed (Mroughly-equal1)
Collisional effects in the ion Weibel instability for two counter-propagating plasma streams
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D.; Fiuza, F.; Huntington, C. M.; Ross, J. S.; Park, H.-S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2014-03-15
Experiments directed towards the study of the collisionless interaction between two counter-streaming plasma flows generated by high-power lasers are designed in such a way as to make collisions between the ions of the two flows negligibly rare. This is reached by making flow velocities v as high as possible and thereby exploiting the 1/v{sup 4} dependence of the Rutherford cross-section. At the same time, the plasma temperature of each flow may be relatively low so that collisional mean-free paths for the intra-stream particle collisions may be much smaller than the characteristic spatial scale of the unstable modes required for the shock formation. The corresponding effects are studied in this paper for the case of the ion Weibel (filamentation) instability. Dispersion relations for the case of strong intra-stream collisions are derived. It is shown that the growth-rates become significantly smaller than those stemming from a collisionless model. The underlying physics is mostly related to the increase of the electron stabilizing term. Additional effects are an increased “stiffness” of the collisional ion gas and the ion viscous dissipation. A parameter domain where collisions are important is identified.
Testing effects in mixed- versus pure-list designs.
Rowland, Christopher A; Littrell-Baez, Megan K; Sensenig, Amanda E; DeLosh, Edward L
2014-08-01
In the present study, we investigated the role of list composition in the testing effect. Across three experiments, participants learned items through study and initial testing or study and restudy. List composition was manipulated, such that tested and restudied items appeared either intermixed in the same lists (mixed lists) or in separate lists (pure lists). In Experiment 1, half of the participants received mixed lists and half received pure lists. In Experiment 2, all participants were given both mixed and pure lists. Experiment 3 followed Erlebacher's (Psychological Bulletin, 84, 212-219, 1977) method, such that mixed lists, pure tested lists, and pure restudied lists were given to independent groups. Across all three experiments, the final recall results revealed significant testing effects for both mixed and pure lists, with no reliable difference in the magnitude of the testing advantage across list designs. This finding suggests that the testing effect is not subject to a key boundary condition-list design-that impacts other memory phenomena, including the generation effect.
COLLISIONALLY BORN FAMILY ABOUT 87 SYLVIA
International Nuclear Information System (INIS)
Vokrouhlicky, David; Nesvorny, David; Bottke, William F.; Morbidelli, Alessandro
2010-01-01
There are currently more than 1000 multi-opposition objects known in the Cybele population, adjacent and exterior to the asteroid main belt, allowing a more detailed analysis than was previously possible. Searching for collisionally born clusters in this population, we find only one statistically robust case: a family of objects about (87) Sylvia. We use a numerical model to simulate the Sylvia family long-term evolution due to gravitational attraction from planets and thermal (Yarkovsky) effects and to explain its perturbed structure in the orbital element space. This allows us to conclude that the Sylvia family must be at least several hundreds of million years old, in agreement with evolutionary timescales of Sylvia's satellite system. We find it interesting that other large Cybele-zone asteroids with known satellites-(107) Camilla and (121) Hermione-do not have detectable families of collisional fragments about them (this is because we assume that binaries with large primary and small secondary components are necessarily impact generated). Our numerical simulations of synthetic clusters about these asteroids show they would suffer a substantial dynamical depletion by a combined effect of diffusion in numerous weak mean-motion resonances and Yarkovsky forces provided their age is close to ∼4 billion years. However, we also believe that a complete effacement of these two families requires an additional component, very likely due to resonance sweeping or other perturbing effects associated with the late Jupiter's inward migration. We thus propose that both Camilla and Hermione originally had their collisional families, as in the Sylvia case, but they lost them in an evolution that lasted a billion years. Their satellites are the only witnesses of these effaced families.
ADAS tools for collisional-radiative modelling of molecules
Guzmán, F.; O'Mullane, M.; Summers, H. P.
2013-07-01
New theoretical and computational tools for molecular collisional-radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H2 are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional-radiative) rate coefficients versus temperature and density are presented.
Dust effect on the collisional pumping of the H2O cosmic maser
International Nuclear Information System (INIS)
Bolgova, G.T.; Strel'nitskij, V.S.; Shmeld, I.K.
1977-01-01
The rate equations for the pupulations of 48 ortho-H 2 O rotational levels are solved simultaneously with the equations of the radiative transfer in the rotational lines, accounting for the continuous absorption and emission of resonance photon by dust grains. The radiative transport was treated in a model of a homogeneous isothermal plane-parallel slab, approximating the region of collisional pumping behind a shock front. It is found, that continuous absorption and emission may strongly influence the character of the distribution of the rotational level populations. Depending on the relation between the kinetic temperature Tsub(k) and the dust temperature Tsub(d) the ''turning on'' of the dust may either greatly increase the inversion of the 6 16 -5 23 transition (when Tsub(d) < Tsub(k)) or, on the contrary, greatly decrease and even liquidate the inversion (when Tsub(d)=Tsub(k)). The sink of the rotational photons on the cold dust reduces the thermalizing effect of the radiation trapping, reestablishing the inversion of many transitions provided by the collisional pumping
The effect of plasma collisionality on pedestal current density formation in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Thomas, D M; Leonard, A W; Osborne, T H; Groebner, R J; West, W P; Burrell, K H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)
2006-05-15
The evolution and performance limits for the pedestal in H-mode are dependent on the two main drive terms for instability: namely the edge pressure gradient and the edge current density. These terms are naturally coupled though neoclassical (Pfirsch-Schluter and bootstrap) effects. On DIII-D, local measurements of the edge current density are made using an injected lithium beam in conjunction with Zeeman polarimetry and compared with pressure profile measurements made with other diagnostics. These measurements have confirmed the close spatial and temporal correlation that exists between the measured current density and the edge pressure in H- and QH-mode pedestals, where substantial pressure gradients exist. In the present work we examine the changes in the measured edge current for DIII-D pedestals which have a range of values for the ion and electron collisionalities {l_brace}{upsilon}{sub i}*,{upsilon}{sub e}*{r_brace} due to fuelling effects. Such changes in the collisionality in the edge are expected to significantly alter the level of the bootstrap current from the value predicted from the collisionless limit and therefore should correspondingly alter the pedestal stability limits. We find a clear decrease in measured current as {nu} increases, even for discharges having similar edge pressure gradients.
Bao, Jian; Lau, Calvin; Kuley, Animesh; Lin, Zhihong; Fulton, Daniel; Tajima, Toshiki; Tri Alpha Energy, Inc. Team
2017-10-01
Collisional and turbulent transport in a field reversed configuration (FRC) is studied in global particle simulation by using GTC (gyrokinetic toroidal code). The global FRC geometry is incorporated in GTC by using a field-aligned mesh in cylindrical coordinates, which enables global simulation coupling core and scrape-off layer (SOL) across the separatrix. Furthermore, fully kinetic ions are implemented in GTC to treat magnetic-null point in FRC core. Both global simulation coupling core and SOL regions and independent SOL region simulation have been carried out to study turbulence. In this work, the ``logical sheath boundary condition'' is implemented to study parallel transport in the SOL. This method helps to relax time and spatial steps without resolving electron plasma frequency and Debye length, which enables turbulent transports simulation with sheath effects. We will study collisional and turbulent SOL parallel transport with mirror geometry and sheath boundary condition in C2-W divertor.
Species separation and kinetic effects in collisional plasma shocks
Energy Technology Data Exchange (ETDEWEB)
Bellei, C., E-mail: bellei1@llnl.gov; Wilks, S. C.; Amendt, P. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Rinderknecht, H.; Zylstra, A.; Rosenberg, M.; Sio, H.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2014-05-15
The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ≲10{sup −4} for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D{sup 3}He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.
Energizing and depletion of neutrals by a collisional plasma
International Nuclear Information System (INIS)
Fruchtman, A
2008-01-01
Neutral depletion can significantly affect the steady state of low temperature plasmas. Recent theoretical analyses predicted previously unexpected effects of neutral depletion in both collisional and collisionless regimes. In this paper we address the effect of the energy deposited in the neutral gas by a collisional plasma. The fraction of power deposited in the neutrals is shown to be independent of the amount of power. The first case we address is of a thermalized neutral gas. It is shown that a low heat conductivity of the neutral gas is followed by a high neutral temperature that results in a high neutral depletion even if the plasma pressure is small. In the second case neutrals are accelerated through charge exchange with ions leading to what we call neutral pumping, which is equivalent to ion pumping in a collisionless plasma. Neutral depletion is found in the second case for both a closed system (no net mass flow) and an open system (a finite mass flow). A thruster that employs a collisional plasma and pumped neutrals is compared with the thruster analyzed before that employs collisionless plasma.
Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He
International Nuclear Information System (INIS)
Sell, J F; Gearba, M A; Patterson, B M; Byrne, D; Jemo, G; Meeter, R; Knize, R J; Lilly, T C
2012-01-01
Measurements of the mixing rates and cross sections for collisional excitation transfer between the 5P 1/2 and 5P 3/2 states of rubidium (Rb) in the presence of 4 He buffer gas are presented. Selected pulses from a high repetition rate, mode-locked femtosecond laser are used to excite either Rb state with the fluorescence due to collisional excitation transfer observed by time-correlated single-photon counting. The time dependence of this fluorescence is fitted to the solution of rate equations which include the mixing rate, atomic lifetimes and any quenching processes. The variation in the mixing rate over a large range of buffer gas densities allows the determination of both the binary collisional transfer cross section and a three-body collisional transfer rate. We do not observe any collisional quenching effects at 4 He pressures up to 6 atm and discuss in detail other systematic effects considered in the experiment. (paper)
Liffman, Kurt
1990-01-01
The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.
Computation of the Spitzer function in stellarators and tokamaks with finite collisionality
Directory of Open Access Journals (Sweden)
Kernbichler Winfried
2015-01-01
Full Text Available The generalized Spitzer function, which determines the current drive efficiency in toka- maks and stellarators is modelled for finite plasma collisionality with help of the drift kinetic equation solver NEO-2 [1]. The effect of finite collisionality on the global ECCD efficiency in a tokamak is studied using results of the code NEO-2 as input to the ray tracing code TRAVIS [2]. As it is known [3], specific features of the generalized Spitzer function, which are absent in asymptotic (collisionless or highly collisional regimes result in current drive from a symmetric microwave spectrum with respect to parallel wave numbers. Due to this effect the direction of the current may become independent of the microwave beam launch angle in advanced ECCD scenarii (O2 and X3 where due to relatively low optical depth a significant amount of power is absorbed by trapped particles.
Diffusion and transport phenomena in a collisional magnetoplasma ...
Indian Academy of Sciences (India)
Boltzmann-transport equation is analytically solved for two-component magnetoplasma using Chapman-Enskog analysis to include collisional diffusion transport having anisotropies in both streaming velocity and temperature components. The modified collisional integrals are analytically solved with flux integrals and ...
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...
Herman, R. M.
1983-01-01
A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.
International Nuclear Information System (INIS)
Green, B I; Vedula, Prakash
2013-01-01
An alternative approach for solution of the collisional Boltzmann equation for a lattice architecture is presented. In the proposed method, termed the collisional lattice Boltzmann method (cLBM), the effects of spatial transport are accounted for via a streaming operator, using a lattice framework, and the effects of detailed collisional interactions are accounted for using the full collision operator of the Boltzmann equation. The latter feature is in contrast to the conventional lattice Boltzmann methods (LBMs) where collisional interactions are modeled via simple equilibrium based relaxation models (e.g. BGK). The underlying distribution function is represented using weights and fixed velocity abscissas according to the lattice structure. These weights are evolved based on constraints on the evolution of generalized moments of velocity according to the collisional Boltzmann equation. It can be shown that the collision integral can be reduced to a summation of elementary integrals, which can be analytically evaluated. The proposed method is validated using studies of canonical microchannel Couette and Poiseuille flows (both body force and pressure driven) and the results are found to be in good agreement with those obtained from conventional LBMs and experiments where available. Unlike conventional LBMs, the proposed method does not involve any equilibrium based approximations and hence can be useful for simulation of highly nonequilibrium flows (for a range of Knudsen numbers) using a lattice framework. (paper)
Directory of Open Access Journals (Sweden)
V. S. Fedorovsky
2014-01-01
Full Text Available The Early Paleozoic collisional system located in the Olkhon region at the western shores of Lake Baikal resulted from collision of the Siberian paleocontinent and a complex aggregate composed by fragments of a microcontinent, island arcs, back-arc structures and accretionary prisms. The main events were associated with complete manifestation of shear tectogenesis initiated by oblique collision. The current structure includes tectonically displaced components of ancient geodynamic systems that used to have been located dozens and hundreds of kilometres apart. Horizontal amplitudes of tectonic displacement seem to have been quite high; however, numerical data are still lacking to support this conclusion. Information about the structure of the upper crust in the Paleozoic is also lacking as only deep metamorphic rocks (varying from epidote-amphibolite to granulite facies are currently outcropped. Formations comprising the collisional collage are significantly different in composition and protoliths, and combinations of numerous shifted beds give evidence of a 'bulldozer' effect caused by the collisional shock followed by movements of crushed components of the ocean-continent zone along the margin of the Siberian paleocontinent. As evidenced by the recent cross-section, deep horizons of the Early Paleozoic crust comprise the collisional system between the Siberian craton and the Olkhon composite terrain. A permanent inclusion in the collisional combinations of rocks are unusual synmetamorphic injected bodies of carbonate rocks. Such rocks comprise two groups, marble melanges and crustal carbonate melted rocks. Obviously, carbonate rocks (that composed the original layers and horizons of stratified beds can become less viscous to a certain degree at some locations during the process of oblique collision and acquire unusual properties and can thus intrude into the surrounding rocks of silicate composition. Such carbonate rocks behave as protrusions
Simulation of collisional effects on divertor pumping in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Gleason-González, C., E-mail: cristian.gleason@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Baden-Württemberg 76344 (Germany); Varoutis, S.; Luo, X. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Baden-Württemberg 76344 (Germany); Shimizu, K.; Nakano, T.; Hoshino, K.; Kawashima, H.; Asakura, N. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Day, Chr. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Baden-Württemberg 76344 (Germany); Sakurai, S. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2016-11-01
Highlights: • The exhausted (sub-divertor) gas flows calculations in tokamaks by means of three approaches: ProVac3D, DIVGAS and NEUT2D. • Exhausted neutral gas flow is modeled for two scenarios of a simplified JT-60SA sub-divertor geometry. • A modelled scenario with a simplified setup is done by using two intrinsic collisionless approaches: ProVac3D and NEUT2D and a third approach: DIVGAS, which has been used without its collision module for a direct comparison with the other two. The solvers are cross-checked in terms of the reproduction of the transmission probability. • A second case study is based on the Scenario # 2 of JT-60SA, where the assessment of collisionality in the sub-divertor was done. The gas flow is simulated by using DIVGAS with and without consideration of collisions. • The results include the transmission probability in JT-60SA sub-divertor, the Knudsen number, which characterizes the collisionality of the flow, velocity profiles, pressure and temperature distributions. - Abstract: In this work, the exhausted neutral gas flow is modeled for two cases of a simplified JT-60SA sub-divertor geometry and compared via three different approaches, namely (i) a collisionless approach based on the ProVac3D code, (ii) the DSMC approach based on the DIVGAS code that can be run with and without consideration of particle collisions, and (iii) the NEUT2D approach which has been extensively used in the past for the JT-60 design. In a first case study, the transmission probability was calculated by the 3 approaches and very good agreement is found between NEUT2D-ProVac3D whereas discrepancies between DIVGAS and NEUT2D are found and further analyzed. In the second case, the assessment of collisions is done by means of DIVGAS. Simulations showed that the flow is found in the transitional regime with Kn numbers between 0.1 and 0.4. The DIVGAS collisionless case yielded lower values of temperature than the collisional one by factors of 0.5–0.8 in
Collisional damping of giant monopole and quadrupole resonances
International Nuclear Information System (INIS)
Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.
2001-01-01
Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)
Numerical study of drift-kinetic evolution of collisional plasmas in tori
International Nuclear Information System (INIS)
Beasley, C.O. Jr.; Meier, H.K.; van Rij, W.I.; McCune, J.E.
1976-03-01
Preliminary numerical results for the dynamics of toroidally confined plasmas in the drift-kinetic, Fokker--Planck description are discussed. These solutions were obtained by using the techniques inherent to the collisional plasma model (CPM) described in detail elsewhere. An initial value problem is solved in the local approximation in which collisions and particle dynamics compete in a given magnetic field to set up a quasi-equilibrium. Both the plasma (guiding center) distribution function and many macroscopic quantities of interest are monitored. Good agreement with corresponding but more approximate theories is obtained over a wide range of collisionality, particularly with regard to the neoclassical particle flux. Encouraging confirmation of earlier results for the distribution function is achieved when due account is taken of the differing collisionality of particles with differing energies. These initial results indicate the potential importance of certain non-local effects as well as inclusion of self-consistency between fields and plasma currents and densities
Modulational instability of electric helicons in a magnetized collisional plasma
International Nuclear Information System (INIS)
El-Ashry, M.Y.; Papuashvili, N.A.
1987-06-01
The interaction of a rf electromagnetic wave with a magnetized collisional plasma in the ultra-relativistic case has been investigated to show the effect of the collisions on the modulational instability growth rate. (author). 5 refs
Collisional model for granular impact dynamics.
Clark, Abram H; Petersen, Alec J; Behringer, Robert P
2014-01-01
When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes.
Collisional absorption of two laser beams in plasma
International Nuclear Information System (INIS)
Mohan, M.; Acharya, R.
1977-04-01
The collisional absorption of two laser beams is considered by solving the kinetic equation for the plasma electron. Results show that the simultaneous effect of two laser beams on the heating rate is greater as compared with the individual contribution of each laser beam when the two laser beams have a difference of frequencies equal to the plasma frequency
Collisionality dependence of Mercier stability in LHD equilibria with bootstrap currents
International Nuclear Information System (INIS)
Ichiguchi, Katsuji.
1997-02-01
The Mercier stability of the plasmas carrying bootstrap currents with different plasma collisionality is studied in the Large Helical Device (LHD). In the LHD configuration, the direction of the bootstrap current depends on the collisionality of the plasma through the change in the sign of the geometrical factor. When the beta value is raised by increasing the density of the plasma with a fixed low temperature, the plasma becomes more collisional and the collisionality approaches the plateau regime. In this case, the bootstrap current can flow in the direction so as to decrease the rotational transform. Then, the large Shafranov shift enhances the magnetic well and the magnetic shear, and therefore, the Mercier stability is improved. On the other hand, when the beta value is raised by increasing the temperature of the plasma with a fixed low density, the plasma collisionality becomes reduced to enter the 1/ν collisionality regime and the bootstrap current flows so that the rotational transform should be increased, which is unfavorable for the Mercier stability. Hence, the beta value should be raised by increasing the density rather than the temperature in order to obtain a high beta plasma. (author)
Exact collisional moments for plasma fluid theories
Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi
2017-10-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.
Anisotropic hydrodynamics with a scalar collisional kernel
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Self-consistent electron transport in collisional plasmas
International Nuclear Information System (INIS)
Mason, R.J.
1982-01-01
A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations
Lee, Myoung-Jae; Jung, Young-Dae
2018-04-01
The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.
Orbital and Collisional Evolution of the Irregular Satellites
Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F.
2003-07-01
The irregular moons of the Jovian planets are a puzzling part of the solar system inventory. Unlike regular satellites, the irregular moons revolve around planets at large distances in tilted and eccentric orbits. Their origin, which is intimately linked with the origin of the planets themselves, is yet to be explained. Here we report a study of the orbital and collisional evolution of the irregular satellites from times after their formation to the present epoch. The purpose of this study is to find out the features of the observed irregular moons that can be attributed to this evolution and separate them from signatures of the formation process. We numerically integrated ~60,000 test satellite orbits to map orbital locations that are stable on long time intervals. We found that the orbits highly inclined to the ecliptic are unstable due to the effect of the Kozai resonance, which radially stretches them so that satellites either escape from the Hill sphere, collide with massive inner moons, or impact the parent planet. We also found that prograde satellite orbits with large semimajor axes are unstable due to the effect of the evection resonance, which locks the orbit's apocenter to the apparent motion of the Sun around the parent planet. In such a resonance, the effect of solar tides on a resonant moon accumulates at each apocenter passage of the moon, which causes a radially outward drift of its orbital apocenter; once close to the Hill sphere, the moon escapes. By contrast, retrograde moons with large orbital semimajor axes are long-lived. We have developed an analytic model of the distant satellite orbits and used it to explain the results of our numerical experiments. In particular, we analytically studied the effect of the Kozai resonance. We numerically integrated the orbits of the 50 irregular moons (known by 2002 August 16) for 108 yr. All orbits were stable on this time interval and did not show any macroscopic variations that would indicate
Double layers in a modestly collisional electronegative discharge
Sheridan, T E
1999-01-01
The effect of ion-neutral collisions on the structure and ion flux emanating from a steady-state, planar discharge with two negative components is investigated. The positive ion component is modelled as a cold fluid subject to constant-mobility collisions, while the electrons and negative ions obey Boltzmann relations. The model includes the collisionless limit. When the negative ions are sufficiently cold three types of discharge structures are found. For small negative ion concentrations or high collisionality, the discharge is 'stratified', with an electronegative core and an electropositive edge. For the opposite conditions, the discharge is 'uniform' with the negative ion density remaining significant at the edge of the plasma. Between these cases lies the special case of a double-layer-stratified discharge, where quasi-neutrality is violated at the edge of the electronegative core. Double-layer-stratified solutions are robust in that they persist for moderate collisionality. Numerical solutions for fini...
Drift wave dispersion relation for arbitrarily collisional plasma
International Nuclear Information System (INIS)
Angus, Justin R.; Krasheninnikov, Sergei I.
2012-01-01
The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.
Drift wave dispersion relation for arbitrarily collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Angus, Justin R.; Krasheninnikov, Sergei I. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093-0417 (United States)
2012-05-15
The standard local linear analysis of drift waves in a plasma slab is generalized to be valid for arbitrarily collisional electrons by considering the electrons to be governed by the drift-kinetic equation with a BGK-like (Bhatnagar-Gross-Krook) collision operator. The obtained dispersion relation reduces to that found from collisionless kinetic theory when the collision frequency is zero. Electron temperature fluctuations must be retained in the standard fluid analysis in order to obtain good quantitative agreement with our general solution in the highly collisional limit. Any discrepancies between the fluid solution and our general solution in this limit are attributed to the limitations of the BGK collision operator. The maximum growth rates in both the collisional and collisionless limits are comparable and are both on the order of the fundamental drift wave frequency. The main role of the destabilizing mechanism is found to be in determining the parallel wave number at which the maximum growth rate will occur. The parallel wave number corresponding to the maximum growth rate is set by the wave-particle resonance condition in the collisionless limit and transitions to being set by the real frequency being on the order of the rate for electrons to diffuse a parallel wavelength in the collisional limit.
Diagram of collisional regimes for particle diffusion in a stochastic magnetic field
International Nuclear Information System (INIS)
Misguich, J.H.; Balescu, R.
1995-01-01
This document deals with static stochastic fields, where magnetic lines experience exponential separation and magnetic diffusion. It more particularly focuses on the diffusivity of collisional particles in such a fields and presents a general graph which describes most regimes of collisional and weakly collisional diffusion for guiding centers in a time-independent magnetic field. (TEC). 9 refs., 1 fig., 2 tabs
Type I supergravity effective action from pure spinor formalism
International Nuclear Information System (INIS)
Alencar, Geova
2009-01-01
Using the pure spinor formalism, we compute the tree-level correlation functions for three strings, one closed and two open, in N = 1 D = 10 superspace. Expanding the superfields in components, the respective terms of the effective action for the type I supergravity are obtained. All terms found agree with the effective action known in the literature. This result gives one more consistency test for the pure spinor formalism.
Tribeche, Mouloud; Mayout, Saliha
2016-07-01
The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.
Measurements of long-range enhanced collisional velocity drag through plasma wave damping
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2018-05-01
We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.
International Nuclear Information System (INIS)
Xia Xiongping; Qin Zhen; Xu Bin; Cai Zebin
2011-01-01
Dielectric constant and laser beam propagation in an underdense collisional plasma are investigated, using the wave and dielectric function equations, for their dependence on the electron temperature. Simulation results show that, due to the influence of the ponderomotive force there is a nonlinear variation of electron temperature in an underdense collisional plasma, and this leads to a complicated and interesting nonlinear variation of dielectric constant; this nonlinear variation of dielectric constant directly affects the beam propagation and gives rise to laser beam self-focusing in some spatial-temporal regions; in particular, the beam width and the beam intensity present an oscillatory variation in the self-focusing region. The influence of several parameters on the dielectric function and beam self-focusing is discussed.
Improving a radiative plus collisional energy loss model for application to RHIC and LHC
International Nuclear Information System (INIS)
Wicks, Simon; Gyulassy, Miklos
2007-01-01
With the QGP opacity computed perturbatively and with the global entropy constraints imposed by the observed dN ch /dy ∼ 1000, radiative energy loss alone cannot account for the observed suppression of single non-photonic electrons. Collisional energy loss is comparable in magnitude to radiative loss for both light and heavy jets. Two aspects that significantly affect the collisional energy loss are examined: the role of fluctuations and the effect of introducing a running QCD coupling as opposed to the fixed α s = 0.3 used previously
Energy Technology Data Exchange (ETDEWEB)
Li, J.; Yasuaki, K., E-mail: lijq@energy.kyoto-u.ac.jp [Kyoto University, Kyoto (Japan); Cheng, J.; Longwen, Y.; Jiaqi, D. [Southwestern Institute of Physics, Chengdu (China)
2012-09-15
Full text: Blob/hole dynamics near tokamak separatrix is of striking importance in determining the boundary transport. Based on simulations using an extended 2-region (edge/SOL) fluid model, we found that blob/hole dynamics are sensitively influenced by the plasma collisionality, i.e., ion-electron and ion-neutral collisions. Namely, the holes are enhanced in highly collisional edge whereas the blobs are weakened at the SOL, causing larger particle convection. These blob/hole dynamics are closely correlated with potential dipoles. The trends are experimentally evidenced on the HL-2A tokamak. Moreover, as the neutral-ion collision increases, the blobs at the SOL tend to develop into streamers propagating outwards with reduced amplitude while the holes inwards are suppressed, showing a key role in nonlinear structure regulation and resultant transport suppression. Results suggest that adjusting the plasma collisionality by fueling, e.g., gas puffing, could serve as a method to nonlinearly select turbulent structures, i.e., blobs, holes or streamers, to access the control of boundary transport. (author)
Collisional drift waves in the H-mode edge
International Nuclear Information System (INIS)
Sen, S.
1994-01-01
The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs
Collisional quenching of cometary emission in the 18 centimeter OH transitions
International Nuclear Information System (INIS)
Schloerb, F.P.
1988-01-01
A model of collisional quenching of the OH 2Pi(3/2) J = 3/2 Lambda doublet in cometary comae is presented. It is found that collisions with ions and electrons in the outer coma have a strong quenching effect on the Swings-effect inversion of the Lambda doublet that is responsible for the OH radio emission at 18 cm wavelength. For the conditions of Halley's comet, collisional quenching should lead radio observers to systematically underestimate the OH parent production rate by a factor of approximately 3 relative to its actual value, and in general, radio-derived production rates should always be less than or equal to UV-derived production rates, which are relatively unaffected by this process. The observation that UV production rates exceed those derived by radio techniques is well known; the direct measurement of this ratio, using a consistent coma model, should provide information about the ion and electron content of the cometary coma. 22 references
Energy Technology Data Exchange (ETDEWEB)
Mayout, Saliha; Gougam, Leila Ait [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)
2016-03-15
The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.
International Nuclear Information System (INIS)
Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud
2016-01-01
The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.
SCROLL, a superconfiguration collisional radiative model with external radiation
International Nuclear Information System (INIS)
Bar-Shalom, A.; Oreg, J.; Klapisch, M.
2000-01-01
A collisional radiative model for calculating non-local thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed. It takes into account the numerous excited an autoionizing states by using superconfigurations. These are split systematically until the populations converge. The influence of an impinging radiation field has recently been added to the model. The effect can be very important. (author)
Triangularity effects on the collisional diffusion for elliptic tokamak plasma
International Nuclear Information System (INIS)
Martin, P.; Castro, E.
2007-01-01
In this conference the effect of ellipticity and triangularity will be analyzed for axisymmetric tokamak in the collisional regime. Analytic forms for the magnetic field cross sections are taken from those derived recently by other authors [1,2]. Analytical results can be obtained in elliptic plasmas with triangularity by using an special system of tokamak coordinates recently published [3-5]. Our results show that triangularities smaller than 0.6, increases confinement for ellipticities in the range 1.2 to 2. This behavior happens for negative and positive triangularities; however this effect is stronger for positive than for negative triangularities. The maximum diffusion velocity is not obtained for zero triangularity, but for small negative triangularities. Ellipticity is also very important in confinement, but the effect of triangularity seems to be more important. High electric inductive field increases confinement, though this field is difficult to modify once the tokamak has been built. The analytic form of the current produced by this field is like that of a weak Ware pinch with an additional factor, which weakens the effect by an order of magnitude. The dependence of the triangularity effect with the Shafranov shift is also analyzed. References 1. - L. L. Lao, S. P. Hirshman, and R. M. Wieland, Phys. Fluids 24, 1431 (1981) 2. - G. O. Ludwig, Plasma Physics Controlled Fusion 37, 633 (1995) 3. - P. Martin, Phys. Plasmas 7, 2915 (2000) 4. - P. Martin, M. G. Haines and E. Castro, Phys. Plasmas 12, 082506 (2005) 5. - P. Martin, E. Castro and M. G. Haines, Phys. Plasmas 12, 102505 (2005)
Energy Technology Data Exchange (ETDEWEB)
Han, Cheng; Hou, De-fu; Li, Jia-rong [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan, Hubei (China); Jiang, Bing-feng [Hubei University for Nationalities, Center for Theoretical Physics and School of Sciences, Enshi, Hubei (China)
2017-10-15
The dielectric functions ε{sub L}, ε{sub T} of the quark-gluon plasma (QGP) are derived within the framework of the kinetic theory with BGK-type collisional kernel. The collision effect manifested by the collision rate is encoded in the dielectric functions. Based on the derived dielectric functions we study the collisional energy loss suffered by a fast parton traveling through the QGP. The numerical results show that the collision rate increases the energy loss. (orig.)
On calculation of collisional angular-momentum mixing of Rydberg states
International Nuclear Information System (INIS)
Oreg, J.; Strauss, M.; Hazak, G.
1983-09-01
Exact solutions of the coupled differential equations for collisional mixing probabilities are presented for a sodium-helium system. The results show that complete mixing is not reached in this model. The main contribution to the collisional mixing cross-section of the sodium ''nd'' state comes from impact parameters b within the range n 2 2 . The total cross-sections obtained are in agreement with the experiment. (author)
Weakly Collisional and Collisionless Astrophysical Plasmas
DEFF Research Database (Denmark)
Berlok, Thomas
are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...
Collisional-radiative model: a plasma spectroscopy theory for experimentalists
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, Takashi [Kyoto Univ. (Japan); Sawada, Keiji
1997-01-01
The rate equation describing the population n(p) of an excited (and the ground state) level p of ions immersed in plasma is shown. In 1962, the method of quasi-steady state solution (collisional-radiative model) was proposed. Its idea is explained. The coupled differential equations reduce to a set of coupled linear equations for excited levels. The solution of these coupled equations is presented. The equations giving the ionization and recombination of this system of ions under consideration are described in terms of the effective rate coefficients. The collisional-radiative ionization and recombination rate coefficients are expressed in terms of the population coefficients for p > 1. As for ionizing plasma, the excited level populations, the populations, the population distribution among the excited levels, two regimes of the excited levels, the dominant flows of electrons among the levels and so on are shown. As for recombining plasma, the excited level populations, the population distribution among the excited levels, the dominant flows of electrons and so on are shown. Ionization balance plasma may be considered. (K.I.)
Reduction of collisional-radiative models for transient, atomic plasmas
Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai
2017-10-01
Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).
First-principle description of collisional gyrokinetic turbulence in tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Dif-Pradalier, G
2008-10-15
This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While
First-principle description of collisional gyrokinetic turbulence in tokamak plasmas
International Nuclear Information System (INIS)
Dif-Pradalier, G.
2008-10-01
This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While
Transport in a toroidally confined pure electron plasma
International Nuclear Information System (INIS)
Crooks, S.M.; ONeil, T.M.
1996-01-01
O close-quote Neil and Smith [T.M. O close-quote Neil and R.A. Smith, Phys. Plasmas 1, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal ExB drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength within the flux tube oscillate, and this produces corresponding oscillations in T parallel and T perpendicular . The collisional relaxation of T parallel toward T perpendicular produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by Γ r =1/2ν perpendicular,parallel T(r/ρ 0 ) 2 n/(-e∂Φ/∂r), where ν perpendicular,parallel is the collisional equipartition rate, ρ 0 is the major radius at the center of the plasma, and r is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.
2013-01-01
We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport
Oxygen auroral transition laser system excited by collisional and photolytic energy transfer
International Nuclear Information System (INIS)
Murray, J.R.; Powell, H.T.; Rhodes, C.K.
1975-06-01
The properties of laser media involving the auroral transition of atomic oxygen and analogous systems are examined. A discussion of the atomic properties, collisional mechanisms, excitation processes, and collisionally induced radiative phenomena is given. Crossing phenomena play a particularly important role in governing the dynamics of the medium
Energy Technology Data Exchange (ETDEWEB)
SCHROEDER,W. ANDREAS; NELSON,THOMAS R.; BORISOV,A.B.; LONGWORTH,J.W.; BOYER,K.; RHODES,C.K.
2000-06-07
A theoretical analysis of laser-driven collisional ejection of inner-shell electrons is presented to explain the previously observed anomalous kilovolt L-shell x-ray emission spectra from atomic Xe cluster targets excited by intense sub-picosecond 248nrn ultraviolet radiation. For incident ponderomotively-driven electrons photoionized by strong above threshold ionization, the collisional ejection mechanism is shown to be highly l-state and significantly n-state (i.e. radially) selective for time periods shorter than the collisional dephasing time of the photoionized electronic wavefunction. The resulting preference for the collisional ejection of 2p electrons by an ionized 4p state produces the measured anomalous Xe(L) emission which contains direct evidence for (i) the generation of Xe{sup 27+}(2p{sup 5}3d{sup 10}) and Xe{sup 28+}(2p{sup 5}3d{sup 9}) ions exhibiting inner-shell population inversion and (ii) a coherent correlated electron state collision responsible for the production of double 2p vacancies. For longer time periods, the selectivity of this coherent impact ionization mechanism is rapidly reduced by the combined effects of intrinsic quantum mechanical spreading and dephasing--in agreement with the experimentally observed and extremely strong {minus}{lambda}{sup {minus}6} pump-laser wavelength dependence of the efficiency of inner-shell (2p) vacancy production in Xe clusters excited in underdense plasmas.
Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas
International Nuclear Information System (INIS)
Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.
2007-01-01
The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated
Cancellation of collisional frequency shifts in optical lattice clocks with Rabi spectroscopy
International Nuclear Information System (INIS)
Lee, Sangkyung; Park, Chang Yong; Lee, Won-Kyu; Yu, Dai-Hyuk
2016-01-01
We analyze both the s- and p-wave collision induced frequency shifts and propose an over-π pulse scheme to cancel the shifts in optical lattice clocks interrogated by a Rabi pulse. The collisional frequency shifts are analytically solved as a function of the pulse area and the inhomogeneity of the Rabi frequencies. Experimentally measured collisional frequency shifts in an Yb optical lattice clock are in good agreement with the analytical calculations. Based on our analysis, the over-π pulse combined with a small inhomogeneity below 0.1 allows a fractional uncertainty on a level of 10 −18 in both Sr and Yb optical lattice clocks by canceling the collisional frequency shift. (paper)
Energy Technology Data Exchange (ETDEWEB)
Alvarez Laguna, A.; Poedts, S. [Centre for Mathematical Plasma-Astrophysics, KU Leuven, Leuven (Belgium); Lani, A.; Deconinck, H. [Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode (Belgium); Mansour, N. N. [NASA Ames Research Center, MS 230-3, Moffett Field, CA 94035 (United States)
2017-06-20
We study magnetic reconnection under chromospheric conditions in five different ionization levels from 0.5% to 50% using a self-consistent two-fluid (ions + neutrals) model that accounts for compressibility, collisional effects, chemical inequilibrium, and anisotropic heat conduction. Results with and without radiation are compared, using two models for the radiative losses: an optically thin radiation loss function, and an approximation of the radiative losses of a plasma with photospheric abundances. The results without radiation show that reconnection occurs faster for the weakly ionized cases as a result of the effect of ambipolar diffusion and fast recombination. The tearing mode instability appears earlier in the low ionized cases and grows rapidly. We find that radiative losses have a stronger effect than was found in previous results as the cooling changes the plasma pressure and the concentration of ions inside the current sheet. This affects the ambipolar diffusion and the chemical equilibrium, resulting in thin current sheets and enhanced reconnection. The results quantify this complex nonlinear interaction by showing that a strong cooling produces faster reconnections than have been found in models without radiation. The results accounting for radiation show timescales and outflows comparable to spicules and chromospheric jets.
Theory of the collisional presheath in an oblique magnetic field
International Nuclear Information System (INIS)
Riemann, K.
1994-01-01
In the limit of a small Debye length (λ D →0), the plasma boundary layer in front of a negative absorbing wall is split up into a collision-free planar space charge sheath and a quasineutral presheath, where the ions are accelerated to ion sound speed (Bohm criterion). Usually the presheath mechanism depends decisively on collisional friction of the ions, on ionization, or on geometric ion current concentration. If the ion dynamics in the presheath is dominated by a magnetic field (nearly) parallel to the wall, an additional effect must be considered to provide an ion transport to the wall. The special cases (a) of an ion transport by field lines intersecting the wall at a finite angle and (b) of an ion transport by collisions result in somewhat contradictory conclusions. To get a coherent picture, a hydrodynamic model of the presheath is investigated accounting for an oblique magnetic field and for collisions. The limiting cases (a) and (b) are discussed, and it is shown that (in plane geometry) the presheath ion acceleration depends always on elementary processes. The main effect of a strong magnetic field is to ''compress'' the collisional presheath into a thin layer with a characteristic extension of the ion gyroradius ρ i
International Nuclear Information System (INIS)
Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong
2011-01-01
Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)
Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution
Borgohain, Dima Rani; Saharia, K.
2018-03-01
Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.
GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK
Energy Technology Data Exchange (ETDEWEB)
Nesvold, Erika R. [Department of Physics, University of Maryland Baltimore County 1000 Hilltop Circle Baltimore, MD 21250 (United States); Kuchner, Marc J., E-mail: Erika.Nesvold@umbc.edu, E-mail: Marc.Kuchner@nasa.gov [NASA Goddard Space Flight Center Exoplanets and Stellar Astrophysics Laboratory, Code 667 Greenbelt, MD 21230 (United States)
2015-01-10
We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t {sub coll} of the disk by α = 0.32(t/t {sub coll}){sup –0.04}, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M {sub Jup}. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.
GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK
International Nuclear Information System (INIS)
Nesvold, Erika R.; Kuchner, Marc J.
2015-01-01
We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by α = 0.32(t/t coll ) –0.04 , with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M Jup . We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Review and limitations of 3D plasma blob modeling with reduced collisional fluid equations
Energy Technology Data Exchange (ETDEWEB)
Angus, Justin R., E-mail: jangus@ucsd.edu [University of California, San Diego, La Jolla, CA (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Krashenninikov, Sergei I. [University of California, San Diego, La Jolla, CA (United States)
2013-07-15
Recent 3D studies on plasma blobs (coherent structures found in the edge region of magnetic confinement devices) have demonstrated that the drift wave instability can strongly limit the blob’s coherency and cross field convective nature that is predicted by 2D theory. However, the dominant unstable drift wave modes that effect plasma blobs were found to exist in parameter regimes that only marginally satisfied several of the major assumptions considered for the validity of the reduced collisional fluid equations used in the study. Namely, the neglect of electron heat flow, finite electron mean free path effects, and thermal ions. A follow up study demonstrated how the drift wave instability might change if a set of equations that does not suffer from the limitations mentioned above were considered. In the present paper, the results of this later work are used to discuss the limitations on using the collisional fluid equations for 3D studies of plasma blobs.
MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS
International Nuclear Information System (INIS)
Gáspár, András; Psaltis, Dimitrios; Rieke, George H.; Özel, Feryal
2012-01-01
We explore the evolution of the mass distribution of dust in collision-dominated debris disks, using the collisional code introduced in our previous paper. We analyze the equilibrium distribution and its dependence on model parameters by evolving over 100 models to 10 Gyr. With our numerical models, we confirm that systems reach collisional equilibrium with a mass distribution that is steeper than the traditional solution by Dohnanyi. Our model yields a quasi-steady-state slope of n(m) ∼ m –1.88 [n(a) ∼ a –3.65 ] as a robust solution for a wide range of possible model parameters. We also show that a simple power-law function can be an appropriate approximation for the mass distribution of particles in certain regimes. The steeper solution has observable effects in the submillimeter and millimeter wavelength regimes of the electromagnetic spectrum. We assemble data for nine debris disks that have been observed at these wavelengths and, using a simplified absorption efficiency model, show that the predicted slope of the particle-mass distribution generates spectral energy distributions that are in agreement with the observed ones.
Theoretical Atomic Physics code development II: ACE: Another collisional excitation code
International Nuclear Information System (INIS)
Clark, R.E.H.; Abdallah, J. Jr.; Csanak, G.; Mann, J.B.; Cowan, R.D.
1988-12-01
A new computer code for calculating collisional excitation data (collision strengths or cross sections) using a variety of models is described. The code uses data generated by the Cowan Atomic Structure code or CATS for the atomic structure. Collisional data are placed on a random access file and can be displayed in a variety of formats using the Theoretical Atomic Physics Code or TAPS. All of these codes are part of the Theoretical Atomic Physics code development effort at Los Alamos. 15 refs., 10 figs., 1 tab
A six-part collisional model of the main asteroid belt
Cibulková, H.; Brož, M.; Benavidez, P. G.
2014-10-01
In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5-20) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt (inner, middle, “pristine”, outer, Cybele zone, high-inclination region) and to verify if the number of synthetic asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558-573), where the results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. [2007]. Icarus, 498-516) and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57-76) are included. Because material characteristics can significantly affect breakups, we created two models - for monolithic asteroids and for rubble-piles. To explain the observed SFDs in the size range D=1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (with a parent body size of the order of 1 km).
Sum rules for collisional processes
International Nuclear Information System (INIS)
Oreg, J.; Goldstein, W.H.; Bar-Shalom, A.; Klapisch, M.
1991-01-01
We derive level-to-configuration sum rules for dielectronic capture and for collisional excitation and ionization. These sum rules give the total transition rate from a detailed atomic level to an atomic configuration. For each process, we show that it is possible to factor out the dependence on continuum-electron wave functions. The remaining explicit level dependence of each rate is then obtained from the matrix element of an effective operator acting on the bound orbitals only. In a large class of cases, the effective operator reduces to a one-electron monopole whose matrix element is proportional to the statistical weight of the level. We show that even in these cases, nonstatistical level dependence enters through the dependence of radial integrals on continuum orbitals. For each process, explicit analytic expressions for the level-to-configuration sum rules are given for all possible cases. Together with the well-known J-file sum rule for radiative rates [E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (University Press, Cambridge, 1935)], the sum rules offer a systematic and efficient procedure for collapsing high-multiplicity configurations into ''effective'' levels for the purpose of modeling the population kinetics of ionized heavy atoms in plasma
Kinetic simulation on collisional bounded plasma
International Nuclear Information System (INIS)
Zhu, S.P.; Sato, Tetsuya; Tomita, Yukihiro; Hatori, Tadatsugu
1998-01-01
A self-consistent kinetic simulation model on collisional bounded plasma is presented. The electric field is given by solving Poisson equation and collisions among particles (including charged particles and neutral particles) are included. The excitation and ionization of neutral particle, and recombination are also contained in the present model. The formation of potential structure near a boundary for a discharge system was used as an application of this model. (author)
Effect of microcrystallization on pitting corrosion of pure aluminium
International Nuclear Information System (INIS)
Meng Guozhe; Wei Liyan; Zhang Tao; Shao Yawei; Wang Fuhui; Dong Chaofang; Li Xiaogang
2009-01-01
A microcrystalline aluminium film with grain size of about 400 nm was prepared by magnetron sputtering technique. Its corrosion behaviour was investigated in NaCl containing acidic solution by means of potentiodynamic polarization curves and electrochemical noise (EN). The polarization results indicated that the corrosion potential of the sample shifted towards more positive direction, while its corrosion current density decreased compared with that of pure coarse-grain Al. The EN analysis based on stochastic model demonstrated that there existed two kinds of effect of microcrystallization on the pitting behaviour of pure aluminium: (1) the rate of pit initiation is accelerated, (2) the pit growth process was impeded. This leads to the enhancement of pitting resistance for the microcrystallized aluminium.
Yttrium implantation effects on extra low carbon steel and pure iron
Energy Technology Data Exchange (ETDEWEB)
Caudron, E.; Buscail, H. [Clermont-Ferrand-2 Univ., Le Puy en Velay (France). Lab. Vellave d`Elaboration; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Advanced Materials, Joint Research Center, The European Commission, 21020, Ispra (Vatican City State, Holy See) (Italy); Josse-Courty, C. [Laboratoire de Recherche sur la Reactivite des Solides, UMR 56-13 CNRS, UFR Sciences et Techniques, 9 Avenue A. Savary, B.P. 400, 21011, Dijon Cedex (France)
1999-05-25
Extra low carbon steel and pure electrolytic iron samples were yttrium implanted using ion implantation technique. Compositions and structures of pure iron and steel samples were investigated before and after yttrium implantation by several analytical and structural techniques (RBS, SIMS, RHEED and XRD) to observe the yttrium implantation depth profiles in the samples. This paper shows the different effects of yttrium implantations (compositions and structures) according to the implanted sample nature. (orig.) 23 refs.
Ions cross-B collisional diffusion and electromagnetic wave scattering
International Nuclear Information System (INIS)
Tomchuk, B.P.; Gresillon, D.
2000-01-01
The calculation is presented of the averaged quadratic displacement of a collisional charged particle in a magnetic field. This calculation is used to obtain the statistical presentation of the electromagnetic field scattered by these particles. These results extend the previous calculations that were restricted to non-magnetized particles (Ornstein equation, Einstein diffusion, etc.). In addition this calculation foresees effects that are absent of the Ornstein equation: a modulation of the averaged quadratic displacement function at the cyclotron frequency and a maximum of the Cross-B diffusion coefficient when the cyclotron frequency is equal to the collision frequency (Bohm diffusion)
Modeling of collisional excited x-ray lasers using short pulse laser pumping
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Akira; Moribayashi, Kengo; Utsumi, Takayuki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment
1998-03-01
A simple atomic kinetics model of electron collisional excited x-ray lasers has been developed. The model consists of a collisional radiative model using the average ion model (AIM) and a detailed term accounting (DTA) model of Ni-like Ta. An estimate of plasma condition to produce gain in Ni-like Ta ({lambda}=44A) is given. Use of the plasma confined in a cylinder is proposed to preform a uniform high density plasma from 1-D hydrodynamics calculations. (author)
Dissociative effects of orthographic distinctiveness in pure and mixed lists: an item-order account.
McDaniel, Mark A; Cahill, Michael; Bugg, Julie M; Meadow, Nathaniel G
2011-10-01
We apply the item-order theory of list composition effects in free recall to the orthographic distinctiveness effect. The item-order account assumes that orthographically distinct items advantage item-specific encoding in both mixed and pure lists, but at the expense of exploiting relational information present in the list. Experiment 1 replicated the typical free recall advantage of orthographically distinct items in mixed lists and the elimination of that advantage in pure lists. Supporting the item-order account, recognition performances indicated that orthographically distinct items received greater item-specific encoding than did orthographically common items in mixed and pure lists (Experiments 1 and 2). Furthermore, order memory (input-output correspondence and sequential contiguity effects) was evident in recall of pure unstructured common lists, but not in recall of unstructured distinct lists (Experiment 1). These combined patterns, although not anticipated by prevailing views, are consistent with an item-order account.
International Nuclear Information System (INIS)
Segre, S E; Zanza, V
2006-01-01
When polarimetric effects are large the Cotton-Mouton and Faraday effects do not combine linearly and it is not possible to separate exactly the pure Cotton-Mouton effect W 1 and the pure Faraday effect, W 3 . Four alternative approximate expressions for W 1 and W 3 in terms of measurable quantities are examined for tokamak configurations. Two of these approximations proposed recently are found to be preferable, some previous statements concerning them are corrected and the errors incurred by their use are evaluated
Energy Technology Data Exchange (ETDEWEB)
Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)
2015-06-15
Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.
Kinetic equations for the collisional plasma model
International Nuclear Information System (INIS)
Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.
1977-01-01
Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)
Is the Eureka cluster a collisional family of Mars Trojan asteroids?
Christou, Apostolos A.; Borisov, Galin; Dell'Oro, Aldo; Cellino, Alberto; Bagnulo, Stefano
2017-09-01
We explore the hypothesis that the Eureka family of sub-km asteroids in the L5 region of Mars could have formed in a collision. We estimate the size distribution index from available information on family members; model the orbital dispersion of collisional fragments; and carry out a formal calculation of the collisional lifetime as a function of size. We find that, as initially conjectured by Rivkin et al. (2003), the collisional lifetime of objects the size of (5261) Eureka is at least a few Gyr, significantly longer than for similar-sized Main Belt asteroids. In contrast, the observed degree of orbital compactness is inconsistent with all but the least energetic family-forming collisions. Therefore, the family asteroids may be ejecta from a cratering event sometime in the past ∼ 1 Gyr if the orbits are gradually dispersed by gravitational diffusion and the Yarkovsky effect (Ćuk et al., 2015). The comparable sizes of the largest family members require either negligible target strength or a particular impact geometry under this scenario (Durda et al., 2007; Benavidez et al., 2012). Alternatively, the family may have formed by a series of YORP-induced fission events (Pravec et al., 2010). The shallow size distribution of the family is similar to that of small MBAs (Gladman et al., 2009) interpreted as due to the dominance of this mechanism for Eureka-family-sized asteroids (Jacobson et al., 2014). However, our population index estimate is likely a lower limit due to the small available number of family asteroids and observational incompleteness. Future searches for fainter family members, further observational characterisation of the known Trojans' physical properties as well as orbital and rotational evolution modelling will help distinguish between different formation models.
Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.
2017-12-01
The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.
Collisional history of asteroids - evidence from Vesta and the Hirayama families
International Nuclear Information System (INIS)
Davis, D.R.; Chapman, C.R.; Weidenschilling, S.J.; Greenberg, R.
1985-01-01
Numerical simulations of the collisional evolution of hypothetical initial asteroid populations have been run which are subject to three constraints: they must evolve to the current asteroid size distribution, preserve Vesta's basaltic crust, and produce at least the observed number of major Hirayama families. A runaway growth initial asteroid population distribution is found to best satisfy these constraints, and a model is developed for the calculation of fragment size distribution in the disruption of large, gravitationally bound bodies in which the material strength is enhanced by hydrostatic self-compression. This model predicts that large asteroids behave as intrinsically strong bodies despite histories of collisional fracture. 51 references
International Nuclear Information System (INIS)
Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.
1984-01-01
Experimental and theoretical studies were made to gain a deeper understanding of the radiative properties of nonequilibrium argon plasma flows in a circular tube. The self-absorption effects were taken into account as rigorously as possible. Experimentally, the radial profiles of the population densities of argon atoms at the excited 4s, 4p, 5p, and 5d levels were obtained from the lateral distributions of the absolute intensities of ArI spectral lines originating from these levels. On the other hand, theoretical profiles of the population densities for the same levels were calculated based on the optically thick model for collisional and radiative processes proposed by Bates et al. and experimentally measured atom temperature, electron temperature, electron density and gas pressure. Comparison of the experimental and theoretical results showed a reasonably good agreement and the importance of the self-absorption effects. (author)
International Nuclear Information System (INIS)
Morishita, K.; Ishino, S.; Sekimura, N.
1995-01-01
The spatial distributions of atomic displacement at the end of the collisional phase of cascade damage processes were calculated using the computer simulation code MARLOWE, which is based on the binary collision approximation (BCA). The densities of the atomic displacement were evaluated in high dense regions (HDRs) of cascades in several pure metals (Fe, Ni, Cu, Ag, Au, Mo and W). They were compared with the measured cascade collapse probabilities reported in the literature where TEM observations were carried out using thin metal foils irradiated by low-dose ions at room temperature. We found that there exists the minimum or ''critical'' values of the atomic displacement densities for the HDR to collapse into TEM-visible vacancy clusters. The critical densities are generally independent of the cascade energy in the same metal. Furthermore, the material dependence of the critical densities can be explained by the difference in the vacancy mobility at the melting temperature of target materials. This critical density calibration, which is extracted from the ion-irradiation experiments and the BCA simulations, is applied to estimation of cascade collapse probabilities in the metals irradiated by fusion neutrons. (orig.)
Exact effective actions for quarks in pure and self-dual mean fields
International Nuclear Information System (INIS)
Elizalde, E.; Soto, J.
1985-01-01
The QCD effective action for ordinary quarks in the presence of a constant self-dual, pure colormagnetic or pure color-electric background created by themselves is calculated at all loop orders. This is done in a very simple way, by using zeta-function regularization and the fact that the dependence of the effective action on the background can be factorized in these three cases, leaving a well-defined constant factor. The zero mode problem and the imaginary contributions are seen to be mere one-loop artifacts which automatically vanish when the exact calculation is carried out. (orig.)
Collisional redistribution of circularly polarized light in barium perturbed by argon
International Nuclear Information System (INIS)
Alford, W.J.; Andersen, N.; Belsley, M.; Cooper, J.; Warrington, D.M.; Burnett, K.
1984-01-01
We have measured the orientation of the Ba 6p 1 P level produced by collision-induced excitation from the ground state by circularly polarized light. The detuning dependence of the far-wing excited state orientation can be interpreted in terms of reorientation of molecular orbitals which occur during the collision. Effects due to rotational coupling are seen to occure at large blue wing detunings. We have also determined the collisional rate for destruction of orientation by measuring the pressure dependence of the excited state orientation. (orig.)
International Nuclear Information System (INIS)
Froese, Aaron; Takizuka, Tomonori; Yagi, Masatoshi
2010-01-01
Fluid models are not generally applicable to fusion edge plasmas without external provision of kinetic factors: closure parameters and boundary conditions inside the sheath region. We explain the PARASOL-1D simulation, a particle-in-cell code with a binary collision Monte-Carlo model, and use it to determine four kinetic factors commonly needed in fluid codes. These are the electron and ion heat flux limiting factors, α e and α i , the ion adiabatic index, γ A , and the electron and ion temperature anisotropy, T ‖ /T ⊥ . We survey these factors over a wide range of collisionalities and find that, as predicted, the conductive heat flux is accurately described by the Spitzer-Härm expression in the collisional limit and asymptotes to a constant value in the collisionless limit. However, unique behavior occurs in the weakly collisional regime when the ratio of the mean free path to connection length is 0.1 < λ mfp /L ‖ < 10, when the SOL is between the conduction- and sheath-limited regimes. We find that α e can peak, becoming larger than the collisionless limit, γ A is less than unity, and only the ions are anisotropic. The effects of electron energy radiation and Langevin heating are explored. Finally, the strong deviations of the energy distribution function from Maxwellian in the weakly collisional and collisionless regimes are explained. (author)
Physics of Collisional Plasmas Introduction to High-Frequency Discharges
Moisan, Michel
2012-01-01
The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...
Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum
Directory of Open Access Journals (Sweden)
Injoon Son
2012-01-01
Full Text Available The effect of equal-channel angular pressing (ECAP on the pitting corrosion of pure Al was investigated using electrochemical techniques in solutions containing 0.1 m mol·dm−3 of Na2SO4 and 8.46 mol·dm−3 of NaCl (300 ppm Cl− and followed by surface analysis. The potential for pitting corrosion of pure Al was clearly shifted in the noble direction by the ECAP process indicating that this process improves resistance to pitting corrosion. The time dependence of corrosion potential and the anodic potential at 1 A·m−2 revealed that the rate of formation of Al oxide films increased due to a decrease in the grain size of the Al after ECAP. Since there exists a negligible amount of impurity precipitates in pure Al, the improvement in pitting corrosion resistance of pure Al by ECAP appears to be attributable to an increase in the rate of formation of Al oxide films.
Collisional ionization of Na by HBr in weak to strong electric fields
International Nuclear Information System (INIS)
Safinya, K.A.; Gallagher, T.F.; Sandner, W.; Gounand, F.
1985-01-01
We report the effect of static electric fields on the collisional ionization of highly excited sodium atoms by HBr. The binding energy dependence of the collisional ionization cross section is measured at zero field and in static electric fields up to that point at which the atom field ionizes. The applied electric field lowers the ionization threshold of the atom from its zero field value. Therefore an atom near the ionization threshold in an electric field is of smaller size than a free field atom with the same binding energy. Thus measuring the binding energy dependence of the cross section at different values of the electric field allows us to study the effects of the physical size of the atom on the cross section. The effect of the electric field was to lower the measured ionization cross section. However, the binding energy dependence of the cross section remains unchanged at the level of our measurement accuracy. The measured cross sections are larger for larger atoms, exhibit a drop with increasing binding energy characteristic of rotational to electronic excitation transfer, and are of order 10 -12 --10 -11 cm 2 . A simple calculation based on dipole (J→ J-1) excitation transfer from the molecule to the atom predicts, with good agreement, the binding energy dependence of the cross section. The electric field dependence of the data however, is not shown in the theory
Collisional dynamics of perturbed particle disks in the solar system
Roberts, W. W.; Stewart, G. R.
1987-01-01
Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.
Effect of Heat Treatment on the Lycopene Content of Tomato Puree ...
African Journals Online (AJOL)
Effect of Heat Treatment on the Lycopene Content of Tomato Puree. MI Mohammed, DI Malami. Abstract. Lycopene is a powerful antioxidant. Epidemiological studies have associated its consumption with numerous health benefits. In this study the effects of heating on lycopene were investigated by exposing tomato ...
Investigation of collisional excitation-transfer processes in a plasma by laser perturbation method
International Nuclear Information System (INIS)
Sakurai, Takeki
1983-01-01
The theoretical background and the experimental method of the laser perturbation method applied to the study of collisional excitation transfer process in plasma are explained. The atomic density at some specified level can be evaluated theoretically. By using the theoretical results and the experimentally obtained data, the total attenuation probability, the collisional transfer probability and natural emission probability were estimated. For the experiments, continuous wave laser (cw) and pulse laser are employed. It is possible by using pulse dye laser to observe the attenuation curve directly, and to bring in resonance to any atomic spectra. At the beginning, the experimental studies were made on He-Ne discharge. The pulse dye laser has been used for the excitation of alkali atoms. The first application of pulse laser to the study of plasma physics was the study on He. The cross section of disalignment has also been studied by the laser perturbation. The alignment of atoms, step and cascade transfer, the confinement of radiation and optogalvanic effect are discussed in this paper. (Kato, T.)
Resonantly enhanced collisional ionization measurements of radionuclides
International Nuclear Information System (INIS)
Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.
1986-01-01
The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized
Current sustaining by RF travelling field in a collisional toroidal plasma
International Nuclear Information System (INIS)
Fukuda, Masaji; Matsuura, Kiyokata
1978-01-01
The relation between the current generated by RF travelling field and the absorbed power is studied in a collisional toroidal plasma, parameters being phase velocity and filling gap pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (author)
Current sustaining by RF travelling field in a collisional toroidal plasma
International Nuclear Information System (INIS)
Fukuda, Masaji; Matsuura, Kiyokata.
1977-06-01
The relation between the current generation by RF travelling field and the accompanied power absorption is studied in a collisional toroidal plasma, parameters being phase velocity and filling gas pressure or electron collision frequency. It is observed at a low magnetic field that the current is proportional to the plasma conductivity and an effective electromotive force, which is a new concept introduced on the basis of fluid model; the electromotive force is proportional to the absorbed RF power and inversely proportional to the plasma density and the phase velocity of the travelling field. (auth.)
Jeanne Dit Fouque, Dany; Maroto, Alicia; Memboeuf, Antony
2016-11-15
The differentiation, characterization, and quantification of isomers and/or isobars in mixtures is a recurrent problem in mass spectrometry and more generally in analytical chemistry. Here we present a new strategy to assess the purity of a compound that is susceptible to be contaminated with another isomeric side-product in trace levels. Providing one of the isomers is available as pure sample, this new strategy allows the detection of isomeric contamination. This is done thanks to a "gas-phase collisional purification" inside an ion trap mass spectrometer paving the way for an improved analysis of at least similar samples. This strategy consists in using collision induced dissociation (CID) multistage mass spectrometry (MS 2 and MS 3 ) experiments and the survival yield (SY) technique. It has been successfully applied to mixtures of cyclic poly( L -lactide) (PLA) with increasing amounts of its linear topological isomer. Purification in gas phase of PLA mixtures was established based on SY curves obtained in MS 3 mode: all samples gave rise to the same SY curve corresponding then to the pure cyclic component. This new strategy was sensitive enough to detect traces of linear PLA (<3%) in a sample of cyclic PLA that was supposedly pure according to other characterization techniques ( 1 H NMR, MALDI-HRMS, and size-exclusion chromatography). Moreover, in this case, the presence of linear isomer was undetectable according to MS/MS or MS/MS/MS analysis only as fragment ions are also of the same m/z values. This type of approach could easily be implemented in hyphenated mass spectrometric techniques to improve the structural and quantitative analysis of complex samples.
Musical notation reading in pure alexia
DEFF Research Database (Denmark)
Starrfelt, Randi; Wong, Yetta K.
2017-01-01
Pure alexia (PA) is an acquired reading disorder following lesions to left ventral temporo-occipital cortex. Patients with PA read slowly but correctly, and show an abnormal effect of word length on RTs. However, it is unclear how pure alexia may affect musical notation reading. We report a pure...
Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)
2015-05-15
Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.
Rate coefficients for collisional population transfer between 3p54p argon levels at 300 0K
International Nuclear Information System (INIS)
Nguyen, T.D.; Sadeghi, N.
1978-01-01
The population transfer between excited 3p 5 4p argon levels induced by the collisional process Ar* (3p 5 4p)/sub i/ + Ar( 1 S 0 ) arrow-right-left Ar* (3p 5 4p)/sub j/ + Ar( 1 S 0 ) + ΔE was studied in the afterglow of an argon pulsed discharge, at the pressure range of 0.2--1 Torr. Selective population of one particular argon 3p 5 4p level was achieved by laser excitation from one metastable state by use of a tunable cw dye laser. The populations of the laser-excited level and of the collisional excited levels were determined by intensity measurements of the fluorescence line and of the sensitized fluorescence lines. The time-dependence study of the populations of the metastable state, of the laser-excited state, and of the collisional excited states was carried out to ascertain the product channel and to determine the collisional transfer rate coefficients
International Nuclear Information System (INIS)
Black, D.C.; Mayo, R.M.; Caress, R.W.
1997-01-01
A miniature magnetic probe array, consisting of 10 spatially separated coils, has been used to obtain profile information on the time varying magnetic field within the 2.54 cm wide flow channel of the coaxial plasma source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)]. The magnetic field data have been used, together with a resistive, Hall magnetohydrodynamic (MHD) model of applied field distortion by the flowing plasma, to obtain estimates of the microturbulent enhancement to electron collisionality within the CPS-1 flow channel. These measurements provide direct experimental evidence of anomalous electron collisionality, a previously predicted effect in these devices. The anomaly parameter, a=ν an /ν cl , determined both from the distortion of contours of constant magnetic flux, and from local B θ and B z measurements scales with the classical electron magnetization parameter (Ω cl =ω ce /ν e cl ), indicating that collisionality plays a strong role in determining the level of anomalous transport in the plasma. When this anomaly parameter scaling is cast in terms of the ratio ν e cl /ω lh , it is found that the resistivity enhancement scales with ν e cl /ω lh , and becomes significant at ν e cl /ω lh ≤1, suggesting that a lower hybrid drift instability may be the responsible mechanism for enhanced transport. copyright 1997 American Institute of Physics
Collisional-Radiative Modeling of Tungsten at Temperatures of 1200–2400 eV
Directory of Open Access Journals (Sweden)
James Colgan
2015-04-01
Full Text Available We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that were submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.
International Nuclear Information System (INIS)
Correa, J.R.; Chang Yongbin; Ordonez, C.A.
2005-01-01
Collisional scattering is considered within a system of charged particles experiencing binary Coulomb interactions when the scale length for the range of each interaction is not isotropic and is not necessarily equal to the Debye length. For example, one or more dimensions of the system could be smaller than the Debye length. The effect is assessed by evaluating integrals over the impact cross section. Cutoffs on both the impact parameter and the Coulomb interaction potential are employed, and no assumption is made regarding the value of the Coulomb logarithm. Two expressions are found that have a dependence on the cutoff lengths, with one of the expressions being associated with the Coulomb logarithm. Collisional scattering within an electrostatic ion trap is considered by way of example
Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2017-11-01
The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.
Collisional-electron detachment of Cl- on diatomic molecules
International Nuclear Information System (INIS)
Annis, B.K.; Datz, S.
1981-01-01
Recent experimental results for collisional-electron detachment of Cl - by H 2 /D 2 , N 2 , O 2 , NO, and CO are discussed. The emphasis is on angular distributions and energy loss measurements for laboratory energies of a few hundred eV. Evidence for the possibility of bound excited states of N 2 Cl and COCl and the role of target negative-ion resonant states is presented
Collisional Penrose process with spinning particles
Mukherjee, Sajal
2018-03-01
In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr spacetime. Recent studies have shown that the collision between two spinning particles can produce a significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the escaping particles may contain spins. It has been shown that the energy extraction is larger than the non-spinning case and also their possibility to escape to infinity is wider than the geodesics.
International Nuclear Information System (INIS)
Drawin, H.W.; Emard, F.
1978-01-01
The populations of atomic hydrogen and hydrogen-like ions have been calculated using a collisional-radiative model. The global collisional-radiative excitation coefficients rsub(j)sup((0)) and rsub(j)sup((1)) valid for homogeneous-stationary and/or quasi-homogeneous quasi-stationary plasmas were published recently. The present paper contains in tabulated form the ground state populations and Saha decrements for the homogeneous stationary state, and the collisional-radiative recombination and ionization coefficients. (Auth.)
Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation
DEFF Research Database (Denmark)
Jørgensen, Thomas J. D.; Gårdsvoll, H.; Ploug, M.
2005-01-01
Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable...... if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional...... are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity...
Collisional transport across the magnetic field in drift-fluid models
DEFF Research Database (Denmark)
Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry
2016-01-01
Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...
Laser plasma physics in shock ignition – transition from collisional to collisionless absorption
Directory of Open Access Journals (Sweden)
Klimo O.
2013-11-01
Full Text Available Shock Ignition is considered as a relatively robust and efficient approach to inertial confinement fusion. A strong converging shock, which is used to ignite the fuel, is launched by a high power laser pulse with intensity in the range of 1015 − 1016 W/cm2 (at the wavelength of 351 nm. In the lower end of this intensity range the interaction is dominated by collisions while the parametric instabilities are playing a secondary role. This is manifested in a relatively weak reflectivity and efficient electron heating. The interaction is dominated by collective effects at the upper edge of the intensity range. The stimulated Brillouin and Raman scattering (SBS and SRS respectively take place in a less dense plasma and cavitation provides an efficient collisionless absorption mechanism. The transition from collisional to collisionless absorption in laser plasma interactions at higher intensities is studied here with the help of large scale one-dimensional Particle-in-Cell (PIC simulations. The relation between the collisional and collisionless processes is manifested in the energy spectrum of electrons transporting the absorbed laser energy and in the spectrum of the reflected laser light.
Charging properties of a dust grain in collisional plasmas
International Nuclear Information System (INIS)
Khrapak, S.A.; Morfill, G.E.; Khrapak, A.G.; D'yachkov, L.G.
2006-01-01
Charging related properties of a small spherical grain immersed in a collisional plasma are investigated. Asymptotic expressions for charging fluxes, grain surface potential, long range electrostatic potential, and the properties of grain charge fluctuations due to the discrete nature of the charging process are obtained. These analytical results are in reasonable agreement with the available results of numerical modeling
Collisional processes in supersymmetric plasma
International Nuclear Information System (INIS)
Czajka, Alina; Mrowczynski, Stanislaw
2011-01-01
Collisional processes in ultrarelativistic N=1 supersymmetric QED plasma are studied and compared to those in an electromagnetic plasma of electrons, positrons and photons. Cross sections of all binary interactions which occur in the supersymmetric plasma at the order of e 4 are computed. Some processes, in particular, the Compton scattering on selectrons, appear to be independent of momentum transfer and thus they are qualitatively different from processes in an electromagnetic plasma. It suggests that the transport properties of the supersymmetric plasma are different than those of its nonsupersymmetric counterpart. Energy loss and momentum broadening of a particle traversing the supersymmetric plasma are discussed in detail and the characteristics are shown to be surprisingly similar to those of QED plasma.
Influence of non-collisional laser heating on the electron dynamics in dielectric materials
Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.
2016-12-01
The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.
Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma
DEFF Research Database (Denmark)
Schröder, C.; Grulke, O.; Klinger, T.
2004-01-01
In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...... radial bending. The experimental observations are compared with numerical solutions of a linear nonlocal cylindrical model for drift waves [ Ellis , Plasma Phys. 22, 113 (1980) ]. In the numerical model, a transition to bended mode structures is found if the plasma collisionality is increased....... This finding proves that the experimentally observed bended mode structures are the result of high electron collisionality. (C) 2004 American Institute of Physics....
The effect of pure state structure on nonequilibrium dynamics
International Nuclear Information System (INIS)
Newman, C M; Stein, D L
2008-01-01
Motivated by short-range Ising spin glasses, we review some rigorous results and their consequences for the relation between the number/nature of equilibrium pure states and nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all initial configurations lie on the boundary between the basins of attraction of multiple pure states; (2) unless there are uncountably many pure states with almost all pairs having zero overlap, there can be no equilibration to a pure state as time t → ∞. We discuss the relevance of these results to the difficulty of equilibration of spin glasses. We also review some results concerning the 'nature versus nurture' problem of whether the large-t behavior of both ferromagnets and spin glasses following a deep quench is determined more by the initial configuration (nature) or by the dynamics realization (nurture)
Collisional effects on interaction potential in complex plasma in presence of magnetic field
International Nuclear Information System (INIS)
Bezbaruah, Pratikshya; Das, Nilakshi
2016-01-01
Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.
Collisional effects on interaction potential in complex plasma in presence of magnetic field
Energy Technology Data Exchange (ETDEWEB)
Bezbaruah, Pratikshya, E-mail: pratphd@tezu.ernet.in; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam 784028 (India)
2016-04-15
Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.
Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He
International Nuclear Information System (INIS)
Vadla, Cedomil; Horvatic, Vlasta; Niemax, Kay
2003-01-01
This paper is a review (with a few original additions) on the radiative transport and collisional transfer of energy in laser-excited cesium vapors in the presence of argon or helium. Narrow-band excitation of lines with Lorentz, Doppler and Voigt profiles is studied in order to calculate effective rates for pumping of spectral lines with profiles comprising inhomogeneous broadening components. The radiative transport of excitation energy is considered, and a new, simple and robust, but accurate theoretical method for quantitative treatment of radiation trapping in relatively optically thin media is presented. Furthermore, comprehensive lists of experimental values for the excitation energy transfer cross-sections related to thermal collisions in Cs-Ar and Cs-He mixtures are given. Within the collected cross-section data sets, specific regularities with respect to the energy defect, as well as the temperature, are discerned. A particular emphasis is put on the radiative and collisional processes important for the optimization of resonance-fluorescence imaging atomic filters based on Cs-noble gas systems
Klapisch, M.; Bar-Shalom, A.
1997-12-01
Busquet's RADIOM model for effective ionization temperature Tz is an appealing and simple way to introduce non LTE effects in hydrocodes. The authors report checking the validity of RADIOM in the optically thin case by comparison with two collisional radiative models, MICCRON (level-by-level) for C and Al and SCROLL (superconfiguration- by-superconfiguration) for Lu and Au. MICCRON is described in detail. The agreement between the average ion charge >ZBusquet is very good in most cases. There is however room for improvement when the departure from LTE is more pronounced for heavy atoms and for emissivity. Improvement appears possible because the concept of ionization temperature seems to hold in a broader range of parameters.
Laser enhancement of the collisional broadening of the 4713 and 3188 A lines in a helium plasma
International Nuclear Information System (INIS)
Pignolet, P.
1986-01-01
The enhancement of the electron collisional broadening of the 4s 3 S 1 and 4p 3 P 0 sub(2,1,0) levels in a helium glow discharge (nsub(e) = 10 13 -10 14 cm -3 ), induced by the non-resonant interaction of the 4s 3 S 1 and 4p 3 P 0 sub(2,1,0) levels with a CO 2 laser field, is reported. This extra broadening depends on the product of the electron density with the laser field amplitude and manifests itself on the 4713 and 3188 A linewidths. This effect results from the destruction, by electronic collisions, of the coherence induced by the laser field between the 4s 3 S 1 and 4p 3 P 0 sub(2,1,0) levels, and can be viewed as an electron-atom collisional fluorescence redistribution process at relatively large laser detuning. (author)
Wavepacket theory of collisional dissociation in molecules
International Nuclear Information System (INIS)
Kulander, K.
1980-01-01
An explicit integration scheme is used to solve the time dependent Schroedinger equation for wavepackets which model collisions in the collinear H + H 2 system. A realistic LEPS-type potential energy surface is used. Collision energies considered are above the dissociation threshold and probabilities for collision induced dissociation are reported. Also quantum mechanical state-to-state transition probabilities are generated. These results are compared to extensive classical trajectory calculations performed on this same system. The time evolution of the wavepacket densities is studied to understand the dynamics of the collinear collisional dissociation process
Radionuclide measurements using resonantly enhanced collisional ionization
International Nuclear Information System (INIS)
Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.
1987-01-01
This report describes development of a laser-enhanced collisional ionization method for direct radionuclide measurements that are independent of radioactive decay. The technique uses two nitrogen-laser-pumped dye lasers to selectively excite the target isotope to an electronic state near the ionization threshold. The excited actinide atoms then undergo collisions with a buffer gas and are efficiently ionized. The resulting ions can be detected by conventional methods. The attributes of this approach include highly sensitive isotope analysis with relatively inexpensive lasers and a simple vacuum system. 9 refs., 3 figs
Modern methods in collisional-radiative modeling of plasmas
2016-01-01
This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...
Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.
Bozeman, Steven Paul
The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in
Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao
2018-01-01
Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical
A Collisional Database and Web Service within the Virtual Atomic ...
Indian Academy of Sciences (India)
MOL-D database is a collection of cross-sections and rate coefficients for specific collisional processes and a web service within the Serbian Virtual Observatory ... Hydrogen and helium molecular ion data are important for calculation of solar and stellar atmosphere models and for radiative transport, as well as for kinetics of ...
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
International Nuclear Information System (INIS)
Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.
2009-01-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
The influence of collisional transfer effects on measured C2 Swan band transition probabilities
International Nuclear Information System (INIS)
Erman, P.
1980-01-01
Lifetime and relative intensities of the C 2 (d - a) Swan bands have been remeasured using the High Frequency Deflection technique, yielding tau(d, γ = 0-6) = 120 +- 4ns. With increasing pressure of the C 2 H 2 target gas strong second lifetime components occur revealing collisional transfers from other C 2 levles with rate coefficients around 6 X 10 -11 cm 3 s -1 mol -1 . These transfers are also observed with a number of other catalyser gases such as He, Ne, Ar, N 2 , and CO 2 . The transfer processes explain the considerably longer lifetimes reported in several earlier lifetime investigations and could be a clue to the formation mechanism of the carbon high pressure bands. (Auth.)
Characterization of collisionally pumped optical-field-ionization soft X-ray lasers
Czech Academy of Sciences Publication Activity Database
Mocek, Tomáš; Sebban, S.; Bettaibi, I.; Upcraft, L. M.; Balcou, P.; Breger, P.; Zeitoun, P.; Le Pape, S.; Ros, D.; Klisnick, A.; Carillon, A.; Jamelot, G.; Rus, Bedřich; Wyart, J. F.
2004-01-01
Roč. 78, - (2004), s. 939-944 ISSN 0946-2171 Grant - others:HPRI(XE) 199900086 Institutional research plan: CEZ:AV0Z1010921 Keywords : X-ray lasers * optical-field-ionization * collisional excitation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.215, year: 2004
Temperature relaxation in collisional non equilibrium plasmas
Energy Technology Data Exchange (ETDEWEB)
Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A.; Assis, A.S. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. We study the relaxation of a space uniform plasma composed of electrons and one species of ions. To simplified the consideration, standard approach is usually accepted: the distribution functions are considered to be a Maxwellian with time dependent electron T{sub e}(t) and ion T{sub i}(t) temperatures. This approach imposes a severe restriction on the electron/ion distributions that could be very far from the equilibrium. In the present work the problem is investigated on the basis of the nonlinear kinetic Fokker - Planck equation, which is widely used for the description of collisional plasmas. This equation has many applications in plasma physics as an intrinsic part of physical models, both analytical and numerical. A new detailed description of this classical problem of the collisional plasma kinetic theory is given. A deeper examination of the problem shows that the unusual perturbation theory can not be used. The part of the perturbation of the electron distribution has the character of a boundary layer in the neighborhood of small velocities. In this work the boundary layer is thoroughly studied. The correct distribution electron function is given. Nonmonotonic character of the distribution relaxation in the tail region is observed. The corrected formula for temperature equalization is obtained. The comparison of the calculation results with the asymptotic approach is made. We should stress the important role of the completely conservative different scheme used here, which keeps the symmetric properties of the nonlinear exact equation. This allows us to make calculations without numerical error accumulations, except for machine errors. (author)
Streaming instabilities in a collisional dusty plasma
International Nuclear Information System (INIS)
Mamun, A. A.; Shukla, P. K.
2000-01-01
A pair of low-frequency electrostatic modes, which are very similar to those experimentally observed by Praburam and Goree [Phys. Plasmas 3, 1212 (1996)], are found to exist in a dusty plasma with a significant background neutral pressure and background ion streaming. One of these two modes is the dust-acoustic mode and the other one is a new mode which is due to the combined effects of the ion streaming and ion--neutral collisions. It has been shown that in the absence of the ion streaming, the dust-acoustic mode is damped due to the combined effects of the ion--neutral and dust--neutral collisions and the electron--ion recombination onto the dust grain surface. This result disagrees with Kaw and Singh [Phys. Rev. Lett. 79, 423 (1997)], who reported collisional instability of the dust-acoustic mode in such a dusty plasma. It has also been found that a streaming instability with the growth rate of the order of the dust plasma frequency is triggered when the background ion streaming speed relative to the charged dust particles is comparable or higher than the ion--thermal speed. This point completely agrees with Rosenberg [J. Vac. Soc. Technol. A 14, 631 (1996)
Do the Pop II field blue stragglers have a collisional origin?
International Nuclear Information System (INIS)
Leonard, P.J.T.
1993-01-01
The hypothesis that the Pop II field blue stragglers have a collisional origin is considered. It appears unlikely that the majority of these stragglers were formed via collisions, but it is difficult to rule out the possibility that a small, but observable, fraction of them were
Dynamo transformation of the collisional R-T in a weakly ionized ...
Indian Academy of Sciences (India)
where the interstellar neutrals undergo charge exchange collisions with ions in the solar wind [1]. ... regime of magnetically confined torroidal plasma. The author refutes their ... rate ´7К-М µ for the usual collisional R-T is given as. 7К-М g v Дp.
Near field imaging of transient collisional excitation x-ray laser
International Nuclear Information System (INIS)
Tanaka, Momoko; Kado, Masataka; Hasegawa, Noboru; Kawachi, Tetsuya; Sukegawa, Kouta; Lu, Peixiang; Nagashima, Akira; Kato, Yoshiaki
2001-01-01
We observed the spatial profile of the transient collisional excitation Ni-like Ag laser (λ=13.9 nm) for various plasma lengths using the near field imaging method. The gain coefficient of the x-ray laser was estimated as 24 cm -1 . The gain region was a 50 μm crescent shape and included localized high gain areas. (author)
Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose
Hongming Lou; Haifeng Zhou; Xiuli Li; Mengxia Wang; J.Y. Zhu; Xueqing Qiu
2014-01-01
The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance...
Neoclassical transport including collisional nonlinearity.
Candy, J; Belli, E A
2011-06-10
In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Collisional transport in nonneutral plasmas
International Nuclear Information System (INIS)
Dubin, D.H.E.
1999-01-01
Classical transport theory grossly underestimates collisionally-driven cross-field transport for plasmas in the parameter regime of r c D , where r c ≡ v-bar/Ω c , λ D 2 ≡ T/4πe 2 n. In current experiments operating in this regime, cross-field test particle transport is observed to be a factor of 10 larger than the prediction of classical theory. Heat conduction is enhanced by up to 300 times over classical theory, and viscosity is up to 10 4 times larger. New guiding center theories of transport due to long-range collisions have been developed that agree with the measurements. Theory also predicts that emission and absorption of plasma waves may further enhance the thermal conduction and viscosity, providing a possible mechanism for anomalous thermal conductivity in the electron channel of fusion plasmas. (author)
PSYCHE Pure Shift NMR Spectroscopy.
Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias
2018-03-13
Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tractable Quantification of Entanglement for Multipartite Pure States
International Nuclear Information System (INIS)
Nian-Quan, Jiang; Yu-Jian, Wang; Yi-Zhuang, Zheng; Gen-Chang, Cai
2008-01-01
We present kth-order entanglement measure and global kth-order entanglement measure for multipartite pure states, and extend Bennett's measure of partial entropy for bipartite pure states to a multipartite case. These measures are computable and can effectively classify and quantify the entanglement of multipartite pure states. (general)
International Nuclear Information System (INIS)
Travaille, G.; Peyrusse, O.; Bousquet, B.; Canioni, L.; Pierres, K. Michel-Le; Roy, S.
2009-01-01
We present a collisional-radiative approach of the theoretical analysis of laser-induced breakdown spectroscopy (LIBS) plasmas. This model, which relies on an optimized effective potential atomic structure code, was used to simulate a pure aluminum plasma. The description of aluminum involved a set of 220 atomic levels representative of three different stages of ionization (Al 0 , Al + and Al ++ ). The calculations were carried for stationary plasmas, with input parameters (n e and T e ) ranging respectively between 10 13-18 cm -3 and 0.3-2 eV. A comparison of our atomic data with some existing databases is made. The code was mainly developed to address the validity of the local thermodynamic equilibrium (LTE) assumption. For usual LIBS plasma parameters, we did not reveal a sizeable discrepancy of the radiative equilibrium of the plasma towards LTE. For cases where LTE was firmly believed to stand, the Boltzmann plot outputs of this code were used to check the physical accuracy of the Boltzmann temperature, as it is currently exploited in several calibration-free laser-induced breakdown spectroscopy (CF-LIBS) studies. In this paper, a deviation ranging between 10 and 30% of the measured Boltzmann temperature to the real excitation temperature is reported. This may be due to the huge dispersion induced on the line emissivities, on which the Boltzmann plots are based to extract this parameter. Consequences of this fact on the CF-LIBS procedure are discussed and further insights to be considered for the future are introduced.
The collisional Penrose process
Schnittman, Jeremy D.
2018-06-01
Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole's event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole.
Şengör, A. M. Celâl; Özeren, Mehmet Sinan; Keskin, Mehmet; Sakınç, Mehmet; Özbakır, Ali Değer; Kayan, İlhan
Post-collisional magmatism may be generated by extensive crustal melting in Tibet-type collisional environments or by falling out of slabs from under giant subduction-accretion complexes in Turkic-type collisional orogens giving rise to decompression melting of the asthenospheric mantle replacing the removed oceanic lithosphere. In Turkic-type post-collisional magmatism, the magmatic products are dominantly alkalic to peralkalic and greatly resemble those of extensional regions giving rise to much confusion especially in interpreting old collisional orogenic belts. Such magmatic regions are also host to a variety of economically valuable ore deposits, including gold. One place in the world where today active, Turkic-type post-collisional magmatism is present is the eastern Anatolian high plateau, produced after the terminal Arabia/Eurasia collision in the late Miocene. The plateau is mostly underlain by the late Cretaceous to Oligocene East Anatolian Accretionary Complex, which formed south of the Rhodope-Pontide magmatic arc. This subduction-accretion complex has been further shortening since the collision, but it has also since been domed and became almost entirely covered by at least 15,000 km 3 of volcanic rocks. The volcanic rocks are calc-alkalic in the north, transitional in the middle, and alkalic in the south of the plateau. Where the crust is thinnest today (less than 38 km), the volcanics are derived almost entirely from an enriched mantle. The ages of the volcanics also become younger from north to south, from about 11 Ma to possibly 17th century AD. We interpret the origin of the magmatic rocks as the result of decompression melting of the asthenospheric mantle sucked towards the exposed base of the East Anatolian Accretionary Complex as the oceanic lithosphere beneath it fell out. The lower density of the hot asthospheric material was the cause of the doming. We believe that similar processes dominated the post-collisional tectonics of such vast
International Nuclear Information System (INIS)
Liu, X.L.; Zhou, W.R.; Wu, Y.H.; Cheng, Y.; Zheng, Y.F.
2013-01-01
The aim of this work was to investigate the effect of various sterilization methods on surface characteristics and biocompatibility of MgCa alloy, with pure Mg as a comparison, including steam autoclave sterilization (SA), ethylene oxide steam sterilization (EO), glutaraldehyde sterilization (GD), dry heat sterilization (DH) and Co60 γ ray radiation sterilization (R) technologies. The surface characterizations were performed by environmental scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, water contact angle and surface free energy measurement, whereas the cytotoxicity and hemocompatibility were evaluated by cellular adhesive experiment, platelet adhesion and hemolysis test. The results showed that the five sterilization processes caused more changes on the surface of MgCa alloy than that on the surface of pure Mg. The GD sterilization caused the most obvious changes on the surface of the pure Mg, and the SA sterilization made the largest alteration on the MgCa alloy surface. The GD and DH sterilization processes could cause increases on surface free energy for both pure Mg and MgCa alloys, while the other three sterilization processes reduced the surface free energy. The DH and GD sterilization processes caused the least alteration on the cell adhesion on pure Mg surface, whereas the EO sterilization performed the greatest impact on the cell adhesion on the Mg–Ca alloy surface. The hemolysis percentage of pure Mg and MgCa alloys were reduced by SA sterilization, meanwhile the other four sterilization processes increased their hemolysis percentages significantly, especially for the EO sterilization. - Highlights: • The effect of sterilization on surface chemistry and biocompatibility was studied. • Sterilization caused more surface changes on MgCa alloy than pure Mg. • Co60 γ ray radiation is the most appropriate sterilization process
Laser spectroscopy of collisionally prepared target species: atomic caesium
International Nuclear Information System (INIS)
Moreau, J.-P.; Tremblay, Julien; Knystautas, E.J.; Laperriere, S.C.; Larzilliere, Michel
1989-01-01
Fast ion beam bombardment was used to collisionally prepare a target gas in excited states, to which conventional laser spectroscopy was then applied. The versatility of this method is demonstrated with atomic targets of caesium, for a state of Cs + that is 16 eV above the ground state, as well as for a short-lived state (38 ns) of the neutral atom. The local temperature in the caesium oven is also obtained. (Author)
Rote Rehearsal and Spacing Effects in the Free Recall of Pure and Mixed Lists
Verkoeijen, Peter P. J. L.; Delaney, Peter F.
2008-01-01
The "spacing effect" is the commonly observed phenomenon that memory for spaced repetitions is better than memory for massed repetitions. To further investigate the role of rehearsal in spacing effects, three experiments were conducted. With pure lists we found spacing effects in free recall when spacing intervals were relatively long (Experiments…
COLLISIONALLY EXCITED FILAMENTS IN HUBBLE SPACE TELESCOPE Hα AND Hβ IMAGES OF HH 1/2
Energy Technology Data Exchange (ETDEWEB)
Raga, A. C.; Castellanos-Ramírez, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510 México, D.F. (Mexico); Reipurth, B.; Chiang, Hsin-Fang [Institute for Astronomy, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Bally, J., E-mail: raga@nucleares.unam.mx [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States)
2015-01-01
We present new Hα and Hβ images of the HH 1/2 system, and we find that the Hα/Hβ ratio has high values in ridges along the leading edges of the HH 1 bow shock and of the brighter condensations of HH 2. These ridges have Hα/Hβ = 4 → 6, which is consistent with collisional excitation from the n = 1 to the n = 3 and 4 levels of hydrogen in a gas of temperatures T = 1.5 → 10 × 10{sup 4} K. This is therefore the first direct evidence that the collisional excitation/ionization region of hydrogen just behind Herbig-Haro shock fronts is detected.
On the two weighting scheme for δf collisional transport simulation
International Nuclear Information System (INIS)
Okamoto, M.; Nakajima, N.; Wang, W.
1999-08-01
The validity is given to the newly proposed two weighting δf scheme (Wang et al., Research Report of National Institute for Fusion Science NIFS-588, 1999) for collisional or neoclassical transport calculations, which can solve the drift kinetic equation taking account of effects of steep plasma gradients, large radial electric field, finite banana width, and the non-standard orbit topology near the axis. The marker density functions in weight equations are successively solved by using the idea of δf method and a hierarchy of equations for weight and marker density functions is obtained. These hierarchy equations are solved by choosing an appropriate source function for each marker density. Thus the validity of the two weighting δf scheme is mathematically proved. (author)
International Nuclear Information System (INIS)
Guasp, J.; Liniers, M.
1998-01-01
The effects of radial electric fields on the non collisional losses, asymmetries at plasma border and on the Vacuum Vessel and trapping fractions for 0.1 1 KeV electrons in TJ-II are analysed. This study complements a series, already published, for ions, therefore only the main differences are stressed. Many of these effect are similar for electrons and ions, mainly the drastic decrease of losses with the electric field, the increasing peripherical loss concentration, the strong accumulation on the Hard Core (HC), the modification in the direction of the induced poloidal rotation, similar angular distributions for trapped particles, etc. Nevertheless, there appear also important differences, that in many cases are originated by the higher electron mobility, in particular a higher sensitivity to the electric field, as well to the intensity as to the sign, producing a faster drop in electron losses for positive potential and a higher asymmetry in the sign dependence. Most of these electron losses exit through the upper side of the plasma, the opposite happens for ions. The strong concentration on the HC appears, many, on the PL-1 plate (the one that is placed upside for toroidal angle φ=0 degree centigree), instead of the opposite PL-2 plate for ions.Finally, for the analysed energy range, there is no variation of electron trapping with the potential nor resonant effect. (Author) 8 refs
Huang, Yuting; Dodds, Eric D
2013-10-15
Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.
Quantum mechanical theory of collisional ionization in the presence of intense laser radiation
Bellum, J. C.; George, T. F.
1978-01-01
The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.
Band-structure-based collisional model for electronic excitations in ion-surface collisions
International Nuclear Information System (INIS)
Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.
2005-01-01
Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed
On various validity criteria for the configuration average in collisional-radiative codes
Energy Technology Data Exchange (ETDEWEB)
Poirier, M [Commissariat a l' Energie Atomique, Service ' Photons, Atomes et Molecules' , Centre d' Etudes de Saclay, F91191 Gif-sur-Yvette Cedex (France)
2008-01-28
The characterization of out-of-local-thermal-equilibrium plasmas requires the use of collisional-radiative kinetic equations. This leads to the solution of large linear systems, for which statistical treatments such as configuration average may bring considerable simplification. In order to check the validity of this procedure, a criterion based on the comparison between a partial-rate systems and the Saha-Boltzmann solution is discussed in detail here. Several forms of this criterion are discussed. The interest of these variants is that they involve each type of relevant transition (collisional or radiative), which allows one to check separately the influence of each of these processes on the configuration-average validity. The method is illustrated by a charge-distribution analysis in carbon and neon plasmas. Finally, it is demonstrated that when the energy dispersion of every populated configuration is smaller than the electron thermal energy, the proposed criterion is fulfilled in each of its forms.
Effect of Bound Entanglement on the Convertibility of Pure States
International Nuclear Information System (INIS)
Ishizaka, Satoshi
2004-01-01
I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics
Pure contagion effects in international banking: The case of BCCI’s failure
Angelos Kanas
2005-01-01
We test for pure contagion effects in international banking arising from the failure of the Bank of Credit and Commerce International (BCCI), one of the largest bank failures in the world. We focused on large individual banks in three developed countries where BCCI had established operations, namely the UK, the US, and Canada. Using event study methodology, we tested for contagion effects using time windows surrounding several known BCCI-related announcements. Our analysis provides strong evi...
International Nuclear Information System (INIS)
Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu
2002-01-01
Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)
International Nuclear Information System (INIS)
Roberts, W.W.; Stewart, G.R.
1987-03-01
Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion
Pre-collisional geodynamics of the Mediterranean Sea: the Mediterranean Ridge and the Tyrrhenian Sea
Directory of Open Access Journals (Sweden)
E. Chaumillon
1997-06-01
Full Text Available Today the Mediterranean Sea consists of a series of small-sized and almost geographically disconnected oceanic or continental crust rooted marine basins. It is also an area almost totally surrounded by mountain ranges, which chiefly belong to the alpine realm. This overall geodynamic setting results from a long term convergence between the two major, African and European, plates. Previous collisions have led to the edification of surrounding chains, while subduction and new-collisional processes tend to create new extensional back-arc basins and wide tectonized accretionary prisms. In this paper we briefly outline the most recent and almost land-locked back-arc basin that has developed in the Mediterranean,i.e., the Tyrrhenian Sea, and the Mediterranean Ridge, which may be regarded as a collisional sedimentary wedge predating a future mountain chain.
DEFF Research Database (Denmark)
Nagaraj, Nagarjuna; D'Souza, Rochelle C J; Cox, Juergen
2010-01-01
Mass spectrometry (MS)-based proteomics now enables the analysis of thousands of phosphorylation sites in single projects. Among a wide range of analytical approaches, the combination of high resolution MS scans in an Orbitrap analyzer with low resolution MS/MS scans in a linear ion trap has proven......-scale phosphoproteome analysis alongside collisional induced dissociation, (CID) and electron capture/transfer dissociation (ECD/ETD)....
Collisional Fragmentation Is Not a Barrier to Close-in Planet Formation
Energy Technology Data Exchange (ETDEWEB)
Wallace, Joshua; Tremaine, Scott [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Chambers, John, E-mail: joshuajw@princeton.edu [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States)
2017-11-01
Collisional fragmentation is shown to not be a barrier to rocky planet formation at small distances from the host star. Simple analytic arguments demonstrate that rocky planet formation via collisions of homogeneous gravity-dominated bodies is possible down to distances of order the Roche radius ( r {sub Roche}). Extensive N -body simulations with initial bodies ≳1700 km that include plausible models for fragmentation and merging of gravity-dominated bodies confirm this conclusion and demonstrate that rocky planet formation is possible down to ∼1.1 r {sub Roche}. At smaller distances, tidal effects cause collisions to be too fragmenting to allow mass buildup to a final, dynamically stable planetary system. We argue that even differentiated bodies can accumulate to form planets at distances that are not much larger than r {sub Roche}.
Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism
International Nuclear Information System (INIS)
Gates, D.A.; White, R.B.
2004-01-01
Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments
DEFF Research Database (Denmark)
Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie
2013-01-01
that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia......-designed and controlled studies of rehabilitation of pure alexia....
International Nuclear Information System (INIS)
Yoshida, R; Tsuda, T; Fujiwara, H; Miyamoto, H; Ameyama, K
2014-01-01
The Ti-Al alloy/pure Ti harmonic-structured composite was produced by mechanical milling and spark plasma sintering process for improvement of low ductility at room temperature of Ti-Al alloy. The harmonic-structured composite with the dispersed area having coarse grained titanium and the network area having fine-grained Ti-48mol%Al alloy demonstrates high strength and high ductility at room temperature. The annealing effect of the microstructure on the mechanical properties in the Ti-Al alloy/pure Ti harmonic-structured composite are investigated. The microstructure of the Ti-Al alloy/pure Ti harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the Ti-Al network structure and pure Ti dispersed regions, the average grain size of pure Ti dispersed region is only coarsen by annealing. The harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the high hardness. The tensile results reveal that the Ti-Al alloy/pure Ti harmonic- structured composite annealed at 873 K exhibits high strength and especially high ductility
Transient events in bright debris discs: Collisional avalanches revisited
Thebault, P.; Kral, Q.
2018-01-01
Context. A collisional avalanche is set off by the breakup of a large planetesimal, releasing vast amounts of small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that could potentially create detectable transient structures. Aims: We investigate this mechanism, using for the first time a fully self-consistent code coupling dynamical and collisional evolutions. We also quantify for the first time the photometric evolution of the system and investigate whether or not avalanches could explain the short-term luminosity variations recently observed in some extremely bright debris discs. Methods: We use the state-of-the-art LIDT-DD code. We consider an avalanche-favoring A6V star, and two set-ups: a "cold disc" case, with a dust release at 10 au and an outer disc extending from 50 to 120 au, and a "warm disc" case with the release at 1 au and a 5-12 au outer disc. We explore, in addition, two key parameters: the density (parameterized by its optical depth τ) of the main outer disc and the amount of dust released by the initial breakup. Results: We find that avalanches could leave detectable structures on resolved images, for both "cold" and "warm" disc cases, in discs with τ of a few 10-3, provided that large dust masses (≳1020-5 × 1022 g) are initially released. The integrated photometric excess due to an avalanche is relatively limited, less than 10% for these released dust masses, peaking in the λ 10-20 μm domain and becoming insignificant beyond 40-50 μm. Contrary to earlier studies, we do not obtain stronger avalanches when increasing τ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an
Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang
2015-09-01
The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.
Michel, P.; Benz, W.; Richardson, D. C.
2005-08-01
Recent simulations of asteroid break-ups, including both the fragmentation of the parent body and the gravitational interactions of the fragments, have allowed to reproduced successfully the main properties of asteroid families formed in different regimes of impact energy. Here, using the same kind of simulations, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by Qcrit, which results in the escape of half of the target's mass. Considering a wide range of diameter values and two kinds of internal structures of the parent body, monolithic and pre-shattered, we analyse their potential influences on the value of Qcrit and on the collisional outcome limited here to the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. For all the considered diameters and the two internal structures of the parent body, we confirm that the process of gravitational reaccumulation is at the origin of the largest remnant's mass. We then find that, for a given diameter of the parent body, the impact energy corresponding to the catastrophic disruption threshold is highly dependent on the internal structure of the parent body. In particular, a pre-shattered parent body containing only damaged zones but no macroscopic voids is easier to disrupt than a monolithic parent body. Other kinds of internal properties that can also characterize small bodies in real populations will be investigated in a future work.
Delaney, Peter F.; Verkoeijen, Peter P. J. L.
2009-01-01
Using 5 experiments, the authors explored the dependency of spacing effects on rehearsal patterns. Encouraging rehearsal borrowing produced opposing effects on mixed lists (containing both spaced and massed repetitions) and pure lists (containing only one or the other), magnifying spacing effects on mixed lists but diminishing spacing effects on…
New insights on the collisional escape of light neutrals from Mars
Gacesa, Marko; Zahnle, Kevin
2017-04-01
Photodissociative recombination (PDR) of atmospheric molecules on Mars is a major mechanism of production of hot (suprathermal) atoms with sufficient kinetic energy to either directly escape to space or to eject other atmospheric species. This collisional ejection mechanism is important for evaluating the escape rates of all light neutrals that are too heavy to escape via Jeans escape. In particular, it plays a role in estimating the total volume of escaped water constituents (i.e., O and H) from Mars, as well as influences evolution of the atmospheric [D]/[H] ratio1. We present revised estimates of total collisional escape rates of neutral light elements including H, He, and H2, based on recent (years 2015-2016) atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. We also estimate the contribution to the collisional escape from Energetic Neutral Atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases2,3. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism1,3. The escape rates are evaluated using a 1D model of the atmosphere supplemented with MAVEN measurements of the neutrals. Finally, new estimates of contributions of these non-thermal mechanisms to the estimated PDR escape rates from young Mars4 are presented. [1] M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012). [2] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014). [3] M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", Icarus 284, 90 (2017). [4] J. Zhao, F. Tian, Y. Ni, and X. Huang, "DR-induced escape of O and C from early Mars", Icarus 284, 305 (2017).
THE CREATION OF HAUMEA'S COLLISIONAL FAMILY
International Nuclear Information System (INIS)
Schlichting, Hilke E.; Sari, Re'em
2009-01-01
Recently, the first collisional family was discovered in the Kuiper Belt. The parent body of this family, Haumea, is one of the largest objects in the Kuiper Belt and is orbited by two satellites. It has been proposed that the Haumea family was created from dispersed fragments that resulted from a giant impact. This proposed origin of the Haumea family is however in conflict with the observed velocity dispersion between the family members (∼ 140 m s -1 ) which is significantly less than the escape velocity from Haumea's surface (∼ 900 m s -1 ). In this paper we propose a different formation scenario for Haumea's collisional family. In our scenario the family members are ejected while in orbit around Haumea. This scenario, therefore, naturally gives rise to a lower velocity dispersion among the family members than expected from direct ejection from Haumea's surface. In our scenario Haumea's giant impact forms a single moon that tidally evolves outward until it suffers a destructive collision from which the family is created. We show that this formation scenario yields a velocity dispersion of ∼ 190 m s -1 among the family members which is in good agreement with the observations. We discuss an alternative scenario that consists of the formation and tidal evolution of several satellites that are ejected by collisions with unbound Kuiper Belt objects. However, the formation of the Haumea family in this latter way is difficult to reconcile with the large abundance of Kuiper Belt binaries. We, therefore, favor forming the family by a destructive collision of a single moon of Haumea. The probability for Haumea's initial giant impact in today's Kuiper Belt is less than 10 -3 . In our scenario, however, Haumea's giant impact can occur before the excitation of the Kuiper Belt and the ejection of the family members afterward. This has the advantage that one can preserve the dynamical coherence of the family and explain Haumea's original giant impact, which is several
Matthaeus, W. H.; Yang, Y.; Servidio, S.; Parashar, T.; Chasapis, A.; Roytershteyn, V.
2017-12-01
Turbulence cascade transfers energy from large scale to small scale but what happens once kinetic scales are reached? In a collisional medium, viscosity and resistivity remove fluctuation energy in favor of heat. In the weakly collisional solar wind, (or corona, m-sheath, etc.), the sequence of events must be different. Heating occurs, but through what mechanisms? In standard approaches, dissipation occurs though linear wave modes or instabilities and one seeks to identify them. A complementary view is that cascade leads to several channels of energy conversion, interchange and spatial rearrangement that collectively leads to production of internal energy. Channels may be described using compressible MHD & multispecies Vlasov Maxwell formulations. Key steps are: Conservative rearrangement of energy in space; Parallel incompressible and compressible cascades - conservative rearrangment in scale; electromagnetic work on particles that drives flows, both macroscopic and microscopic; and pressure-stress interactions, both compressive and shear-like, that produces internal energy. Examples given from MHD, PIC simulations and MMS observations. A more subtle issue is how entropy is related to this degeneration (or, "dissipation") of macroscopic, fluid-scale fluctuations. We discuss this in terms of Boltzmann and thermodynamic entropies, and velocity space effects of collisions.
Varsha Komath Pavithran; Madhusudhan Krishna; Vinod A Kumar; Ashish Jaiswal; Arul K Selvan; Sudhir Rawlani
2017-01-01
Introduction: Oil pulling as described in ancient Ayurveda involves the use of edible vegetable oils as oral antibacterial agents. It is a practice of swishing oil in the mouth for oral and systemic health benefits. Pure coconut oil has antimicrobial properties and is commonly available in all Indian households. Aim: This study aims to assess the effect of oil pulling therapy with pure coconut oil on Streptococcus mutans count and to compare its efficacy against sesame oil and saline. Materia...
Effect of isotopic substitution on the collisional quenching of vibronically excited CO+
International Nuclear Information System (INIS)
Katayama, D.H.; Welsh, J.A.
1983-01-01
Rovibronic levels of the A 2 Pi/sub i/ state for 12 C 16 O + and 13 C 16 O + have been selectively excited by a pulsed, tunable dye laser and their time resolved fluorescence obtained as a function of helium pressure. These ions are formed by reaction of neutral carbon monoxide with helium metastable atoms created in a dc discharge. Since 13 CO + has essentially the same potential energy curves as 12 CO + , but differs primarily in its vibrational energy spacings, this experiment accentuates the role, in the collisional deactivation process, of the high lying ground state vibrational levels which are adjacent to the laser populated vibronic levels of the A 2 Pi/sub i/ state. Quenching rates are determined for the v' = 0, 1, and 2 levels which have relatively insignificant isotope shifts of a few wave numbers for the two isotopes. The difference in rates for the two isotopic ions demonstrates the importance of the positions for the high lying v'' = 10 and 11 ground state levels which have large isotope shifts of hundreds of wave numbers. A discussion of the deactivation process is given in terms of perturbations, Franck--Condon factors, energy gaps, and other considerations
Nonlinear theory of the collisional Rayleigh-Taylor instability in equatorial spread F
International Nuclear Information System (INIS)
Chaturvedi, P.K.; Ossakow, S.L.
1977-01-01
The nonlinear behavior of the collisional Rayleigh-Taylor instability is studied in equatorial Spread F by including a dominant two-dimensional nonlinearity. It is found that on account of this nonlinearity the instability saturates by generating damped higher spatial harmonics. The saturated power spectrum for the density fluctuations is discussed. A comparison between experimental observations and theory is presented
Neoclassical transport in a multiple-helicity torsatron in the low-collisionality (1/#betta#) regime
International Nuclear Information System (INIS)
Shaing, K.C.; Hokin, S.A.
1983-02-01
For a sufficiently high number of field periods (m/iota > l), the magnetic field of a multiple helicity torsatron can be reduced to a simple form such that the second adiabatic invariant J can be calculated. It is found that the particle and the heat fluxes for a multiple helicity torsatron in the low collisionality (1/#betta#) regime have the same geometric dependences. An optimization of both quantities is carried out for a given equilibrium constraint. It is shown that the transport fluxes can be smaller than those of the conventional stellarator by an order of magnitude. The effect of finite plasma beta on the neoclassical fluxes is also studied
Chen, Shuo; Niu, Yaoling; Xue, Qiqi
2018-05-01
The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.
A High-Order Transport Scheme for Collisional-Radiative and Nonequilibrium Plasma
2009-02-06
400–422, 1987. [18] M. P. F. Bristow and I. I. Glass. Polarizability of singly ionized argon . Physics of Fluids, 15(11):2066–2067, 1972. [19] A. Bultel...unsteady calculations. Numerical simulations of ionizing shocks in argon are conducted to gain insight to the shock structure and help determine the source...parameters used in previous research. . . . . . . . . 4 9.1 Rate coefficients for collisional-radiative model . . . . . . . . . . . . . . . . . 83 9.2 Argon
International Nuclear Information System (INIS)
Saad, Rawad; L'Hermite, Daniel; Bousquet, Bruno
2014-01-01
The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm −1 energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation
Gates, Paul J; Lopes, Norberto P; Pinto, Emani; Colepicolo, Pio; Cardozo, Karina H M
2011-01-01
This study reports the application of "double isolation" in sustained off-resonance irradiation collisionally-induced dissociation tandem mass spectrometry (SORI-CID-MS/MS) to remove radio- frequency (RF) fragment ions of very close mass isobaric ions (0.02 m/z apart). Analyses were performed with a fraction of a biological extract isolated from a macroalgae containing the mycosporine-like amino acid asterina-330. Direct isolation of the precursor ion by narrowing the isolation window proved ineffective as it impinged upon the required ion thus substantially reducing its intensity. By increasing the correlated sweep time, ejection efficiency of the isolation was improved, but caused the unwanted side-effect of RF fragmentation of labile ions. Finally, by skipping the ion activation step and performing a second isolation (in the MS(3) module) the RF fragments from the first isolation were removed leaving a very pure isolation of the required precursor ion and allowed a very clean CID fragmentation. We demonstrated that the m/z 272.1351 ion is derived from the loss of NH(3) from m/z 289.1620 isobaric impurity and is not related to asterina-330. This application represents a powerful tool to remove unwanted ions in the MS/MS spectrum that result from fragmentation of isobaric ions.
Collisional stripping of planetary crusts
Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.
2018-02-01
Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to
How Low Can You Go: Spatial Frequency Sensitivity in Pure Alexia
DEFF Research Database (Denmark)
Starrfelt, Randi; Nielsen, S.; Habekost, T.
Objective: Pure alexia is a seemingly selective deficit in reading, follow- ing focal lesions to the posterior left hemisphere. The hallmark feature of pure alexia is a word length effect in single word reading, where reaction times may increase with hundreds of milliseconds per additional letter...... in a word. Other language functions, including writing, are intact. It has been suggested that pure alexia is caused by a general deficit in visual processing, one that affects reading disproportionally compared to other visual stimuli. The most concrete hypothesis to date suggests that pure alexia...... is caused by a lack of sensitivity to particular spatial frequencies (e.g., Fiset et al., 2006), and that this results in the characteristic word length effect, as well as effects of letter confusability on reading times. Participants and Methods: We have tested this hypothesis in a patient with pure alexia...
Color Spectrum Properties of Pure and Non-Pure LATEX in Discriminating Rubber Clone Series
International Nuclear Information System (INIS)
Noor Aishah Khairuzzaman; Hadzli Hashim; Nina Korlina Madzhi; Noor Ezan Abdullah; Faridatul Aima Ismail; Ahmad Faiz Sampian; Azhana Fatnin Che Will
2015-01-01
A study of color spectrum properties for pure and non-pure latex in discriminating rubber clone series has been presented in this paper. There were five types of clones from the same series being used as samples in this study named RRIM2002, RRIM2007, RRIM2008, RRIM2014, and RRIM3001. The main objective is to identify the significant color spectrum (RGB) from pure and non-pure latex that can discriminate rubber clone series. The significant information of color spectrum properties for pure and non-pure latex is determined by using spectrometer and Statistical Package for the Social Science (SPSS). Visible light spectrum (VIS) is used as a radiation light of the spectrometer to emit light to the surface of the latex sample. By using SPSS software, the further numerical analysis of color spectrum properties is being conducted. As the conclusion, blue color spectrum for non-pure is able to discriminate for all rubber clone series whereas only certain color spectrum can differentiate several clone series for pure latex. (author)
International Nuclear Information System (INIS)
Colonna, G.; Pietanza, L.D.; D’Ammando, G.
2012-01-01
Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.
International Nuclear Information System (INIS)
Nishikawa, T.; Kawachi, T.; Nishihara, K.; Fujimoto, T.
1995-09-01
We have assessed atomic data for lithium-like ions for the purpose of constructing a reliable collisional-radiative model. We show several examples of the atomic data for aluminum and oxygen ions, and comparison of data from several sources is done in detail. For ions with nuclear charge z, the scaling formulas and fitting parameters, which are based on the data of oxygen ions, are presented. By use of these data, we have constructed two collisional-radiative models: the one for aluminum ions and the one for ions according to the scaling for z. The population inversion and the amplification gain of the soft x-ray laser lines in the recombining aluminum plasma are calculated for several electron temperatures. We also examine the effects of ion collisions for Δn=0 transitions on the excited level populations
Gaertner, Sabrina; Gundlach, Bastian; Headen, Thomas F.; Ratte, Judy; Oesert, Joachim; Gorb, Stanislav N.; Youngs, Tristan G. A.; Bowron, Daniel T.; Blum, Jürgen; Fraser, Helen
2018-06-01
Models and observations suggest that particle aggregation at and beyond the snowline is aided by water ice. As icy particles play such a crucial role in the earliest stages of planet formation, many laboratory studies have exploited their collisional properties across a wide range of parameters (particle size, impact velocity, temperature T, and pressure P).However, not all of these parameters have always been varied systematically, leading to apparently contradictory results on collision outcomes. Previous experiments only agreed that a temperature dependence set in above ≈210 K. Open questions remain as to what extent the structural properties of the particles themselves dictate collision outcomes. The P–T gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. To understand how effectively collision experiments reproduce protoplanetary disk conditions, environmental impacts on particle structure need to be investigated.We characterized the bulk and surface structure of icy particles used in collision experiments, exploiting the unique capabilities of the NIMROD neutron scattering instrument. Varying temperature at a constant pressure of around 30 mbar, we studied structural alterations to determine which of the observed properties matches the temperature dependencies observed in collisional behaviour.Our icy grains are formed under liquid nitrogen and heated from 103 to 247 K. As a result, they undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) suggests increased molecular mobility at temperatures above ≈210 K.Because none of the other changes ties in with the temperature trends in collisional outcomes, we conclude that the diffuse interface plays a key role in collision experiments at these temperatures
Evolution of a Gaussian laser beam in warm collisional magnetoplasma
Energy Technology Data Exchange (ETDEWEB)
Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com [Plasma Physics Research School, NSTRI, Tehran (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2016-07-15
In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).
DEFF Research Database (Denmark)
Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter
2005-01-01
of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (Jørgensen, T. J. D., Gårdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc...... randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information...
Nonlinear coherent structures of Alfvén wave in a collisional plasma
International Nuclear Information System (INIS)
Jana, Sayanee; Chakrabarti, Nikhil; Ghosh, Samiran
2016-01-01
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Jana, Sayanee; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India)
2016-07-15
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
[Effects of laser welding on bond of porcelain fused cast pure titanium].
Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi
2006-04-01
To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.
Sheath waves, non collisional dampings
International Nuclear Information System (INIS)
Marec, Jean Lucien Ernest
1974-01-01
When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr
Nonlinear transport processes in tokamak plasmas. I. The collisional regimes
International Nuclear Information System (INIS)
Sonnino, Giorgio; Peeters, Philippe
2008-01-01
An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10 2 . The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10 2 when the nonlinear contributions are duly taken into account but, there is still a factor of 10 2 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work
Tungsten Ions in Plasmas: Statistical Theory of Radiative-Collisional Processes
Directory of Open Access Journals (Sweden)
Alexander V. Demura
2015-05-01
Full Text Available The statistical model for calculations of the collisional-radiative processes in plasmas with tungsten impurity was developed. The electron structure of tungsten multielectron ions is considered in terms of both the Thomas-Fermi model and the Brandt-Lundquist model of collective oscillations of atomic electron density. The excitation or ionization of atomic electrons by plasma electron impacts are represented as photo-processes under the action of flux of equivalent photons introduced by E. Fermi. The total electron impact single ionization cross-sections of ions Wk+ with respective rates have been calculated and compared with the available experimental and modeling data (e.g., CADW. Plasma radiative losses on tungsten impurity were also calculated in a wide range of electron temperatures 1 eV–20 keV. The numerical code TFATOM was developed for calculations of radiative-collisional processes involving tungsten ions. The needed computational resources for TFATOM code are orders of magnitudes less than for the other conventional numerical codes. The transition from corona to Boltzmann limit was investigated in detail. The results of statistical approach have been tested by comparison with the vast experimental and conventional code data for a set of ions Wk+. It is shown that the universal statistical model accuracy for the ionization cross-sections and radiation losses is within the data scattering of significantly more complex quantum numerical codes, using different approximations for the calculation of atomic structure and the electronic cross-sections.
Gliemmo, María F; Latorre, María E; Narvaiz, Patricia; Campos, Carmen A; Gerschenson, Lía N
2014-01-01
The effect of gamma irradiation (0-2 kGy) and storage time (0-28 days) on microbial growth and physicochemical characteristics of a packed pumpkin puree was studied. For that purpose, a factorial design was applied. The puree contained potassium sorbate, glucose and vanillin was stored at 25°C . Gamma irradiation diminished and storage time increased microbial growth. A synergistic effect between both variables on microbial growth was observed. Storage time decreased pH and color of purees. Sorbate content decreased with storage time and gamma irradiation. Mathematical models of microbial growth generated by the factorial design allowed estimating that a puree absorbing 1.63 kGy would have a shelf-life of 4 days. In order to improve this time, some changes in the applied hurdles were assayed. These included a thermal treatment before irradiation, a reduction of irradiation dose to 0.75 kGy and a decrease in storage temperature at 20°C . As a result, the shelf-life of purees increased to 28 days.
Plumpton, C
1968-01-01
Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t
Collisional erosion and the non-chondritic composition of the terrestrial planets.
O'Neill, Hugh St C; Palme, Herbert
2008-11-28
The compositional variations among the chondrites inform us about cosmochemical fractionation processes during condensation and aggregation of solid matter from the solar nebula. These fractionations include: (i) variable Mg-Si-RLE ratios (RLE: refractory lithophile element), (ii) depletions in elements more volatile than Mg, (iii) a cosmochemical metal-silicate fractionation, and (iv) variations in oxidation state. Moon- to Mars-sized planetary bodies, formed by rapid accretion of chondrite-like planetesimals in local feeding zones within 106 years, may exhibit some of these chemical variations. However, the next stage of planetary accretion is the growth of the terrestrial planets from approximately 102 embryos sourced across wide heliocentric distances, involving energetic collisions, in which material may be lost from a growing planet as well as gained. While this may result in averaging out of the 'chondritic' fractionations, it introduces two non-chondritic chemical fractionation processes: post-nebular volatilization and preferential collisional erosion. In the latter, geochemically enriched crust formed previously is preferentially lost. That post-nebular volatilization was widespread is demonstrated by the non-chondritic Mn/Na ratio in all the small, differentiated, rocky bodies for which we have basaltic samples, including the Moon and Mars. The bulk silicate Earth (BSE) has chondritic Mn/Na, but shows several other compositional features in its pattern of depletion of volatile elements suggestive of non-chondritic fractionation. The whole-Earth Fe/Mg ratio is 2.1+/-0.1, significantly greater than the solar ratio of 1.9+/-0.1, implying net collisional erosion of approximately 10 per cent silicate relative to metal during the Earth's accretion. If this collisional erosion preferentially removed differentiated crust, the assumption of chondritic ratios among all RLEs in the BSE would not be valid, with the BSE depleted in elements according to their
Mangina, Constantine A; Beuzeron-Mangina, Helen
2009-08-01
This research pursues the crucial question of the differentiation of preadolescents with "Pure" ADHD, comorbid ADHD with learning disabilities, "Pure" learning disabilities and age-matched normal controls. For this purpose, Topographic Mapping of Event-Related Brain Potentials (ERPs) to a Memory Workload Paradigm with visually presented words, Bilateral Electrodermal Activity during cognitive workload and Mangina-Test performance were used. The analysis of Topographic distribution of amplitudes revealed that normal preadolescents were significantly different from "Pure" ADHD (Plearning disabilities (Plearning disabilities (Plearning disabilities have shown a marked reduction of prefrontal and frontal negativities (N450). As for the "Pure" Learning Disabled preadolescents, very small positivities (P450) in prefrontal and frontal regions were obtained as compared to the other pathological groups. Bilateral Electrodermal Activity during cognitive workload revealed a significant main effect for groups (P<0.00001), Left versus Right (P=0.0029) and sessions (P=0.0136). A significant main effect for the Mangina-Test performance which separated the four groups was found (P<0.000001). Overall, these data support the existence of clear differences and similarities between the pathological preadolescent groups as opposed to age-matched normal controls. The psychophysiological differentiation of these groups, provides distinct biological markers which integrate central, autonomic and neuropsychometric variables by targeting the key features of these pathologies for diagnosis and intervention strategies and by providing knowledge for the understanding of normal neurocognitive processes and functions.
Collisional width of giant resonances and interplay with Landau damping
International Nuclear Information System (INIS)
Bonasera, A.; Burgio, G.F.; Di Toro, M.; Wolter, H.H.
1989-01-01
We present a semiclassical method to calculate the widths of giant resonances. We solve a mean-field kinetic equation (Vlasov equation) with collision terms treated within the relaxation time approximation to construct a damped strength distribution for collective motions. The relaxation time is evaluated from the time evolution of distortions in the nucleon momentum distribution using a test-particle approach. The importance of an energy dependent nucleon-nucleon cross section is stressed. Results are shown for isoscalar giant quadrupole and octupole motions. A quite important interplay between self-consistent (Landau) and collisional damping is revealed
A one-dimensional collisional model for plasma-immersion ion implantation
International Nuclear Information System (INIS)
Vahedi, V.; Lieberman, M.A.; Alves, M.V.; Verboncoeur, J.P.; Birdsall, C.K.
1991-01-01
Plasma-immersion ion implantation (also known as plasma-source ion implantation) is a process in which a target is immersed in a plasma and a series of large negative-voltage pulses are applied to it to extract ions from the plasma and implant them into the target. A general one-dimensional model is developed to study this process in different coordinate systems for the case in which the pressure of the neutral gas is large enough that the ion motion in the sheath can be assumed to be highly collisional
Non-critical pure spinor superstrings
International Nuclear Information System (INIS)
Adam, Ido; Grassi, Pietro Antonio; Mazzucato, Luca; Oz, Yaron; Yankielowicz, Shimon
2007-01-01
We construct non-critical pure spinor superstrings in two, four and six dimensions. We find explicitly the map between the RNS variables and the pure spinor ones in the linear dilaton background. The RNS variables map onto a patch of the pure spinor space and the holomorphic top form on the pure spinor space is an essential ingredient of the mapping. A basic feature of the map is the requirement of doubling the superspace, which we analyze in detail. We study the structure of the non-critical pure spinor space, which is different from the ten-dimensional one, and its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology and find an agreement with the RNS spectra. The analysis is generalized to curved backgrounds and we construct as an example the non-critical pure spinor type IIA superstring on AdS 4 with RR 4-form flux
COLLISIONAL DEBRIS AS LABORATORIES TO STUDY STAR FORMATION
International Nuclear Information System (INIS)
Boquien, M.; Duc, P.-A.; Wu, Y.; Charmandaris, V.; Lisenfeld, U.; Braine, J.; Brinks, E.; Iglesias-Paramo, J.; Xu, C. K.
2009-01-01
In this paper we address the question of whether star formation (SF) is driven by local processes or the large-scale environment. To do so, we investigate SF in collisional debris where the gravitational potential well and velocity gradients are shallower and compare our results with previous work on SF in noninteracting spiral and dwarf galaxies. We have performed multiwavelength spectroscopic and imaging observations (from the far-ultraviolet to the mid-infrared) of six interacting systems, identifying a total of 60 star-forming regions in their collision debris. Our analysis indicates that in these regions (1) the emission of the dust is at the expected level for their luminosity and metallicity, (2) the usual tracers of SFR display the typical trend and scatter found in classical star-forming regions, and (3) the extinction and metallicity are not the main parameters governing the scatter in the properties of intergalactic star-forming regions; age effects and variations in the number of stellar populations seem to play an important role. Our work suggests that local properties such as column density and dust content, rather than the large-scale environment seem to drive SF. This means that intergalactic star-forming regions can be used as a reliable tool to study SF.
Nonlinear acoustic waves in partially ionized collisional plasmas
International Nuclear Information System (INIS)
Rao, N.N.; Kaup, D.J.; Shukla, P.K.
1991-01-01
Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)
UV Irradiation Effects in Pure and Tin-Doped Amorphous AsSe Films
2001-06-01
during irradiation did not exceed 40 ’C. 304 M. Popescu, M. lovu, W. Hloyer, 0. Shpotyuk , F. Sava, A. L6rinczi 3. Results Pure and tin-doped AsSe filns...9000 ,- ,, ---, ,, - ,, - 9000 .... ... .-.. .. r111h) (222) Illuminated 8000 8000 - 7000 7000 lie (220) 6000 6000 5000 O 5000 4000 - 4000 3000 .L...Popescu, M. lovu, W. Hoyer, 0. Shpotyuk , F. Sava, A. L6rinczi the effective thickness of the layers and, possibly, the correlation length. The photo
Effect Of Gamma Irradiation On Microbiological Properties Of Frozen Durian Pulp And Puree
International Nuclear Information System (INIS)
Sofian Ibrahim; Cosmos, George; Noor Hasni Mohd Ali; Zarina Mohd Nor; Syuhadah Ramli; Jamilah Karim; Ahsanulkhaliqin Abdul Wahab; Mohd Khairul Azfar Ramli; Mohd Sidek Othman
2013-01-01
Studies on effects of gamma irradiation on the frozen Durian fruit (Durio zibethinus Murray) was conducted in MINTec-Sinagama, Malaysian Nuclear Agency, using a Co-60 source. The main aims of the study were to determine the optimum range of gamma irradiation dose can be applied on frozen durian pulp and puree to improve the microbial quality whilst maintaining its flavor. The results showed that the generic gamma radiation dose between 2 kGy until 6 kGy can reduced total plate count (TPC) of the recorded initial TPC values of fresh durian pulp and puree; 6.10 x 10 5 and 3.79 x 10 5 cfu/ g each into the range of 2.54 x 10 5 to 1.58 x 10 3 cfu/ g and 1.18 x 10 5 to 3.08 x 10 3 cfu/ g respectively. In conclusion, the non-thermal irradiation improved the microbial quality of durian whilst maintaining its flavor. (author)
Collisional broadening of depolarized spectral lines of hydrogen gases at low temperatures
International Nuclear Information System (INIS)
Hout, K.D. van den.
1978-01-01
Experimental results are presented for the collisional broadening and shift of H 2 , D 2 and HD rotational Raman and depolarized Rayleigh lines at various temperatures between 25 K and 300 K. These are then discussed within the context of current theoretical concepts. For a few temperatures the line broadening cross sections are also reported as a function of the ortho-para composition for H 2 and D 2 . (C.F.)
A many-particle adiabatic invariant of strongly magnetized pure electron plasmas
International Nuclear Information System (INIS)
Hjorth, P.G.
1988-01-01
A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σ j mv 2 j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures T parallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that T parallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation
Nonlinear magnetic reconnection in low collisionality plasmas
Energy Technology Data Exchange (ETDEWEB)
Ottaviani, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F [Politecnico di Torino, Turin (Italy)
1994-07-01
The magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling of the plasma motion from that of the field lines, is discussed. Since the linear theory of m=1 modes breaks down for very small magnetic island widths, a non linear analysis is called for. Thus, the behaviour of a collisionless, 2-D fluid slab model in the limit {rho}/d -> 0, is analyzed. The main result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower than the skin depth is formed. It is believed that the inclusion of the electron initial term in Ohm`s law opens the possibility to understand the rapidity of relaxation process observed in low collisionality plasmas. 7 refs., 6 figs.
Generation of pure spin currents via spin Seebeck effect in self-biased hexagonal ferrite thin films
Energy Technology Data Exchange (ETDEWEB)
Li, Peng; Ellsworth, David; Chang, Houchen; Janantha, Praveen; Richardson, Daniel; Phillips, Preston; Vijayasarathy, Tarah; Wu, Mingzhong, E-mail: mwu@lamar.colostate.edu [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Shah, Faisal [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2014-12-15
Light-induced generation of pure spin currents in a Pt(2.5 nm)/BaFe{sub 12}O{sub 19}(1.2 μm)/sapphire(0.5 mm) structure is reported. The BaFe{sub 12}O{sub 19} film had strong in-plane uniaxial anisotropy and was therefore self-biased. Upon exposure to light, a temperature difference (ΔT) was established across the BaFe{sub 12}O{sub 19} thickness that gave rise to a pure spin current in the Pt via the spin Seebeck effect. Via the inverse spin Hall effect, the spin current produced an electric voltage across one of the Pt lateral dimensions. The voltage varied with time in the same manner as ΔT and flipped its sign when the magnetization in BaFe{sub 12}O{sub 19} was reversed.
The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid
Directory of Open Access Journals (Sweden)
Tarik Attar
2014-01-01
Full Text Available The use of inorganic inhibitors as an alternative to organic compounds is based on the possibility of degradation of organic compounds with time and temperature. The inhibition effect of potassium iodide on the corrosion of pure iron in 0.5 M H2SO4 has been studied by weight loss. It has been observed from the results that the inhibition efficiency (IE% of KI increases from 82.17% to 97.51% with the increase in inhibitor concentration from 1·10−4 to 2·10−3 M. The apparent activation energy (Ea and the equilibrium constant of adsorption (Kads were calculated. The adsorption of the inhibitor on the pure iron surface is in agreement with Langmuir adsorption isotherm.
Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei
2018-05-01
The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the edge dislocations can cut through the basal SFs although the interactions between the dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.
Numerical Simulations of Collisional Cascades at the Roche Limits of White Dwarf Stars
Kenyon, Scott J.; Bromley, Benjamin C.
2017-08-01
We consider the long-term collisional and dynamical evolution of solid material orbiting in a narrow annulus near the Roche limit of a white dwarf. With orbital velocities of 300 {km} {{{s}}}-1, systems of solids with initial eccentricity e≳ {10}-3 generate a collisional cascade where objects with radii r ≲ 100{--}300 {km} are ground to dust. This process converts 1-100 km asteroids into 1 μm particles in 102-106 yr. Throughout this evolution, the swarm maintains an initially large vertical scale height H. Adding solids at a rate \\dot{M} enables the system to find an equilibrium where the mass in solids is roughly constant. This equilibrium depends on \\dot{M} and {r}0, the radius of the largest solid added to the swarm. When {r}0 ≲ 10 km, this equilibrium is stable. For larger {r}0, the mass oscillates between high and low states; the fraction of time spent in high states ranges from 100% for large \\dot{M} to much less than 1% for small \\dot{M}. During high states, the stellar luminosity reprocessed by the solids is comparable to the excess infrared emission observed in many metallic line white dwarfs.
Pure Surface Texture Mapping Technology and it's Application for Mirror Image
Directory of Open Access Journals (Sweden)
Wei Feng Wang
2013-02-01
Full Text Available Based on the study of pure surface texture mapping technology, pure texture surface rendering method is proposed. The method is combined pure surface texture rendering and view mirror, real-time rendering has an index of refraction, reflection, and the flow of water ripple effect. Through the experimental verification of the validity of the algorithm.
International Nuclear Information System (INIS)
Hutchinson, I. H.
2007-01-01
It is shown that the numerical solutions presented in a recent paper discussing a highly simplified model of collisional particle collection are unnecessary because simple analytic solutions of the quantities presented are available
Measurement of the Transverse Spitzer Resistivity during Collisional Magnetic Reconnection
International Nuclear Information System (INIS)
Trintchouk, F.; Yamada, M.; Ji, H.; Kulsrud, R.M.; Carter, T.A.
2000-01-01
Measurement of the transverse resistivity was carried out in a reconnecting current sheet where the mean free path for the Coulomb collision is smaller than the thickness of the sheet. In a collisional neutral sheet without a guide field, the transverse resistivity is directly related to the reconnection rate. A remarkable agreement is found between the measured resistivity and the classical value derived by L. Spitzer. In his calculation the transverse resistivity for the electrons is higher than the parallel resistivity by a factor of 1.96. The measured values have verified this theory to within 30% errors
Directory of Open Access Journals (Sweden)
Keiji Sawada
2016-12-01
Full Text Available A novel rovibrationally resolved collisional-radiative model of molecular hydrogen that includes 4,133 rovibrational levels for electronic states whose united atom principal quantum number is below six is developed. The rovibrational X 1 Σ g + population distribution in a SlimCS fusion demo detached divertor plasma is investigated by solving the model time dependently with an initial 300 K Boltzmann distribution. The effective reaction rate coefficients of molecular assisted recombination and of other processes in which atomic hydrogen is produced are calculated using the obtained time-dependent population distribution.
Corrosion of pure OFHC-copper in simulated repository conditions
International Nuclear Information System (INIS)
Aaltonen, P.
1990-04-01
The research program 'Corrosion of pure OFHC-copper in simulated repository conditions' was planned to provide an experimental evaluation with respect to the theoretical calculations and forecasts made for the corrosion behaviour of pure copper in bentonite groundwater environments at temperatures between 20-80 deg C. The aim of this study in the first place is to evaluate the effects of groundwater composition, bentonite and temperature on the equilibrium and possible corrosion reactions between pure copper and the simulated repository environment. The progress report includes the results obtained after 36 months exposure time
Effect of fractionated extracts and isolated pure compounds of ...
African Journals Online (AJOL)
This study attempted to elucidate the neurotransmitter systems involved in the neurophysiological properties of ethanolic extract, fractions and pure isolates of Spondias mombin leaves in mice (n = 6) after intraperitoneal (i.p.) route of administration. The crude ethanolic extract of spondian mombin leaves was fractionated ...
Konopelko, D.; Wilde, S. A.; Seltmann, R.; Romer, R. L.; Biske, Yu. S.
2018-03-01
We present geochemical and Sr-Nd-Pb-Hf isotope data as well as the results of single grain U-Pb zircon dating for ten granitoid and alkaline intrusions of the Alai segment of Kyrgyz South Tien Shan (STS). The intrusions comprise four geochemically contrasting series or suites, including (1) I-type and (2) shoshonitic granitoids, (3) peraluminous granitoids including S-type leucogranites and (4) alkaline rocks and carbonatites, closely associated in space. New geochronological data indicate that these diverse magmatic series of the Alai segment formed in a post-collisional setting. Five single grain U-Pb zircon ages in the range 287-281 Ma, in combination with published ages, define the main post-collisional magmatic pulse at 290-280 Ma, which is similar to ages of post-collisional intrusions elsewhere in the STS. An age of 287 ± 4 Ma, obtained for peraluminous graniodiorite of the Liayliak massif, emplaced in amphibolite-facies metamorphic rocks of the Zeravshan-Alai block, is indistinguishable from ca. 290 Ma age of peraluminous granitoids emplaced coevally with Barrovian-type metamorphism in the Garm block, located ca. 40 km south-west of the research area. The Sr-Nd-Pb-Hf isotopic compositions of the studied intrusions are consistent with the reworking of crustal material with 1.6-1.1 Ga average crustal residence times, indicating the formation of the Alai segment on a continental basement with Mesoproterozoic or older crust. The pattern of post-collisional magmatism in the Alai segment, characterized by emplacement of I-type and shoshoninitic granitoids in combination with coeval Barrovian-type metamorphism, is markedly different from the pattern of post-collisional magmatism in the adjacent Kokshaal segment of the STS with predominant A-type granitoids that formed on a former passive margin of the Tarim Craton. We suggest that during the middle-late Carboniferous the Alai segment probably comprised a microcontinent with Precambrian basement located between
International Nuclear Information System (INIS)
Ishida, Kazushige; Wada, Yoichi; Tachibana, Masahiko; Ota, Nobuyuki; Aizawa, Motohiro
2013-01-01
The effects of water chemistry distribution on the potential of a reference electrode and of the potential distribution on the measured potential should be known qualitatively to obtain accurate electrochemical corrosion potential (ECP) data in BWRs. First, the effects of oxygen on a platinum reference electrode were studied in 553 K pure water containing dissolved hydrogen (DH) concentration of 26 - 10 5 μg kg -1 (ppb). The platinum electrode worked in the same way as the theoretical hydrogen electrode under the condition that the molar ratio of DH to dissolved oxygen (DO) was more than 10 and that DO was less than 100 ppb. Second, the effects of potential distribution on the measured potential were studied by using the ECP measurement part without platinum deposition on the surfaces connected to another ECP measurement part with platinum deposition on the surfaces in 553 K pure water containing 100 - 130 ppb of DH or 100 - 130 ppb of DH plus 400 ppb of hydrogen peroxide. Measured potentials for each ECP measurement part were in good agreement with literature data for each surface condition. The lead wire connecting point did not affect the measured potential. Potential should be measured at the nearest point from the reference electrode in which case it will be not affected by either the potential distribution or the connection point of the lead wire in pure water. (author)
Ab initio modeling of plasticity in HCP metals: pure zirconium and titanium and effect of oxygen
International Nuclear Information System (INIS)
Chaari, Nermine
2015-01-01
We performed atomistic simulations to determine screw dislocations properties in pure zirconium and titanium and to explain the hardening effect attributed to oxygen alloying in both hexagonal close-packed transition metals. We used two energetic models: ab initio calculations based on the density functional theory and calculations with an empirical potential. The complete energetic profile of the screw dislocation when gliding in the different slip planes is obtained in pure Zr. Our calculations reveal the existence of a metastable configuration of the screw dislocation partially spread in the first order pyramidal plane. This configuration is responsible for the cross slip of screw dislocations from prismatic planes, the easiest glide planes, to pyramidal or basal planes. This energy profile is affected by oxygen addition. Ab initio calculations reveal two main effects: oxygen enhances pyramidal cross slip by modifying the dislocation core structure, and pins the dislocation in its metastable sessile configuration. The same modeling approach is applied to titanium. In pure Ti, the same configurations of the screw dislocation in Zr are obtained, but with different energy levels. This leads to a different gliding mechanism. The same way as in Zr, oxygen enhances pyramidal glide in Ti by modifying the dislocation core structure. Besides, oxygen atom lowers the energy of the metastable configuration but not enough to pin the dislocation in this sessile configuration. (author) [fr
Oki, Kensuke; Ma, Bei; Ishitani, Yoshihiro
2017-11-01
Population distributions and transition fluxes of the A exciton in bulk GaN are theoretically analyzed using rate equations of states of the principal quantum number n up to 5 and the continuum. These rate equations consist of the terms of radiative, electron-collisional, and phononic processes. The dependence of the rate coefficients on temperature is revealed on the basis of the collisional-radiative model of hydrogen plasma for the electron-collisional processes and theoretical formulation using Fermi's "golden rule" for the phononic processes. The respective effects of the variations in electron, exciton, and lattice temperatures are exhibited. This analysis is a base of the discussion on nonthermal equilibrium states of carrier-exciton-phonon dynamics. It is found that the exciton dissociation is enhanced even below 150 K mainly by the increase in the lattice temperature. When the thermal-equilibrium temperature increases, the population fluxes between the states of n >1 and the continuum become more dominant. Below 20 K, the severe deviation from the Saha-Boltzmann distribution occurs owing to the interband excitation flux being higher than the excitation flux from the 1 S state. The population decay time of the 1 S state at 300 K is more than ten times longer than the recombination lifetime of excitons with kinetic energy but without the upper levels (n >1 and the continuum). This phenomenon is caused by a shift of population distribution to the upper levels. This phonon-exciton-radiation model gives insights into the limitations of conventional analyses such as the ABC model, the Arrhenius plot, the two-level model (n =1 and the continuum), and the neglect of the upper levels.
Effect of couple-stress on the pure bending of a prismatic bar
International Nuclear Information System (INIS)
Tzung, F.; Kao, B.; Ho, F.; Tang, P.
1981-02-01
An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite
Tearing modes in tokamaks with lower hybrid current drive
International Nuclear Information System (INIS)
Xu, X.Q.
1990-08-01
In this paper, the effect of current drive on the tearing modes in the semi-collisional regime is analyzed using the drift-kinetic equation. A collisional operator is developed to model electron parallel conductivity. For the pure tearing modes the linear and quasilinear growth rates in the Rutherford regimes have been found to have roughly the same forms with a modified resistivity as without current drive. One interesting result is the prediction of a new instability. This instability, driven by the current gradient inside the tearing mode layer, is possibly related to MHD behavior observed in these experiments. 9 refs
Electromagnetic-wave absorption by inhomogeneous, collisional plasmas
International Nuclear Information System (INIS)
Gregoire, D.J.; Santoru, J.; Schumacher, R.W.
1990-01-01
Unmagnetized, collisional plasmas can be used as broadband EM-wave absorbers or refractors. In the absorption process, plasma electrons are first accelerated by the EM-wave fields and then collide with background-gas molecules, thereby transferring energy from the EM waves to the gas. A plasma absorber has several advantages compared to conventional materials. A plasma can be turned on and off very rapidly, thereby switching between absorbing and transparent conditions. Calculations indicate that plasma absorbers can also be tailored to provide broadband absorption (>40 dB) over multiple octaves. The authors have developed a one-dimensional model and a computer code to calculate the net power reflected from a plasma-enclosed EM-wave-reflecting target. They included three contributions to the reflected EM-wave power: reflections from the vacuum-plasma interface; reflections from the bulk plasma volume; and reflection of the attenuated EM wave that is transmitted through the plasma and reflected by the target
Collisional and radiative processes in fluorescent lamps
International Nuclear Information System (INIS)
Lister, Graeme G.
2003-01-01
Since electrode life is the major limiting factor in operating fluorescent lamps, many lighting companies have introduced 'electrodeless' fluorescent lamps, using inductively coupled discharges. These lamps often operate at much higher power loadings than standard lamps and numerical models have not been successful in reproducing experimental measurements in the parameter ranges of interest. A comprehensive research program was undertaken to study the fundamental physical processes of these discharges, co-funded by the Electric Power Research Institute (EPRI) and OSRAM SYLVANIA under the name of ALITE. The program included experiments and modeling of radiation transport, computations of electron-atom and atom-atom cross sections and the first comprehensive power balance studies of a highly loaded fluorescent lamp. Results from the program and their importance to the understanding of the physics of fluorescent lamps are discussed, with particular emphasis on the important collisional and radiative processes. Comparisons between results of experimental measurements and numerical models are presented
Scattering of massive open strings in pure spinor
International Nuclear Information System (INIS)
Park, I.Y.
2011-01-01
In Park (2008) , it was proposed that the D-brane geometry could be produced by open string quantum effects. In an effort to verify the proposal, we consider scattering amplitudes involving massive open superstrings. The main goal of this paper is to set the ground for two-loop 'renormalization' of an oriented open superstring on a D-brane and to strengthen our skill in the pure spinor formulation of a superstring, an effective tool for multi-loop string diagrams. We start by reviewing scattering amplitudes of massless states in the 2D component method of the NSR formulation. A few examples of massive string scattering are worked out. The NSR results are then reproduced in the pure spinor formulation. We compute the amplitudes using the unintegrated form of the massive vertex operator constructed by Berkovits and Chandia (2002) . We point out that it may be possible to discover new Riemann type identities involving Jacobi θ-functions by comparing a NSR computation and the corresponding pure spinor computation.
Mixtures of maximally entangled pure states
Energy Technology Data Exchange (ETDEWEB)
Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com
2016-09-15
We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.
International Nuclear Information System (INIS)
Goto, M.; Sawada, K.
2014-01-01
Spectra of neutral helium in the visible wavelength range are measured for a discharge in the Large Helical Device (LHD). The electron temperature (T e ) and density (n e ) are derived from the intensity distribution of helium emission lines. For that purpose, a collisional-radiative model developed by Sawada et al. [Plasma and Fusion Res. 2010;5:001] which takes the reabsorption effect into account is used. It is found that incorporation of the reabsorption effect is necessary to obtain a set of T e and n e giving consistent line intensity distribution with the measurement, and that those parameters obtained vary as the line-averaged n e changes in the course of time. The position where the helium line emission dominantly takes place is located with the help of T e and n e profiles measured by the Thomson scattering system. The result indicates that the emission position is almost fixed at the place where the connection length of the magnetic field lines to the divertor plate leaps beyond 10 m. Because intense neutral atom line emission suggests the vigorous ionization of neutral atoms, the helium line emission location determined here can be regarded as the effective boundary of the plasma. - Highlights: • The reabsorption effect is included in the helium collisional-radiative model. • Electron temperature and density are derived for the Large Helical Device (LHD). • Line emission location is found to be little changed during the discharge. • This measurement method can be used to determine the position of effective plasma boundary
Self-sustained collisional drift-wave turbulence in a sheared magnetic field
International Nuclear Information System (INIS)
Scott, B.D.
1990-01-01
Although collisional drift waves in a sheared slab configuration are linearly damped, it is found that the corresponding turbulence is self-sustaining if initialized at nonlinear amplitude. The influence of the free-energy source represented by the temperature and density gradients on the turbulent system involving bidirectional spectral energy transfer is responsible for this change of regime. Several important features of tokamak edge fluctuations are reproduced by these single-rational-surface nonlinear dynamics. As a result, drift-wave turbulence must still be considered as an underlying dynamic of anomalous transport in tokamak edges
Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun
2015-11-01
The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Collisional Processes Probed by using Resonant Four-Wave Mixing Spectroscopy
McCormack, E. F.; Stampanoni, A.; Hemmerling, B.
2000-06-01
Collisionally-induced decay processes in excited-state nitric oxide (NO) have been measured by using time-resolved two-color, resonant four-wave mixing (TC-RFWM) spectroscopy and polarization spectroscopy (PS). Markedly different time dependencies were observed in the data obtained by using TC-RFWM when compared to PS. Oscillations in the PS signal as a function of delay between the pump and probe laser pulses were observed and it was determined that their characteristics depend very sensitively on laser polarization. Analysis reveals that the oscillations in the decay curves are due to coherent excitation of unresolved hyperfine structure in the A state of NO. A comparison of beat frequencies obtained by taking Fourier transforms of the time data to the predicted hyperfine structure of the A state support this explanation. Further, based on a time-dependent model of PS as a FWM process, the signal’s dependence as a function of time on polarization configuration and excitation scheme can be predicted. By using the beat frequency values, fits of the model results to experimental decay curves for different pressures allows a study of the quenching rate in the A state due to collisional processes. A comparison of the PS data to laser-induced fluorescence decay measurements reveals different decay rates which suggests that the PS signal decay depends on the orientation and alignment of the excited molecules. The different behavior of the decay curves obtained by using TC-RFWM and PS can be understood in terms of the various contributions to the decay as described by the model and this has a direct bearing on which technique is preferable for a given set of experimental parameters.
International Nuclear Information System (INIS)
Baravian, G.; Bretagne, J.; Godart, J.; Sultan, G.
1975-01-01
The collisional recombination, in the afterglow of a dense plasma, is regarded as a source process for an overpopulation of the high energy tail of the electron velocity distribution function. The perturbation of the distribution function leads to an important enhancement of the fluctuations of the electrostatic field in a narrow range near the plasma frequency ωsub(p). (orig.) [de
International Nuclear Information System (INIS)
Tsertos, H.
1985-04-01
In the present thesis a systematic study of the integral and spectral properties of the positron production in the collisional systems U+Pd, Pb+Th, U+Th and U+U for incident energies near the Coulomb threshold (5.9 MeV/u) was performed. Additionally for the system U+U the incident energy was varied between 5.7 MeV/u and 6.2 MeV/u with a constant step width of about 0.1 MeV/u. It could uniquely be shown that the positron production in the lighter system U+Pd can be solely explained by the nuclear production process while in the other three collisional systems both the dynamical and the nuclear positron production are experimentally verificable. The energy-integrated positron production in dependence both on the combined nuclear charge number of the collisional energy and on the impact parameter respectively the incident energy show the expected slope of a scattering process determined by the dynamics of the heavy ion collision which can be well described by the theoretical calculation. From this in the transition from the subcritical system Pb+Th to the supercritical systems U+Th and U+U no significant deviation can be observed, and so no statement about spontaneous positron emission in the supercritical system is possible. (orig./HSI) [de
Correlations between channel probabilities in collisional dissociation of D3+
International Nuclear Information System (INIS)
Abraham, S.; Nir, D.; Rosner, B.
1984-01-01
Measurements of the dissociation of D 3 + ions at 300--600 keV under single- and multiple-collision conditions in Ar- and H 2 -gas targets have been performed. A complete separation of all dissociation channels was achieved, including the neutral channels, which were resolved using a fine-mesh technique. Data analysis in the multiple-collision regime confirms the validity of the rate equations governing the charge exchange processes. In the single-collision region the analysis yields constant relations between channel probabilities. Data rearrangement shows probability factorization and suggests that collisional dissociation is a two-stage process, a fast electron exchange followed by rearrangement and branching to the exit channels
Collisional drift fluids and drift waves
International Nuclear Information System (INIS)
Pfirsch, D.; Correa-Restrepo, D.
1995-05-01
The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effect of which is extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter is important as concerns charge separation and resulting electric fields which are possibly related to the L-H transition. Energy conservation is crucial for the stability behaviour; it will be discussed via an example. New collisional multispecies drift-fluid equations were derived by a new method which yields in a transparent way conservation of energy and total angular momentum, and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The method is based primarily on a Lagrangian for dissipationless fluids in drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. Their relation to the ideal equations imply, however, also a relation to the ideal Lagrangian of which one can take advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T ν (x)=const. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theories; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. Linear instability is investigated via energy considerations and the implications of taking ohmic resistivity into account are discussed. (orig./WL)
Entropy balance in pure interactions of open quantum systems
International Nuclear Information System (INIS)
Urigu, R.
1989-01-01
Processes are considered in which a statistical ensemble w of quantum systems is split into ensembles, or channels (w i ), conditional to the occurrence, with respective probabilities (p i w ), of associated macroscopic effects. These processes are described here by a family of operations T i : w → p i w w iT , which remarkably generalize the usual state reductions of the nondestructive measurements. In a previous work it was proved that the microscopic entropy of the given open system decreases or at most remains constant if all the T i are pure operations, i.e., they transform pure states into pure states; it is proved here that the increase in entropy of the external world, computed as S Tm (w) = - Σ i p i w lg p i w , is sufficient to compensate for such an entropy decrease whenever the T i are all pure operations of the first kind, whereas whenever some T i is pure of the second kind (or nonpure, too), the total entropy, computed as above, may decrease
International Nuclear Information System (INIS)
Helander, P.; Hazeltine, R.D.; Catto, P.J.
1996-01-01
The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma
A quiver kinetic formulation of radio frequency heating and confinement in collisional edge plasmas
International Nuclear Information System (INIS)
Catto, P.J.; Myra, J.R.
1989-01-01
The near fields in the collisional edge plasma of a radio frequency heated tokamak can cause one or more charged species to oscillate in the applied field with a quiver (or jitter) speed comparable to its thermal speed. By assuming the quiver motion dominates over drifts and gyromotion a completely new kinetic description of the flows in an edge plasma is formulated which retains Coulomb collisions and the relevant atomic processes. Moment equations are employed to obtain a description in which only a lowest order quiver kinetic equation need be solved to evaluate the slow time particle fluxes and current induced by the applied fields. The electron heating by collisional randomization of their quiver motion (inverse bremsstrahlung) is balanced by impact excitation losses since equilibration with the ions is too weak. A model plasma of electrons, neutrals, and a single cold ion species is considered to illustrate the utility of the quiver kinetic formulation. The model predicts local electrostatic potential changes and a local /rvec E//times//rvec B/ convective flux that is of the same magnitude and scaling as would be predicted by Bohm diffusion. 30 refs
Corrosion of pure magnesium under thin electrolyte layers
International Nuclear Information System (INIS)
Zhang Tao; Chen Chongmu; Shao Yawei; Meng Guozhe; Wang Fuhui; Li Xiaogang; Dong Chaofang
2008-01-01
The corrosion behavior of pure magnesium was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) under aerated and deaerated thin electrolyte layers (TEL) with various thicknesses. Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The results show that the cathodic process of pure magnesium under thin electrolyte layer was dominated by hydrogen reduction. With the decreasing of thin electrolyte layer thickness, cathodic process was retarded slightly while the anodic process was inhibited significantly, which indicated that both the cathodic and anodic process were inhibited in the presence of oxygen. The absence of oxygen decreased the corrosion resistance of pure magnesium in case of thin electrolyte layer. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrate that there exist two kinds of effects for thin electrolyte layer on the corrosion behavior of pure magnesium: (1) the rate of pit initiation was evidently retarded compared to that in bulk solution; (2) the probability of pit growth oppositely increased. The corrosion model of pure magnesium under thin electrolyte layer was suggested in the paper
Study of carbon ion behavior by using collisional radiative model in the GAMMA 10 tandem mirror
International Nuclear Information System (INIS)
Kobayashi, Takayuki; Yoshikawa, Masayuki; Kubota, Yuusuke; Saito, Masashi; Matama, Ken; Itakura, Akiyoshi; Cho, Teruji; Kato, Takako
2006-01-01
In a plasma experiment, collisional radiative model (CRM) is very useful model to evaluate impurity behaviors and plasma parameters with line emission from a plasma. CRMs for carbon and oxygen have been developed. However verification and application of the model for analysis of experimental results are not enough. Then we applied CRM calculation results to observed impurity spectra in the GAMMA 10 tandem mirror to evaluate the impurity density profile and the particle balance of each charge state of carbon ion. We calculated the effective ionization rate for each charge state of carbon ion and obtained the density profile of each ion. Moreover, we calculated absolute emission intensities from all carbon ions. (author)
The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10 days at 4 degrees C. Freshly prepared, double sealed and double bagged CP (ca. 5 g) was pressure tr...
Effect of web openings on the structural behavior of RC beams subjected to pure torsion
Directory of Open Access Journals (Sweden)
Abdo Taha
2017-01-01
Full Text Available In the construction of modern buildings, the presence of openings became a necessity nowadays in order to accommodate the many pipes and ducts required for the different services. On the other hand, the presence of these openings in RC beams affects their structural behavior. One important behavior that needs further study would be torsion. Currently, there are no guide lines available to analyze or design RC beams with web openings under pure torsion. Thus, the main objective of this research is to investigate the behavior of simply supported RC beams with openings subjected to pure torsion. In the first part of this paper, an experimental study is conducted on seven beams subjected to pure torsion loading in order to investigate the effect of the number of openings, the spacing between stirrups, and beam depth. All beams have a constant clear span length of 1800 mm and a constant beam width of 150 mm. The beams have varying opening number and stirrups arrangement as well as varying beam depth in order to investigate the effect of these parameters on the behavior of the beams. Systematic measurements such as the cracking torque, the ultimate torque, the angle of rotation of the beam at cracking, and the angle of rotation of the beam at the ultimate load are conducted for further understanding of the beam behavior under torsion. In the second part of the paper, the experimental results are compared with the numerical results obtained using the non-linear finite element analysis program, ANSYS. Good agreement between the experimental and numerical results is found.
Endoscopic Endonasal Surgery for Purely Intrathird Ventricle Craniopharyngioma.
Nishioka, Hiroshi; Fukuhara, Noriaki; Yamaguchi-Okada, Mitsuo; Yamada, Shozo
2016-07-01
Extended endoscopic transsphenoidal surgery (EETS) is a safe and effective treatment for many suprasellar craniopharyngiomas, including those with third-ventricle involvement. Craniopharyngioma entirely within the third ventricle (purely intraventricular type), however, is generally regarded unsuitable for treatment with EETS. Three patients underwent total removal of a purely intraventricular craniopharyngioma with inferior extension via EETS by direct incision of the bulging, stretched ventricular floor and fine dissection from the ventricular wall. In 2 patients with an anteriorly displaced chiasm, the space between the chiasm and pituitary stalk created a wide corridor to the ventricle, whereas in the third case, in which the infrachiasmal space was somewhat narrowed, partial sacrifice of the pituitary gland was necessary to obtain sufficient space. Despite preservation of the stalk in 2 patients, hypopituitarism and diabetes insipidus developed after surgery. There was no other complication including obesity. Selected patients with purely intraventricular craniopharyngioma can be treated effectively and safely with EETS. Those with inferior extension in the interpeduncular fossa and anterior displacement of the chiasm may be suitable candidates. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Stearns, J.W.; Burrell, C.F.; Kaplan, S.N.; Pyle, R.V.; Ruby, L.; Schlachter, A.S.
1985-04-01
Polarized beams at intensity levels heretofore not considered feasible have recently been proposed for heating and fueling fusion plasmas. Polarized-beam fueling could increase fusion rates by 50% as well as allow control of the directionality of the fusion products. A process which we have recently described, and called collisional pumping, promises to produce beams of polarized ions vastly more intense than producible by current methods
Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma
Directory of Open Access Journals (Sweden)
N. Chakrabarti
2003-05-01
Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities
Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure
2017-01-01
Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.
Directory of Open Access Journals (Sweden)
Alexandre Arbex de Castro Vilas Boas
2017-10-01
Full Text Available Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP; water deficit (WD plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.
Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure
2017-01-01
Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality. PMID:29051767
Proton irradiation effects on optical attenuation in doped- and pure-silica fibers
International Nuclear Information System (INIS)
Sakasai, Kaoru; Bueker, H.; Haesing, F.W.; Pfeiffer, F.
1999-05-01
Optical attenuation in doped- and pure-silica fibers was measured at wavelengths of 470 nm, 660 nm, and 850 nm during and after 20 MeV proton irradiation. In the experiment the fibers were arranged on a holder to make one layer' so that uniform proton irradiation can be achieved to them. The induced loss of the doped-silica fiber increased strongly at the beginning of the first irradiation, and decreased slowly after stopping of the beam. In the second irradiation, however, the developed loss was not so large. On the other hand, the loss of the pure-silica fiber increased gradually in the first irradiation, and decreased very quickly after the beam stopped. The loss increased stepwise at the very beginning of the second irradiation. Small luminescence from the fibers during irradiation was observed also. The luminescence of the pure-silica fiber was slightly larger than that of the doped-silica fiber. The induced loss of HCP fibers was also measured when a SiO 2 plate was set in front of the fibers. It may be possible to estimate the proton dose in materials using fiber-optic technique. Proton sensitivities of doped- and pure-silica fibers were, respectively, 1.0 x 10 -10 at 660 nm and 5.5 x 10 -12 at 470 nm in units of (dB/m)/(protons/cm 2 ), where the values were estimated from the slope of the loss growth curves at the beginning of the first irradiation. (author)
A collisional model for plasma immersion ion implantation
International Nuclear Information System (INIS)
Vahedi, V.; Lieberman, M.A.; Alves, M.V.; Verboncoeur, J.P.; Birdsall, C.K.
1990-01-01
In plasma immersion ion implantation, a target is immersed in a plasma and a series of negative short pulses are applied to it to implant the ions. A new analytical model is being developed for the high pressure regimes in which the motion of the ions is highly collisional. The model provides values for ion flux, average ion velocity at the target, and sheath edge motion as a function of time. These values are being compared with those obtained from simulation and show good agreement. A review is also given (for comparison) of the earlier work done at low pressures, where the motion of ions in the sheath is collisionless, also showing good agreement between analysis and simulation. The simulation code is PDP1 which utilizes particle-in-cell techniques plus Monte-Carlo simulation of electron-neutral (elastic, excitation and ionization) and ion-neutral (scattering and charge-exchange) collisions
Final Scientific/Technical Report: Correlations and Fluctuations in Weakly Collisional Plasma
Energy Technology Data Exchange (ETDEWEB)
Skiff, Frederick [Univ. of Iowa, Iowa City, IA (United States)
2017-11-15
Plasma is a state of matter that exhibits a very rich range of phenomena. To begin with, plasma is both electrical and mechanical - bringing together theories of particle motion and the electromagnetic field. Furthermore, and especially important for this project, a weakly-collisional plasma, such as is found in high-temperature (fusion energy) experiments on earth and the majority of contexts in space and astrophysics, has many moving parts. For example, sitting in earth’s atmosphere we are immersed in a mechanical wave field (sound), a possibly turbulent fluid motion (wind), and an electromagnetic vector wave field with two polarizations (light). This is already enough to produce a rich range of possibilities. In plasma, the electromagnetic field is coupled to the mechanical motion of the medium because it is ionized. Furthermore, a weakly-collisional plasma supports an infinite number of mechanically independent fluids. Thus, plasmas support an infinite number of independent electromechanical waves. Much has been done to describe plasmas with "reduced models" of various kinds. The goal of this project was to both explore the validity of reduced plasma models that are in use, and to propose and validate new models of plasma motion. The primary means to his end was laboratory experiments employing both electrical probes and laser spectroscopy. Laser spectroscopy enables many techniques which can separate the spectrum of independent fluid motions in the ion phase-space. The choice was to focus on low frequency electrostatic waves because the electron motion is relatively simple, the experiments can be on a spatial scale of a few meters, and all the relevant parameters can be measured with a few lasers systems. No study of this kind had previously been undertaken for the study of plasmas. The validation of theories required that the experimental descriptions be compared with theory and simulation in detail. It was found that even multi-fluid theories leave out a
Observation of Resonant Effects in Ultracold Collisions between Heteronuclear Feshbach Molecules
Ye, Xin; Wang, Fudong; Zhu, Bing; Guo, Mingyang; Lu, Bo; Wang, Dajun
2016-05-01
Magnetic field dependent dimer-dimer collisional losses are studied with ultracold 23 Na87 Rb Feshbach molecules. By ramping the magnetic field across the 347.8 G inter-species Feshbach resonance and removing residual atoms with a magnetic field gradient, ~ 8000 pure NaRb Feshbach molecules with a temperature below 1 μK are produced. By holding the pure molecule sample in a crossed optical dipole trap and measuring the time-dependent loss curves under different magnetic fields near the Feshbach resonance, the dimer-dimer loss rates with respect to the atomic scattering length a are mapped out. We observe a resonant feature at around a = 600a0 and a rising tail at above a = 1600a0 . This behavior resembles previous theoretical works on homonuclear Feshbach molecule, where resonant effects between dimer-dimer collisions tied to tetramer bound states were predicted. Our work shows the possibility of exploring four-body physics within a heteronuclear system. We are supported by Hong Kong RGC General Research Fund no. CUHK403813.
Perspectives on the Pure-Tone Audiogram.
Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva
The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type
In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron
International Nuclear Information System (INIS)
Nie, F L; Zheng, Y F; Wei, S C; Hu, C; Yang, G
2010-01-01
Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.
Generalized pure Lovelock gravity
Concha, Patrick; Rodríguez, Evelyn
2017-11-01
We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Directory of Open Access Journals (Sweden)
Pal Singh Raminder Preet
2016-06-01
Full Text Available In the present study, pure ZnO and Fe-doped ZnO (Zn0.97Fe0.03O nanoparticles were synthesized by simple coprecipitation method with zinc acetate, ferric nitrate and sodium hydroxide precursors. Pure ZnO and Fe-doped ZnO were further calcined at 450 °C, 600 °C and 750 °C for 2 h. The structural, morphological and optical properties of the samples were characterized by X-ray diffractometer (XRD, scanning electron microscope (SEM, energy dispersive spectroscopy (EDS and UV-Vis absorption spectroscopy. The X-ray diffraction studies revealed that the as-synthesized pure and doped ZnO nanoparticles have hexagonal wurtzite structure. The average crystallite size was calculated using Debye-Scherrer’s formula. The particle size was found to be in nano range and increased with an increase in calcination temperature. SEM micrographs confirmed the formation of spherical nanoparticles. Elemental compositions of various elements in pure and doped ZnO nanoparticles were determined by EDX spectroscopy. UV-Vis absorption spectra showed red shift (decrease in band gap with increasing calcination temperature. Effect of calcination on the magnetic properties of Fe-doped ZnO sample was also studied using vibrating sample magnetometer (VSM. M-H curves at room temperature revealed that coercivity and remanent polarization increase with an increase in calcination temperature from 450 °C to 750 °C, whereas reverse effect was observed for magnetization saturation.
Case study into the effect of intensive mass training on chronic pure alexia
DEFF Research Database (Denmark)
Wilms, Inge Linda
2015-01-01
This paper describes the results from a case study into the effects of intensive reading training on a patient with acquired pure alexia disorder. The training targeted the various stages of the basic reading process based on the theories of the psycholinguistic language model as a mixture......, the training was conducted over a short but intensive period of time and thirdly, the training was focused on regaining reading abilities without the use of compensatory techniques by targeting the various areas of the reading process according to the psycholinguistic model. The study demonstrated...
Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock
Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.
2018-03-01
The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.
Collisional damping of Langmuir waves in the collisionless limit
International Nuclear Information System (INIS)
Auerbach, S.P.
1977-01-01
Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not
International Nuclear Information System (INIS)
Papoyan, A.V.
1998-01-01
A method is developed to measure directly the collisional self broadening rate for a dense atomic vapor from selective reflection spectra. Experimental realization for the atomic D 1 and D 2 resonance lines of Rb confirms a validity of the proposed technique. The deflection of experimentally measured values is not more than 20% from theoretically predicted ones in the atomic number density range of 7· 10 16 - 7· 10 17 cm - 3 . 10 refs
Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.
2018-01-01
The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.
Generalized pure Lovelock gravity
Directory of Open Access Journals (Sweden)
Patrick Concha
2017-11-01
Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay
2017-01-01
The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.
Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K
2017-01-15
The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (E a ) and pre-exponential factor (k 0 ) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, E a and k 0 of pure PLA are 57.54kJ/mol and 9.74×10 7 day -1 , respectively, but 65.5kJ/mol and 9.81×10 8 day -1 for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature. We systematically evaluate the effects of compression stress and temperature on the degradation properties of two materials: (pure-PLA) and MAO-MAWs/PLA (or Mg/PLA). The initial in vitro degradation kinetics of the unstressed or stressed pure-PLA and MAO-MAWs/PLA composite is confirmed to be Arrhenius-like. MAO-MAWs and external compression stress would influence the degradation activation energy (E a ) and pre-exponential factor (k 0 ) of PLA, and we noticed there is a linear relationship between E a and ln k 0 . Thereafter, we noticed that Mg 2+ , not H + , plays a significant role on the
Energy Technology Data Exchange (ETDEWEB)
Berkery, J. W.; Sabbagh, S. A.; Balbaky, A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Podestà, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
2014-05-15
Global mode stability is studied in high-β National Spherical Torus Experiment (NSTX) plasmas to avoid disruptions. Dedicated experiments in NSTX using low frequency active magnetohydrodynamic spectroscopy of applied rotating n = 1 magnetic fields revealed key dependencies of stability on plasma parameters. Observations from previous NSTX resistive wall mode (RWM) active control experiments and the wider NSTX disruption database indicated that the highest β{sub N} plasmas were not the least stable. Significantly, here, stability was measured to increase at β{sub N}∕l{sub i} higher than the point where disruptions were found. This favorable behavior is shown to correlate with kinetic stability rotational resonances, and an experimentally determined range of measured E × B frequency with improved stability is identified. Stable plasmas appear to benefit further from reduced collisionality, in agreement with expectation from kinetic RWM stabilization theory, but low collisionality plasmas are also susceptible to sudden instability when kinetic profiles change.
Square-root measurement for pure states
International Nuclear Information System (INIS)
Huang Siendong
2005-01-01
Square-root measurement is a very useful suboptimal measurement in many applications. It was shown that the square-root measurement minimizes the squared error for pure states. In this paper, the least squared error problem is reformulated and a new proof is provided. It is found that the least squared error depends only on the average density operator of the input states. The properties of the least squared error are then discussed, and it is shown that if the input pure states are uniformly distributed, the average probability of error has an upper bound depending on the least squared error, the rank of the average density operator, and the number of the input states. The aforementioned properties help explain why the square-root measurement can be effective in decoding processes
Potential around a dust grain in collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Moulick, R., E-mail: moulick@gmail.com; Goswami, K. S. [Centre of Plasma Physics - Institute for Plasma Research Sonapur, Guwahati, Assam 782402 (India)
2015-04-15
The ion neutral collision can lead to interesting phenomena in dust charging, totally different from the expectations based on the traditional orbit motion limited theory. The potential around a dust grain is investigated for the collisional plasma considering the presence of ion neutral collisions. Fluid equations are solved for the one dimensional radial coordinate. It is observed that with the gradual increase in ion neutral collision, the potential structure around the dust grain changes its shape and is different from the usual Debye-Hückel potential. The shift however starts from a certain value of ion neutral collision and the electron-ion density varies accordingly. The potential variation is interesting and reconfirms the fact that there exists a region of attraction for negative charges. The collision modeling is done for the full range of plasma, i.e., considering the bulk and the sheath jointly. The potential variation with collision is also shown explicitly and the variation is found to cope up with the earlier observations.
Energy-dependent collisional deactivation of vibrationally excited azulene
International Nuclear Information System (INIS)
Shi, J.; Barker, J.R.
1988-01-01
Collisional energy transfer parameters for highly vibrationally excited azulene have been deduced from new infrared fluorescence (IRF) emission lifetime data with an improved calibration relating IRF intensity to vibrational energy [J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, XXXX (1988), preceding paper]. In addition, data from previous experiments [M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983)] have been reanalyzed based on the improved calibration. Inversion of the IRF decay curves produced plots of energy decay, which were analyzed to determine , the average energy transferred per collision. Master equation simulations reproduced both the original IRF decays and the deduced energy decays. A third (simple) method of determination agrees well with the other two. The results show to be nearly directly proportional to the vibrational energy of the excited azulene from ∼8000 to 33 000 cm -1 . At high energies, there are indications that the energy dependence may be slightly reduced
International Nuclear Information System (INIS)
Toschi, F.; Vignolo, P.; Tosi, M.P.; Succi, S.
2003-01-01
We develop a numerical method to study the dynamics of a two-component atomic Fermi gas trapped inside a harmonic potential at temperature T well below the Fermi temperature T F . We examine the transition from the collisionless to the collisional regime down to T=0.2 T F and find a good qualitative agreement with the experiments of B. DeMarco and D.S. Jin [Phys. Rev. Lett. 88, 040405 (2002)]. We demonstrate a twofold role of temperature on the collision rate and on the efficiency of collisions. In particular, we observe a hitherto unreported effect, namely, the transition to hydrodynamic behavior is shifted towards lower collision rates as temperature decreases
Critical current of pure SNS junctions
International Nuclear Information System (INIS)
Golub, A.A.; Bezzub, O.P.
1982-01-01
Boundary conditions at the superconductor-normal metal interface are determined, taking into account the differences in the effective masses and the density of states of the metals constituting the transition and assumed to be pure. The potential barrier of the interface is chosen to be zero. The critical current of the junction is calculated [ru
Kung, S; Devlin, H; Fu, E; Ho, K-Y; Liang, S-Y; Hsieh, Y-D
2011-02-01
The enhancing effects of chitosan on activation of platelets and differentiation of osteoprogenitor cells have been demonstrated in vitro. The purpose of this study was to evaluate the in vivo osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces. Chitosan-collagen composites containing chitosan of different molecular weights (450 and 750 kDa) were wrapped onto titanium implants and embedded into the subcutaneous area on the back of 15 Sprague-Dawley rats. The control consisted of implants wrapped with plain collagen type I membranes. Implants and surrounding tissues were retrieved 6 wks after surgery and identified by Alizarin red and Alcian blue whole mount staining. The newly formed structures in the test groups were further analyzed by Toluidine blue and Masson-Goldner trichrome staining, and immunohistochemical staining with osteopontin and alkaline phosphotase. The bone formation parameters of the new bone in the two test groups were measured and compared. New bone formed ectopically in both chitosan-collagen groups, whereas no bone induction occurred in the negative control group. These newly formed bone-like structures were further confirmed by immunohistochemical staining. Comparison of bone parameters of the newly induced bone revealed no statistically significant differences between the 450 and 750 kDa chitosan-collagen groups. Our results demonstrated that chitosan-collagen composites might induce in vivo new bone formation around pure titanium implant surfaces. Different molecular weights of chitosan did not show significantly different effects on the osteoinductive potential of the test materials. © 2010 John Wiley & Sons A/S.
Energy Technology Data Exchange (ETDEWEB)
Marinković, Bratislav P., E-mail: bratislav.marinkovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); School of Electrical and Computer Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade (Serbia); Vujčić, Veljko [Astronomical Observatory Belgade, Volgina 7, 11050 Belgrade (Serbia); Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade (Serbia); Sushko, Gennady [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Vudragović, Dušan [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Marinković, Dara B. [Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade (Serbia); Đorđević, Stefan; Ivanović, Stefan; Nešić, Milutin [School of Electrical and Computer Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade (Serbia); Jevremović, Darko [Astronomical Observatory Belgade, Volgina 7, 11050 Belgrade (Serbia); Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Mason, Nigel J. [The Open University, Department of Physical Sciences, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)
2015-07-01
Highlights: • BEAMDB database maintaining electron/atom-molecule collisional data has been created. • The DB is MySQL, the web server is Nginx and Python application server is Gunicorn. • Only data that have been previously published and formally refereed are included. • Data protocol for exchanging and representing data is in the “xsams” xml format. • BEAMDB becomes a node within the VAMDC consortium and radiation damage RADAM basis. - Abstract: We present a progress report on the development of the Belgrade electron/molecule data base which is hosted by The Institute of Physics, University of Belgrade and The Astronomical Observatory Belgrade. The data base has been developed under the standards of Virtual Atomic Molecular Data Centre (VAMDC) project which provides a common portal for several European data bases that maintain atomic and molecular data. The Belgrade data base (BEAMDB) covers collisional data of electron interactions with atoms and molecules in the form of differential (DCS) and integrated cross sections as well as energy loss spectra. The final goal of BEAMDB becoming both a node within the VAMDC consortium and within the radiation damage RADAM data base has been achieved.
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, Anatoly A., E-mail: akud@ak2138.spb.edu [St. Petersburg State University, 7-9 Universitetskaya nab., 199034 St. Petersburg (Russian Federation); Stefanova, Margarita S.; Pramatarov, Petko M. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)
2015-10-15
The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.
Collisional boundary layer analysis for neoclassical toroidal plasma viscosity in tokamaks
International Nuclear Information System (INIS)
Shaing, K. C.; Cahyna, P.; Becoulet, M.; Park, J.-K.; Sabbagh, S. A.; Chu, M. S.
2008-01-01
It is demonstrated that the pitch angle integrals in the transport fluxes in the ν regime calculated in K. C. Shang [Phys. Plasmas 10, 1443 (2003)] are divergent as the trapped-circulating boundary is approached. Here, ν is the collision frequency. The origin of this divergence results from the logarithmic dependence in the bounce averaged radial drift velocity. A collisional boundary layer analysis is developed to remove the singularity. The resultant pitch angle integrals now include not only the original physics of the ν regime but also the boundary layer physics. The transport fluxes, caused by the particles inside the boundary layer, scale as √(ν)
Stochastic theory of relaxation and collisional broadening of spectral line shapes
International Nuclear Information System (INIS)
Faid, K.
1986-01-01
A complete stochastic theory of relaxation is developed in terms of a homogeneous equation for the averaged density matrix of a system immersed in a thermal bath. This theory is then used as the basis of a new stochastic approach to the phenomenon of collisional broadening of spectral line shapes. Single-photon and multiphoton processes are studied. The features of a line shape are linked by simple expressions to the statistical properties of a stochastic hermitian Hamiltonian. The ordinary line shape predicted by Kubo's approach is generalized. The present approach predicts broadening as well as asymmetry and shift. A representation of line shapes in multiphoton processes by diagrams is also developed
Directory of Open Access Journals (Sweden)
Dong-qing WEN
2017-02-01
Full Text Available Objective To compare the ear baric function between 4000m altitude chamber test with inhaling air and 6900m altitude chamber test with inhaling pure oxygen. Methods Eleven healthy male volunteers attended two tests as two groups by self-comparison. As the air group the volunteers inhaled air at 4000m, while as the pure oxygen group they inhaled pure oxygen at 6900m altitude, and the time interval between the two tests was more than two weeks. During the test, the volunteers breathed air or pure oxygen at random for 1h, and then were exposed at a speed of 20m/s to the target altitude for 5min. Hereafter they were sent back to the ground at the same speed. The changes of subjective symptoms, degree of tympanic congestion, acoustic immitance index and pure-tone auditory threshold were recorded before and after the test. The acoustic impedance index and pure-tone threshold were statistically analyzed. Results Four volunteers (4 ears in air group and 7 volunteers (7 ears in pure oxygen group reported ear pain in altitude chamber exposures, respectively. The pain-triggering altitude was higher in the pure oxygen group. Immediately after tests, there were 3 (3 ears and 5 volunteers (5 ears with Ⅲ degree congestion of the tympanic membrane in the two groups respectively. Four volunteers (6 ears developed gradually aggravated hemorrhages after altitude exposure. And the tympanic membrane congestion difference between groups was statistically significant at 3 and 24h after tests (P<0.01. The type A tympanogram appeared in 11 (15 ears and 11 (14 ears volunteers respectively immediately after tests. The increase of static compliance value was significantly greater in pure oxygen group than in air group immediately after tests (P<0.05, the decrease of middle ear pressure was more significant in pure oxygen group than in air group at 3 and 24h after tests (P<0.05. Both the two altitude exposure tests resulted in eustachian tube dysfunction. At 3 and
International Nuclear Information System (INIS)
Lee, Nam-Min; Lee, Byung-Hwan
2016-01-01
Highlights: • The values of critical micelle concentration of various pure and mixed surfactants are measured. • Thermodynamic parameters’ values are calculated to analyze the effects of head- and tail-groups on the micellization. • All the thermodynamic parameters’ values are decreasing with the increase of temperature. • The thermodynamic parameters’ values are depending severely on the chain length of alkyl group. - Abstract: The values of critical micelle concentration (CMC) for the micellization of various pure and mixed surfactants are determined by the UV–Vis spectrophotometric method. And the effects of temperature on the CMC values have been measured and thermodynamic parameters’ values are calculated to analyse the effects of head- and tail-groups on the micellization of surfactant molecules. The results show that the values of ΔG"o are negative and those of ΔS"o are positive for the micellization of all the surfactants within the measured temperature range. But the values of ΔH"o are positive or negative, depending on the kinds of surfactants. All these thermodynamic parameters’ values are decreasing together with the increase of temperature for all the surfactants. And these thermodynamic parameters’ values are depending severely on the chain length of alkyl group also as much as on the head-groups of surfactant molecules.
Laser-induced generation of pure tensile stresses
International Nuclear Information System (INIS)
Niemz, M.H.; Lin, C.P.; Pitsillides, C.; Cui, J.; Doukas, A.G.; Deutsch, T.F.
1997-01-01
While short compressive stresses can readily be produced by laser ablation, the generation of pure tensile stresses is more difficult. We demonstrate that a 90 degree prism made of polyethylene can serve to produce short and pure tensile stresses. A compressive wave is generated by ablating a thin layer of strongly absorbing ink on one surface of the prism with a Q-switched frequency-doubled Nd:YAG laser. The compressive wave driven into the prism is reflected as a tensile wave by the polyethylene-air interface at its long surface. The low acoustic impedance of polyethylene makes it ideal for coupling tensile stresses into liquids. In water, tensile stresses up to -200bars with a rise time of the order of 20 ns and a duration of 100 ns are achieved. The tensile strength of water is determined for pure tensile stresses lasting for 100 ns only. The technique has potential application in studying the initiation of cavitation in liquids and in comparing the effect of compressive and tensile stress transients on biological media. copyright 1997 American Institute of Physics
Lederer. S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Cintala, M. J.; Nakamura-Messenger, K.; Keller, L. P.
2012-01-01
Impacts into forsterite and orthoenstatite at speeds typically encountered by comets demonstrate that shock imparted by collisions is detectable in the infrared signatures of their dust. The spectral signatures can be traced to physical alterations in their crystalline structures, as observed in TEM imaging and modeled using a dipole approximation. These results yield tantalizing insights into the collisional history of our solar system, as well as the history of individual comets and Trojan asteroids.
A collisional-radiative average atom model for hot plasmas
International Nuclear Information System (INIS)
Rozsnyai, B.F.
1996-01-01
A collisional-radiative 'average atom' (AA) model is presented for the calculation of opacities of hot plasmas not in the condition of local thermodynamic equilibrium (LTE). The electron impact and radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element of the model is the photon escape probability which at present is calculated for a semi infinite slab. The Fermi statistics renders the rate equation for the AA level occupancies nonlinear, which requires iterations until the steady state. AA level occupancies are found. Detailed electronic configurations are built into the model after the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to the LTE state depending on the optical thickness of the plasma. 22 refs., 13 figs., 1 tab
HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS
International Nuclear Information System (INIS)
Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J.; Dodson-Robinson, Sarah E.; Teanby, Nick A.
2016-01-01
Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk
Expansion of Collisional Radiative Model for Helium line ratio spectroscopy
Cinquegrani, David; Cooper, Chris; Forest, Cary; Milhone, Jason; Munoz-Borges, Jorge; Schmitz, Oliver; Unterberg, Ezekial
2015-11-01
Helium line ratio spectroscopy is a powerful technique of active plasma edge spectroscopy. It enables reconstruction of plasma edge parameters like electron density and temperature by use of suitable Collisional Radiative Models (CRM). An established approach is successful at moderate plasma densities (~1018m-3 range) and temperature (30-300eV), taking recombination and charge exchange to be negligible. The goal of this work is to experimentally explore limitations of this approach to CRM. For basic validation the Madison Plasma Dynamo eXperiment (MPDX) will be used. MPDX offers a very uniform plasma and spherical symmetry at low temperature (5-20 eV) and low density (1016 -1017m-3) . Initial data from MPDX shows a deviation in CRM results when compared to Langmuir probe data. This discrepancy points to the importance of recombination effects. The validated model is applied to first time measurement of electron density and temperature in front of an ICRH antenna at the TEXTOR tokamak. These measurements are important to understand RF coupling and PMI physics at the antenna limiters. Work supported in part by start up funds of the Department of Engineering Physics at the UW - Madison, USA and NSF CAREER award PHY-1455210.
Collisional drift waves in a plasma with electron temperature inhomogeneity
International Nuclear Information System (INIS)
Drake, J.F.; Hassam, A.B.
1981-01-01
A fluid theory of collisional electrostatic drift waves in a plasma slab with magnetic shear is presented. Both electron temperature and density gradients are included. The equations are solved analytically in all relevant regions of the parameter space defined by the magnetic shear strength and the perpendicular wavelength and explicit expressions for the growth rates are given. For shear strengths appropriate for present-day tokamak discharges the temperature gradient produces potential wells which localize the mode in the electron resistive region, well inside the ion sound turning points. Mode stability arises from a competition between the destabilizing influence of the time dependent thermal force and the stabilizing influence of electron energy dissipation. Convective energy loss is not important for shear parameters of present-day fusion devices
Pure homology of algebraic varieties
Weber, Andrzej
2003-01-01
We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.
International Nuclear Information System (INIS)
Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D
2004-01-01
In this paper, a quantitative comparison of our experimental data for the asymmetrical fission (AF) and neutral evaporation of the C 60 molecule under proton impact (part I) is made with data published by other authors and often obtained in rather different collisional systems. The comparison with multicharged ions for which more quantitative data are available is focused on. It is demonstrated that size distributions of fragments, averaged fragment sizes, branching ratios between AF and evaporation or between AF channels, are common to all the collisional systems. Differences only appear when the comparison includes the undissociated stable fullerene ion signals
Ayoka, Abiodun O; Owolabi, Rotimi A; Bamitale, Samuel K; Akomolafe, Rufus O; Aladesanmi, Joseph A; Ukponmwan, Eghe O
2013-01-01
This study attempted to elucidate the neurotransmitter systems involved in the neurophysiological properties of ethanolic extract, fractions and pure isolates of Spondias mombin leaves in mice (n = 6) after intraperitoneal (i.p.) route of administration.The crude ethanolic extract of Spondian mombin leaves was fractionated using the partitioning method to obtain the ethylacetate, butanolic and aqueous fractions. Open column chromatographic fractionation of the ethylacetate fraction yielded seven sub-fractions, out of which the pure coumaroyl, quercetin and gallic acid derivatives were obtained after purification on Sephadex LH 20. The ethanolic extract, butanolic fraction, ethylacetate subfractions and pure isolates of the Spondian mombin leaves were tested on novelty-induced rearing and grooming behaviours in mice with standard pharmacological tools using the open field method. The extract and its fractions decreased novelty-induced rearing in a dose-dependent manner. While the Coumaroyl derivative had no effect on novelty-induced rearing, it significantly reversed the inhibitory effect of yohimbine, propranolol and haloperidol on novelty-induced rearing. Quercetin significantly potentiated the inhibitory effect of yohimbine on novelty-induced rearing. Naloxone significantly potentiated the quercetin-induced suppression of novelty-induced rearing. Gallic acid derivative significantly potentiated the inhibitory effect of yohimbine on novelty-induced rearing. Naloxone, atropine and haloperidol pretreatments significantly potentiated gallic acid derivative-induced suppression of novelty-induced rearing.The extract and its fractions had biphasic effect on novelty-induced grooming in mice. Coumaroyl derivative significantly increased novelty-induced grooming, while quercetin and gallic acid derivative decreased novelty-induced grooming significantly. The three pure isolates significantly reversed the effects of yohimbine and atropine on the novelty-induced grooming in
Analysis of pure maple syrup consumers
Paul E. Sendak
1974-01-01
Virtually all of the pure maple syrup productim in the United States is in the northern states of Maine, Massachusetts, Michigan, New Hampshire, New York, Ohio, Pennsylvania, Vermont, and Wisconsin. Pure maple syrup users living in the maple production area and users living in other areas of the United States were asked a series of questions about their use of pure...
BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM
Energy Technology Data Exchange (ETDEWEB)
Kunz, Matthew W.; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Bogdanovic, Tamara; Reynolds, Christopher S., E-mail: kunz@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: tamarab@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)
2012-08-01
The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.
Microstructures and mechanical properties of pure Mg processed by rotary swaging
International Nuclear Information System (INIS)
Gan, W.M.; Huang, Y.D.; Wang, R.; Wang, G.F.; Srinivasan, A.; Brokmeier, H.-G.; Schell, N.; Kainer, K.U.; Hort, N.
2014-01-01
Highlights: • Grain size of pure Mg can be effectively reduced by rotary swaging processing. • The dominated texture of the swaged pure Mg was a basal fibre. • Twinning and non-basal plane sliding accommodated the swaging process. • Gradient texture distribution was observed through the rod diameter. • There existed a slight shear deformation on the surface of the swaged rod. - Abstract: Microstructures and tensile properties of commercial pure magnesium processed by rotary swaging (RS) technique were investigated. Bulk and gradient textures in the RS processed Mg were characterised by neutron and synchrotron diffractions, respectively. Grains of the pure Mg were gradually refined with increase in the RS passes, which largely contributed to an increase in the tensile yield strength. A dominated basal fibre texture was observed in the RS processed pure Mg. Accommodated twinning deformation was also observed. Both the optical observations and texture analyses through the diameter of the swaged rod showed a gradient evolution in microstructure
Feeding supermassive black holes by collisional cascades
Faber, Christian; Dehnen, Walter
2018-05-01
The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3 pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide, and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.
Pratap Singh, Anubhav; Singh, Anika; Ramaswamy, Hosahalli S
2017-06-01
Reciprocating agitation thermal processing (RA-TP) is a recent innovation in the field of canning for obtaining high-quality canned food. The objective of this study was to compare RA-TP processing with conventional non-agitated (still) processing with respect to the impact on quality (color, antioxidant capacity, total phenols, carotenoid and lycopene contents) of canned tomato (Solanum lycopersicum) puree. Owing to a 63-81% reduction in process times as compared with still processing, tomato puree with a brighter red color (closer to fresh) was obtained during RA-TP. At 3 Hz reciprocation frequency, the loss of antioxidant, lycopene and carotenoid contents could be reduced to 34, 8 and 8% respectively as compared with 96, 41 and 52% respectively during still processing. In fact, the phenolic content for RA-TP at 3 Hz was 5% higher than in fresh puree. Quality retention generally increased with an increase in frequency, although the differences were less significant at higher reciprocation frequencies (between 2 and 3 Hz). Research findings indicate that RA-TP can be effective to obtain thermally processed foods with high-quality attribute retention. It can also be concluded that a very high reciprocation frequency (>3 Hz) is not necessarily needed and significant quality improvement can be obtained at lower frequencies (∼2 Hz). © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Fundamentals of the Pure Spinor Formalism
Hoogeveen, Joost
2010-01-01
This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derived from first principles, i.e. from an action with two dimensional diffeomorphism and Weyl invariance. Secondly the decoupling of unphysical states in the minimal pure spinor formalism is proved
Zhang, Shuxia; Yao, Yingbang; Chen, Yao; Wang, Dongliang; Zhang, Xianping; Awaji, Satoshi; Watanabe, Kazuo; Ma, Yanwei
2012-01-01
In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.
Zhang, Shuxia
2012-07-01
In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.
Dynamics of collisional particles in a fluctuating magnetic field
International Nuclear Information System (INIS)
Spineanu, F.; Vlad, M.
1995-01-01
The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results. (author)
Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows
International Nuclear Information System (INIS)
Lin, Z.; Hahm, T.S.; Lee, W.W.; Tang, W.M.; White, R.B.
2000-01-01
A fully three-dimensional gyrokinetic particle code using magnetic coordinates for general geometry has been developed and applied to the investigation of zonal flows dynamics in toroidal ion-temperature-gradient turbulence. Full torus simulation results support the important conclusion that turbulence-driven zonal flows significantly reduce the turbulent transport. Linear collisionless simulations for damping of an initial poloidal flow perturbation exhibit an asymptotic residual flow. The collisional damping of this residual causes the dependence of ion thermal transport on the ion-ion collision frequency even in regimes where the instabilities are collisionless
A phenomenological model for collisional coherence transfer in an optically pumped atomic system
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, K; Bevilaqua, G; Mariotti, E; Moi, L [Universita degli Studi di Siena, Siena, 53100 (Italy); Khanbekyan, A; Papoyan, A, E-mail: karen.khanbekyan@gmail.com [Institute for Physical Research, National Academy of Sciences, Ashtarak 2 (Armenia)
2011-03-14
We consider a dual {Lambda}-system under double laser excitation to investigate the possibility of indirect coherence transfer between atomic ground states through an excited state. The atomic system is excited by a frequency modulated pump laser and probed by a low-power cw laser. All the decoherence mechanisms are discussed and taken into account. Adjustment of parameters of the two radiations aimed at maximization of coherence transfer is addressed. The study can help to understand the phenomena as collisional transfer of coherence and can find application in the experimental realization of atomic sensors.
Posterior magnetic effect on the pure and doped Fe-Ni alloy under neutron irradiation
International Nuclear Information System (INIS)
Ferreira, Iris
1974-01-01
Polycrystalline specimens of unirradiated and neutron irradiated Fe-Ni alloys have been studied in the temperature range RT - 500 deg C. The study was carried out in pure (50-50) as well as in Si, A1, Cr and Mo doped samples. Initial magnetic permeability was measured in unirradiated (virgin)and in neutron irradiated samples, during isochronal and linear thermal treatments. The main results are: a magnetic After Effect (MAE) is detected in the temperature range 370 deg C - Tc, where Tc is the Curie Temperature. In this range an activation energy of 3.2 ± 0.2 eV was determined for the Cr doped Fe-Ni alloy (impurity content: 0.1%); measurements made in the irradiated samples, during a linear temperature treatment, show the existence of several MAE zones in the temperature range RT - Tc. The isochronal annealing experiments show that these MAE zones are accompanied by a decrease in the room temperature value of the magnetic permeability, for zones between RT and a certain temperature T 1 . Above this range there is a steep increase in the room temperature permeability. Activation energies were determined for pure and Mo-doped (0.1%) samples for the first MAE zone (50 deg C - 120 deg C). The values obtained 1.25 - 0.08 eV and 1.42 ± 0.09 eV, respectively; the impurity - doped samples show a different behaviour relative to the pure ones: samples with low impurity content (0.1% and 0.5% of Si, Al or Mo) present an enhancement in the amplitude and also an overlapping of the diffusion stages. On the other hand, samples with higher impurity content (2 and 4% of Mo) show a decrease in these amplitudes. (author)
Assad, M; Lemieux, N; Rivard, C H; Yahia, L H
1999-01-01
The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.
Directory of Open Access Journals (Sweden)
Varsha Komath Pavithran
2017-01-01
Full Text Available Introduction: Oil pulling as described in ancient Ayurveda involves the use of edible vegetable oils as oral antibacterial agents. It is a practice of swishing oil in the mouth for oral and systemic health benefits. Pure coconut oil has antimicrobial properties and is commonly available in all Indian households. Aim: This study aims to assess the effect of oil pulling therapy with pure coconut oil on Streptococcus mutans count and to compare its efficacy against sesame oil and saline. Materials and Methods: A randomized controlled concurrent parallel- triple blinded clinical trial was conducted. Thirty participants in age range of 20–23 years were randomly allocated into Group A (coconut oil, Group B (sesame oil, and Group C (saline, with 10 in each group. The participants were instructed to swish and pull 10 ml of oil on empty stomach, early morning for 10–15 min. Unstimulated saliva collected before and after oil pulling procedure was analyzed for colony forming units (CFU per ml saliva of S. mutans. The data were analyzed using paired t-test, ANOVA, and post hoc analysis using Tukey's honest significant difference. Statistical significance was set at P < 0.05. Results: A statistically significant reduction in S. mutans CFU count after oil pulling with pure coconut oil (P = 0.001 was found. There was no statistically significant difference between sesame oil and coconut oil (P = 0.97 and between sesame oil and saline (P = 0.061. When efficacy of coconut oil against saline was evaluated, a statistical significant difference (P = 0.039 was found. Conclusion: Oil pulling is an effective method for oral hygiene maintenance as it significantly reduces S. mutans count in the saliva.
Resonant absorption of radar waves by a magnetized collisional plasma
International Nuclear Information System (INIS)
Sun Aiping; Tong Honghui; Shen Liru; Tang Deli; Qiu Xiaoming
2001-01-01
The propagation of radar waves in a magnetized collisional plasma slab is studied numerically. It is found for uniform plasma that: first, the wave attenuation and absorbed power show a peak value, i.e., resonant absorption when the collision frequency f en = 0.1, 0.5, 1 GHz and the wave frequency nears upper hybrid frequency. Secondly, the attenuation, absorbed, and transmitted power curves become flat at f en = 5, 10 Ghz. thirdly, the attenuation and absorbed power increase with plasma density, and the attenuation and the proportion of absorbed power can reach 100 dB and 80%, respectively, at the plasma density n = 10 11 cm -3 . For nonuniform plasma, the peak value of reflected power is larger than that in uniform plasma. So, uniform magnetized plasma is of more benefit to plasma cloaking
Concurrence classes for general pure multipartite states
International Nuclear Information System (INIS)
Heydari, Hoshang
2005-01-01
We propose concurrence classes for general pure multipartite states based on an orthogonal complement of a positive operator-valued measure on quantum phase. In particular, we construct W m class, GHZ m , and GHZ m-1 class concurrences for general pure m-partite states. We give explicit expressions for W 3 and GHZ 3 class concurrences for general pure three-partite states and for W 4 , GHZ 4 and GHZ 3 class concurrences for general pure four-partite states
Margier, Marielle; Buffière, Caroline; Goupy, Pascale; Remond, Didier; Halimi, Charlotte; Caris-Veyrat, Catherine; Borel, Patrick; Reboul, Emmanuelle
2018-06-01
Food matrix is generally believed to alter carotenoid bioavailability, but its effect on xanthophylls is usually limited. This study thus aims to decipher the digestion-absorption process of lutein in the presence or not of a food matrix. Lutein transfer to gastric-like lipid droplets or artificial mixed micelles was assessed when lutein was added to test meals either as a pure molecule ((all-E)-lutein) or in canned spinach ((Z) + (all-E)-lutein). The obtained mixed micelles were delivered to Caco-2 cells to evaluate lutein uptake. Finally postprandial plasma lutein responses were compared in minipigs after the two test meals. Lutein transfer to gastric-like lipid droplets and to mixed micelles was higher when lutein was added in spinach than when it was added as pure lutein (+614% and +147%, respectively, p < 0.05). Conversely, lutein uptake was less effective when micellar lutein was from a meal containing spinach than from a meal containing its pure form (-55%, p < 0.05). In minipigs, postprandial lutein response was delayed with spinach but not significantly different after the two test meals. Opposite effects at the micellarization and intestinal cell uptake steps explain the lack of effect of spinach matrix on lutein bioavailability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Sommer Carlos A.
2006-01-01
Full Text Available The Neoproterozoic shoshonitic and mildly alkaline bimodal volcanism of Southernmost Brazil is represented by rock assemblages associated to sedimentary successions, deposited in strike-slip basins formed at the post-collisional stages of the Brasilian/Pan-African orogenic cycle. The best-preserved volcano sedimentary associations occur in the Camaquã and Campo Alegre Basins, respectively in the Sul-riograndense and Catarinense Shields and are outside the main shear belts or overlying the unaffected basement areas. These basins are characterized by alternation of volcanic cycles and siliciclastic sedimentation developed dominantly on a continental setting under subaerial conditions. This volcanism and the coeval plutonism evolved from high-K tholeiitic and calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, and its evolution were developed during at least 60 Ma. The compositional variation and evolution of post-collisional magmatism in southern Brazil are interpreted as the result mainly of melting of a heterogeneous mantle source, which includes garnet-phlogopite-bearing peridotites, veined-peridotites with abundant hydrated phases, such as amphibole, apatite and phlogopite, and eventually with the addition of an asthenospheric component. The subduction-related metasomatic character of post-collisional magmatism mantle sources in southern Brazil is put in evidence by Nb-negative anomalies and isotope features typical of EM1 sources.
Pressure-dependent pure- and mixed-gas permeation properties of Nafion®
Mukaddam, Mohsin Ahmed
2016-04-20
The permeation properties of Nafion® at 35 °C are presented for pure gases H2, N2, O2, CH4, CO2, C2H6 and C3H8, as a function of pressure between 2 and 20 atm. The effect of pressure on permeability and selectivity is analyzed to understand two observed phenomena: compression and plasticization. In pure-gas experiments, at increasing feed pressure, compression of the polymer matrix reduced the permeability of low-sorbing penetrants H2, N2, O2, and CH4. In contrast, permeabilities of more soluble penetrants CO2 and C2H6 increased by 18% and 46% respectively, as plasticization effects overcame compression effects. Permeability of C3H8 decreased slightly with increasing pressure up to 4.6 atm as a result of compression, then increased by 3-fold at 9 atm as a result of plasticization associated with high C3H8 solubility. Binary CO2/CH4 (50:50) mixed-gas experiments at total feed pressures up to 36 atm quantified the effect of CO2 plasticization on separation performance. At 10 atm CO2 partial pressure, CH4 permeability increased by 23% relative to its pure-gas value of 0.078 Barrer, while CO2 permeability decreased by 28%. Consequently, CO2/CH4 selectivity decreased to 19, i.e., 42% below its pure-gas value of 32.
Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes
International Nuclear Information System (INIS)
Bagheri, Mehran; Abdikian, Alireza
2014-01-01
We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined
Quantum effects from a purely geometrical relativity theory
International Nuclear Information System (INIS)
Ellis, Homer G
2005-01-01
A purely geometrical relativity theory results from a construction that produces from three-dimensional space a happy unification of Kaluza's five-dimensional theory and Weyl's conformal theory. The theory can provide geometrical explanations for the following observed phenomena, among others: (a) visibility lifetimes of elementary particles of lengths inversely proportional to their rest masses; (b) the equality of charge magnitude among all charged particles interacting at an event; (c) the propensity of electrons in atoms to be seen in discretely spaced orbits; and (d) 'quantum jumps' between those orbits. This suggests the possibility that the theory can provide a deterministic underpinning of quantum mechanics like that provided to thermodynamics by the molecular theory of gases
Polarized ensembles of random pure states
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe
2013-08-01
A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.
International Nuclear Information System (INIS)
Jacobs, V.L.; Davis, J.
1978-01-01
A generalization of previously reported statistical theories is developed for determining the excited-level populations and the ionization-recombination balance of multiply charged atomic ions in an optically thin high-temperature plasma. Account is taken of the most important collisional and radiative processes involving bound and autoionizing levels in three consecutive ionization stages. We obtain a set of rate equations for the population densities of the low-lying levels which contains effective excitation, ionization, and recombination rates describing indirect transitions through the more highly excited bound and autoionizing levels. The familiar corona-model equations for the ground-state populations are recovered by making the assumption that all excited states decay by only spontaneous radiative or autoionization processes. When collisional processes become efficient in depopulating the highly excited levels important in dielectronic recombination, the effective rate of recombination must be described by a collisional-dielectronic recombination coefficient. Results of calculations are presented for the collisional-dielectronic recombination rate coefficients for recombination of Fe +8 --Fe +13 ions. At an electron density of 10 16 cm -3 , dielectronic recombination is still the dominant recombination process. However, the collisional-dielectronic recombination rate coefficients are found to be reduced by about an order of magnitude from their corona-model values due to the effects of multiple-collisional excitations on the populations of the highly excited bound levels of the recombined ion. The dielectronic recombination rates into these highly excited levels are found to be enhanced by the effects of collisionally induced angular momentum redistribution on the populations of the autoionizing levels
Effects of collisions on conservation laws in gyrokinetic field theory
Energy Technology Data Exchange (ETDEWEB)
Sugama, H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Watanabe, T.-H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)
2015-08-15
Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.
chemf: A purely functional chemistry toolkit.
Höck, Stefan; Riedl, Rainer
2012-12-20
Although programming in a type-safe and referentially transparent style offers several advantages over working with mutable data structures and side effects, this style of programming has not seen much use in chemistry-related software. Since functional programming languages were designed with referential transparency in mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile programming language. We present our initial results with functional programming in chemistry by first describing an immutable data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the end we also analyze and improve our algorithms and data structures in terms of performance and compare it to existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm programming language with a strong support for functional programming and a highly sophisticated type system. We have successfully made the first important steps towards a purely functional chemistry toolkit. The data structures and algorithms presented in this article perform well while at the same time they can be safely used in parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the reliability of our code as well as the productivity of
Polarized ensembles of random pure states
International Nuclear Information System (INIS)
Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe
2013-01-01
A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)
Energy Technology Data Exchange (ETDEWEB)
Landreman, M., E-mail: mattland@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Mollén, A. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden)
2014-04-15
In this work, we examine the validity of several common simplifying assumptions used in numerical neoclassical calculations for nonaxisymmetric plasmas, both by using a new continuum drift-kinetic code and by considering analytic properties of the kinetic equation. First, neoclassical phenomena are computed for the LHD and W7-X stellarators using several versions of the drift-kinetic equation, including the commonly used incompressible-E × B-drift approximation and two other variants, corresponding to different effective particle trajectories. It is found that for electric fields below roughly one third of the resonant value, the different formulations give nearly identical results, demonstrating the incompressible E × B-drift approximation is quite accurate in this regime. However, near the electric field resonance, the models yield substantially different results. We also compare results for various collision operators, including the full linearized Fokker-Planck operator. At low collisionality, the radial transport driven by radial gradients is nearly identical for the different operators; while in other cases, it is found to be important that collisions conserve momentum.
Collisional and radiative processes in high-pressure discharge plasmas
Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.
2002-05-01
Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.
Directory of Open Access Journals (Sweden)
Huidan Jiang
2015-01-01
Full Text Available The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.
Relativistic stars with purely toroidal magnetic fields
International Nuclear Information System (INIS)
Kiuchi, Kenta; Yoshida, Shijun
2008-01-01
We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.
Tensor modes in pure natural inflation
Nomura, Yasunori; Yamazaki, Masahito
2018-05-01
We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.
Method of producing vegetable puree
DEFF Research Database (Denmark)
2004-01-01
A process for producing a vegetable puree, comprising the sequential steps of: a)crushing, chopping or slicing the vegetable into pieces of 1 to 30 mm; b) blanching the vegetable pieces at a temperature of 60 to 90°C; c) contacted the blanched vegetable pieces with a macerating enzyme activity; d......) blending the macerated vegetable pieces and obtaining a puree....
Insights into Collisional between Small Bodies: Comparison of Impacted Magnesium-rich Minerals
Lederer, Susan M.; Jensen, E. A.; Strojia, C.; Smith, D. C.; Keller, L. P.; Nakamura-Messenger, K.; Berger, E. L.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.;
2013-01-01
Impacts are sustained by comets and asteroids throughout their lives, especially early in the Solar system's history, as described by the Nice model. Identifying observable properties that may be altered due to impacts can lead to a better understanding their collisional histories. Here, we investigate spectral effects and physical shock features observed in infrared spectra and Transmission Electron Microscope (TEM) images, respectively, of magnesium-rich minerals subjected to shock through impact experiments. Samples of magnesium-rich forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate) were impacted at speeds of 2.4 km/s, 2.6 km/s and 2.8 km/s. Impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Clear signatures are observed in both the mid-IR spectra (shift in wavelengths of the spectral peaks and relative amplitude changes) of all minerals except magnesite, and in TEM images (planar dislocations) of both the forsterite and orthoenstatite samples. Further discussion on forsterite and enstatite analyses can be found in Jensen et al., this meeting.
Collisional tearing in a field-reversed sheet pinch assuming nonparallel propagation
International Nuclear Information System (INIS)
Quest, K.B.; Coroniti, F.V.
1985-01-01
We examine the linear stability properties of the collisional tearing mode in a reversed-field sheet pinch assuming that the wave vector is not parallel to B, where B is the equilibrium magnetic field. We show that pressure balance in the direction of the equilibrium current requires a nonzero perturbed current component deltaJ/sub z/ that is driven toward tyhe center of the pinch. At the center of the pinch, deltaJ/sub z/ goes to zero, and momentum is balanced by coupling to the ion-acoustic mode. In order to achieve current closure, a large perturbed field-aligned current is generated that is strongly localized about the dissipative tearing layer. The relation of this work to the collisionless case is discussed
Hefferan, K. P.; Samson, S. D.; Rice, K.; Soulaimani, A.
2016-12-01
Precision geochronologic dating and field mapping in the Anti-Atlas Mountains of Morocco document a Neoproterozoic Pan African orogenic cycle consisting of three distinct orogenic events: Iriri-Tichibanine orogeny (760-700 Ma), Bou Azzer orogeny (680-640 Ma) and the WACadomian orogeny (620 Ma to either 555 or 544 Ma). The Iriri-Tichibanine and Bou Azzer orogenies involved northward directed subduction beneath island arc volcanic terranes. These orogenic events generated calc-alkaline magmatism and supra-subduction zone ophiolites exposed in the Bou Azzer and Siroua erosional inliers. The WACadomian orogeny involved subduction and collision of the Cadomia arc complex with the West African Craton and generation of clastic sedimentary basins. The termination of the WACadomian orogeny has been the subject of debate as calc-alkaline to high K magmatism and folding continued to 544 Ma: Was 620-544 Ma calc-alkaline to high K magmatism and clastic basin development due to a) continental rift basin tectonics or b) southward directed subduction and collisional tectonics with associated back arc basin tectonism? We present field and geochemical data supporting the continuation of subduction-collisional tectonics to the Ediacaran-Cambrian boundary 544 Ma. Field mapping in the Central Anti-Atlas (Agadir Melloul) clearly documents an angular unconformity between Ouarzazate Group and Adoudounian limestones (N 30°31'28.91", W07°48'29.12"). Volcaniclastic rocks of Ouarzazate Group (615-545 Ma) are clearly folded and unconformably overlain by Adoudou Formation (541-529 Ma) limestones to the north. Geochemical discrimination diagrams on Latest Neoproterozoic calc-alkaline to high K igneous rocks throughout the Anti-Atlas plot in subduction and collisional arc magma domains. Back arc basin tectonism is likely responsible for localized extensional basins but continental rift tectonics and passive margin sedimentation did not begin in the Anti-Atlas Mountains until Early
Energy Technology Data Exchange (ETDEWEB)
Mysyk, R.; Raymundo-Pinero, E. [CRMD, CNRS/University, Orleans (France); Ruiz, V.; Santamaria, R. [Instituto Nacional del Carbon (CSIC), Oviedo (Spain); Beguin, F.
2010-10-15
A homologous series of ionic liquids (IL) with 1-alkyl-3-methylimidazolium cations of different lengths of alkyl chain was used to study the effect of cation size on the capacitive response of two carbons with a tailored pore size distribution. The results reveal a clear ion-sieving effect in pure ILs, while the effect is heavily mitigated for the same salts used in solution, most likely due to somewhat stronger geometrical flexibility of dissolved ions. For the electrode material showing the ion-sieving effect in solution, the gravimetric capacitance values are higher than in pure ILs. The dissimilarity of capacitance values between pure and dissolved ILs with ion-sieving carbons highlights their respective advantages and disadvantages in terms of energy density: whereas pure ILs can potentially provide a larger working voltage window, the corresponding dissolved salts can access smaller pores, mostly contributing to higher capacitance values. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma
Foroutan, V.; Azarmanesh, M. N.; Foroutan, G.
2018-02-01
The recursive convolution finite difference time domain method is addressed in the scattered field formulation and employed to investigate the bistatic radar cross-section (RCS) of a square conductive plate covered by a collisional inhomogeneous magnetized plasma. The RCS is calculated for two different configurations of the magnetic field, i.e., parallel and perpendicular to the plate. The results of numerical simulations show that, for a perpendicularly applied magnetic field, the backscattered RCS is significantly reduced when the magnetic field intensity coincides with the value corresponding to the electron cyclotron resonance. By increasing the collision frequency, the resonant absorption is suppressed, but due to enhanced wave penetration and bending, the reduction in the bistatic RCS is improved. At very high collision frequencies, the external magnetic field has no significant impact on the bistatic RCS reduction. Application of a parallel magnetic field has an adverse effect near the electron cyclotron resonance and results in a large and asymmetric RCS profile. But, the problem is resolved by increasing the magnetic field and/or the collision frequency. By choosing proper values of the collision frequency and the magnetic field intensity, a perpendicular magnetic field can be effectively used to reduce the bistatic RCS of a conductive plate.
Valkunde, Amol T.; Patil, Sandip D.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Takale, Mansing V.; Fulari, Vijay J.
2018-03-01
In the present paper, an analytically investigated domain of decentered parameter and its effect on the self-focusing of Hermit-cosh-Gaussian (HChG) laser beams in a collisional plasma have been studied theoretically. The nonlinearity in the dielectric constant of plasma arising due to the nonuniform heating of carriers along the wavefront of the laser beam has been employed in the present investigation. The nonlinear differential equation of beam width parameter for various laser modes of HChG beam is obtained by following the standard Akhamanov's parabolic equation approach under Wentzel-Kramers-Brillouin and paraxial approximations. The analytical treatment has enabled us to define three distinct regions: self-focusing, self-trapping and defocusing, which are presented graphically.
ActionScript Developer's Guide to PureMVC
Hall, Cliff
2011-01-01
Gain hands-on experience with PureMVC, the popular open source framework for developing maintainable applications with a Model-View-Controller architecture. In this concise guide, PureMVC creator Cliff Hall teaches the fundamentals of PureMVC development by walking you through the construction of a complete non-trivial Adobe AIR application. Through clear explanations and numerous ActionScript code examples, you'll learn best practices for using the framework's classes in your day-to-day work. Discover how PureMVC enables you to focus on the purpose and scope of your application, while the f
Effect of indentation size on the nucleation and propagation of tensile twinning in pure magnesium
International Nuclear Information System (INIS)
Sánchez-Martín, R.; Pérez-Prado, M.T.; Segurado, J.; Molina-Aldareguia, J.M.
2015-01-01
Tensile twinning is a key deformation mode in magnesium and its alloys, as well as in other hcp metals. However, the fundamentals of this mechanism are still not fully understood. In this research, instrumented nanoindentation and crystal plasticity finite element simulations are utilized to investigate twin formation and propagation in pure Mg. With that purpose, several nanoindentations at different indentation depths were performed in pure Mg single crystals with a wide range of crystallographic orientations. A careful analysis of the deformation profile, by atomic force microscopy, and of the microtexture, by electron backscatter diffraction, in areas around and underneath the indents, reveals that twinning is subjected to strong size effects, i.e., that the relative activity of twinning increases dramatically with the indentation depth. Furthermore, the twin volume fraction is found to be related to the pile-up or sink-in areas close to the indentations. A decrease in hardness in orientations where the twinning activity is high was confirmed both experimentally and by crystal plasticity finite element simulations. Finally, our results support the thesis that twin activation is an energetic process that demands a concentration of high stresses in a certain activation volume
Hackspacher, P. C.; Godoy, A. M.
1999-07-01
During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the São Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics ( ca 600 Ma). In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and São Roque Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The São Roque Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels.
Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics
International Nuclear Information System (INIS)
Kazhugasalamoorthy, S.; Jegatheesan, P.; Mohandoss, R.; Giridharan, N.V.; Karthikeyan, B.; Joseyphus, R. Justin; Dhanuskodi, S.
2010-01-01
Pure BiFeO 3 (BFO) and La-modified BiFeO 3 (Bi 1-x La x FeO 3 with x = 0.2 and 0.4) ceramic powders were synthesized at relatively low temperature by ferrioxalate precursor method. Pure compositions did not yield phase pure powders and contain secondary phases. At the same time, La-modification at different concentration levels in BFO promoted the formation of perovskite phase with the elimination of secondary phases and phase pure ceramic powders were obtained for the composition Bi 1-x La x FeO 3 with x = 0.4. Further, the effect of lanthanum substitution on the morphology, electrical and magnetic properties was also investigated.
Munafò, A; Panesi, M; Magin, T E
2014-02-01
A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.
Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension
Energy Technology Data Exchange (ETDEWEB)
Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada)
2016-12-15
Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.
Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper
Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan
2018-06-01
Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.
2D collisional-radiative model for non-uniform argon plasmas: with or without ‘escape factor’
International Nuclear Information System (INIS)
Zhu, Xi-Ming; Tsankov, Tsanko Vaskov; Luggenhölscher, Dirk; Czarnetzki, Uwe
2015-01-01
Collisional-radiative models for excited rare-gas atoms in low-temperature plasmas are a widely investigated topic. When these plasmas are optically thick, an ‘escape factor’ is introduced into the models to account for the reabsorption of photons (so-called radiation trapping process). This factor is usually obtained assuming a uniform density profile of the excited species; however, such an assumption is often not satisfied in a bounded plasma. This article reports for the first time a self-consistent collisional-radiative model without using an ad hoc ‘escape factor’ for excited Ar atoms in the 2p states (in Paschen’s notation). Rather, the rate balance equations—i.e. the radiation transfer equations—of the 2p states are numerically solved to yield the actual density profiles. The predictions of this self-consistent model and a model based on the escape factor concept are compared with spatially-resolved emission measurements in a low-pressure inductive Ar plasma. The self-consistent model agrees well with the experiment but the ‘escape factor’ model shows considerable deviations. By the comparative analysis the limitations and shortcomings of the escape factor concept as adopted in a significant number of works are revealed. (paper)
Visco-instability of shear viscoelastic collisional dusty plasma systems
Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.
2018-04-01
In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.
International Nuclear Information System (INIS)
Meng, L.
2012-01-01
Improving the knowledge of the spectral and temporal properties of plasma-based XUV lasers is an important issue for the ongoing development of these sources towards significantly higher peak power. The spectral properties of the XUV laser line actually control several physical quantities that are important for applications, such as the minimum duration that can be achieved (Fourier-transform limit). The shortest duration experimentally achieved to-date is ∼1 picosecond. The demonstrated technique of seeding XUV laser plasmas with a coherent femtosecond pulse of high-order harmonic radiation opens new and promising prospects to reduce the duration to a few 100 fs, provided that the gain bandwidth can be kept large enough.XUV lasers pumped by collisional excitation of Ni-like and Ne-like ions have been developed worldwide in hot plasmas created either by fast electrical discharge, or by various types of high-power lasers. This leads to a variety of XUV laser sources with distinct output properties, but also markedly different plasma parameters (density, temperature) in the amplification zone. Hence different spectral properties are expected. The purpose of our work was then to investigate the spectral behaviour of the different types of existing collisional excitation XUV lasers, and to evaluate their potential to support amplification of pulses with duration below 1 ps in a seeded mode.The spectral characterization of plasma-based XUV lasers is challenging because the extremely narrow bandwidth (typically Δλ/λ ∼10 -5 ) lies beyond the resolution limit of existing spectrometers in this spectral range. In our work the narrow linewidth was resolved using a wavefront-division interferometer specifically designed to measure temporal coherence, from which the spectral linewidth is inferred. We have characterized three types of collisional XUV lasers, developed in three different laboratories: transient pumping in Ni-like Mo, capillary discharge pumping in Ne
Excitation of coherent propagating spin waves by pure spin currents.
Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O
2016-01-28
Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.
Energy Technology Data Exchange (ETDEWEB)
Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [LCAR-IRSAMC, UMR 5589 Universite Paul Sabatier-CNRS, 118 rte de Narbonne, 31062 Toulouse Cedex (France)
2004-06-28
In this paper, a quantitative comparison of our experimental data for the asymmetrical fission (AF) and neutral evaporation of the C{sub 60} molecule under proton impact (part I) is made with data published by other authors and often obtained in rather different collisional systems. The comparison with multicharged ions for which more quantitative data are available is focused on. It is demonstrated that size distributions of fragments, averaged fragment sizes, branching ratios between AF and evaporation or between AF channels, are common to all the collisional systems. Differences only appear when the comparison includes the undissociated stable fullerene ion signals.
Pure robotic retrocaval ureter repair
Directory of Open Access Journals (Sweden)
Ashok k. Hemal
2008-12-01
Full Text Available PURPOSE: To demonstrate the feasibility of pure robotic retrocaval ureter repair. MATERIALS AND METHODS: A 33 year old female presented with right loin pain and obstruction on intravenous urography with the classical "fish-hook" appearance. She was counseled on the various methods of repair and elected to have a robot assisted repair. The following steps are performed during a pure robotic retrocaval ureter repair. The patient is placed in a modified flank position, pneumoperitoneum created and ports inserted. The colon is mobilized to expose the retroperitoneal structures: inferior vena cava, right gonadal vein, right ureter, and duodenum. The renal pelvis and ureter are mobilized and the renal pelvis transected. The ureter is transposed anterior to the inferior vena cava and a pyelopyelostomy is performed over a JJ stent. RESULTS: This patient was discharged on postoperative day 3. The catheter and drain tube were removed on day 1. Her JJ stent was removed at 6 weeks postoperatively. The postoperative intravenous urography at 3 months confirmed normal drainage of contrast medium. CONCLUSION: Pure robotic retrocaval ureter is a feasible procedure; however, there does not appear to be any great advantage over pure laparoscopy, apart from the ergonomic ease for the surgeon as well the simpler intracorporeal suturing.
Characterizing commercial pureed foods: sensory, nutritional, and textural analysis.
Ettinger, Laurel; Keller, Heather H; Duizer, Lisa M
2014-01-01
Dysphagia (swallowing impairment) is a common consequence of stroke and degenerative diseases such as Parkinson's and Alzheimer's. Limited research is available on pureed foods, specifically the qualities of commercial products. Because research has linked pureed foods, specifically in-house pureed products, to malnutrition due to inferior sensory and nutritional qualities, commercial purees also need to be investigated. Proprietary research on sensory attributes of commercial foods is available; however direct comparisons of commercial pureed foods have never been reported. Descriptive sensory analysis as well as nutritional and texture analysis of commercially pureed prepared products was performed using a trained descriptive analysis panel. The pureed foods tested included four brands of carrots, of turkey, and two of bread. Each commercial puree was analyzed for fat (Soxhlet), protein (Dumas), carbohydrate (proximate analysis), fiber (total fiber), and sodium content (Quantab titrator strips). The purees were also texturally compared with a line spread test and a back extrusion test. Differences were found in the purees for sensory attributes as well as nutritional and textural properties. Findings suggest that implementation of standards is required to reduce variability between products, specifically regarding the textural components of the products. This would ensure all commercial products available in Canada meet standards established as being considered safe for swallowing.
Vacuum evaporation of pure metals
Safarian, Jafar; Engh, Thorvald Abel
2013-01-01
Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...
Collisional flow of vibrational energy into surrounding vibrational fields within S1 benzene
International Nuclear Information System (INIS)
Tang, K.Y.; Parmenter, C.S.
1983-01-01
Vapor phase fluorescence spectra are used to determine the absolute rate constants for the collisional transfer of vibrational energy from initial single vibronic levels of S 1 benzene into the surrounding S 1 vibronic field. 11 initial levels are probed with vibrational energies ranging to 2368 cm -1 where the level density is about 10 per cm -1 . CO, isopentane, and S 0 benzene are the collision partners. Benzene rate constants are three to four times gas kinetic for all levels, and electronic energy switching between the initial S 1 molecule and the S 0 collision partner probably makes important contributions. Isopentane efficiencies range from one to two times gas kinetic. Most of the transfer from low S 1 levels occurs with excitation of vibrational energy within isopentane. These V--V contributions decline to only about 10% for the high transfer. CO-induced transfer is by V-T,R processes for all levels. The CO efficiency rises from about 0.1 for low regions to about unity for levels above 1500 cm -1 . The CO efficiencies retain significant sensitivity to initial level identity even in the higher regions. Propensity rules derived from collisional mode-to-mode transfer among lower levels of S 1 benzene are used to calculate the relative CO efficiencies. The calculated efficiencies agree well enough with the data to suggest that it may be meaningful to model vibrational equilibration with the use of propensity rules. The rules suggest that only a small number of levels among the thousands surrounding a high initial level contribute significantly to the total relaxation cross section and that this number is rather independent of the level density
Nomura, Yasunori; Watari, Taizan; Yamazaki, Masahito
2018-01-01
We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang-Mills theory may give the scalar spectral index (ns) and tensor-to-scalar ratio (r) in complete agreement with the current observational data.
International Nuclear Information System (INIS)
Menon, Shaji C; Kaza, Aditya K; Puchalski, Michael D
2012-01-01
In repaired tetralogy of Fallot (TOF), exercise test parameters like peak oxygen uptake and ventilatory efficiency predict mortality. Studies have also suggested cardiac magnetic resonance (CMR)-derived right ventricular (RV) size threshold values for pulmonary valve replacement in repaired TOF. However, effects of proposed RV size on exercise capacity and morbidity are not known. The relationship between CMR-derived ventricular size, function, and pulmonary regurgitation (PR) and NYHA class, exercise performance, and electrocardiogram (ECG) was studied in patients of repaired TOF with pure PR in a retrospective review of records. 46 patients (22 females), mean age 14 years (8–30.8), were studied. There was no relationship between CMR-derived ventricular size, function, or PR and exercise test parameters, or NYHA class. RV end systolic and end diastolic volume correlated positively with the degree of PR. QRS duration on ECG correlated positively with RV end-diastolic volume (P < 0.01, r 2 = 0.34) and PR (P < 0.01, r 2 = 0.52). In repaired TOF and pure PR, there is no correlation between ventricular size or function and exercise performance. RV size increases with increasing PR. Timing of pulmonary valve replacement in TOF with pure PR needs further prospective evaluation for its effect on morbidity and mortality
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
Acute effect of pure oxygen breathing on diabetic macular edema
DEFF Research Database (Denmark)
Vinten, Carl Martin; La Cour, Morten; Lund-Andersen, Henrik
2012-01-01
Purpose. A small-scale pilot study of the pathophysiology of diabetic macular edema (DME) was made by assessing concomitant changes in macular volume (MV), mean arterial blood pressure (MABP), intraocular pressure (IOP), retinal artery diameter (RAD), and retinal vein diameter (RVD) in response...... diameters by fundus photography, intraocular pressure by pulse-air tonometry, and arterial blood pressure by sphygmomanometry. Results. After initiation of pure oxygen breathing, reductions of 2.6% in RAD (p=0.04) and 11.5% reduction in RVD (p...
Conformal pure radiation with parallel rays
International Nuclear Information System (INIS)
Leistner, Thomas; Paweł Nurowski
2012-01-01
We define pure radiation metrics with parallel rays to be n-dimensional pseudo-Riemannian metrics that admit a parallel null line bundle K and whose Ricci tensor vanishes on vectors that are orthogonal to K. We give necessary conditions in terms of the Weyl, Cotton and Bach tensors for a pseudo-Riemannian metric to be conformal to a pure radiation metric with parallel rays. Then, we derive conditions in terms of the tractor calculus that are equivalent to the existence of a pure radiation metric with parallel rays in a conformal class. We also give analogous results for n-dimensional pseudo-Riemannian pp-waves. (paper)
Energy Technology Data Exchange (ETDEWEB)
Merritt, Elizabeth C., E-mail: emerritt@lanl.gov; Adams, Colin S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Moser, Auna L.; Hsu, Scott C., E-mail: scotthsu@lanl.gov; Dunn, John P.; Miguel Holgado, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gilmore, Mark A. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2014-05-15
We report spatially resolved measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density ∼10{sup 14} cm{sup −3}, electron temperature ≈1.4 eV, ionization fraction near unity, and velocity ≈40 km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)].
Bezbaruah, Pratikshya; Das, Nilakshi
2018-05-01
Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.
Pure spinor partition function and the massive superstring spectrum
International Nuclear Information System (INIS)
Aisaka, Yuri; Arroyo, E. Aldo; Berkovits, Nathan; Nekrasov, Nikita
2008-01-01
We explicitly compute up to the fifth mass-level the partition function of ten-dimensional pure spinor worldsheet variables including the spin dependence. After adding the contribution from the (x μ , θ α , p α ) matter variables, we reproduce the massive superstring spectrum. Even though pure spinor variables are bosonic, the pure spinor partition function contains fermionic states which first appear at the second mass-level. These fermionic states come from functions which are not globally defined in pure spinor space, and are related to the b ghost in the pure spinor formalism. This result clarifies the proper definition of the Hilbert space for pure spinor variables.
Assessing the microstructural and rheological changes induced by food additives on potato puree.
Dankar, Iman; Haddarah, Amira; El Omar, Fawaz; Sepulcre, Francesc; Pujolà, Montserrat
2018-02-01
The effects of agar, alginate, lecithin and glycerol on the rheological properties of commercial potato puree were investigated and interpreted in terms of starch microstructural changes, and the applicability of the Cox-Merz rule was evaluated. Each additive was applied separately at two concentrations (0.5 and 1%). Microscopic observations revealed more swollen starch aggregations in lecithin and glycerol compared with those of potato puree and agar, consequently affecting the rheological properties of potato puree. All samples exhibited shear thinning non-Newtonian behaviour. Rheological measurements were strongly concentration dependent. At 0.5% concentration, additives exerted decreases in all the rheological properties of potato puree in the order of glycerol>alginate>lecithin>agar, while at 1% concentration, the order changed to glycerol>lecithin>alginate, whereas 1% agar behaved differently, increasing all rheological values. This study also showed that agar and alginate in addition to potato puree could be valuable and advantageous for further technological processes, such as 3D printing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Updated Collisional Ionization Equilibrium Calculated for Optically Thin Plasmas
Savin, Daniel Wolf; Bryans, P.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.; Mitthumsiri, W.
2010-03-01
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have carried out state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn as well as for Al-like to Ar-like ions of Fe. We have also carried out state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Dere (2007), we present improved collisional ionization equilibrium calculations (Bryans et al. 2006, 2009). We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni. This work is supported in part by the NASA APRA and SHP SR&T programs.
Interplay between one-body and collisional damping of collective motion in nuclei
International Nuclear Information System (INIS)
Kolomietz, V.M.; Plujko, V.A.; Shlomo, S.
1996-01-01
Damping of giant collective vibrations in nuclei is studied within the framework of the Landau-Vlasov kinetic equation. A phenomenological method of independent sources of dissipation is proposed for taking into account the contributions of one-body dissipation, the relaxation due to the two-body collisions and the particle emission. An expression for the intrinsic width of slow damped collective vibrations is obtained. In the general case, this expression cannot be represented as a sum of the widths associated with the different independent sources of the damping. This is a peculiarity of the collisional Landau-Vlasov equation where the Fermi-surface distortion effect influences both the self-consistent mean field and the memory effect at the relaxation processes. The interplay between the one-body, the two-body, and the particle emission channels which contribute to the formation of the total intrinsic width of the isoscalar 2 + and 3 - and isovector 1 - giant multipole resonances in cold and hot nuclei is discussed. We have shown that the criterion for the transition temperature T tr between the zero-sound and first-sound regimes in hot nuclei is different from the case of infinite nuclear matter due to the contribution from the one-body relaxation and the particle emission. In the case of the isovector GDR the corresponding transition can be reached at temperature T tr =4 endash 5 MeV. copyright 1996 The American Physical Society
Development and evaluation of 'Pure Rush': An online serious game for drug education.
Stapinski, Lexine A; Reda, Bill; Newton, Nicola C; Lawler, Siobhan; Rodriguez, Daniel; Chapman, Catherine; Teesson, Maree
2018-04-01
Learning is most effective when it is active, enjoyable and incorporates feedback. Past research demonstrates that serious games are prime candidates to utilise these principles, however the potential benefits of this approach for delivering drug education are yet to be examined in Australia, a country where drug education in schools is mandatory. The serious game 'Pure Rush' was developed across three stages. First, formative consultation was conducted with 115 students (67% male, aged 15-17 years), followed by feasibility and acceptability testing of a prototype of the game (n = 25, 68% male). In the final stage, 281 students (62% female, aged 13-16 years) were randomly allocated to receive a lesson involving Pure Rush or an active control lesson. The lessons were compared in terms of learning outcomes, lesson engagement and future intentions to use illicit drugs. Students enjoyed playing Pure Rush, found the game age-appropriate and the information useful to them. Both the Pure Rush and the active control were associated with significant knowledge increase from pre to post-test. Among females, multi-level mixed-effects regression showed knowledge gain was greater in the Pure Rush condition compared to control (β = 2.36, 95% confidence interval 0.36-4.38). There was no evidence of between condition differences in lesson engagement or future intentions to use illicit drugs. Pure Rush is an innovative online drug education game that is well received by students and feasible to implement in schools. [Stapinski LA, Reda B, Newton NC, Lawler S, Rodriguez D, Chapman C, Teesson M. Development and evaluation of 'Pure Rush': An online serious game for drug education. Drug Alcohol Rev 2017]. © 2017 Australasian Professional Society on Alcohol and other Drugs.
Gate-Driven Pure Spin Current in Graphene
Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng
2017-09-01
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
International Nuclear Information System (INIS)
Zhu Ximing; Pu Yikang
2011-01-01
A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low-temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and krypton atoms. For applications of this approach in reactive gas (CF 4 , O 2 , etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail. (cai awardee's article)
Directory of Open Access Journals (Sweden)
Yasunori Nomura
2018-01-01
Full Text Available We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang–Mills theory may give the scalar spectral index (ns and tensor-to-scalar ratio (r in complete agreement with the current observational data.
International Nuclear Information System (INIS)
Ware, A.S.; Diamond, P.H.
1993-01-01
The effects of a poloidally asymmetric ionization source on both dissipative toroidal drift wave stability and the generation of mean sheared parallel flow are examined. The first part of this work extends the development of a local model of ionization-driven drift wave turbulence [Phys. Fluids B 4, 877 (1992)] to include the effects of magnetic shear and poloidal source asymmetry, as well as poloidal mode coupling due to both magnetic drifts and the source asymmetry. Numerical and analytic investigation confirm that ionization effects can destabilize collisional toroidal drift waves. However, the mode structure is determined primarily by the magnetic drifts, and is not overly effected by the poloidal source asymmetry. The ionization source drives a purely inward particle flux, which can explain the anomalously rapid uptake of particles which occurs in response to gas puffing. In the second part of this work, the role poloidal asymmetries in both the source and turbulent particle diffusion play in the generation of sheared mean parallel flow is examined. Analysis indicates that predictions of sonic parallel shear flow [v parallel (r)∼c s ] are an unphysical result of the assumption of purely parallel flow (i.e., v perpendicular =0) and the neglect of turbulent parallel momentum transport. Results indicate that the flow produced is subcritical to the parallel shear flow instability when diamagnetic effects are properly considered
Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures
Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.
2018-03-01
We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.
Computer Pure-Tone and Operator Stress: Report III.
Dow, Caroline; Covert, Douglas C.
Pure-tone sound at 15,750 Herz generated by flyback transformers in many computer and video display terminal (VDT) monitors has stress-related productivity effects in some operators, especially women. College-age women in a controlled experiment simulating half a normal work day showed responses within the first half hour of exposure to a tone…
International Nuclear Information System (INIS)
Chankin, A. V.; Stangeby, P. C.
2006-01-01
A system of plasma particle and parallel momentum balance equations is derived appropriate for understanding the role of drifts in the edge and for edge modelling, particularly in the scrape-off layer (SOL) of tokamaks, stellarators and other magnetic confinement devices. The formulation allows for strong collisionality-but also covers the case of weak collisionality and strong drifts, a combination often encountered in the SOL. The most important terms are identified by assessing the magnitude of characteristic velocities and fluxes for the plasma edge region. Explanations of the physical nature of each term are provided. A number of terms that are sometimes not included in edge modelling has been included in the parallel momentum balance equation after detailed analysis of the parallel component of the gradient of the total pressure-stress tensor. This includes terms related to curvature and divergence of the field lines, as well as further contributions coming from viscous forces related mainly to the ion centrifugal drift. All these terms are shown to be roughly of the same order of magnitude as convective momentum fluxes related to drifts and therefore should be included in the momentum balance equation
Poladian, L; Straton, M; Docherty, A; Argyros, A
2011-01-17
We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.
LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments
Walker, Kyle M.
2017-06-01
While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.
Spin states of asteroids in the Eos collisional family
Hanuš, J.; Delbo', M.; Alí-Lagoa, V.; Bolin, B.; Jedicke, R.; Ďurech, J.; Cibulková, H.; Pravec, P.; Kušnirák, P.; Behrend, R.; Marchis, F.; Antonini, P.; Arnold, L.; Audejean, M.; Bachschmidt, M.; Bernasconi, L.; Brunetto, L.; Casulli, S.; Dymock, R.; Esseiva, N.; Esteban, M.; Gerteis, O.; de Groot, H.; Gully, H.; Hamanowa, Hiroko; Hamanowa, Hiromi; Krafft, P.; Lehký, M.; Manzini, F.; Michelet, J.; Morelle, E.; Oey, J.; Pilcher, F.; Reignier, F.; Roy, R.; Salom, P. A.; Warner, B. D.
2018-01-01
Eos family was created during a catastrophic impact about 1.3 Gyr ago. Rotation states of individual family members contain information about the history of the whole population. We aim to increase the number of asteroid shape models and rotation states within the Eos collision family, as well as to revise previously published shape models from the literature. Such results can be used to constrain theoretical collisional and evolution models of the family, or to estimate other physical parameters by a thermophysical modeling of the thermal infrared data. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. We present updated shape models for 15 asteroids and new shape model determinations for 16 asteroids. Together with the already published models from the publicly available DAMIT database, we compiled a sample of 56 Eos family members with known shape models that we used in our analysis of physical properties within the family. Rotation states of asteroids smaller than ∼ 20 km are heavily influenced by the YORP effect, whilst the large objects more or less retained their rotation state properties since the family creation. Moreover, we also present a shape model and bulk density of asteroid (423) Diotima, an interloper in the Eos family, based on the disk-resolved data obtained by the Near InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope.
Effect of bicarbonate on biodegradation behaviour of pure magnesium in a simulated body fluid
International Nuclear Information System (INIS)
Li, Zaichun; Song, Guang-Ling; Song, Shizhe
2014-01-01
The effect of bicarbonate on biodegradation of pure magnesium in a simulated body fluid is investigated by means of X-ray diffraction, X-ray photoelectron spectroscopy, polarization curve and electrochemical impedance spectroscopy. The results show that magnesium biodegrades rapidly and non-uniformly during 27 h of immersion in four simulated body fluid solutions containing different concentrations of bicarbonate. The biodegradation rate first decreases and then increases with time. A small amount of bicarbonate in simulated body fluid has an inhibition effect on the Mg dissolution, while an overdose of bicarbonate addition activates the magnesium surface in the simulated body fluid. The interesting phenomena can be interpreted by a surface film model involving precipitation of calcium carbonate and further ionization of bicarbonate in the simulated body fluids, incorporation of calcium, carbonate and phosphate compounds in the surface film, and development of chloride-induced pitting corrosion damage on the magnesium with time
Avery, L. W.; Green, Sheldon
1989-01-01
Collisional excitation rates for C3H2, calculated using the coupled states approximation at temperatures of 10-30 K, are presented. C3H2 produces a number of spectral line pairs whose members are close together in frequency but arise from levels with different excitation energies. The rates are used in statistical equilibrium calculations to illustrate the excitation properties and density-dependent behavior of various C3H2 line ratios.
Hadj-Kaddour, Zakia; Liégeois, Jean-Paul; Demaiffe, Daniel; Caby, Renaud
1998-12-01
The Tin Zebane dyke swarm was emplaced at the end of the Pan-African orogeny along a mega-shear zone separating two contrasting terranes of the Tuareg shield. It is located along the western boundary of the Archaean In Ouzzal rigid terrane, but inside the adjacent Tassendjanet terrane, strongly remobilized at the end of the Precambrian. The Tin Zebane swarm was emplaced during post-collisional sinistral movements along the shear zone at 592.2±5.8 Ma (19WR Rb-Sr isochron). It is a dyke-on-dyke system consisting of dykes and stocks of gabbros and dykes of metaluminous and peralkaline granites. All rock types have Sr and Nd isotopic initial ratios (Sr i=0.7028 and ɛNd=+6.2) typical of a depleted mantle source, similar to the prevalent mantle (PREMA) at that period. No crustal contamination occurred in the genesis of the Tin Zebane swarm. Even the samples showing evidence of fluid interaction (essentially alkali mobility) have the same isotopic signature. The peralkaline granites have peculiar geochemical characteristics that mimic subduction-related granites: this geochemical signature is interpreted in terms of extensive differentiation effects due to late cumulates comprising aegirine, zircon, titanite, allanite and possibly fergusonite, separated from the liquid in the swarm itself due to magmatic flow turbulence. The Tin Zebane dyke swarm is thus of paramount importance for constraining the differentiation of mantle products to generate highly evolved alkaline granites without continental crust participation, in a post-collisional setting.
On the importance of PURE - Public Understanding of Renewable Energy
Energy Technology Data Exchange (ETDEWEB)
Broman, Lars; Kandpal, Tara C.
2013-09-15
Public understanding of science (PUS) is a central concept among science communicators. Public understanding of renewable energy (PURE) is proposed as an important sub-concept of PUS. The aim of this paper is to interest and invite renewable energy scientists to join a PURE research project. Four separate important questions for a PURE research project can be identified: (A) Is PURE important? (B) Which issues of PURE are the most important ones, according to renewable energy scientists? (C) What understanding of renewable energy has the general public today, worldwide? (D) How to achieve PURE?.
International Nuclear Information System (INIS)
Eichler, J.; Fritsch, W.
1976-01-01
The angular correlation of autoionization electrons or of photons ejected from collisionally aligned excited atoms is calculated assuming unpolarized beam and target, and polarization-insensitive detectors. Starting from the two-step hypothesis for the formation and decay of the intermediate excited atoms, the angular correlation is expressed in terms of the density matrix describing the excited system. Using the symmetries of the density matrix, a minimal set of independent matrix elements is given and the conditions for which a complete determination of this set is experimentally possible are discussed. For the case of electron emission, simple examples are pointed out in which the angular correlation is independent of the reduced Coulomb matrix elements describing the decay. (author)
Bi-orderings on pure braided Thompson's groups
Burillo, Jose; Gonzalez-Meneses, Juan
2006-01-01
In this paper it is proved that the pure braided Thompson’s group BF admits a bi-order, analog to the bi-order of the pure braid groups. Ministerio de Educación y Ciencia Fondo Europeo de Desarrollo Regional
Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution
Xu, Shanna; Dong, Junhua; Ke, Wei
2010-01-01
The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4) was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE) in both the cathodic and anodic regions.
DEFF Research Database (Denmark)
Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter
2008-01-01
have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H....../(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution....
Isotopically pure single crystal epitaxial diamond films and their preparation
International Nuclear Information System (INIS)
Banholzer, W.F.; Anthony, T.R.; Williams, D.M.
1992-01-01
The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate
Notes on the ambitwistor pure spinor string
Czech Academy of Sciences Publication Activity Database
Lipinski Jusinskas, Renann
2016-01-01
Roč. 2016, č. 5 (2016), s. 1-12, č. článku 116. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : ambitwistor string * pure spinor formalism Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016
Effects of neutron irradiation on microstructure and mechanical properties of pure iron
DEFF Research Database (Denmark)
Singh, B.N.; Horsewell, Andy; Toft, P.
1999-01-01
electron microscope. Results of these investigations are reported and discussed particularly in terms of the role of interstitial clusters (produced directly in the cascades) and their transport via one-dimensional glide. It is suggested that the formation and interaction of 'cleared' channels may play...... a significant role in determining the deformation and fracture behaviour of the irradiated pure iron....
Directory of Open Access Journals (Sweden)
Matoušek Václav
2018-01-01
Full Text Available A series of laboratory experiments on turbulent open-channel two-phase flow in a form of intense bed load transport is reported. Measurements in a laboratory tilting flume included camera based imaging techniques to identify the structure of the flow at the local level. Obtained experimental distributions of two-phase flow related parameters - granular velocity, concentration, and temperature - across a collisional transport layer are discussed. The results are analysed together with additional measured quantities (discharges of mixture and grains, flow depth, bed slope etc. Our major goal is to evaluate the distribution of granular stresses across the transport layer with a special attention paid to the interface between the transport layer and the bed. Furthermore, comparisons are discussed between the experimental results and predictions produced by suitable kinetic-theory based models.
Collisional-radiative model for the visible spectrum of W{sup 26+} ions
Energy Technology Data Exchange (ETDEWEB)
Ding, Xiaobin, E-mail: dingxb@nwnu.edu.cn [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu, Jiaxin [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Koike, Fumihiro [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nakamura, Nobuyuki [Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan); Dong, Chenzhong [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)
2016-02-22
Plasma diagnostics in magnetic confinement fusion plasmas by using visible spectrum strongly depends on the knowledge of fundamental atomic properties. A detailed collisional-radiative model of W{sup 26+} ions has been constructed by considering radiative and electron excitation processes, in which the necessary atomic data had been calculated by relativistic configuration interaction method with the implementation of Flexible Atomic Code. The visible spectrum observed at an electron beam ion trap (EBIT) in Shanghai in the range of 332 nm to 392 nm was reproduced by present calculations. Some transition pairs of which the intensity ratio is sensitive to the electron density were selected as potential candidates of plasma diagnostics. Their electron density dependence is theoretically evaluated for the cases of EBIT plasmas and magnetic confinement fusion plasmas.
Fluorescence spectra and collisional energy transfer of YO (A2PIsub(1/2, 3/2)) molecules in flames
International Nuclear Information System (INIS)
Wijchers, T.
1981-01-01
The aim of this investigation was (a) to determine, from fluorescence spectra in the visible, the normalized, radiatively induced extra populations of vibronic levels of a diatomic metal compound; (b) to calculate therefrom the normalized collisional transition probabilities between vibrational levels in an excited electronic state. Yttrium monoixde (YO) was chosen as the metal compound and A 2 PIsub(1/2,3/2) as the state(s) to be investigated. (Auth.)
Directory of Open Access Journals (Sweden)
Bieda M.
2016-03-01
Full Text Available Pure aluminium (6N and commercially pure aluminium (99.7 was deformed by KOBO method. Microstructure and texture of both materials after deformation was analyzed by means of scanning and transmission electron microscopy. Advanced methods of crystallographic orientations measurements like Electron Backscatter Diffraction - EBSD (SEM and microdiffraction (TEM was used. Grain size distribution and misorientation between grains in cross and longitudinal sections of the samples were analyzed. Differences in size and homogeneity of the grains were observed in both materials. Pure aluminium was characterized by larger grain size in both sections of extruded material. Whereas commercially pure aluminium reveals smaller grain size and more homogeneous and stable microstructure.
Structural and optical properties of pure and copper doped zinc oxide nanoparticles
Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef
2018-06-01
Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.
First Test of Long-Range Collisional Drag via Plasma Wave Damping
Affolter, Matthew
2017-10-01
In magnetized plasmas, the rate of particle collisions is enhanced over classical predictions when the cyclotron radius rc is less than the Debye length λD. Classical theories describe local velocity scattering collisions with impact parameters ρ exchange energy and momentum over the range rc regime, the measured damping rates exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agree with the new long-range enhanced collision theory. The enhanced slowing is most significant for strong magnetization and low temperatures. For example, the slowing of anti-protons at a density of 107 cm-3 and a temperature of 10 K in a 6 T trap is enhanced by a factor of 30. Supported by NSF Grant PHY-1414570 and DOE Grant DE-SC0002451. In collaboration with F. Anderegg, D.H.E. Dubin, and C.F. Driscoll.
Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.
2010-01-01
Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.
Effect of impurities on kinetic transport processes in fusion plasmas
Energy Technology Data Exchange (ETDEWEB)
Braun, Stefanie
2010-12-10
Within the framework of this thesis, different problems arising in connection with impurities have been investigated. Collisional damping of zonal flows in tokamaks: Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods. In comparison with a pure plasma, the damping of the flows occurs, as expected, considerably faster; for experimentally relevant parameters, the enhancement exceeds the effective charge Z{sub eff} of the plasma. Impurity transport driven by microturbulence in tokamaks: With regard to impurities, it is especially important whether the resulting flows are directed inwards or outwards, since they are deleterious for core energy confinement on the one hand, but on the other hand help protecting plasma-facing components from too high energy fluxes in the edge region. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The main goal is to bridge the gap between, on the one hand, costly numerical simulations, which are applicable to a broad range of problems but yield scarcely traceable results, and, on the other hand, analytical theory, which might ease the interpretation of the results but is so far rather rudimentary. The model is based on analytical formulae whenever possible but resorts to a numerical treatment when the approximations necessary for an analytical solution would lead to a substantial distortion of the results. Both the direction of the impurity flux and the stability boundary are found to depend sensitively on the plasma parameters such as the impurity density and the temperature gradient. Pfirsch-Schlueter transport in stellarators: Due to geometry effects, collisional transport plays a much more
Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution
Directory of Open Access Journals (Sweden)
Shanna Xu
2010-01-01
Full Text Available The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4 was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE in both the cathodic and anodic regions.
Lectures on the theory of pure motives
Murre, Jacob P; A, Chris
2013-01-01
The theory of motives was created by Grothendieck in the 1960s as he searched for a universal cohomology theory for algebraic varieties. The theory of pure motives is well established as far as the construction is concerned. Pure motives are expected to have a number of additional properties predicted by Grothendieck's standard conjectures, but these conjectures remain wide open. The theory for mixed motives is still incomplete. This book deals primarily with the theory of pure motives. The exposition begins with the fundamentals: Grothendieck's construction of the category of pure motives and examples. Next, the standard conjectures and the famous theorem of Jannsen on the category of the numerical motives are discussed. Following this, the important theory of finite dimensionality is covered. The concept of Chow-K�nneth decomposition is introduced, with discussion of the known results and the related conjectures, in particular the conjectures of Bloch-Beilinson type. We finish with a chapter on relative m...
Pure thermal sensitisation and pre-dose effect of OSL in both unfired and annealed quartz samples
Energy Technology Data Exchange (ETDEWEB)
Oniya, Ebenezer O., E-mail: ebenezer.oniya@aaua.edu.ng [Physics and Electronics Department, Adekunle Ajasin University, 342111 Akungba Akoko (Nigeria); Polymeris, George S. [Institute of Nuclear Sciences, Ankara University, Beşevler 06100, Ankara (Turkey); Jibiri, Nnamdi N. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Tsirliganis, Nestor C. [Department of Archaeometry and Physicochemical Measurements, R.C. ‘Athena’, P.O. Box 159, Kimmeria University Campus, 67100 Xanthi (Greece); Babalola, Israel A. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Kitis, George [Nuclear Physics Laboratory, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)
2017-06-01
The sensitisation of quartz has attracted much attention since its thorough understanding is important in luminescence studies and dating applications. The present investigation examines the influence of pure thermal activation and predose treatments on the sensitisation of different components of linearly modulated optically stimulated luminescence (LM-OSL) measured at room temperature (RT) thereby eliminating undesired thermal quenching effects. Annealed and unfired quartz samples from Nigeria were used. The OSL measurements were carried out using an automated RISØTL/OSL reader (model-TL/OSL–DA–15). A new approach was adopted to match each of the resolved components of the RT-LM-OSL to respective thermoluminescence (TL) peaks that share the same electron trap and recombination centers. Pure thermal activation and pre-dose treatments respectively affect the sensitisation of all the components of the RT-LM-OSL in a similar manner as the one reported for the 110 °C TL peak but without thermal quenching contributions. Component C4 in annealed samples that was identified to share the same electron trap and recombination centers with the 110 °C TL peak was also proved appropriate for RT-LM-OSL, instead of the initial part of the continuous wave (CW) OSL signal, thus the methods can serve as complementary dating methods.
Pure thermal sensitisation and pre-dose effect of OSL in both unfired and annealed quartz samples
International Nuclear Information System (INIS)
Oniya, Ebenezer O.; Polymeris, George S.; Jibiri, Nnamdi N.; Tsirliganis, Nestor C.; Babalola, Israel A.; Kitis, George
2017-01-01
The sensitisation of quartz has attracted much attention since its thorough understanding is important in luminescence studies and dating applications. The present investigation examines the influence of pure thermal activation and predose treatments on the sensitisation of different components of linearly modulated optically stimulated luminescence (LM-OSL) measured at room temperature (RT) thereby eliminating undesired thermal quenching effects. Annealed and unfired quartz samples from Nigeria were used. The OSL measurements were carried out using an automated RISØTL/OSL reader (model-TL/OSL–DA–15). A new approach was adopted to match each of the resolved components of the RT-LM-OSL to respective thermoluminescence (TL) peaks that share the same electron trap and recombination centers. Pure thermal activation and pre-dose treatments respectively affect the sensitisation of all the components of the RT-LM-OSL in a similar manner as the one reported for the 110 °C TL peak but without thermal quenching contributions. Component C4 in annealed samples that was identified to share the same electron trap and recombination centers with the 110 °C TL peak was also proved appropriate for RT-LM-OSL, instead of the initial part of the continuous wave (CW) OSL signal, thus the methods can serve as complementary dating methods.
A new 6-part collisional model of the Main Asteroid Belt
Broz, Miroslav; Cibulkova, H.
2013-10-01
In this work, we constructed a new model for the collisional evolution of the Main Asteroid Belt. Our goals are to test the scaling law from the work of Benz & Asphaug (1999) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt, and to verify if the number of asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulated mutual collisions of asteroids with a modified Boulder code (Morbidelli et al., 2009), in which the results of hydrodynamic (SPH) simulations from the work of Durda et al. (2007) are included. Because material characteristics can affect breakups, we created two models - for monolithic asteroids and for rubble-piles (Benavidez et al., 2012). To explain the observed SFDs in the size range D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (parent body size of the order of 1 km). The work of MB was supported by grant GACR 13-013085 of the Czech Science Foundation and the Research Programme MSM0021620860 of the Czech Ministry of Education.
Pure energy solutions - pure tomorrows
International Nuclear Information System (INIS)
Allison, J.
2006-01-01
HTC is an energy technology company whose mandate is to deliver 'Carbon Clear Solutions' to address the pending challenges the energy sector is facing in meeting the environmental impact of Greenhouse Gas emissions, and energy security. HTC will speak on its comprehensive suite of technologies including hydrogen production, CO 2 capture and CO 2 sequestration. HTC has patented technologies that produce H 2 from a broad variety of feedstocks such as Natural gas, Diesel, Gasoline, Bio-fuels i.e. ethanol, methanol and Coal Gasification. HTC Hydrogen reformation systems are unique in their method of delivering pure Hydrogen. Dry Reformation Reactor - New catalyst system designed to eliminate contamination problems (i.e. coking) while at the same time operate at a low temperature. Water Gas Shift Reactor - Plus - improved and redesigned catalyst that improves operating temperature and hydrogen production efficiency. Two stage catalyst reactor that provides near balance of the endothermic and exothermic reaction temperatures for efficient energy balance
International Nuclear Information System (INIS)
Dunaevskii, A.M.
1977-01-01
The subject of this work are pure gamma families consisting of the gamma quanta produced in the early stages of cosmic cascades. The criteria of selecting these families from the all measured families are presented. The characteristics of these families are given and some conclusions about the mechanism of the nuclear-electromagnetic cascades are extracted. (S.B.)
Pure drug nanoparticles in tablets: what are the dissolution limitations?
International Nuclear Information System (INIS)
Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye Lin; Yun, Jimmy
2010-01-01
There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.
Pure drug nanoparticles in tablets: what are the dissolution limitations?
Energy Technology Data Exchange (ETDEWEB)
Heng, Desmond [Institute of Chemical and Engineering Sciences (Singapore); Ogawa, Keiko [Nitto Denko Co. Ltd., Medical Division (Japan); Cutler, David J.; Chan, Hak-Kim, E-mail: kimc@pharm.usyd.edu.a [University of Sydney, Advanced Drug Delivery Group, Faculty of Pharmacy, A15 (Australia); Raper, Judy A. [University of Wollongong, Vice Chancellor' s Unit (Australia); Ye Lin [University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering (Australia); Yun, Jimmy [Nanomaterials Technology Pty. Ltd. (Singapore)
2010-06-15
There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 {+-} 2.7% to 72.3 {+-} 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.
Pure drug nanoparticles in tablets: what are the dissolution limitations?
Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy
2010-06-01
There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.
Collisional drift fluid equations and implications for drift waves
International Nuclear Information System (INIS)
Pfirsch, Dieter; Correa-Restrepo, Dario
1996-01-01
The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effects of which are extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter law is important in relation to charge separation and the resulting electric fields, which are possibly related to the L-H transition. Energy conservation is crucial to the stability behaviour, it will be discussed by means of an example. New collisional multi-species drift-fluid equations were derived by a new method which yields, in a transparent way, conservation of energy and total angular momentum and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The only restriction involved is the validity of the drift approximation; in particular, there are no assumptions restricting the geometry of the system. The method is based primarily on a Lagrangian for dissipationless fluids in the drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. However, their relation to the ideal equations also implies a relation to the ideal Lagrangian, which can be used to advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T v (x) = constant. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theory; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. (author)
Giraldo, Carlos E; López, Catalina; Álvarez, María E; Samudio, Ismael J; Prades, Marta; Carmona, Jorge U
2013-02-12
There is no information on the effects of the breed, gender and age on the cellular content and growth factor (GF) release from equine pure-platelet rich plasma (P-PRP) and pure-platelet rich gel (P-PRG). The objectives of this study were: 1) to compare the cellular composition of P-PRP with whole blood and platelet poor plasma (PPP); 2) to compare the concentration of transforming GF beta 1 (TGF-β1) and platelet derived GF isoform BB (PDGF-BB) between P-PRP treated with non-ionic detergent (P-PRP+NID), P-PRG (activated with calcium gluconate -CG-), PPP+NID, PPP gel (PPG), and plasma and; 3) to evaluate and to correlate the effect of the breed, gender and age on the cellular and GF concentration for each blood component. Forty adult horses, 20 Argentinean Creole Horses (ACH) and, 20 Colombian Creole Horses (CCH) were included. Data were analyzed by parametric (i.e.: t-test, one way ANOVA) and non parametric (Kruskal-Wallis test, Wilcoxon test) tests. Correlation analysis was also performed by using the Spearman and Pearson tests. A p ≤ 0.05 was set as significant for all tests. All the blood components were compared for platelet (PLT), leukocyte (WBC), TGF-β1 and PDGF-BB concentrations. The effect of the breed, gender and age on these variables was analyzed. A P ≤ 0.05 was accepted as significant for all the tests. PLT counts were 1.8 and 0.6 times higher in P-PRP than in whole blood and PPP, respectively; WBC counts were 0.5 and 0.1 times lower in P-PRP, in comparison with whole blood and PPP, respectively. TGF-β1 and PDGF-BB concentrations were 2.3 and 262 times higher, respectively, in P-PRG than in plasma, and 0.59 and 0.48 times higher, respectively, in P-PRG than in PPG. P-PRG derived from CCH females or young horses presented significantly (P < 0.001) higher PDGF-BB concentrations than P-PRG derived from ACH males or older horses. Our results indicated that P-PRP obtained by a manual method was affected by intrinsic factors such as the breed
Directory of Open Access Journals (Sweden)
Giraldo Carlos E
2013-02-01
Full Text Available Abstract Background There is no information on the effects of the breed, gender and age on the cellular content and growth factor (GF release from equine pure-platelet rich plasma (P-PRP and pure-platelet rich gel (P-PRG. The objectives of this study were: 1 to compare the cellular composition of P-PRP with whole blood and platelet poor plasma (PPP; 2 to compare the concentration of transforming GF beta 1 (TGF-β1 and platelet derived GF isoform BB (PDGF-BB between P-PRP treated with non-ionic detergent (P-PRP+NID, P-PRG (activated with calcium gluconate -CG-, PPP+NID, PPP gel (PPG, and plasma and; 3 to evaluate and to correlate the effect of the breed, gender and age on the cellular and GF concentration for each blood component. Forty adult horses, 20 Argentinean Creole Horses (ACH and, 20 Colombian Creole Horses (CCH were included. Data were analyzed by parametric (i.e.: t-test, one way ANOVA and non parametric (Kruskal-Wallis test, Wilcoxon test tests. Correlation analysis was also performed by using the Spearman and Pearson tests. A p ≤ 0.05 was set as significant for all tests. All the blood components were compared for platelet (PLT, leukocyte (WBC, TGF-β1 and PDGF-BB concentrations. The effect of the breed, gender and age on these variables was analyzed. A P ≤ 0.05 was accepted as significant for all the tests. Results PLT counts were 1.8 and 0.6 times higher in P-PRP than in whole blood and PPP, respectively; WBC counts were 0.5 and 0.1 times lower in P-PRP, in comparison with whole blood and PPP, respectively. TGF-β1 and PDGF-BB concentrations were 2.3 and 262 times higher, respectively, in P-PRG than in plasma, and 0.59 and 0.48 times higher, respectively, in P-PRG than in PPG. P-PRG derived from CCH females or young horses presented significantly (P Conclusions Our results indicated that P-PRP obtained by a manual method was affected by intrinsic factors such as the breed, gender and age. Equine practitioners should be
Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery
Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa
2017-09-01
A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline
Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Zock, P.L.; Kromhout, D.; Hollman, P.C.H.
2015-01-01
BACKGROUND: Prospective cohort studies showed inverse associations between the intake of flavonoid-rich foods (cocoa and tea) and cardiovascular disease (CVD). Intervention studies showed protective effects on intermediate markers of CVD. This may be due to the protective effects of the flavonoids epicatechin (in cocoa and tea) and quercetin (in tea). OBJECTIVE: We investigated the effects of supplementation of pure epicatechin and quercetin on vascular function and cardiometabolic health. DE...
Pure spinor integration from the collating formula
International Nuclear Information System (INIS)
Grassi, P.A.; Sommovigo, L.
2011-01-01
We use the technique developed by Becchi and Imbimbo to construct a well-defined BRST-invariant path integral formulation of pure spinor amplitudes. The space of pure spinors can be viewed from the algebraic geometry point of view as a collection of open sets where the constraints can be solved and a set of free and independent variables can be defined. On the intersections of those open sets, the functional measure jumps and one has to add boundary terms to construct a well-defined path integral. The result is the definition of the pure spinor integration measure constructed in terms of differential forms on each single patch.
Collisional activation by the fast particle
International Nuclear Information System (INIS)
Hiraoka, Kenzo
1996-01-01
Collisional activation of the matter induced by the bombardment of the fast particle is summarized. The particle with the velocity higher than the Bohr velocity (transit time through 5A shorter than 2.5x10 -16 s) experiences the electronic stopping power when it passes through the matter and induces dense electronic excitations and ionizations which results in the heavy sputtering of the matter. This kind of activation is usefully applied in the PDMS. When the particle velocity becomes lower than the Bohr velocity, the energy is mainly deposited to the matter by the nuclear stopping power, i.e., energy loss is governed by the screened Coulombic collisions of the atoms giving rise to the momentum transfer to the target nuclei. When the transit time of the particle through 5A is between 2.5x10 -16 -10 -14 s, the electronic excitation and ionization take place by the collision. These phenomena are fully utilized in the FAB/SIMS and CID techniques. With the transit time in the range of 10 -14 -2.5x10 -13 s, the velocity is not high enough for the electronic excitation and the particle loses its energy mainly by the vibrational and phonon excitation of the target. This range of the velocity corresponds to that of the massive cluster impact ionization. With the velocity equal to or lower than 2.5x10 -13 s, the energy of the incident particle is consumed mainly by the phonon excitation and the collision results in the modest heating of the colliding interface between the projectile and the target. This range of the velocity is successfully used in the ionized cluster beam technique developed by Takagi of the Kyoto University. (author). 59 refs
DEFF Research Database (Denmark)
Bell, Ian H.; Wronski, Jorrit; Quoilin, Sylvain
2014-01-01
property correlations described here have been implemented into CoolProp, an open-source thermophysical property library. This library is written in C++, with wrappers available for the majority of programming languages and platforms of technical interest. As of publication, 110 pure and pseudo-pure fluids...... are included in the library, as well as properties of 40 incompressible fluids and humid air. The source code for the CoolProp library is included as an electronic annex....
Nigeria Journal of Pure and Applied Physics
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics publishes papers of the highest quality and significance in specific areas of physics, pure and applied, as listed below. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics.
International Nuclear Information System (INIS)
Pushkareva, Marina; Adrien, Jérôme; Maire, Eric; Segurado, Javier; Llorca, Javier; Weck, Arnaud
2016-01-01
The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.
Energy Technology Data Exchange (ETDEWEB)
Pushkareva, Marina [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Adrien, Jérôme; Maire, Eric [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Segurado, Javier; Llorca, Javier [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain); Weck, Arnaud, E-mail: aweck@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Centre for Research in Photonics at the University of Ottawa, 800 King Edward Ave., Ottawa, ON, Canada K1N 6N5 (Canada)
2016-08-01
The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.
Refurbishment of JMTR pure water facility
International Nuclear Information System (INIS)
Asano, Norikazu; Hanakawa, Hiroki; Kusunoki, Hidehiko; Satou, Shinichi
2012-05-01
In the refurbishment of JMTR, facilities were classified into which (1) were all updated, (2) were partly updated, and (3) were continuance used by the considerations of the maintenance history, the change parts availability and the latest technology. The JMTR pure water facility was classified into all updated facility based on the consideration. The Update construction was conducted in between FY2007 and FY2008. The refurbishment of JMTR pure water facility is summarized in this report. (author)
Energy Technology Data Exchange (ETDEWEB)
Benitez, J.J.; Salmeron, M.
2005-09-21
The self-assembly of tetradecylamine (C14) and of mixtures of tetradecyl and octadecylamine (C18) molecules from chloroform solutions on mica has been studied using atomic force microscopy(AFM). For pure components self-assembly proceeds more slowly for C14 than for C18. In both cases after equilibrium is reached islands of tilted molecules cover a similar fraction of the surface. Images of films formed by mixtures of molecules acquired before equilibrium is reached (short ripening time at room temperature) show only islands with the height corresponding to C18 with many pores. After a long ripening time, when equilibrium is reached, islands of segregated pure components are formed.
Effect of carrot puree edible films on quality preservation of fresh-cut carrots
Directory of Open Access Journals (Sweden)
Wang X.
2015-06-01
Full Text Available The effect of edible films based on carrot puree, chitosan, corn starch, gelatin, glycerol and cinnamaldehyde on fresh-cut carrots was studied during storage. Several parameters, such as firmness, colour, weight loss, total carotenoids, total phenols, polyphenol oxidase (PPO activity and peroxidase (POD activity in coated carrots were determined at regular intervals and then compared with the uncoated carrots throughout the storage period. Significant and expected changes were observed in all carrot samples that were compared. The coating treatment significantly (P < 0.05 delayed the senescence, reduced the deterioration of exterior quality and retained total carotenoids well compared with control (P < 0.05. In addition, significant inhibition of PPO activity (P < 0.05 and POD activity (P < 0.05 as well as reduced accumulation of polyphenols (P < 0.05 were observed for all coated samples. All of these favourable responses induced by coating treatment on minimally processed fresh-cut carrots showed beneficial physiological effects, which would give some useful references to the fresh-cut fruit and vegetable processing industry and satisfy people’s requirements allowing for extending product shelf life without negatively affecting the sensory quality or acceptability.
Palmero, Paola; Colle, Ines; Lemmens, Lien; Panozzo, Agnese; Nguyen, Tuyen Thi My; Hendrickx, Marc; Van Loey, Ann
2016-01-15
High-pressure homogenization disrupts cell structures, assisting carotenoid release from the matrix and subsequent micellarization. However, lycopene bioaccessibility of tomato puree upon high-pressure homogenization is limited by the formation of a process-induced barrier. In this context, cell wall-degrading enzymes were applied to hydrolyze the formed barrier and enhance lycopene bioaccessibility. The effectiveness of the enzymes in degrading their corresponding substrates was evaluated (consistency, amount of reducing sugars, molar mass distribution and immunolabeling). An in vitro digestion procedure was applied to evaluate the effect of the enzymatic treatments on lycopene bioaccessibility. Enzymatic treatments with pectinases and cellulase were proved to effectively degrade their corresponding cell wall polymers; however, no further significant increase in lycopene bioaccessibility was obtained. A process-induced barrier consisting of cell wall material is not the only factor governing lycopene bioaccessibility upon high-pressure homogenization. © 2015 Society of Chemical Industry.
Bongiolo, Everton Marques; Renac, Christophe; Piza, Patricia d'Almeida de Toledo; Schmitt, Renata da Silva; Mexias, André Sampaio
2016-01-01
The Ponta Negra Pegmatites (PNP), part of a pegmatitic province in Rio de Janeiro State, Brazil, crop out along an intensely deformed, medium- to high-grade metamorphic area that is proximal to a crustal-scale thrust zone developed during the Brasiliano/Pan-African Orogeny. Fieldwork shows that the pegmatites formed in two distinct stages: (i) syn-collisional leucosome veins (Group I) conformable with the tectonic foliation of the gneissic host rocks and (ii) late- to post-collisional dykes (Group II) that cross-cut the same tectonic foliation at a high angle. In this paper, we use geochemistry of whole-rock and mineral separates (alkali-feldspar and biotite), fluid inclusion microthermometry and stable isotopic (δ18O, δD, δ13C) determinations on minerals (quartz, alkali-feldspar, biotite and magnetite) and fluid inclusions to provide insights into the composition of the pegmatite-forming melts, associated fluids, and their geotectonic significance. U-Pb SHRIMP dating of the Cajú syenogranite was performed to evaluate and compare the timing of magmatic events along the Cabo Frio Tectonic Domain as this is the closest post-collisional pluton to the studied pegmatites. The calculated temperature for the Group I syn-collisional veins (740 °C) is similar to previous estimates for the peak metamorphic conditions in the study area. Variations in the temperature of the Group II pegmatite dykes obtained from stable isotopes (380 to 720 °C), and microthermometric data from primary fluid inclusions with traces of N2 (Th = 280 to 360 °C), may reflect the thermodynamics of the pegmatite crystallization, exsolution textures and isotopic exchange. The composition of fluids in equilibrium within the pegmatite dykes consists of magmatic and metamorphic components. The minimum pressures calculated for the emplacement of the pegmatites are equivalent to a shallow crustal depth between 1.7 and 3.5 km, which corresponds to the exhumation of the orogen since the emplacement of
Archives: Bayero Journal of Pure and Applied Sciences
African Journals Online (AJOL)
Items 1 - 20 of 20 ... Archives: Bayero Journal of Pure and Applied Sciences. Journal Home > Archives: Bayero Journal of Pure and Applied Sciences. Log in or Register to get access to full text downloads.
Archives: Nigeria Journal of Pure and Applied Physics
African Journals Online (AJOL)
Items 1 - 6 of 6 ... Archives: Nigeria Journal of Pure and Applied Physics. Journal Home > Archives: Nigeria Journal of Pure and Applied Physics. Log in or Register to get access to full text downloads.
Improving quality of an innovative pea puree by high hydrostatic pressure.
Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco
2017-10-01
The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Thermomechanical characterization of pure polycrystalline tantalum
International Nuclear Information System (INIS)
Rittel, D.; Bhattacharyya, A.; Poon, B.; Zhao, J.; Ravichandran, G.
2007-01-01
The thermomechanical behavior of pure polycrystalline tantalum has been characterized over a wide range of strain rates, using the recently developed shear compression specimen [D. Rittel, S. Lee, G. Ravichandran, Experimental Mechanics 42 (2002) 58-64]. Dynamic experiments were carried out using a split Hopkinson pressure bar, and the specimen's temperature was monitored throughout the tests using an infrared radiometer. The results of the mechanical tests confirm previous results on pure Ta. Specifically, in addition to its significant strain rate sensitivity, it was observed that pure Ta exhibits very little strain hardening at high strain rates. The measured temperature rise in the specimen's gauge was compared to theoretical predictions which assume a total conversion of the mechanical energy into heat (β = 1) [G.I. Taylor, H. Quinney, Proceedings of the Royal Society of London, vol. A, 1934, pp. 307-326], and an excellent agreement was obtained. This result confirms the previous result of Kapoor and Nemat-Nasser [R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27 (1998) 1-12], while a different experimental approach was adopted here. The assumption that β = 1 is found to be justified in this specific case by the lack of dynamic strain hardening of pure Ta. However, this assumption should be limited to non-hardening materials, to reflect the fact that strain hardening implies that part of the mechanical energy is stored into the material's microstructure
Study on growth of highly pure uranium compounds
International Nuclear Information System (INIS)
Shikama, Tatsuo; Ochiai, Akira; Suzuki, Kenji.
1992-01-01
We developed the systems for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. Chemical analysis of the purified uranium was performed using the inductive coupled plasma emission spectrometry (ICP). The problem that emission spectra of the uranium conceal those of analyzed impurities was settled by extraction of the uranium using tri-n-butyl-phosphate (TBP). The result shows that some metallic impurities such as Pb, Mn, Cu etc. evaporated by the r.f. heating and other usual metallic impurities moved to the end of rod with molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained highly purified uranium metal of 99.99 % up with regard to metallic impurities. Using the purified uranium, we attempted to grow a highly pure uranium-titanium single crystals. (author)
Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U
2015-03-14
There is a lack information on the effects of the most commonly used anticoagulants for equine platelet rich plasmas (PRPs) elaboration on cell counts and growth factor release from platelet rich gels (PRGs). The aims of this study were 1) to compare the effects of the anticoagulants sodium citrate (SC), acid citrate dextrose solution A (ACD-A) and ACD-B on platelet (PLT), leukocyte (WBC) and on some parameters associated to platelet activation including mean platelet volume (MPV) and platelet distribution width (PDW) between whole blood, pure PRP (P-PRP) and platelet-poor plasma (PPP); 2) to compare transforming growth factor beta 1 (TGF-β(1)) and platelet-derived growth factor isoform BB (PDGF-BB) concentrations in supernatants from pure PRG (P-PRG), platelet-poor gel (PPG), P-PRP lysate (positive control) and plasma (negative control); 3) to establish the possible correlations between all the studied cellular and molecular parameters. In all cases the three anticoagulants produced P-PRPs with significantly higher PLT counts compared with whole blood and PPP. The concentrations of WBCs were similar between P-PRP and whole blood, but significantly lower in PPP. The type of anticoagulant did not significantly affect the cell counts for each blood component. The anticoagulants also did not affect the MPV and PDW parameters. Independently of the anticoagulant used, all blood components presented significantly different concentrations of PDGF-BB and TGF-β(1). The highest growth factor (GF) concentrations were observed from P-PRP lysates, followed by PRG supernatants, PPP lysates, PPG supernatants and plasma. Significant correlations were observed between PLT and WBC counts (ρ = 0.80), PLT count and TGF-β(1) concentration (ρ = 0.85), PLT count and PDGF-BB concentration (ρ = 0.80) and PDGF-BB and TGF-β(1) concentrations (ρ = 0.75). The type of anticoagulant was not correlated with any of the variables evaluated. The anticoagulants did not
Zhang, Erlin; Chen, Haiyan; Shen, Feng
2010-07-01
Biocorrosion properties and blood- and cell compatibility of pure iron were studied in comparison with 316L stainless steel and Mg-Mn-Zn magnesium alloy to reveal the possibility of pure iron as a biodegradable biomaterial. Both electrochemical and weight loss tests showed that pure iron showed a relatively high corrosion rate at the first several days and then decreased to a low level during the following immersion due to the formation of phosphates on the surface. However, the corrosion of pure iron did not cause significant increase in pH value to the solution. In comparison with 316L and Mg-Mn-Zn alloy, the pure iron exhibited biodegradable property in a moderate corrosion rate. Pure iron possessed similar dynamic blood clotting time, prothrombin time and plasma recalcification time to 316L and Mg-Mn-Zn alloy, but a lower hemolysis ratio and a significant lower number density of adhered platelets. MTT results revealed that the extract except the one with 25% 24 h extract actually displayed toxicity to cells and the toxicity increased with the increasing of the iron ion concentration and the incubation time. It was thought there should be an iron ion concentration threshold in the effect of iron ion on the cell toxicity.
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2007-09-03
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
International Nuclear Information System (INIS)
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.
2007-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2007-09-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
[Inhibition of Bacillus coagulans growth in laboratory media and in fruit purees].
Cerrutti, P; Alzamora, S M; de Huergo, M S
2000-01-01
The growth of two strains of B. coagulans was inhibited in laboratory media at pH banana puree (pH approximately equal to 5.0) but acidification of the puree at pH = 3.5 was enough to prevent growth. The addition of up to 3,000 ppm vainillin ("natural" preservative) or 1,000 ppm potassium sorbate (traditional preservative) at pH higher than the inhibitory level previously determined could not prevent growth of B. coagulans in laboratory or in fruits, but 100 ppm lysozyme retarded growth in laboratory media at different pH levels (from 4.5 to 6.7) and in banana puree. As lysozyme showed to be effective at pH < or = 6.7, it might be used to prevent growth of B. coagulans at an eventual increment of pH during storage.
Pure transvaginal excision of mesh erosion involving the bladder.
Firoozi, Farzeen; Goldman, Howard B
2013-06-01
We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.
Magnetization oscillations and waves driven by pure spin currents
Energy Technology Data Exchange (ETDEWEB)
Demidov, V.E. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Urazhdin, S. [Department of Physics, Emory University, Atlanta, GA 30322 (United States); Loubens, G. de [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France); Demokritov, S.O., E-mail: demokrit@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Institute of Metal Physics, Ural Division of RAS, Yekaterinburg 620041 (Russian Federation)
2017-02-23
Recent advances in the studies of pure spin currents–flows of angular momentum (spin) not accompanied by the electric currents–have opened new horizons for the emerging technologies based on the electron’s spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.
Collisional drag may lead to disappearance of wave-breaking phenomenon of lower hybrid oscillations
International Nuclear Information System (INIS)
Maity, Chandan; Chakrabarti, Nikhil
2013-01-01
The inhomogeneity in the magnetic field in a cold electron-ion non-dissipative homogeneous plasma leads to the breaking of lower hybrid modes via phase mixing phenomenon [Maity et al. Phys. Plasmas 19, 102302 (2012)]. In this work, we show that an inclusion of collisional drag force in fluid equations may lead to the disappearance of the wave-breaking phenomenon of lower hybrid oscillations. The nonlinear analysis in Lagrangian variables provides an expression for a critical value of damping rate, above which spikes in the plasma density profile may disappear. The critical damping rate depends on the perturbation and magnetic field inhomogeneity amplitudes as well as the ratio of the magnetic field inhomogeneity and perturbation scale lengths.
International Nuclear Information System (INIS)
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon
Thakur, Ajit Kumar; Soni, Upendra Kumar; Rai, Geeta; Chatterjee, Shyam Sunder; Kumar, Vikas
2014-11-01
This study was designed to experimentally verify the possibility that Andrographis paniculata could be another medicinal herb potentially useful for prevention of diverse spectrums of pathologies commonly associated with chronic unavoidable environmental stress, and whether andrographolide could as well be its quantitatively major bioactive secondary metabolite. Preventive effects of 21 daily oral 50, 100 and 200 mg/kg doses of a therapeutically used extract of the plant (AP) and 30 and 60 mg/kg/day of pure andrographolide were compared in rats subjected to 1-h daily unavoidable foot-shocks. A pharmaceutically well-standardized Withania somnifera (WS) root extract was used as a reference herbal anti-stress agent in all experiments. Effects of the treatments on stress-induced alterations in body weight, gastric ulcer, adrenal and spleen weights, and depressive state and sexual behavior in male rats were quantified. Other parameters quantified were plasma cortisol levels, and expressions of the cytokines TNF-α, IL-10 and IL-1β in blood and brain. All observed stress-induced pathological changes were less pronounced or completely prevented by both AP and pure andrographolide. Even the lowest tested doses of AP (50 mg/kg/day) or of andrographolide (30 mg/kg/day) suppressed almost maximally the blood IL-1β and IL-10 as well as brain TNF-α and IL-10 expressions induced by chronic stress. Qualitatively, the observed activity profiles of both of them were similar to those of WS dose tested. These results reveal that both AP and andrographolide are pharmacologically polyvalent anti-stress agents, and that biological processes regulating corticosterone and cytokine homeostasis are involved in their modes of actions.
Comparison of hydrogen storage properties of pure Mg and milled ...
Indian Academy of Sciences (India)
Administrator
increase the hydriding and dehydriding rates, pure Mg was ground under hydrogen atmosphere (reactive .... Hydrogen storage properties of pure Mg and milled pure Mg. 833. Figure 3. ... elongated and flat shapes via collisions with the steel.
International Nuclear Information System (INIS)
Riu, Kap Jong; Eum, Yong Kyoon; Park, Sung Soon
1990-01-01
A numerical analysis is performed about the effect of aspect ratio on heat transfer adjacent to a vertical-isothermal cylinder of 0 deg C in pure water. The numerical results for the effect of aspect ratio are presented for ambient water temperature from 1.0 deg C to 15.0 deg C. They include velocity profiles, temperature profiles and mean Nusselt number for the entire flow field. The mean Nusselt numbers of vertival-isothermal cylinder are compared with that of vertival-isothermal plate in increasing aspect ratio of cylinder. Furthermore, the mean Nusselt numbers of unsteady region in the range of 0.084< R<0.328 are obtained by curve-fitting. The natural convection caused by phase change was investigated by experiments when the vertical ice cylinder was immersed in the pure water of which the tempetature range is from 2.0 to 10.0 deg C. Each figure shows a time-exposure photograph of flow occuring at the respective ambient water temperature conditions. As the ambient water temperature is increased from 2.0 to 10.0 deg C, the regimes of upward steady state flows, steady state dual flows and downward steady state flows are observed. Also, the variations of shapes of melting ice cylinder are investigated.(Author)
Kral, Q.; Thebault, P.; Charnoz, S.
2014-01-01
The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.
Effect of Emotion and Personality on Deviation from Purely Rational Decision-Making
Fiori, M.; Lintas, A.; Mesrobian, S.; Villa, A. E. P.
2013-01-01
Human decision-making has consistently demonstrated deviation from "pure" rationality. Emotions are a primary driver of human actions and the current study investigates how perceived emotions and personality traits may affect decision-making during the Ultimatum Game (UG). We manipulated emotions by showing images with emotional connotation while participants decided how to split money with a second player. Event-related potentials (ERPs) from scalp electrodes were recorded during the whole d...
Irradiation in combination of heat treatment of mango puree
International Nuclear Information System (INIS)
Noomhorm, A.; Apintanapong, M.
1996-01-01
The effect of irradiation with heat combination treatment on the shelf life and quality of mango puree was studied. Thermal inactivation of polyphenol oxidase enzyme at 80 degree C and 15 min. was used as a measure of adequacy of pre-heat treatment. Irradiation of mango puree after heat treatment at dosage of 0, 2, 4, 6 and 8 kGy showed no change in mc, pH, acidity, and TSS but during storage, growth of microorganisms brought changes in these values. Irradiation in combination with low temperature (5 degree C) reduced discoloration and darkening rate during storage. Irradiation dose from 0 to 8 kGy resulted in log linear reductions in microorganism levels but at 6 and 8 kGy, there was no growth of microorganisms. Products irradiated at 8 kGy showed no microorganism growth at both temperatures
Cross-field Mobility in a Pure Electron Plasma
International Nuclear Information System (INIS)
Fossum, E.C.; King, L.B.
2006-01-01
An electron trapping apparatus was constructed in order to study electron dynamics in the defining electric and magnetic field of a Hall-effect thruster. The approach presented here decouples the cross-field mobility from plasma effects by conducting measurements on a pure electron plasma in a highly controlled environment. Dielectric walls are removed completely eliminating all wall effect; thus, electrons are confined solely by a radial magnetic field and a crossed, independently-controlled, axial electric field that induces the closed-drift azimuthal Hall current. Electron trajectories and cross-field mobility were examined in response to electric and magnetic field strength and background neutral density
Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules
International Nuclear Information System (INIS)
Gilbert, R. G.
1995-01-01
Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved
Pure Science and Applied Science
Directory of Open Access Journals (Sweden)
Robert J. Aumann
2011-01-01
Full Text Available (Excerpt The name of my talk is Pure Science and Applied Science, and the idea I would like to sell to you today is that there is no such thing as “pure” or “applied” science. In other words, there is such a thing as science, but there is no difference between pure and applied science. Science is one entity and cannot be separated into different categories. In order to back that up, I would like to tell you a little story. As an undergraduate, I studied mathematics at City College in New York. At that time, what was called Pure Mathematics was in vogue, and the more prominent mathematicians were a little contemptuous of any kind of application. A very famous, prominent mathematician in the first half of the previous century by the name of G. H. Hardy, who was in a branch of mathematics called number theory, said that the only thing he regretted was that he unwittingly did some important work in mathematical genetics that eventually turned out to have some application. … Such was the atmosphere in the late ’40s of the previous century and, being a young man and impressionable, I was swept up in this atmosphere.
Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao
2018-03-01
The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.
Development of transient collisional excitation x-ray laser with ultra short-pulse laser
International Nuclear Information System (INIS)
Kado, Masataka; Kawachi, Tetsuya; Hasegawa, Noboru; Tanaka, Momoko; Sukegawa, Kouta; Nagashima, Keisuke; Kato, Yoshiaki
2001-01-01
We have observed lasing on Ne-like 3s-3p line from titanium (32.4 nm), Ni-like 4p-4d line from silver (13.9 nm) and tin (11.9 nm) with the transient collisional excitation (TCE) scheme that uses combination of a long pre-pulse (∼ns) and a short main pulse (∼ps). A gain coefficient of 23 cm -1 was measured for plasma length up to 4 mm with silver slab targets. We have also observed lasing on Ne-like and Ni-like lines with new TCE scheme that used pico-seconds laser pulse to generate plasma and observed strong improvement of x-ray laser gain coefficient. A gain coefficient of 14 cm -1 was measured for plasma length up to 6 mm with tin targets. (author)
AdS pure spinor superstring in constant backgrounds
International Nuclear Information System (INIS)
Chandia, Osvaldo; Bevilaqua, L. Ibiapina; Vallilo, Brenno Carlini
2014-01-01
In this paper we study the pure spinor formulation of the superstring in AdS_5×S"5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background
Graph Theory to Pure Mathematics: Some Illustrative Examples
Indian Academy of Sciences (India)
Graph Theory to Pure Mathematics: Some. Illustrative Examples v Yegnanarayanan is a. Professor of Mathematics at MNM Jain Engineering. College, Chennai. His research interests include graph theory and its applications to both pure maths and theoretical computer science. Keywords. Graph theory, matching theory,.
Tanikawa, Ataru; Yoshikawa, Kohji; Okamoto, Takashi; Nitadori, Keigo
2012-02-01
We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme ( Makino and Aarseth, 1992), and achieved the performance of ˜20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions ( Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme ( Nitadori et al., 2006a), and achieved ˜90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ˜ 10 5 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs ( Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.
Nanoporous Au: an unsupported pure gold catalyst?
Energy Technology Data Exchange (ETDEWEB)
Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M
2008-09-04
The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.
The effect of crystallographic orientation on the active corrosion of pure magnesium
International Nuclear Information System (INIS)
Liu Ming; Qiu Dong; Zhao Mingchun; Song, Guangling; Atrens, Andrej
2008-01-01
An improved method was used to investigate the influence of crystallographic orientation on the corrosion of pure magnesium in 0.1 N HCl. The corrosion depth and orientation of surface features were mapped against crystallographic orientation (obtained by electron backscatter diffraction) for many off-principal magnesium crystals. The grains near (0 0 0 1) orientation are the most corrosion resistant. Most grains exhibited a striated structure of long and narrow hillocks with a unique direction
Pure motor hemiparesis in a case of vertebrobasilar arterial ectasia
Energy Technology Data Exchange (ETDEWEB)
Milandre, L. (Dept. of Neurology, CHU Timone, Marseille (France)); Martini, P. (Dept. of Neuroradiology, CHU Timone, Marseille (France)); Perot, S. (Dept. of Neuroradiology, CHU Timone, Marseille (France)); Mercier, C. (Dept. of Vascular Surgery, CHU Timone, Marseille (France))
1993-03-01
A case of pure motor hemiparesis due to a pontine lacunar infarct is reported. Infaction was related to vertebrobasilar ectasia identified on CT, MRI and MR angiography. MR studies provide accurate information on anatomical location, residual lumen, partial thrombosis, mass effect on brain stem and CSF pathways and vascular complications. (orig.)
Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity
International Nuclear Information System (INIS)
Singh, Mamta; Gupta, D. N.
2016-01-01
We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.
Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, North Campus, University of Delhi, Delhi 110 007 (India)
2016-05-15
We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.
Expander graphs in pure and applied mathematics
Lubotzky, Alexander
2012-01-01
Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.
Mansano, Adrislaine S; Moreira, Raquel A; Pierozzi, Mayara; Oliveira, Thiessa M A; Vieira, Eny M; Rocha, Odete; Regali-Seleghim, Mirna H
2016-06-01
Toxic effects of diuron and carbofuran on Paramecium caudatum were evaluated. Acute and chronic tests were conducted with diuron and carbofuran active ingredients and their commercial formulations, Diuron Nortox(®) 500 SC and Furadan(®) 350 SC, respectively. The sensitivity range of P. caudatum to reference substance sodium chloride was established. A preliminary risk assessment of diuron and carbofuran for Brazilian water bodies was performed. The tests indicated that toxicity of pure diuron and its commercial formulation was similar, while the commercial product carbofuran was more toxic than its pure form. In acute tests, readings were carried out at 2, 3, 4 and 6 h and showed an increase of mortality with increasing exposure time. The sensitivity of P. caudatum to NaCl ranged from 3.31 to 4.44 g L(-1), averaging 3.88 g L(-1). For diuron, the 6 h LC50 was 64.6 ± 3.3 mg L(-1) for its pure form and 62.4 ± 2.5 mg L(-1) for its commercial formulation. Carbofuran active ingredient was less toxic than that of diuron, presenting a 6 h LC50 of 142.0 ± 2.4 mg L(-1) for its pure form and 70.4 ± 2.2 mg L(-1) for its commercial product. Chronic tests showed that these pesticides cause significant decrease on population growth, generation number and biomass of P. caudatum. The 24 h IC50 was 7.10 ± 0.58 mg L(-1) for pure diuron, 6.78 ± 0.92 mg L(-1) for commercial diuron, 22.95 ± 3.57 mg L(-1) for pure carbofuran and 4.98 ± 0.62 mg L(-1) for commercial carbofuran. Preliminary risk assessment indicated that diuron and carbofuran present potential ecological risks for Brazilian water bodies. P. caudatum was a suitable and sensitive test organism to evaluate diuron and carbofuran toxicity to freshwater protozooplankton and, taking into account the relevant role of protozoans in aquatic environments, we strongly recommend its inclusion in ecotoxicological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pure odd-order oscillators with constant excitation
Cveticanin, L.
2011-02-01
In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The excitation is assumed to be constant and the nonlinearity is pure (without a linear term). The mathematical model is a second-order nonhomogeneous differential equation with strong nonlinear term. Using the first integral, the exact value of period of vibration i.e., angular frequency of oscillator described with a pure nonlinear differential equation with constant excitation is analytically obtained. The closed form solution has the form of gamma function. The period of vibration depends on the value of excitation and of the order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the approximate solution of differential equation is obtained in the form of trigonometric function. The solution is based on the exact value of period of vibration. For the case when additional small perturbation of the pure oscillator acts, the so called 'Cveticanin's averaging method' for a truly nonlinear oscillator is applied. Two special cases are considered: one, when the additional term is a function of distance, and the second, when damping acts. To prove the correctness of the method the obtained results are compared with those for the linear oscillator. Example of pure cubic oscillator with constant excitation and linear damping is widely discussed. Comparing the analytically obtained results with exact numerical ones it is concluded that they are in a good agreement. The investigations reported in the paper are of special interest for those who are dealing with the problem of vibration reduction in the oscillator with constant excitation and pure nonlinear restoring force the examples of which can be found in various scientific and engineering systems. For example, such mechanical systems are seats in vehicles, supports for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The examples can be find in electronics
Energy Technology Data Exchange (ETDEWEB)
Yilmaz, Selim Sarper [Celal Bayar Univ., Manisa, Muradiye (Turkey)
2012-07-01
In this study, microstructural and mechanical properties of pure aluminum, 5083 and 7075 alloys joined by friction stir welding were investigated. Hardness, tensile, bending and impact tests were applied to the welded samples. In addition, optical and SEM tests were carried out. The effects of welding speed on microstructure and mechanical properties were investigated in these materials. Then, the optimal conditions for friction stir welding were determined for pure aluminum, 5083 and 7075 alloys. The maximum hardness was observed for 7075 while the minimum hardness was observed for pure aluminum. (orig.)
AdS pure spinor superstring in constant backgrounds
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Bevilaqua, L. Ibiapina [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte,Caixa Postal 1524, 59072-970, Natal, RN (Brazil); Vallilo, Brenno Carlini [Facultad de Ciencias Exactas, Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile)
2014-06-05
In this paper we study the pure spinor formulation of the superstring in AdS{sub 5}×S{sup 5} around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.
International Nuclear Information System (INIS)
Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.
2009-01-01
The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.
Energy Technology Data Exchange (ETDEWEB)
Saha, K.; Abu-Ramadan, E.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering
2010-07-01
Renewable energy sources are currently being investigated for their reliability, efficiency, and applicability. Biodiesel is one of the most promising alternatives to conventional diesel fuels in compression-ignition (CI) engines. This paper reported on a study that compared pure biodiesel, pure diesel and blended fuels using a comprehensive multicomponent droplet vaporization model. The model considers the difference in the gas phase diffusivity of diesel and biodiesel vapors. The paper presented the vaporization characteristics of pure diesel, pure biodiesel fuel droplets as well as the effect of mixing them in different proportions (B20 and B50). The model successfully predicted the vaporization history of a multicomponent droplet. The modeling study revealed that biodiesel droplets evaporate at a slower rate than the diesel droplets because of relatively low vapor pressure. As such, the blending of diesel fuel with small proportions of biodiesel will result in an increase in the evaporation time of diesel fuel to some extent. 31 refs., 6 figs.
Engineering arbitrary pure and mixed quantum states
International Nuclear Information System (INIS)
Pechen, Alexander
2011-01-01
Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.
Michel, P.
Collisions are at the origin of catastrophic disruptions in the asteroid Main Belt. This is witnessed by the observation of asteroid families, each composed of asteroids which originated from a single parent body, broken-up by a collision with another asteroid. Understanding the collisional process and its outcome properties is not only necessary in order to study the collisional evolution of small body population or the planetary formation, it is also strongly required in the context of mitigation strategies aimed at deviating a threatening asteroid. In the last three years, for the first time we have successfully performed numerical simulations of high speed collisions between small bodies which account for the production of gravitationally reaccumulated bodies. More precisely, we have developped a procedure which divides the process into two phases. Using a 3D SPH hydrocode, the fragmentation of the solid target through crack propagation is first computed. Then the simulation of the gravitational evolution and possible piecewise reaccumulation of the parent body is performed using the parallel N-body code pkdgrav. Our first simulations using monolithic parent bodies have succeeded in reproducing fundamental properties of some well-identified asteroid families, showing that gravitational re-accumulations following disruptive collisions are the key process accounting for the existence of asteroid families. Then, we have investigated the effect of the internal structure of the parent body on the outcome properties. We have thus shown that family parent bodies are likely to have already been pre-shattered by small impacts before being disrupted by a major event. We then suggested that the most likely internal structure of large asteroids in the main belt is not monolithic but rather composed of macroscopic fractures and voids. We will make a review of these simulations in three different impact regimes, from highly catastrophic to barely disruptive. In particular we
Oszmiański, Jan; Wojdyło, Aneta; Kolniak, Joanna
2011-07-15
Effects of pomace maceration on yield, turbidity, cloud stability, composition of phenolics, antioxidant activity and colour properties were studied, to evaluate the potential applicability of enzyme preparations in puree-enriched cloudy apple juice production. The yield of mixed juice and puree from pomace obtained in the enzymatic processing of apple ranged from 92.3% to 95.3%, significantly higher than the yield from the control without enzymatic pomace treatment (81.8%). Higher turbidity was obtained upon pomace treatment with Pectinex XXL and Pectinex Ultra SPL enzymes. The total content of phenolic compounds in apple pomace was higher than in raw juices (1520mg/kg and 441mg/L, respectively). The total polyphenol yields were higher in juices treated with Pectinex AFP L-4, Pectinex Yield Mash and Pectinex XXL, as compared to the control treatment. During 6months of storage, a significant change was observed in the content of polyphenols, especially in procyanidin fractions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Parametric instabilities in a magnetized and collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Phalswal, D R; Dube, A [Punjabi Univ., Patiala (India). Dept. of Physics
1980-09-01
The dispersion relation for a magnetized, collisional and hot plasma in the presence of a pump wave is developed for the case where the pump frequency ..omega../sub 0/ is large compared with the cyclotron frequency ..omega..sub(c) and the plasma frequency ..omega..sub(p). Formulae for the growth rate, the damping rate for the free electron plasma wave and the threshold power are derived and discussed numerically under different conditions. It is found that in a hot plasma (for magnetic fields with ..omega..sub(c)/..omega..sub(p) = 1 and 10) the threshold power Psub(T) is less than or greater than that in a cold plamsa for the (Re..omega../sub 2/)sub(+) or (Re..omega../sub 2/)sub(-) modes respectively. In a weak magnetic field (..omega..sub(c)/..omega..sub(p) = 0.1), Psub(T) does not vary with the direction theta of the magnetic field for the (Re..omega../sub 2/) sub(+) mode. However, Psub(T) for the (Re..omega../sub 2/)sub(-) mode is a minimum at theta = 30deg. and 10deg. for ..omega..sub(c)/ ..omega..sub(p) = 1 and 10 respectively, and it becomes very large (10/sup 5/-10/sup 7/ times its value in a cold unmagnetized plasma) for ..omega..sub(c)/..omega..sub(p) = 0.1. The results for the growth are found to be just the reverse of those for the threshold power.
Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.
Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang
2017-11-01
Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain
Effect Of Natural Convection On Directional Solidification Of Pure Metal
Directory of Open Access Journals (Sweden)
Skrzypczak T.
2015-06-01
Full Text Available The paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc.
Complex windmill transformation producing new purely magnetic fluids
International Nuclear Information System (INIS)
Lozanovski, C; Wylleman, L
2011-01-01
Minimal complex windmill transformations of G 2 IB(ii) spacetimes (admitting a two-dimensional Abelian group of motions of the so-called Wainwright B(ii) class) are defined and the compatibility with a purely magnetic Weyl tensor is investigated. It is shown that the transformed spacetimes cannot be perfect fluids or purely magnetic Einstein spaces. We then determine which purely magnetic perfect fluids (PMpfs) can be windmill-transformed into purely magnetic anisotropic fluids (PMafs). Assuming separation of variables, complete integration produces two, algebraically general, G 2 I-B(ii) PMpfs: a solution with zero 4-acceleration vector and spatial energy-density gradient, previously found by the authors, and a new solution in terms of Kummer's functions, where these vectors are aligned and non-zero. The associated windmill PMafs are rotating but non-expanding. Finally, an attempt to relate the spacetimes to each other by a simple procedure leads to a G 2 I-B(ii) one-parameter PMaf generalization of the previously found metric.
Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.
2015-11-01
Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.
Metastable growth of pure wurtzite InGaAs microstructures.
Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J
2014-08-13
III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.
International Nuclear Information System (INIS)
Gourdin, M.
1976-01-01
In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de
Park, Joseph Sung-Yul
2016-01-01
Language occupies a crucial position in neoliberalism, due to the reimagination of language as commodified skill. This paper studies the role of language ideology in this transformation by identifying a particular ideology that facilitates this process, namely the ideology which views language as pure potential. Neoliberalism treats language as a…
Mackenzie, Jim
2016-01-01
This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…
Constraining scalar fields with stellar kinematics and collisional dark matter
International Nuclear Information System (INIS)
Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano
2010-01-01
The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m φ and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei
Serati, Maurizio; Bauer, Ricarda; Cornu, Jean Nicolas; Cattoni, Elena; Braga, Andrea; Siesto, Gabriele; Lizée, Daphné; Haab, François; Torella, Marco; Salvatore, Stefano
2013-05-01
Inside-out tension-free vaginal transobturator tape (TVT-O) is currently one of the most effective and popular procedures for the surgical treatment of female stress urinary incontinence (SUI), but data reporting long-term outcomes are scarce. To evaluate the efficacy and safety of TVT-O 5-yr implantation for management of pure SUI in women. A prospective observational study was conducted in four tertiary reference centers. Consecutive women presenting with urodynamically proven, pure SUI treated by TVT-O were included. Patients with mixed incontinence and/or anatomic evidence of pelvic organ prolapse were excluded. TVT-O implantation without any associated procedure. Data regarding subjective outcomes (International Consultation on Incontinence-Short Form [ICIQ-SF], Patient Global Impression of Improvement, patient satisfaction scores), objective cure (stress test) rates, and adverse events were collected during follow-up. Multivariable analyses were performed to investigate outcomes. Of the 191 women included, 21 (11.0%) had previously undergone a failed anti-incontinence surgical procedure. Six (3.1%) patients were lost to follow-up. The 5-yr subjective and objective cure rates were 90.3% and 90.8%, respectively. De novo overactive bladder (OAB) was reported by 24.3% of patients at 5-yr follow-up. Median ICIQ-SF score significantly improved from 17 (interquartile range [IQR]:16-17) preoperatively to 0 (IQR: 0-2) (pTVT-O implantation is a highly effective option for the treatment of women with pure SUI, showing a very high cure rate and a low incidence of complications after 5-yr follow-up. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Chapter 12. Pure Tap Water Hydraulic Systems and Applications
DEFF Research Database (Denmark)
Conrad, Finn; Adelstorp, Anders
1997-01-01
Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....
Literature Survey on the Effects of Pure Carbon Dioxide on Health, Comfort and Performance
DEFF Research Database (Denmark)
Zhang, Xiaojing; Wargocki, Pawel; Lian, Zhiwei
2014-01-01
permissible occupational exposure level to CO2 is set at 5,000 ppm (ACGIH, 2011). Although in many studies CO2 has been related with health symptoms, comfort and performance of office work and schoolwork, it in itself has traditionally been assumed innocuous at the typical levels indoors; in these studies, CO......2 was merely a proxy for elevated exposure levels to air pollutants, and an indicator of inadequate outdoor air ventilation and poor indoor air quality. Two recent experiments suggest however that the exposure to pure CO2 at the levels typically occurring indoors and lower than the levels prescribed...... as permissible by the occupational standards can have negative effects on some aspects of human performance, in particular on tasks requiring concentration (Kajtar et al., 2006) and on tasks, in which decision should be taken (Satish et al., 2012). The present paper reports the results of the literature survey...
Álvarez-Rodríguez, M; Álvarez, M; Anel-López, L; López-Urueña, E; Manrique, P; Borragán, S; Morrell, J M; de Paz, P; Anel, L
2016-04-01
The development of a species-specific conservation protocol that involves artificial insemination with frozen semen needs to validate an effective methodology for freezing semen. Colloid centrifugation has been suggested and widely applied as an effective tool for selecting animal spermatozoa for artificial breeding. The objective of the present study was to compare different methods of centrifugation, single layer using Androcoll-Bear and Percoll and double layer using PureSperm 100 (in two different discontinuous gradients 40%-80% and 45%-90%), for the selection of fresh brown bear sperm samples. In the before freezing group, all selected samples showed a higher progressive motility and viability (except Percoll for motility 43.0 ± 5.3 [P Bear in number of damaged acrosomes, different relative to the control (control, 5.3 ± 0.6; PureSperm 80, 2.0 ± 0.3; Androcoll, 2.1 ± 0.9 [P Bear constitutes a useful tool for handling of brown bear ejaculates owing to its simple handling and procedure with a reliable sperm selection and freezability. This colloid yielded an improvement in several sperm parameters in brown bear frozen-thawed semen; the selected spermatozoa of fresh samples with this colloid showed a better resistance to freezing compared with the control sample not only for motility but also for viability. Copyright © 2016 Elsevier Inc. All rights reserved.
Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)
1974-01-01
A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.
Carter, Evan; Hughes, A. Meredith; Daley, Cail; Flaherty, Kevin; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; MacGregor, Meredith Ann; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; Moor, Attila; Kospal, Agnes
2018-01-01
Debris disks are hallmarks of mature planetary systems, with second-generation dust produced via collisions between pluto-like planetesimals. The vertical structure of a debris disk encodes unique information about the dynamical state of the system, particularly at millimeter wavelengths where gravitational effects dominate over the effects of stellar radiation. We present 450 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the edge-on debris disk around AU Mic, a nearby (d = 9.91 ± 0.10 pc) M1-type star. The 0.3'' angular resolution of the data allows us to spatially resolve the scale height of the disk, complementing previous observations at a wavelength of 1.3 mm. By resolving the vertical structure of the disk at these two widely-separated frequencies, we are able to spatially resolve the spectral index and study variations in the grain size distribution as a function of disk radius. The comparison of scale heights for two different wavelengths and therefore particle sizes also constrains the velocity dispersion as a function of grain size, which allows us to probe the strengths of bodies in the collisional cascade for the first time outside the Solar System.
Effects of pressure anisotropy on plasma transport
International Nuclear Information System (INIS)
Zawaideh, E.; Najmabadi, F.; Conn, R.W.
1986-03-01
In a recent paper a new set of generalized two-field equations is derived which describes plasma transport along the field lines of a space and time dependent magnetic field. These equations are valid for collisional to weakly collisional plasmas; they reduce to the conventional fluid equations of Braginskii for highly collisional plasmas. An important feature of these equations is that the anisotropy in the ion pressure is explicitly included. In this paper, these generalized transport equations are applied to a model problem of plasma flow through a magnetic mirror field. The profiles of the plasma parameters (density, flow speed, and pressures) are numerically calculated for plasma in different collisionality regimes. These profiles are explained by examining the competing terms in the transport equation. The pressure anisotropy is found to profoundly impact the plasma flow behavior. As a result, the new generalized equations predict flow behavior more accurately than the conventional transport equations. A large density and pressure drop is predicted as the flow passes through a magnetic mirror. Further, the new equations uniquely predict oscillations in the density profile, an effect missing in results from the conventional equations
Nonlinear saturation of stimulated Raman scattering in a collisional homogeneous plasma
International Nuclear Information System (INIS)
McKinstrie, C.J.
1985-11-01
Using multiple scale analysis, the nonlinear saturation of the stimulated Raman scattering instability is examined in a collisional homogeneous plasma. The first problem considered is the temporal problem in an infinite plasma, with a ubiquitous driver and arbitrary damping for each wave. The second problem considered is the absolute Raman instability in a finite plasma. The incident wave amplitude exceeds the absolute instability threshold by the fractional amount Δ. In the marginally unstable regime, the complete time dependence and spatial variation of each wave amplitude is obtained. An expression for the reflected light intensity is determined analytically, and is proportional to Δ. The conditions under which the steady-state results can be extended to the moderately unstable regime are discussed. The reflected light intensity is compared to values predicted for the convective instability, for the same incident intensity. In ''short'' plasmas, i.e., ones which extend over only a few linear convective gain lengths, the reflected intensity is found to be much higher when the absolute instability is excited
Collisional Penrose process near the horizon of extreme Kerr black holes.
Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida
2012-09-21
Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.
International Nuclear Information System (INIS)
Aistov, A.V.; Gavrilenko, V.G.
1996-01-01
The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption
Variations on Debris Disks. IV. An Improved Analytical Model for Collisional Cascades
Kenyon, Scott J.; Bromley, Benjamin C.
2017-04-01
We derive a new analytical model for the evolution of a collisional cascade in a thin annulus around a single central star. In this model, r max the size of the largest object changes with time, {r}\\max \\propto {t}-γ , with γ ≈ 0.1-0.2. Compared to standard models where r max is constant in time, this evolution results in a more rapid decline of M d , the total mass of solids in the annulus, and L d , the luminosity of small particles in the annulus: {M}d\\propto {t}-(γ +1) and {L}d\\propto {t}-(γ /2+1). We demonstrate that the analytical model provides an excellent match to a comprehensive suite of numerical coagulation simulations for annuli at 1 au and at 25 au. If the evolution of real debris disks follows the predictions of the analytical or numerical models, the observed luminosities for evolved stars require up to a factor of two more mass than predicted by previous analytical models.
Nigeria Journal of Pure and Applied Physics: Journal Sponsorship
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics: Journal Sponsorship. Journal Home > About the Journal > Nigeria Journal of Pure and Applied Physics: Journal Sponsorship. Log in or Register to get access to full text downloads.
Nigeria Journal of Pure and Applied Physics: Site Map
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics: Site Map. Journal Home > About the Journal > Nigeria Journal of Pure and Applied Physics: Site Map. Log in or Register to get access to full text downloads.
Implantation driven permeation behavior of deuterium through pure tungsten
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji
2001-09-01
Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.
Implantation driven permeation behavior of deuterium through pure tungsten
International Nuclear Information System (INIS)
Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji
2001-01-01
Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten
Structural properties of pure and Fe-doped Yb films prepared by vapor condensation
Energy Technology Data Exchange (ETDEWEB)
Rojas-Ayala, C., E-mail: chachi@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, P.O.B. 14-149, Lima 14 (Peru); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES (Brazil); Suguihiro, N.M. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig (Germany); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil)
2014-10-15
Ytterbium and iron-doped ytterbium films were prepared by vapor quenching on Kapton substrates at room temperature. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. The aim was to study the microstructure of pure and iron-doped films and thereby to understand the effects induced by iron incorporation. A coexistence of face centered cubic and hexagonal close packed-like structures was observed, the cubic-type structure being the dominant contribution. There is an apparent thickness dependence of the cubic/hexagonal relative ratios in the case of pure ytterbium. Iron-clusters induce a crystalline texture effect, but do not influence the cubic/hexagonal volume fraction. A schematic model is proposed for the microstructure of un-doped and iron-doped films including the cubic- and hexagonal-like structures, as well as the iron distribution in the ytterbium matrix. - Highlights: • Pure and Fe-doped Yb films have been prepared by vapor condensation. • Coexistence of fcc- and hcp-type structures was observed. • No oxide phases have been detected. • Fe-clustering does not affect the fcc/hcp ratio, but favors a crystalline texture. • A schematic model is proposed to describe microscopically the microstructure.
On the kinetic collisional theory of beam-plasma system (relativistic dielectric tensor). Vol. 2.
Energy Technology Data Exchange (ETDEWEB)
Khalil, Sh M; Sayed, Y A; Zaki, N G [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)
1996-03-01
Calculation of the dielectric tensor is useful for calculating and oscillations the stability of an inhomogeneous plasma. If the dielectric tensor is known, the problem of oscillations is reduced the derivation of the Maxwellian equations. In this case, there is no need to derive the equations of the motion of charged particles every time. The properties of the plasma, especially those connected to its instability, may be equally well specified through permittivity as through conductivity. The features of plasma instabilities and the plasma dielectric tensor are essentially affected by the presence of collision. Coloumb collisions (C.C.) are very important in the process of no linear saturation of some plasma instabilities (e.g., ion cyclotron instability, electron-ion two stream instability). For C.C., two basic properties are considered; (i) the cross section decreases rapidly as the particle velocity increases, (ii) the dominate contribution arises from a commutative effect of small-angle scattering or small-momentum transfer processes. If allowance is made for C.C. to derive the kinetic wave equations in a homogeneous plasma, it will remove the divergance in the matrix elements describing nonlinear interactions. In this paper, the collisional kinetic wave equation in cylindrical hot plasma is studied. The dielectric and polarizing tensor elements which describes the kinetic relativistic electron beam (REB) interaction with magnetized plasma into consideration the effect of pair C.C. is derived. Most research carried out in this direction has neglected the effect of C.C. In the absence of collisions, a `plauste` is formed on the distribution function, and the adsorption of the energy by the plasma stops. 1 fig.
Gasper, A.; Hollands, W.; Casgrain, A.; Saha, S.; Teucher, B.; Dainty, J.R.; Venema, D.P.; Hollman, P.C.H.
2014-01-01
We hypothesised that consumption of flavanol-containing apple puree would modulate platelet activity and increase nitric oxide metabolite status, and that high flavanol apple puree would exert a greater effect than low flavanol apple puree. 25 subjects consumed 230 g of apple puree containing 25 and
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2011-06-01
The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010